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RESUMO 

O trabalho descrito nesta Tese de Doutoramento foca-se no pós-processamento de 

fibra ótica e na sua otimização como elemento sensor. Uma vez que a maioria dos 

sensores apresentados se baseia em interferómetros de Fabry-Perot, é apresentada uma 

perspetiva histórica do desenvolvimento deste tipo de sensores em fibra. Esta revisão 

contempla os trabalhos publicados desde os primeiros anos, no início da década de 1980, 

até meados de 2015. 

A incorporação de microcavidades na ponta de uma fibra monomodo foi alvo de 

intenso estudo, particularmente para a medição de pressão de nitrogénio e metano no 

estado gasoso. Essas cavidades foram fabricadas a partir de tubos de sílica ocos e de fibra 

de cristal fotónico de núcleo oco. Seguindo uma abordagem diferente, fabricaram-se 

microcavidades entre duas secções de fibra monomodo. Neste caso, destaca-se a baixa 

sensibilidade à temperatura, que as torna altamente desejáveis para medição de 

deformação a temperaturas elevadas.   

Competências em técnicas de pós-processamento como o ataque químico e a escrita 

de estruturas periódicas no núcleo da fibra por meio de laser de excímeros ou laser de 

femtosegundo foram adquiridas e aprofundadas no decorrer do programa doutoral.  

Um dos trabalhos consistiu no desenho e fabrico de uma fibra de bainha dupla, cujo 

índice de refração da bainha interior é superior ao da bainha exterior e ao do núcleo. 

Deste modo, inicialmente a luz era guiada pela bainha interior e não pelo núcleo. Após 

efetuar pós-processamento através do ataque químico, a bainha interior foi removida e a 

luz passou a propagar-se pelo núcleo. Duas aplicações foram encontradas para esta fibra, 

como sensor de temperatura e como refratómetro ótico, cuja fase varia com o índice de 

refração de um líquido.  

Dois tipos de redes de Bragg em fibra ótica foram caracterizados em deformação e 

temperatura. A primeira técnica consistiu na inscrição de estruturas sensoras na ponta 

de uma fibra por meio de um laser de excímeros e recorrendo a uma máscara de fase. 

Estes elementos foram posteriormente sujeitos a ataque químico. Obtiveram-se 

extremidades de fibra com dimensões muito reduzidas, com uma sensibilidade à 
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deformação muito elevada. A outra técnica utilizada para o fabrico das redes de Bragg 

foi a escrita ponto-a-ponto por meio de um laser de femtosegundo. Neste caso, estes 

elementos sensores são muito estáveis a temperaturas elevadas e podem ser usados para 

medir deformação em situações adversas.  

A aplicação de lasers em fibra ótica como elementos sensores também foi 

considerada nesta Tese. Foram estudados dois lasers, um baseado na configuração em 

anel e outro baseado numa cavidade figura-de-oito. Destes trabalhos é de salientar a 

qualidade da emissão laser, nomeadamente a sua razão sinal-ruido, a reduzida largura a 

meia altura e a estabilidade do laser, o que permitiu fazer a medição de diferentes 

parâmetros físicos como deformação, temperatura e torção. 

Por fim, abordou-se a possibilidade de utilizar microesferas como dispositivos de 

sensorização. Através do arco elétrico produzido pela máquina de fusão, é possível criar 

microesferas na extremidade de uma fibra ótica. Inclusivamente, através da mesma 

técnica, podem obter-se cadeias de microsferas, formando interferómetros do tipo Mach-

Zehnder, sensíveis a diferentes parâmetros físicos como deformação e temperatura. Os 

resultados preliminares obtidos usando uma estrutura de suporte para microesferas de 

sílica foram também apresentados. Neste caso, os sensores foram sujeitos a variações de 

temperatura. 

Todo o trabalho experimental foi conjugado com as respectivas considerações 

teóricas. Muitas questões foram levantadas ao longo deste percurso, algumas ainda sem 

resposta definitiva. Assim, novos caminhos de investigação poderão ser trilhados tendo 

por base as configurações aqui apresentadas. 
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ABSTRACT 

The work described in this PhD Thesis focuses on the post-processing of optical 

fibers and their enhancement as sensing element. Since the majority of sensors presented 

are based in Fabry-Perot interferometers, an historical overview of this category of 

optical fiber sensors is firstly presented. This review considers the works published since 

the early years, in the beginning of the 1980s, until the middle of 2015. 

The incorporation of microcavities at the tip of a single mode fiber was extensively 

studied, particularly for the measurement of nitrogen and methane gas pressure. These 

cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal 

fiber. Following a different approach, the microcavities were incorporated between two 

sections of single mode fiber. In this case, the low sensitivity to temperature makes these 

microcavities highly desirable for the measurement of strain at high temperatures. 

Competences in post-processing techniques such as the chemical etching and the 

writing of periodical structures in the fiber core by means of an excimer or a 

femtosecond laser were also acquired in the course of the PhD programme.  

One of the works consisted in the design and manufacturing of a double clad optical 

fiber. The refractive index of the inner cladding was higher than the one of the outer 

cladding and the core. Thus, light was guided in the inner cladding instead of 

propagating in the core. This situation was overcome by applying chemical etching, thus 

removing the inner cladding. The core, surrounded by air, was then able to guide light. 

Two different applications were found for this fiber, as a temperature sensor and as an 

optical refractometer. In the last, the optical phase changes with the liquid refractive 

index. 

Two different types of fiber Bragg gratings were characterized in strain and 

temperature. Sensing structures obtained through the phase mask technique at the tip of 

an optical fiber were subjected to chemical etching. In this case, an excimer laser was 

used. Extremely thin fiber tips were obtained, with an ultra-high sensitivity to strain. The 

other technique employed to fabricate the fiber Bragg gratings was the point-by-point 
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femtosecond laser inscription. In this case, the sensing elements are very stable at high 

temperatures and can be used to measure strain in harsh conditions. 

The employment of optical fiber lasers as sensing elements was also considered in 

this Thesis. Two laser cavities were studied, one based on the ring configuration and the 

other based on a figure-of-eight configuration. From these works, the quality of the laser 

emission, namely the signal-to-noise ratio, the reduced full-width at half maximum and 

the stability should be highlighted. These characteristics allowed the measurement of 

different physical parameters, such as strain, temperature and torsion. 

Lastly, the possibility to use microspheres as sensing elements was considered. 

Using the electric arc of a fusion splicer, it is possible to create microspheres at the tip of 

an optical fiber. Furthermore, with this technique it is chains of microspheres can be 

obtained, constituting Mach-Zehnder-type interferometers which are sensitive to 

physical parameters like strain and temperature. The preliminary results obtained by 

introducing silica microspheres in a support structure are also presented. In this case, the 

sensors were subjected to temperature variations. 

All the experimental work was combined with the respective theoretical 

considerations. Many questions have been raised with the course of this PhD, and there 

are still some without a definite answer. Thus, new research paths can be followed, 

having their basis grounded in the configurations here presented. 
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1.1 Introduction 

Optical fiber sensors present several features that make them extremely attractive to 

be used in several fields, such as electrical engineering, mechanical 

sciences and engineering, civil engineering, chemical engineering, material science, 

biology, chemistry, physics, and optics [1]. Living in a highly technological society, the 

demand for detecting environmental changes, by means of physical, chemical or 

biological parameters has grown intensely over the last decades. Fiber-based sensors 

need to be reliable, robust, highly sensitive, and cost-effective to compete with more 

conventional approaches. The amount of possibilities is immense, depending on the 

configuration, the measurand and the application for which they are designed. 

The post-processing of optical fiber, in the context of the Thesis, corresponds to the 

physical modifications made to an optical fiber after its production. The ways to achieve 

it can be by chemical etching, by using a laser to write periodic patterns, such as the fiber 

Bragg grating, or even to perform micromachining. The fusion splicer can also be used to 

post-process an optical fiber, by changing its shape. These are the methods explored in 

this Thesis.  

This Chapter gives an overview on the motivation and objectives of this work, 

followed by a description of the Thesis structure. Finally, the main contributions to the 

field are presented, as well as the list of publications that resulted from this PhD. 

1.2 Motivation and Objectives 

The motivation for the work developed in the framework of the PhD programme 

relied on performing an original study about the development of new structures based 

on the post-processing of optical fibers and in their enhancement as a sensing element. 

Besides, this work resulted from the desire to give a contribution to the field, studying 

and developing different configurations for the measurement of physical parameters. 

Certainly, another major motivation was to learn new concepts and provide solutions to 

the different challenges that appeared as the research advanced.  
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The main objectives relied on: 

 the study of diaphragm-free microcavities for gas pressure sensing;  

 characterization of sensors based on the post-processing of a purpose-

designed double clad optical fiber; 

 study of strain measurement in harsh environments, such as in high 

temperatures;  

 development of fiber laser sensors and their respective characterization; 

 manufacturing and characterization of interferometric structures based on 

microspheres. 

1.3 Structure of the Thesis 

This Thesis is divided in eight Chapters, of which five are relative to experimental 

work developed in the PhD framework.  

Chapter 1 gives an overview of the Thesis structure and its framing within the fiber 

sensing field. It also contains the main contributions and the list of works published 

during the PhD. 

Chapter 2 provides an historical overview on Fabry-Perot based optical fiber sensors. 

This review results from the fact most of the sensors described in the Thesis are within 

this field. The emphasis is done on the cavities configurations, the measurands and the 

sensitivities achieved so far.  

Chapter 3 proposes two different Fabry-Perot cavities for the measurement of gas 

pressure. The devices are based on a hollow core silica tube and a hollow core ring 

photonic crystal fiber. The former was the first diaphragm-free Fabry-Perot sensor used 

in such application reported in the literature. Still in the third Chapter, a prototype for 

biomedical applications is addressed. 

In the Chapter 4, two distinct Fabry-Perot configurations based on the post-

processing of a double clad optical fiber are described. The inner cladding, doped with 

phosphorus, is removed through chemical etching and a tip, protected by the outer 
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cladding, is formed. The diaphragm free configuration is characterized in high 

temperature. By introducing a diaphragm in the post-processed structure, an optical-

phase refractometer is obtained. 

The Chapter 5 is dedicated to the measurement of strain. In a first approach, the 

control of strain sensitivity is proposed using a hollow core ring photonic crystal fiber 

Fabry-Perot cavity. Smaller cavities, combined with large lengths over which the strain is 

applied, result in more sensitive devices. The measurement of strain at high 

temperatures is studied for the case of a Fabry-Perot cavity and when using a fiber Bragg 

grating. In both cases the influence of annealing is addressed, in order to achieve better 

responses to strain. 

On the 6th Chapter, the matter of using fiber lasers as active sensors is explored. 

Besides the characterization of the laser cavities, the sensing elements are subjected to 

variations of torsion and strain. One of the active sensors, a post-processed fiber Bragg 

grating, is also studied in a passive configuration, for comparison purposes. An ultra-

high sensitivity to strain is achieved with this device. 

The sensors described in Chapter 7 are based on microspheres. Two different 

configurations are explored. One consists of an array of microspheres obtained by post-

processing single mode fiber by means of fusion splicing. The second configuration is a 

Fabry-Perot cavity obtained by placing the soda-lime microspheres inside a hollow core 

silica tube, which acts as a support structure. 

The Chapter 8 presents some lines summarizing the main results achieved during 

the PhD and describes the opportunities of future work that this investigation has 

created. 

1.4 Main Contributions 

From the works presented in this Thesis, it is the author opinion that three of them 

stand out as main contributions to the field. The first was the use of a Fabry-Perot 

configuration for gas pressure sensing that did not require a diaphragm. Two different 

hollow core fibers were successfully used in this context, a silica tube and a photonic 
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crystal fiber. The second contribution was the optical phase refractometer based on a 

post-processed Fabry-Perot cavity. With such configuration it was possible to detect 

spectral phase variations with the refractive index. Finally, the new sensing structures 

based on an array of microspheres that were tested to strain and temperature. The 

response to strain was dependent on the number of microspheres that constituted the 

array. 

1.5 List of Publications 

From the activity developed in the framework of this PhD, a total of 10 articles were 

published as first author in scientific journals, one of them being an invited paper, and 

another was a review paper published in the Optical Fiber Technology Journal. Besides, 

three papers were published as co-author, as a result of collaborations outside the scope 

of this Thesis. A total of 8 communications in national/international conferences were 

published during the PhD. The list of works published as first author is presented next. 

1.5.1 Scientific Journals 

1.  M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. 

Schuster, J. L. Santos, O. Frazão, Fabry-Perot cavity based on silica tube for strain 

sensing at high temperatures, Opt. Express, vol. 23, no. 12, 2015. 

2. M. S. Ferreira, J. L. Santos, O. Frazão, Silica microspheres array sensor, Opt. Letters, 

vol. 39, no. 20, 2014.  

3. M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazão, Optical 

phase refractometer based on post-processed interferometric tip sensors, J. Light. 

Technol., vol. 32, no. 17, 2014.  

4. M. S. Ferreira, J. Bierlich, M. Becker, K. Schuster, J. L. Santos, O. Frazão, Ultra-high 

sensitive strain sensor based on post-processed optical fiber Bragg grating, MDPI Fibers, 

vol.2, pp.142-149, 2014. Invited Paper 

5. M. S. Ferreira, P. R. Oliveira, S. Oliveira Silva, J. L. Santos, O. Frazão, Next 

generation of Fabry-Perot sensors for high-temperature, Opt. Fiber Technol.,  vol.19, 

2013. Review Paper 
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6. M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, O. Frazão, Post-

processing of Fabry-Pérot microcavity tip sensor, IEEE Photonic. Tech. L., vol.25, 

no.16, pp.1593-1596, 2013. 

7. M. S. Ferreira, J. L. Santos, P. Mergo, O. Frazão, Torsion sensor based on a figure-of-

eight cavity fibre laser, Laser Phys. Lett., vol.10, no. 4, 2013. 

8. M. S. Ferreira, J. Bierlich, J. Kobelke, , J. L. Santos, O. Frazão, Fabry-Pérot cavity 

based on hollow core ring photonic crystal fiber for pressure sensing, IEEE Photonic. 

Tech. L., vol.24, no.23, pp.2122-2124, 2012. 

9. M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, O. Frazão, Towards 

the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring 

photonic crystal fiber, Opt. Express, vol.20, no.20, pp.21946-21952, 2012. 

10. M. S. Ferreira, L. C. Coelho, K. Schuster, J. Kobelke, J. L. Santos, O. Frazão, Fabry-

Pérot cavity based on a diaphragm free hollow core silica tube, Opt. Letters, vol.36, 

no.20, pp.4029-4031, 2011. 

1.5.2 Communications in National/International Conferences 

1. M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. 

Schuster, J. L. Santos, O. Frazão, Measuring strain at extreme temperatures with a 

Fabry-Perot optical fiber sensor, OFS24, Curitiba, Brazil, 2015. 

2. M. S. Ferreira, G. Lee, J. L. Santos, K. Sugden, O. Frazão, Phase-shifted fiber Bragg 

grating for strain measurement at extreme conditions, OSA Meeting 2014, Barcelona, 

Spain, 2014. 

3. M. S. Ferreira, J. L. Santos, O. Frazão, New silica microspheres array sensor, OFS23, 

Santander, Spain, 2014. 
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tube, AOP2014 - II International Conference on Applications of Optics and 

Photonics, Aveiro, Portugal, 2014. 

5. M. S. Ferreira, J. L. Santos, P. Mergo and O. Frazão, Figure-of-eight cavity fiber laser 

based torsion sensor, RIAO/OPTILAS 2013, Porto, Portugal. 
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2.1 Introduction 

Fiber optic sensors based on interferometry have been widely explored over the last 

five decades. From the most basic configurations, the Mach-Zehnder, the Michelson, the 

Sagnac and the low-finesse Fabry-Perot (FP) interferometers stand out [2]. Regarding the 

FP interferometer, it is usually composed by two parallel reflecting surfaces with a small 

separation between them. Light reaching the cavity with near normal incidence, will 

suffer several internal reflections at the interfaces, resulting in a multiple beam 

interferometer. This translates in a higher interaction of the measurand with the guided 

light, and consequently, in a higher sensitivity. Besides, this interferometer offers unique 

advantages, such as the compactness, reliability and the fact that it does not require the 

presence of an extra fiber to serve as a reference arm, since the interference occurs within 

a single fiber [3].   

In this Chapter, the most common fiber optic configurations based on Fabry-Perot 

interferometry are described, followed by an historical overview of the development of 

these structures since the first papers were published, in the 1980s. 

2.2 Fabry-Perot Based Sensors: the Basic Characteristics 

Since the first fiber optic FP-based sensor proof of concept, that took place in the 

early 1980s, there has been a great evolution in this field. In the 1980s two different 

categories of optical fiber sensors based on FP interferometry arose, the extrinsic and the 

intrinsic configurations. In the former, the cavity, which acts as the sensing element, is 

located outside the fiber and the two mirrors required to form the cavity can be two fiber 

tips placed close enough to ensure interference (Fig. 2.1 (a)) or one fiber tip and a 

reflective element (Fig. 2.1 (b)). In order to keep the structure stable, it can be placed 

inside a capillary tube, as represented in the example in Fig. 2.1 (a). 

When the FP cavity is contained within the optical fiber, the configuration is 

considered to be intrinsic. One way to produce this type of configuration can be by 
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splicing a hollow core fiber between two single mode fibers, as represented in Fig. 2.1 (c), 

or by creating two in-line partial mirrors, as in Fig. 2.1 (d). 

        

        
Figure 2.1 – Schematic examples of fiber optic FP interferometers: a) and b) extrinsic configurations, c) and d) 

intrinsic configurations. 

From 1990 to 2005, the focus of research was mainly on the signal acquisition 

systems and on the interrogation techniques. In that period, a major evolution of 

extrinsic FP-based sensors occurred. However, with the arising of sensors based on fiber 

Bragg gratings (FBGs) in 1990 [4] and the photonic crystal fibers (PCFs) in 1996 [5], the 

number of papers about intrinsic FP sensors slowly began to rise.  

From the year 2005 until 2015, the majority of works are on intrinsic FP 

interferometers and the focus of research turned into the cavity designs. New 

configurations based on the fusion splicing of special optical fibers [6], the chemical 

etching [7], femtosecond laser micromachining [8], excimer laser micromachining  [9] 

and, more recently, on the focused ion beam (FIB) micromachining [10] have been 

investigated. These new sensor devices, besides being easy to produce and reproducible, 

are reliable and have low dimensions, which can be of the order of a few micrometers.  

In order to provide an overview of the evolution in optical fiber FP cavity sensors, a 

thorough description is performed next. The focus was both on the cavities design 

evolution that occurred throughout the years and on the sensing measurands. A Table is 

presented at the end of this overview, with some of the most important configurations 

reported from 2009 to 2015. Besides the configuration, the measurands and respective 

sensitivities are considered. 
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2.3 The First Fabry-Perot Interferometer 

The Fabry-Perot (FP) interferometer was firstly published in 1897 by Charles Fabry 

and Alfred Perot, in the Annales de Chimie et de Physique [11]. Figure 2.2 presents the first 

page of one of the most important papers published by the two researchers, entitled Sur 

les franges des lames minces argentées et leur application à la measure de petites épaisseurs d’air.  

 
Figure 2.2 – First page of the paper published by Fabry and Perot in 1897 [11]. 

The simple configuration, depicted in Fig. 2.3, set the basis of one of the 

interferometers most widely used currently in optics and photonics. Light from the 

electric arc optical source (A) propagates through a system of lenses (L, L’) and will 

suffer multiple interferences at the silvered glass (B). At the third lens (L’’), the 

transmitted light will be focused and the interference pattern will appear on the display 

E.  

 
Figure 2.3 – Fabry-Perot interferometer experimental setup. A stands for the optical source (electric arc in the 

original), L, L’ and L’’ are lenses, A’ is a slit, E is the display and B corresponds to the silvered glass [11]. 
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2.4 Historical Perspective on Fabry-Perot based Optical Fiber Sensors 

In 1979, a double-cavity single-fiber configuration was proposed as a hydrophone 

element by Cielo [12]. The reference cavity was situated on the surface, close to the 

electronics apparatus, whereas the sensing element was placed under water. Each cavity 

was formed by bounding the fiber ends with a reflector and coiling it around a cylinder, 

as can be seen of Fig. 2.4 (a), where the proposed configuration is depicted. The spectral 

response of a single cavity is shown in Fig. 2.4 (b). 

 
Figure 2.4 – (a) Configuration proposed in 1979 by Cielo [12]. L is the light source coupled to the fiber, R 

corresponds to the reflectors, D is the photodetector, and S stands for the servo-control electronics. (b) 

Spectral response of a single cavity [12].  

In 1981, Yoshino et al. presented a FP-based fiber temperature sensor on the Third 

International Conference on Integrated Optics and Optical Fiber Communications [13]. 

In the same year, Petuchowski et al. proposed a high-finesse and highly sensitive to 

phase-shifts fiber optic FP interferometer [14]. A single mode fiber (SMF) with the ends 

coated with dielectric partial mirrors constituted the FP cavity. In the same year, 

Franzen et al. used a long section of a fiber FP to perform metrology of single frequency 

laser sources [15]. They took advantage from the fact that the free spectral range of a FP 

cavity is inversely proportional to the cavity length and that using a cavity with high 

finesse there is an increase in the frequency resolution of the sensor. 

In 1982, Yoshino et al. studied the basic properties of a fiber optic FP interferometer, 

namely the finesse, polarization and thermal responses. Besides, the devices were also 

characterized in temperature, mechanical vibration, acoustic wave detection, ac voltage, 

as well as ac and dc magnetic fields [16]. On the same year, Otsuka performed a 

a

) 

b

) 

a) b) 
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theoretical study on the temporal effects of a light-source on a fiber optic FP 

interferometer [17]. 

The use of uncoated cleaved fiber ends as FP cavity mirrors was proposed in 1983 by 

Kersey et al. [3]. The sensor was used in an accelerometer configuration, where it 

exhibited high sensitivity and good linearity.  In the same year, Kist et al. proposed the 

use of FP resonators as temperature-tuned optical spectrum analyzers for the first 

time  [18].  

In 1984, Leilabady et al. used a SMF in a FP configuration to measure the flow 

velocity. The operating principle relied on the fiber oscillations induced by the vortex 

shedding. In this case, the FP cavity mirrors were formed by one normally cleaved input 

and one silvered end. The readings were done in reflection and a linear response was 

attained [19]. 

In 1985, a remote displacement sensor based on an extrinsic FP interferometer was 

proposed [20]. Using a two interferometer system, the sensing cavity modulated the 

spectrum of the light emitting diode (LED) as a function of the cavity length. Even 

though there was a breakthrough with this work, where they used a broadband optical 

source and a novel signal processing scheme, the optical fiber was only used to launch 

light and collect the interference pattern that resulted from the bulk FP cavity. Following 

this sensing concept, a couple of works have been published later to measure pressure 

variations [21, 22]. 

In 1986, the precise measurement of the optical length using a FP interferometer was 

proposed [23]. The two mirrors of the FP cavity were formed by the polished, uncoated 

ends of a SMF section. The sensor was subjected to temperature measurements, where it 

exhibited high sensitivity.  

In February 1988, Tseng et al. proposed a temperature sensor that was able to discern 

temperature rise from temperature drop [24]. The FP cavity mirrors were created by the 

deposition of aluminum mirrors on the fiber ends. In the same month, a major 

breakthrough occurred in the field. The ability to produce the dielectric mirrors inside 

the optical fiber, by means of splicing, was achieved by Lee et al. [25]. The configuration, 
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shown in Fig. 2.5, allowed the multiplexing of several sensors. The devices were tested to 

temperature in a range between 20 °C and 600 °C. This work opened up a new category 

of FP based sensors, the intrinsic FP cavities. In a different approach, the use of a short 

coherence optical source (LED) to illuminate a multiplexed system with two FP 

interferometers was proposed by Farahi et al. in March 1988 [26]. Even though the LED 

had had already been used as an optical source in a FP sensor cavity [20], this was the 

first time it was employed in a fiber optic extrinsic FP sensing system. The sensor was 

tested to temperature. Gerges et al. proposed a miniature hemispherical air cavity FP 

interferometer [2]. One of the mirrors was formed by the end face of the optical fiber, 

whereas the other mirror was composed by hemispherical reflecting surface. The sensor 

was subjected to a small range of temperature variations (40 – 55 °C), where a sensitivity 

of 2.155 rad/K was attained. Finally, in that same year and using a configuration similar 

to the one previously described [25], Lee et al. proposed a temperature sensor that was 

subjected to a temperature variation from -200 °C to 1050 °C, the widest range that had 

been reported until that time [27]. Besides, the FP cavity length was very small, of only 

1.5 mm. The sensor could be thus considered a point sensor in several applications. 

 
Figure 2.5 – Experimental setup for the evaluation of multiplexed FP sensors [25]. 

In 1989, Kersey et al. proposed a different way to produce the mirrors of in-line FP 

sensors. Fiber ring reflectors were used as low-reflectivity elements [28]. The cross-talk in 

an array of four sensors was investigated. In the same year, the application of a FP cavity 

shaped as a single-turn helix was proposed as a magneto-optic current sensor [29]. Lee et 

al. embedded an intrinsic FP sensor in a graphite-epoxy composite material for the first 

time [30]. The sensor was tested to temperature variations from 20 °C to 200 °C. 
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In 1990, a short length all-fiber FP cavity was tested to strain [31]. The sensors were 

adhered to the surface of a cantilever beam. Farahi et al. demonstrated an interferometric 

technique that allowed the simultaneous measurement of strain and temperature in a 

cavity formed in highly birefringent fiber [32]. This was the first work regarding the 

simultaneous discrimination of two physical parameters using a FP cavity sensor. In the 

same year, Alcoz et al. proposed an ultrasound fiber sensor embedded in plastic and 

graphite composite materials [33]. The FP cavity was formed between two dielectric 

internal mirrors. Each mirror was fabricated by splicing a fiber coated with a TiO2 film at 

one end to an uncoated fiber. 

In 1991, Lee et al. proposed an interferometric fiber optic temperature sensor 

illuminated with a LED [34]. Two FP intrinsic interferometers with similar cavity lengths 

were disposed in series, where one acted as sensor whilst the other was used as a 

reference. Still in 1991, a quadrature phase-shifted, extrinsic FP sensor was proposed to 

perform dynamic strain measurements [35]. 

In 1992, the same group proposed an extrinsic FP sensor for the measurement of 

strain and crack opening displacement in ceramic materials [36]. The device operated as 

strain sensor in a temperature between -200 °C of 900 °C. Santos et al. compared both 

theoretically and experimentally the transfer function of low-finesse extrinsic FP sensors 

with the typical two-wave interferometer [37]. Also in 1992, Wang et al. proposed a 

sapphire optical fiber intrinsic FP sensor for the measurement of high temperature [38]. 

The FP cavity was formed by splicing a section of sapphire multimode optical fiber to 

silica SMF. 

In 1993, an extrinsic FP strain sensor based on white-light interferometry was 

proposed by Belleville et al. [39]. In the same year, a FP cavity was used as a wavelength 

filter for detecting the wavelength shift of a FBG [40]. Finally, Sirkis et al. developed a 

new FP-based configuration to be used as strain sensor [41]. A hollow core fiber was 

manufactured with the same outer diameter as the SMF. A short section of this fiber was 

spliced between two sections of SMF, forming an in-line fiber etalon, as can be seen in 

Fig. 2.6. 
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Figure 2.6 - Photograph of the 112 m long in-line fiber etalon proposed by Sirkis et al. in 1993 [41].  

In 1994, the design of a FP pressure sensor was proposed for internal combustion 

engines [42]. Also in that year, a microlaser based on Er:Yb phosphate-glass fiber within 

an extrinsic FP cavity was reported [43]. The cavity was only 100 m long and presented 

a continuous wavelength tuning range over 4.52 nm. By using a three-mirror cavity 

configuration, single mode operation was achieved. 

In 1995, a temperature sensor array was described using low-coherence reflectometry 

[44]. The sensor array was composed by several standard FC-PC connectors. Dorighi et 

al. proposed a new configuration to stabilize an intrinsic fiber optic FP interferometer 

[45]. The sensor was embedded in a solid material in order to detect ultrasound. In the 

same year, a new digital signal processing scheme was proposed for the measurement of 

pressure in an internal combustion engine [46]. 

In 1996, a four-wavelength technique was employed to interrogate a low-finesse fiber 

optic extrinsic FP interferometer [47]. The device was characterized in vibration and 

temperature. The detection of ultrasound using a polymer thin film as a low finesse FP 

was proposed by Beard et al. [48]. The ultrasound propagated in a water filled cavity, 

which was located between the end face of a multimode fiber (MMF) and the transparent 

polymeric film. In the same year, an intrinsic FP pressure sensor was suggested by Kao et 

al. [49]. In this configuration, the motion of an epoxy-based diaphragm produced strain 

in the FP sensor. Still in 1996, a load sensor based on an extrinsic FP interferometer was 

also suggested [50]. 

In 1997, a low-finesse FP sensor was embedded both in water and epoxy to detect 

ultrasound [51]. Chang et al. proposed the employment of a low-finesse readout FP 

interferometer to scan a high-finesse FP sensor cavity length [52]. In this case, the sensor 

was subjected to static strain measurements. In the same year, an extrinsic FP 

interferometer was developed to measure magnetic fields [53]. The cavity was formed 
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between the end face of a SMF section and a Metglas (Fe77.5B15Si7.5) wire-based 

magnetostrictive transducer. 

In 1998, a high precision displacement sensor was proposed by Wang et al. [54]. The 

extrinsic FP cavity was formed between the SMF end and the front surface of a reflective 

film, which was glued to a piezoelectric transducer (PZT). The displacement resolution 

of the sensor was of 0.005 nm. An intrinsic FP sensor was used to measure the liquid 

flow velocity in a pipe [55]. Later that year, an extrinsic FP interferometer was employed 

to determine the residual stresses in fiber-reinforced composite materials [56].  

In 1999, Du et al. presented for the first time a FP cavity whose mirrors were FBGs, 

with the configuration similar to the one presented Fig. 2.7 [57]. The sensor was glued to 

an aluminum tube and tested to strain and temperature, where sensitivities of 

1.19 pm/ and 14.35 pm/°C were respectively obtained. Also in that year, a three-wave 

extrinsic FP interferometer was developed to measure strain and vibration, using digital 

phase demodulation [58]. Arregui et al. proposed a humidity sensor based on a nano-FP 

cavity [59]. The structure was formed by ionic self-assembly method. 

 
Figure 2.7 – Structure of the fiber Bragg grating FP cavity proposed by Du et al. (adapted from [57]). 

In 2000, a new frequency multiplexing method was developed for addressing low 

finesse FP sensors using a white light source and a charge-coupled device (CCD) based 

monochromator [60]. Three extrinsic FP sensors were multiplexed and tested to strain 

and displacement, with accuracy better than 0.01 m. In the same year, Katsumata et al. 

reported a FP pressure sensor with a diameter of 125 m for catheter [61]. The silicon-

based sensing element was fabricated through micromachining and attached to the end 

of an optical fiber.  
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In 2001, a new extrinsic FP configuration was proposed by Jiang et al. [62]. The end 

section of an optical fiber was polished at 45° and placed close to a polymer film on a 

steel plate. The sensor was tested to strain and temperature. In the same year, a new 

concept of FP interferometer-based temperature sensors was presented by Tsai et al. [63]. 

The structure, depicted in Fig. 2.8, was obtained by fusion splicing two fibers with 

different core diameters. One of the reflective mirrors was produced at the interface 

between the fibers, whilst the other was obtained at the fiber/air interface. Finally, 

Dahlem et al. proposed the use of FBGs to interrogate low-finesse extrinsic FP cavities, 

when subjected to displacement and temperature variations [64]. 

 
Figure 2.8 – Structure of the FP temperature sensor proposed by Tsai et al. [63]. 

In 2002, Chen et al. proposed the use of a white-light interferometry system based on 

a scanned Michelson interferometer to interrogate intrinsic FP temperature sensors [65]. 

The rather complex scheme yielded a resolution of 0.013 °C. 

In 2003, a pressure sensor based on an extrinsic FP interferometer was reported [66]. 

The cavity was formed between a copper diaphragm and the end face of a SMF. The 

sensor was embedded in epoxy and applied in the aerodynamic field. The detection of 

weak acoustic waves was a subject of study by Yu et al. [67]. Using an extrinsic FP 

configuration, these sensors became an alternative to conventional acoustic sensors for 

the detection of partial discharges in power transformers. 

In 2004, the use of extrinsic FP interferometers to measure nano-displacement, with a 

minimum displacement of 10 nm was reported [68]. Other parameters were also 

analyzed in similar configurations, such as pressure and temperature [69, 70]. In the 

same year, Shen et al. fabricated an intrinsic FP cavity by exposing the photosensitive 

fiber to UV radiation [71]. Using a metallic mask, they locally produced the Fresnel 
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reflectors, using the point-by-point technique. The device was subjected to temperature, 

strain and pressure variations. 

In 2005, Xiao et al. developed an extrinsic FP device for gas sensing [72]. The cavity, 

formed between two ferrules, was able to measure the N2 refractive index variation with 

a resolution greater than 10-5. A different extrinsic FP cavity was proposed by Xu et al., to 

measure pressure and acoustic waves [73]. On the same year, Cibula et al. developed a 

new type of miniature intrinsic FP sensors [7, 74]. A hollow structure with ~125 m was 

obtained by wet chemical etching a MMF. In a first approach, a thin polymer diaphragm 

was positioned inside the hollow structure [74]. Later that year, the same group 

developed an all-silica FP cavity [7]. Both devices were tested in pressure of liquids. The 

combination of different structures was also a matter of study in 2005, being further 

developed since then. For example, Huang et al. proposed the splicing of a MMF section 

between two sections of SMF [6]. The sensor was tested to temperatures up to 600 °C and 

to strain up to 400 . The simultaneous measurement of the refractive index of liquids 

and of temperature was proposed by Kim et al. [75]. In this case, a long period grating 

(LPG) was spliced in series to an intrinsic FP cavity whose mirrors were created by 

chemically etching a SMF.  

In 2006, Zhu et al. proposed a N2 pressure sensor for high temperature [76]. The 

sensor was obtained by chemically etching a MMF and using a fused silica diaphragm. 

Wang et al. also reported a pressure and temperature sensor based on a SMF/hollow 

fiber/SMF diaphragm structure [77]. In this case, pressure measurements were done with 

the sensor submerged in water and the device was subjected to temperatures below 

600 °C. Watson et al. fabricated the FP cavities using ArF excimer laser ablation [9]. An 

aluminized membrane was used as diaphragm and dynamic N2 pressure measurements 

were performed. Dynamic strain/bend measurements were done by Cranch et al., using a 

multicore fiber FP with FBGs as mirrors [78]. Other strain sensors have been proposed, 

whose cavities were created by etching the fibers [79, 80]. 

In 2007, the etching of optical fibers to produce FP cavities attracted a lot of attention. 

Machavaram et al. reported the etching of two SMF sections that formed the intrinsic FP 
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interferometer when spliced together [81]. The sensors were tested in strain and a cavity 

length variation of 0.5 nm/ was attained. On the other hand, Cibula et al. produced a 

strain sensor by splicing an etched MMF section between two sections of SMF [82]. 

Zhang et al. proposed a microgap cavity formed by wet etching and splicing SMFs [83]. 

The multiplexing of two FP cavities enabled the temperature compensation of a 

biosensor. The micromachining of cavities in PCFs using a 157 nm excimer laser [84] or 

femtosecond laser [8] for strain and temperature measurement were also reported. In 

both cases the devices presented low sensitivity to temperature but high sensitivity to 

strain. In a different approach, Rao et al. presented, for the first time, a FP cavity based 

on a hollow-core PCF section spliced between two SMFs, whose configuration is shown 

in Fig. 2.9 [85]. In order to increase the reflectivity, a Ti2O3 film was coated on the lead-

out SMF before splicing.  The cavity length was a couple millimeters long and it was 

tested to strain. The multiplexing of up to fifty FP cavity sensors was demonstrated by 

Wang et al. [86]. Two FBGs constituted the FP cavity interfaces and the devices were 

tested to strain and temperature. 

 
Figure 2.9 – Configuration of an in-line hollow-core PCF etalon, proposed by Rao et al. [85]. 

In 2008, the post-processing of optical fibers by means of laser micromachining 

continued to be developed [87-89]. On the one hand, the micromachining exposes the 

fiber core region and the FP cavities produced in this way are very sensitive to the 

external medium. On the other hand, the sensors are temperature independent. A 

different structure was proposed by Rao et al. for refractive index measurements [90]. In 

this case, the FP cavity was formed by fusion splicing a section of endlessly single mode 

PCF between two sections of SMF. The use of different fiber geometries spliced in series 

with SMF and/or PCF enabled high temperature [91] as well as strain [92] sensing. An 

humidity sensor was presented by Corres et al. [93]. The device consisted of a tip of SMF 
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coated with a SiO2 super hydrophilic nanofilm. An extrinsic FP temperature and strain 

sensors was developed by Jiang et al., by curing epoxy droplets at the end of SMF 

sections in order to produce micro-lenses [94].  

In 2009, Liu et al. proposed a gas sensor based on a silver layer and a vapor sensitive 

polymer layer that were sequentially deposited at the cleaved end tip of a SMF [95]. The 

device was able to detect methanol vapor with a sensitivity of 3.5 pm/ppm. A pressure 

sensor was described by Cibula et al., whose cavity was obtained by fusion splicing a 

SMF to an etched Ge-doped fiber [96]. Morris et al. presented a temperature and acoustic 

pressure sensor, constituted by a polymer deposited at the end tip of an optical fiber [97]. 

Higher fringe visibility was attained through the deposition of two gold mirrors at the 

polymer interfaces. Two different configurations were proposed to measure refractive 

index variations. The first configuration was a microcavity formed near the fiber end tip 

by 157 nm laser micromachining [98]. Two thin films were deposited in the cavity 

mirrors and a microchannel was created on the fiber end, enabling the interaction 

between the external medium and the microcavity. A sensitivity of 1130 nm/RIU was 

attained with this thermal-insensitive device. The second configuration was a 

suspended-core fiber spliced between two sections of SMF [99], whose response was 

characterized in the spatial frequency domain. The same authors proposed the splice in 

series of a suspended core fiber (with three or four holes) and a hollow-core PCF to SMF 

[100]. A novel strain and temperature sensor was fabricated and characterized by 

Villatoro et al. [101]. An air bubble was created by fusion splicing a PCF and a SMF, as 

can be seen in Fig. 2.10. Strain and temperature sensitivities of 2.7 pm/ and 0.95 pm/°C 

were respectively achieved. In the same year, Gong et al. proposed a different FP based 

interferometer . The device, obtained by splicing an etched Er-doped fiber with 

SMF, translated in a sensor with low thermal sensitivity (~0.65 pm/°C) but with good 

response to strain, of 3.15 pm/. A hollow-core photonic bandgap fiber spliced between 

two sections of SMF was reported by Rao et al. for measurement of temperature below 

600 °C [103]. 
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Figure 2.10 – Diagram of the configuration proposed by Villatoro et al. [101]. FOC stands for fiber optic 

circulator, LED is the light emitting diode and OSA corresponds to the optical spectrum analyzer. 

In 2010, several works were related to the measurement of refractive index and 

temperature. The use of a dual cavity based on a small section of hollow core fiber 

between a MMF and a SMF [104], an etched graded index fiber (GIF) spliced to SMF 

[105, 106], or even a hybrid Michelson/FP structure were proposed to measure these 

parameters simultaneously [107]. Kou et al. reported for the first time the direct 

fabrication of a FP cavity in a fiber taper [10, 108]. The device, shown in Fig. 2.11, was 

created using a focused ion beam (FIB) and subjected to liquid refractive index [108] and 

high temperature [10] variations. Still in that year, two other configurations were 

proposed to measure refractive index. On the one hand, Deng et al. were able to measure 

the N2 refractive index using a SMF/hollow core fiber/PCF structure, with sensitivity of 

1639 nm/RIU [109]. On the other hand, by coating a SMF tip with an epoxy-based 

polymer, Zhao et al. were able to measure the water refractive index variation, with a 

sensitivity of ~205 dB/RIU [110]. A temperature sensor based on a short section of all-

silica PCF spliced to SMF was demonstrated [111]. Also to measure temperature, a dual 

wavelength Raman fiber laser was employed to interrogate a suspended core fiber based 

cavity [112]. An accelerometer based on a hollow-core PCF cantilever structure was 

presented by Ke et al. [113]. Finally, a pressure sensor based on an etched optical fiber 

with a silica diaphragm was also proposed [114]. 

 
Figure 2.11 – Scanning electron microscope image of the FP cavity created using FIB [108] . 
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In 2011, a temperature sensor based on a hollow core fiber spliced to a SMF with 

lateral offset was proposed [115]. The post-processing of optical fibers using FIB for 

temperature and water salinity sensing [116] or chemical etching for strain [117] and 

refractive index [118] measurements were developed. In the last work, the cladding was 

removed from a SMF and the core became in direct contact with the external medium. 

The cavity was formed splicing the etched fiber in between two fibers containing in-fiber 

mirrors. A refractometer was proposed by Zhou et al. where the FP cavities were formed 

by UV-written FBGs and microchannels produced by femtosecond laser and chemical 

etching [119]. An extrinsic FP interferometer was proposed to measure displacement 

over a dynamic range of 3 mm [120]. A strain sensor that could operate at high 

temperatures was reported by Deng et al. [121]. In this case, an air-bubble cavity was 

produced by fusion splicing a multimode PCF to SMF. Ferreira et al. proposed a FP 

cavity based on a hollow core silica tube for gas pressure measurements [122]. With this 

configuration, presented in Fig. 2.12, no diaphragm was used and a sensitivity of 

2.61 nm/MPa was attained. 

 
Figure 2.12 – Microscope photograph of the first diaphragm-free FP cavity for gas pressure sensing [122]. 

In 2012, Gouveia et al. proposed the simultaneous measurement of liquid refractive 

index and temperature by using a FBG written in a PANDA fiber [123]. A FP cavity was 

formed between the FBG and the PANDA fiber cleaved end. On the other hand, Wang et 

al. proposed an ellipsoidal cavity formed by splicing a SMF and a PCF [124]. In this case, 

the external RI was measured through the fast Fourier transform (FFT) analysis, and the 

temperature was measured tracking the wavelength shift. A different gas refractometer 

was proposed by Silva et al., by splicing a fiber with an outer diameter of 50 m with a 

strong misalignment between two SMFs [125]. Also in that year, other configurations 

were proposed to measure refractive index. The FP cavities were made by femtosecond 

laser micromachining [126], by splicing a SMF with a large lateral offset between two 
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SMFs [127], by splicing an etched GIF with a SMF [128], or even using a hollow core fiber 

ended with a hollow core silica sphere tip [129]. In the same year, several configurations 

were developed to measure strain. For example, spheroidal cavities were formed by 

splicing a PCF and a SMF [130, 131], or by splicing one section of cleaved flat tip SMF 

and an arc fusion induced hemispherical tip [132]. The splice of a hollow-core ring PCF 

fiber between two SMFs was also proposed to measure strain and temperature [133]. 

Tafulo et al. proposed the use of FP cavities based on chemical etching of multimode 

GIFs to produce sensors for high temperature and strain [134, 135]. Zhang et al. proposed 

a FP cavity based on a polarization maintaining PCF to measure temperatures up to 

600 °C [136]. A FP device based on an endlessly single mode PCF was also characterized 

in extreme temperatures, as high as 1100 °C [137]. In order to perform simultaneous 

measurement of gas pressure and temperature, Pevec et al. proposed two low finesse FP 

resonators created at the tip of an optical fiber [138]. Ferreira et al. used a short section of 

hollow core ring PCF spliced to a SMF to measure methane pressure variations. Two 

different applications were also considered in 2012. Using an extrinsic FP interferometer, 

Lai et al. proposed a liquid level and specific gravity sensor [139]. Wang et al. measured 

high intensity focused ultrasound fields by using a silica capillary tube spliced between 

two sections of SMF [140].  

In 2013, the main focus of research was on refractive index FP sensors. For instance, 

by splicing a simplified hollow-core PCF between two SMFs and drilling microchannels 

with femtosecond laser, Wang et al. obtained a sensor with a sensitivity of ~851.3 nm/RIU 

that was insensitive to temperature [141]. On the other hand, Sun et al. proposed a 

hybrid FP/Michelson interferometer to simultaneously measure refractive index and 

temperature [142]. Zhang et al. fabricated a cavity by taper-drawing a microfiber at the 

center of a uniform FBG [143]. A FP sensor based on an ultra-thin film of gold embedded 

in a SMF end face was investigated for refractive index and high temperature 

measurements [144]. A couple of structures were also developed for temperature 

sensing, such as cavities based on the post-processing of a double cladding optical fiber 

[145] and extrinsic FP interferometers [146]. Finally, the splicing of different structures 

like the hollow-core microstructured fiber in between two SMFs [147], or an etched MMF 
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between a SMF and a silicon dioxide diaphragm were proposed for pressure sensing 

[148]. 

In 2014, the fabrication of air cavities, or micro-bubbles, inside the optical fiber was 

subject of extensive study [149-151]. These FP cavities were mainly applied in strain and 

temperature sensing, and astonishing sensitivities were achieved, as can be seen in 

Table 2.1. The post-processing of optical fibers, by means of chemical etching [152, 153], 

FIB micromachining [154], or tapering [155], also translated in new sensing FP 

configurations with good responses. A high speed interrogation scheme was developed 

for high temperature measurements [156]. A miniature configuration based on a double-

core PCF spliced to SMF was subjected to temperatures below 900 °C [157]. Liao et al. 

presented a sub-micron silica diaphragm based fiber tip FP interferometer that presented 

a response of ~1036 pm/MPa to gas pressure changes [158]. Also in this year, a novel 

type of sensor based on an extrinsic FP interferometer and a magnetic fluid was 

reported. It was observed that the refractive index of the magnetic fluid changes with the 

increase of the magnetic field, enabling a magnetic field sensitivity of 0.0431 nm/Gs. 

Until June 2015, several works were published concerning FP-based fiber sensors. 

Eom et al. proposed an extrinsic FP configuration constituted by a lensed fiber and a 

polymeric diaphragm [159]. The sensor was tested in low pressure range and was 

proposed for the medical field. Lee et al. reported on the measurement of the thermo-

optic coefficient of liquids using a structure composed by two hollow core fibers with 

different diameters [160]. Besides, Sun et al. designed a FP interferometer for the 

simultaneous measurement of pressure and temperature [161]. The sensor head was 

based on a polymer capped on the end face of a SMF. The simultaneous measurement of 

refractive index and temperature was studied by Wu et al., by using a cavity based on a 

multimode PCF with collapsed ends to create thin films [162]. A FP cavity based on the 

deposition of a magnetostrictive material in the fiber, between two FBGs, was proposed 

as a magnetic sensor by Li et al. [163]. The measurement of dynamic displacement was 

addressed by Pullteap et al. [164]. An extrinsic FP interferometer was used, where a 

birefringent element was introduced between the fiber and the vibration target. Also in 

2015, a strain sensor based on a rectangular air bubble was proposed by Liu et al. [165]. 
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The bubble was created by splicing two sections of SMF and tapering the splicing joint. 

For an air bubble of ~61 m, a sensitivity to strain of 43 pm/ was achieved. Chen et al. 

proposed an ultraweak intrinsic FP cavity array for distributed temperature sensing 

[166]. An high-resolution and fast-response temperature sensor based on a silicon FP 

cavity was also described [167]. A FP temperature sensor based on differential pressure 

resulting from thermal expansion of sealed air was developed by Liu et al. [168]. A 

salinity sensor was obtained by using a FP cavity with a polyimide diaphragm. With 

such configuration, a maximum sensitivity of 0.45 nm/(mol/L) was achieved [169].   

The main characteristics of the different intrinsic FP sensors reported since 2009 until 

2015 are gathered in Table 2.1. Multiple configurations have been explored in these 

years. The reduced dimensions of the cavities stand out, since most of them are in the 

order of a few hundred micrometers. Notice also the different measurands and the 

ranges over which the sensors were tested. The most popular ones seem to be strain and 

temperature, and the highest measurement range achieved was of 5000  for the former 

and ~950 °C for the last. Depending on the configuration, it is possible to obtain sensor 

with very good sensitivity to temperature (for example, -6.71 nm/°C [149]) or with 

extremely low sensitivity to this parameter, thus enabling the measurement of different 

parameters with low cross-sensitivity (as in the case of [142], for example, where the 

sensitivity to temperature is only 0.27 pm/°C). The wide variety of possible 

configurations and the high versatility of these kinds of structures are an indication that 

there is still room for research and development in this field, even though the first steps 

were taken 36 years ago. 

 

Table 2.1 - Different fiber optic intrinsic FP sensors, with the respective characteristics, from 2009-2015. 

Year Configuration 
Length 

(m) 
Measurand Range Sensitivity Ref. 

2009 
Air bubble between PCF 

and SMF 

58 

22 

Strain 

Temp. 

0-5000  

23-500 °C 

2.7 pm/ 

0.95 pm/°C 
[101] 

2009 

SMF + 3 holes suspended 

core + hollow core PCF 
~840 

Strain 

Temp. 

0-1000  

23-90 °C 

1.32 pm/ 

7.65 pm/°C 
[100] 

SMF + 4 holes suspended 

core + hollow core PCF 
~1000 

Strain 

Temp. 

0-1000  

23-90 °C 

1.16 pm/ 

8.89 pm/°C 

2009 SMF + etched Er-doped fiber 27 
Strain 

Temp. 

0-800  

23-80 °C 

~3.15 pm/ 

~0.65 pm/°C 
[102] 
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2009 

157 nm laser 

micromachining cavity + 

microchannel + mirrors 

coated with thin film 

25 
Liquid RI 

Temp. 

1.33-1.405 RIU 

0-70 °C 

~1130 nm/RIU 

~0.8 pm/°C 
[98] 

2010 
SMF + etched GIF (hybrid 

structure) 
505 

Liquid RI 

Temp. 

1.32-1.45 RIU 

15-90 °C 

~160 dB/RIU 

~10.4 pm/°C 
[106] 

2010 
SMF + etched GIF (hybrid 

structure) 

25 

515 

Liquid RI 

Temp. 

1.32-1.47 RIU 

15-90 °C 

~45.05 dB/RIU 

~11.5 pm/°C 
[105] 

2010 
Fiber taper + FIB 

micromachining 
4.4 Temp. 19-520 °C ~20 pm/°C [10] 

2010 
Fiber taper + FIB 

micromachining 
3.5 Liquid RI 1.355-1.375 RIU 110 nm/RIU [108] 

2010 

SMF + microstructured fiber 

with dual core (hybrid 

structure) 

~11500 
Strain 

Temp. 

0-1000  

0-60 °C 

0.89 pm/ 

14.22 pm/°C 
[107] 

2010 
SMF tip coated with 

polymer thin film 
29.9 Liquid RI 1.314-1.365 RIU ~250 dB/RIU [110] 

2011 

Two UV-written FBGs + 

microchannels inscribed by 

fs-laser 

1000 Liquid RI 1.43-1.49 RIU 9 nm/RIU [119] 

2011 
Air bubble between SMF + 

MM PCF 
44.9 

Strain 

Temp. 

0-1850  

23-750 °C 

2.78 pm/

pm/°C 
[121] 

2011 
SMF + hollow core silica 

tube 
141 

Gas 

Pressure 

Temp. 

0-1.0 MPa 

23-950 °C 

2.61 nm/MPa 

8.11 pm/°C 
[122] 

2012 
Spheroidal cavity between 

SMF and PCF 
10 Strain 0-1000  10.3 pm/ [130] 

2012 

Microbubble between flat 

tip SMF + hemispherical tip 

SMF 

~100 
Strain 

Temp. 

0-1000  

100-1000 °C 

4 pm/ 

0.9 pm/°C 
[132] 

2012 SMF + hollow core ring PCF 508 

CH4 

Pressure 

Temp. 

0-0.8 MPa 

23-500 °C 

0.82 nm/MPa 

3.77 pm/°C 
[170] 

2012 
SMF + PM-PCF with lateral 

offset 
~100 Temp. 33-600 °C 13.8 pm/°C [136] 

2012 
SMF + large lateral offset 

SMF + SMF 
416 Gas RI 

1.0002-1.0025 

RIU 
1540 nm/RIU [127] 

2012 
Ellipsoidal cavity between 

SMF + PCF 
~14 

Liquid RI 

Temp. 

1.332-1.45 RIU 

24-95 °C 

~61.74 dB/RIU 

15 pm/°C 
[124] 

2012 
SMF + hollow core ring PCF 

+ SMF 
~13 Strain 0-1000  15.4 pm/ [133] 

2012 
SMF + 50 m diameter fiber 

+ SMF 
2000 

Gas RI 

Temp. 

1.000-1.003 RIU 

0-300 °C 

-1375 nm/RIU 

25.6 pm/°C 
[125] 

2012 

SMF + etched GIF625 105 
Strain 

Temp. 

100-1200  

23-400 °C 

6.99 pm/ 

0.95 pm/°C 
[134] 

SMF + etched GIF50 43 
Strain 

Temp. 

100-1200  

23-400 °C 

4.06 pm/ 

-0.84 pm/°C 

2013 
SMF + hollow core PC+SMF 

+ fs laser drilled channels 
48 

Liquid RI 

Temp. 

1.322-1.334 RIU 

100-900 °C 

851.3 nm/RIU 

0.27 pm/°C 
[141] 
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2013 
SMF + gold ultra-thin film + 

SMF 
55 

Liquid RI 

Temp. 

1.3-1.46 RIU 

23-800 °C 

-19.8 dB/RIU 

13 pm/°C 
[144] 

2013 
SMF + etched double clad 

optical fiber 
~130 Temp. 150-900 °C 14.6 pm/°C [145] 

2014 Air cavity between 2 SMFs 46 
Strain 

Temp. 

0-1100  

100-600 °C 

6.0 pm/ 

1.1 pm/°C 
[150] 

2014 

Air bubble and liquid in 

hollow core fiber, with taper 

plug 

31 Temp. 25-39 °C -6.71 nm/°C [149] 

2014 

SMF + etched P-doped fiber 

+ coreless all silica MMF and 

FIB post-processing 

172 Temp. 100-300 °C 11.5 pm/K [154] 

2014 SMF + microfiber + SMF 21 
Strain 

Liquid RI 

0.05-0.35 N 

1.326-1.336 RIU 

~200 pm/

1330.8nm/RIU 
[155] 

2014 

Silica cavity & 

spheroidal cavity, 

both formed in a hollow 

annular core fiber 

392 
Strain 

Temp. 

0-1500  

23-500 °C 

1.1 pm/ 

13 pm/°C 
[151] 

50 
Strain 

Temp. 

0-1500  

23-500 °C 

5.2 pm/ 

1.3 pm/°C 

2014 SMF + double-core PCF ~72.3 Temp. 30-900 °C 13.9 pm/°C [157] 

2014 
Air bubble in SMF with sub-

micron silica diaphragm 

~0.5 

(diaph.) 

Gas 

pressure 
0-2.0 MPa ~1036pm/MPa [158] 

2014 

SMF + etched double clad 

optical fiber + SMF-based 

diaphragm 

~80 

Temp. air 

Temp. 

water 

23-85 °C 
13.5 pm/°C 

9.4 pm/°C 
[152] 

2015 
SMF + dual hollow core 

fibers 
33.84 

Temp. in 

liquids 
20-60 °C -0.4810 nm/°C [160] 

2015 
Polymer capped on the end 

face of SMF 
35.1 

Pressure 

Temp. 

0-2.8 MPa 

40-90 °C 

1.13 nm/MPa 

0.249 nm/°C 
[161] 

2015 
Rectangular air bubble 

between SMFs 
~61 

Strain 

Temp. 

0-500  

25-100 °C 

43 pm/ 

2.0 pm/°C 
[165] 

2015 SMF + silicon pillar 200 Temp. 20-100 °C 84.6 pm/°C [167] 

2015 
MMF + Pyrex glass + silicon 

diaphragm 
~32 Temp. -50-100 °C 6.07 nm/°C [168] 

2015 
SMF + hollow core fiber + 

polyimide diaphragm 
170 Salinity 

0-5.47 

nm/(mol/L) 

0.45 

nm/(mol/L) 
[169] 
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3.1 Introduction 

Hollow core structures, such as the silica tube or the hollow core photonic crystal 

fiber (PCF), have been widely explored by the scientific community over the last two 

decades. The first sensor based on a hollow core silica tube was proposed in 1993 by 

Sirkis et al. [41] and it was used for strain sensing. Since then, this simple structure was 

applied in a wide variety of configurations and found different applications such as in 

humidity sensing [171], microfluidic refractive index sensing [172], in the measurement 

of the thermo-optic coefficient of liquids [160], temperature [91, 149, 173], refractive 

index [104] and pressure sensing [77]. A hollow core silica tube was also used as a spatial 

optical filter and it was characterized in strain, temperature and refractive index [174]. 

On the other hand, the hollow core PCF is extremely attractive for biological [175] 

and chemical applications. Considering the latter case, the detection of molecules in 

liquid media [176-180] or gas sensing [181-183] have been proposed. The structure is 

highly suitable for such applications due to the strong interaction of light with the 

analyte, provided by the large hollow area where light propagates. Zhao et al. proposed 

the filling of a hollow core PCF with magnetic fluid for the measurement of magnetic 

fields [184]. Strain and temperature measurements were also addressed by incorporating 

the hollow core PCF in a Fabry-Perot (FP) configuration [85], in a modal interferometer 

[185] and in a Sagnac interferometer [186].  

The measurement of pressure in liquid or gas media using optical fiber sensors has 

been the subject of extensive research. There are many possible direct applications in 

industry, namely in hazardous environments, where high resolution gas pressure 

sensors are required. On the other hand, given the biocompatibility of silica, and the 

reduced dimensions of these sensors, they become attractive solutions for liquid low-

pressure measurements, in the range of physiological activity pressures. Many different 

types of gas sensors have been proposed over the last years. For instance, Kao et al. 

reported the use of a FP cavity with internal mirrors bonded at one end to a stainless-

steel diaphragm that was subjected to air pressure variations [49]. In 2004, the use of an 
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extrinsic FP interferometer was proposed to measure nitrogen (N2) pressure [69, 72]. 

From the relationship between pressure and refractive index of N2, it was possible to 

monitor the changes in the gas refractive index.  

The development of gas pressure sensing structures at the tip of the optical fiber 

usually comprises the use of a hollow core section and a thin diaphragm. The hollow 

section can be obtained by using, for example, a hollow core silica tube [77, 109, 187], 

etched multimode fibers [138, 188, 189] or even UV-molded polymers [190]. Regarding 

the diaphragm, it can be made of a polymeric material [74], of a polymer-metal 

composite [190, 191], or it can be constituted of fused silica [7, 114]. A FP cavity based on 

a polymer droplet at the tip of a fiber has also been proposed [161]. Long period gratings 

written in PCFs were also tested for the measurement of argon (Ar) pressure [192]. Duan 

et al. spliced a short section of single mode fiber (SMF) in between two sections of SMF 

with a large lateral offset and tested it under air pressure variations [127]. Silva et al. 

spliced a 50 m diameter optical fiber between two sections of SMF and tested it in a N2 

atmosphere with variable pressure [125]. Table 3.1 collects sensitivities attained by 

several groups for the measurement of gas pressure. 

 

Table 3.1 - Different fiber optic gas pressure sensors based on FP configurations, with the respective 

characteristics.  

Year Configuration Gas Sensitivity Comments Ref. 

2005 
Air gap between two 

SMFs in ferrule 
N2 4.17 nm/MPa Extrinsic configuration [72] 

2005 
SMF + step index + 

etched GIF + step index 
N2 -39.21 nm/MPa Air gap variation [188] 

2011 
SMF +  hollow core 

silica tube 
N2 2.61 nm/MPa Diaphragm-free [122] 

2012 
FBG + UV molding 

polymer FP cavity 
air 1537.4 nm/MPa Cavity length variation [190] 

2012 
SMF + etched GIF + 

hollow core silica tube 

O2 

CO2 

3.6 nm/MPa 

6.4 nm/MPa 

Two different cavities; 

maximum sensitivities 
[189] 

2012 
SMF + hollow core ring 

PCF 
N2 3.04 nm/MPa Diaphragm-free [170] 

2014 
SMF + air bubble with 

thin diaphragm 
air ~1.036 nm/MPa 

All-silica, ultra-thin 

diaphragm 
[158] 

2015 
SMF + pendant polymer 

droplet 
air 1.130 nm/MPa Polymer cavity [161] 
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In this Chapter, two different configurations are proposed for the measurement of 

pressure in a gas atmosphere. The first device is a diaphragm-free FP interferometer 

based on a hollow-core silica tube, whereas the second device is based on a diaphragm-

free hollow core ring PCF. Both sensors are also characterized in temperature. The 

simplicity of fabrication and the reproducibility of the results make the former device a 

good alternative to other optical fiber pressure sensors. The second configuration, on the 

other hand, due to its physical characteristics, translates into a robust, reliable and easy 

to produce device, which presents higher sensitivity to N2 pressure than the one based 

on the hollow core silica tube. Finally, a different application of the hollow core ring PCF 

is addressed. In this case, the FP cavity has a polymeric diaphragm, which is tested in a 

liquid environment where it is possible to monitor pressure changes in the range of the 

intravascular pressure variations. 

3.2 Theoretical Considerations 

The measurement of the refractive index of gases has been a challenge for the 

scientific community. The behavior of a gas in a sealed container is highly complex due 

to the extremely large amount of particles involved and the degrees of freedom they can 

show. The treatment of such system is, therefore, of a statistical nature. Instead of 

looking at the movement of a single particle, it is more suitable to study the macroscopic 

quantities that come as a result of the interactions of all particles contained in the closed 

system, such as energy, pressure or temperature [193]. Statistical physics indicates that in 

a sealed chamber the refractive index of a gas, related to its density, depends on three 

different parameters, as will be shown later: wavelength of operation, pressure and 

temperature. 

The sensors described in this Chapter were subjected to N2 and methane (CH4) gas 

pressure changes, starting from low vacuum (~10-3 MPa) up to 1 MPa. Considering, for 

simplicity, a FP cavity with low reflectivity mirrors, it can be approximated by a two-

wave interferometer. In such case, the reflection spectrum is essentially determined by 

the phase difference, , between the waves generated in the two reflections [147]: 
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,
eff FP

n L



     (3.1)  

where neff is the effective refractive index of light travelling within the cavity, LFP is the 

cavity length and  corresponds to the operation wavelength. When 2m   , where m 

is an integer, the reflection spectrum reaches a maximum, which happens for the 

wavelengths:  

 
2

.
eff FP

n L

m
     (3.2)  

If there is an external perturbation to the cavity, both neff and FP
L  can be affected, 

translating into a phase change which affects the cavity channeled spectrum. When the 

external perturbation is caused by pressure changes (p), the sensitivity of the cavity can 

be determined by differentiating Eq. 3.2: 

 .
eff FP

eff FP

n Ld

dp n p L p

    
 
   

   (3.3)  

Since 

 
22

,
effFP

eff FP

nL

n m L m

  
  

 
   (3.4)  

by substituting Eqs. 3.4 into Eq. 3.3, it comes that 

 
22

.
eff effFP FP

n nL Ld

dp m p m p

  
 

 
   (3.5)  

Dividing orderly Eq. 3.5 by Eq. 3.2, the wavelength dependence on the applied 

pressure is given by 

 
1 1

.
eff FP

eff FP

n Ld

dp n p L p



  
  
  
 

   (3.6)  

Thus, the sensor interferometric spectral response to the applied pressure, which 

corresponds to a phase variation, is the result of two contributions: the dependence of 

the effective refractive index on pressure and the change of the FP cavity length with this 
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parameter. However, for the silica based sensors presented in this Chapter, the variation 

of the cavity length with pressure is extremely small and can be ignored. Thus, the 

dominant effect here is the change of the neff with the applied pressure.  

On the other hand, the refractive index of a gas is dependent on three different 

parameters: wavelength, temperature and pressure, as previously mentioned. There are 

several equations in the literature for the calculation of the gas refractive index [194-198]. 

However, the ranges of validity are extremely limited. Regarding the measurement of N2 

with optical fiber sensors, several authors used the updated Édlen’s equation for air as a 

first approximation [194]. Besides the fact that this equation is only valid for 

wavelengths between 350 nm and 650 nm, and for low pressure (close to atmospheric 

pressure), air is constituted by several components: 78.09% N2, 20.95% O2, 0.93% Ar, 

0.03% CO2 [194, 199]. 

Recently, Zhang et al. reported precision measurements for the refractive index of N2, 

among other gases [200]. A Mach-Zehnder interferometer setup was used, where the 

light source was a frequency comb. The derived equations were based on the works of 

Édlen [194], Birch et al. [199, 201], and Bönsch et al. [202], and were compared with the 

results of Peck et al. [203]. Here are summarized the main results, which set the basis for 

the conversion of pressure into refractive index variations for N2. According to Édlen, the 

refractive index of a gas can be determined by 

 ( 1) ( 1) ,
Tp

Tp S

S

D
n n

D
      (3.7)  

where (n-1)Tp depends on temperature, T (in °C), and pressure, p (in Pa), and (n-1)s is 

obtained for the refractive index under standard conditions (101325 Pa and 15 °C), and 

only depends on the wavelength (in m). DTp is the density factor and DS is the density 

factor for standard gas conditions. In order to determine DTp, it is necessary to estimate 

first the compressibility factor, Z. Using the equation of state as defined by Édlen [194] , 

 ,
pV

Z
RT

    (3.8)  
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the dependence of Z on temperature at 101325 Pa (1 atm) can be obtained from the tables 

reported in the literature. In this Eq. Zhang and co-workers used the ones from NIST 

[204]. There is also an older publication [205] where these values can be found. Anyway, 

according to Zhang et al., 

  2 81 101325 0.449805 0.01177 0.00006 10 .Z T T         (3.9)  

Édlen also stated that Z is a function of pressure and temperature, according to

1
T

Z p  , where T is a parameter that depends linearly on temperature. Combining 

this relation with Eq. 3.8, Tp can be estimated and substituted in Eq. 3.10 for the  density 

factor, which is then given by [202] 

 
 1 1 / 6

,
1

T

Tp

p n
D p

T





  



   (3.10)  

where 11 273.15 ,K  and ( 1) K / (1 )n p T


   is a correction factor, given by the 

mean values of temperature and pressure considered. K

 is determined through the 

refractive index of N2 at standard conditions. The density factor is then 

 
 2 81 0.498526 0.0119484 0.00006 10

.
1 0.0036610Tp

p T T
D p

T

   



   (3.11)  

Thus, the relationship between the refractive index term dependent on the temperature 

and pressure and the refractive index term dependent on the wavelength is given by 

 ( 1) ( 1) ,
94439.27

Tp

Tp S

D
n n      (3.12)  

where  

 
8

2

3073864.9
( 1) 10 6497.378

144 1
S

n


   


   (3.13)  

is the dispersion curve given by Peck et al. for a temperature of 15 °C [203]. The reason 

why this equation has been adopted is because it is valid from ~470 nm to ~2060 nm, 

being in better agreement with our experimental conditions than the one proposed by 

Zhang and co-workers. Fig. 3.1 (a) shows the numerical curve obtained for the variation 
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of (n-1)S with wavelength. Figure 3.1 (b) shows the value of (n-1)Tp at a constant 

temperature of 20 °C and a constant wavelength of 1550 nm, as a function of pressure. 
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Figure 3.1 – Numerical curves obtained for the refractive index of N2 considering (a) the dependence on 

wavelength, and (b) the dependence on pressure, at a temperature of 20 °C and a constant wavelength of 

1550 nm. RIU stands for refractive index units. 

The refractive index dependence on the wavelength is nonlinear, decreasing as this 

parameter increases. However, over the operation wavelength range used in this work, 

the variation is very small, of the order of 10-7 RIU, and can thus be considered constant. 

Regarding the variation with pressure, the behavior is linear and the change is more 

significant, as shown in Fig. 3.1 (b). 

In this Section, a method to infer the variation of the refractive index of a gas with 

the applied pressure was described. Using the previous equations, it is possible to 

determine indirectly the response of a sensor to this parameter. This matter will be 

discussed in Section 3.3.3. 

3.3 Fabry-Perot Cavity Based on a Silica Tube 

The Fabry-Perot (FP) cavity developed in this work was based on a hollow-core silica 

tube, which was produced at the Leibniz Institute of Photonic Technology (IPHT – Jena). 

The silica tube was made of pure silica and presented an outer diameter of (125 ± 5) µm 

and an inner diameter of (20 ± 5) µm. The cross-section photograph of this structure is 

shown in Fig. 3.2. 
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Figure 3.2 – Microscope photograph of the silica tube cross-section.  

 

3.3.1 Sensor Design and Spectral Characteristics 

The sensing cavity was produced by fusion splicing a section of silica tube to single 

mode fiber (SMF). The fiber and the silica tube were placed in the splicing machine with 

a lateral offset, as shown in Fig. 3.3 (a) [206]. This procedure ensured that the arc 

discharge was mainly applied in the SMF region, preventing the collapsing of the silica 

tube in the splice region (see Fig. 3.3 (b)). The silica tube was then cleaved with the 

desired length, under a 5× magnifying lens (Fig. 3.3 (c)). Several devices were fabricated, 

with cavity lengths that ranged from ~140 µm up to ~1100 µm. The microscope 

photograph of one of the cavities produced is shown in Fig. 3.3 (d). 

 
Figure 3.3 – Schematic of the procedures used to fabricate the FP cavity: (a) image from the splicing machine 

display, evidencing the lateral offset, prior to splicing (SMF on the left and silica tube on the right), (b) image 

after splicing, (c) device prior to cleaving, the arrows indicate where the cleave should be done and (d) 

microscope image of a FP cavity produced with this method. 

The spectral response of this sensing structure was observed by connecting it to an 

optical circulator. A broadband optical source and an optical spectrum analyzer (OSA) 

were connected to the other two ports of this optical component, in a typical reflection 

scheme, as shown in Fig. 3.4. The optical source had a bandwidth of 100 nm, centered at 

1570 nm. The readings were done with a resolution of 0.2 nm. 
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Figure 3.4 – Scheme of the experimental setup. 

When the broadband optical source is used in such a reflection scheme, light 

travelling in the SMF will be reflected at the SMF/silica tube interface. However, a 

fraction of light is also transmitted onto the walls of the hollow core silica tube. When the 

light reaches the end face of the silica tube, Fresnel reflection takes place and a fraction of 

this light is recoupled once again into the SMF (see Fig. 3.5). Also shown in Fig. 3.5 is the 

photograph of one sample with a large length of silica tube (of the order of centimeters), 

when illuminated with a He-Ne laser. The reason why such a cavity length was used 

was to diminish the intensity of light that would travel in the hollow core region, thus 

enabling the clear observation of light propagating in the silica tube wall. 

 

 
Figure 3.5 – Left: Scheme of the sensing head, highlighting the reflections occurring in the cavity. Right: cross 

section photograph of one sample when illuminated with a He-Ne laser. 

The spectral behavior of four different samples is shown in Fig. 3.6. The spectrum of 

Fig. 3.6 (a), which corresponds to a cavity length of (141 ± 5) m, can be approximated to 

a two-wave interferometer. The increase of the cavity length translates into an excitation 

of more cladding modes, giving rise to one beat (Fig. 3.6 (b)) or even two different beats, 

as evidenced in Figs. 3.6 (c - d).  
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Figure 3.6 – Spectra of four sensing heads with different FP cavity lengths.  

This effect can also be observed in the spatial frequency spectra presented in Fig. 3.7. 

In the case of the shorter cavity, although several modes are excited in the silica tube, 

only one is recoupled in the SMF, translating into the strong mode observed in 

Fig. 3.7 (a). For the other samples strong cladding modes, as well as weak ones are 

excited and involved in the interference. The interference peak with lowest spatial 

frequency, present in all cases, is related to the optical source.  
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Figure 3.7 – Spatial frequency spectra for four different cavity lengths. 



FCUP 

Fiber Sensing Based on New Structures and Post-Processing Enhancement 

43 

 

 

 

The spectral behavior of the cavity, and consequently, the spatial frequency spectra, 

are intimately related to the quality of the splices and the end face cleave. Sensors with 

poor quality present lower spectral visibility and the number of modes that propagate in 

the cavity can be reduced, as in the case of the sensor with a length of (670 ± 5) m (Figs. 

3.6 (c) and 3.7 (c)). 

The subtraction of the wavelengths of two adjacent peaks,
2 1

     , corresponds 

to the free spectral range (FSR). This parameter is related to the length of the cavity, LFP, 

by the equation 

 
1 2 .

2
eff FP

n L

 
     (3.14)  

where it was considered that 1 2
,  so that the effective refractive index, neff(), was 

constant. Thus, from this relationship it is possible to estimate the neff within the cavity. 

The length of each sensing device was measured through the microscope photographs, 

whereas the two adjacent peak wavelengths were obtained from the sensing heads 

spectral response. The relationship between  and LFP is shown in Fig. 3.8. From the 

fitting tendency curve, the neff was estimated to be (1.32 ± 0.03) RIU. The value obtained is 

closer to the refractive index of silica than the refractive index of air, which indicates that 

a significant fraction of light propagates inside the silica tube walls.  
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Figure 3.8 – Free spectral range dependence on the cavity length, considering two adjacent peaks with 

wavelengths close to 1550 nm.  
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3.3.2 Temperature Measurement 

The 141 m long sensing device was placed inside a tubular oven, in a centered 

position. The temperature was increased in steps of 50 °C, with an equipment resolution 

of 0.1 °C. The range of temperatures was between room temperature (~23 °C) and 950 °C. 

The wavelength shift with the applied temperature was determined by tracking the 

1556.6 nm peak, and it is shown in Fig. 3.9. The experimental results were well adjusted 

by the second order polynomial 

      6 2 31.2 0.2 10 6.5 0.3 10 1556.3 0.1 ,T T             (3.15)  

where λ is the wavelength, in nm, and T corresponds to the temperature, in °C. It is 

reasonable to divide the temperature range into two different regions: low temperatures, 

between room temperature and 500 °C, and high temperatures, between 550 °C and 

950 °C. According to the insets in Fig. 3.9, a linear behavior is observed in both cases. The 

sensitivities obtained were (7.1 ± 0.2) pm/°C and (8.1 ± 0.2) pm/°C, respectively.  

0 100 200 300 400 500 600 700 800 900 1000
1556

1557

1558

1559

1560

1561

1562

1563

1564

W
a

v
el

en
g

th
 (

n
m

)

Temperature (C)

0 100 200 300 400 500 600
1556

1557

1558

1559

1560

1561

W
a

v
el

en
g

th
 (

n
m

)

Temperature (C)

500 600 700 800 900 1000
1560

1561

1562

1563

1564

W
a

v
el

en
g

th
 (

n
m

)

Temperature (C)

 
Figure 3.9 – Temperature response of the 141 m long sensing head. Inset 1 (top left): low temperatures 

response; inset 2 (bottom right) high temperatures response. 

3.3.3 Pressure Measurements 

Pressure measurements were carried out on four different samples, one with 

(170 ± 5) m cavity length, which still presented the two wave interferometer behavior, 

and the remaining three were the ones presented in Fig. 3.6 (b-d). The sensors were 

placed inside a sealed chamber, with a gas input and a low-vacuum purge output 
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(p ~ 10-3 MPa). The gas under test was N2 and all experiments were done at room 

temperature (~20 °C). The wavelength shift dependence on pressure, for all samples, is 

shown in Fig. 3.10. The shift was determined by following the peak near 1550 nm. The 

behavior is approximately linear in all cases, and the sensitivities are reunited in Table 

3.2.  
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Figure 3.10 – Sensing heads response to the applied pressure. 

Besides the relatively high sensitivity to pressure obtained with this simple 

diaphragm-free structure, the decrease of the sensitivity with the increase of the cavity 

length was somehow surprising. From the analysis of Eq. 3.6 this behavior seems 

explained, however, the influence of the cavity length change with pressure was 

considered to be very small, in agreement with [187]. Therefore, the effect of the second 

term in Eq. 3.6 is negligible. Thus, the sensitivity to pressure had its origin on the 

dependence of the gas refractive index on pressure. When pressure increases, there is a 

higher density of gas inside the sealed chamber, translating into a higher refractive 

index. Thus, there will be higher interaction between the evanescent field of light 

travelling in the FP cavity and the gas, which means an increase of the pressure 

sensitivity with the cavity length, contrary to what is observed. This points out the 

presence of more complex effects, a matter that will be discussed in the next Section, 

where a FP structure based on a photonic crystal fiber is subjected to different gases.  

By converting the pressure shifts to refractive index variations, according to the 

Eq. 3.12, the four sensors response regarding this parameter was determined. The 
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results, shown in Fig. 3.11, also exhibit linear behavior, whose sensitivities are presented 

in Table 3.2. 

1.0000 1.0005 1.0010 1.0015 1.0020 1.0025 1.0030

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

 L
FP

 = 170 m

 L
FP

 = 456 m

 L
FP

 = 670 m

 L
FP

 = 1100 m

W
a
v

el
en

g
th

 S
h

if
t 

(n
m

)

Refractive Index (RIU)  
Figure 3.11 – Sensing heads response to the N2 refractive index change. All measurements were done at 

room temperature (~20 °C), and the monitored wavelength was around 1550 nm.  

 

Table 3.2 – Sensitivity of the different sensing heads to N2 pressure and to refractive index. 

Hollow core 

diameter (m) 

FP cavity length 

(m) 

Pressure sensitivity 

(nm/MPa) 

Refractive index sensitivity 

(nm/RIU) 

20 ± 5 

170 ± 5 2.61 ± 0.02 943.8 ± 8.3 

456 ± 5 2.32 ± 0.01 841.7 ± 3.2 

670 ± 5 2.19 ± 0.01 794.7 ± 2.1 

1100 ± 10 1.82 ± 0.01 659.2 ± 1.4 

60 ± 5 
187 ± 5 2.97 ± 0.01 1074.3 ± 4.8 

680 ± 5 2.26 ± 0.04 818.8 ± 3.4 

 

The influence of the hollow core diameter was studied by using a second hollow-

core silica tube with an inner diameter of (60 ± 2) m. Two sensors were fabricated 

following the procedures described in Section 3.3.1 and tested to pressure, using the 

same experimental setup and experimental conditions as previously described. The 

shorter sensing device had a length of (187 ± 5) m and the effective refractive index, 

determined through Eq. 3.14, was of (1.13 ± 0.02) RIU. The longer sensing head presented 

a length of (680 ± 5) m and an effective refractive index of (1.25 ± 0.02) RIU. In both 

cases the effective refractive index is lower than in the sensors previously studied. This 

difference arises from the higher interaction of light with the external medium when it 

exits the SMF, prior to being recoupled to the silica wall. Besides, the distance between 
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these two regions increases significantly for the larger hollow core, meaning that the 

path where light travels inside the silica tube wall is reduced, when compared with the 

silica tube with an inner diameter of 20 m. The decrease in the effective refractive index 

of light translates into a higher sensitivity to pressure, and consequently, to the refractive 

index variation, as it is observed in the sensors response shown in Fig. 3.12. The 

sensitivities of the two samples are shown in Table 2.2, for an easier comparison with the 

previous results. 
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Figure 3.12 - Sensing heads response to the N2 (a) pressure and (b) refractive index change. All 

measurements were done at room temperature (~20 °C), and the monitored wavelength was around 

1550 nm. The hollow core silica tube presented an inner diameter of ~60 m. 

Even though the variation of the cavity length with the applied pressure is reduced, 

its physical dimensions (length and the cross section area) are of the utmost importance 

for the performance of this sensing device. A compromise must be assumed in order to 

achieve the highest sensitivity possible: a large hollow-core area, but not so large that the 

silica tube becomes easily damaged when handled; and a small cavity length, although 

long enough to guarantee that light is coupled to the silica walls and is reflected at the 

end face, creating the FP cavity. 

3.4 Fabry-Perot Cavity Based on Hollow-Core Photonic Crystal Fiber 

The FP cavity tested in this work was based on a hollow-core ring photonic crystal 

fiber (HCR-PCF) produced at the IPHT–Jena. Figure 3.13 (a) shows the cross-section 

image of the HCR-PCF when observed with a scanning electron microscope (SEM). This 

fiber presented a large hollow-core, with a diameter of (44.4 ± 0.2) m, and 18 petal 
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shaped holes with an azimuthal diameter of (24.4 ± 0.2) m. In between these two hollow 

structures there was a silica ring with a thickness of (3.1 ± 0.2) m. 

b)a)

           
Figure 3.13 – Photographs of the hollow core ring fiber cross-section (a) at the scanning electron microscope 

(SEM) and (b) when illuminated with a He-Ne laser.  

 

3.4.1 Sensor Design and Spectral Characteristics 

The FP cavities were obtained by fusion splicing the HCR-PCF to the SMF, using the 

same method presented in Section 3.3.1. Several samples were fabricated with different 

cavity lengths. The light travelling from the SMF end face excites the HCR-PCF ring. 

Afterwards, it is reflected at the cleaved end face of the HCR-PCF and recoupled once 

again to the SMF. Figure 3.13 (b) shows the cleaved end face of a HCR-PCF section when 

illuminated with a He-Ne laser, where it is possible to clearly see the illuminated ring. If 

the length of the FP cavity is lower than ~160 m, the optical path is very small and the 

ring is not excited. In such case, the numerical aperture (0.14 for SMF) is out of the cavity 

length. However, when the length of the FP cavity is larger than 160 m, the ring is 

excited and interference is generated.  

The experimental setup used in the experiments was similar to the one described in 

Section 3.3.1. All measurements, of pressure and temperature, were carried out with an 

OSA resolution of 0.1 nm. 

The spectral behavior of three different FP cavities is shown in Fig. 3.14. The smaller 

sensing device, with a cavity length of (360 ± 3) m, presented a spectral response that 

can be approximated to that of a two-wave interferometer. In this case, the FSR was of 

(5.7 ± 0.1) nm. The FSR calculated for the (506 ± 3) m and (1070 ± 5) m long sensing 
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heads was of (2.2 ± 0.1) nm and (0.9 ± 0.1) nm, respectively. The operation wavelength 

considered was ~1555 nm.  

For the longer sensing heads, the interferometric patterns show some beating, 

suggesting that the interference of more than two waves is occurring. This means that 

the guidance in the silica ring is multimode. However, the small beating effect together 

with the reduced thickness of the ring indicate that few modes are guided by the 

structure.  

1530 1535 1540 1545 1550 1555 1560
-21.0

-20.5

-20.0

-19.5

-19.0

-18.5

-18.0

-17.5

-17.0

O
p

ti
ca

l 
P

o
w

er
 (

d
B

m
)

Wavelength (nm)

 L
FP

 = 360 m

 L
FP

 = 506 m

 L
FP

 = 1070 m

 
Figure 3.14 – Spectra of three sensing heads based on the HCR-PCF FP cavity. 

The group effective refractive index associated with the light propagation can be 

determined by Eq. 3.14. The values of (1.13 ± 0.01) RIU, (1.17 ± 0.01) RIU and 

(1.28 ± 0.02) RIU were respectively obtained for the 360 m, 506 m and 1070 m long 

samples. These values come from the combination of three contributions: the 

propagation of light in the air, when it exits the SMF core up to the silica ring; the 

propagation in the silica ring and the evanescent field in air of the light that propagates 

in this region. The first contribution is more significant for smaller devices, translating 

into a lower effective group refractive index. 

3.4.2 Temperature Measurements 

The 360 m long FP cavity was placed inside a tubular oven and subjected to 

temperature variations between room temperature (~23 °C) and 500 °C with a resolution 

of 0.1 °C. A highly non-linear behavior was observed, as can be seen in Fig. 3.15.  
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Figure 3.15 – Temperature response of the 360 m long sensing head. 

The experimental data was well adjusted to the second order polynomial 

      6 2 36.9 0.5 10 2.5 0.3 10 1551.8 0.1 ,T T           (3.16)  

where the wavelength comes in nm and the temperature in °C. The range of 

temperatures can be divided into two different linear regions, for lower and higher 

temperatures. Below 200 °C the sensitivity was (3.8 ± 0.3) pm/°C, whereas for 

temperatures above 200 °C, the sensitivity was (7.5 ± 0.3) pm/°C. The values arise from a 

combination between the thermal expansion and the thermo-optic effects. Similarly to 

the variation of pressure, when the temperature changes the interferometric spectrum 

also shifts. In this case, the variation is given by Eq. 3.17, which can be obtained using the 

same line of thought as for Eq. 3.6: 

 
1 1

.
eff FP

eff FP

n Ld

dT n T L T



  
  
  
 

   (3.17)  

In this equation,
eff

n T  is the thermo-optic coefficient, which depends on the 

effective refractive index, and has a value of ~8.6×10−6 /°C [207]; and 
FP

L T  corresponds 

to the thermal expansion coefficient of the fiber material, ~0.55×10-6 /°C [126]. Dividing 

the sensitivity obtained for the high temperatures region by the wavelength (1552.8 nm 

at 250 °C), we obtain 4.84 × 10-6 /°C, a value relatively close to the thermo-optic 
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coefficient. This result indicates that this parameter is dominant over the thermal 

expansion coefficient for this sensing device.  

3.4.3 Pressure Measurements 

The physical characteristics of this HCR-PCF, namely the very thin silica ring 

surrounded by the petal shaped holes and the large hollow core, make this structure a 

good candidate to perform gas pressure sensing. To test this hypothesis, two devices 

were placed in the same sealed chamber as the one described in Section 3.3.3 and were 

subjected to the variation of pressure in an atmosphere of N2. The experimental results, 

shown in Fig. 3.16 (a), were adjusted to a linear function and sensitivities of 

(3.07 ± 0.03) nm/MPa and (2.46 ± 0.02) nm/MPa were respectively obtained for the 

380 m and 510 m long FP cavities. There is a clear improvement on the sensitivity for 

smaller sensing devices, as observed in the previous silica tube configuration. 
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Figure 3.16 – Sensing head response to the applied pressure, (a) atmosphere of N2, different FP cavity 

lengths and (b) different gas atmospheres for a cavity length of 360 m. 

The smaller sensing head was also subjected to pressure variations in an atmosphere 

of 50% N2 and 50% methane (CH4). The results are shown in Fig. 3.16 (b), along with the 

ones obtained for an atmosphere of 100% N2. By introducing a gas with a different 

refractive index (higher than the refractive index of N2), the sensitivity of the device 

increased from (3.07 ± 0.03) nm/MPa to (3.69 ± 0.05) nm/MPa. This behavior indicates 

that with a proper calibration, this sensing head can be used to identify the gas present 
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in the interferometric cavity, by analyzing the response of the sensor to pressure 

changes. 

The results presented here and in the previous Section indicate, for the fiber 

structures studied, that the sensitivity to pressure decreased with the increase of the 

sensing head length. At this stage it is not clear what the reasons behind such behavior 

are, which requires further studies. 

3.4.4 Prototype for Biomedical Applications 

The FP cavity based on the HCR-PCF was further investigated by our group for  

application in low pressure measurements, creating a prototype suitable to be used in 

the medical or biomechanical field [208]. This Section describes briefly the sensor and the 

main results obtained. 

A sample with a cavity length of ~125 m was fabricated using the same procedures 

as the ones described in Section 3.3.1. At the end face of the HCR-PCF a silicone 

diaphragm was deposited, by repeatedly placing the tip of the sample in direct contact 

with a small portion of silicone. After multiple controlled steps, the silicone was cured at 

room temperature for 72 h. The silicone polymer used was a biocompatible commercial 

one, Silastic® medical adhesive silicone, type A, from Dow Corning. With the deposition 

method used to create the sensing device, it was not possible to control the diaphragm 

geometry, which can have influence on the spectral response. A scheme of the sensor 

design is shown in Fig. 3.17. 

 
Figure 3.17 – Schematic drawing of the sensor proposed for low-pressure measurements [208]. 

When illuminated with a broadband optical source, with the same reflection setup as 

shown in Fig. 3.4, light travelling from the SMF will be reflected at the interface between 

the HCR-PCF and the silicone capsule, creating a two-wave FP interferometer. In this 
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case, light will travel in the hollow core, and the effective refractive index is ~1.00 RIU. 

The spectral behavior of this interferometer is shown in Fig. 3.18. The use of a 

diaphragm, which will act as one of the FP cavity mirrors, translates into a higher 

spectrum visibility, when compared to the diaphragm free configuration (whose FP 

mirror is the 3.1 m thick silica ring). 
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Figure 3.18 – Spectral response of the sensing head. Also shown the spectral shift when hydrostatic pressure 

is applied (step of 37.5 mmHg). 

The visibility of an interferometric cavity can be determined by Eq. 3.18 [209]: 

 
max min

max min

,
P P

V
P P





   (3.18)  

where Pmax and Pmin are the optical powers of two adjacent maximum and minimum of 

the interference signal, respectively. The diaphragm free configuration presented a 

visibility of ~3 %, whereas in this case its value was ~33 %. 

The sensor was then placed inside a hydrostatic pressure device, and pressure 

measurements in a range between 0 mmHg and 337.5 mmHg were carried out, with a 

pressure step of ~37.5 mmHg. The spectrum shifted towards shorter wavelengths (blue 

shift) as pressure increased (see Fig. 3.18). The sensor response was approximately linear, 

as shown in Fig. 3.19, and a sensitivity of (-87.0 ± 0.4) pm/mmHg was achieved, which 

corresponds to a sensitivity of (-652.2 ± 3.3) nm/MPa in SI pressure units. This negative 

response was due to the change in the cavity length, caused by the silicone diaphragm 

compression with the applied pressure. 
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Figure 3.19 – Sensor response to hydrostatic pressure variation. 

This sensor proved to be suitable for low pressure applications, exhibiting high 

sensitivity and good reproducibility. There are several physiological pressures in this 

range, such as blood pressure, intracranial and intra-articular pressures [208]. However, 

the use of the silicone capsule brings also higher thermal sensitivity, due to the high 

thermal expansion coefficient of this material. The typical value of this parameter is 

342.0 × 10-6 /°C [208], which is more than 600 times largerr than that of silica 

(~0.55 × 10-6 /°C [126]). Thus, in practical applications, the sensor should be used in a 

controlled environment or a reference sensor should be used, to reduce the cross-

sensitivity effects. 

3.5 Final Remarks 

In this Chapter, two different gas pressure sensors based on the Fabry-Perot (FP) 

configuration were proposed. The sensor based on a hollow core silica tube was the first 

reported in the literature to measure gas pressure without the use of a diaphragm. Its 

simplicity and the somehow surprising good response to the measurand translated into 

a different approach for gas sensing using micro-cavities. Different samples were 

analyzed, with different FP cavity lengths and also with two different hollow core 

diameters. In order to take the best advantage of this configuration, a compromise must 

be accepted: on the one hand, small cavities ensure higher sensitivity, although they 
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should be long enough to ensure the coupling of light in the hollow core structure; on 

the other hand, larger hollow core diameters are preferred. However, large enough so 

they remain easy to handle and mechanically robust.  

Regarding the sensor based on the hollow core ring photonic crystal fiber described 

in the second part of this Chapter, it proved to be more sensitive than the first 

configuration. This occurs due to the thin thickness of the silica ring, where light travels 

after it exits the single mode fiber. Thus, the evanescent field in this cavity is stronger, 

and its interaction with the external medium is larger, translating into improved 

sensitivity to gas measurements. The cavity was subjected not only to nitrogen pressure 

variations, but also to those of a mixture of nitrogen and methane, exhibiting different 

sensitivities. Using a model reported in the literature, the pressure measurements were 

converted to the gas refractive index variations, and the analysis was also done 

regarding this parameter. Finally, both cavities presented a non-linear behavior when 

subjected to temperature. 

The sensor based on the hollow core photonic crystal fiber was further investigated 

by depositing a capsule of a biocompatible silicone at the end of the sensing tip. When 

subjected to hydrostatic pressure, in the range of physiological activity, the diaphragm 

deflected, causing a phase shift in the interferometric spectrum. This new prototype can 

be further explored to be used in low-pressure applications, such as in biomechanics or 

medicine. 
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4.1 Introduction 

In 1974, Kawakami et al. developed a new type of fiber, with one core and two 

claddings [210, 211]. This fiber was called double clad fiber (DCF)1 and in the first work, 

the inner cladding presented the lowest index, followed by the index of the outer 

cladding. The core presented the highest refractive index. This fiber was proposed to 

compensate the glass dispersion, since it presented an anomalous waveguide dispersion. 

In this case, the parameter 2 2d d  , related to the signal distortion, is negative, whilst 

for the standard single mode fiber (SMF), this parameter is positive. Figure 4.1 (a) shows 

the cross-section scheme of this new type of fiber. In 1978, a new geometry was proposed 

for the inner cladding [212]. The fiber, birefringent and polarization maintaining, 

included an elliptical cladding, shown in Fig. 4.1 (c). Until the 1990s, these fibers were 

mainly applied for dispersion compensation.  

 
Figure 4.1 – Schematic designs of some of the double clad optical fibers reported in the literature. 

In 1988, the use of this kind of fibers in fiber laser configurations was proposed for 

the first time. For this application, the refractive index of the inner cladding needs to be 

higher than the one of the outer cladding, ensuring that the pump light is confined in 

this region. Snitzer et al. used a double clad fiber with an offset core doped with 

neodymium (Nd) [213]. The scheme of the fiber used is shown in Fig. 4.1 (b). Light was 

focused onto the inner cladding and absorbed by the Nd doped core as it proceeded 

                                                      

1 The acronym DCF is usually attributed, in the literature, to the dispersion compensating fiber. 

However, several authors also used it to designate the double clad fiber. In the works described in this thesis 

the dispersion compensating fiber was not used, and thus the DCF acronym is only relative to the double 

clad fiber. 
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along the fiber. By exploiting different geometries for the inner cladding, especially 

when the circular geometry was broken, high power lasers with outstanding efficiencies 

were obtained. For instance, Jeong et al. proposed the use of a D-shaped fiber, as the one 

presented in Fig. 4.1 (d), to obtain a 1.36 kW continuous wave output power with a 

launch power just over 1.6 kW [214]. In this case, a slope efficiency of 83 % and a 

quantum efficiency of 95 % were attained2. Figs. 4.1 (e-h) present several popular 

configurations, like the “flower”-type [216], the squared [217], rectangular [218], and 

hexagonal shaped [219]. The difference between the refractive indices of the layers was 

often attained by doping the core with lanthanide ions, thus increasing the refractive 

index, and using a low refractive index polymer as the outer cladding [217-219].   

The employment of this kind of fibers for sensing has been recently proposed, in 

different configurations, and for diverse applications. For instance, in 2006, Fu et al. 

proposed the use of a double clad photonic crystal fiber (PCF) in a scheme to perform 

nonlinear optical endoscopy measurements [220]. Han et al. spliced a DCF section to 

SMF and wrote a long period grating (LPG) in both fibers [221]. The sensor was able to 

simultaneously measure refractive index and temperature. A band rejection filter was 

obtained by Pang et al. by splicing a DCF section between two SMFs [222]. The sensor 

was applied in refractive index measurements of liquids. The concatenation of two 

sensing structures was proposed by Liu et al. [223]. The sensor was constituted by two 

different DCFs. One presented an inner cladding doped with fluorine, whereas the other 

was doped with boron. The device was employed in temperature and refractive index 

measurements. Baiad et al. proposed the use of a double clad fiber coupler to capture 

cladding modes which were generated by a gold-coated fiber with a tilted fiber Bragg 

grating (FBG) [224] or by an etched FBG [225]. All these structures presented an inner 

cladding with a refractive index lower than the core and the outer cladding indices.  

It is possible to obtain an inner cladding with higher refractive index by doping it 

with elements such as germanium or phosphorous. In such case, the fiber needs to be 

                                                      

2The slope efficiency of a fiber laser is obtained through the relationship between the absorbed pump 

power and the emitted laser output power, above threshold. Regarding the quantum efficiency, it is the ratio 

between the pump and laser photon energies [215]. 
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post-processed, for example by means of chemical etching, in order to guide light in its 

core. In 2011, Pevec et al. proposed the chemical etching of a phosphorous doped DCF to 

obtain a FP cavity [117]. The sensor was used to measure strain and temperature. Three 

years later, André et al. developed a temperature and vibration sensor based on post-

processing of a P2O5 doped DCF [154]. Besides wet chemical etching, the structure was 

post-processed using the focused ion beam (FIB) technique. 

In this Chapter, a phosphorus doped DCF subjected to chemical etching is described. 

Two different configurations are considered, one for measurement of extreme 

temperatures, and the other to be used as an optical phase refractometer. Some 

fabrication characteristics are pointed out, as well as the development of the sensing 

structures. Finally, some theoretical considerations are given and the experimental 

results are discussed. 

4.2 Design of the Double Clad Optical Fiber 

The phosphorus-doped double clad optical fiber (P-doped DCF) was fabricated at 

the Leibniz Institute of Photonic Technology (IPHT Jena), in Germany, during a short 

mission in the framework of COST Action TD1001. The fabrication details are provided 

in Appendix I. The fiber cross-section is shown in Fig. 4.2 (a). The doped region has an 

elliptical shape instead of being circular. This unexpected feature was a consequence of 

the preform fabrication (see Appendix I). The pure silica core and the outer cladding 

have mean diameter dimensions of (18 ± 3) m and (122 ± 3) m, respectively. In 

between these two regions, the layer of P-doped glass presents a thickness of (15 ± 3) m, 

considering the major axis of the ellipse, and (10 ± 3) m in the minor axis. This region 

presents a refractive index variation, n ~ 1.1 × 10-2 RIU, when compared to the undoped 

ones, as shown in Fig. 4.2 (b). Notice that the experimental value of the refractive index is 

slightly different from the expected (theoretical) one. This is mostly due to the fact that 

the inner cladding is not perfectly circular. 

Even though the inner cladding shape influences the results, as will be seen later, the 

fiber was successfully used in two different applications: as a sensor for extreme 
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temperatures and as an optical phase refractometer. All the details of these two works 

will be fully given in the next Sections.  
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Figure 4.2 – (a) Cross section of the P-doped double clad optical fiber. (b) Refractive index profile measured 

using a short section of the preform.  

4.3 Optical Fiber Tips Design 

The optical fiber tips were created by fusion splicing of a section of P-doped DCF 

with a SMF, using the automatic program of the splicing machine. Afterwards, the P-

doped DCF region was cleaved under a 5× magnifying lens. In this way it was possible 

to obtain cavities with the desired length of a few hundred micrometers. As discussed 

earlier, the presence of phosphorus in the inner cladding increases the refractive index of 

this layer when compared to the undoped regions. Thus, light that is guided by the SMF 

will be deviated from the core and will travel in the doped region of the DCF. Therefore, 

no interference pattern was initially observed. To overcome this issue, and ensure that 

the light travels in the fiber core, the samples were subjected to wet chemical etching 

using a 48 % hydrofluoric acid (HF) solution. Due to the presence of the dopant, the 

inner cladding was expected to be removed faster than the undoped regions. A 

preliminary study was then carried out to observe the etching behavior and the 

formation of the cavities. In order to increase the etching rate, and thus obtain a structure 

with a nearly constant core diameter over its length, the HF solution was placed inside 

an ultrasound bath at room temperature. The chemical reactions involved in this liquid 

phase etching process are [81, 226]: 

a) 
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2 5 3 2

6 2 3 ,P O HF POF H O    (4.1)  

 
2 2 6 2

6 2 .SiO HF H SiF H O    (4.2)  

The formation of the cavity was observed by submerging the sample in liquid HF for 

a few seconds, quickly removing it from the solution and cleaning it thoroughly with 

ethanol. A microscope photo was taken, as shown in Fig. 4.3 (a). The sample was once 

again placed in the etching solution for a few additional seconds and the process was 

repeated. Figures 4.3 (a-d) show the sample at different processing times.  

a) b)

c) d)  
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Figure 4.3 – Left: Microscope photos of fiber tip formation after an etching time of a) ~9 s, b) ~27 s, c) ~46 s 

and d) ~65 s. Right: Cavity length formation vs. time. Inset: SEM image of the etched cavity cross-section. 

By measuring the length of the cavity at each time, a linear etching behavior was 

observed, as depicted in Fig. 4.3 (on the right). From the linear fitting, an etching rate of 

(3.1 ± 0.1) m/s was estimated. Thus, in less than one minute it is possible to attain a 

cavity with a length of ~200 m. On the inset of Fig. 4.3 the scanning electron microscope 

(SEM) photograph of the etched cavity top is shown. 

Two different sensing structures were created using a short section of this fiber. The 

steps performed to produce each type of sensor are shown in Fig. 4.4. Following the red 

arrows, the diaphragm-free configuration, tested for extreme temperatures, is obtained. 

On the other hand, the blue arrows indicate the procedure used to obtain the cavity with 

diaphragm, tested as an optical phase refractometer. The first step is to splice a section of 

DCF with a SMF. Afterwards, the DCF section is cleaved under a magnifying lens, as 

explained earlier. The third step (and the final one for the first configuration) is to 

perform wet chemical etching for ~1 min. The fourth and fifth steps are only relative to 
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the second configuration, and consist of splicing the etched fiber with SMF. In this case, 

the splice is done in the manual program of the splicing machine and the fibers are 

positioned with a lateral offset. Thus, as the electric arc discharge is mainly applied to 

the SMF region, it will prevent the collapse of the etched structure. Finally, the SMF 

region is cleaved once again, this time with a thickness on the order of ten to twenty 

micrometers. The thickness of the diaphragm will have a strong influence on the sensors 

behavior, as discussed later.  

Automatic Splice Cleave

Manual Splice

Cleave

Etching (48%-HF)

1. 2.

4.

5.

3.

1st Configuration

2nd Configuration  
Figure 4.4 – Scheme of the optical fiber tip design fabrication steps. The red arrows indicate the steps to 

produce the diaphragm-free configuration and the blue ones are related to the configuration with 

diaphragm. 

All measurements done with this configuration were performed in a reflection 

scheme (see Fig. 4.5). A broadband optical source, the sensing device and an optical 

spectrum analyzer (OSA) were connected to an optical circulator. The optical source had 

a bandwidth of 100 nm, centered at 1570 nm. The readings were done with a resolution 

of 0.1 nm. 

Optical Source Optical Circulator

OSA

FP cavity
Splice  

Figure 4.5 – Scheme of the experimental setup. 
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4.4 High Temperature Sensing Using a Diaphragm-Free Configuration 

The sensing head used in this work had a length of (143 ± 5) m and the core 

diameter, after etching, was (6.0 ± 0.2) m. The scheme of the proposed sensor is shown 

in Fig. 4.6 (a). The first reflection (R1) occurs at the SMF/DCF interface, whilst the second 

one (R2) is originated at the DCF/air interface. The parameters 1 and 2 are the intensity 

attenuation factors at each interface, being equal to 1 if there is no transmission loss, and 

it is 0 if no light is transmitted. Besides, these factors should, in principle, depend on the 

operation wavelength.   Since most of the transmission occurs essentially from the SMF 

section to the DCF fiber, the parameter 2 is considered to be negligible. A sample, 

shown in Fig. 4.6 (b), was illuminated with a He-Ne laser and the two reflection 

interfaces of this FP cavity can be distinguished.  

 
Figure 4.6 – (a) Scheme of the FP cavity for high temperature measurement and (b) photograph of the 

sensing head when illuminated with a He-Ne laser. 

The response of this two-wave interferometer was simulated using a simple model 

based on [138], taking into consideration that there are only two reflective interfaces. The 

reflection coefficients of this cavity are given by 

 

2

1
SMF DCF

SMF DCF

n n
R

n n

 
  

 
  ,  

2

2
,DCF air

DCF air

n n
R

n n

 
  

 
 (4.3)  

where nSMF, nDCF and nair are the refractive indices associated with the propagating waves 

on each medium. The refractive index of SMF was considered to be 1.4504 at 1550 nm. 

The refractive index of the DCF, estimated to be 1.3259, was determined through the 

experimental spectrum, according to 

  
1 2

2 1

.
2DCF

FP

n
L

 

 



  (4.4)  

In this equation, 1 and 2 are the wavelengths of two adjacent spectral maxima and 

LFP is the cavity length. The round-trip propagation phase shift is given by 
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.DCF FP
n L


    (4.5)  

Considering that there is a high transmission loss due to the mode mismatch 

between the two fibers, which translates into an estimated transmission coefficient

1
0.01  , the total reflected electric field, resulting from the superposition of the 

reflected fields from the two interfaces, can be determined by 

   0 1 1 1 2
1 .j

r
E E R R R e  

    (4.6)  

The normalized total reflective intensity, IRtotal, is given by Eq. 4.7: 

      
2

1 1 1 2 1 1 1 2

0

1 1 .j jr
Rtotal

E
I R R R e R R R e

E
 


   

        (4.7)  

After some straightforward algebraic manipulation, the following expression is 

attained: 

      
22

1 1 1 2 1 2 1 1
1 2 1 cos .

Rtotal
I R R R R R R         (4.8)  

The total optical power calculated through this theoretical model is shown in Fig. 4.7. 

(green dashed line) along with the experimental spectrum (black line). Notice that an 

exponential term was introduced in the simulations to take into account the losses of the 

cavity with the wavelength. The values considered for R1, R2 and 1 were, respectively, 

0.002, 0.020 and 0.01. The difference observed in the visibility of the spectra is related to 

the fact that the coherence effects were not taken into account in the simulation. In this 

case, the geometric path imbalance of the cavity is 2 × 143 m, which is higher than the 

coherence length of the optical source. 

The sensing head was placed inside a tubular oven which can operate at 

temperatures up to 1000 °C, with a resolution of 0.1 °C. Starting from 150 °C until 900 °C, 

the temperature was slowly increased in steps of 50 °C. The wavelength shift of the FP 

cavity was measured at each temperature step. Figure 4.8 shows the sensor response to 

this parameter.   
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Figure 4.7 – Experimental (black line) and theoretical (green dashed line) spectra of the sensing head 

reflection response. 

The behavior was successfully adjusted to the second order polynomial 

      6 2 32.9 0.1 10 11.7 0.1 10 1550.5 0.1 ,T T           (4.9)  

where the wavelength, , comes in nm and the temperature, T,  is in °C. Considering a 

linear function, the coefficient of determination decreases slightly (from 0.9999 to 0.9984) 

but it is still close to the unity. In such case, a linear sensitivity of (14.6 ± 0.2) pm/°C was 

estimated. The high sensitivity to temperature results from the combination between the 

variation of the FP cavity length, due to the silica thermal expansion, and the effective 

refractive index variation, due to the silica thermo-optic effect. 
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Figure 4.8 – Wavelength dependence on temperature. 
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4.5 Optical Phase Refractometer 

Using the second configuration presented in Fig. 4.4, the core of the DCF is no longer 

directly exposed to the external medium, which translates into a more robust cavity. The 

reflections that can occur in the structure are shown in the scheme of Fig. 4.9. Thus, in 

this situation, the interferometric behavior will be associated with the interference of 

three waves: one at the SMF/DCF interface (E1), due to the mismatch between the 

effective refractive indices on each side; the second one, caused by the same effect, will 

occur at the DCF/SMF interface (E2); finally, E3 corresponds to the reflection occurring at 

the SMF diaphragm/external medium interface. The first two waves do not change their 

amplitudes or their phases with the external medium index. However, E3 presents an 

amplitude that depends on the refractive index of the external medium.  

 
Figure 4.9 – FP microcavity evidencing the interface reflections. 

Considering that E1 has a phase 1 when generated at the interface, the phase 

difference with E2 is 

 2
2 1

4
,e C

n L
 


    (4.10)  

where ne2 is the effective refractive index inside the DCF cavity, LC corresponds to the 

cavity length and  is the wavelength. Similarly, the phase difference between the waves 

E3 and E2 is 

 1
3 2

4
,e D

n L
 


    (4.11)  

where LD is the diaphragm length and ne1 is the SMF effective refractive index. This 

reflection at the external interface, of ~4% when the surrounding medium is air, is 

substantially stronger than the second one, so the interferometric behavior in this case is 
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essentially determined by E1 and E3. However, when the sensing head is submerged in 

water, due to the smaller refractive index difference between the silica and the 

surrounding medium, there is a considerable reduction of the amplitude of E3. Thus, 

both E2 and E3 contribute substantially to the interference, generating a superposition 

wave that depends on the relative phases of the two primary waves as well as on their 

relative amplitudes. This interference can be described through 

      2 3 02 2 03 3 023 23
sin sin sin ,E E E t E t E t              (4.12)  

where E02 and E03 correspond to the amplitudes of the waves E2 and E3, respectively, and 

can be determined through the expressions: 

  02 0 1 2
1 ,E E R R   (4.13)  

   03 0 1 2 3
1 1 .E E R R R    (4.14)  

For the simulation purposes, the transmission losses were not taken into account. 

The reflection coefficients at each interface, R1, R2 and R3, are given by: 
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 (4.15)  

where nS is the refractive index of the surrounding medium. Using a complex notation, 

Eq. 4.12 comes 

 3 232 ( ) ( )( )

23 02 03 023

j t j tj tE E e E e E e      
    (4.16)  

 3 232

02 03 023
.j jjE e E e E e 

    (4.17)  

The amplitude E023 is obtained through 

   23 232

023 023 023
.j jE E e E e 



  (4.18)  

Substituting Eq. 4.17 in the Eq. 4.18 and re-arranging, one gets: 

 
    2 3 2 32 2 2

023 02 03 02 03
.

j j
E E E E E e e

     
     (4.19)  

Then: 
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 (4.20)  

In order to determine the phase, 23, and using Eq. 4.17, E023 can be separated in the 

real and imaginary parts as follows: 

 

     023 23 02 2 03 3
cos cos cos ,E E E     

     023 23 02 2 03 3
sin sin sin .E E E     

(4.21)  

Dividing the two equations, the following expression is achieved: 
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 (4.22)  

A schematic diagram is shown in Fig. 4.10 that illustrates the dependence of the 

phase of the resultant wave on the amplitude of each wave individually. In this diagram 

E2 is kept constant both in phase and amplitude, whereas E3 presents the same phase but 

different amplitudes. It is quite clear that there is a modification on the interferometric 

wave, both in amplitude and phase, when the amplitude of E3 is reduced. 
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Figure 4.10 – Scheme of the resultant wave phase variation with the amplitude of E3; E2 remains constant. 

The simulation of the interference between the waves E2 and E3 was further 

investigated taking the previous equations into account. The resultant interferometric 

data is shown in Fig. 4.11. In the simulations, a cavity length of 90 m and a diaphragm 

thickness of 12 m were considered. Besides, the effective refractive indices were set 

ne1 ≈ 1.45, ne2 ≈ 1.41 and ns = 1.00 or ns = 1.32, for air and water as the surrounding medium. 

Regarding the reflection coefficients, R2 was considered to be 0.0020 and R3 was 0.0338 or 
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0.0023, when the surrounding medium was air and water, respectively. In addition to the 

clear variation in amplitude, the inset in Fig. 4.11 shows the shift that occurs when the 

external medium changes from air to water. 
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Figure 4.11 – Simulated spectra of the FP micro-cavity in different media. The inset shows the phase 

variation of the spectrum. 

If the liquid medium is subjected to temperature variations, its refractive index will 

also change. This variation originates a change of the silica-water reflectivity coefficient 

and a shift in the E23 wave phase is to be expected. The phase of the resulting interference 

between this wave and E1 will also be affected by the variation of the water refractive 

index. Therefore, with this configuration, the principle of the amplitude-phase 

conversion is achieved in the optical domain, i.e., the phase of the net interferometric 

optical signal becomes a function of the amplitude of one of the interfering waves (E3 in 

this case). 

4.5.1 Water Temperature and Refractive Index Relationship 

The relationship between the refractive index of water and its temperature has been 

described in several works [227-230]. However, the water refractive index depends not 

only on the temperature, but also on other parameters, such as the density and the 

operation wavelength [230]. Tables were found in the literature for three different 

wavelengths: 430, 600 and 660 nm. The wavelength dependence can be described by the 

Sellmeier equation, 
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     (4.23)  

where only the first three terms were taken into account. A tendency curve was adjusted 

for the three wavelengths, and the parameters A, B and C were estimated. Using these 

values, it is possible to determine the refractive index of water at 1550 nm. This 

procedure was done for temperatures ranging from 10 °C to 80 °C, in steps of 10 °C, 

considering the values presented in [230]. This information is gathered in Fig. 4.12 (a). 

Notice that there is a different tendency curve for each temperature. 
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Figure 4.12 – (a) Dependence of the refractive index of water on the operation wavelength for different 

temperatures and (b) refractive index of water as a function of temperature, for a wavelength of 1550 nm. 

Figure 4.12 (b) shows the relationship between the water refractive index and the 

temperature, for an operation wavelength of 1550 nm. The refractive index diminishes as 

temperature increases, and the data can be well adjusted to the second order polynomial: 

   6 2 51.073 10 5.982 10 1.327.n T T T        (4.24)  

By converting the water temperature change into its refractive index variation, it is 

possible to infer the sensing head response towards this parameter. This approach is 

only valid when the device under study exhibits a response where the different 

contributions to its sensitivity can be discriminated. 

4.5.2 Experimental Results 

The experimental reflection spectra of two different cavities are shown in Fig. 4.13, 

for two different external media. The first cavity had a length of (80 ± 3) m and a 
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(13 ± 3) m thick diaphragm. Regarding the second sensor, it presented a FP cavity 

length of (95 ± 3) m and a diaphragm with a thickness of (43 ± 3) m.   This data is in 

good agreement with the simulation results presented in Fig. 4.11. When the sensor is 

placed in water, there is an increase in the losses and the visibility diminishes. This 

behavior is highly dependent on the diaphragm thickness. If the thickness of the 

diaphragm is larger than 40 m, there is an increase of the losses, but the visibility 

remains nearly the same, as can be seen in Fig. 4.13 (b).  
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Figure 4.13 – Spectra of the FP micro-cavity when the external medium is air (black line) and water (blue 

line). (a) Sensor with a thin diaphragm. (b) Sensor with a thick diaphragm. 

The sensing heads were subjected to temperature measurements in air and in water. 

In the first case, the sensor was placed inside a tubular oven and measurements were 

done in a range between room temperature (~23 °C) and 85 °C. Afterwards, the device 

was submerged in hot water (~85 °C), which was let to cool down until room 

temperature. In both cases, the temperature resolution was of 0.1 °C. 

Regarding the response of the sensor with a thick diaphragm, shown in Fig. 4.14, it is 

independent of the external media. The linear sensitivities obtained were of 

(9.6 ± 0.1) pm/°C and (9.7 ± 0.1) pm/°C when the surrounding medium was air and 

water, respectively. This means independence of the sensitivity from the surrounding 

medium. Such result, which is also visible looking at Fig. 4.13 (b) where essentially the 

channeled spectrum does not depend of having either air or water outside, indicates that 

the amplitude of E3 is residual in both situations. This points out to significant extra 

optical loss when the diaphragm thickness increases from ~13 m to ~43 m, probably 
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introduced due to a mismatch of the fabrication conditions from the established 

procedure. 
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Figure 4.14 – Wavelength shift dependence of the sensor response with a diaphragm of 43 µm on the applied 

temperature, in two different media. 

The sensing device with the thinner diaphragm (of ~13 m) was subjected to the 

same external conditions, and the results are shown in Fig. 4.15 (a). The sensor response, 

in this case, is affected by the external medium, and its sensitivity is lower when 

submerged in water (blue hollow circles) than when in air (black solid circles). In the 

former situation, a sensitivity of (9.4 ± 0.1) pm/°C was obtained, whereas in the last one 

the sensitivity was of (13.5 ± 0.1) pm/°C. The difference between these values is an 

indication that the refractive index variation of water induced by the temperature has an 

impact on the sensor response.  

Thus, considering that 1 corresponds to the wavelength shift of the cavity optical 

spectrum when the external medium is air, we can write 

 1 1
,

T
k T    (4.25)  

where 
1T

k stands for the temperature sensitivity. If, on the other hand, the external 

medium is water, the wavelength shift can be separated into two different components: 

one related to the diaphragm silica thermal expansion ( 1T
k ), which was previously 

measured in air, and the other attributed to the water refractive index variation ( 2T
k ). 
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Therefore, the wavelength shift measured in this situation is related to temperature 

according to the expression 

  2 1 2
.

T T
k k T     (4.26)  

Subtracting Eq. 4.26 and Eq. 4.25, the following relationship is attained: 

 2 1 2
.

T
k T      (4.27)  

The calculated wavelength shift due to the water contribution is shown in Fig. 4.15 (b). In 

this case the sensitivity is negative, with a value of (-5.8 ± 0.2) pm/°C.  
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Figure 4.15 – Wavelength shift dependence on temperature: (a) sensing head exposed to air (black circles) 

and when immersed in water (blue circles) and (b) calculated water contribution. 

The sensing head response to the variation of the external medium refractive index 

can be estimated by applying the relationship between the water refractive index and the 

temperature, which was described in Section 4.5.1. By diminishing temperature, the 

refractive index increases, and with it, there is a wavelength shift of the interferometric 

cavity towards red, as can be seen in Fig. 4.16. This variation was adjusted to the 

following second order polynomial, 

      2( ) 1758.7 560.7 4608.8 1484.1 3018.9 982.0 ,n n n        (4.28)  

where the wavelength, , is in nm, and n corresponds to the refractive index, and comes 

in RIU. It is possible to extrapolate two different linear regions from Fig. 4.16, one for 
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lower refractive indices, between 1.319 RIU and 1.324 RIU, and another for higher 

refractive indices, from 1.325 RIU to 1.327 RIU. A sensitivity of (38.7 ± 2.5) nm/RIU was 

attained for the former, whilst a sensitivity of (56.7 ± 4.2) nm/RIU was obtained for the 

last region. Although the sensitivities obtained are lower than the ones reported in the 

literature, with this configuration there is no fiber core exposition to the external 

medium. It is only the interaction between the reflection of the third wave at the end of 

the fiber tip and the environment that ensures the spectrum variation.  
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Figure 4.16 – Wavelength shift variation with the water refractive index. 

Besides the variation in the spectrum with the water temperature, a change in the 

visibility of the spectrum was also noticed. This is also an effect of the variation of the 

refractive index of water, as already mentioned. Therefore, a different kind of analysis 

could also have been done with this sensing head, in complement to the approach 

described above. 

4.6 Final Remarks 

In this Chapter, two different sensing configurations were proposed based on post-

processing of a double clad optical fiber. The fiber did not guide light in its core, due to 

the higher refractive index in the P-doped inner cladding. However, after applying wet 

chemical etching, this layer was removed and light started to propagate in the core. In 

the first configuration, the micro-cavity was only constituted by a short section of such 
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etched fiber spliced to a SMF. The device was successfully tested to extreme 

temperatures and revealed to be more sensitive than more conventional fiber structures, 

such as the fiber Bragg grating (FBG) [231] or the hollow core silica tube [122]. In the first 

case, the structure was ~1.1 times more sensitive than the FBG, whereas in the last, the 

sensitivity was ~2 times higher. However, when the structure is placed in a liquid 

medium, this liquid will surround the suspended core, causing instability in the spectral 

response. A different configuration was then developed. In this case, a thin diaphragm 

was applied to the first structure by fusion splicing. This translated into a more stable 

device that presented different responses to temperature when the external medium was 

air or water. This behavior was due to the fact that the sensing head was measuring, 

besides the silica thermal expansion, the water refractive index variation with 

temperature. Thus, this sensor is an interesting design to be used in aqueous 

environments, namely, in biochemistry. Furthermore, if used in a multiplexed 

configuration, it can allow temperature compensation or even measurement of different 

parameters. 
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5.1 Introduction 

The measurement of strain and temperature using fiber optic-based configurations 

has been a subject of extensive research since the first steps in the field were taken. With 

the rapid technological evolution occurring currently in our society, the industry seeks 

sensors easy to manufacture, to implement and to control. The lifespan must be high; the 

devices have to be reliable, stable and highly sensitive. There are already commercial 

solutions based on fiber optic sensors, such as the fiber Bragg grating (FBG). However, 

there is still room for research, exploiting different configurations or trying to achieve 

even better sensitivities and resolutions. 

Intrinsic Fabry-Perot (FP) cavities formed between two sections of fiber present low 

sensitivity to temperature, being a good alternative for the measurement of strain 

without the need to compensate the temperature effects. The structures can be formed by 

splicing a short section of hollow core photonic crystal fiber (PCF) [85] or a chemically 

etched multimode fiber section [135] between two sections of single mode fiber (SMF). 

Another possibility is to form an air cavity, like a bubble or a spheroidal cavity, inside 

the fiber. There are different ways to fabricate the structures through splicing. For 

example, the splice of two sections of SMF [130, 150], SMF spliced to index guiding 

PCF [101] or splicing a flat and hemispherical tip of SMF [132]. The sensors proposed in 

these works were characterized to strain and temperature separately.  

Even though there are several reported works concerning strain and temperature 

measurements, such as the ones previously mentioned, the measurement of strain at 

high temperatures has not been fully explored, in particular, when temperatures exceed 

750 °C. Ran et al. proposed the use of a FP cavity to measure strain at temperatures as 

high as 800 °C [84]. The cavity was created using 157 nm laser micromachining. The 

fabrication of an air bubble cavity by splicing a multimode PCF to a SMF has also been 

proposed [121]. In this case, the FP cavity was subjected to strain measurements up to 

1850 , at temperatures between 100 °C and 750 °C. Rao et al. reported on the annealing 

behaviors of a long period grating fabricated in a PCF using a high-frequency CO2 laser 

[232]. The sensor was tested in strain at temperatures as high as 650 °C. 
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In its turn, the FBG is probably one of the most popular structures for monitoring 

strain and/or temperature, both in academic research and in industrial applications. The 

most common fabrication technique is based on UV-laser irradiation and relies on the 

photosensitivity of the fiber to produce the periodic index modulation [233]. However, 

these devices present poor stability for temperatures above 500 °C, being completely 

erased at 700 °C [234]. In 2004, Martinez et al. reported a method for direct writing of 

FBGs, using a point-by-point femtosecond laser technique [235]. With this method the 

change in the refractive index is produced locally and there is no need for phase-masks 

or even photosensitive fibers. Besides, these structures exhibit an excellent stability 

above 1000 °C [234].  

In this Chapter, the measurement of strain is addressed from two different 

perspectives. The first is relative to the control of the sensitivity of a FP sensor structure, 

simply by varying the cavity length. The second perspective is related to the 

measurement of strain at high temperatures, considering the response of a sensor based 

on a FP cavity and the response of a FBG. In this case, both are subjected to strain at 

different temperatures, which can be as high as 900 °C and the influence of thermal 

annealing is also addressed, to stabilize the sensor response and improve its 

performance at high temperatures. These types of measurements can be used in the 

monitoring of crack development or propagation in the civil engineering field, or in 

advanced turbine engines or even space plane engines, among other situations where 

high temperatures are involved and strain or stress needs to be monitored [233, 236]. 

5.2 Controlling the Sensitivity of a Fabry-Perot Strain Sensor 

In this Section, a Fabry-Perot (FP) strain sensor is described. The sensing element is 

based on a small section of hollow core ring photonic crystal fiber (HCR-PCF). The 

ability to manufacture samples with short lengths enables the control of the strain 

sensitivity, which can be more than 15 times the strain sensitivity of a fiber Bragg grating 

(~1.2 pm/ at 1550 nm [231]).  



FCUP 

Fiber Sensing Based on New Structures and Post-Processing Enhancement 

83 

 

 

 

5.2.1 Sensor Design and Spectral Characteristics 

The HCR-PCF used to create the FP cavity, and whose cross-section is shown in 

Fig. 5.1 (a), is the same as the one described in Section 3.4. The cavity was obtained by 

fusion splicing a section of this fiber between two single mode fibers (SMFs), following 

the procedures described in Section 3.3.1. The microscope photograph of one of the 

samples characterized in this work is shown in Fig. 5.1 (b).   

   
Figure 5.1 – Microscope images of (a) the HCR-PCF cross-section and (b) the 207 m long sample. 

The scheme of the experimental setup is shown in Fig. 5.2. It was constituted by a 

broadband optical source, with a bandwidth of 100 nm and centered at 1570 nm, an 

optical spectrum analyzer (OSA), with a resolution of 0.1 nm and an optical circulator. 

Optical 
Source

Optical 
Circulator

FP cavity

Splices

OSA

 
Figure 5.2 – Scheme of the experimental setup. OSA stands for optical spectrum analyzer and FP cavity 

corresponds to the Fabry-Perot cavity. 

Four different devices, with different FP cavity lengths, were fabricated and 

characterized in strain. The spectral behavior of each sample, shown in Fig. 5.3, is similar 

to a two-wave interferometer. The period of the FP fringes, , depends on the FP cavity 

length (LFP) according to
1 2

2
eff FP

n L    , where 1 and 2 are the wavelengths of two 

adjacent fringes and neff is the effective refractive index of the fundamental mode 

propagating in the HCR-PCF. The average refractive index was estimated to be 

(1.02 ± 0.01) RIU for an operation wavelength of 1550 nm, which means that most of light 

travels inside the hollow core. The interferometric period was estimated to be 

a) b) 
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(35.3 ± 0.1) nm, (6.0 ± 0.1) nm and (1.3 ± 0.1) nm for the (35 ± 2) m, (207 ± 2) m and 

(906 ± 5) m long FP cavities, respectively. The smaller FP cavity, which had a length of 

(13 ± 2) m, only presents one interference peak in the spectral range considered, thus it 

was not possible to estimate the interferometric period from the spectral response in 

Fig. 5.3. 
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Figure 5.3 – Spectra of the four samples, with different FP cavity lengths. The spectrum shift with the 

applied strain is also shown for each sample. 

5.2.2 Experimental Results 

The devices were characterized in strain, at room temperature, being under the same 

test conditions. Thus, the fiber was attached to a translation stage with a resolution of 

0.01 mm. The total length of fiber over which strain was applied, composed by the SMF 

sections and the HCR-PCF, was of (700 ± 5) mm. This length, defined as LT, is identified 

in Fig. 5.4, along with the other dimensions considered in this work. 

Fixed point

FP cavitySMF SMF

LSMF/2 LSMF/2LFP

LT

Translation stage

 
Figure 5.4 – Identification of the lengths considered in the strain analysis. 
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  The interferometric spectrum shifts towards longer wavelengths (red shift) as strain 

is applied, which means that the optical path increased with strain (see Fig. 5.3). The 

wavelength shift dependence on strain of each sensor is shown in Fig. 5.5 (a). There is a 

clear influence of the FP cavity length in the sensitivity to strain. In fact, the smaller the 

sensing head, the higher the sensitivity. Furthermore, the response is linear in all cases. 

For the 906 m long device, a sensitivity of (3.12 ± 0.01) pm/ was attained, whereas for 

the 207 m long sample, the sensitivity was of (3.79 ± 0.01) pm/. Decreasing the length 

to 35 m translated into a sensor with a doubled sensitivity, of (6.16 ± 0.01) pm/. 

Decreasing the length furthermore, to 13 m, resulted in a sensitivity of 

(15.43 ± 0.01) pm/. This means that by choosing the appropriate FP cavity length, it is 

possible to tailor the sensitivity most suitable for the desired application. Figure 5.5 (b) 

presents the estimated sensitivities as a function of the FP cavity length along with the 

tendency curve. The non-linear behavior shows the rapid increase of the sensitivity for 

smaller FP cavities, following the same tendency as observed in other configurations 

[237].  
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Figure 5.5 – (a) Sensors response to the applied strain. (b) Sensitivity dependence on the FP cavity length. 

Inset: microscope photograph of the 13 m long sensing head. 

Further investigations were carried out to understand the influence of the total 

length over which strain was applied (LT). The FP cavity with a length of 207 m was 

subjected to strain, considering three different total gauge lengths: of 706 mm, 342 mm 

and 170 mm. The behavior, shown in Fig. 5.6 (a), is linear in all situations and the 

sensitivities are quite close to each other: (3.79 ± 0.01) pm/, (3.75 ± 0.01) pm/ and 

(3.67 ± 0.01) pm/, for the gauge length of (706 ± 5) mm, (342 ± 5) mm and (170 ± 5) mm, 
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respectively. Figure 5.6 (b) shows the strain sensitivity as a function of the total gauge 

length, where it is explicit that as the total length increases, the sensitivity is enhanced. 

However, the variation is of only 0.12 pm/ for a total length increase of ~540 mm. 

Thus, even though there is an improvement in the sensitivity, this is not the dominant 

parameter for this matter. 
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Figure 5.6 - (a) Response of the 207 m long sensor cavity to strain, considering three different gauge 

lengths. (b) Sensitivity dependence on the gauge length (purple dots) and tendency curve (gray line). 

The temperature response of the proposed sensor was analyzed by placing the same 

sample inside a tubular oven. The temperature was changed from room temperature to 

85 °C, with a resolution of 0.1 °C. The wavelength dependence towards this parameter is 

shown in Fig. 5.7.  
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Figure 5.7 – Wavelength dependence on temperature for the 207 m long sensing head.  
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The sensitivity attained was of only (0.85 ± 0.06) pm/°C. This indicates that, in most 

situations, the sensing device can be used to perform strain measurements without 

requiring temperature compensation, since the cross-sensitivity is of only 0.21 /°C [32]. 

 

5.3 Measuring Strain at High Temperatures (Part I): Silica Tube  

This Section describes the characterization of a Fabry-Perot cavity based on a silica 

tube with a special design. Strain measurements are performed at different 

temperatures, which can be as high as 900 °C. The annealing effects are also addressed. 

5.3.1 Sensor Design and Spectral Characteristics 

The silica tube used in this work was fabricated at the IPHT-Jena. All components of 

the silica tube were manufactured from high purity silica Heraeus Suprasil® F300. Four 

rods, with a diameter of 1.2 mm were placed inside the cladding tube, which had an 

inner diameter of 4 mm and an outer diameter of 6 mm, in exact orthogonal positions, 

and were sintered using the modified chemical vapor deposition (MCVD) method. The 

preform was drawn to the final fiber by pressurized drawing at constant temperature. 

The pressure inside the preform changed from 1000 Pa to 3000 Pa above atmospheric 

pressure. Higher pressure translated into larger silica tube hollow core area. This effect 

can be seen in Fig. 5.8. The final outer diameter was of 125 m and the silica tube was 

coated with a single layer of ultraviolet cured acrylate. 

 
Figure 5.8 – Cross section images of the silica tube varying the pressure during fiber drawing: (a) p = 1000 Pa, 

(b) p = 2300 Pa and (c) p = 3000 Pa. 

The silica tube shown in Fig. 5.8 (b) was selected to be used as a sensing element, in a 

FP configuration. It presented a cladding with a thickness of (14 ± 2) m, a hollow core 
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and the four small rods presented a diameter of (20 ± 2) m each. The presence of the 

four rods will have a reinforcement effect in the structure. This matter will be discussed 

further ahead.  

The FP cavity, shown in Fig. 5.9, was obtained by fusion splicing a short section of 

silica tube between two sections of SMF, following the same procedures as described in 

Section 3.3.1. The sensor was interrogated in a reflection scheme similar to the one 

presented in Fig. 5.2. The OSA resolution was, in this case, of 0.02 nm.  

 
Figure 5.9 – Photograph of one FP cavity based on the new hollow core silica tube design. 

Four different sensors were produced, with different cavity lengths. The spectrum of 

each sensor, presented in Fig. 5.10, is the result of a two wave interferometer. The mean 

effective refractive index was estimated to be ~1.00 RIU, meaning that almost all light 

travels inside the hollow core. 

1520 1535 1550 1565 1580 1595 1610
-42

-38

-34

-30

-26

-22

d)

b)

c)

O
p

ti
ca

l 
P

o
w

er
 (

d
B

)

Wavelength (nm)

 L=17ma)

1540 1550 1560 1570 1580 1590
-38

-34

-30

-26

-22
 

 

O
p

ti
ca

l 
P

o
w

er
 (

d
B

)

Wavelength (nm)

 L=51m

1535 1545 1555 1565 1575 1585
-44

-40

-36

-32

-28

-24

-20

 

 

O
p

ti
ca

l 
P

o
w

er
 (

d
B

)

Wavelength (nm)

 L=70m

1535 1540 1545 1550 1555 1560 1565 1570
-17

-16

-15

-14

-13

-12

-11

 

 

O
p

ti
ca

l 
P

o
w

er
 (

d
B

)

Wavelength (nm)

 L=198m

 
Figure 5.10 – Spectra of the four FP cavity sensors. 
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5.3.2 Experimental Results 

In a first stage, the samples were attached to a translation stage with a resolution of 

0.01 mm and strain measurements were carried out at room temperature. The total 

length over which strain was applied was kept constant throughout the experiments, 

with a value of (735 ± 5) mm. The FP cavities response towards the applied strain is 

linear, as shown in Fig. 5.11 (a). Besides, the sensitivity depends on the FP cavity length. 

Sensitivities of (13.9 ± 0.1) pm/, (6.0 ± 0.1) pm/, (4.6 ± 0.1) pm/ and (3.5 ± 0.1) pm/ 

were respectively attained for the 17 m, 51 m, 70 m and 198 m long samples, 

following the same trend as in the previous configuration. The cavity lengths were 

determined through the microscope images, with an associated uncertainty of ± 2 m. 
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Figure 5.11 – (a) FP cavity sensors response to the applied strain. (b) Response of the 198 m long sensor to 

temperature. 

 The 198 m long sensor was placed inside a tubular oven, with the FP cavity placed 

at its center. The fiber was kept straight but loose, without any tension applied. The 

sensor was then subjected to a temperature variation of ~900 °C. The interferometric 

spectrum shifted towards longer wavelengths with the increase of temperature (red 

shift), as can be seen in Fig. 5.11 (b). The experimental data was well adjusted to a linear 

fitting and a sensitivity of (0.85 ± 0.01) pm/°C was attained, which indicates that this 

sensor presented a cross-sensitivity of ~0.24 /°C. Considering the round-trip 

propagation phase shift 2 4
eff FP

m n L     , where m is the interference peak order, 

after some straightforward algebraic manipulation, it is possible to re-write the equation 

as 2 /
eff FP

d n dL m  . Combining the two equations, one gets for the thermal sensitivity of 
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this sensor the value of 75.49 10 /
FP FP

L L C    (at the operation wavelength of 

1547 nm), which is in good agreement with the silica thermal expansion coefficient 

presented in the literature, of 75.5 10 / C  [126]. 

Since this FP cavity presents low sensitivity to temperature, it is worthwhile to study 

its behavior when strain is applied under extreme temperature conditions. Thus, the 

70 m long FP cavity was placed inside the tubular oven, in a centered position, and on 

the outside it was fixed to a translation stage. The fiber was kept straight under a slight 

tension. The temperature was increased from 22 °C to 750 °C in steps of 150 °C. From 

750 °C to 900 °C, the steps were of 50 °C. The resolution of the oven temperature 

controller was of 1 °C. At each temperature step, the setup was stable for about 

30 minutes. Strain measurements were then carried out, by increasing the tension in the 

fiber up to 1000  (up curves in Fig. 5.12) and decreasing it back to the initial state 

(down curves in Fig. 5.12).  

0 200 400 600 800 1000
1550

1552

1554

1556

1558

W
av

el
en

g
th

 (
n

m
)

Strain ()

 Up

 Down

a)  T = 22 C

0 200 400 600 800 1000
1550

1552

1554

1556

1558
b)  T = 750 C

 

 

W
av

el
en

g
th

 (
n

m
)

Strain ()

 Up

 Down

0 200 400 600 800 1000
1554

1556

1558

1560

1562

d)  T = 900 Cc)  T = 850 C

 

 

W
av

el
en

g
th

 (
n

m
)

Strain ()

 Up

 Down

0 200 400 600 800 1000
1554

1556

1558

1560

1562

 

 

W
av

el
en

g
th

 (
n

m
)

Strain ()

 Up

 Down

 
Figure 5.12 – Response of the 70 m long FP cavity to the applied strain at different temperatures. Up and 

down stand for increasing and decreasing the applied strain, respectively. 

Until 600 °C the behavior was nearly the same and the sensitivities obtained when 

increasing strain were similar as when decreasing it. However, from 750 °C on, the 

sensor exhibited higher sensitivity when increasing strain than when it decreased. This 
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fact indicates that at such high temperatures, the Young modulus of the silica tube is 

reduced, also associated with a certain level of induced plasticity, since the 

interferometric fringes did not return to the original wavelength values when strain was 

decreased. At 900 °C the reduction of the strain sensitivity translates into a red shift of 

~1 nm. 

The effects of annealing were addressed by subjecting the 51 m long sensor to a 

temperature of 900 °C for 7 hours (see Fig. 5.13). In this case, the fiber was kept straight 

under a slight tension. The monitored fringe wavelength shifted 4.4 nm throughout this 

period of time. However, in the first 40 minutes the shift was more pronounced, with a 

shift rate of (0.10 ± 0.01) nm/min. After that time, the wavelength shift became slower 

and from 4 hours up to 7 hours, the change was of (3.0 ± 0.1) pm/min. The oven was then 

switched off and cooled down until it reached room temperature. 
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Figure 5.13 – Wavelength shift of the 51 µm long FP cavity for an annealing temperature of 900 °C. 

After being subjected to the annealing at such high temperature, the sample was 

tested to strain at different temperatures, following the same procedure as for the 70 µm 

long sensor. The results, presented in Fig. 5.14, show that in this case, the difference 

attained in the sensitivity when increasing and decreasing strain was not as notorious as 

in the previous experiments. The small difference at 900 °C can be due to the fact that the 

annealing was not fully performed. 

 



FCUP 

Fiber Sensing Based on New Structures and Post-Processing Enhancement 

92 

 

 

 

0 200 400 600 800 1000
1550

1552

1554

1556

1558
W

av
el

en
g

th
 (

n
m

)

Strain ()

Up

 Down

0 200 400 600 800 1000
1550

1552

1554

1556

1558

 

 

W
av

el
en

g
th

 (
n

m
)

Strain ()

 Up

 Down

0 200 400 600 800 1000
1550

1552

1554

1556

1558

 

 

W
av

el
en

g
th

 (
n

m
)

Strain ()

 Up

 Down

a)  T = 22 C b)  T = 750 C

c)  T = 850 C d)  T = 900 C

0 200 400 600 800 1000
1550

1552

1554

1556

1558

 

 

W
av

el
en

g
th

 (
n

m
)

Strain ()

Up

 Down

 
Figure 5.14 – Response of the 51 m long FP cavity to strain at different temperatures, after 7 hours of 

annealing, at 900 °C. Up and down stand for increasing and decreasing the applied strain, respectively. 

The sensitivities to strain at different temperatures are gathered in Fig. 5.15. In both 

sensors, regardless of having been annealed, the strain sensitivity decreased as 

temperature increased up to 600 °C, increasing once again afterwards. This effect can be 

attributed to two reasons: the non-linear variation of the silica thermal expansion as 

temperature arises [238], as well as the dependence of the photoelastic constant on 

temperature. The photoelastic constant is essentially determined by the Pockels 

coefficient, p12, which exhibits a maximum at 600 °C [239], translating into a minimum in 

the strain sensitivity. Nevertheless, the difference between applying strain and reducing 

it is much more significant when no annealing occurred. 
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Figure 5.15 – Dependence of the strain sensitivity at different temperatures: (a) without annealing and (b) 

with annealing. 
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The mechanical stability of this new silica tube design was compared to the one of a 

conventional silica tube by applying strain until rupture. Both cavities were fabricated 

under the same conditions. The conventional silica tube, whose cross-section is shown 

on the inset of Fig. 5.16, had a hollow core diameter of (57 ± 2) m, and a total cross-

section area of ~2550 m2. Regarding the new design, with the four rods, its hollow 

cross-section area was of ~5980 m2. Two sensors were fabricated with a length of 

~750 m. The sensor based on the silica tube without rods was able to measure strain up 

to 1500 , with a linear sensitivity of (1.95 ± 0.01) pm/(see Fig. 5.16). Regarding the 

sensor with the new silica tube design, it was possible to measure strain up to ~2500 , 

with a linear sensitivity of (3.39 ± 0.01) pm/. 
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Figure 5.16 – Sensors response to the applied strain until rupture. The insets show the cross-section 

photographs of the silica tube used as sensing element in each case. 

 The size of the hollow core area plays an important role in the sensitivity, along with 

the FP cavity length. Large hollow core areas and short cavity lengths translate into an 

enhancement of the sensitivity. This occurs due to a much reduced effective Young 

modulus of the hollow core structure associated with the smaller fraction of silica 

material in its cross-section. Therefore, most of the deformation occurs in the tube region 

and with a spatial rate that increases with the reduction of the tube length, therefore 

increasing the strain sensitivity.  Besides, the presence of the four rods constitute a 

reinforcement to the new structure, which shows favorable sensing properties both in 
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what concerns strain sensitivity and mechanical resilience, indicating its adequacy for 

application in harsh environments. 

5.4 Measuring Strain at High Temperatures (Part II): Fiber Bragg Gratings 

In this Section, a fiber Bragg grating (FBG) written in standard single mode fiber 

(SMF) is characterized in strain at different temperatures. The influence of the thermal 

annealing in the sensor response is also investigated. 

5.4.1 Sensor Design and Spectral Characteristics 

The FBGs used in this work were written in standard SMF using the point-by-point 

femtosecond laser technique. The devices were fabricated at the Aston Institute of 

Photonic Technology, in Birmingham, England. With such inscription technique, the 

laser beam is focused in the fiber core and due to its high power and very high repetition 

rate, as it moves along the fiber a local change in the core refractive index is induced (see 

Fig. 5.17). These structures are highly stable thermally, and can withstand temperatures 

above 1000 °C [234, 240]. The details regarding the inscription are included in the 

Appendix II.  

 
Figure 5.17 – Microscope photograph of a fiber Bragg grating written using the point-by-point femtosecond 

laser technique. 

The experimental setup used to characterize the devices, shown in Fig. 5.18, was 

constituted by a broadband optical source (bandwidth of 100 nm, centered at 1570 nm) 

and an optical spectrum analyzer (OSA), with a resolution of 0.01 nm. All readings were 

performed in transmission.  
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Figure 5.18 – Scheme of the experimental setup. OSA refers to the optical spectrum analyzer and FBG is the 

fiber Bragg grating (the scheme is not to scale). 

The two FBGs characterized in this work had a length of 5.7 mm. The FBG1 

presented a reflectivity of 94.23 %, a Bragg wavelength of 1550.42 nm and a full-width at 

half-maximum (FWHM) of ~0.33 nm. In its turn, the FBG2 had a reflectivity of 99.96%, 

the Bragg wavelength was of 1550.31 nm and the FWHM was of ~0.82 nm. The 

transmission spectra of both samples are shown in Fig. 5.19. 
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Figure 5.19 – Initial transmission spectra of the two fiber Bragg gratings (FBGs). 

5.4.2 Experimental Results 

The sensors were tested to strain at high temperatures as in the case of the FP cavity 

previously described. One sample, FBG1, was subjected to an annealing treatment prior 

to the strain measurements, while the other, FBG2, was tested without annealing. The 

FBG1 was placed inside a tubular oven, in a centered position and on the outside it was 

fixed to a supporting structure on one end and to a translation stage on the other end.  
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Figure 5.20 – FBG1 response to temperature. 

At this stage of the experiment, the fiber was kept straight but loose, without any 

tension applied. Temperature was increased up to 900 °C and the Bragg wavelength shift 

was measured as the oven heated. The response, shown in Fig. 5.20, exhibits a nonlinear 

behavior that can be approximated to the second order equation: 

      6 2 3( ) 3.5 0.1 10 11.5 0.1 10 1550.9 0.1 ,T T T           (5.1)  

where  is the wavelength, in nm, and T corresponds to the temperature, in °C. 

Once the oven reached 900 °C, it was kept at that temperature for ~7 hours, 

performing thermal annealing to the structure. The wavelength shift with time is 

presented in Fig. 5.21 (a). There is a higher increase in the Bragg wavelength in the first 

40 minutes, with a rate of (12.4 ± 0.1) pm/min. After the first two hours, this variation 

was smoother, and the shift rate decreased to (0.9 ± 0.1) pm/min. However, after 7 hours 

the wavelength did not stabilize, which might have influenced the results that followed. 

Besides the wavelength shift, the reflectivity of the FBG1 also changed during the 

annealing process. The behavior is shown in Fig. 5.21 (b). There was a higher decrease in 

the reflectivity in the first 40 minutes than from that moment on. However, the 

reflectivity only decreased 3.1% during the thermal annealing, a consequence of the 

thermally ultra-stable defects that arise from the interaction between the high intensity 

laser pulses and the glass matrix of the fiber core [241]. After an annealing time of 

7 hours, the oven was switched off and cooled down until it reached room temperature.  
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Figure 5.21 – FBG1 response to an annealing temperature of 900 °C. (a) Bragg wavelength shift with time and 

(b) Reflectivity variation with time. 

The sample was once again subjected to temperature variations in the same range. 

However, now the temperature increase was set to steps of 150 °C until 750 °C and of 

50 °C from 750 °C to 900 °C. At each temperature step the system was stabilized for 

~30 minutes and strain measurements were carried out, by increasing strain up to 

1000  and decreasing it back to its initial state. Figure 5.22 (a) shows the variation of 

the FBG1 strain sensitivity with temperature. The up curves are relative to the strain 

increase whereas the down curves correspond to the sensitivities obtained when 

decreasing strain. The sensor response was always linear, although the sensitivity 

changed slightly with temperature, as can be seen in Fig. 5.22 (a). For temperatures 

below 600 °C the sensitivity obtained when increasing and decreasing strain was nearly 

the same, of (1.2 ± 0.1) pm/. The small increase in the strain sensitivity observed at 

temperatures higher than 750 °C can be due to the fact the annealing has not been fully 

performed yet. In order to infer about the response of the grating structure without a 

prior thermal treatment, the FBG2 was also subjected to measurement of strain at high 

temperatures. The response, depicted in Fig. 5.22 (b) shows that at temperatures above 

750 °C the sensitivity had a pronounced increase when tension was applied (up curves). 

Besides, at this temperature range, the sensor response became non-linear, a 

consequence of the joint effect of annealing and the applied strain. However, when the 

strain was diminished (down curves), the sensor response was linear and nearly 

constant. This effect was also observed in the FP configuration, and is due to the change 

of the Young modulus, as well as the induced plasticity in the fiber at such high 

temperatures. 
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Figure 5.22 – Strain sensitivity variation with temperature (a) after annealing at 900 °C, FBG1, and (b) 

without annealing, FBG2. 

With this sensing structure it is possible to clearly observe the effects of subjecting 

the fiber to high temperatures, when compared to the FP configuration, since in this case 

there is only a peak to track, opposite to the interferometric behavior of the previous 

sensor. Figure 5.23 shows the evolution of the FBGs spectra, acquired at room 

temperature. There is the initial spectrum, taken before beginning the experiments 

(dotted curves), after annealing (only in the case of FBG1, the dashed curves) and after 

all measurements were performed (final spectrum, solid curve). The main parameters 

are also listed on Table 5.1, for a clear comparison between the results. In the case of 

FBG1 (Fig. 5.23 (a)), the major wavelength shift occurred during the annealing 

procedure. In this case, the wavelength shift was of 0.72 nm. The effect of applying strain 

at high temperatures after the thermal treatment induced a variation of 0.17 nm, 

translating into a total Bragg wavelength shift of 0.89 nm. 
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Figure 5.23 – Transmission spectra of (a) FBG1, before annealing (dotted curve), after annealing (dashed 

curve) and after strain at high temperatures (solid curve) and (b) FBG2, before (dotted curve) and after (solid 

curve) being subjected to strain at high temperatures.  
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On the other hand, the direct measurement of strain at high temperatures without 

any previous thermal treatment originated a Bragg wavelength shift of 1.24 nm. When 

strain and/or temperature are applied to a FBG, not only the grating period changes, but 

also the mean refractive index. However, the dominant parameter in the case of strain is 

the change in the grating period, whereas for temperature, it is the change in the 

refractive index.  Without the previous thermal treatment, the structure is not so stable 

(which was evidenced by the non-linear response to strain), translating into a higher 

shift in the transmission spectrum. The FWHM diminishes in both cases, being more 

pronounced when no thermal annealing was performed. Besides, the reflectivity also 

diminished slightly. 

Table 5.1 – Parameters of the FBGs at room temperature. The values were obtained through the optical 

transmission spectra, prior to any measurements (initial values), after 7 hours thermal annealing at 900 °C 

and after applying strain at different temperatures (final values). The total wavelength shift is relative to the 

beginning and end of the measurements. 

 Parameter FBG1 FBG2 

Initial values 

R (%) 94.23 99.96 

FWHM (nm) 0.33 0.82 

B1 (nm) 1550.42 1550.31 

After annealing 

R (%) 89.63 

No annealing FWHM (nm) 0.31 

B2 (nm) 1551.14 

Final values 

R (%) 89.40 99.84 

FWHM (nm) 0.29 0.65 

B3 (nm) 1551.31 1551.54 

Total wavelength 

shift 
=B3-B1 (nm) 0.89 1.24 

 

5.5 Final Remarks 

In this Chapter, three different configurations were proposed, one for the 

measurement of strain at room temperature and the other two for the measurement of 

strain at high temperatures. The first configuration was a Fabry-Perot (FP) cavity based 

on a hollow core photonic crystal fiber spliced between two sections of single mode fiber. 

The dependence of the strain sensitivity on the cavity length and with the total length 

was explored. It was found that smaller cavities and longer total lengths exhibit higher 
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sensitivities to strain. This configuration presented low sensitivity to temperature. This 

study was further developed by considering a different sensing element, based on a 

silica tube spliced between two sections of single mode fiber. Several samples were 

characterized in strain, and it was confirmed that the smaller the FP cavity length, the 

higher the sensitivity. The sensor showed low sensitivity to temperature, thus being a 

good candidate to perform strain measurements in high temperature environments. 

However, when strain was applied at temperatures higher than 750 °C, the sensitivity 

increased as the fiber was tensioned. When the fiber returned to its initial state, without 

strain applied, the sensitivity decreased to a value similar to the one found at lower 

temperatures. This difference was reduced through thermal annealing before subjecting 

the sensing head to strain at extreme conditions. Furthermore, the strain sensitivity 

decreased as temperature increased up to 600 °C, increasing once again for higher 

temperatures. This configuration was also compared to a FP cavity based on a 

conventional silica tube and presented not only higher strain sensitivity, but also better 

mechanical resilience. 

Fiber Bragg gratings written in standard single mode fiber were also characterized in 

strain at high temperatures. The fabrication process was determinant for the high 

thermal stability of the device, as it was produced using the point-by-point femtosecond 

laser technique. The Bragg wavelength shifted towards longer wavelengths and the 

reflectivity decreased slightly, independently of the annealing treatment. However, the 

sensor response became more stable after the annealing treatment, following the same 

trend as in the FP configuration.  
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6.1 Introduction 

The first works on optical fiber lasers were published in the 1960s by E. Snitzer [242]. 

However, it was only in 1993 that Kim et al. presented the first optical fiber laser as 

sensor with frequency read-out [243]. The Nd3+-doped fiber, used as the cavity active 

medium, was subjected to lateral stress variations that modified the fiber birefringence, 

thus changing the modal beat frequency. In the proposed configuration, two dichroic 

mirrors were employed to create the cavity. The employment of a Faraday rotating 

mirror was proposed by Park et al., for the measurement of magnetic-fields [244]. The 

use of such reflective element ensured the laser stability to strain and temperature 

variations.  

In the meantime, with the development of the fiber Bragg grating (FBG), the 

quintessentially wavelength filter, the external bulk mirrors fell into disuse. The FBGs 

were not only used as reflective elements, but also as sensing devices, thus combining 

the advantages of the fiber laser (such as high signal-to-noise ratio (SNR) and reduced 

linewidth) with the ability to perform active sensing, by exposing one mirror, or even the 

whole cavity, to the environmental changes to be measured.  

The most simple fiber laser sensor, and the one most explored by the scientific 

community, is the linear cavity, where the active medium (usually Er3+-doped fiber) is 

placed between two FBGs, constituting the distributed Bragg reflector (DBR) laser. The 

presence of a wavelength division multiplexer (WDM) enables the coupling of the 

980 nm pump light to the cavity [245]. This kind of configuration has been used to 

measure dynamic strain [246], temperature [247], ultrasound [248], liquid refractive 

index [249], gas pressure [250] and twist [251].  

Still considering the linear cavity configuration, it is possible to achieve laser action 

by using a single phase-shifted FBG [252]. This type of fiber laser is usually denoted as 

distributed feedback (DFB) laser, and it has been used for measurement of several 

physical parameters, such as pressure and force [252], simultaneous measurement of 

strain and temperature [253], or even acoustic signals [254]. 
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A different approach to the linear cavity is the fiber ring laser. In such cavity, the 

Er3+-doped fiber is incorporated in a loop. The pump is coupled to the ring cavity 

through a WDM and the output signal is detected by using an optical coupler. In a 

simpler configuration, a commercial erbium-doped fiber amplifier (EDFA) is placed in 

the loop. The wavelength filter can be a FBG placed outside the ring, connected through 

an optical circulator [255], a pair of long period gratings incorporated in the ring [256, 

257], a section of polarization maintaining (PM) PANDA fiber inside the ring [258] or 

even a phase-shifted chirped FBG [259]. The fiber ring laser has been applied in the 

measurement of pressure [260], bending and strain [256], vibration [255], and torsion 

[257]. When compared to the behavior linear cavities, the unidirectional travelling wave 

obtained in the ring configuration eliminates both the backscattering and the spatial-hole 

burning effects [261]. Thus, these cavities present good stability, flexibility, and are easy 

to manufacture [262].  

Going further in the ring configuration, if a non-amplifying loop is added to the 

amplifying loop through an optical coupler, a figure-of-eight configuration is obtained. 

In this case, the inclusion of an optical filter in the loop can be decisive in achieving good 

output stability [263]. The filter can be a PM fiber [261], a twin-core photonic crystal fiber 

(PCF) [264], or a triangular core PCF [265]. All these works have been proposed only for 

laser action, not for sensing. 

In this Chapter, two fiber sensors are proposed, one for torsion measurements and 

the other for strain sensing. The first sensor is based on a post-processed FBG. The device 

is subjected to strain measurements, where it exhibits an ultra-high sensitivity. Two 

different approaches are compared, for passive and active measurements. The second 

configuration consists on a figure-of-eight laser, whose interferometric filter, a PM PCF, 

also acts as the sensing element. In this case, the torsion can be applied over a range of 

180°.  
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6.2 Strain Sensor based on Post-Processed Fiber Bragg Grating 

The sensor developed in this work consisted on an etched fiber Bragg grating tip. 

The ultra-thin structure was characterized in strain and temperature. A theoretical model 

was used to better understand the device behavior. 

6.2.1 Theoretical Considerations 

The Bragg wavelength of a fiber Bragg grating (FBG) is determined by 2 ,
B eff

n    

where neff and  are, respectively, the effective refractive index of the propagating mode 

and the grating pitch [266]. When the FBG is subjected to axial strain, , its Bragg 

wavelength will shift according to Eq. 6.1: 

 (1 ) ,
B B e

p      (6.1)  

where pe is the photoelastic coefficient for silica, considered to be ≈0.22 [267]. In the case 

of a tapered FBG created by means of chemical etching, the cross-section area of the fiber 

changes with the position z, as exemplified in Fig. 6.1.  

 
Figure 6.1 – Scheme of a tapered FBG without strain applied (top) and under strain (bottom). Adapted from 

[268]. 

Considering a linearly tapered fiber, the radius across z is given by [268] 

 0

0

( ) 1 ,
z

r z r
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 
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where r0 is the original radius and z0 is the point along the z axis where the radius of the 

fiber becomes zero. The cross-section area comes also a function of z, according to Eq. 

6.3: 

  
22 2

0 0
( ) ( ) 1 .A z r z r z z     (6.3)  

When the fiber is under a tension force N, the strain along z can be determined 

through 

    
22

0 0

( ) ,
1

N N
z

EA z E r z z



 


 (6.4)  

where E is the Young modulus of silica. The strain at z = 0 is given by 

 2

0

(0) .
N

E r



  (6.5)  

Thus, substituting Eq. 6.5 in Eq. 6.4, one gets that 

 
 

2

0

(0)
( ) .

1
z

z z


 


 (6.6)  

When the fiber is under strain, the FBG pitch along the z axis becomes a function of 

the applied tension force, according to Eq. 6.7: 

 
 

0 0 2

0

(0)
( ) (1 ( )) ,

1 /
z z

z z



      


 (6.7)  

where 0 is the original pitch and 0
((0) 0)    is the change in the pitch at z = 0. The 

variation of the pitch along the FBG translates into a chirp of the spectrum. Besides, the 

distribution of strain is not constant in this case.  

The previous equations were used in a numerical simulation to better understand the 

consequences of having such a structure subjected to strain. Some assumptions were 

made, based on the etching behavior observed experimentally. The chemical etching was 

performed in the liquid phase; thus, there was an abrupt change of the fiber diameter at 

the interface between the un-etched and the etched regions. The decrease of the fiber 

cross-section area will induce a larger amount of strain throughout the etched region. 
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Considering that the whole structure is under the same amount of tension force, and 

using Eq. 6.5, it is possible to relate the strain applied to the un-etched structure to the 

one obtained at the etched region: 

 

2

2
,u u

u u e e e

e

r
A A

r


      (6.8)  

where the subscripts u and e designate the un-etched and etched fiber sections, 

respectively. Thus, considering fiber radii of 62.5 m and 10 m (r0), for the un-etched 

and etched fiber regions, respectively, and that the length of un-etched fiber is much 

larger than the length of etched fiber, when 10  are applied to the whole structure, the 

amount of strain at the beginning of the tapered region is determined to be ~390 . The 

other parameters considered for the numerical simulations were a reduction of the fiber 

radius by 10-3 m by unit length, meaning that z0 = 9×103 m. It was also considered that 

the FBG was located ~1.5 mm after the beginning of the tapered region, and had a length 

of 3 mm. Besides, three different values were considered for the strain applied to the 

whole structure: 10, 50 and 100 . The results obtained for the variation of the FBG pitch 

and for the strain along the taper length are shown in Fig. 6.2. The gray rectangle 

indicates where the FBG was positioned along the fiber. 
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Figure 6.2 – Numerical simulation of an etched FBG, considering three values of initial strain. (a) variation of 

the pitch with the length and (b) strain variation along the grating length. 

 

Figure 6.2 (a) presents the pitch variation along the z axis, for three different values 

of initial strain. A maximum increase of ~4 nm was attained, when the applied strain was 

100 . The dotted lines represented in the Figure are the expected variation of the FBG 

pitch if it was located in other regions of the taper. When the analysis is performed 
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considering the increase of strain as the taper becomes thinner, the values obtained are 

much more explanatory. In fact, according to the green curve in Fig. 6.2 (b), when the 

fiber is subjected to 10 , the strain in the tapered region, in z = 0 mm, is ~100 times 

higher. In this case, the applied strain only increases slightly with the taper length. 

However, when the applied strain is of 100 , the tension will be more than 5 times 

higher near the fiber tip than at the beginning of the taper. However, the strain 

experienced by the FBG increases over its length and, at its edge, the strain is twice the 

value determined at its beginning. Thus, although the whole structure is only strained by 

100 , the tapered region is locally strained up to 20000 , an impressive amount of 

strain for such a thin structure.  

The variation of strain along the FBG length, and its induced broadening of the 

grating pitch translate into a chirped spectrum, which broadens as strain is applied, as a 

consequence of an increase in the pitch difference between the beginning and the end of 

the FBG. Besides, this sensor is expected to be more sensitive to the applied strain than a 

standard, un-etched FBG, due to the unusual distribution of strain throughout the 

structure. 

6.2.2 Sensor Design and Spectral Characteristics 

The first step to produce the sensor consisted of writing the FBG in a photosensitive 

SMF, using a KrF excimer laser that operated at 248 nm and the phase-mask technique. 

The fiber, commercialized by the FBGS Company, had a core diameter of 5 m, a 

cladding diameter of 125 m and a numerical aperture of 0.26. The configuration for the 

gratings inscription, described in Appendix III, was based on a Talbot interferometer. 

Since the fiber was photosensitive, there was no need for prior hydrogenation. The 

length of the FBG was of 3 mm. The second step consisted of cleaving the end section of 

the sensor, guaranteeing that there were ~2 mm of SMF with no inscription between the 

FBG and the fiber end. Since the core of the fiber was Ge-doped, the etching rate in this 

region was higher than that of the cladding. Thus, it was important to ensure that the 

acid did not reach the core area with the FBG. The following step was to submerge the 

fiber tip in a 40%-hydrofluoric acid (HF) solution for around one hour, at room 
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temperature, thus obtaining a very thin fiber tip, with a thickness lower than 10 m. The 

chemical reactions involved in this step are [81] 

 
2 2 2 6

2

2 3 6

6 2 ,

6 2 .

SiO HF H O H SiF

GeO HF H O GeF 

  

  
 (6.9)  

The chemical etching in the liquid medium favored the formation of a linearly 

tapered fiber tip, with a small diameter slope over the etched tip length. If the etching 

were performed in gas medium, a sharp conic-shaped tip would be expected [226]. 

Figure 6.3 (a) shows the reduction of the cladding diameter as a function of time. From 

the linear relationship between these two parameters, it is possible to estimate the 

etching rate to be ~(115 ± 1) m/h. Fig. 6.3. (b)-(d) show microscope images of the fiber at 

different etching times. On Fig. 6.3 (b), the fiber was submerged for ~30 min and the 

cladding diameter was of (65 ± 2) m. Notice the conical shape of the inner region, that 

corroborates the assumption that the etching will be faster in the core than in the 

cladding. After ~55 min, the outer diameter was of (18.2 ± 2) m (Fig. 6.3 (c)). Finally, 

after a time of ~61 min, the diameter was reduced to (8 ± 2) m.  
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Figure 6.3 – (a) Cladding diameter variation with the chemical etching time. Also shown microscope images 

of the fiber tip after etching times of (b) ~30 min, (c) ~55 min and (d) ~61 min. 

Throughout this time, there was a reduction of the length of the fiber; however, it did 

not reach the FBG inscription area, as evidenced by the reflection spectra, taken at 

different time steps (0, 30, 55 and 61 min), shown in Fig. 6.4. The Bragg wavelength shifts 

towards blue and, as the fiber diameter decreases below 10 m, this shift becomes more 

b) 

c) 

d) 
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pronounced. As the fiber becomes thinner, the evanescent field becomes more exposed 

to the environment, decreasing the effective refractive index of the fundamental mode 

[269]. Besides, the full-width at half-maximum (FWHM) also increases significantly at 

this point. This chirp effect is due to the conic shape acquired by the fiber tip during the 

etching, as discussed in Section 6.2.1. Several FBG etched tips were produced as 

described and all presented identical properties.  
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Figure 6.4 – Reflection spectra of the FBG at different etching times. 

6.2.3 Passive Configuration 

One FBG etched tip sample was tested for the measurement of strain and 

temperature, using the experimental setup shown in Fig. 6.5. The optical source had a 

bandwidth of 100 nm, centered at 1570 nm. Regarding the optical spectrum analyzer 

(OSA), the resolution used was 0.01 nm. An optical circulator connected these two 

components and the etched tip, as depicted in the Figure.  

Optical Source Optical Circulator

Etched FBG

OSA

 
Figure 6.5 – Scheme of the experimental setup. 
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To perform strain measurements, the tip was placed in a translation stage with a 

resolution of 0.01 mm. In Fig. 6.6, the spectra of the grating with no strain applied and 

with a strain of 93  are shown. Two different effects arise when strain is applied: the 

Bragg wavelength shifts and the spectrum broadens. This behavior is in agreement with 

the theoretical considerations given in Section 6.2.1. Since the sensor has a conical shape, 

the stress is not constant throughout its length. This translates in the elongation of the 

FBG periods, with a consequent widening of the range of wavelengths filtered.   
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Figure 6.6 – Spectra of the etched FBG tip when no strain is applied (blue line) and with 93  (pink line). 

The strain analysis can be done from different points of view, considering the 

wavelength shift of the whole spectrum (measured at 3 dB), the changes in the FWHM of 

the spectrum, or even by tracking one single peak. In the first case, a linear sensitivity of 

(104.7 ± 1.1) pm/ was achieved, as presented in Fig. 6.7 (a). This indicates that it is 

possible to improve ~100 times the sensitivity of a standard FBG with the proposed 

configuration [267]. If one considers the variation of the FWHM, shown in Fig. 6.7 (b), 

the experimental data are also well adjusted by a linear fitting. In this case, the sensitivity 

obtained was (61.7 ± 1.7) pm/.  

A different analysis was performed by considering the peak identified as P1 in Fig. 

6.6. The response, also shown in Fig. 6.7 (a), was likewise linear and a sensitivity of 

(127.3 ± 2.4) pm/ was determined through the linear fitting. The increase of sensitivity 

in this case was mainly due to the fact that the wavelength of operation was longer than 
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the one obtained for the full spectrum analysis and that in the region considered the fiber 

was thinner, thus subjected to a higher amount of strain, as predicted by the theoretical 

analysis. The reason why the sample was only subjected to 100 , besides the high 

increase of strain over the sensing element, was the intention of comparing the sensing 

head behavior in different situations. However, with this configuration it is quite a 

challenge to measure high strain ranges. With only 100 , there was a shift of ~10 nm on 

the Bragg wavelength. This means that if the applied strain was higher than 600 , the 

Bragg wavelength would be outside the source spectrum. Besides, with the broadening 

of the FWHM it would become more difficult to track the changes of the Bragg 

wavelength. Thus, this ultra-sensitive configuration is only suitable for applications 

where small strain changes take place.  
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Figure 6.7 – Response of the etched FBG tip to the applied strain by monitoring (a) the wavelength at 3 dB 

(solid black dots) and the peak P1 wavelength (green dots) and (b) the full-width at half-maximum (FWHM). 

To perform the temperature measurements, the fiber tip was carefully removed from 

the translation stage and introduced in a tubular oven, which presented a temperature 

resolution of 0.1 °C. The sensor exhibited the same response of a typical un-etched FBG, 

with a linear sensitivity of (9.4 ± 0.3) pm/°C (see Fig. 6.8).  

In this case no broadening of the spectra was observed, only a shift of the Bragg 

wavelength. Thus, by taking into account this effect due to temperature and the FWHM 

changes due to strain; it is possible to use this sensing tip to perform simultaneous 

measurement of temperature and strain. 
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Figure 6.8 – Sensor response to temperature. 

6.2.4 Active Configuration 

The broadening of the FWHM can make the monitoring of the sensor response to 

strain difficult. This limitation can be overcome by incorporating the sensing tip in a 

fiber ring laser configuration, such as the one presented in Fig. 6.9. An erbium-doped 

fiber amplifier (EDFA) was connected between an optical circulator and an 80/20 optical 

coupler. To close the loop, a connection was made between the optical circulator and the 

optical coupler. The 20% port of this device was connected to the data acquisition 

system, whereas the 80% arm was connected to the input port of the EDFA. The fiber 

with the etched FBG tip was connected to the optical circulator and the readings were 

performed in reflection. Two different kinds of equipment were used to acquire the 

signal, depending on the type of measurement. Thus, for reading optical power 

variations, a powermeter was used (with a maximum resolution of 0.01 nW); and for 

spectral monitoring, an OSA with a resolution of 0.01 nm was employed. 

80/20 
Coupler Etched FBG

EDFA
Acquisition 

system

 
Figure 6.9 – Scheme of the experimental setup. EDFA is the erbium doped fiber amplifier and FBG stands for 

fiber Bragg grating. 
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The fiber laser sensor output power dependence on the EDFA pump power is shown 

in Fig. 6.10. The laser exhibited a threshold power of (5.48 ± 0.05) mW and a slope 

efficiency of (6.8 ± 0.1)%. Besides, the signal-to-noise ratio (SNR) of this device was above 

50 dB. The stability of the laser cavity was analyzed by measuring the output power over 

60 minutes, under a constant input power of 50 mW. Throughout this time, a fluctuation 

of only 0.11 mW was observed and the emission was quite stable, as can be seen by the 

purple line in Fig. 6.10. 
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Figure 6.10 – Laser output power as a function of the pump power. The laser stability for a constant pump 

power of 50 mW, over 60 min is also shown (purple line). 

Strain measurements were performed once again, using the same translation stage as 

in the previous configuration. Fig. 6.11 presents the laser emission curves for different 

strain values, the first peak (black line) corresponding to 0 . The laser was emitting at 

1558.4 nm, which corresponds to the lower wavelength region of the chirped spectrum 

(see Fig. 6.11). Since the chirp increases for longer wavelengths and the sensitivity of the 

FBG also depends on this parameter, this active sensor is expected to be less sensitive 

than the passive one, explored in the previous configuration. Nevertheless, with the 

proper tuning of the lasing wavelength, higher sensitivities could be achievable. The 

inset in Fig. 6.11 (a) shows the dependence of the integrated power, measured with the 

powermeter, on the applied strain. There is a pronounced decrease in the optical power 

with increased strain which is due to the decrease in the gain of the EDFA in this range. 

In fact, this is one of the major limitations of this sensing head, since above 100  the 
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filter was placed out of the EDFA gain range and there was no laser emission. However, 

there was no apparent broadening of the laser peak, whose FWHM was limited by the 

OSA resolution (0.01 nm). 

The wavelength variation with the applied strain is represented in Fig. 6.11 (b), for 

the case of the etched FBG tip (solid black lines) and for a non-etched FBG (purple 

hollow circles). The non-etched FBG, with B = 1551.07 nm, was subjected to the same 

experimental conditions as the etched one, for comparison purposes. As expected, the 

non-etched FBG presented a linear sensitivity of (1.1 ± 0.1) pm/, whilst the etched FBG 

tip exhibited a linear sensitivity of (74.4 ± 1.2) pm/. It should be highlighted that 

throughout the experiments the laser did not suffer from mode hopping. 
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Figure 6.11 – Response of the laser to the applied strain, regarding (a) the spectral variation and (b) the 

wavelength shift. The inset represents the integrated power as a function of the applied strain. 

The strain resolution of this sensor was evaluated by monitoring the emission peak 

wavelength over 30 seconds, for a constant strain value. Then, strain was increased by a 

step of 11.61  and the measurement was repeated (see Fig. 6.12). Thus, the minimum 

value of strain, that the sensor is able to discriminate is given by [270]:  

 2 ,
 








 (6.10)  

where is the maximum standard deviation of  for both values of strain, and  and 

 are the variation of strain and the mean wavelength shift between the two steps, 

respectively. This parameter was determined to be ~0.83 nm, and the maximum standard 
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deviation was of 0.01 nm. Thus, by applying Eq. 6.10, one gets a resolution of 280 n. 

This value was mainly limited by the signal acquisition system resolution. 
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Figure 6.12 – Step technique to estimate the resolution of the fiber laser strain sensor. 

6.3 Torsion Sensor based on Figure-of-Eight Fiber Laser 

In this work, a figure-of-eight fiber laser is explored for torsion measurements. A 

section of polarization maintaining photonic crystal fiber acts both as interferometric 

filter and sensing element. 

6.3.1 Working Principle 

The figure-of-eight fiber laser sensor developed in this work was obtained according 

to the scheme depicted in Fig. 6.13. One of the loops was constituted by a pump laser 

diode emitting at 980 nm, a 980/1550 nm wavelength division multiplexer (WDM), an 

optical isolator, a 90:10 optical coupler and an optical spectrum analyzer (OSA), with a 

resolution of 0.01 nm, to perform the readings. In between the WDM and the optical 

isolator, a section of Er3+-doped fiber (about 800 mm long) was inserted to provide the 

gain.  

The concentrations of erbium and aluminum ions in the active fiber were of 

1000 ppm and 10000 ppm, respectively. The numerical aperture of this fiber was 0.27, its 

core had a diameter of ~5 m, and it presented a step index profile. The other fiber loop 
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included a polarization controller (PC) and the interferometric filter described in the 

following Section. 

Er3+-doped Fiber

Optical 
Isolator

Sensing 
Head

(PM PCF)

WDM

50:50 
Coupler

PC

Pump 
Laser

90:10 
CouplerOSA

 
Figure 6.13 – Scheme of the figure-of-eight fiber laser. WDM stands for wavelength division multiplexer, PC 

is the polarization controller and OSA corresponds to the optical spectrum analyzer. 

Using the appropriate pump power, the gain medium emits in the 1525-1560 nm 

region, according to the erbium spontaneous emission curve [271]. Light from the 

amplifier section will enter the loop on the right via the 50:50 coupler. The optical 

isolator is placed between the Er3+-doped fiber and the optical coupler to prevent the 

return of light through this arm. The coupler splits the incoming light into two guided 

waves propagating in opposite directions: one wave will travel in the clockwise 

direction, with a certain velocity and polarization state; the other wave will propagate in 

the counter-clockwise direction, with a different velocity and polarization state. When 

they reach the coupler, the two beams interfere and a periodic spectrum is obtained. The 

sensing element, a polarization maintaining photonic crystal fiber (PM PCF), acts as an 

interferometric filter, selecting the wavelength at which laser emission will occur. Such 

selection results from the combination of two different aspects: the maximum 

transmission power of the filter and the region where the spontaneous emission gain is 

higher. Thus, the laser is expected to emit around 1530 nm. Depending on the 

polarization of lights travelling inside this loop, one or more lasing peaks were observed. 

However, all measurements were carried out with the emission of a single laser peak. 

The light that is recoupled at the 50:50 coupler is then redirected to the amplification 

loop, where a 90:10 coupler is introduced, to obtain the readings from the OSA. 
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6.3.2 Sensor Design and Spectral Characteristics 

The sensing element used to perform the torsion measurements was an 

interferometric filter based on a PM PCF whose cross-section is shown in Fig. 6.14 (a). 

The fiber used is commercially available (PM-1550-01 from Thorlabs, Inc.) and presents a 

pure silica core and cladding. The fiber contains two large holes, with a diameter of 

4.5 m, and 82 smaller holes, with a diameter of 2.2 m. The core, placed between the 

two larger holes, presents dimensions of 6.6/4.3 m and the outer cladding has a 

diameter of 125 m [272]. The characteristics of this fiber ensure a high birefringence, 

that beat length is lower than 4 mm and an attenuation < 2dB/km. 
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Figure 6.14 – (a) Microscopic photograph of the polarization-maintaining photonic crystal fiber used as 

sensing element. (b) Transmission spectrum of the sensor. 

The channeled spectrum shown in Fig. 6.14 (b) was obtained by removing the 

amplification loop (the loop on the left on Fig. 6.13) and connecting one of the 50:50 

coupler arms to the broadband optical source (bandwidth of 100 nm, centered at 

1570 nm) and the other arm to the OSA, in a Sagnac configuration. The properties of the 

interferometric filter are gathered in Table 6.1. The channel spacing was determined by 

calculating the distance between two maxima, in the frequency domain. Regarding the 

channel passband and the full-width at half-maximum (FWHM), the two parameters are 

relative to the same concept, i.e., the peak full width at half the maximum optical power. 

The former is in the frequency domain, whereas the last is in the wavelength domain. 

 

a) 
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Table 6.1 – Properties of the interferometric filter. 

 Average Value 

FWHM (nm) 1.72 

Channel Spacing (THz) 0.43 

Channel Passband (THz) 0.17 

6.3.3 Experimental Results 

The response of the laser optical power to the pump diode drive-in current is shown 

in Fig. 6.15. The current threshold was estimated to be (145.7 ± 5.2) mA and a maximum 

output power of (7.9 ± 0.1) W was achieved for a drive-in current of (229.7 ± 0.1) mA. 

 

Figure 6.15 – Optical power variations with the drive-in current. 

In order to perform torsion measurements, one side of the sensor was introduced in 

a torsion stage, which had a resolution of 0.5°, while the other side was kept fixed. It was 

found that both the amplitude and the central wavelength of the laser peak shifted as 

torsion was applied, for both negative and positive angles. This behavior, illustrated in 

Fig. 6.16 (a), was due to the rotation of the PM PCF cores.  

Starting from 0°, the peak shifted towards longer wavelengths as the torsion angles 

increased (red shift). Accordingly, by decreasing the angles from 0° to -90°, the laser 

peak shifted towards shorter wavelengths (blue shift). The laser will emit in a 

wavelength that corresponds to the maximum response from the combination of the 

erbium fiber gain curve and of the interferometric filter function, as shown in 

Fig. 6.16 (b). 
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Figure 6.16 – (a) Variation of the laser emission with the applied torsion and (b) interferometric filter 

spectrum (blue line) and laser spectrum (pink line). 

The response of the laser peak wavelength to the applied torsion angle is shown in 

Fig. 6.17 (a). The experimental data presented a linear behavior in this range, which led 

to a sensitivity of –(7.13 ± 0.05) pm/degree. The analysis could also have been done 

considering the variations of optical power, since the laser emission power varies 

depending on its wavelength vs. the interferometric filter response. Thus, when the 

wavelength corresponds to a maximum of the interferometric filter spectrum, a 

maximum also occurs in the laser peak emission, following the same trend as the filter 

itself. As the torsion is applied, besides the wavelength shift of the interferometric filter 

pattern, there is an increase on the filter transmission losses, which is responsible for the 

decrease in the laser peak power. Eventually, the losses become higher than the gain and 

the laser ceases to emit (black, blue and green curves in Fig. 6.16. (a)). 
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Figure 6.17 – Laser peak wavelength dependence on the applied (a) torsion angle and (b) strain. 

Using the same active configuration, the interferometric filter was attached to a 

translation stage, with a resolution of 0.01 mm, and strain measurements were carried 
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out over a range of 1000 . The results, depicted in Fig. 6.17 (b), follow a linear trend. 

From the fitting, a sensitivity of only (0.30 ± 0.06) pm/ was obtained. Besides, it has 

been reported in the literature that this fiber has a very low sensitivity to temperature 

(~0.3 pm/°C) [272], meaning that with this configuration it is possible to perform strain 

and temperature independent torsion measurements. 

6.3.4 Final Remarks 

In this Chapter two different fiber lasers were proposed to be applied as sensors. The 

first configuration was based on a post-processed fiber Bragg grating tip. The sensor was 

firstly characterized as a passive element, where ultra-high strain sensitivity was 

obtained. Three different approaches were considered for signal processing: one 

regarding the full-width at half maximum variation with the applied strain; the other 

regarding the wavelength variation of the whole spectrum, measured at 3 dB; and the 

third one consisted of tracking one single peak, where an outstanding sensitivity of 

(127.3 ± 2.4) pm/ was achieved. The sensor was also tested in temperature, where it 

exhibited a sensitivity similar to the one of a non-etched fiber Bragg grating. However, 

the signal processing of this passive sensor is more complex if a commercial 

interrogation system is used. When incorporated in a fiber laser, the laser peak varied 

not only in wavelength, but also in integrated power, following the EDFA gain curve. In 

fact, this was one of the major drawbacks of this configuration, as it is only suitable to be 

used in small strain ranges. However, the peak did not broaden with strain and the laser 

did not suffer from mode hopping. Nevertheless, this sensor presents a very high signal-

to-noise ratio, being very suitable for applications in remote sensing, and it can also be 

useful as vibration sensor. It is also possible to use the laser strain sensor with 

temperature independence, if the optical power variations are considered instead of 

wavelength variations. 

The second configuration consisted of a figure-of-eight fiber laser and had a section of 

polarization maintaining photonic crystal fiber which acted simultaneously as an 

interferometric filter and the sensing element. The active sensor was subjected to torsion 

measurements, and both the peak laser wavelength and the optical power changed over 
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a range of 180°. Since the filter presents low sensitivity to strain and temperature, in 

addition to its low cost, ease of fabrication and reliable results, it proves to be a good 

choice for performing torsion measurements. 
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7.1 Introduction 

The incorporation of microspheres in optical fiber-based configurations has attracted 

great attention over the last two decades. The microspheres, due to their physical 

characteristics and when successfully excited, can be used in a wide variety of practical 

applications, from sensing to lasing or even tight focusing of light, as it shall be seen 

next. 

Two different mechanisms have been established to explain the propagation of light 

in microspheres. Under appropriate excitation conditions, they can provide periodical 

resonances in the transmission spectrum with very high Q-factors3 and low transmission 

losses [273]. In this mechanism, based on the whispering gallery modes (WGMs), the 

light coupled to the microsphere is trapped and propagates in circular orbits close to the 

surface [274]. To produce the WGMs, it is necessary to couple the evanescent field 

adequately to and from the microsphere. When several microspheres form a linear chain, 

besides the tight binding of the WGMs, focusing of light is produced by each 

microsphere. The focused spot is designated by photonic nanojet and has an elongated 

shape and sub-wavelength lateral size. The nanojets present in a chain of microspheres 

produce periodic modes, called nanojet induced modes (NIMs) [275]. In long chains of 

microspheres (>10), the NIMs are the dominant effect [276]. However, the microspheres 

must display diameters and refractive indices that enable focusing of light at the shadow 

surface of the spheres, to ensure the presence of such NIMs.  

There are currently several techniques to produce microspheres. The first 

microspheres produced on a fiber tip were reported in 1973 by Kato and co-workers 

[277]. A hydrogen-oxygen microtorch was used and microspheres with a maximum 

diameter of 250 m were proposed to couple light from a laser into the fiber. A couple of 

years later, Paek et al. suggested the use of a CO2 laser to produce the hemispherical lens 

                                                      

3 The quality-factor, or Q-factor, is given by Q    , where  is the wavelength at which the 

resonance occurs and  corresponds to the linewidth of the resonant wavelength. The microsphere-based 

resonators can present Q-factors up to 1011 [273]. 
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at the fiber tip [278]. Since then, and besides the CO2 laser technique [279, 280], different 

methods have been reported, like flame fusing [274, 281], chemical etching prior to the 

CO2 laser [282, 283], or by using a fusion splicer [284-286]. When the microspheres are 

intended to be used as laser cavities, the deposition of the active medium, by sol-gel or 

dip-coating techniques, is also employed. The deposition of a polymer at the tapered 

fiber tip also formed a spherical cavity, used for thermal sensing [287]. The simultaneous 

production of several Er3+-doped microspheres was reported by Klitzing et al., by using a 

microwave plasma torch [288]. A similar result can be obtained by using an electric 

vertical furnace [289-291]. More recently, the microspheres described in the literature 

became commercially available. These structures present extremely reduced dimensions 

(can be smaller than 10 m) and are made of a wide variety of materials [275, 292, 293]. 

In systems with one microsphere, effective coupling of light to the micro-resonator is 

very important to ensure the desired high-Q WGMs. The first works reported the use of 

a prism to launch light onto the microsphere and to collect it to an interrogation system 

[294-296]. Successful coupling between a side-polished optical fiber and a microsphere 

was reported in 1995 [297, 298]. A couple of years later, Knight et al. used a fiber taper to 

excite the WGMs [274]. In a different approach, Ilchenko et al. placed a microsphere on 

top of an angle polished fiber tip [299]. Among these designs, the most popular and still 

currently used one is the fiber taper-based configuration. It is easy to manufacture, to 

handle and can provide very good conditions to study different types of interactions 

from single-atom detection [300] to optomechanics [301, 302]. More recently, a new 

scheme to excite WGMs has been proposed with the microspheres incorporated inside a 

microstructured optical fiber [293], and inside a microtube [303]. In both configurations, 

the input and/or the output sub-systems were located outside the fiber, requiring bulk 

optics to perform the measurements. In a different perspective, Wang et al. proposed the 

use of a thin wall capillary coupler to excite and interrogate the WGMs [304]. 

The configurations based on WGMs have been used as optical fiber sensors with 

applications in biosensing [305], temperature sensing [306] and radiation pressure [307], 

among others. Additionally, when doped with lanthanide elements, the microspheres 
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can be used as micro-lasers, where large free-spectral range and single mode operation 

are easily achievable [302]. 

Regarding the propagation of photonic nanojet induced modes, it has been 

theoretically and experimentally demonstrated using polystyrene [275, 276, 308] and 

sapphire [309] microspheres. Both materials present high refractive index, which when 

combined with appropriate dimensions and an optical source in the UV-VIS region 

allowed the transmission of light along chains of microspheres (more than 80 

microspheres) [276]. These chains display very low propagation losses and the focusing 

properties show great potential for different applications, such as microprobes for 

biomedical optical spectroscopy [276], ophthalmic laser surgery [292], or enhancement of 

Raman scattering [310]. When the transmission spectrum is acquired, Fabry-Perot-like 

fringes are observed, even in the case of a high number of microspheres [276].  

In this Chapter, two different approaches are presented for optical fiber sensing. The 

first one is a Mach-Zehnder type interferometer constituted by an array of microspheres 

produced in standard single mode fiber. Several samples are fabricated by splicing 

microspheres in series and producing an array. In this case, the light propagation occurs 

inside the whole structure. The second approach consists of a Fabry-Perot interferometer 

obtained by introducing microspheres inside a hollow-core silica tube. The sensing head 

is tested in temperature after inserting each microsphere. 

7.2 Silica Microspheres Array Sensor 

The sensing structure explored in this Section is based on an array of microspheres 

manufactured using a commercial splicing machine and incorporated in a standard 

single mode fiber (SMF). The sensors were tested in strain and temperature. 

7.2.1 Theoretical Considerations 

The dimensions of the microspheres here considered are much larger than the 

wavelength of the optical source, thus, geometrical optics can be used to explain the 

structure behavior, in a first approximation [209].  The optical path difference of light 
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travelling in the microspheres gives rise to an interferometric behavior, and to 

understand its basic characteristics a ray-tracing analysis was employed using the 

ZEMAX SE optical design software. The microspheres were simulated as ball lenses of 

fused silica, with refractive index 1.44402 at 1550 nm. It was also considered that the 

object numerical aperture was the same as in the SMF, translating in the divergence of 

the beam observed in Fig. 7.1. The simulations were performed as a first approach and 

did not take the polarization of light into account. Due to the broadening of the fiber in 

the region close to the first microsphere, the light seems to exit a point-like source (core 

of the SMF fiber) located before the microsphere (point f1 in Fig. 7.1). As light passes 

through the first microsphere, the beam will diverge, whereas in the second 

microsphere, there will be a convergence of the beam. For the case of the 2-microspheres 

sensor, light will be recoupled in the SMF core region. Thus, an interference pattern 

obtained in transmission (discussed in Section 7.3.2) will be due to the optical path 

difference of light that travels from point f1, associated with the first microsphere, to the 

exit fiber core connected to the second microsphere. Therefore, as illustrated in 

Fig. 7.1 (a), a Mach-Zehnder type interferometric pattern is to be expected. 

 
Figure 7.1 – Microspheres array sensors modeling using ZEMAX SE, considering (a) 2 microspheres, (b) 3 

microspheres, (c) 4 microspheres and (d) 5 microspheres. The focal points f1, f2 and f3 for each configuration 

are also shown (when applicable). 

With the addition of a third microsphere the light will converge on its inside, at a 

point indicated by f2 in Fig. 7.1 (b - d). Notice, in Fig. 7.1 (b), that there is further 

divergence of the beam after f2. Nevertheless, it will not have much influence on the 

power coupling to the output SMF since it is very close to the edge of the microsphere. 
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However, when a fourth microsphere is introduced, the beam will broaden once more, 

originating some change on the amount of optical power that propagates down the exit 

fiber. The inclusion of a fifth microsphere translates into a convergence of the beam 

inside the third microsphere (f2), and divergence once again between the third and fourth 

microspheres. Close to the edge of the fifth microsphere, convergence will occur once 

again, at the point indicated by f3. The three points, f1, f2 and f3, are associated with light 

focusing, therefore can be identified as focal points. 

7.2.2 Sensor Design and Spectral Characteristics 

The first step to make the proposed sensor consisted of the fabrication of the 

microspheres at the tip of a SMF, using a splicing machine (FITEL S182PM) in the 

manual program. The arc power was 110 arb. units (pre-defined by the manufacturer), 

the pre-fuse time was 240 ms and the arc duration was of 2000 ms. The high power of the 

electric arc discharge was transferred to the fiber tip, which partially melted. The fiber 

acquired a spherical shape due to surface tension. 

The fiber was firstly cleaved and inserted in the splice machine. It was then moved 

forward ~125 m, ensuring that the arc discharge occurred in the SMF region. The 

arrows represented in the first photograph of Fig. 7.2 illustrate the position of the 

electrodes relative to the fiber. After each arc discharge a photograph was taken for 

posterior analysis. The first eleven results are shown in Fig. 7.2. 

          

          

          
Figure 7.2 – Microphotographs of the microspheres manufactured using the splicing machine. Each photo 

was taken after one electric arc discharge. 

The microsphere diameter was estimated from the microscope images, with a 

measurement uncertainty of ± 3 m, and its evolution is depicted in Fig. 7.3. The 
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measurement was carried out perpendicularly to the SMF length. The growth is stronger 

at the beginning of the fabrication (first seven arc discharges). From that point on, the 

diameter increase becomes less pronounced, as can be verified in Figure. With this 

fabrication method, after a certain amount of electric discharges, the microsphere growth 

tends to stabilize. A final diameter of ~240 m was attained, after 18 electric discharges. 

The sensing structures developed present a mean diameter of ~230 m. 
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Figure 7.3 – Dependence of the sphere diameter on the number of electric arc discharges. 

Four different structures were produced by connecting from 2 up to 5 microspheres 

in series. The microscope images of each sensor are shown in the insets of Fig. 7.4. The 2-

microspheres sensor, shown in the inset of Fig. 7.4 (a), was fabricated by fusion splicing 

two microspheres that were produced separately. This fusion was done using the same 

program of the splicing machine, with the two microspheres aligned, and a total of 5 

electric arc discharges were applied to ensure the mechanical stability of the sensor 

without collapsing the two microspheres. The procedure to fabricate the other sensors 

was similar. First, the microspheres were produced separately. Afterwards, two 

microspheres were fusion spliced as previously described. A cleave was then made after 

the second microsphere. This intermediate structure was placed once again in the 

splicing machine and a few electric arc discharges were applied to re-shape it into the 

two spherical shapes required. This structure was then spliced to a third microsphere 

fiber tip, completing the 3-microspheres sensor. The previous steps were repeated to 

produce the 4- and 5-microspheres samples. 



FCUP 

Fiber Sensing Based on New Structures and Post-Processing Enhancement 

131 

 

 

 

The sensors spectral response was obtained by connecting the sample between a 

broadband optical source and an optical spectrum analyzer (OSA), in a typical 

transmission setup. The optical source had a bandwidth of 50 nm and it was centered at 

1550 nm. The transmission readings were done with a resolution of 0.2 nm. The 

spectrum of each sensor is shown in Fig. 7.4. The interferometric behavior obtained was 

due to the optical-path difference of light travelling inside the microspheres, as 

considered in Section 7.2.1. The channeled spectrum behavior obtained for the 2-

microspheres sensor resulted from a Mach-Zehnder type interferometer, consistent with 

the analysis previously described. When further microspheres are integrated into the 

chain, there are more possibilities for different propagation lengths from the input SMF 

to the output one. Therefore, additional waves are generated, with non-negligible 

amplitude, that add together with the two main waves, originating an interference 

pattern with an envelope modulation. This effect becomes more pronounced when the 

number of these additional waves increases as a consequence of cascading an increasing 

number of microspheres, resulting in a multi-wave interferometric behavior. 
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Figure 7.4 – Channeled spectra of light that exits the sensing heads with (a) 2 microspheres, (b) 3 

microspheres, (c) 4 microspheres and (d) 5 microspheres. 
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7.2.3 Experimental Results 

The sensors were held out in a support structure on one end and attached to a 

translation stage, with a resolution of 0.01 mm, on the other. Strain measurements were 

carried out over a range of 750 by tracking one of the peaks of the channeled 

spectrum. The response, shown in Fig. 7.5, was linear in all cases and the sensitivities 

obtained through the fitting curves are gathered in Table 7.1.  
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Figure 7.5 – Sensors response to applied strain. 

 

 

 

Table 7.1 – Strain sensitivity obtained for 

each sensor. 

No. of 

Microspheres 

Sensitivity 

(pm/) 

2 -0.87 ± 0.01 

3 -1.83 ± 0.05 

4 -0.44 ± 0.01 

5 -1.31 ± 0.04 
 

These results seem to indicate that the sensitivity is a function dependent on the 

number of microspheres being even or odd. However, in all cases, as strain was 

increased, a shift towards shorter wavelengths (blue shift) was noticed. This was a 

surprising result, considering that the normal tendency is to observe a red shift, since the 

interferometric path imbalance increases as the deformation gets larger. A preliminary 

explanation was oriented to admit the dominance of the elastooptic effect relatively to 

the change in the optical path (expansion effect [185]). However, the contact area 

between the microspheres is small, which means that the deformation in those regions 

may be substantial. Thus, the dominance of the elastooptic effect over the expansion 

component is unlikely to occur. Other mechanisms must be taken into account to explain 

the behavior observed, and so far there is no definite explanation.  

The sample with 3-microspheres was also tested against temperature variations. It 

was placed inside a tubular oven, in a centered position, and it was kept straight. 

Temperature measurements were carried out in a range of 200 °C, with a resolution of 
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0.1 °C. A linear behavior was observed, as depicted in Fig. 7.6, and a sensitivity of 

(18.4 ± 0.6) pm/°C was attained. The wavelength shift towards longer wavelengths 

indicates that the thermal expansion of the silica microspheres is the dominant effect. 

20 40 60 80 100 120 140 160 180 200
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
av

el
en

g
th

 S
h

if
t 

(n
m

)

Temperature (C)  
Figure 7.6 – Response of the 3-microspheres sample to temperature variation. 

7.3 Fabry-Perot based on Array of Soda-Lime Glass Microspheres 

The configuration discussed in this Section is based on an array of soda-lime glass 

microspheres incorporated inside a hollow core silica tube. The sensors are tested for 

temperature changes. 

7.3.1 Theoretical Considerations 

The microsphere dimensions are smaller than the ones presented in the previous 

configuration, however still large enough for the analysis to be within the limits of 

validity of geometrical optics. Considering the scheme presented in Fig. 7.7, the focal 

length, f, is measured from the center of the sphere, where the extensions of the entering 

and exiting ray meet [311]. This parameter is related to the refractive index of the sphere, 

n, and its radius, r, by Eq. 7.1: 

 .
2( 1)

rn
f

n



 (7.1)  

Considering the microsphere parameters given by the manufacturer, r = 26.34 m 

and n = 1.52, the focal length for the microspheres used in this work is 38.5 m. The back 
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focal length, bfl, is determined by the difference between the sphere radius and the focal 

length.  

 
(2 )

.
2( 1)

r n
bfl f r

n


  


 (7.2)  

In this case, bfl = 12.2 m. In order to have nanojet induced modes (NIMs), the bfl should 

be close to zero. This only happens when n = 2.  

n
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Figure 7.7 – Scheme of the ray tracing through a ball lens. Adapted from [311]. 

Under certain conditions, it is possible to obtain NIMs for microspheres with low 

refractive index [312, 313]. However, the lowest value reported was 1.68 RIU, which is 

still much higher than the refractive index of silica. 

7.3.2 Sensor Design and Spectral Characteristics 

The hollow core structure used to support the soda-lime glass microspheres was the 

same as in Section 5.3. The presence of the four rods increased slightly the electrostatic 

forces between the microspheres and the support structure, enabling a higher stability of 

the sensor.  

The sensing structure was fabricated by fusion splicing a section of hollow core silica 

tube with four rods to a SMF, using the manual program of the splicing machine. The 

fibers were positioned with a lateral offset relative to the electrodes to prevent the 

collapse of the hollow structure, following the same procedures as described in Section 

3.3.1. The support structure was cleaved to the desired length, of the order of several 

hundred micrometers, and it was attached to a vertical platform that was placed under a 
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5× magnifying lens. The microspheres were inserted, one by one, with the aid of a built 

on purpose fiber taper and a short section of a 30 m thick platinum wire. The 

microspheres used in the experiment were made of soda-lime glass, with an average 

diameter of (52.68 ± 0.90) m and a refractive index of 1.51-1.52 RIU. These parameters 

were supplied by the manufacturer, Whitehouse Scientific. 

The sensing structure was interrogated in a reflection setup constituted by a 

broadband optical source (bandwidth 100 nm, centered at 1570 nm), an OSA with a 

resolution of 0.1 nm, and an optical circulator, according to the scheme in Fig. 7.8. 

Optical Source Optical Circulator

FP cavity

Splice

OSA

 
Figure 7.8 – Scheme of the experimental setup. 

The reflection spectrum obtained from the support structure, without microspheres, 

is shown in Fig. 7.9 (a). There is an interferometric behavior with very low visibility, 

~1%. The interference has the same origin as in other similar configurations previously 

studied (see Chapter 3). The first reflection occurs at the SMF/silica tube interface. Some 

of the light is transferred to the silica tube and a second reflection occurs at its end face. 

This light is recoupled once again at the SMF. When a first microsphere is placed inside 

the silica tube the visibility increases to 62.3 % (see Fig. 7.9 (b)). A two-wave 

interferometric behavior is spectrally observed. In this case, light exiting the SMF will 

interact with the microsphere and the reflections occurring at the SMF/microsphere and 

microsphere/air interfaces constitute the two FP cavity mirrors. From the spectrum it is 

possible to confirm this statement, as for an effective refractive index of 1.51 RIU and 

considering the wavelength of two adjacent peaks (e.g. 1546.9 nm and 1561.9 nm), the 
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cavity length is LFP = 53.4 m, which is in  good agreement with the microspheres 

diameter value supplied by the manufacturer.  
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Figure 7.9 – (left) Spectra of the sensing heads tested. (right) Microphotographs of the characterized sensors. 

The alignment of the microspheres relative to the core of the SMF and relative to 

each other is of utmost importance to obtain a spectrum with high visibility. In the case 

of the two microspheres sample it is not possible to distinguish the interference arising 

from each microsphere (see Fig. 7.9. (c)). However, the 3-microspheres sensing head 

spectrum, presented in Fig. 7.9 (d), shows the presence of a periodic pattern with three 

distinct peaks, corresponding to the three microspheres. The inclusion of a fourth 

microsphere increased the number of peaks observed in the periodic pattern (Fig. 

7.9 (e)). The microscope images of each sensor are also presented in Fig. 7.9, on the right 

side. The overall visibility increased with the number of microspheres, as can be seen in 

Fig. 7.10. The 4-microspheres sample was illuminated with a He-Ne laser and a 

microphotograph, shown in the inset in Fig. 7.10, was taken where the FP cavity mirrors 

at each interface can be well identified. 
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Figure 7.10 – Dependence of the spectral visibility on the number of microspheres. Inset: Microphotograph 

of the 4-microspheres sample when illuminated with a He-Ne laser. 

7.3.3 Experimental Results 

The sensing structure was subjected to temperature variations over a range of 

~100 °C. The experiment was repeated each time one additional microsphere was 

inserted in the silica tube. The sensing head was placed inside a tubular oven, in a 

centered position. The temperature readings had a resolution of 1 °C. The sensors 

responses are shown in Fig. 7.11. In all cases, the behavior was non-linear and the 

experimental data were adjusted by second order polynomials. The results are gathered 

in Table 7.2.  

0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
 1 sphere

 2 spheres

 3 spheres

 4 spheres

W
a
v

el
en

g
th

 S
h

if
t 

(n
m

)

Temperature Shift (C)
 

Figure 7.11 – Wavelength variation with temperature. 
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Table 7.2 – Temperature sensitivity obtained for each sensor. corresponds to the wavelength, in nm, and T 

to the temperature, in °C. The correlation coefficient, r2 is also shown. 

No. of 

Microspheres 
Polynomial Fitting r2 

1 = (0.03 ± 0.01)×10-5 T2 + (8.28 ± 0.32) ×10-3 T + (10.92 ± 6.13) ×10-3 0.99902 

2 = (1.24 ± 0.17)×10-5 T2 + (8.61 ± 0.16) ×10-3 T - (2.77 ± 2.98) ×10-3 0.99971 

3 = (1.90 ± 0.24)×10-5 T2 + (8.27 ± 0.22) ×10-3 T - (0.83 ± 4.31) ×10-3 0.99938 

4 = (1.47 ± 0.12)×10-5 T2 + (7.47 ± 0.12) ×10-3  T - (4.44 ± 2.24) ×10-3 0.99979 

Although the second order polynomial is the curve that best represents the behavior 

of this sensing structure, a linear fit was also applied to the experimental results. The 

coefficient of determination, r2, decreased from a mean value of 0.9995 to 0.9970, which is 

still very close to the unity. The samples with 1 and 3 microspheres presented a linear 

sensitivity of (11.13 ± 0.20) pm/°C and (9.95 ± 0.12) pm/°C, respectively. In turn, the 

devices with 2 and 4 microspheres exhibited a linear sensitivity of (9.74 ± 0.08) pm/°C 

and (8.79 ± 0.09) pm/°C, respectively. An interpretation can be developed by recalling Eq. 

3.17, 

 
1 1 1

,
eff FP

eff FP

n L

T n T L T





 
 

  
 (7.3)  

where 
eff

n T   and FP
L T  are the thermo-optic coefficient and the thermal expansion 

coefficient of the microspheres, respectively. Since the microspheres are constituted of 

soda-lime glass, these parameters are 2.06 × 10-6 /°C and 7.75 × 10-6 /°C, respectively [314]. 

For the case of a single microsphere sensor, dividing its linear sensitivity by the 

operation wavelength (1540.55 nm) gives 7.22 × 10-6 /°C which is in very good agreement 

with the microspheres thermal expansion coefficient. Thus, in this case the thermal 

expansion is the dominant effect when the sensor is subjected to temperature variations. 

However, for the other sensors, when the sensitivity is divided by the operation 

wavelength, the values obtained are lower (6.29 × 10-6 /°C, 6.41 × 10-6 /°C and 

5.66 × 10-6 /°C for the 2-, 3- and 4-microspheres sensor, respectively), indicating that other 

effects arise when there is an increase of the structure complexity. By increasing the 

number of microspheres, the number of fringes increases, as a consequence of the cavity 

length increase. Thus, according to Eq. 7.3, the contribution of the thermal expansion 

coefficient will be smaller, which is in agreement with the values obtained. The response 
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of the sensor clearly depends on the number of microspheres and the results lead to 

believe that sensors with and even number of microspheres are less sensitive than 

sensors with and odd number of microspheres. To ensure the validity of this 

observation, a sensor with five microspheres should be produced and subjected to the 

same experimental conditions. This matter will be further investigated in the near future. 

7.4 Final Remarks 

In this Chapter, two different configurations based on microspheres were proposed 

for sensing. The first one was constituted by an array of microspheres incorporated in a 

SMF, manufactured using a splicing machine. Four different samples were characterized 

in terms of strain, and exhibited a negative response (blue shift of the interferometric 

pattern). The reasons behind such behavior are still not fully understood. Besides, the 

sensors response showed a dependence on the number of microspheres being even or 

odd. This sensor was also tested in respect to temperature.  

The second configuration was obtained at the tip of an optical fiber, by introducing 

commercially available soda-lime glass microspheres inside a hollow core silica tube. A 

Fabry-Perot cavity was obtained, with a spectral response dependent on the number of 

microspheres. Four devices were tested in terms of temperature response and exhibited 

non-linear behavior. In this configuration, and with the results obtained so far, it is 

probable that better responses are achieved from sensors with an odd number of 

microspheres. This is a matter for further investigation. 

This last structure has a great potential for sensing applications. It can be used to 

perform pressure or refractive index measurements, and with adequate post-processing 

through chemical etching or focused ion beam, it can be used to measure different 

parameters such as flow or magnetic fluids. The employment of different microspheres, 

with higher refractive index, can also enhance the sensor performance. Besides, with a 

different experimental setup, whispering gallery modes can be detected and the device 

can be incorporated in a laser configuration. 
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Final Conclusions and Future Work 

Considering an overall perspective, the work developed in this PhD was broadband, 

both on the number of sensing configurations and applications. New fiber designs were 

explored in different contexts. Some were post-processed, by means of chemical etching 

or by writing periodic patterns through excimer laser and femtosecond laser, or even by 

producing microspheres with the aid of a fusion splicer.  

The majority of sensors presented in this Thesis were based on the Fabry-Perot (FP) 

interferometer. For that reason, it was essential to have an overview of what was 

published in the field. This state-of-the-art was done on the second Chapter, focusing in 

the configurations, the applications and the sensitivities obtained so far. It also 

evidenced that even though the first papers were published more than thirty years ago, 

this is still a hot topic, as the number of publications continues to grow. This indicates 

that the overview is not complete and should be expanded in the years to come.  

The FP configurations developed in the third and fourth Chapter were microcavities 

at the tip of a single mode optical fiber. The focus on the third Chapter was on gas 

sensing applications and two different hollow core fibers were used in a diaphragm-free 

cavity. The results were surprising and some of them are still not fully understood. 

There was a clear influence of the cavity shape and physical dimensions on the pressure 

response. However, further studies are required to understand why smaller cavities 

present higher sensitivities than the larger ones. Besides, the study of the sensors 

responses to other gases, such as methane, carbon monoxide and dioxide, hydrogen and 

sulphur species should be performed, due to the vital importance in many industries. 

The fourth Chapter was focused on the post-processing of a double-clad optical fiber. 

The inner cladding was removed through chemical etching, exposing the core to the 

environment. However, the core was still protected by the outer cladding, enhancing the 

mechanical stability of the sensor. The diaphragm-free configuration was only subjected 

to temperature variations. The inscription of a fiber Bragg grating (FBG) on this tip could 

translate in a high sensitivity refractometer, and should be explored in the future. The 

cavity with a diaphragm, on the other hand, revealed different responses to temperature 
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in water and in air, when the diaphragm was thin enough. This idea of post-processing 

fibers that did not guide light, by means of chemical etching, could be taken forward 

with new fiber designs and finding suitable applications. 

On the fifth Chapter three different configurations were proposed for the 

measurement of strain. The FP cavity based on a hollow-core ring photonic crystal fiber 

presented the highest sensitivity to strain reported, by the time it was published. The 

remaining two configurations were used to measure strain at high temperatures. Further 

studies should be done to better understand the strain sensitivity obtained with a FP 

cavity. Besides, if the high-temperatures strain sensor ought to be considered for a real 

application, annealing tests with a longer duration should be performed, to allow the 

stabilization of the structure. 

Chapter 6 presented the ability of using the same fiber section as a filter in a laser 

cavity and the sensing element itself. The figure-of-eight fiber laser was characterized in 

strain and torsion. An etched FBG fiber tip was characterized as a passive and an active 

sensor. Ultra-high sensitivity to strain was achieved with this sensing element, in both 

cases. The field of fiber laser sensors, namely when using microlasers, is still little 

explored by the scientific community, and can be a very interesting area to proceed with 

the fiber sensors-based investigation.  

The employment of microresonators, such as the microspheres has such a huge 

potential, both as lasers and as sensors. The incorporation of a microsphere inside the 

optical fiber makes the sensor easy to handle. However, to prevent contaminations, a 

clean environment is needed. Two different sensors based on microspheres were 

developed and characterized in this Thesis. The first, a Mach-Zehnder interferometer, 

was obtained by fusion splicing an array of microspheres in series. Many different 

configurations can be explored from this. For example, the use of hollow core fibers to 

produce hollow core spheres, splicing the spheres with lateral offsets, or even 

microspheres with different dimensions. The mechanisms behind the strain behavior 

should also be better understood. This configuration is rather complex, and further 

studies are required, mainly by computational modelling. The preliminary results 
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obtained with the FP cavities based on soda-lime glass microspheres placed inside a 

hollow structure presented in the seventh Chapter point out that these structures have a 

huge potential to be applied as fiber sensors. Some guidelines for future work would be 

to use these cavities to measure other parameters, such as gas pressure or refractive 

index; using high-refractive index microspheres (higher than soda lime glass) instead of 

the soda-lime glass ones; and considering the application of hollow structures that 

would be able to guide light. With this enhancement, the microspheres would be 

protected and would be able to perform passive and active sensing, under the 

appropriate conditions, opening a new field in optical fiber sensing. 
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Appendix I – Fabrication of a Double Clad Optical Fiber  

The preform was obtained by the modified chemical vapor deposition (MCVD) 

method. In a simple way, gas mixtures with the required compounds are injected in a 

quartz silica tube which is continuously rotating. On the outside of this tube there is a 

burner that can operate at temperatures above 2000 °C. This burner moves along the 

length of the tube and the layers of silica/ phosphorous-doped silica are gradually 

deposited, as shown in Fig. 9.1 (a), according to the following steps: 

1. Cleaning and refining of the silica tube at temperatures of 1900 °C and 1980 °C 

(outer cladding); 

2. Deposition of 22 P2O5-doped SiO2 layers at a temperature of 1630 °C (inner 

cladding); 

3. Deposition of 3 SiO2 layers at a temperature of 1910 °C (fiber core); 

4.  Collapsing 4 times at temperatures of 2230 °C, 2250 °C, 2160 °C and 2000 °C 

Figure 9.1 (b) shows the preform being collapsed, in the fourth step. The details of 

the whole process are in [315]. 

 
Figure 9.1 – Preform fabrication using the MCVD technique, evidencing (a) the burner that moves along the 

tube when the layers are being deposited and (b) when the structure is being collapsed at extremely high 

temperatures. 

During the MCVD process there was an unusual behavior of the dopants and the 

final structure was not perfectly symmetric, as would have been expected. Nevertheless, 

the fiber was drawn, by locally heating the fiber preform. Initially, the neck-down region 

of the preform is heated up until it softens and it starts to be pulled down by the action 
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of gravity (Fig. 9.2 (a)). This molten section of the preform is analyzed by a diameter 

controller, after which it is cut, leaving the thin fiber to be drawn. The drawing 

temperature was ~1800 °C. Besides temperature, pressure and drawing speed can also 

affect the final structure, so these parameters must be controlled throughout the entire 

process. However, given the preform dense structure, in this case, the pressure did not 

play a role. The temperature was constant and set to a value adequate to achieve 

moderate tensile forces in order to prevent fiber breakage. Therefore, the drawing force 

was continuously recorded and showed values ~0.2 N. The preform feed rate was 

0.78 mm/min and the drawing speed was adjusted between 4.2 - 4.5 m/min to reach a 

constant fiber diameter of 125 µm. The fiber was coated with a single layer UV cured 

acrylate coating. The diameter of the coated fiber was 230 µm. Figure 9.2 (b) shows the 

UV curing lamp used to process the acrylate. Finally, the fiber was coiled, using a system 

of capstans and a drum winder, as shown in Fig. 9.2 (c). A more detailed description of 

the drawing process is presented in the literature [315].  

 
Figure 9.2 – Fiber drawing components: (a) the drawing furnace with the preform, (b) the UV curing lamp 

and (c) capstan and drum winder. 
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Appendix II - Point-by-Point Femtosecond Laser FBG Inscription 

The experimental setup used to write the fiber Bragg gratings using the point-by-

point technique is shown in Fig. 9.3. A mode-locked Yb:YAG laser system, centered at 

1026 nm and with a repetition rate of 100 kHz (Amplitude System S-Pulse HP) was used 

for the generation of sub-500 fs-laser pulses [316, 317]. The work was carried out under a 

20× objective lens (Mititoyo M-Plan Apo NIR Series) which had a numerical aperture of 

0.4. The effective laser spot diameter was of 2 m. The samples were placed in a sub-

nanometer precision XY air-bearing translational stage with mechanical z-translation 

(ABL1000, Aerotech). The stages were controlled through a control unit (Aerotech 

A3200) connected to a personal computer (PC), and a custom made program was 

developed using G-code commands for the translation stages motion control. 

 
Figure 9.3 – Experimental setup for the femtosecond laser system used to inscribe the fiber Bragg gratings. 

CCD stands for charged coupled device. Adapted from [317]. 

A section of ~1 cm of fiber coating was removed and afterwards the fiber was 

secured to a standard microscope glass slide. In order to compensate the fiber curvature, 

thus guaranteeing the tight focus of the laser beam during the inscription and improving 

the visibility on the CCD camera, a droplet of index matching oil was placed on the fiber 

section without coating. Finally, a cover slip was placed on top of the oil. 
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Through a controlled motion, the laser was focused on the fiber core, at the 

beginning of the writing section. As the translation stage acquired the required speed, of 

1.071 mm/s, the shutter was opened and the FBG was written on the fiber core. The 

writing process was monitored in real time connecting the fiber ends to a transmission 

setup constituted by a broadband optical source and an optical spectrum analyzer.  
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Appendix III - Interferometric Excimer Laser FBG inscription 

The experimental setup used to write the FBGs using the phase-mask technique is 

shown in Fig. 9.4. It consisted on a KrF excimer laser source from Lambda Physik 

(Compex150) with a wavelength of 248 nm and a Talbot interferometer [318, 319]. The 

beam is focused by a cylindrical lens and passes through the phase mask, which acts as a 

beam splitter. For the FBGs written in this work, a phase mask with a period of 530 nm 

was used. The split light is then reflected by two rotating mirrors. Depending on the 

angle of these components, the angle at which light is recombined, FBG, changes, 

allowing the tunability of the Bragg wavelength, B, according to Eq. 9.1 [319]: 

 2 ,
sin

eff UV

B eff

FBG

n
n





    (9.1)  

where neff is the optical fiber effective refractive index and UV is the KrF excimer laser 

source wavelength and  is the grating period. This setup is incorporated in the fiber 

drawing tower facilities, enabling the simultaneous fiber manufacturing and FBG 

inscription. The fibers need to be photosensitive in order to achieve high-reflectivity 

FBGs. This can be obtained by using fibers with a highly-doped core (ca. 18% Ge 

dopants). However, the setup can also be used independently to the fiber drawing 

tower. This was the case for the FBGs tested in Chapter 6. 
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Figure 9.4 – Scheme of the interferometric KrF excimer laser setup. Adapted from [318]. 
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