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ABSTRACT 

 

On a global scale, colorectal cancer is considered to be the third most common, 

and the second most common cause of deaths related with cancer both in men and 

women. The incidence of colorectal cancer cases has been rising at an alarming rate, 

particularly in regions with a western lifestyle.  

Currently, treatment for colorectal cancer involves the combination of surgery 

with chemotherapy, by administration of cytotoxic drugs and radiation. 5-fluorouracil (5-

Fu), an antimetabolite, is one of the most commonly used cytotoxic drugs in colorectal 

treatment. Unfortunately, resistance to 5-Fu may emerge during treatment due to 

several biological mechanisms, namely over expression of thymidylate synthase (TS) 

and alterations in the apoptotic pathway. One of the strategies to overcome drug 

resistance is the combination with other drugs and/or natural compounds. 

The chemical and biological diversity of the marine environment is incalculable, 

making this a reservoir of natural bioactive compounds. Many of these products exhibit 

structural and chemical characteristics that are not found in natural terrestrial 

compounds. With this in mind, the research of new natural products with high efficacy 

against tumour cells and no apparent cytotoxicity against normal cells has gained a 

prominent place in the scientific community. Marine algae are a magnificent source of 

bioactive compounds which demonstrate a broad range of biological activities such as 

antioxidant, antimicrobial, anti-inflammatory, and anticancer activities. The biological 

activities of fucoxanthin, a marine carotenoid, and phloroglucinol, a polyphenolic 

compound, have been explored in diverse studies, including cytotoxic effects against 

cancer cell lines. 

In the present study, the anticancer effects of fucoxanthin and phloroglucinol 

alone or combined with 5-Fu were assessed on two colorectal cancer cell lines (HCT-

116 and HT-29) resorting to anti-proliferative, apoptotic, and genotoxic assays. Also, to 

assess the specificity of the anticancer effects, a normal colon cell line (CCD-Co18) 

was also tested. Our results showed that 5-Fu decreased cell viability in a dose-

dependent manner and induced DNA damage in both cell lines, with HCT-116 cells 

presenting increased sensitivity to 5-Fu. Furthermore, fucoxanthin decreased cell 

viability more efficiently than 5-Fu alone and when in co-incubation it enhanced the 

cytotoxic effect of 5-Fu in the cancer cell line, without toxic effects to normal cells, 

which could be a promising alternative for resistant colorectal cancer cell lines. 
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Phloroglucinol alone also decreased cell viability and in combination increased the 

sensitivity to 5-Fu in both cancer cell lines, especially in the p53 mutant HT-29 cancer 

cell line. Nonetheless, at lower concentrations phloroglucinol inhibits the effects of 5-Fu 

in HCT-116 cells, which is not a desired effect during a cancer treatment. 

Both natural compounds, fucoxanthin and phloroglucinol enhance the efficacy 

of 5-Fu in certain conditions. However, further studies are required to clarify the 

mechanisms involved in order to become a possible strategy for some cases of 5-Fu-

resistant colon cancer. 
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RESUMO 

 

À escala global, o cancro do coloretal é considerado o terceiro tipo de tumor 

maligno mais comum, e o segundo responsável pelo maior número de mortes 

relacionadas com o cancro, tanto em homens como em mulheres. Assistimos a um 

aumento na incidência de casos de cancro coloretal, de uma forma alarmante, 

principalmente em regiões com um estilo de vida caraterístico de países 

desenvolvidos. 

Atualmente, o tratamento para o cancro coloretal passa pela combinação de 

cirurgia com quimioterapia, através da administração de fármacos citotóxicos e do uso 

de radiação. O 5-fluorouracilo (5-Fu), um anti-metabolito, é um dos compostos 

citotóxicos mais utilizados no tratamento do cancro coloretal. Infelizmente, durante o 

tratamento com 5-Fu poderá surgir resistência ao mesmo devido a diversos 

mecanismos biológicos, nomeadamente expressão elevada da timidilato sintase e 

alterações na via apoptótica. A combinação com outras fármacos e/ou com compostos 

naturais é uma das estratégias utilizadas para ultrapassar a resistência a fármacos. 

A diversidade química e biológica do ambiente marinho é incalculável, tornando-

o um reservatório de compostos naturais bioativos. Muitas destas moléculas exibem 

caraterísticas estruturais e químicas que não são encontradas nos compostos naturais 

terrestres. Tendo isto em consideração, a pesquisa de novos produtos naturais com 

elevada eficiência contra células tumorais e aparentemente sem citotoxicidade contra 

células normais têm ganho um lugar de destaque dentro da comunidade científica. As 

algas marinhas são uma fonte magnífica de compostos bioativos que demonstram 

uma ação vasta de atividades biológicas, entre as quais atividade antioxidante, 

antimicrobiana, anti-inflamatória e antitumoral. As atividades biológicas da fucoxantina, 

um “carotenóide marinho”, e do floroglucinol, um composto fenólico, que também pode 

ter origem em organismos marinhos (em particular em algas castanhas), têm sido 

exploradas em diversos estudos, inclusive os seus efeitos citotóxicos em linhas 

celulares de cancro. 

No presente estudo foram aferidos os efeitos antitumorais da fucoxantina e do 

floroglucinol, isolados ou em combinação com o 5-Fu, em duas linhas celulares de 

cancro coloretal (HCT-116 e HT-29) recorrendo a ensaios anti-proliferativos, 

apoptóticos e de genotoxicidade. A especificidade do efeito antitumoral foi também 

avaliada utilizando uma linha celular normal de colon (CCD-Co18). Os nossos 
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resultados mostraram que o 5-Fu, nas duas linhas celulares de cancro testadas, 

diminuiu a viabilidade celular de uma forma dose-dependente com a capacidade de 

induzir danos no DNA, sendo as células HCT-116 mais sensíveis ao 5-Fu. Além disso, 

a fucoxantina diminuiu a viabilidade celular mais eficientemente do que o 5-Fu isolado 

e quando em co-incubação potenciou o efeito citotóxico do mesmo, sem citotoxicidade 

para as células normais, tornando-se uma alternativa promissora a ser utilizada em 

linhas celulares resistentes. O floroglucinol isolado diminuiu também a viabilidade 

celular e em co-incubação aumentou a sensibilidade de ambas as linhas celulares 

para o 5-Fu, especialmente da linha celular HT-29 com p53 mutante. Contudo, em 

concentrações mais baixas inibiu o efeito do 5-Fu nas células HCT-116, condição que 

não é pretendida durante um tratamento oncológico. 

 Ambos os compostos naturais, fucoxantina e floroglucinol em certas condições 

potenciam a eficiência do 5-Fu. Contudo, é necessário a realização de mais estudos 

de modo a clarificar os mecanismos envolvidos e assim tornar-se numa possível 

estratégia terapêutica para certos casos de cancro do coloretal resistentes a 5-Fu. 
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1. CANCER 

1.1 A brief introduction 

Cancer is the general name for a group of diseases associated to an uncontrolled 

cell growth and invasiveness. In fact, more than a hundred different types of cancer 

have been described (Hanahan & Weinberg, 2000).   

There is a general assumption that cancer is a modern age disease. However, 

that is not entirely true since there are early descriptions of cancerous lesions reported 

in an ancient Egyptian textbook on trauma surgery (3000 BC). This textbook is known 

as the Edwin Smith Papyrus and described eight cases of breast tumours (Hajdu, 

2011). However, the origin of the word “cancer” is attributed to Hippocrates (460-370 

BC) that used the terms carcinos and carcinoma to report non-ulcer forming and ulcer-

forming tumours (Sudhakar, 2010). 

Generally, the growth of a cancer cell is different from the normal cell. While a 

normal cell grows and eventually dies at one point, cancer cells can avoid death and 

continue to grow and form new abnormal cells (Fig. 1). Another aspect that 

distinguishes a cancer cell from a normal cell is its ability to invade other tissues, where 

they are able to proliferate (Cooper, 2000). 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 1 - Cancer cell growth. 
Adapted from:  http://www.unc.edu/depts/our/hhmi/hh-
mift_learning_modules/cancermodule/pages/cancer.html 
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There are two types of risk factors in cancer, the external factors, representing 

the cause of 90-95% off all cancers, and internal factors. They can act together, or in 

sequence, in order to start or to promote a carcinogenic condition. Alcohol 

consumption, smoking, eating habits, physical inactivity, environmental pollution are 

examples of external factors (Jemal et al., 2011). Hormonal dysfunctions, immune 

condition of an individual and mutations count as internal factors (Anand et al., 2008). 

1.2 Cancer statistics 

Over the past decades, a drastic increase in cancer cases in developed and 

developing countries has been witnessed. Cancer is accountable for causing more 

deaths than AIDS, tuberculosis and malaria all together (American Society Cancer, 

2011).  

According to Globocan project, that provides contemporary estimates of 

incidence, mortality and prevalence from the major types of cancer, there were 14.1 

million new cases of cancer in 2012. In the same year, the number of deaths due to 

cancer was 8.2 million and it is estimated that 32.6 million people have cancer (Ferlay 

et al., 2015). 

The most common cancer worldwide in 2012 was lung cancer, contributing to 

13% of the total number of new cases diagnosed, followed by breast cancer (women 

only).  Colorectal cancer was the third most common cancer with nearly 1.4 million of 

new cases (Globocan, 2012).  

1.2.1 Colorectal carcinoma 

Colorectal cancer is considered one of the major causes of morbidity and 

mortality on a global scale. It affects men and women in the same proportion, 

representing 9.4% in men and 10.1% in women off all incident cancers (Haggar & 

Boushey, 2009). 

In terms of geographic incidence, colorectal cancer is mainly a condition of 

developed countries that counts with 54% of colorectal cancer cases. Oceania and 

Europe have the highest incidence and Africa and Asia the lowest (Fig. 2) (Globocan, 

2012). 



	
   17 

 

 

Figure 2 - Estimated colorectal cancer incidence worldwide in 2012 by age-standardized rates per 
100,000 individuals. 
Adapted from Globocan, 2012. 
 

There are convincing evidences that a western life-style is related to an 

increase risk of colorectal cancer disease – namely consumption of red meat and 

processed food, alcohol abuse, chronic smoking, high caloric intake, low vegetable and 

fruits intake, and physical inactivity are seen as risk factors of colorectal cancer. 

Another important risk factor in the case of colorectal cancer is the hereditary factor or 

a history of inflammatory bowel disease (Haggar et al., 2009). On the other hand, 

physical activity and consumption of dietary fiber, like vegetables and fruits, are linked 

to cancer prevention (Key et al., 2004). 

Awareness and anticipated diagnosis are key factors in an increased survival 

rate of any oncological patient. Several screening tests have been developed to detect 

colorectal cancer in early phases. The most common tests are high-sensitivity fecal 

occult blood tests (FOBT), that checks for tiny amounts of blood in feces that can be 

from bleeding polyps or tumours; and colonoscopy, in which the rectum and entire 

colon are examined using a colonoscope and any abnormal growths in the colon and 

the rectum can be removed (National Cancer Institute, 2014). Jarvinen and colleagues 

demonstrated that screening colonoscopy at 3-year intervals decreases mortality by 

about 65% in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) families (Jarvinen 

et al., 2000) 
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1.3 Cancer biology  

 Douglas Hanahan and Robert A. Weinberg advocate that during development 

of human tumours, the cells acquire a set of biological capabilities referred as 

hallmarks. They include sustaining proliferative signaling, evading growth suppressors, 

escape from apoptosis, enabling replicative immortality, sustained angiogenesis, tissue 

invasion and metastasis, inflammation, avoiding immune destruction, and deregulating 

cellular energetics. Genomic instability is now considered another important hallmark 

and is responsible for generating genetic diversity (Hanahan & Weinberg, 2011). 

 

1.3.1 Genomic instability  

Genomic instability corresponds to an increased propensity of cell genome to 

accumulate alterations during the cell cycle. Ordinarily, it is associated with the failure 

of parent cells to accurately duplicate the genome and precisely distribute the genomic 

material among the daughter cells (Kramer et al., 2002; Shen, 2011). During the cell 

cycle there are four significant mechanisms that ensure genomic stability: (1) high-

fidelity of DNA replication in the S-phase, (2) accurate distribution of chromosomes 

among daughter cells during mitosis, (3) error-free repair of sporadic DNA damage 

through the cell cycle, and (4) cell cycle progression and checkpoint control (Shen, 

2011). Changes to the normal function of these mechanisms leads to genetic 

alterations that provide advantages to these cells allowing them to proliferate, survive 

and spread. Generally, genetic alterations can be divided into: (1) microsatellite 

instability (MSI), (2) CpG island methylator phenotype (CIMP) and (3) chromosomal 

instability (CIN) (Grady, 2004).  

Precise repair of sporadic DNA damage is one of the major mechanisms that 

allows the maintenance of genomic stability throughout the cell cycle. A DNA damage 

signaling network regulates the activity of repair pathways and their coordination with 

several biological functions such as cell death. Dysregulation of this efficient network 

may lead to genomic instability. Furthermore, many of the chemotherapeutic drugs 

work by causing DNA damage to cancer cells, so it is imperative that the DNA repair 

mechanisms performs properly without compromising the treatment outcome (Shen, 

2011). 

A question quite explored by scientists is if genomic instability is the cause or the 

consequence of cancer, and how it influences the progression of hereditary and 

sporadic cancers. Loeb suggested that cancer cells must acquire some form of intrinsic 
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genomic instability, a “mutator phenotype” (Loeb, 1991). This mutator hypothesis states 

that genomic instability is present in precancerous lesions, driving to tumour 

development by increasing the spontaneous mutation rate in caretaker genes.  

Germline mutations targeting DNA repair genes, such as BRCA 1 or BRCA 2, are 

constant in the genome of patient with hereditary cancer. Thus, a single event such as 

the loss of the remaining wildtype allele would lead to genomic instability and tumour 

progression (O’Donovan & Livingston, 2010). 

On the contrary, in sporadic cancers the activation of growth signaling pathways 

due to mutations in oncogenes seems to induce loss of heterozygosity (LOH) and 

genomic instability involving DNA replication stress. Specific genomic regions, called 

common fragile sites, are prone to breakage under DNA replication stress. In human 

precancerous lesions in which oncogenes have been activated, genomic instability 

preferentially affects common fragile sites (Negrini et al., 2010). 

1.3.2 Cell proliferation 

Under normal conditions cell proliferation is defined by the balance between the 

number of new cells and the number of cells lost through apoptosis or differentiation. 

Thus, cell proliferation is a tightly regulated process with the contribution of a wide 

number of molecules and interconnected pathways, responsible for maintaining the 

number of cells of an adult tissue constant (Guo & Hay, 1999)  

Cell growth and proliferation can be controlled by the production and release of 

growth-promoting signals that normally bind to a cell-surface receptor, such as tyrosine 

kinase receptors (TKRs). TKRs activity is responsible for the recruitment of certain 

molecules that activate intracellular signaling pathways associated with cell 

proliferation, differentiation, and others cellular processes (Schlessinger, 2000). Cancer 

cells can achieve a sustaining proliferative state by disrupting this homeostatic 

condition trough the dysregulation of TKrs and/or their downstream signal transduction 

pathways, by increasing growth factors production and also by stimulating production 

of growth factors by normal cells (Hanahan & Weinberg., 2011). 

Epidermal growth factor receptor (EGFR) and Ras-Raf-MEK-ERK signaling 

commonly known as the mitogen-activated protein kinase (MAPK) pathway, is a well-

known signal transduction pathway in cell biology. One of the main functions of MAPK 

pathway is to transduce signals that will be received by the cell nucleus, leading to the 

activation of specific genes involved in cell growth, division, and differentiation (Molina 

& Adjei., 2006). Dysregulation of this pathway leads to an uncontrolled cellular growth 

and has been reported in several human cancers (Santarpia et al., 2012).  
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Another intracellular signaling pathway activated by TKRs and with an important 

role in tumorogenesis is Phosphatidylinositol 3-kinase (PI3K), protein kinase Akt, and 

mammalian target of rapamycin (mTOR) also designated as PI3K/AKT/mTOR signaling 

pathway (Vara et al., 2004). 

1.3.3 Apoptosis 

Apoptosis or programmed cell death is a highly regulated and active mechanism 

that occurs in response to physiological or pathological stimuli. Apoptosis occurs 

normally during development and aging, acting like a homeostatic mechanism to 

maintain cell populations in tissues (Renehan et al., 2001). 

Apoptotic cells display a set of unique morphological characteristics that 

distinguish them from normal cells such as condensation and fragmentation of DNA, 

blebbing of the membrane, formation of apoptotic bodies and rapid phagocytosis by 

neighbouring cells without promoting inflammatory response (Kerr et al., 1972; Saraste 

& Pulkki, 2000; Elmore, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - The two major pathways of apoptosis: extrinsic or intrinsic pathway. 
Adapted from Ashkenazi, 2008. 
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A wide variety of stimuli can induce the activation of the two major pathways of 

apoptosis, the extrinsic or death receptor pathway and the intrinsic or mitochondrial 

pathway (Fig. 3) (Elmore, 2007). 

The extrinsic pathway is initiated by the activation of death receptors (e.g. FAS 

and TNFR1), located on the cell surface, by extracellular death ligands (such as FasL 

or tumour necrosis factor-α (TNF-α)). Activation of death receptors results in the 

recruitment of adaptor proteins, such as the Fas-associated death domain protein 

(FADD), which in turn recruits and aggregates several molecules of procaspases -8 

and -10, forming a complex that is designated as DISC (death-inducing signaling 

complex). The DISC formation results in auto-activation of pro-caspase 8, promoting 

activation of other caspases such as caspase-3 , -6 and -7, known as effectors 

caspases, provoking further caspase activation events that culminate in substrate 

proteolysis and apoptosis (Fulda & Debatin, 2007; Taylor et al., 2008; Fardilha & Cruz 

e Silva, 2012). 

The intrinsic pathway is mediated by several stimuli such as excessive 

oncogene activation, cell stress, or DNA damage that are recognized by several 

proteins namely the tumour suppressor TP53, that activates one or more members of 

the BH3-only protein family (such as BAD, BID, PUMA, NOXA). The proapoptotic BH3-

only (BIK, HRK, BIM, BAD, BID, PUMA, NOX, BMF), antiapoptotic BCL-2 (BCL-2, 

BCL-XL BCL-W, MCL1, BCL2A1) and proapoptotic BCL-2 proteins (BAX, BAK and 

BOK) are known as the B-Cell Lymphoma (BCL-2) family proteins and the ratio 

between them is a crucial regulator of apoptosis. An increase of BH3-only protein 

family expression overcomes the inhibitory effects of the antiapoptotic BCL-2 proteins 

and promotes the assembly of BAK-BAX oligomers forming pore in the mitochondrial 

outer membranes (BAX-BAK channels). These events promote changes in the inner 

mitochondrial membrane that results in the opening of the mitochondrial permeability 

transition pore, loss of the mitochondrial transmembrane potential and release of pro-

apoptotic proteins, such as cytochrome c, into the cytosol. The association of 

cytochrome c, apoptosis protease activating factor 1 (APAF1) and procaspase-9 

constitutes a proteic complex designated as apoptosome. Active caspase-9, in the 

apoptosome, propagates a proteolytic cascade of further caspase activation, such as 

caspase-3, -6 and -7, that leads to death cell (Taylor et al., 2008; Fardilha & Cruz e 

Silva, 2012). 

The tumour cells feature a series of maneuvers to limit or escape apoptosis. 

The most common is the loss of TP53 that acts as damage sensor and consequently 

inactivates apoptosis (Fridman & Lowe, 2003). Overexpression of antiapoptotic 
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proteins such as BCL-2, BCL-XL BCL-W, MCL1, BCL2A1, or a downregulation of 

proapoptotic proteins (BAX, BAK and BOK) and also BH3-only proteins that promote 

apoptosis (BIK, HRK, BIM, BAD, BID, PUMA, NOX, BMF) may also destabilize the 

normal mechanism of apoptosis (Adams & Cory, 2007; Taylor et al., 2008; 

Lomonosova & Chinnadurai, 2008). 

1.4 Colorectal cancer 

The colon and the rectum are parts of the large intestine, which is the last part of 

the digestive system. The main function of the large intestine is to temporarily store the 

waste of digestion and allow subsequent elimination. The colon is divided into four 

segments: ascending colon, transverse colon, descending colon and sigmoid colon 

(Fig. 4). 

During digestion, food goes through the stomach and small intestine into the 

colon. The stool or waste matter goes through the colon by means of peristalsis, first in 

a liquid state and ultimately in a solid form. As stool moves through the colon, water 

and nutrients are absorbed. When the descending colon becomes full of stool, it directs 

them into the rectum for future elimination (National Cancer Institute, 2014). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 - Colon division in four segments – ascending colon, transverse colon, descending colon 
and sigmoid colon. 
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The progressive reabsorption of water that occurs in the colon leads to a 

prolonged permanence and exposure of several substances of the stool with the 

intestinal tract cells. Besides, intestinal tract cells suffer further damage due to the 

friction created by the removal of water, which induces a strong cell replacement and 

consequently increases the number of cell divisions. A prolonged exposure of 

substances allied to an intense cell division rate could be responsible for long-term 

accumulation of genetic changes (Junqueira & Carneiro, 2013). 

 In 1990, Fearon and Volgestein proposed the “adenoma-carcinoma sequence”, 

a multistep genetic model of colorectal carcinogenesis that is characterized by specific 

mutations in signal transduction pathways (Fig. 5).The first event, and the most 

common mutation in colorectal cancer, is the inactivation of a tumor suppressor gene 

known as the adenomatous polyposis coli (APC) (Fearon & Volgestein, 1990). In the 

colon, the Wnt pathway is responsible for endoderm formation and for the crypt 

development, maintenance, and proliferation. It is also involved in the process of 

epithelial to mesenchymal transition and invasion.  

 Activation of Wnt pathway occurs when β-catenin, an oncoprotein, migrates to 

the nucleus and activates genes that are involved in cellular growth. The APC/β-

catenin complex is responsible for controlling the levels of β-catenin protein through its 

degradation (MacDonald et al., 2009). Mutation in the APC gene results in a constant 

activation of Wnt pathway leading to events of uncontrolled proliferation that result in 

aberrant crypt foci (Goss & Groden, 2000). 

 
Figure 5 - Multistep genetic model of colorectal carcinogenesis. 
Adapted from Pino and Chung, 2010. 
 
 

As previously mentioned, mitogenic-activate protein kinases, best known as 

MAPKs, are serine-threonine kinases that mediate intracellular signaling associated 
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with cell proliferation, differentiation, death and other cellular activities. The MAPK 

pathway is activated by several extracellular signals, such as oxidative stress, and 

intracellular stimuli including cytokines, hormones, among others (Kim & Choi, 2010). 

 The following event on this multistep genetic model is oncogenic mutation of 

RAS, an oncogenic small GTPase, which activates the MAPK signaling pathway. 

Mutations of KRAS, one of the three isoforms of RAS, leads to a permanently active 

state that allows the cell to evade apoptosis and acquire a growth advantage 

(Calcagno et al., 2008). This type of mutation is detected in over a third of human 

colorectal cancers (Bos et al., 1987). 

 PI3K/AKT/mTOR signaling pathway regulates relevant cellular functions, such 

as proliferation, growth and survival (LoPicollo et al., 2008). Over activation of PI3K 

and AKT is considered a key factor for tumour progression (Karakas et al., 2006). One 

third of colorectal cancers have this pathway constitutively activated due to somatic 

mutations on PI3K (Markowitz & Bertagnolli, 2009). 

 During the carcinogenesis process, progression to larger adenomas and 

carcinomas requires mutations in TP53 gene (located on chromosome 17p) (Schwitalla 

et al., 2013). The encoded protein p53 is a well-known tumor suppressor protein that 

has several functions such as induction of cell cycle arrest, apoptosis, senescence, and 

DNA repair in response to cellular stress. In most tumors, the two p53 alleles are 

inactivated, usually by a combination of a missense mutation and a 17p chromosomal 

deletion (Baker et al., 1989). 

Another genetic alteration that occurs in colorectal cancer is TGFBR2 

(transforming growth factor β receptor II) mutations. Transforming growth factor beta 

(TGF-β) are multifunctional peptides that regulate proliferation, differentiation, adhesion 

and migration by transducing their signal through combinations of transmembrane 

receptors and their downstream effectors, SMAD proteins. In this particularly case, 

TGF-β works as an inhibitor of intestinal epithelial cell proliferation and inducer of 

apoptosis. In cancer, the TGF-β signaling pathway is changed by mutations in the 

receptors and in the intracellular mediators (e.g. Smad4 and Smad2) (Xu & Attisano, 

2000). 

 The acquisition of genomic instability, along with this series of events, is 

recognized as a crucial feature on tumour development. An imbalance in chromosome 

number, subchromosomal genomic amplifications, and a high frequency of loss of 

heterozygosity (LOH) come as a result of chromossomal instability (CIN). The CIN 

phenotype is a hallmark of solid cancers and is observed in 65%-70% of sporadic 

colorectal cancers (Pino & Chung, 2010).  
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1.5 Therapeutic approaches 

There are several therapeutic approaches that can be used in the treatment of a 

neoplastic disease such as surgery, radiation, chemotherapy, hormone therapy, 

immunotherapy and targeted therapy. Concerning colorectal cancer, surgery allied to 

chemotherapeutic drug administration is the most widely used treatment. 

Hormones and anti-hormones (substances capable of blocking the action of a 

certain hormone) are often applied in the treatment of breast and prostate cancer, 

since hormonal environment is crucial for tumor expansion. Hormones and anti-

hormones are seen mainly as effective in mitigating symptoms (Cancer Research UK). 

Lin and colleagues proposed that Gucy2c, an intestinal cell receptor, and its ligands, 

guanylin and uroguanylin, could act as possible candidates for anti-colorectal cancer 

therapy. Guanylin and uroguanylin expression is associated with the transition of a 

proliferative state to a differentiate state along the crypt-villus axis and, in colorectal 

cancer are among the most ordinarily lost gene products. Furthermore, Gucy2c 

receptors acts as a tumour suppressor through AKT inhibition, promoting epithelial 

homeostasis (Lin et al., 2010). Another study evaluated the up-take of menopausal 

hormones such as estrogen and progestin, and the risk of colorectal cancer in women. 

The results showed that a sequential regimen use of estrogen plus progestin was 

associated with a higher reduced risk of colorectal cancer (Johnson et al., 2009). 

Immunotherapy resorts to biological agents - immunomodulators that mimic some 

of the natural signals involved in cell growth control or acts indirectly in healthy cells. 

Immunomodulators are administered to patients to imitate or influence the natural 

immune response. Anticancer immunotherapy for colorectal cancer has been 

highlighted in the scientific community. Several immunotherapeutic approaches such 

as cancer vaccines and adaptative cell therapy are currently under investigation in 

order to minimize toxicity in colorectal patients (Xiang et al., 2013). 

Targeted cancer therapies resort to drugs that are able to block the growth and 

spread of cancer by interfering with specific molecules involved in the growth, 

progression and spread of cancer. Unlike chemotherapeutic drugs, targeted drugs are 

designed to act specifically in cancer cells and not in healthy cells although some side 

effects can emerge (Gerber, 2008). For example, angiogenesis is the process of 

making new blood vessels. During tumor progression angiogenesis is activated and 

remains on, providing the tumor with enough blood supply to continue growing. Drugs 

such as angiogenesis inhibitors stop tumors by blocking the formation of new blood 

vessels, through inhibition of vascular endothelial growth factor (VEGF) proteins or the 
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VEGF receptors. Bevacizumab (Avastin) and ramucirumab (Cyramza) are examples of 

angiogenesis inhibitors (Rosen, 2005). 

At the level of chemotherapy, the antineoplastic agents, also called cytotoxic 

agents, are used in the treatment of malignant neoplasms, normally in situations in 

which surgery or radiotherapy proved powerless or, as a complementary treatment. In 

most cases, chemotherapy results in a combination of drugs in order to achieve a 

cytotoxic effect in a heterogeneous population of neoplastic cells, preventing the 

development of resistant clones. In an attempt that the combination of drugs is ideal, it 

is necessary to take into account the several aspects: 1) each of the drugs must show 

activity against the tumor in question; 2) should display different mechanisms of action; 

3) cross-resistance between the intervenient must be minimized; 4) toxic effects should 

differ for each drug used (Cancer Network, 2005). 

For example, the ABVD is a known combination of cytotoxic compounds consisting of 

Doxorubicin (Adriamicin), Bleomycin, Vinblastine and Dacarbazine. Among these 

compounds we can mention the Bleomycin, a generic name given to a group of 

antibiotics isolated from Streptomyces verticillus, with anti-tumor activity that selectively 

inhibit the synthesis of DNA (Galm et al., 2005). Also, Vinblastin, an important alkaloid 

that behaves as a strong proliferation inhibitor through the disruption of microtubules 

function (Panda et al., 1996). However a crucial aspect to be taken into consideration is 

the adverse effects of cytotoxic compounds in humans. It is important to create a 

balance between the therapeutic effect and the level of toxicity (Ma & Lu, 2011). 

1.5.1 5-Fluorouracil (5-Fu) 

The fluoropyrimidine, 5-fluorouracil (5-Fu), is one of the most commonly used 

chemotherapeutic drugs and it is used to treat many types of cancer such as breast 

cancer, colorectal cancer, head and neck cancers. Usually, it is combined with other 

cancer drugs or with radiotherapy. 5-fluorouracil is an analogue of uracil, with a fluorine 

atom at the C-5 position in place of hydrogen, and it is classified as an antimetabolite 

(Fig. 6) (Bracht et al., 2010). Antimetabolite drugs work by inhibiting fundamental 

biosynthetic processes, or by integration into DNA and RNA, compromising their 

normal function (Duci, 2015). 
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Figure 6 - Chemical structure of fluorouracil and uracil. 

 

5-Fu is converted intracellularly into three active metabolites: fluorodeoxyuridine 

monophosphate (FdUMP), fluorodeoxyuridine triphosphate (FdUTP) and fluorouridine 

triphosphate (FUTP). These are responsible for induction of RNA and DNA damage, 

through incorporation of its metabolites into nucleic acids, and inhibition of the 

nucleotide synthetic enzyme thymidylate synthase (TS) and consequently inhibition of 

DNA synthesis (Longley et al., 2003). 

Like other chemotherapeutic drugs, some unwanted effects may emerge due to 

the treatment with fluorouracil. Side effects in the gastrointestinal tract are considered 

the most severe. Stomatitis and esophagopharyngitis, diarrhea, anorexia, nausea and 

emesis are commonly seen during treatment. Resistance of 5-Fu is another 

undesirable effect and may emerge due to several mechanisms, namely over 

expression of TS and alterations in apoptotic pathway (Zang et al., 2008). Because of 

these important limitations, combination with other drugs has been emerged as a new 

strategy.  

 

1.6 Marine natural compounds 

The research of bioactive compounds in different marine organisms (e.g. marine 

algae, sponges, corals) as potential antitumor agents has been highly exploited in the 

last decades. The chemical and biological diversity of the marine environment is 

incalculable, making this a reservoir of natural bioactive compounds. Many of these 

products exhibit structural and chemical characteristics that are not found in natural 

terrestrial compounds. The intense concentration of species in certain habitats makes 

these highly competitive and complex organisms. For example, sessile organisms such 

as corals or sponges are in constant struggle for having an appropriate fixation space, 

and by adopting certain mechanisms that can be chemical, structural and behavioral 
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they can guarantee their survival (Giangrande et al., 2014). In view of this extremely 

competitive situation a large proportion of species have developed chemical 

adaptations that enable them to defend themselves against predation and also 

represent an advantage in situations of competition. Generally, these adjustments are 

chemical designated by secondary metabolites and cover a large diversity of 

compounds such as terpenoids, sugars, alkaloids, steroids, among others (Simmons et 

al., 2005). 

In 2007, trabectedin (ET-743) a marine alkaloid isolated from the Caribbean 

tunicate (Ecteinascidia turbinata) obtained marketing authorization from the European 

Commission for the treatment of advanced soft tissue sarcoma, and in 2009 it received 

marketing authorization for the treatment of platinum-sensitive ovarian cancer (D’Incalci 

and Galmarini, 2010). Another example of a marine compound approved as a 

therapeutic drug in leukemia is Cytostar-U, a synthetic pyrimidine nucleoside based on 

spongothymidine isolated from a sponge (Tethya crypta) (Löwenberg et al., 2011). 

1.7 Marine algae 

Algae are unicellular or pluricellular organisms that contain chlorophyll. In a 

simple way, algae can be classified into two major groups, microalgae and macroalgae. 

Microalgae are found in benthic and littoral habitats and also throughout the ocean 

waters as phytoplankton. Blue green algae, dinoflagellates, diatoms are included in this 

group. The group of macroalgae or seaweeds includes green (Chlorophyta), brown 

(Phaeophyta) and red (Rodhophyta) algae and has been founded in the littoral zone (El 

Gamal, 2010).  

Several species of macroalgae have been used as human and animal food since 

very early times, especially in China and Japan, such as Nori (Porphyra spp.), wakame 

(Undaria pinnatifida) and kombu (Laminaria japonica). In this region, they also have 

been used to treat many diseases that show iodine deficiency (e.g. hyperthyroidism, 

goiter and Basedow’s disease). 

 Regarding chemical composition, 70 to 90% of the weight of fresh macroalgae 

is water, containing also considerable amounts of polysaccharides such as fucoidans 

present in brown macroalgae, that are responsible for about 45-75% of its dry weight. 

This is followed by proteins that make up 7-35% of macroalgae dry weight and fats, 

less than 5% (Lopes, 2014). Another important compound found in macroalgae is 

carotenoids, which are essential components in photosynthesis and exhibit a powerful 

antioxidant activity (Takaichi, 2011). Polyphenols, also designated by phlorotannins, 

known as effective antioxidants are found as well in macroalgae, especially in brown 
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algae (Iwai, 2008). Iodine, calcium, phosphorous, magnesium, iron, sodium, potassium 

and chlorine are the main mineral elements presents and they are accountable for 

several macroalgae health benefits. Furthermore, macroalgae are also rich in vitamin 

A, vitamin C and vitamins from B complex (Burtin, 2003).  

 Studies on the bioactivities of marine algae have showed several health-

promoting effects such as antioxidant, antimicrobial, anti-inflammatory and anticancer 

effects in several biological models (Raja et al., 2013). 

1.7.1 Fucoxanthin 

Fucoxanthin, a marine carotenoid, can be found in marine brown macroalgae 

(Phaeophyceae) and microalgae diatoms (Bacillariophyta).The chemical structure of 

fucoxanthin includes an allelic bond and some oxygenic functional groups, such as 

epoxy, hydroxyl, carbonyl and carboxyl groups (Fig. 7) (Peng et al., 2011). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 - Chemical structure of fucoxanthin and its deacetylated metabolite, fucoxanthinol. 

 
Sugawara and colleagues, reported that dietary fucoxanthin is hydrolyzed to 

fucoxanthinol, the major fucoxanthin deacetylated metabolite, in the intestinal tract by 

lipase and cholesterol esterase. Then, fucoxanthinol is taken up by the intestinal cells 

and is secreted into the blood circulation system in mammals (Sugawara et al., 2002). 

Several studies have shown that fucoxanthin and/or fucoxanthinol displays a huge 

number of beneficial effects in human health. Antioxidant, anti-inflammatory, 

anticancer, anti-obesity, antidiabetic effects are examples of known fucoxanthin 

bioactivities. 

Apoptotic events in cancer cells are a promising method to control and treat 

cancer. Hosokawa and colleagues have demonstrated that fucoxanthin decreased cell 

viability in Caco-2, HT-29 and DLD-1 colorectal cancer cell lines. Furthermore, it 
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induces DNA fragmentation, a typical characteristic of apoptotic cells, and suppresses 

the levels of Bcl-2 protein. The Caco-2 cell line when treated with a combination of 

fucoxanthin and troglitozone at 3.8 µM and 10 µM respectively, showed a decreased in 

cell viability. However, the compounds alone and at the same concentrations were not 

able to affect the viability of Caco-2 cell line (Hosokawa et al., 2004). 

In a recent study, the anticancer effects of fucoxanthin and fucoxanthinol in six 

colorectal cancer cell lines and in twenty cases of colorectal cancer specimens, 

resected surgically from patients, was investigated using the CD-DST technique. The 

CD-DST mimics the environment of the human body through the use of three-

dimension collagen gel, and has been used in clinical practice to select effective 

chemotherapeutic drugs. The results were obtained in the form of T/C (%), where T is 

the absorbance of cells which stained by neutral red treated with carotenoids and C is 

the absorbance of non-stained cells. Fucoxanthin and fucoxanthinol showed anticancer 

effects in a dose-dependent manner in colorectal cancer cell lines and in the colorectal 

cancer specimens. Another relevant aspect was that the median of T/C (%) of the 20 

samples subjected to fucoxanthinol at 10 µM was similar to a treatment with 5-FU and 

paclitaxel in a standard dose used in clinical practice (Takahashi et al., 2015). 

One of the most exciting aspects of fucoxanthin is the fact that it is apparently a 

safe compound in terms of mutagenicity. Beppu and colleagues, observed the 

incidence of micronucleus and mutagenicity of fucoxanthin in bone marrow cells of 

mice that were orally administered for 24h. The results for micronucleus and 

mutagenicity were found to be negative (Beppu et al., 2009). 

1.7.2 Phloroglucinol 

Phlorotannins, a subgroup of tannins found only in brown algae, are oligomeric 

compounds of phloroglucinol units (Fig. 8). Six kinds of phlorotannins can be isolated of 

Ecklonia species, such as phloroglucinol (1,3,4-trihydroxybenzene), triphlorethol-A (an 

open-chain trimer of phloroglucinol), eckol (a closed-chain trimer of phloroglucinol), 

dieckol (a hexamer), phlorofucofuroeckol (a pentamer) and 6,6’-bieckol (a hexamer) 

(Kang et al., 2006). 

 Ecklonia cava is a brown algae, from the family of Laminariceae that grows in 

subtidal zone in water depth from 5 to 20 meters. It can be found in many warm 

temperate regions such as China, Japan and Korea (seaweed industry). This brown 

algae exhibits many biological activities that can be useful in the medical field. For 

example, a study conducted by Wijesinghe and colleagues, showed that extracts of 

Ecklonia cava are able to inhibit angiotensin I-converting enzyme (ACE) activity. This 
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inhibition is essential in the treatment of hypertension (Wijesinghe et al., 2011). 

Chaudhuri and colleagues evaluated the effect of phloroglucinol derivatives against 

gastric ulceration in mice, and concluded that phloroglucinol derivatives were able to 

attenuate gastric ulceration due to their antioxidant activity (Chaudhuri et al., 2011). 

 
 

 
 

 

 

 

 

Figure 8 - Chemical structure of phloroglucinol. 

 

Phloroglucinol is one of the phloratannins that have been assessed in some 

anticancer studies. A recent study evaluated the anticancer effects of phloroglucinol on 

apoptosis and insulin-like growth factor-1 receptor (IGF-1R) signaling in HT-29 human 

colon cancer cells. The results showed that cells treated with phloroglucinol exhibited 

fragmented nuclei and condensed chromatin, characteristic of an apoptotic cells. 

Phloroglucinol also reduced the expression of IGF-1R inhibiting cancer cell proliferation 

(Kang et al., 2014). The same investigators, but in a different study, observed that 

phloroglucinol inhibits cell growth and induces apoptosis in HT-29 colon cancer cells 

via both extrinsic and intrinsic cell death signaling pathways. It was observed that 

protein expression levels of Fas, FADD and caspase-8 were higher in cells treated with 

phloroglucinol. In the intrinsic signaling pathway, phloroglucinol induces a decrease in 

Bcl-2 and Bcl-xL expression (anti-apoptotic proteins) and an increase in Bax and Bad 

expression (pro-apoptotic proteins) (Kang et al., 2014). 

 

1.8 Methodologies available to screen anticancer activity 

In the field of drug development, evaluation of the anticancer activity, side effects 

in normal cells and elucidation of the mechanisms are the first step to be taken to 

evaluate the potential activity of the compound, before starting the long period of 

clinical trials and marketing permission.  

 When a compound is found and presented as a candidate therapeutic agent it is 

crucial that it doesn’t display mutagenic effects in healthy cells. A mutagen can interact 
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directly with the DNA molecule or indirectly through formation of reactive compounds 

that can act with other components of the cell, or both situations. If the damage caused 

by the agent is not liable to repair, the cellular response can occur in two possible 

ways: cell death or cell survival with mutations, the latter resulting in changes of the 

genetic code transmitted to the daughters cells (Słoczyńska et al., 2014). 

 Nowadays, several methodologies are available to perform screening tests with 

several advantages and limitations associated. The use of cancer cell lines as a model 

for these screening tests has been extensively used and also normal cell lines appear 

as relevant models to assess specificity. López-Lázaro proposed a basic protocol that 

includes preclinical in vitro and in vivo testing to assess if a drug is a possible 

candidate for clinical trials. The preclinical in vitro tests evaluate the anticancer activity 

of a candidate drug in cancer cells from a particular tissue and in nonmalignant cells 

from a variety of tissues, and compares it with the anticancer activity of a standard drug 

under the same conditions. This strategy allows to find a drug capable of killing cancer 

cells without affecting nonmalignant cells which is the main objective in cancer 

research (López-Lázaro, 2015). 

1.8.1 Cell viability/proliferation assays 

The first evaluation of a drug action is usually done through the determination of 

its effect on cell growth rates. Cell viability or proliferation can be determined, 

depending on what factor is being measured, in four different ways: metabolic activity, 

DNA synthesis, antigens related with cell proliferation and ATP concentration 

(Biocompare, 2012). 

The colorimetric MTT assay is a simple and fast method that assesses cell 

viability or proliferation. It is considered one of the most popular and versatile tests to 

determine cytotoxicity associated with metabolic activity. Viable cells with an active 

metabolism are able to convert MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) into formazan crystals. The formazan crystals accumulate 

as an insoluble precipitate inside the cells. They are also present near the cell surface 

and in the culture medium. The crystals can be extracted and dissolved with DMSO (an 

organic solvent), allowing its quantification by reading absorbance at 570 nm in a 

spectrophotometer. Higher absorbance values correspond to a higher number of living 

cells in the sample (Mosmann, 1983). 

 Other methods to assess proliferation through DNA synthesis measurement are 

frequently used. An example is BrdU assay in which a modified nucleotide, such as 

bromodeoxyuridine (BrdU) can be incorporated into cellular DNA during cell 
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proliferation. BrdU being a pyrimidine analog will be incorporated by proliferating cells, 

in place of thymidine into the newly synthesized DNA. BrdU presence can be tracked 

using antibody probes responsible for developing color that will be assessed by 

absorbance values or fluorescence (Crane & Bhattacharya, 2013). 

 

1.9 Evaluation of the possible action mechanisms 

1.9.1 Genotoxicity evaluation by comet assay 

The comet assay is a simple, versatile and quick assay to detect DNA damage in 

individualized cells. It can be applied to proliferative cells but also to non-proliferating 

cell population. This aspect is clearly important since these types of cells and tissues 

are the first to come into contact with potential toxic substances (Kassie et al., 2000) 

In 1984, Ostling and Johanson presented the first protocol of comet assay. 

Generally, the protocol consisted of soaking isolated cells in agarose followed by lysis 

in a highly saline solution and then performing an electrophoresis in neutral conditions 

to allow the migration of DNA loops. This approach allows detecting, specifically, 

double strand breaks in the DNA. Singh and colleagues (1988) carried out for the first 

time the comet assay on alkaline conditions (pH> 13). This modification made the test 

able to detect not only double breaks in the DNA but also simple strand breaks, alkali-

labile sites, cross-links and incomplete excision-repair sites. More recently, the 

introduction of repair enzymes after lysis allowed identifying different damages that 

initially are not strand breaks such as oxidized bases. The most commonly used 

enzymes are endonuclease III, FPG and AlkA that detect oxidized pyrimidines, purines 

and modified alkyl purine, respectively (Collins, 2008). 

The assessment of damage can be done by two ways: through visual 

observation of cells by assigning a score of 0 to 4 which corresponds to the intensity of 

fluorescence in the tail or using software that automatically measures several 

parameters namely tail intensity. An increase of the fluorescence intensity in the tail of 

the comet means that the number of breaks is increased and so more damage exist 

(Gyori et al., 2014). 
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1.9.2 Apoptosis 

Nuclear condensation assays provide a convenient approach for analysis of 

apoptosis by microscopy. During apoptosis several morphological characteristics 

appear, such as condensation and fragmentation of DNA, blebbing of the membrane 

and formation of apoptotic bodies (Elmore, 2007). Using a nuclear and chromosome 

counterstain, like DAPI, cells with condensed nuclei can be counted. 

Another assay that is used to determine apoptotic cells is annexin-V. In an initial 

phase of apoptosis, cells loose plasma membrane asymmetry and the membrane 

phospholipid phosphatidylserine (PS) normally found in the inner leaflet of the plasma 

membrane is translocated to the outer leaflet. Annexin-V is a Ca2+-dependent 

phospholipid-binding protein that shows high affinity for PS. Thus, exposed PS in the 

external cellular environment will be subject to annexin-V binding (Walton et al, 1997). 

Using annexin-V conjugated with fluorochromes allows detection of apoptotic cells 

using flow cytometry or microscopy. 

1.9.3 Western blot 

In response to external stimulus (potential anticancer drug) several proteins 

involved in survival and death pathways can be inactivated or activated. An example is 

the activation of several cytosolic proteases known as caspases, e.g. caspases -8, -9 

and -3 in response to an apoptotic event (Taylor et al., 2008).  

Western blot, or immunoblotting, was introduced by Towbin and colleagues in 

1979, and is widely used to separate and identify proteins. In a simplistic manner, the 

identification of a specific protein is accomplished in three steps: (1) separation by size 

(molecular weight), (2) transfer to a solid support, and (3) marking target protein, using 

a suitable primary and secondary antibody (Mahmood & Yang, 2012). 

 

 

The aim of this study was to assess the in vitro anticancer bioactivity of two 

algae compounds, fucoxanthin and phloroglucinol, alone and in co-incubation with 5-Fu 

on two colorectal cancer cell lines (HCT-116 and HT-29), ressorting to preclinical in 

vitro tests. Also, to assess the specificity of the anticancer effects, a normal colon cell 

line (CCD-Co18) was tested.  
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Abstract 

 
Colorectal cancer is the third most common cancer and is considered the major 

cause of morbidity and mortality worldwide. 5-fluorouracil (5-Fu) is one of the most 

commonly used chemotherapeutic drugs in colorectal cancer. However, resistance to 

5-Fu during treatment is one of the undesirable effects and may emerge due to several 

mechanisms. Fucoxanthin is a carotenoid present in marine brown seaweeds and 

microalgae diatoms. Also present in marine brown seaweeds is phloroglucinol, a 

polyphenolic compound. In the present study, the anticancer activities of fucoxanthin 

and phloroglucinol alone and in combination with 5-Fu on HCT-116 and HT-29 

colorectal cancer cell lines were examined, resorting to anti-proliferative, apoptotic, and 

genotoxic assays. To assess the specificity of these compounds, the effects on normal 

colon cell line, CCD-18co, was also assessed. The results indicated that HCT-116 is 

more sensitive to 5-Fu than HT-29 cells. Also the cytotoxic effects of  fucoxanthin were 

higher in HCT-116 cells increasing DNA damage and apoptosis with enhanced p53 

expression and decrease of antiapoptotic proteins, while phloroglucinol decreased cell 

viability in the same way in both cell lines with induction of apoptosis. Fucoxanthin (in 

HCT-116 and HT-29 cells) and phloroglucinol (in HT- 29 cells) potentiate the cytotoxic 

effect of 5-Fu with apoptosis induction. At effective concentrations fucoxanthin and 

phloroglucinol did not induce cytotoxic effects in normal cells. These findings indicate 

that fucoxanthin allied to 5-Fu can be considered as a potential therapeutic treatment in 

colorectal cancer. Phloroglucinol alone also decreases cell viability and in combination 

increases the sensitivity to 5-Fu, especially in the p53 mutant HT-29 cancer cell line. 

Nonetheless, at lower concentrations it inhibits the effects of 5-Fu in HCT-116 cells, 

which is not desired during a cancer treatment. 

 

 

Keywords 

5-Fu; anticancer activity; cytotoxicity; fucoxanthin; colon cancer cell lines; 

phloroglucinol 
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1. Introduction 

 

 Colorectal cancer is the third most common cancer and is considered the major 

cause of morbidity and mortality worldwide (Haggar & Boushey, 2009). According to 

Globocan, almost 55% of cases occur in developed regions, particularly due to lifestyle, 

eating habits and environmental conditions of these regions (Haggar & Boushey, 2009; 

Globocan, 2012). Currently, treatment for colorectal cancer involves the combination of 

surgery with chemotherapy, by administration of cytotoxic drugs and radiation. 5-

fluorouracil (5-Fu), an antimetabolite, is one of the most commonly used 

chemoterapeutic drugs to treat many types of cancer, including colorectal cancer 

(Bracht et al., 2010).   

 Apoptosis or programmed cell death is a highly regulated mechanism that 

works normally during development and aging, acting like a homeostatic mechanism to 

maintain normal cell populations in tissues (Elmore, 2007). During a cancer 

development, cancer cells can evade apoptosis, along with the ability to acquire other 

biological capabilities, leading to uncontrolled cell growth and invasiveness (Hanahan & 

Weinberg, 2011). Apoptosis is characterized by cell shrinkage, membrane blebbing, 

chromatin condensation and nuclear fragmentation, which eliminates aged or damaged 

cells without causing injury to surrounding tissues (Taylor et al., 2008). 5-Fu is able to 

induce apoptosis in human colon cancer cells (Nita el al., 1998; Li et al., 2009). 

However, development of 5-Fu resistance and some side effects may emerge during 

treatment, namely bleeding, hair loss, diarrhea, and immunosuppression (Grem, 2000; 

Zhang et al., 2008; Focaccetti et al., 2015). 

 In the last decades, the research of bioactive compounds, with potential 

antitumor activity, in different marine organisms (e.g. marine algae, sponges, corals) 

has been highly exploited. Screening for natural compounds able of inducing apoptosis 

in cancer cells that can work alone or in combination with other chemotherapeutic 

drugs is now one of the main focus in investigation, in order to increase the therapeutic 

efficacy and reduce the side effects in cancer therapy (Ji et al., 2009). Since ancient 

times marine algae have been used in human diets and in traditional medicine namely 

in China, Japan and the Republic of Korea. In the last decades, we have witnessed an 

increase of algae consumption in Europe and in other parts of the world through the 

inclusion of new eating habits (McHugh, D. J., 2003; Burtin, 2003; Vigani et al., 2015). 

Several studies showed a link between consumption of marine algae and healthy life 
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expectancy (Maeda et al., 2005; Jin et al., 2006; Nakashima et al., 2009; Lee & Jeon, 

2013). 

Marine algae are a magnificent source of bioactive compounds which have 

demonstrated a broad range of biological activities such as antioxidant, antimicrobial, 

anti-inflammatory and anticancer activities (Raja et al., 2013; Lee et al., 2013). 

Fucoxanthin, a marine carotenoid, can be found in marine brown seaweeds 

(Phaeophyceae) and microalgae diatoms (Bacillariophyta). The chemical structure of 

fucoxanthin includes an allelic bond and some oxygenic functional groups, such as 

epoxy, hydroxyl, carbonyl and carboxyl groups enabling it with a potent free radical 

scavenging activity (Peng et al., 2011). Besides its antioxidant activity, fucoxanthin has 

anti-inflammatory, anticancer and antidiabetic activities showing no adverse effects in 

some normal cells in vitro and in vivo models (Peng et al., 2011; Kumar et al., 2013; 

Moghadamtousi et al., 2014). Phloroglucinol is a polyphenolic compound with an 

aromatic phenyl ring and three hydroxyl groups present in brown algae. Several sorts of 

biological activities have been described specifically in the medical fields of 

cardiovascular diseases, diabetes, allergy and cancer (Singh et al., 2009; Lee et al., 

2013).  

The aim of this study was to assess the in vitro anticancer activity of 

fucoxanthin and phloroglucinol alone and in combination with a well-known 

chemotherapeutic drug, 5-Fu, on two human colorectal cancer cell lines (HCT-116 and 

HT-29) and on a normal human colon cell line (CCD-18Co).  

 

 

2. Materials and methods 

 

2.1. Chemicals and antibodies 

 

5-fluorouracil (5-Fu), phloroglucinol, fucoxanthin, Dulbecco’s modified Eagle’s 

medium (DMEM), Roswell Park Memorial Institute (RPMI), sodium pyruvate, sodium 

bicarbonate, N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid) (HEPES), penicillin/ 

streptomycin, trypsin solution, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium 

bromide (MTT) and 4’,6-diamidino-2-phenylindole (DAPI) were purchased from Sigma-

Aldrich (St. Loius, MO, USA). Fetal bovine serum (FBS) was purchased from Biochrom 

KG (Berlin, Germany). The protein quantification BCA protein assay kit was purchased 

from Thermo Fisher Scientific Inc. (Waltham, MA, USA). The RIPA Lysis Buffer, 



	
   51 

Tween-20, primary antibodies Bax (N-20): sc-493 (rabbit polyclonal); Bcl2 (C-2): sc-

7382 (mouse monoclonal); procaspase 9 p-10 (F-7): sc-17784 (mouse monoclonal); 

caspase 3 (H-277): sc-7148 (rabbit polyclonal); p53 (DO-1): sc-126 (mouse 

monoclonal); p27 (C-19): sc-528 (rabbit polyclonal); actin (C4): sc-47778 (mouse 

monoclonal) and secondary antibodies HRP goat anti-mouse and anti-rabbit were 

purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). All other 

chemicals used were of analytical grade. 

 
2.2. Cell culture 

 

Two human cancer cell lines and one normal human cell line were used to 

assess anti-proliferative activity. HT-29 (colorectal adenocarcinoma) and HCT-116 

(colorectal carcinoma) were kindly provided by Prof. Carmen Jerónimo from IPO, 

Porto.  CCD-18Co (normal colon) was obtained from American Type Culture Collection 

(ATCC, USA). HT-29 and CCD-18Co cell lines were maintained as monolayer cultures 

in DMEM and HCT-116 in RPMI medium, both  supplemented with 10% of fetal bovine 

serum (FBS) and 1% of antibiotic solution (100 U/ml penicillin and 100 µg/ml), 10 mM 

HEPES and 0.1 mM pyruvate, at  37ºC in a humidified 5% CO2 atmosphere.  The 

medium was replaced every two days and cells were trypsinized when nearly 

confluent. 

 

2.3. MTT reduction assay 

 

To assess the effects of fucoxanthin and phloroglucinol alone or combined with 

5-Fu on cell viability in colon cells, MTT reduction assay was used. HCT-116, HT-29 

and CCD-18Co cells were plated in 96-multiwell culture plates at a density of 1.0x104 

cells/well and twenty-four hours after plating, three different types of treatments were 

made: (1) cells were exposed to fucoxanthin or phloroglucinol at different 

concentrations, alone or combined with 5-Fu (1 - 50 µM), for 48 h (in HCT-116 and HT-

29 cells) or 72 h (in CCD-18Co cells).  Positive and negative controls were performed; 

(2) cancer cells were incubated with phloroglucinol at different concentrations. After 24 

h of pre-treatment fresh medium containing 5-Fu was added for 48 h; and (3) cancer 

cells were treated with phloroglucinol or 5-Fu at different concentrations for 48 h, 

followed by a recovery period (24 and 72 h) in fresh medium. After the incubation 

period MTT was added at a final concentration of 0.5 mg/ml and incubated for 2 h at 37 

ºC. DMSO: ethanol solution (1:1) (v/v) was added to solubilize formazan crystals and 
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absorbance was measured at 570 nm in a microplate reader (Multiskan EX, 

Labsystems, USA). The MTT is a colorimetric assay based in the mitochondrial 

conversion of MTT into formazan crystals by viable cells. Thus, alterations in the 

absorbance may reflect changes in the number of viable cells. Results are presented 

as the percentage of cell viability relative to negative control (cells treated only with 

0.5% of DMSO) of at least six independent experiments (each one in duplicate). 

Morphology alterations of colon cells after treatments were registered under inverted 

phase contrast microscopy. 

 

2.4. Comet assay 

 

To evaluate the genotoxic effect of fucoxanthin, phloroglucinol and 5-Fu, cancer 

cells were plated (0.1x106 cells/well) in 24-multiwell culture plates. Twenty-four hours 

after plating, cells were incubated with the compounds at different concentrations (1 - 

300 µM) for 24 h and DNA damage assessed by alkaline version of the single cell gel 

electrophoresis assay (also known as comet assay) as described previously (Ramos et 

al., 2010) with some modifications. Briefly, cells were suspended in low melting point 

agarose and lysed for 1 h at 4 ºC and electrophoresis performed at 4 ºC during 20 min 

at 21 V. For the analysis of the comets, the slides were stained with DAPI solution (1 

µg/ml) and examined in a fluorescence microscope (Olympus IX71). Images were 

analyzed using CometScore® software (CometScore, TriTek Corp.) and the parameter 

tail intensity (% DNA in the comet tail in relation to total DNA) was measure. At least 

100 selected cells were examined per sample. The results were expressed as % of 

DNA in tail of at least three independent experiments.  

 

2.5. Nuclear Condensation assay 

 

Nuclear Condensation assay was performed to determine the ability of the 

compounds to induce cell death. Cancer cells were plated (0.1x106 cells/well) in 24-

multiwell culture plates. After twenty-four hours plating, cells were incubated with the 

fucoxanthin or phloroglucinol alone or combined with 5-Fu at different concentration for 

48 h. Then, both adherent and non-adherent cells were collected, washed, centrifuged, 

fixed with 4% (w/v) paraformaldehyde in PBS, for 20 min at 37 ºC and attached into a 

polylysine-treated slide using a Cytospin Cytocentrifuge (Thermo Scientific, USA). Cells 

were incubated with DAPI (1 µg/ml) and observed in a fluorescence microscope 
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(Olympus, Japan). The percentage of cells with condensed nuclei was determined from 

the ratio between cells with nuclear condensation and total number of cells counted in 

each sample. More than 300 cells were counted per sample. Results were expressed 

as % of cells with condensed nuclei of at least three independent experiments. 

 

 

2.6. Western blot 

 

Effect of fucoxanthin, phloroglucinol alone or combined with 5-Fu in HCT-116 

and HT-29 cells on some apoptotic and antiapoptotic proteins were evaluated by 

western blot. After 48 h of treatment cells were washed with PBS and lysed with 

complete RIPA buffer for 15 min on ice. Protein concentration was measured with BCA 

protein assay using BSA as a protein standard. Equal amount of total protein (60 

µg/well) were separated on SDS-PAGE on a 4-20% gradient polyacrylamide Mini-

PROTEAN® TGX™ precast gel (Bio-Rad) and transferred to PVDF membranes of 

Transblot® turboTM Transfer Pack, BioRad. The membrane was blocked at room 

temperature with 5% (w/v) nonfat dry milk in TPBS (PBS with 0.1% Tween-20). Then 

the membrane was washed thrice with TPBS and incubated overnight at 4 ºC with the 

primary antibody, followed by 1 h incubation with a 1:30000 (v/v) dilution of the 

appropriate horseradish peroxidase-conjugated secondary antibody. Immunoreactive 

bands were detected using ClarityTM Western ECL Substrate (Biorad) under a 

chemiluminescence detection system LAS 4000 mini (GE Healthcare, United 

Kindgom). Β-actin was used as a load control. Band area intensity was quantified using 

ImageJ software. 

 

 

2.7. Statistical analysis 

 

Statistical analysis was performed using GraphPad Prism 6.0 software 

(GraphPad Software, La Jolla, CA, USA). The results are represented as mean ± 

standard deviation (SD), from at least 3 and up to 6 independent experiments. 

Significant differences (P<0.05) were assessed by one-way or two-way ANOVA, 

followed by the post-hoc Tukey’s multiple comparison test or Dunnett’s test, as 

appropriate. 
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3. Results 

 
3.1. Effect of fucoxanthin and phloroglucinol alone and in co-incubation 

with 5-Fu on cell viability by MTT reduction assay in cancer cells 
and normal cells 
 

In order to evaluate the anticancer effects of fucoxanthin and phloroglucinol 

alone and in combination with 5-Fu, two human cancer cell lines (HCT-116 and HT-29) 

and one normal colon cell line (CCD-18Co) were used. Effects on cell viability were 

assessed by MTT assay when cells were in exponential growing phase (data not 

shown). Three different treatments were performed. 

 

 
3.1.1 Effects of fucoxanthin and phloroglucinol alone or combined with 5-Fu 

 
 Human cancer cells and normal cells were incubated with fucoxanthin or 

phloroglucinol alone or combined with 5-Fu at different concentrations for 48 h (cancer 

cells) or 72 h (normal cells). As shown in the figure 1, 5-Fu, at 10 and 50 µM, 

significantly decreased cell viability in HCT-116 (51% and 68%) and HT-29 cells (25% 

and 45%) when compared with the negative control. Fucoxanthin also induced a 

significant decreased on cell viability in both cell lines (HCT-116 and HT-29) showing a 

concentration-dependent effect (dark bars). At 50 and 100 µM, fucoxanthin significantly 

decreased HCT-116 cell viability in 95% and 94% (figure 1A) while in HT-29 cells was 

73% and 76% (figure 1B), respectively, in relation to the negative control. Fucoxanthin 

at 10 µM also decreased cell viability of HT-29 by 19% relative to control (figure 1B). 
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Figure 1. Dose-response effects of fucoxanthin alone (dark bars) and in combination with 5-Fu on cell 

viability in HCT-116 (A) and HT-29 (B) cells after 48 h, evaluated by MTT assay. Results are expressed as 

mean ± SD of at least seven independent experiments. Significant differences (* P<0.05; ** P<0.01; *** 

P<0.001; **** P<0.0001) when compared with the respective control (black columns) and (# P<0.05; ## 

P<0.01; #### P<0.0001) when compared with the respective control (cells incubated only with 5-FU), were 

tested by two-way ANOVA, followed by the post-hoc Tukey’s test. Percentages in brackets shows the 

decrease in relation to respective control. 

 
When analyzed the results of co-incubation of fucoxanthin and 5-Fu a 

significant decrease on cell viability was observed in both cancer cell lines for some 

combinations, when compared with the compounds isolated. In HCT-116 cells the 

combination of fucoxanthin (10 µM) plus 5-Fu (1, 10 and 50 µM) induced a significant 

decreased of cell viability in 33%, 27% and 18% when compared to the treatment with 

5-Fu at 1, 10 and 50 µM alone (figure 1A). In the HT-29 cancer cell line, the 

combination of fucoxanthin (10 µM) plus 5-Fu (1 and 10 µM) significantly decreased 

cell viability in 38% and 25% when compared to the positive control (cells incubated 

with 5-Fu at 1 and 10 µM alone) (figure 1B). At the highest concentrations tested 

fucoxanthin (50 and 100 µM) combined with 5-Fu did not changed cell viability, when 

compared with fucoxanthin alone, since increasing the concentration of 5-Fu cells did 

not alter their response.  



	
   56 

As shown in figure 2, phloroglucinol at 300 µM significantly decreased cell 

viability in both cancer cell lines. The decrease was around 26% and 24% in HCT-116 

and HT-29 cells, respectively.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2. Dose-response effects of phloroglucinol alone and in combination with 5-Fu on cell viability in 

HCT-116 (A) and HT-29 (B) cells after 48 h, evaluated by MTT assay. Results are expressed as mean ± 

SD of at least seven independent experiments. Significant differences (* P<0.05; ** P<0.01; *** P<0.001; 

**** P<0.0001) when compared with the respective control (black columns) and (# P<0.05; ## P<0.01) when 

compared with the respective control (cells incubated only with 5-Fu), were tested by two-way ANOVA, 

followed by the post-hoc Tukey’s test. Percentages in brackets shows the decrease and increase in 

relation to respective control. 

 
Regarding co-incubation, in HCT-116 cells it was observed that phloroglucinol 

(300 µM) increased cytotoxicity of 5-Fu (1 µM) when compared with 5-Fu alone but no 

differences were obtained in relation to phloroglucinol at 300 µM. At low 

concentrations, phloroglucinol (10 µM) plus 5-Fu (1 and 10 µM) and phloroglucinol (50 

µM) plus 5-Fu (10 µM) significantly increased cell viability in 16% and 18% when 

compared with 5-Fu alone (figure 2A). These results highlight a possible protective 

effect of low concentrations of phloroglucinol against cytotoxicity induced by 5-Fu. 

However, in HT-29 cancer cell line, phloroglucinol, at 300 µM, significantly increased 

the cytotoxicity of 5-Fu (10 µM) in 21% when compared with 5-Fu (10 µM) alone (figure 

2B). 
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The anti-proliferative effect of fucoxanthin and phloroglucinol alone and in co-

incubation with 5-Fu was also confirmed by a decrease of cell density and by 

morphological alterations in HCT-116 and HT-29 cell lines, using a phase contrast 

microscope (data not shown). 

 
To assess the specificity of the antitumor effect of fucoxanthin and 

phloroglucinol alone and in combination with 5-Fu, the conditions described above 

were tested in a normal colon cell line (CCD-18Co). For the normal cell line, incubation 

period with the compounds was 72 h, to ensure that the cells had time to divide 

properly. The results were represented as percentage of cell viability relative to control 

(cells with 0.5% DMSO) (figure 3).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Dose-response effects of fucoxanthin (A) and phloroglucinol (B) alone and in combination with 5-

Fu on cell viability in CCD-18Co cells after 72 h, evaluated by MTT assay. Results are expressed as mean 

± SD of at least six independent experiments. Significant differences (****P<0.0001) when compared with 

the respective control (black columns) and (#### P<0.0001) when compared with the respective control 

(cells incubated only with 5-FU), were tested by two-way ANOVA, followed by the post-hoc Tukey’s test. 

Percentages in brackets shows the decrease in relation to respective control. 
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Unlike what was verified in the two cancer cell lines, in CCD-18Co cells, 

fucoxanthin below 50 µM (alone or in co-incubation with 5-Fu) did not present a 

significant decrease in cell viability. However, for higher concentrations of fucoxanthin 

(50 and 100 µM) a significant decrease of cell viability was observed by 57% and 53%, 

respectively, when compared with the negative control (figure 3A). These results show 

that lower concentrations of fucoxanthin are not toxic to normal cells. Regarding the 

results obtained in the MTT assay, the combination of 10 µM fucoxanthin plus 1, 10 

and 50 µM 5-Fu seems to be more efficient as it potentiates the cytotoxicity of the 

anticancer drug in cancer cell lines without apparent toxicity to the normal cell line. 

With respect to phloroglucinol, no changes were observed on cell viability in all 

conditions tested (figure 3B). Phloroglucinol alone and in combination with 5-Fu did not 

induce cytotoxic effects in normal cells. 
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3.1.2 Effect of pre-treatment with phloroglucinol 
 

The pre-treatment condition, incubation with phloroglucinol for 24 h followed by 

incubation with fresh medium containing 5-Fu for 48 h, was performed to evaluate if the 

low bioactivity of phloroglucinol observed in co-incubation with 5-Fu would be higher in 

other regimes. The results showed that phloroglucinol, at 300 µM, significantly 

decreased viability of HCT-116 cell by 18% relative to the negative control (figure 4A). 

However, any of the tested concentrations of phloroglucinol showed a protective/ 

inductive effect against the toxicity induced by 5-Fu in both cell lines (figure 4). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Dose-response effects of pre-treatment with phloroglucinol alone for 24 h, followed by incubation 

with fresh medium containing 5-Fu for 48 h on cell viability in HCT-116 (A) and HT-29 (B) cells, evaluated 

by MTT assay. Results are expressed as mean ± SD of at least six independent experiments. Significant 

differences (* P<0.05; ** P<0.01; *** P<0.001; **** P<0.0001) when compared with the respective control 

(black columns), were tested with two-way ANOVA, followed by the post-hoc Tukey’s test. Percentages in 

brackets shows the decrease in relation to respective control. 
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3.1.3 Effect of phloroglucinol after a recovery period 
 

 To assess if the cytotoxicity induced by phloroglucinol and 5-Fu in HCT-116 and 

HT-29 remains after remove of the compounds, cells were treated with phloroglucinol 

or 5-Fu at different concentrations for 48 h followed by a recovery period (24 and 72 h) 

in fresh medium.  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5. Dose-response effect of phloroglucinol (A) and 5-Fu (B) on cell viability in HCT-116 after 48 h, 

followed by a recovery period of 24 h and 72 h, evaluated by MTT assay. Results are expressed as mean 

± SD of at least five independent experiments. Significant differences (* P<0.05; *** P<0.001; **** 

P<0.0001) when compared with the respective control, were tested with two-way ANOVA, followed by the 

post-hoc Tukey’s test. 

 

The results presented in figure 5 and figure 6, showed that phloroglucinol at 300 

µM significantly decreased viability of HCT-116 (figure 5A) and HT-29 cells (figure 6A) 

at 0 h of recovery. In HCT-116, after 72 h of recovery in fresh medium was observed a 

slight increase of cell viability (figure 5A). 
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 In HT-29 cells, after 24 h of recovery in fresh medium cell viability significantly 

increased, demonstrating the recover ability of the HT-29 cancer cell line (figure 6A). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Dose-response effect of phloroglucinol (A) and 5-Fu (B) on cell viability in HT-29 after 48 h 

followed by a recovery period of 24 h and 72 h, evaluated by MTT assay. Results are expressed as mean 

± SD of at least five independent experiments. Significant differences (* P<0.05; *** P<0.001; **** 

P<0.0001) when compared with the respective control, were tested with two-way ANOVA, followed by the 

post-hoc Tukey’s test. Percentages in brackets shows the increase in relation to respective control. 

 

Regarding the effects of 5-Fu was observed at 10 and 50 µM a significant 

increase of cytotoxicity after recovery period in HCT-116 (figure 5B) and HT-29 cells 

(figure 6B). This means that the cytotoxic effect of 5-Fu remains for a long period after 

its removal from the medium. However, in HT-29 cells treated with 5-Fu at 1 µM an 

increase of cell viability was observed returning to the original values after recovered 

period (figure 6B). 
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3.2. Effect of fucoxanthin, phloroglucinol and fluorouracil on DNA 

damage by the comet assay in cancer cell lines 
 

To assess the genotoxic effect of fucoxanthin and phlorolucinol, HCT-116 and 

HT-29 cells were exposed at different concentrations of fucoxanthin (10-100 µM) or 

phloroglucinol (10-300 µM) for 24 h and DNA damage assessed by comet assay. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Genotoxic effect of fucoxanthin, in HCT-116 (A) and HT-29 (B), phloroglucinol, in HCT-116 (C) 

and HT-29 (D) and 5-Fu, in HCT-116 (E) and HT-29 (F) cells after 24 h, evaluated by comet assay. 

Results are expressed as mean ± SD of at least three independent experiments. Significant differences (* 

P<0.05; ** P<0.01; *** P<0.001; **** P<0.0001) when compared with the respective control, were tested 

with one-way ANOVA, followed by the post-hoc Dunnett’s test. 
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The results showed that fucoxanthin significantly increased the percentage of 

DNA in tail in both cell lines in a dose-dependent manner, when compared with the 

negative control (figure 7A and 7B). Phloroglucinol did not induce DNA damage 

detectable by the comet assay at any of the tested concentrations in both cancer cell 

lines (figure 7C and 7D). It was observed that only the highest concentrations tested of 

5-Fu (50 and 100 µM), at 24 h of incubation, were responsible for a significant increase 

in the percentage of DNA damage in HCT-116 cells (figure 7E). For HT-29 cells, 5-FU 

at 100 µM significantly increased the percentage of DNA damage (figure 7F). 
 

3.3. Effect of fucoxanthin and phloroglucinol alone and in co-incubation 
with 5-FU on cell death by the nuclear condensation assay in 
cancer cell lines 

 
Nuclear chromatin condensation was assessed in the two human cancer cell 

lines (HCT-116 and HT-29) after 48 h exposure to fucoxanthin and phloroglucinol alone 

and in combination with 5-Fu by fluorescence microscopy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Induction of nuclear condensation by fucoxanthin alone and in co-incubation with 5-Fu, in HCT-

116 (A) and HT-29 (B) cells after 48 h, evaluated by Nuclear Condensation assay. Results are expressed 

as mean ± SD of at least three independent experiments. Significant differences (* P<0.05; ** P<0.01) 

when compared with the respective control, were tested with one-way ANOVA, followed by the post-hoc 

Tukey’ test. Percentages in brackets shows the increase in relation to respective control.  
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As shown in figure 8, 5-Fu at 10 and 50 µM was able to significantly increase 

the percentage of cells with nuclear condensation by 11% and 14%, respectively, in 

HCT-116 (figure 8A). Regarding the results obtained with HT-29 cells, the combination 

with fucoxanthin 10 µM plus 5-Fu at 50 µM exhibited a significant increase in the 

percentage of cells with nuclear condensation by 12% (figure 8B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Induction of nuclear condensation by phloroglucinol alone and in co-incubation with 5-Fu, in 

HCT-116 (A) and HT-29 (B) cells after 48 h, evaluated by Nuclear Condensation assay. Results are 

expressed as mean ± SD of at least three independent experiments. Significant differences (* P<0.05; ** 

P<0.01) when compared with the respective control, were tested with one-way ANOVA. Percentages in 

brackets shows the increase in relation to respective control. 

 
As shown in figure 9, HCT-116 cells exposed to phloroglucinol at 300 µM 

exhibited a significant increase of 15%, in the percentage of cells with nuclear 

condensation when compared with the control (figure 9A).  

 Regarding co-incubation, 300 µM phloroglucinol plus 10 µM 5-Fu induced a 

significant increase by 16%, when compared to the treatment with 5-Fu at 10 µM alone. 

However when in co-incubation with 5-Fu at 1 and 50 µM, phloroglucinol showed only 

a tendency to increase the percentage of cells with nuclear condensation (figure 9A). 
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Relatively to HT-29 cells, incubation with phloroglucinol at 300 µM significantly 

increased in 10% the number of cells with nuclear condensation when compared with 

the control (figure 9B). The combination of phloroglucinol at 300 µM plus 5-Fu at 50 µM 

showed a significant increase in the percentage of cells with nuclear condensation by 

9%, when compared with 5-Fu at 50 µM alone (figure 9B). 

 
 

 
3.4. Effect of fucoxanthin and phloroglucinol alone and in co-incubation 

with 5-Fu on pro-apoptotic and anti-apoptotic proteins expression 
by Western blot  

 
 To assess the possible involvement of apoptosis in the antitumor activity of 

fucoxanthin and phloroglucinol alone and in co-incubation with 5-Fu, the expression of 

proapoptotic and antiapoptic proteins was assessed in the two human cancer cell lines 

(HCT-116 and HT-29) after 48 h exposure (figure 10 and 11).  

In HCT-116 cancer cell line, fucoxanthin (10 µM) induce p53 expression and 

decreased Bcl-2 expression when compared with the control (medium with 0.5% 

DMSO) (figure 10). No effects were observed in Bax, procaspase 9 and p27 

expression.  In the case of treatment with 5-Fu at 1 and 10 µM an increase of p53 and 

Bax expression and a decrease of Bcl-2 and procaspase 9 where observed when 

compared with the control. Fucoxanthin at 10 µM plus 1 µM 5-Fu increased the 

expression levels of p53, Bax, procaspase 9  and p27 with a slight decrease of Bcl-2 

expression, when compared with 5-Fu at 1 µM. Regarding treatment with 

phloroglucinol at 10 µM an increase of Bax/Bcl2 ratio with a decrease of procaspase 9 

expression, was observed in HCT116 cells. When in combination with 1 µM 5-Fu, 

phloroglucinol exhibited higher levels of p53, Bcl-2, procaspase 9 and p27 than cells 

treated with 5-Fu alone. Increasing 5-Fu concentration to 10 µM, when combined with 

10 µM phloroglucinol resulted in an increase of Bax and procaspase 9 expression 

comparing with 10 µM of 5-Fu alone. 
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Figure 10.  Effects of fucoxanthin and phloroglucinol alone and in co-incubation with 5-Fu, for 48 h, on p53, 

Bax, Bcl-2, procaspase 9 and p27 expressions in HCT-116 cells by western blot. Images are 

representative of two independent experiments. The values below the representative blot correspond to its 

relative quantification using ImageJ software. 

 

  

In HT-29 cells, treatment with fucoxanthin at 10 µM induced the expression of 

Bax and decreased the expression of procaspase 9 when compared to the control 

(medium with 0.5% DMSO) (figure 11). Incubation with 5-Fu at 1 and 10 µM decreased 

the expression of Bax, procaspase 9 and p27 in HT-29 cells. Fucoxanthin at 10 µM 

combined with 5-Fu at 1 µM increased Bax and p27 expression compared with 5-Fu 

alone. Relatively to phloroglucinol at 300 µM, no significant changes were observed in 
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the protein levels. However when in co-incubation with 5-Fu at 10 µM a slight increase 

of Bax and p27 expression was observed when compared with 5-Fu alone. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 11. Effects of fucoxanthin and phloroglucinol alone and in co-incubation with 5-Fu, for 48 h, on p53, 

Bax, Bcl-2, procaspase 9 and p27 expressions in HT-29 cells by western blot. Images are representative 

of two independent experiments. The values below the representative blot correspond to its relative 

quantification using ImageJ software. 
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4. DISCUSSION 

 

Currently, 5-Fu is one of the most used chemotherapeutic drugs to treat many 

types of cancer and particularly colorectal cancer. Unfortunately, resistance to 5-Fu 

may occur during treatment due to several biological mechanisms, namely over 

expression of thymidylate synthase (TS) and alterations in apoptotic pathway (Zang et 

al., 2008). Attending these limitations, combination with other drugs and/or natural 

compounds has been emerging as a new and promising strategy. 

Both fucoxanthin as well as phloroglucinol, have shown several biological 

activities, including cytotoxic effects against cancer cell lines, which are reported in 

several studies (Zhang et al., 2008; Kong et al., 2009; Liu et al., 2009; Yu et al., 2011). 

In the present study, the anticancer effects of fucoxanthin and phloroglucinol alone or 

combined with 5-Fu were assessed on two colorectal cancer cell lines (HCT-116 and 

HT-29). To evaluate the specificity of the anticancer effect, a normal colon cell line 

(CCD-Co18) was also tested. Our results showed that 5-Fu decreased cell viability in a 

dose-dependent manner with the ability to induce DNA damage in both tested cell 

lines. However, an increase of nuclear condensation was only observed in HCT-116 

cells with an increase of p53 and Bax/Bcl-2 ratio with a decrease of procaspase 9. 

Comparing the two cell lines, different susceptibility to 5-Fu was observed, HT-29 cells 

were more resistant than HCT116 cells. According to our results, Mhaidat and 

colleagues also demonstrated that HCT-116 cells, in a panel of cancer cell lines, were 

the most sensitivity to 5-Fu (Mhaidat et al., 2014).  Lower sensitivity of HT-29 cells may 

be due to its genetic characteristics. HT-29 cancer cell line derived from a human 

adenocarcinoma, is aneuploid, presents chromosomal instability and is p53 mutant 

(Ahmed et al., 2013). Whereas, HCT-116 a cancer cell line derived from a human 

carcinoma, is near to diploid colon cancer cell line, does not present chromosomal 

instability and is p53w/t (Thompson & Compton, 2010). Therefore, some studies imply 

the existence of a link between chromosomal instability, aneuploidy and loss of p53 

function with an intrinsic multidrug resistance, namely decreased sensitivity to 5-Fu 

(Swanton et al., 2006; Lee et al., 2011). 

The marine carotenoid, fucoxanthin, exhibited dose-dependent cytotoxic effects 

against the two cancer cell lines tested. At 50 and 100 µM fucoxanthin a greater 

cytotoxic effect was observed when compared to similar doses of 5-Fu. Taking into 

account that 5-Fu is one of the most widely used drugs in the treatment of colorectal 

cancer, the cytotoxic effect of fucoxanthin is quite promising. The cytotoxic effect of 
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fucoxanthin is accomplished with an increase of DNA damage induction in both cells 

lines. In most of the cases increasing DNA damage, such as strand breaks formation 

without proper repair, promotes an apoptotic event which is the result of complex 

enzymatic reactions (e.g. activation of pro-apoptotic factors such as Bax and caspases) 

(Ros & Kaina, 2006). In HCT-116 cells, fucoxanthin increased p53 expression with a 

decrease of Bcl-2, while in HT-29 cells an increase of Bax and a decrease of 

procaspase 9 was observed. The prooxidant activity of fucoxanthin has been 

previously reported in several cell models (Kumar et al, 2013). In HL-60 cells (human 

promyelocytic leukemia cell line) the levels of reactive oxygen species (ROS) increased 

after exposure to fucoxanthin with induction of apoptosis through ROS-mediated Bcl-xL 

pathway (Kim et al. 2010). Although the effect of fucoxanthin on cell viability has 

previously been reported in several human colon cell lines (e.g. HCT-116 cells Caco-2, 

DLD-1 and HT-29) molecular mechanisms remain unclear (Hosokawa et al., 2004; 

Kotake-Nara et al., 2005). 

The effect of fucoxanthin combined with 5-Fu in HCT-116 and HT-29 cells is 

reported here for the first time. Fucoxanthin significantly increased 5-Fu induced 

cytotoxicity in both cancer cell lines at smaller doses. In HCT-116 cells, fucoxanthin co-

incubated with 5-Fu increased protein levels of p53 and p27 when compared with 5-Fu 

treatment suggesting a cell cycle arrest. Besides the increase of Bax/Bcl-2 ratio and 

procaspase 9 induced by fucoxanthin plus 5-Fu, no increase of nuclear condensation 

was observed relative to 5-Fu alone. In HT-29 cells fucoxanthin enhanced 5-Fu 

cytotoxicity by induction of apoptosis with increase of Bax expression and cell cycle 

arrest mediated by up-regulation of p27 protein expression. This promoter activity by 

fucoxanthin was assessed by a previous study, which demonstrated that fucoxanthin 

synergistically enhanced the cytotoxicity of some chemotherapeutic drugs, such 5-Fu, 

vinblastine and etoposide, in Caco-2 cells by inhibition of ABC transporters (Eid et al., 

2012). Notwithstanding, in our study it seems that the enhancement of 5-Fu cytotoxicity 

by fucoxanthin is mediated by cell cycle arrest and activation of apoptosis in colon 

cancer cells but not in normal cells. 

Phloroglucinol, at higher concentration, decreased cell viability in both cell lines 

tested with increase of nuclear condensation and without induction of DNA damage 

detected by comet assay. A similar decrease in cell viability and induction of apoptosis 

in HT-29 cells has been reported for phloroglucinol (Kang et al., 2014). In co-incubation 

phloroglucinol increased the sensitivity to 5-Fu in both cancer cell lines. An identical 

effect was reported by Pinhatti and colleagues, demonstrating that the association of 

japonicin A (a dimeric phloroglucinol) with paclitaxel had a synergistic effect resulting in 

a decrease of cellular proliferation of the OVCAR-3 cell line (Pinhatti et al., 2013). In 
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the present study, we show for the first time the effect of phloroglucinol in combination 

with 5-Fu in HCT-116 and HT-29 cells. However this combination was more efficient in 

HT-29 cells with an increase of Bax and p27 protein expression suggesting induction of 

apoptosis and cell cycle arrest as possible anticancer mechanisms. As this effect was 

observed in a cell line with some 5-Fu resistance, combination of phloroglucinol with 5-

Fu could be promising in resistance cells mainly with p53 mutant.  

The antioxidant activity of phloroglucinol has been reported in several cell 

models (Kang et al., 2006; Kang et al., 2010; So & Cho, 2014). In our study, 

phloroglucinol at lower concentrations in co-incubation with 5-Fu showed a significant 

increased viability in HCT-116 cells. The protective effect was accomplish with an 

increase of p53, Bcl-2 and procaspase 9 expression relative to cells treated with 5-Fu. 

These results are in agreement with a study conducted by Fu and colleagues showing 

a decrease in apoptosis when 5-Fu, responsible for inducing ROS formation, is 

combined with antioxidants in colon cancer cells (Fu et al., 2014). However, the 

protective effect of phloroglucinol was only observed when in co-incubation with 5-Fu 

and in lower concentrations of phloroglucinol, other regimes do not seem to have the 

same protective effect. In fact, higher concentrations of phloroglucinol in combination 

with 5-Fu results in a decrease of cell viability in HCT-116 cells suggesting that 

phloroglucinol can also behave like a prooxidant under certain conditions, such as high 

concentrations or in the presence of oxygen molecules (Bouayed & Bohn, 2010; 

Cotoras et al., 2014). 

Besides the cytotoxicity of fucoxanthin and phloroglucinol in cancer cells, our 

data showed that no toxicity was observed in normal cells, except for higher 

concentrations of fucoxanthin. According with our results, some studies reported that 

normal cells when exposed to fucoxanthin and phloroglucinol were unaffected or were 

less affected than hepatoma or colon cancer cells demonstrating the selective effect of 

the two compounds (Kotake-Nara et al., 2005; Liu et al., 2009; Kang et al., 2014).  

In conclusion, the results of this study indicate that fucoxanthin decreased cell 

viability more efficiently than 5-Fu alone and when in co-incubation enhance the 

cytotoxic effect of 5-Fu, without toxicity to normal cells, which could be a promising 

alternative for resistant colorectal cancer cell lines. Phloroglucinol alone also 

decreased cell viability and in combination increased the sensitivity to 5-Fu in both 

cancer cell lines, especially in p53 mutant HT-29 cancer cell line. Nonetheless, at lower 

concentrations phloroglucinol inhibited the effects of 5-Fu in HCT-116 cells, which is 

not desired during cancer treatment. Induction of DNA damage (only in fucoxanthin), 

cell cycle arrest and apoptosis seem to be involved in the anticancer effects of 

fucoxanthin and phloroglucinol in colon cancer cells. However, the exact mechanisms 
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involved needs to be further explored. Our results suggest that both natural compounds 

could be in the future a possible alternative to enhance the efficiency of 5-Fu in 

resistant colon cancer cells. This study supports the potential of seaweeds as source of 

bioactive compounds with biomedical applications. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 

 

The aim of this study was to assess the in vitro anticancer bioactivity of two 

algae compounds, fucoxanthin and phloroglucinol, alone and in co-incubation with 5-Fu 

on two colorectal cancer cell lines (HCT-116 and HT-29). Also, to assess the specificity 

of the anticancer effects, a normal colon cell line (CCD-Co18) was tested.  

Results demonstrated that 5-Fu decreased cell viability in a dose-dependent 

manner with ability to induce DNA damage in both cell lines, with HCT-116 cells 

revealing increased sensitivity to 5-Fu. Furthermore, fucoxanthin decreased cell 

viability more efficiently than 5-Fu alone and when in co-incubation enhanced the 

cytotoxic effect of 5-Fu, without toxicity to normal cells, which could be a promising 

alternative for resistant colorectal cancer cell lines. Phloroglucinol alone also 

decreased cell viability and in combination increased the sensitivity to 5-Fu in both 

cancer cell lines, especially in p53 mutant the HT-29 cancer cell line. Nonetheless, at 

lower concentrations phloroglucinol inhibited the effects of 5-Fu in HCT-116 cells, a 

non-desired side effect. 

Considering these results, fucoxanthin and phloroglucinol seem to be very 

promising agents in the potentiation of anticancer drugs, namely 5-Fu, in resistant 

colon cancer cells. Induction of DNA damage (in fucoxanthin), cell cycle arrest and 

apoptosis seems to be involved in the anticancer effects of fucoxanthin and 

phloroglucinol in colon cancer cells. However, the exact mechanisms involved need to 

be further explored with the addition of other assays that can provide supplementary 

information such as assessment of mitochondrial membrane potential, cytochrome c 

release, DNA fragmentation analysis, cell cycle arrest (by flow cytometry), 

determination of reactive oxygen species (ROS) generation, as well as molecular 

targets and signaling pathways involved. 

 Attending to the antioxidant and prooxidant activities displayed by 

phloroglucinol in HCT-116 cancer cell line, when co-incubated with 5-Fu it is important 

to clarify in which conditions these two opposite effects occur. The test of a higher 

number of cancer cells and normal cells should be also of utmost importance in the 

validation of these compounds as potential anticancer drugs. 

Screening for natural compounds with anticancer activity that could work alone 

or in combination with other chemotherapeutic drugs is now one of the main focus in 

investigation, in order to increase the therapeutic efficacy and minimize toxicity on 
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healthy cells. In this study, we reported for the first time the ability of fucoxanthin and 

phloroglucinol to enhance the cytotoxic effect of 5-Fu in HCT-116 and HT-29 cancer 

cell lines without toxicity in normal colon cell line. These new data can contribute to 

stimulate the interest at looking to seaweed farming and biotechnological use with 

growing interest. 
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APPENDIX – PROTOCOLS 

 

MTT Cell Proliferation Assay 
 

Work solutions preparation 

 

A. 1x PBS buffer 

 

To obtain 1L of PBS buffer solution: 

- weigh all reagents necessary, according to the table below. 

- dissolve in 800 ml of ultrapure H20; 

- adjust pH to 7.4; 

- add ultrapure H20 to a final volume of 1L. 

PBS buffer solution should be sterilized (autoclave) and then store at 4ºC. 

 

 Final concentration Weight 

NaCl 137.0 mM 8.0 g 

Kcl 2.7 mM 0.20 g 

Na2PO4 10.0 mM 1.44 g 

KH2PO4 2.0 mM 0.24 g 

 

 

B. MTT sock solution (5 mg/ml) 

For a final concentration of 5 mg/ml of MTT, dissolve 50 mg of MTT in 10 ml of 

PBS. Store at -20ºC. 
* MTT is highly toxic and carcinogenic. Do not mix with normal waste. 
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C. Organic solvent solution – DMSO:Ethanol (1:1) 

 

To obtain a final volume of 500 ml, add 250 ml of DMSO and 250 ml of absolute 

ethanol. This solution should be store protected from the light at room 

temperature. 
* DMSO is toxic and highly volatile. Attention to toxic vapors. 

 

Procedure 

 

(All work should be performed under aseptic conditions using a laminar flow hood.) 

(Incubation at 37ºC with 5% of CO2) 

 

1. Plate cells in a 96-multiwell culture plate with a final volume of 100 µl/well 

respecting the appropriate cellular density for each cell line. Cells should be 

incubated for 24 h to promote cell adhesion. 

2. Incubate the cells with the respective treatment and at this moment apply 10 

µl of MTT (0.5 µg/ml) to the initial control (Ci). 

3. After 2 h of incubation, remove the medium from the Ci. This step should be 

done carefully without removing the formazan crystals which are adhere to 

the bottom of the well. 

4. Leave the treated cells incubate for the rest of the experimental time. 

5. When completed the time of exposure apply 10 µl of MTT (0.5 µl/mg) per 

well. 

6. After 2 h of incubation, remove the medium and add 150 µl of the organic 

solvent solution (DMSO:Ethanol) in all wells. 

7. From this point forward protect the plate from light. Formazan crystals are 

photosensitivity. 

8. Gently, shake the plate until a homogenous solution is obtained (normally, 

for 10 min.) 

9. In a microplate reader, using a wavelength of 570 nm, register the optical 

density of the samples. 

10. The percentage of cell viability is calculated using the follow equation: 

 

 % of cell viability = (Odsample X 100) / (ODCf) 
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Nuclear Condensation Assay 

Work solutions preparation 

 

A. 1x PBS buffer 

 

To obtain 1L of PBS buffer solution: 

- weigh all reagents necessary, according to the table below. 

- dissolve in 800 ml of ultrapure H20; 

- adjust pH to 7.4; 

- add ultrapure H20 to a final volume of 1L. 

PBS buffer solution should be sterilized (autoclave) and then store at 4ºC. 

 

 Final concentration Weight 

NaCl 137.0 mM 8.0 g 

Kcl 2.7 mM 0.20 g 

Na2PO4 10.0 mM 1.44 g 

KH2PO4 2.0 mM 0.24 g 

 

B. DAPI staining solution (1 µg/ml) 

Prepare a 1 µg/ml working solution in ultrapure H20 (DAPI stock solution 100 

µg/ml). Store at -20ºC, protected from light. 

* DAPI is carcinogenic. 

C. 50% Glycerol solution (v/v) 

To obtain 10 ml of glycerol solution, mix 5 ml of glycerol on 5 ml of PBS (1x) 

D. 4% Paraformaldehyde (PFA) (w/v) 

To prepare 100 ml, weight 4 g of PFA and add PBS (1x) at make 100 ml.  To 

dissolve the solution, place it in a harm water bath (60ºC) and stir frequently. 
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When dissolved, allow the solution to cool at room temperature and adjust the 

pH to 7.4. Store at -20ºC until use. 

Procedure 

(Incubation at 37ºC with 5% of CO2) 

 

Sample preparation 

 

1. Plate cells in a 12-multiwell culture plate with a final volume of 1 ml/well, 

respecting the appropriate cellular density for each cell line. Cells should be 

incubated for 24 h to promote cell adhesion. 

2. Incubate the cells with the respective treatment. 

3. When completed the incubation time, collect the medium from each well into 

a respectively labeled tube. 

4. Wash with 1 ml of PBS (1x) each well and collect to the respective centrifuge 

tube. 

5. Add 150 µl of warm trypsin/EDTA solution and leave 5 min in the incubator. 

6. Add 400 µl of medium in each well to stop the trypsinization process. 

Carefully, resuspend the cells and collect to the respective tube. 

7. Wash with 1 ml of PBS (1x) each well and collect again to the respective 

centrifuge tube. 

8. Centrifuge the tubes for 5 min at 2000 rpm. 

9. Collect 500 µl of the supernatant and discard the remaing without disrupting 

the pellet. 

10. To the 500 µl add 3 ml of PBS (1x) and gently resuspend. 

11. Centrifuge the tubes for 5 min at 2000 rpm. 

12. Discard the supernatant until 500 µl and resuspend the pellet. 

13. Add 2 ml of PFA at 4% and incubate for at least 20 min at 37ºC. 

14. Add 4 ml of PBS (1x) to each tube and centrifuge for 5 min at 2000 rpm. 

15. Discard the supernatant until 500 µl and resuspend the pellet. 

16. Transfer each samples into tubes of 1.5 ml properly identified. 

17. If desired, store the samples at 4ºC.* 

* Samples will remain stable for several months. 
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Nuclear staining 

1. Mount the poly – L – Lysine slides into the appropriate cytocentrifuge 

frames. 

2. Pipette around 80-120 µl of each resuspend sample into a cytocentrifuge 

tube. 

3. Centrifuge the slides for 5 min at 500 rpm. 

4. Carefully, unmount the slides and verify that the cells are adhered to the 

slide. 

5. With a hydrophobic pen circle the adherent cells, and leave to air dry for 

around 20 min. 

6. Wash the slides 3 times with PBS (1x), each wash should be for 5 min. 

7. Incubate with DAPI (1 µg/ml) for 10 min protected from the light. 

8. Add 6 µl of glycerol at 50% to each sample, and place a coverslip. 

9. Observe the samples by using a fluorescence microscope or store at -20ºC 

in the dark. 

 

Quantification 

Quantification of nuclear condensation is obtained by counting at least 300 cells 

with condensed nuclei. The percentage of nuclear condensation is obtained by 

applying the following equation: 

 

% of cells with condensed nuclei = (number of cells with condensed nuclei / 

total number of cells counted) x100 
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Comet Assay 

Work solutions preparation 

 

A. 1x PBS buffer 

 

To obtain 1L of PBS buffer solution: 

- weigh all reagents necessary, according to the table below. 

- dissolve in 800 ml of ultrapure H20; 

- adjust pH to 7.4; 

- add ultrapure H20 to a final volume of 1L. 

PBS buffer solution should be sterilized (autoclave) and then store at 4ºC. 

 

 Final concentration Weight 

NaCl 137.0 mM 8.0 g 

Kcl 2.7 mM 0.20 g 

Na2PO4 10.0 mM 1.44 g 

KH2PO4 2.0 mM 0.24 g 

 

B. 1% Normal Melting Point Agarose (NMP) (w/v) 

Mix 200 mg of normal melting point agarose (NMP) with distilled water until 20 

ml. To dissolve the solution, heat in a microwave for 1 to 2 min at full power. 

The solution should be stored at 4ºC. Before use, melt the solution. 

C. 0.5% Low Melting Point Agarose (LMP) (w/v) 

Mix 100 g of low melting point agarose (LMP) with PBS (1x) until 20 ml. To 

dissolve the solution, heat in a microwave for 1 to 2 min at full power. The 

solution should be stored at 4ºC. Before use, melt the solution. 
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D. Lysis solution, pH 10 

To obtain 1 L of lysis solution add NaCl, Na2EDTA and Tris Base with the 

respective weight and add around 5 g of NaOH (save ~2 g). Add distilled water 

until 900 ml and stir. The remaining 2 g of NaOH will be gradually added to the 

solution as the dissolution occurs and until reaching the correct pH. When 

totally dissolved add the remaining distilled water until 1 L. Store the solution at 

4ºC. Triton X-100 1% (v/v) is added immediately prior to use. 

 

 

 

 

 

E. Electrophoresis Buffer (300 mM NaOH, 1 mM Na2EDTA, pH13) 

Weigh 120 g of NaOH (final concentration of 3 M) add distilled water to 1 L. 

Dissolve and store at 4ºC. 

Weigh 3.722 g of Na2EDTA (final concentration of 200 mM) add distilled water 

to 50 ml. Dissolve and store 4ºC. 

The solutions should only be mix when they were accurate. For 1 L of 

electrophoresis buffer mix 100 ml of NaOH (3 M), 5 ml of Na2EDTA (200 mM) 

and 895 ml of distilled water. 

F. DAPI staining solution (1 µg/ml) 

Prepare a 1 µg/ml working solution in ultrapure H20 (DAPI stock solution 100 

µg/ml). Store at -20ºC, protected from light. 

* DAPI is carcinogenic. 

 Final concentration Weight 

NaCl 2.5 M 146.1 g 

Na2EDTA 100.0 mM 37.2 g 

Tris Base 10.0 mM 1.21 g 

NaOH to pH of 10  Approx. 7g 
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Procedure 

(Incubation at 37ºC with 5% of CO2) 

1. Plate cells in a 24-multiwell culture plate with a final volume of 1 ml/well, 

respecting the appropriate cellular density for each cell line. Cells should be 

incubated for 24 h to promote cell adhesion. 

2. Incubate the cells with the respective treatment. 

3. When completed the incubation time, discard the medium from each well and 

wash twice with 200 µl of PBS (1x). 

4. Add 100 µl of trypsin/EDTA solution and incubate for about 5 min. 

5. Add 200 µl of medium to stop the action of the trypsin and resuspend. 

6. Prepare a cell suspension (5x104 cells/ml) into a microtube. 

7. From this point forward the cells must be kept on ice. 

8. Centrifuge cells for 1 min at 5000 rpm. 

9. Discard supernatant, and gently resuspend cells in 100 µl of LMP previously 

melted. 

10. Apply ~75 µl of the LMP agarose/cell suspension on the slide and place a 

coverslip. Keep the slides at 4ºC for 10 min. 

11. When the LMP agarose in the slides is solidified, gently remove the coverslips. 

12. Prepare the working lysis solution, add 100 ml of lysis solution with 1 ml of 

Triton X- 100 1% (v/v), and fully immerse the slides. 

13. Incubate for 2 h at 4ºC in the dark. 

14. Prepare the electrophoresis buffer, and pour into the electrophoresis tank at 

4ºC. 

15. Before placing the slides in the electrophoresis thank rinse the slides with 

distilled water. 

16. Incubate the slides in the alkaline electrophoresis buffer for 40 min at 4ºC to 

allow the DNA to unwind. 

17. Run the electrophoresis at 21 V for 20 min at 4ºC. 

18. Remove the slides from the tank, and immerse in distilled water (3 times), each 

time for 5 min. 

19. Fix the slides twice for 5 min in absolute ethanol. Leave to air dry. 

20. For visualization, stain each sample with 20 µl of DAPI (1 µg/ml) and observe 

using a fluorescence microscope. 
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DNA damage evaluation 

Evaluation of DNA damage is obtained by capturing at least 100 cells per sample, and 

process the image by using comet analysis software. The results should be expressed 

as percentage of DNA in the tail. 
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Western Blot 

Work solutions preparation 

 

A. 1x PBS buffer 

 

To obtain 1L of PBS buffer solution: 

- weigh all reagents necessary, according to the table below. 

- dissolve in 800 ml of ultrapure H20; 

- adjust pH to 7.4; 

- add ultrapure H20 to a final volume of 1L. 

PBS buffer solution should be sterilized (autoclave) and then store at 4ºC. 

 

 Final concentration Weight 

NaCl 137.0 mM 8.0 g 

Kcl 2.7 mM 0.20 g 

Na2PO4 10.0 mM 1.44 g 

KH2PO4 2.0 mM 0.24 g 

 

B. RIPA buffer 

RIPA PMSF 
Protease 

inhibitor 

cocktail 

Sodium 

orthovanadate 

1 ml 10 µl 10-20 µl 10 µl 

 

C. Running buffer 

To obtain 700 ml of running buffer add 70 ml of tris-glycine buffer 10x ( 25 mM 

of tris base and 192 µM of glycine) with 7 ml SDS 10x (0,1% SDS). Add distilled 

water until 700 ml and stir. Check the pH and adjust to 8.3 if necessary and 

then store at 4ºC. 
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D. TPBS buffer 

To obtain TPBS buffer add 1 ml of Tween 20 (0.1%) on 1 L of PBS. 

 

E. Blocking solution 

Add 1 g of dry milk into 20 ml of TPBS. 

 

F. Relevation solution 

Mix 400 ml of Peroxide solution with 400 ml of Luminol/enhancer solution. 

 

Procedure 

(Incubation at 37ºC with 5% of CO2) 

 

Sample preparation 

 

1. Plate cells in a 6-multiwell culture plate with a final volume of 2 ml/well, 

respecting the appropriate cellular density for each cell line. Cells should be 

incubated for 24 h to promote cell adhesion. 

2. Incubate the cells with the respective treatment. 

3. When completed the incubation time, discard the medium from each well 

and wash with PBS (1x). 

4. From this point forward the cells must be kept on ice. 

5. Add 100 or 200 µl (depending on cell density) of ice-cold RIPA buffer and 

incubate for 10 min.  

6. Scrape adherent cells off the dish and transfer the cell suspension into a 

pre-cooled microcentrifuge tube. 

7. Centrifuge cells for 10 min at 10000 g, in a 4ºC pre-cooled centrifuge. 

8. Gently remove the centrifuge tube and place it on ice. Transfer the 

supernatant to a new tube and discard the pellet. 

9. Remove 10-20 µl of lysate to perform a protein assay (BCA method). 
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10. If desired, store protein samples at -20ºC. 

 

Protein separation by gel electrophoresis 
Mini protean tetra system tank (Bio-Rad) 

 

1. Assemble the TGX precastgel system and add the running buffer. 

2. Load equal amounts of protein (60 µg) into the wells of a Miniprotean TGX 4-

20%. In the first well load 4 µl of migration of precision plus protein western-

C Standards. 

3. Run the gel for about 45 min at 150 W. 

 

 

Transfering the protein to the membrane 
Transblot® turbo™ transfer system 

 

1. Remove the gel and wash three times with TPBS buffer (for 5, 10 and 15 

min). 

2. Assemble the transfer sandwich. The membrane (0.2 µM PVDF) should be 

on the anode and the gel on the cathode. 

3. Place the cassettes in the Trans-Blot Turbo Transfer System. 

4. Transfer at a constant current of 2.5 A, 25 W for 7 min. 

5. Wash the membrane three times with TPBS. If desired, dry the membrane 

and store at 4ºC or do the block. 

 

Antibody incubation 

 

1. Leave the membrane in the blocking solution for 2 hours, at room 

temperature. 

2. Wash the membrane three times with TPBS. 

3. Incubate with the primary antibody solution, overnight at 4ºC with diagonal 

agitation. 

4. Wash the membrane three times with TPBS. 

5. Incubate with the secondary antibody solution for 1 h, at room temperature. 

The antibody can be diluted using 5% skim milk in TPBS. 
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6. Wash the membrane three times with TPBS. 

 

Imaging and data analysis 

 

1. Cover the membrane with the revelation solution. 

2. Incubate for 1 min at room temperature. 

3. Capture the chemiluminescent signals using a chemiluminescence detection 

system and quantify the band intensity with appropriate software. 

 

 

 

 

 

 

 

 


