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Induced magnetic field used to detect the sigma phase of a 2205 duplex 

stainless steel 

	

Abstract 

Sigma phases are formed due to heat treatments and/or welding processes 

during the solidification stage, and they are responsible for embrittlement of 

duplex stainless steels. Only a small amount of this phase promotes 

unfavorable mechanical properties and liability to corrosion. In this work, a 

new affordable approach to detect and follow-up the kinetics of the sigma 

phase transformation is evaluated. The measurements are based on an 

induced magnetic field generated through the interaction between an external 

magnetic field and the microstructure under study. To validate this approach, 

the induced magnetic field values are compared with the values of the 

Charpy impact energy, and the sigma phase is assessed by optical 

microscopy. Moreover, surface fractures are analyzed by scanning electron 

microscopy and X-ray diffraction. The results from the 2205 duplex stainless 

steel used show that there is a direct relation among the impact energy, 

fracture mechanism and induced magnetic field. The method proved to be 

able to follow up the embrittlement of the DSS successfully. Moreover, the 

results confirm that the presence of a sigma phase can be studied based on 
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an induced magnetic field, even when in low amounts, and that a critical 

threshold value can be defined to monitor structures in service. 	

Keywords: Non-destructive testing; Optical microscopy; Charpy test; 

Scanning electron microscopy; Sigma phase; X-ray diffraction. 
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1 Introduction 

Duplex stainless steels (DSS) hold important properties of both the face-

centered cubic (austenitic) and body-centered cubic (ferritic) phases in their 

microstructures. The ferrite and austenite phases are present in roughly equal 

volume fractions [1, 2]. Consequently, DSS have excellent strength and 

toughness, improved corrosion resistance (especially to localized corrosion) 

and exceptional resistance to halide stress-corrosion cracking [3, 4]. Due to 

these excellent properties, DSS are widely used in the marine and 

petrochemical industries, as well as for desalination services and in paper 

mills [5-7]. 

However, when these steels are heated above 600 °C, the formation of the 

brittle and non-magnetic sigma (σ) phase occurs [8-10]. This phase presents 

high hardness (around 900 HV) and is a phase rich in chromium. Also the 

sigma phase, which is usually formed from the ferrite phase, reduces the 

impact toughness and the resistance to localized corrosion due to the adjacent 

zones that become depleted of Cr and Mo [11-14]. Small amounts (4%) of 

the sigma phase are able to compromise the material toughness [6, 9, 15]. 

Even these low quantities promote a considerable decrease of toughness 

without any notable influence on the hardness. For instance, the precipitation 

of 1.3 % of this phase decreased the impact toughness from 320 J (solute 

treated) to 24 J (aged samples at 800 oC for 10 min) [6, 9, 16]. The sigma 
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phase forms after aging at temperatures between 600 and 950 ºC and after 

cooling from temperatures above 900 ºC, as occurs in the heat-affected zone 

during welding. Appropriate toughness properties are achieved by applying 

proper annealing temperatures and cooling rates, which explains why the 

toughness properties in DSS are in general satisfactory [17, 18]. 

The ferrite phase is ferromagnetic while the austenite and sigma phase are 

paramagnetic. Therefore, magnetic-based testing approaches can be used for 

testing duplex stainless steels, since these tests are sensitive to the presence 

and amount of the ferromagnetic ferrite phase. Mohapatra et al. [19, 20] 

showed that the remanence measurement of the magnetic hysteresis loop is 

able to follow the formation of the σ phase even when presented in low 

volume fractions. Structure-sensitive magnetic properties like coercivity and 

remanence are affected by microstructural modifications. Therefore, 

considerable attention has been given to magnetic techniques to study 

ferromagnetic materials.  

Previous works have also shown the applicability of magnetic-based 

measurements to detect ferritic phase decomposition and the presence of the 

sigma phase in duplex stainless steels [9, 21- 23]. Magnetic susceptibility 

tests have been applied on samples with different levels of ferritic phase 

decomposition, and a decreasing of the magnetic susceptibility was observed 

as the time of thermal aging increased due to the formation of the sigma 
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phase. The non-magnetic sigma phase reduces the magnetic field 

permeability of the materials and therefore also the magnetic susceptibility 

of such materials [21, 22]. 

Other traditional non-destructive tests that have been used to characterize 

material microstructures are based on eddy current testing (ECT) [23-25], 

ultrasound [26-30] and magnetic Barkhausen noise [8, 31, 32], which have 

also been used to detect the sigma phase [8, 23-26]. For example, Normando 

et al., in [8], studied the sigma phase transformation in samples aged at 800 

and 900 oC for times up to 2 hours using the eddy current technique. The 

authors observed that the impedance decreases as the heat treatment time 

increases. These authors noted a sharp decreasing in impedance in the first 

15 min, which was not associated to sigma phase precipitation. Instead, the 

authors associated this behavior to some second austenite phase precipitation 

and also to a very sharp softening that was detected in the same time interval. 

A considerable decrease of impedance observed after 15 min is said to be 

due to the paramagnetic sigma phase precipitation. 

 Camerini et al., in [24], evaluated conventional electromagnetic (ECT) 

and saturated low frequency eddy current (SLOFEC) techniques to 

characterize super duplex stainless steel samples. SLOFEC differs from ECT 

because it uses an external DC magnetic field that reaches the magnetic 

saturation of the sample under study. The depth penetration of the eddy 
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current field lines is increased once the local relative permeability is 

decreased by the DC magnetization. This is attractive as it means that larger 

volumes of materials can be analyzed due to the greater penetration of the 

eddy current. Both techniques were able to evaluate the presence of the 

sigma phase and to estimate the δ ferrite content. Other works discussed the 

advantages of using the eddy current technique for the characterization of 

different materials [33-35]; however, neither of these latter two studies 

presented the potential to characterize the sigma phase when it was in low 

amounts in SDSS, nor did they correlate the electromagnetic results to the δ 

content. However, a limitation of these two studies was the low number of 

samples tested which could jeopardize their results. 

Ultrasound testing has also been used to detect the sigma phase 

transformation in duplex stainless steels [8, 26-30, 36]. For example, 

Normando et al., [8, 26] analyzed the influence of the sound velocity to 

follow-up the σ phase formation at temperatures of 800 and 900 oC for times 

up to 2 h. The results showed that ultrasonic velocity increases with longer 

times of heat treatment. The sound velocity is influenced by the material 

density and the elastic modulus [37], therefore the changes observed for the 

sound velocity indicate changes of the material properties due to the 

generation of the sigma phase from the ferrite phase. The results also showed 

that the sound velocity measurements are more precise for aging times above 
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30 min [8, 26]. Silva et al. [27, 28] applied ultrasound to microstructure 

characterization. These authors studied the ferrite decomposition at 

temperatures of 425 and 475 oC and showed that the changes of the sound 

speed measurements are directly proportional to the variation of the material 

hardness, presenting sensitivity to the phase transformations. Thus, the 

sound speed is an important nondestructive parameter to follow-up the 

hardening kinetics of duplex stainless steels.  

 In this study, induced magnetic field measurements obtained in the 

reversibility region of magnetic domains were used to follow the formation 

of the undesirable sigma phase. Samples of the 2205 duplex stainless steel 

were aged in order to obtain different amounts of the sigma phase up to 18 %. 

The aim was to compare this approach with others like the ones based on 

ultrasound and eddy currents, when applied to regions containing low 

amounts of the sigma phase of the duplex stainless steel under study. The 

toughness of these samples had already been reduced due to the presence of 

the sigma phase. The proposed approach revealed to be promising to follow 

the decomposition of small particles of ferrite at temperatures below 550 oC 

for SAF 2205 duplex stainless steels [36] and this approach was used here to 

evaluate the sigma phase. The findings obtained show that the proposed 

approach has an interval of error of around 2 x 10-5 tesla considering an error 

of 5 %. In order to verify the dispersion of the signals acquired due to 
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external noise. The presence of data outliers and their influence on the results 

were also analyzed. 

 

2 Experimental procedures 

Samples of a 2205 DSS were thermally aged in an electric resistance furnace 

at temperatures of 700, 750, 800, 850, 900 and 1000 oC for times of 0.25, 1 

and 2 hours, Table 1. The samples were prepared by mechanical polishing 

and electrolytic etching in a 10 % KOH solution with a voltage of 3 V for 15 

s, which reveals mainly the sigma phase. The amount of the sigma phase was 

quantified in microstructural images acquired by optical microscopy 

(NIKON FX 35XD Optic Microscopy). The amount, i.e., the volumetric 

fraction, of the sigma phase was calculated using a computational tool of 

image processing and analysis that includes an artificial neural network to 

detect and characterize microstructures [38-43]. Forty images were analyzed 

and the volume fraction determined considering a 95 % confidence interval 

with a maximum error of 5 %. The Charpy impact test was performed on the 

samples subjected to the same treatments; the samples were 10x5x55 mm3. 

Five samples were used for each time and the temperatures of 800 and 900 

oC were particularly studied because the amount of the sigma phase needed 

to embrittle the material (4 %) is reached faster due to the kinetics of the 
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formation associated to these high temperatures. The surface microstructures 

of the as-received samples and the samples aged at 800 and 900 ºC were 

analyzed via scanning electron microscopy (SEM) for fractures. 

The formation of the sigma phases were studied using X-ray diffraction tests 

with an X-ray Diffractometer from Shimadzu Corporation (Japan), model 

XRD-6000 vertical type, with Cuκ-α radiation. The scanning angle varied 

from 41 to 53 o with steps of 0.02 o. 

Figure 1 shows the experimental setup of the proposed approach to study the 

samples based on the application and assessment of induced fields. In this 

setup, a solenoid (with N/L = 21.26 m-1, where N is the number of closely 

spaced turns and L the length) is responsible for generating the external 

magnetic field, and a Hall Effect sensor (from Honeywell, USA, model 

SS495A, with sensitivity of 3.125 ± 0.125 mV/G) is used to determine the 

induced magnetic field. External magnetic fields up to 282 A/m were applied 

in order to generate the induced fields in the region of reversible domain wall 

motion, leaving no permanent magnetization in the sample under test. This 

region corresponds to the region of the magnetization curve where the 

domains are randomly oriented, and the application of an external magnetic 

field does not cause their permanent motion or residual field and therefore, 

the demagnetization of the material is unnecessary [44, 45]. A microscopy 
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analysis of the presence of the irreversible domain motion was not part of 

this work, however, no macro effect of this kind was observed in the 

measurements. 

The induced magnetic field in the reversibility region is proportional to the 

magnetic permeability of the material under study. This means that the 

induced magnetic field obtained by a fixed external magnetic field is not 

affected by changes in terms of the geometry of the samples. The correlation 

of the induced field with the amount of the sigma phase is related to the 

reduction of the induced magnetic field that corresponds to the presence of 

embrittlement. The ideal external field was considered as the highest 

difference found between the induced magnetic fields of the samples treated 

for 2 hours and the as-received state sample. Five hundred signals were 

acquired from each sample. 

 

3 Results and Discussion 

  

The toughness of duplex stainless steels, when submitted to thermal cycling 

at temperatures above 600 °C, is affected by the formation of the 

paramagnetic sigma phase. Figure 2 shows the microstructures of the 

thermally aged samples at 800 and 900 oC for 2 hours and their X-ray 

diffraction patterns. This Figure shows a higher amount of precipitates at 900 
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oC. At 800 oC, the microstructure shows the sigma (σ) phase formed from 

the ferrite (δ) phase, as well as the reaction of the σ + austenite (γ2) phases. 

This reaction is noticeable because the electrolytic etching in a 10 % KOH 

solution attacked the sigma phases and the spaces between them, which are 

composed of the γ2 phase, were not attacked and a discontinuous 

precipitation is involved. The sigma phase precipitates from ferrite in the γ/δ 

interfaces or in the γ/δ grain boundaries. For most aging temperatures, ferrite 

decomposes into γ2 and σ phases via an eutectoid reaction. A small 

percentage of the Chi (χ) phase is also precipitated in duplex and super 

duplex steels from ferrite when the aging temperature is between 700 and 

900 ºC [46].  

The precipitation of the σ, γ2 and χ phases, which are paramagnetic phases, 

reduces the magnetic properties of the steel as the ferrite phase is 

ferromagnetic and decomposes into these phases. Magnetic susceptibility 

has been used to study the decomposition of the ferrite phase in duplex 

stainless steels at temperatures ranging from 350 to 900 oC [21, 22]. For these 

temperatures the magnetic susceptibility drops rapidly at the beginning and 

then stabilizes. For temperatures up to 550 oC, ferrite decomposes via 

spinodal decomposition, and from 600 to 900 oC, the magnetic susceptibility 

decreases because of the presence of the sigma phase. Another magnetic 

technique used to follow the ferrite decomposition is based on an induced 
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magnetic field generated from the interaction between an applied external 

field and the microstructure [36]. This technique uses induced fields in the 

reversibility region of magnetic domains. The magnetic permeability was 

used to follow the ferrite decomposition at temperatures above 550 oC and 

the results were similar [36]. 

Figure 3 presents the difference, which is called amplitude measurement, 

among the induced magnetic fields for the samples aged for 2 hours and the 

as-received duplex stainless steel against the applied external fields. The 

amplitude compares a sample with the sigma phase against a sample without 

the sigma phase. The Figure demonstrates that the values increase up to a 

maximum peak of 211.5 A/m, after which they decrease. Higher induced 

magnetic field lines detect the random distributed sigma phases more easily 

as the external field increases. The last decrease of amplitude shown in 

Figure 3 was due to the beginning of the saturation of the Hall sensor used. 

Figure 3 also indicates that 211.5 A/m is the ideal value to apply the external 

field in order to discriminate the amplitudes more clearly. 

Figure 3 also shows the effect of the temperature on the formation of the 

sigma phase. The use of the ideal field revealed that the samples aged at 

temperatures of 700 and 1000 oC presented lower amounts of the sigma 

phase compared to the ones aged at 800 and 900 oC. Camerini et al, in [24], 

observed that thermal aging for 1 hour at 1220 oC does not lead to sigma 
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phase formation and that at 1000 oC generates only 3.4% of the sigma phase. 

In this work, the samples thermally aged at 900 oC for 2 hours presented 

17.87% of this phase. 

Figure 4 shows the values of the induced magnetic fields (B) against time 

and temperature with an applied external field of 211.5 A/m. The induced 

magnetic field decreases due to the presence of the paramagnetic sigma 

phase and the highest rate of precipitation occurs at 850 oC. Normally, most 

of the thermally aged steels at 800 and 900 oC present higher rates of sigma 

phase precipitation than other temperature below 800 or above 900 ºC [9, 

10]. Other techniques, such as the ones based on ultrasound [8, 26] and eddy 

currents [8, 24], have also been used to detect the sigma phase in duplex 

stainless steels. Both techniques can detect the presence of this phase for 

aging times over 0.5 h, while the proposed approach based on induced 

magnetic field can also be used for times below 0.5 h. This greater range of 

the proposed approach is very relevant since a thermal aging treatment at 800 

oC for 0.5h is able to reduce the material toughness by up to 65 % [9].  

Thermal aging at 700, 750 and 1000 oC did not affect the toughness of the 

studied material due to the low content of the sigma phase. A value of 2.28% 

of the sigma phase was found for 800 oC for 0.25 h, which corresponds to 

the level of the induced magnetic field associated to these temperatures, as 

can be seen in Figure 4.  
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Figure 5 shows the absorbed impact energy in function of the induced field 

for the samples aged at 800 and 900 oC and times up to 2 hours. As already 

reported [9, 10], the thermal aging at 800 and 900 oC presented the highest 

rates of sigma phase precipitation. Figure 5 demonstrates that the induced 

magnetic field is able to follow the embrittlement process of the analyzed 

steel. The aged sample at 800 oC for 1 h presented a decrease of around 82 % 

in terms of toughness. Sigma phases greater than 4 % reduce the impact 

strength of the steel by 70 % [47]. According to Fargas et al., [47], as the 

precipitation of the sigma phase increases, cracks occur preferentially in the 

contours of the particles of this phase that are oriented in the rolling direction. 

Thermal aging at temperatures of 800 and 900 oC for 0.25 h generate losses 

in toughness of 31.3 and 54.5 %, respectively. Hence, in order to monitor 

duplex stainless steel structures, it is important to assess their microstructure 

even for times inferior to 0.5 h. 

Figure 6 shows the fractured surfaces obtained by SEM of the samples aged 

at 800 and 900 °C for 0.25 h. A change in the fracture mechanism from 

ductile to brittle is apparent in this Figure. For the 800 oC sample the 

microstructure shows a ductile fracture mode with a large number of deep 

dimples visible, and with some cracks already perceptible due to the presence 

of the sigma phase. These cracks are even more noticeable in the 900 oC 

sample.  
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The variations of the induced magnetic field and the impact energy in 

function of the amount of the sigma phase are presented in Figure 7. Here 

the absorbed energy decreases rapidly and tends to a plateau as the material 

becomes brittle. Small amounts of sigma phase promote a significant 

decrease in toughness: 3 % causes a reduction of 78 % in the absorption of 

the impact energy. The correlation between this phase and the impact energy 

has already been reported [9, 48]. 

Figure 7 also shows that the induced magnetic field follows the formation of 

the sigma phase and that there is a critical value that corresponds to the brittle 

condition of the material. This can be a useful tool to monitor structures in 

service, since it can detect the presence of the sigma phase even when in low 

amounts. As previously mentioned, other techniques like the ones based on 

eddy currents and ultrasound are not so precise for short aging times of 

around 0.25 h at temperatures of 800 and 900 oC [8, 26]. 

Based on the experimental findings, the measurement of induced magnetic 

fields can be used to detect, in service, material embrittlement due to the 

sigma phase. For example, welded joints can be tested by performing 

analysis before the welding, or in regions distance from the welded regions, 

and after the welding; and, if the reduction in the induced magnetic field 

corresponds to a content of 4 % of sigma phase, then it should be interpreted 
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as this result is a strong indication that the structure under analysis needs to 

be repaired. 

Within the scope of this work, an outlier analysis was also performed on the 

values obtained for the induced field. Twenty-two external fields were 

applied for each aging condition until the saturation of the Hall sensor. 

Outliers were only found in the data acquired for the samples aged at 800 oC 

for 2 h with an applied external field of 102.01 A/m and at 900 oC for 2 h 

with an applied external field of 133.26 A/m, as shown in Figure 8. In the 

first case, the outlier is not considered a new value as it is stills inside the 

error bar. In the second case, the outliner is outside the error bar, but the 

difference was not enough to affect the results obtained. These results 

therefore demonstrate that the proposed approach to test for the sigma phase 

is accurate and robust. 

 

4 Conclusions  

Embrittlement in a 2205 duplex stainless steel due to the presence of the 

sigma phase was studied in this work. The phase was detected based on an 

induced magnetic field that was generated by the interaction of an external 

magnetic field and the microstructure under analysis. 
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The findings obtained in the various tests executed conclude the following: 

(1) There is an ideal external magnetic field that should be applied in order 

to obtain the best amplitude for the phase assessment. In the present work, a 

value of 211.5 A/m was used as the ideal field. (2) The presence of the 

paramagnetic sigma phase reduces the induced magnetic field even when the 

phase is in reduced quantities. Other testing techniques such as the ones 

based on eddy currents and ultrasound have assessment limits of 0.25 h for 

temperatures above 800 oC. (3) The induced magnetic field is directly 

proportional to the absorbed energy. Based on the experimental findings, we 

can conclude that the induced magnetic field can be used to continually 

monitor in-service structures that are susceptible to embrittlement. The 

method can follow the presence of low amounts of the sigma phase, which 

cannot be easily detected by the common non-destructive testing techniques. 

However, low sigma phases are enough to promote significant reductions in 

toughness. (4) The induced magnetic field in the region of reversibility of 

magnetic domain is directly proportional to the material permeability and 

this means that the induced magnetic field obtained by the ideal external 

magnetic field is not affected by changes in the geometry of the samples. (5) 

Additionally, in comparison to other non-destructive testing techniques, 

another attractive characteristic of this technique is the ease of use and 
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interpretation, besides being more affordable than ultrasound testing, for 

example. 

To conclude, the testing approach proposed can predict accurately and 

efficiently the best moment to carry out maintenance services, which leads 

to reduced costs and maintenance time. 

As to future work, we intend to use computational classifiers in order to 

identify the material phases based on the data collected by the proposed 

testing approach. Other interesting works could be studies about the flux 

density within the samples under study considering the thickness of the 

samples and the applied magnetic fields. 
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FIGURE CAPTIONS 

 

Figure 1. Experimental setup used: (1) Power supply, (2) Solenoid, (3) Hall 

sensor, (4) Material sample, (5) Data acquisition board, (6) Computer, (7) 

Bench test and (8) Potentiometer. 

Figure 2. Microstructures of the thermal aged samples at (a) 800 and (c) 900 

º C for 2 hours and related X-ray diffractions (c) and (d), respectively. 

Figure 3. Amplitude versus external magnetic field for the aging 

temperatures studied. 

Figure 4. Induced magnetic field versus the external one for the temperatures 

of 700, 750, 800, 850, 900 and 1000 oC and times up to 2 hours. 

Figure 5. Induced magnetic field and Charpy impact energy for the samples 

aged at (a) 800 and (b) 900 oC. 

Figure 6. Fracture surface microstructures of the samples aged at (a) 800 and 

(b) 900 ºC for 0.25 h. 

Figure 7. Induced magnetic field and absorbed energy in terms of the sigma 

phase percentage. 

Figure 8. Influence of the outliers on the induced magnetic field for the aging 

temperatures of (a) 800 and (b) 900 oC for 2h. 
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TABLES CAPTION 

Table 1. Conditions of the aging thermal treatments addressed, number of 

samples studied and tests performed. (The as-received sample was 

considered as time zero.) 
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Figure 6b 
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Figure 8b 
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TABLES 

Table 1 

 

Temperature (oC) Time (h) Number of samples Tests 

As-received 0 5 CI 

OM 

SEM 

IMFM 

700 0.25 1 2 15 OM 

IMFM 

750 0.25 1 2 15 OM 

IMFM 

800 0.25 1 2 15 CI 

OM 

SEM 

IMFM 

850 0.25 1 2 15 OM 

IMFM 

900 0.25 1 2 15 CI 

OM 

SEM 

IMFM 

1000	 0.25 1 2 15 OM 

IMFM 

CI - Charpy Impact 
MO - Optical Microscopy 
SEM - Scanning Electron Microscopy 
IMFM - Induced Magnetic Field Measurement 

 


