Abstract: Predictors of Poor Neurocognitive Performance and Neuropsychological Phenotypes in Adolescents and Young Adults With Congenital Heart Disease

Maria Emilia G Areias1; Bruno Peixoto2; Ana Carolina Pinheiro2; Helena Monteiro2; Sara Filipa Araújo2; Tânia Carvalho2; Stefanie Melo2; João Pedro Lopes2; Filipa Rodrigues2; Ana Catarina Nascimento2; João Miranda3; Filipa Vilacova3; Cláudia Moura3; Joana Luz Soares2; Victor Viana4; João Pedro Lopes5; José Carlos Areias6

Author Affiliations

1Social and Behavior Sciences, Instituto Universitário de Ciências da Saúde (CESPU); Cardiovascular Rsch Unit (Faculty of Medicine, Univ of Porto), Gandra-Paredes, Portugal
2Social and Behavior Sciences, Instituto Universitário de Ciências da Saúde (CESPU), Gandra-Paredes, Portugal
3Pediatric Cardiology, Cntr Hospar S. João, Porto, Portugal
4Pediatrics, Cntr Hospar S. João, Porto, Portugal
5Criminology, Faculty of Law, Univ of Porto, Porto, Portugal
6Pediatric Cardiology, Cntr Hospar S. João; Cardiovascular Rsch Unit (Faculty of Medicine, Univ of Porto), Porto, Portugal

Abstract

Objectives: to determine the predictors of neurocognitive performance (NP) of patients with Congenital Heart Disease (CHD), analysing its relation to parameters of fetal development, as head circumference (HC), weight (W) and length (L) at birth, neonatal parameters (APGAR 1, 5), quality of life (QOL), psychiatric morbidity (PM), psychosocial adjustment (PSA) and traits of personality (TP); to identify different phenotypes of NP in CHD patients.

Methods: 337 CHD patients, 189 male, ages 12 to 30 years (mean= 16.34 ± 3.12), 117 cyanotic, and 119 healthy controls (56 males, mean=18.41±3.20) participated. Clinical data were collected. Neuropsychological assessment included Wechsler’s Digit Test (direct and reverse) and Symbol Search, Rey’s Complex Figure, BADS’s Key Searching Test, Color-Word Stroop Test, Trail Making Test (A, B) and Logical Memory Task. Participants were interviewed on social support, family educational style, self-image, physical limitations, completed a psychiatric interview (SADS-L) and self-report questionnaires on QOL (WHOQOL-BREF), PSA (YSR and ASR) and TP (NEOPI-R). HC, W and L and APGAR were collected.

Results: CHD patients had a significantly worse NP than healthy controls in all tests, and the cyanotic worse than the acyanotic patients. Several correlations were apparent between fetal parameters (HC, W and L) and neuropsychological abilities in CHD. However, the HC was the main predictor of bad NP later on in CHD patients (R=.435; R2=0.189; F=14.692; p=0.000; β=.201; t=2.487; p=0.016). We identified 3 neurocognitive phenotypes in CHD patients, minimally, moderately and globally impaired. The last showed lower HC (p=0.003), W (p=0.022) and L, and a bigger number of retentions in school (p=0.017) than the first. The last reported more aggressive behaviors than the other 2 (p=0.007; p=0.006) and their caregivers reported more social (p=0.025), thought (p=0.041) and attention problems (p=0.001) in their children than the parents of the other 2.

Conclusion: CHD patients have worse NP than controls; small HC at birth was the main predictor of poor NP; We identified 3 patterns of neurocognitive disability among CHD patients: mild, moderate and severely impaired, all showing significant differences compared to controls.
Key Words:
neurocognitive disabilities
congenital heart disease
quality of life


© 2015 by American Heart Association, Inc.