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“To understand our world, we must 

use a revolving globe and look at the 

earth from various vantage points. If 

we do so, we will see that the Atlantic 

is but a bridge linking the colorful, 

tropical Afro-Latin American world, 

whose strong ethnic and cultural bonds 

have been preserved to this day. For a 

Cuban who arrives in Angola, neither 

the climate, nor the landscape, nor the 

food are strange. For a Brazilian, even 

the language is the same.” 

Ryszard Kapuściński 

In “Another Day of Life - Angola 1975” 

https://www.goodreads.com/author/show/6255.Ryszard_Kapu_ci_ski
https://www.goodreads.com/work/quotes/874605
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Sumário 
 

 As florestas tropicais são uma componente significativa do balanço global de 

carbono. As altas taxas de desflorestação que têm lugar nos trópicos contribuem com 

cerca de 6-17% das emissões globais de CO2 causadas pelo Homem, e estão 

intrinsecamente relacionadas com a perda da biodiversidade e outros serviços dos 

ecossistemas. Daí que o mecanismo para a redução de emissões devido à 

desflorestação e degradação (REDD+) em países com mais área ocupada por 

floresta, usualmente países em desenvolvimento, seja uma das estratégias mais 

importantes a serem discutidas no combate às alterações climáticas. Alguns autores 

defendem uma abordagem mais inclusiva para o REDD+, sugerindo que este 

mecanismo deve ter em conta outros benefícios para além da redução de emissões de 

carbono. Estes benefícios deverão incluir a conservação da biodiversidade e o 

desenvolvimento das condições de vida das comunidades rurais. Para além disso, os 

incentivos para reduzir as emissões de carbono deverão ser transversais a todos os 

países em desenvolvimento que apresentem áreas de florestas, incluindo aqueles que 

mostram áreas não tão significativas e baixas taxas de desflorestação. Além de uma 

abordagem nacional, o REDD+ deverá também considerar projetos em escalas 

inferiores que apresentem potencial de redução de emissões. De forma a assegurar a 

integridade e credibilidade das estratégias REDD+ são necessárias estimativas de 

biomassa e carbono consistentes para as florestas tropicais, principalmente em África 

onde ainda pouca informação existe.  

 Através de dados recolhidos no campo e técnicas de deteção remota avaliamos o 

potencial do REDD+ na Escarpa Angolana, um habitat não prioritário para os 

exercícios REDD+, usando a floresta de Kumbira como referência. Depois de 

conduzirmos inventários florestais, estimamos para Kumbira um valor médio de 89.4 

Mg de carbono acima do solo por hectare. Com o objetivo de determinar o carbono 

emitido devido à perda de floresta, uma classificação supervisionada (Maximum 

Likelihood) foi aplicada para três imagens de LANDSAT respetivas aos anos de 1991, 

2001 e 2014. Para a classe ‘Floresta’ conseguiu-se obter uma precisão média de 

98.06% através deste método de classificação. Depois de um período florestal estável, 

que coincidiu com o ultimo terço da guerra civil em Angola, a taxa de desflorestação foi 

calculada em 4.04% para os últimos 13 anos. Isto significa uma perda de 41% da área 

de floresta desde 2001 e uma emissão bruta de 492833.6 MgC. Os fatores 

relacionados com a perda de floresta para o período 2001-2014 foram também 

examinados usando um modelo de relação logística. Com uma razão de 
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possibilidades de 0.803, a ‘distância aos trilhos’ mostrou ser a variável mais importante 

no processo de desflorestação. A avaliação do potencial de um projeto REDD+ foi feita 

em comparação com um ponto de referência que estabelece o nível de emissões que 

resultam de uma estratégia business-as-usual (BAU) quando nenhuma intervenção é 

realizada. As nossas projeções indicam que de acordo com um cenário BAU a floresta 

de Kumbira poderá emitir cerca de 296377.7 MgC até 2027, quase 33000 MgC por 

ano. Se a desflorestação for imediatamente e completamente interrompida a emissão 

de cerca de 714203.2 MgC poderá ser evitada. Um cenário mais realista, envolvendo 

a delimitação de uma área protegida correspondente a 50% do total da atual floresta, 

poderá salvar 1568 ha de floresta até 2027 e metade das emissões brutas de carbono 

em comparação com o cenário BAU.  

 Embora uma análise nacional do carbono sequestrado pelas florestas de Angola 

sugira um potencial reduzido para a aplicação de uma estratégia REDD+, estes 

resultados realçam também o facto de o país ter áreas florestais de grande valor para 

a biodiversidade que estão severamente ameaçadas. Estas áreas oferecem um 

potencial significativo de redução de emissões de carbono através da redução da 

desflorestação e do enriquecimento dos stocks de carbono, assim como a provisão de 

importantes co-benefícios. Assumindo que as restantes florestas da escarpa seguem a 

tendência de Kumbira este potencial é ainda mais relevante. Apesar da necessidade 

de estudos adicionais, a adoção de uma estratégia de conservação é urgente. 

Consideramos que os resultados obtidos neste estudo apresentam argumentos sólidos 

para a inclusão da floresta de Kumbira no mercado voluntário de carbono. Não 

existem expectativas quanto a uma futura integração da Escarpa Angolana num 

projeto certificado pelo REDD+ mas neste trabalho fomos capazes de realçar a 

importância de considerar uma abordagem mais alargada em relação aos critérios de 

seleção que compõem a certificação de um projeto desta natureza.  
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Summary 
 

 Tropical forests are an important component of the global carbon balance due their 

high levels of carbon content. The deforestation rates that take place in the tropics 

contribute with 6–17% of global anthropogenic CO2 emissions to the atmosphere, and 

are also linked with the loss of biodiversity and other environmental services. 

Therefore, reducing carbon emissions from deforestation and degradation (REDD+) in 

forest-rich developing countries is of central importance in efforts to combat climate 

change. Some authors defend a broadened approach for REDD+, suggesting that this 

mechanism should bring additional benefits for biodiversity and rural communities and 

incentivise emissions reduction in all developing forested countries, including those 

with low forest cover and low deforestation rates, and at sub-national and project 

scales. To ensure the integrity and credibility of REDD+ strategies, reliable estimates of 

biomass and carbon pools in tropical forests are urgent, especially in Africa where 

there still exists a serious lack of data. 
 Using field data and remote sensing techniques we investigated the potential of 

REDD+ for the forest of the Angolan Escarpment, a unique habitat easily overlooked in 

large-scale REDD+ prioritisation exercises. Kumbira forest was used as case study. 

After forest inventory measurements, we found an average value of 89.4 Mg of 

aboveground carbon stocks per hectare for Kumbira. In order to determine the carbon 

emissions from forest change a supervised Maximum Likelihood classification for three 

LANDSAT images from 1991, 2001 and 2014 was performed, achieving an average 

producer’s accuracy of 98.06% for the class ‘Forest’. After a forest stability period, 

which coincided with the last third of the civil war conflict in Angola, the change 

detection revealed a deforestation rate of 4.04% across the entire study site for the last 

13 years. This means a loss of 41% of forest area since 2001 and gross carbon 

emissions of 492833.6 MgC. The factors related with the forest loss process for the 

period 2001-2014 were also examined using a GIS-based logistic regression model. 

The ‘distance to trails’ was found to be the best single predictor for forest loss with an 

odds ratio of 0.803. The potential of a REDD+ project was evaluated in comparison 

with a baseline scenario that establishes the level of business-as-usual (BAU) 

emissions when no project implemented. The carbon emitted under BAU in Kumbira 

forest was projected to be 296377.7 MgC until 2027, almost 33000 MgC per year. If 

deforestation could be stopped immediately and completely about 714203.2 MgC 

emissions could be avoided. A more realistic scenario involving the delimitation of a 

protected area covering 50% of the total actual forest would save almost 1658 ha of 
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forest by 2027 and half of the gross carbon emissions compared with the BAU 

scenario. 

 These results suggest that although a national analysis of forest carbon in Angola 

would identify little REDD+ potential, the country has forest areas that are threatened 

conservation hotspots. These forests offer significant potential for reducing emissions 

by reducing deforestation and enhancing carbon stocks as well as provide valuable co-

benefits. Assuming that the remaining forests of the Scarp follow the trends of Kumbira 

this potential is even greater. Further research is needed, but considering the urgency 

of conservation action for the Scarp forests, we consider that our results provide 

sufficient evidence to call for the integration of Kumbira forest in the voluntary carbon 

market. We do not have expectations regarding the integration of the Angolan 

Escarpment in a certified REDD+ project in the near future. Nevertheless, this work has 

highlighted the importance of using a more inclusive approach in the REDD+ 

framework regarding site selection criteria, so that small forests of high conservation 

significance can be quickly included. 
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1. Introduction  
 

Human well-being is strongly dependent of the tropical forests ecosystems. According 

to the 2010 Global Forest Resources Assessment (FRA) report published by the Food 

and Agriculture Organization of the United Nations (FAO), forests and other wooded 

land represents 31% of the total land area, of which 40% are open and closed forests 

at tropical and subtropical latitudes, with the two largest tropical blocks being located 

along the Amazon and Congo Basins (FAO, 2010). Rainforests support the direct 

livelihood of 1.6 billion people (FAO, 2010) - about 25% of the world’s population - by 

providing food, medicinal products, fibre, non-timber forest products and full-filling 

cultural and recreational functions (Nasi et al., 2011). At the global scale, rainforests 

are remarkable reservoirs of biodiversity being the terrestrial biome that shows highest 

levels of biological diversity from gene to habitat level (Shvidenko et al., 2005). They 

also contribute to maintain the balance in numerous natural processes, supporting the 

nutrient cycle and soil formation, being fundamental regulators of the hydrological cycle 

and an important carbon sink in the global carbon cycle (Malhi et al., 2008).  

The spatial and temporal variation of carbon stocks (Asner et al., 2010) and their 

changes in the different reservoirs forms, such as living vegetation including 

aboveground and belowground biomass components, soils, woody debris and wood 

products,  are in charge of the net flux of carbon between the land and atmosphere 

(Houghton, 2005). When these reservoirs are either immediately damaged or slowly 

decay by natural or anthropogenic causes, carbon dioxide is released into the 

atmosphere contributing to the increase of greenhouse gases (GHG) concentration and 

consequently to the rise of the global average temperature. If the expected increase of 

2º C in global average temperature is confirmed (Allen et al., 2009; Matthews et al., 

2009; Meinshausen et al., 2009) there is the risk that tropical forests lose their ability to 

store carbon (Brienen et al., 2015) or even turn from a carbon sink into a carbon 

source, thus amplifying climate change and potentiate the negative impacts on 

ecosystems (Fischlin et al., 2007). Tropical regions show the highest mean of annual 

biomass increment among the different biomes of the world (Clark and Clark, 2000; 

Malhi et al., 1999), with tropical woody vegetation accounting for the largest pool of 

aboveground carbon stocks (AGC) in the terrestrial biosphere (Pan et al., 2011). 

Although soils hold more carbon than that stored aboveground in forest vegetation 

(Davidson and Janssens, 2006), aboveground biomass (AGB) is more easily mobilized 

by disturbance processes such as forest clearing and degradation (Houghton, 2007). 

This turns the high levels of deforestation rates that take place in tropics one of the 
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most alarming sources of anthropogenic GHG emissions and the major concern of the 

conservation policies that intend to mitigate CO2 emissions by tackling the multiple 

driving forces of forest change (Busch and Engelmann, 2015). Proximate causes of 

tropical deforestation include the expansion of agriculture and infrastructure, and the 

extraction of forest products, namely timber (Geist and Lambin, 2002). These activities 

have a direct impact in the tropical physical environment, inducing a long-term 

reduction of tree canopy cover. The ultimate causes are demographic and economics, 

with a rapid population growth in tropical areas coupled with the rise and rapid growth 

of industries that depend on the removal of the forest – such as the soy and palm oil 

industries. Also, corruption and lawlessness leads to an increase of CO2 emissions by 

allowing, for example, illegal logging (Geist and Lambin, 2002).   

Recent findings estimated the total amount of carbon held in tropical woody 

vegetation to be 228.7 petagrams (Pg – 1 Pg = 1 x 1015 g); the total net and gross 

carbon emissions from tropical deforestation and land-cover change were estimated at 

1.0 Pg C yr-1 and 2.2 Pg C yr-1 during the period 2000-2010, respectively (Baccini et al., 

2009). Other studies for the 2000s estimate a net source of 1.3 Pg C yr-1 and a gross 

tropical deforestation emission of 2.9 Pg C yr-1 that was partially compensated by a 

carbon sink in tropical forest regrowth of 1.6 Pg C yr-1 (Pan et al., 2011). Harris et al. 

(2012) provides a lower estimate for the gross carbon emissions for the period 2000-

2005 (0.81 Pg C yr-1), arguing that the quantification of net emissions based on 

assumptions about the fate of converted lands produces unreliable estimates.   

Different assumptions, data and methodologies for estimating deforestation rates 

and carbon stored in aboveground biomass over tropical regions often introduces large 

uncertainties into estimates of CO2 emissions (Houghton et al., 2000; Houghton, 2005; 

Grassi et al., 2013; Mitchard et al., 2013; Pelletier et al., 2013; Lusiana et al., 2014; 

Chen et al., 2015). Despite all methodological improvements in recent years (DeFries 

et al., 2007; Goetz et al., 2009; Asner et al., 2010; Saatchi et al., 2011; Baccini et al., 

2012; Vaglio Laurin et al., 2014), it is still not possible to obtain direct measurements of 

carbon stocks at a national or sub-national level. The combination of remote-sensing 

and ground-based measurements are the best actual methodology available to 

estimate past changes in forest cover and CO2 emissions (Gibbs et al., 2007).  This 

approach relies on high-resolution satellite imagery and on national estimates of AGC 

derived from ground-based forest inventories. This can hinder the inference of reliable 

estimates as satellite imagery does not always have the required resolution and many 

countries do not have or only have outdated forest inventories (Baccini et al., 2012).  
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Potential inaccurate estimates and weak country governance contribute significantly 

to the failure of the implementation of policy mechanisms that attempt to protect 

existing forests in order to limit the increase of GHG emissions. Such mechanisms fall 

under the umbrella of Reduce Emissions from Deforestation and Forest Degradation 

(REDD+), a program created by the United Nations Framework Convention on Climate 

Change (UNFCCC). The REDD+ goal is to facilitate the reduction of emissions by 

providing financial incentives to forest-rich developing countries, in order to voluntarily 

reduce national deforestation rates. 

 

1.1 The development and monitoring of REDD+ 
 

The Kyoto Protocol created a Clean Development Mechanism (CDM) to assist 

industrial countries (listed in Annex I) in achieving compliance with their objective of 

reducing GHG emissions below the levels of 1990. CDM allows trading carbon credits 

from renewable energy, afforestation (planting forest in areas where there was 

previously no forest vegetation for at least 50 years) and reforestation (planting forest 

in areas that were deforested before 1990) projects, but does not provide incentives for 

reducing emissions from deforestation (UNFCCC, 2003). In 2005, at the 11º Session of 

the Conference of Parties (COP-11) to the United Framework Convention on Climate 

Change (UNFCCC) in Montreal, Papua New Guinea and Costa Rica proposed a 

separate approach for "reducing emissions from deforestation in developing countries" 

(RED) at a national level (UNFCCC, 2005). They were supported by several other 

Parties under the UNFCCC, starting the process of considering reducing emissions 

from deforestation. The concept has expanded since then to include “forest 

degradation” (REDD) (UNFCCC, 2008) and, “the role of conservation, sustainable 

management of forests, and enhancement of forest carbon stocks in developing 

countries” (UNFCCC, 2009a, p. 3). This program is now known as REDD+ (or REDD-

plus).  

 Attempts to recognize REDD+ in CDM proposals have systematically failed due to 

concerns related to environmental and market risks. These include the ‘leakage effect’ 

and the ‘non-permanence problem’. The former occurs when a reduction of 

deforestation in a target area increases the process of deforestation in other regions or 

countries, bringing up the problem of at what scale—national, sub-national, or project—

should forest conservation actions be eligible. The latter highlights the risk that any 

reductions in emissions gained from current efforts to halt deforestation may be lost in 

the future due to natural or anthropogenic disturbances. The unpredictable fluctuation 
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of markets and the potential flood of carbon markets caused by large amounts of cheap 

carbon credits can also prevent real reductions from occurring and undermine 

strategies for reducing emissions from the use of fossil fuels, representing a huge 

financial risk. The recognized volatility of carbon investments (Phelps et al., 2011; 

Sandker et al., 2010) and the uncertainties regarding the monitoring of deforestation 

and degradation (Plugge and Köhl, 2012) were the main reasons why negotiations over 

the integration of land use, land-use change and forestry (LULUCF) activities in the 

CDM have failed and why the European Union does not allow forestry credits into the 

Emissions Trading System, the largest compliance carbon market at the moment. 

Forest projects only represent a small fraction of the transactions of verified emissions 

reductions (VER) on the voluntary carbon market (VCM) (Hamrick and Goldstein, 

2015). The VCM is currently the only global market for trading REDD+ credits and it is 

supported by socially responsible individuals, corporation and cities, but even those are 

aware of the risks associated with the carbon marketplace. Because emissions 

reductions will culminate in financial compensations, high quality monitoring systems 

are needed to set reliable baselines over which reductions will be certified. Almost all 

baselines submitted use historical reference trends (DeFries et al., 2007; Olander et 

al., 2008; Stickler et al., 2009; Asner et al., 2010). This issue is politically sensitive with 

some countries Parties of the UNFCCC which argue that the technical capacity and 

resources available for each country to monitor REDD+ have to be taken into account 

(UNFCCC, 2009b). In order to allow a broad participation of countries with different 

capacities and to achieve complete, accurate and comparable emissions estimates, the 

Intergovernmental Panel on Climate Change (IPCC) guidelines for reporting emissions 

from Agriculture, Forestry and Other Land Uses (AFOLU) provides three different 

methodological standards (Tiers 1, 2 and 3) according to the level of detail for the 

reporting of emissions (Paustian et al., 2006). However, each step in the estimation of 

forest changes and related emissions is a source of errors and they still need to be 

addressed by the research community.  

 These technical issues were debated during the 19th Conference of the Parties 

(COP-19), which produced the ‘Warsaw Framework for REDD+’ that provides guidance 

for the full implementation of REDD+ (UNFCCC, 2013). REDD+ will be implemented in 

a three-phased approach, as agreed in the COP-16 in Cancun (UNFCCC, 2010). The 

initial phase focuses on Readiness, including the adoption of national REDD+ 

strategies, the development of climate-effective, cost-efficient and equity reference 

emission levels (RELs), the design of Monitoring, Reporting and Verification (MRV) 

systems and the dialogue with indigenous people and local communities to ensure 
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social safeguards. In phase 2, REDD+ demonstration activities are implemented and 

MRV’s improved, while phase 3 relates to the performance of result-based actions. 

Therefore, countries that intend to participate in REDD+ have to demonstrate robust 

MRV’s systems for the accounting of emissions from deforestation and forest 

degradation and thus ensure the integrity and credibility of REDD+ mechanisms. A 

transparent and accountable forest monitoring system reflects a good forest 

governance, a critical factor for investors’ choice. Investors may prefer projects in 

countries with stronger governance capabilities over countries with high carbon values 

but with limited governance capabilities (Phelps et al., 2010). A stronger governance 

capability accounts for a large inclusiveness of civil society and fair tenure laws, which 

significantly decrease costs and/or risks of REDD+ opportunities. Despite some 

difficulties in addressing governance issues (Davis et al., 2008; Romijn et al., 2012), 

currently forty-seven developing countries signed a Participation Agreement to 

participate in the Readiness Fund, a donor-led public finance, and were selected to 

receive the support of the World Bank’s Forest Carbon Partnership Facility. 

Additionally, 62 partner countries of high carbon value are being supported by the 

United Nations to implement national REDD+ strategies (UN-REDD Programme).  

 Beyond the scientific and financial challenges, equitable and sustainable 

management of forests are dependent of non-carbon benefits and non-markets 

mechanisms. REDD+ strategies must take into account other relevant international 

conventions and agreements such as the UN Declaration on the Rights of Indigenous 

Peoples and the Convention on Biological Diversity. Otherwise there is the risk that 

some REDD+ actions affect negatively the rights and livelihoods of forest-dependent 

people and indigenous communities (Lyster, 2011) and cause direct harms in 

biodiversity and ecosystems services. A report presented at COP-15 provided 

recommendations on how REDD+ could generate biodiversity co-benefits (SCBD, 

2009), such as the prioritization of REDD+ actions in areas not only of high forest 

biodiversity but also of high endemism. To avoid the investors’ preference for low-cost 

emissions mitigation over co-benefits, the capitalization of opportunities created by 

REDD+ to enhance biodiversity conservation was also suggested. Thomas et al. 

(2013) compared three conservation strategies and found that a carbon-biodiversity 

strategy could simultaneously protect 90% of carbon stocks (relatively to a carbon-only 

conservation strategy) and > 90% of the biodiversity (relatively to a biodiversity-only 

strategy) in America and Great Britain. Busch et al. (2011) confirmed that greater 

financing combined with REL’s and a broad participation offer the greatest benefits for 

biodiversity conservation. However, these recommendations were not incorporated in 
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the negotiations of the following COPs and there is still no clear definition inside the 

World Bank and the UNFCCC about the extent of REDD+ in yielding co-benefits.  

 Although a clear set of criteria is still lacking, a REDD+ country is generally selected 

by its ability to be climate-effective in reducing CO2 emissions, and so countries with 

high remaining forest, such as the Democratic Republic of Congo but especially Brazil 

and Indonesia due their current high deforestation rates, are at the core of REDD+ 

priorities. These countries account for the larger values of tropical carbon stocks 

(Baccini et al., 2012), offering the possibility of high-return REDD+ actions, but they 

also entail high-risks associated with governance and social impact. A REDD+ 

planning that includes several factors, such as quality of forest governance, biodiversity 

conservation and local rights would provide lower-risk and low-return at short-time 

scales but costly non-carbon benefits (Stickler et al., 2009; Campbell et al., 2009; 

Phelps et al., 2010; Bush et al., 2011). Therefore, countries with low forest cover and 

low deforestation rates that are not typically considered as carbon hotspots, and sub-

national projects that are often overlooked by the site selection criteria have gained 

increasing attention in the REDD+ discussions (Pedroni et al., 2009; Strassburg et al., 

2009). 

 

1.2 The Central Africa rainforests   
 

Rainforests in Africa are divided into three main ecological zones: Guineo-Congolian 

(in West and Central Africa), East Malagasy (Madagascar) and Afromontane (Central 

and Eastern Africa). They cover only 13% of the continent (Mayaux et al., 2004) but 

store more than 90% of the carbon amongst Africa’s terrestrial ecosystems (Saatchi et 

al., 2011; Bacinni et al., 2012). The Guineo-Congolian ecoregion covering the majority 

of the Central African countries, the so-called ‘Congo Basin countries’, holds the most 

significant block of African tropical rainforest and the second largest worldwide after the 

Amazon. Several species, namely the last intact natural communities of large 

vertebrates on earth, depend on the resource pool and the refuge that the Congo Basin 

forests offer. This ecoregion further includes exceptional centres of endemism, like the 

coastal part (South Cameroon, Equatorial Guinea and Gabon) and the Gulf of Guinea 

islands (Olson and Dinerstein, 1998; Olson et al., 2001). Finally, these forests support 

the direct livelihood of millions of rural people and people living in urban centres in the 

vicinity of the forests (Nasi et al., 2011).  

 The Congo Basin has experienced low deforestation rates over the years, and for 

this reason it has been classified as “High Forest, Low Deforestation” (HFLD) region. 
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HFLD countries are not immediate targets for the REDD+ program because their 

contribution to reduce CO2 emissions owing to deforestation is limited. In opposition to 

the trends showed by the tropical forests of South America and South-East Asia 

(Hansen et al., 2010), the deforestation in Central Africa has slowed down post-2000 

(but remains higher in West Africa and Madagascar), which is most likely explained by 

the lower population pressure in areas with more than 20% of forest cover (Mayaux et 

al., 2013), the extraction of oil and minerals and the growth of importation of foodstuffs 

(Rudel, 2013), together with an absence of a significant local market for wood products 

and poor transportation infrastructure (Duveiller et al., 2008). However, there is an 

increased pressure on forest resources in coastal Central Africa which is expected to 

spread over all Congo Basin countries, as the human population dependent on 

subsistence agriculture continues to increase (Fisher, 2010). Especially in Central 

Africa, most of the tropical forests are in societies with armed conflicts or in post-

conflict areas that usually stimulate human migration inside core forests (Draulans and 

van Krunkelsven, 2002) and where little political attention is given to environmental 

problems (Conca and Wallace, 2009). Additional political unrest and corruption often 

impels unregulated resource exploitation, including timber extraction. Despite being a 

key part of export incomes, illegal timber extraction means quick money for locals. The 

construction of logging roads and other infrastructure to support logger companies 

amplifies the negative impacts of this activity by increasing forest degradation and 

biodiversity loss (Laporte et al., 2007, Clark et al., 2009).  However, Mayaux et al. 

(2013) show that deforestation in Central Africa does not vary as a function of the area 

occupied by logging concessions, and this can be due the recent efforts to improve 

forest management across the Congo Basin. Compared to the Amazonia and South-

East Asia, little and accurate information exists about the current state of the Congo 

Basin forests, limiting the design of efficient forest management policies. Nevertheless, 

one can highlight the Congo Basin Forest Partnership (CBFP), established in 2002 and 

based on principles of representativeness, species viability and ecosystem 

sustainability, integrity and resilience (Duveiller et al., 2008). Beyond forest 

conservation, CBFP has gained recognition as an ‘environmental peacemaking’ 

strategy due its capacity to prevent social conflicts by promoting economic 

development, alleviate poverty and improve governance. 

 

1.2.1 The Angolan Scarp forests   

 

Located on the south-western coast of Africa in the confluence of six major biomes 

(Huntley, 1974), Angola is an incredibly biologically diverse country. The climate 
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ranges from tropical wet/humid in the north and north-west – where we can find 

Congolian forest-savanna mosaics – , to extremely arid environments in the south-west 

occupied by the Kaokoveld desert and the Namibian dry savanna woodlands 

(Rodrigues et al., 2015). A north-south Escarpment runs parallel to the coast 

separating the arid littoral plains from the miombo woodlands of the inland plateau 

where the highest mountain rises to 2620 m above sea level (Rodrigues et al., 2015). 

Despite its great biological interest resulting from the combination of such specific 

biophysical factors, Angola remains one of the least studied countries in Africa. Field 

biodiversity research was limited during the war of independence (1961-1974) and 

almost non-existent during the subsequent civil war (1975-2002). The succession of 

armed conflicts over almost 40 years left a devastating impact on Angolan ecosystems, 

mainly due the uncontrolled poaching of large mammals that have been reduced to the 

threshold of extinction (Huntley and Matos, 1992), with little still known about their 

current status (Pitra et al., 2006; Chase and Griffin, 2011). Recent years have seen a 

renewed interest in the biodiversity of the country (Figueiredo et al., 2009; Mills, 2010; 

Mills et al., 2011, 2013; Cáceres et al., 2014; Romeiras et al., 2014; Rodrigues et al., 

2015). However, they are still scarce considering the urgency for information in a 

period when Angola experiences rapid economic and human population growth, and a 

post-war return of populations to farming, all factors increasing the pressure on the 

forest resources due to wood extraction for charcoal and firewood and the expansion of 

slash-and-burn agriculture (USAID, 2008).  

 One of the most biologically interesting and threatened regions in Angola are the 

forests occurring along the west-facing escarpment (hereafter, the ‘Scarp’). In the north 

a discontinuous series of moister vegetation-types from the Guinea-Congo forest have 

continuity along the Scarp supporting rainforest at higher altitude, in the east we find 

the miombo woodlands, and in the south the influence of the arid deserts of Namibe. 

The Scarp Forests, mostly concentrated in the Central Scarp, have affinities with the 

three adjoining biomes but at the same time act as a barrier between them (Dean, 

2001). This has resulted in a high diversity of vegetation types and significant levels of 

endemism. They are a truly evolutionary hotspot for birds (Hall, 1960), the most well-

documented species group (Dean, 2001; Ryan et al., 2004; Sekercioglu and Riley, 

2005; Mills, 2010; Cáceres et al., 2014), containing most of the endemic species and 

subspecies of Angola, together with near-endemics and isolated populations of species 

occurring elsewhere (Hall, 1960). These forests represent the main habitat of the 

Western Angola Endemic Bird Area (Stattersfield et al., 1998), the only endemic bird 

area of the country. They have been considered one of the most important areas for 
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bird conservation in Africa (Collar and Stuart, 1988) and a priority for global 

conservation (Dean, 2001; BirdLife International, 2015). The Angolan Scarp was 

considered by Myers et al. (2000) to integrate the list of the world’s biodiversity 

hotspots but lack of data at the time prevented this. None of the unique forests of the 

Scarp are within the protected areas network (Huntley, 1974), and due to the climatic 

and edaphic conditions they face huge human pressures.   

The Central Scarp forests are being damaged since the settlements by the 

Portugueses, up to 1974. At this time it is believed that 95% of the forest was 

converted into coffee plantations, although large-canopy trees were mostly left intact to 

provide shade (Hawkins, 1993). The replacement of the undergrowth vegetation with 

coffee trees has resulted in homogenous and even-age monospecific forests (Dean, 

2001).  With the falling of coffee prices worldwide in the mid-1970’s and the upheaval 

of the civil war (Hawkins, 1993) many of the coffee plantations were abandoned and 

some native vegetation recovered. Once the stability returned to Angola in the mid-

2000s’, agricultural activities increased in the Scarp, mainly for self-subsistence as 

people returned to the rural areas and more recently for timber extraction. Slash-and-

burn agriculture has become very common replacing shade coffee plantations (Mills, 

2010; Ryan et al., 2004). Charcoal production, illegal logging and bushmeat are all 

serious, but yet to quantify, threats to this unique habitat.  

 

1.2.1.1 Study area  

 

Slash-and-burn activities, illegal logging and the hunting of birds and mammals such as 

primates have been observed in Kumbira Forest, the largest forest remnant and one 

that holds more populations of the endemic bird species of the Central Scarp forests. 

Kumbira Forest is located in the western Angolan province of Cuanza Sul, municipality 

of Conda (Fig. 1.1). The exact limits of the forest are difficult to define because there is 

a gradient between forest and other dense habitats of the Scarp. For the field survey, 

was defined the northern limit of the forest as Fazenda Fefe (11.14°S 14.29°E) and the 

southern limit as 11.23°S. For the following analyzes the study area was extended to 

comprise all forest between the Njelo Mountain range. Within the study area, the 

elevation varies from 250 m in the western margins to 1160 m at the closest forest limit 

on the slopes of Njelo Mountain. Influenced by the climate and the terrain features, the 

habitat varies from tall and very moist forests to drier, stunted and very densely tangled 

forests at the bottom of the valley (Mills, 2010). The native vegetation is semi-

deciduous moist forest with Congo Basin affinities, which has been mostly replaced 
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with shade coffee plantations (where Inga vera is a dominant shade tree), as well as 

scrubby grassland and secondary growth with wild coffee plants in the understory.   

 

 

Fig. 1.1 – Study site, Kumbira forest. The inset image shows the location of Kumbira in Angola. 
 

1.3 Objectives  
 

The aim of this study is to address the potential of REDD+ as a conservation 

opportunity for the Angolan Scarp Forests, using the Kumbira forest as a case study. 

This potential was assessed by quantifying the carbon emissions from forest change 

over a period of 23 years using LANDSAT images from 1991, 2001 and 2014 for 

Kumbira. We hypothesize that the study site suffered a severe reduction in forest cover 

since the end of Angolan civil war (2002), with the return of the farming communities to 

the area, and we recognize REDD+ as a possible conversation strategy to halt this 

reduction.   
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Specifically, the objectives of this work were to: 

(1) Estimate aboveground carbon stocks in Kumbira forest;  

(2) Assess forest change since 1991 and deforestation rates for Kumbira forest 

using LANDSAT images;  

(3) Identify the variables that determine forest cover change in Kumbira using 

logistic regression models.  

(4) Quantify carbon emissions from forest change in Kumbira; 

(5) Assess the potential of REDD+ for reducing emissions from deforestation in 

Kumbira using future scenarios.   

 
Although Angola is currently not a target country for REDD+, we expected to provide 

insights about the impacts of a possible adoption of this mechanism and reinforce the 

need of a broadened approach at project-level for REDD+ planning. 
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2. Material and methods 
 

2.1 Sampling design and in-field allometric forest data collection 
 

A field campaign was conducted in the Kumbira forest during June 2014. Forest 

inventory measurements were performed to obtain quantifications of aboveground 

biomass (AGB) that could greatly improve the accuracy of carbon stocks estimates 

(Gibbs et al., 2007) on aboveground live tree carbon (AGC).  

 Field data campaign was split in two stages: sampling design with site selection and 

in-field survey. In the first stage, in order to improve field data collection, sampling 

areas has been selected using a LANDSAT satellite scene for March 2014 (see Table 

2.1) and the Normalized Difference Blue Red ratio (NDBR; Sharma et al., 2013; Vaz et 

al., 2014). The near temporal window of LANDSAT image respect to field survey 

allowed us a good representation of expectable conditions for June 2014. NDBR (see 

eq.1) is sensitive to forest canopy characteristics, namely vertical structure, enhancing 

of canopy shadow linked with the heterogeneity of canopy height. NDBR varies 

between -1 to 1, achieving values lower than 0 in case of absence of canopy. 

Therefore, as a preliminary effort to enclose as much as possible the heterogeneity of 

forest canopy during field survey, three thresholds were applied to NDBR, assuming 

that would split the region of Kumbira according to three levels of canopy shadow 

representing different forest structures. It was assumed that areas with greater NDBR 

values have denser and complex canopies.  According that,  using stratified random 

sampling,  54 points separated by a minimum of 200 meters were selected,  16 with 

lower shadow representing homogeneous canopy  (NDBR > 0  and  < 0.025516),  22  

with  medium  shadow representing intermediate heterogeneity in canopy structure  

(NDBR ≥ 0.025516  and < 0.059152) and 16 with higher shadow representing 

expectable higher heterogeneity in canopy structure and height (NDBR ≥ 0.059152). In 

order to minimize any influence of edge effects on forest biomass and dynamics, all 

points were established taking into consideration a buffer of 50 m around previously 

established trails, considering the poor accessibility in some regions of our study area 

and the limited time for data collection. All sampling plots, taken with a GPS (Garmin 

GPSMAP 62s), as well as NDBR thresholds are represented in Fig. 2.1. 

 

eq. 1)  NDBR = 
Blue-Red

Blue+Red
 

  



FCUP 
The potential of REDD+ as a conservation opportunity for the Angolan Scarp Forests: Lessons from the unique Kumbira forest 

13 

 

  

 
Fig. 2.1 – Sampling design.  The colors show the three forest sampling regions identified by the NDBR spectral index. Each dot 

represents the location of the 54 sampling plots where measurements took place and the dashed lines indicate the previously 

established trails. 

 

 

 During second stage or in-field survey, the forest inventories were conducted using 

a square plot of 10 m x 10 m around each point and three variables were considered: 

diameter at breast height (DBH), canopy height and canopy cover (Fig. 2.2). The DBH 

was estimated for all trees in each plot with a measuring tape or a calliper at 1.30 m 

height from the ground, the international recognized standard height at which tree 

diameter is measured. Tree height was measured with a clinometer or a Nikon 550 

Laser rangefinder according to the visibility of the canopy (Dallimer et al., 2009). 

Usually, ‘trees’ are considered to be all woody plants with a DBH ≥ 10 cm. In our case 

all trees with a DBH ≥ 5 cm were measured, since a considerable number of plots were 

dominated by regeneration of young trees with high canopy cover but low DBH. Lianas 
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were excluded, since they generally represent a small fraction of total forest biomass 

(Nascimento and Laurance, 2002). Unfortunately, we were not able to obtain an 

identification of tree at species and genus level due to absence of floristic literature to 

Kumbira flora, but also by difficulties and uncertainty of local expertize to proceed with 

the identification. Contacts with several experts, including a botanist from the Royal 

Botanic Gardens (Kew), who visited the area at the same time, did not produce 

significant identifications. This is a lack of this study, but symbolize how much 

understudied is Kumbira flora and the opportunities existing for further in-field research. 

Canopy cover was estimated by taking photographs with a Nikon D70S, posteriorly 

processed and classified using color transformation from RGB to HSV to enhance 

canopy gaps on value band. ENVI-IDL version 4.7 software program (Exelis Visual 

Information Solutions, Boulder, Colorado) was used during these operations.  

  

 

     
Fig. 2.2 – In-field allometric forest data collection. (A) Marking the plot, (B) measurement of the DBH, (C) canopy cover and 

height and (D) tree height. 

A B 

C D 
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2.2 Estimation of aboveground carbon stocks  
 

We focused our estimates of carbon stocks on AGB, since this commonly represents 

the main carbon pool in tropical forests ecosystems and the most susceptible to 

deforestation and degradation (Houghton, 2007). Moreover, it can be estimated using 

cost-effective protocols (Berenguer et al., 2015) unlike other carbon components 

(understory vegetation, belowground biomass or dead mass of litter). 

 The AGB of each individual tree was calculated using a pantropical allometric 

equation (Chave et al., 2005).  Pan-tropical models are described as the best models 

to estimate forest biomass and preferred over local allometric models (Gibbs et al., 

2007). Chave et al. (2014) developed generalized allometric equations for the pan-

tropics based on 4004 harvested trees at 58 sites across a wide range of forest types. 

These equations relate the AGB of individual trees and some measured parameters 

like DBH, total height and wood density. Thus, in this study AGB for each tree was 

calculated using the allometric equation 2 following Chave et al. (2014):  

 

eq. 2)  AGB
est

 =0.0673 ×(ρD
2
H)

0.976
 

 

where D is the DBH in cm, H is the height in m and 𝜌 is the wood density in g cm-3. 

Since sampled trees were not identified at species level, instead of specific-species 

wood density values, a constant wood density (𝜌) of 0.59 g cm-3 was applied. This 

value was reported by Henry et al (2010) as the overall average wood density in Ghana 

tropical rainforest and in line with current average values reported for trees in Africa 

(Brown, 1997). Biomass estimates were converted to carbon values using the carbon 

fraction of AGB for tropical and subtropical regions of 0.47 tonne C (tonne d.m.-1) 

reported by the IPCC (Paustin et al., 2006) 

 A Kruskal-Wallis test was used to analyze differences in AGB between the three 

categories identified by NDBR indice. 

 

2.3 Long-term forest cover estimation and forest change analysis 
 

Three LANDSAT scenes (7-June-1991, 30-September-2001 and 2-March-2014) were 

considered to quantify and characterize trends in forest cover across the study area 

between 1991 and 2014 (Table 2.1). This allowed us to infer and comprehend forest 

cover properties in different socio-political contexts of Angola, respectively during 

(1991), at the end (2001) and after (2014) of civil conflict. The scenes were obtained 

from the United States Geological Survey (USGS) and Global Land Cover Facility 
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(GLCF) databases, and orthorectified to the UTM-WGS84 Zone 33 South. Three steps 

were established to allow multi-temporal forest cover estimation and change analysis: 

imagery pre-processing, forest cover mapping and accuracy assessment, and image 

differencing.      

 Concerning to imagery pre-processing, the late scene (2014) was used as the 

reference image. The digital numbers (DN) recorded by the sensors were converted to  

TOA spectral reflectance and  atmospherically corrected using the dark-object 

subtraction (DOS) (Chavez, 1996)  to reduce any influence of haze and atmospheric 

particles (Fig. 2.3) In order to perform multi-temporal analysis with satellite data, 

radiometric normalization of scenes is necessary. This allows comparison between 

scenes captured in different periods reducing the noise associated to sensor used and 

atmospheric conditions present during capture. Here, a relative radiometric 

normalization (RRN) was implemented using the Pseudo Invariant Features method 

(PIFs) assuming the late scene (2014) as the reference image and earlier scenes were 

normalized respect to that. PIFs targets were manually identified choosing locations 

with no vegetation mainly along flat landscape units and present in all scenes. Once 

the targets were isolated, linear regression equations were developed to relate the 

earlier to the reference scene band by band (Schott et al., 1988; Salvaggio, 1993). 

Normalization was therefore performed including landscape elements with invariant 

reflectivity nearly constant over time (Hajj et al., 2008). 

 
Table 2.1 – Satellite data. Satellite images used to analyze trends in forest cover across Kumbira forest.  

a resampled to 30 meters to match multispectral bands 

 

Fig. 2.3 – Process of radiometric correction. Raw data recorded by sensors are converted into TOA spectral reflectance and 

atmospherically corrected. A correct radiometric normalization between both images is fundamental for change detection.  

Sensor Pixel Size Acquisition date Source 

LANDSAT  5TM 30 m (visible, NIR, SWIR) 

120 m (thermal) 
07-06-1991 GLCF 

LANDSAT 7ETM+ 
30 m (visible, NIR, SWIR), 

60 m (thermal) 

15 m (panchromatic) 

30-09-2001 USGS 

LANDSAT 8 OLI-TIRS 

OLI Multispectral bands 

(visible, NIR, SWIR): 30 m 

OLI panchromatic band: 15 m 

   TIRS Thermal bands: 100 m a 

02-03-2014 USGS 
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 Regarding to forest cover estimation, mapping considered two classes: ‘forest’ and 

‘non-forest’. Here, we adopted the ‘forest’ definition followed by FAO, which considers 

tree crowns covering more than 10% of the ground and a minimum height of 5 meters 

(FAO, 2001), and thus can include forests with human intervention such as shade 

coffee plantations. Two classification methods were used, namely Linear Spectral 

Unmixing with Principal Component Analysis for endmember collection and Maximum 

Likelihood, except for the earlier images (1991 and 2001). Classification of earlier 

images was only performed with latest method. This was due to the absence of 

panchromatic band in LANDSAT 5 TM as well as our willing to enjoy the possibility to 

refine resolution and improve classification for 2014 by using adequately the 

panchromatic band. Besides that, a preliminary stage of exploratory analysis shown 

that Maximum Likelihood Algorithm (MLA) performed better and was decided to used it 

as the baseline classification technique for the multi-temporal analysis. Therefore, 

multi-temporal forest cover comparison was based on the forest mask resulting from 

latest classification method. Classification procedure, respective training and validation 

strategies, are described individually hereafter.  

    For 2014 two forest masks with 15 and 30 m resolution were obtained. The finest 

mask was obtained by fusing the high-resolution panchromatic image (band 8 of 

LANDSAT 8 OLI-TIRS) with the lower resolution multispectral image trough Principal 

Component Analysis (PCA) spectral sharpening technique (Chavez, 1989; Shetigarra, 

1989; Shah et al., 2008; Vrabel et al., 1996; Yang et al., 2012). After that, was 

combined a PCA for forest endmembers collection (Smith et al., 1985) by selecting the 

centre of the scatter plot of the 1st and 2nd principal components (Fig. 2.4), and Linear 

Spectral Unmixing (LSU) to determine the relative abundance of the selected 

endmembers within the volume of each pixel (Settle and Drake, 1993). The coarsest 

forest mask was achieved by a supervised MLA classification (Jensen, 2005). MLA 

calculates the probability that a given pixel belongs to a specific class. To perform this 

classification, a total of 61 sites (at least 4x4 pixels) were used as training data. Sites 

were randomly visually selected across the satellite scene using very high resolution 

imagery from Google Earth and field knowledge from in-field campaign as ancillary 

data.  

 To map forest cover in 1991 and 2001, as described ahead it was also considered 

the Maximum Likelihood Algorithm (MLA) and using 54 and 64 training sites, 

respectively. These sites were also visually identified and selection was made in areas 

where the presence of forest was clear. Visual identifications in the satellite images are 

a potential source of errors, but such risk is higher when a larger set of land cover 
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classes are considered and images enclosed in period of large cover transitions. In our 

case, accuracy of our selected training samples was highly supported by the stability of 

forest during civil war conflict.  

Classification accuracy of forest cover was verified through confusion-matrix 

(Pontius et al., 2004) and Cohen’s Kappa coefficient (k) (Congalton, 1991). This 

reflects the difference between actual agreement and the agreement expected by 

chance. The accuracy was expressed as the overall percentage of correctly classified 

pixels. Therefore, for 2014 were considered a total of 78 validation sites, 51 resulting 

from in-field data collection and representing ‘forest’ class and 27 representing ‘non-

forest’ class. Three in-field validation plots were excluded since they did not present the 

required forest cover or height reported by FAO. Accuracy of 1991 and 2001 forest 

masks was estimated using 45 (20 for ‘forest’ class and 25 for ‘non-forest’ class) and 

46 (26 for ‘forest’ class and 20 for ‘non-forest’ class) validation samples, respectively. 

Validation samples were also visually estimated. All training and validation samples 

were subject to Jeffries-Matusita distance test (Trigg and Flasse, 2001), which estimate 

class separability across band pairs to ‘forest’ and ‘non-forest’ classes. All samples 

presented values greater than 1.9, confirming their spectral separability or that classes 

are well separated (Richards and Jia, 1999). 

 To determine forest loss over time and identify stable and non-stable forest cover 

that suffered change due to anthropogenic influence was applied a post-classification 

change detection within classified forest cover mask (Lu et al., 2004; Alphan et al., 

2009). Forest loss for each period (1991-2001 and 2001-2014) was obtained by 

establishing the image differencing between later image and earlier image. Stable 

forest refers to the forest area present in the three times, while unstable refers to those 

areas that have change by regeneration or deforestation. The annual rate of 

deforestation was calculated using the Puyravaud (2003) equation 3: 

 

eq. 3)  r = 
1

t1-t
2

ln
A2

A1

 

 

where r is the deforestation rate in % of lost per year, and A1 and A2 are the forest 

cover at time t1 and t2, respectively.  

With these methods the detection and quantification of forest degradation and 

regrowth was not possible. All the operations were executed in ENVI-IDL 4.7.   
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Fig. 2.4 – Forest endmembers collection. By selecting the centre of the two main PCs from a PCA scatter plot, forest class can be 

isolated from the other land cover components.  

 

2.4 Modelling  forest loss using spatial explicative factors 
 

2.4.1 Variable selection and model setup   

  

Deforestation can be more or less severe according to the influence of spatial 

environmental factors and their interactions at different spatial and temporal scales 

(Kumar et al., 2014).  Regression type models and models based on spatial transition 

allow the assessment of the relative significance of spatial explicative factors in specific 

contexts of forest conversion. A GIS-based Logistic Regression Model (LRM) was used 

to assess the ultimate causes of forest change in Kumbira during the period of 2001-

2014. When the dependent variable is binary, which is the case, the LRM is an 

effective technique to analyse land cover conversions (Kumar et al., 2014; Luo and 

Wei, 2009; Rutherford et al., 2007). The dependent variable was the ‘forest cover 

change’ layer that took place between 2001 and 2014. The layer was obtained with a 

post-classification comparison on a pixel-by-pixel basis using a change detection 

matrix between the two independent classified images (Fig. 2.5). The result forest 

cover change map is a binary layer (1 versus 0), where “1” indicate the category that 

had remained the same (‘no change’)  and “0” the category that had changed (‘forest 

change’) (Shalaby and Tateishi, 2007). Since Kumbira was under a typical context of a 

civil war until 2002, changes between 1991 and 2001 were not considered for the 

modelling analysis.  
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Fig. 2.5 – Dependent variable. ‘Forest cover change’ during 2001-2014 used for LRM. 

 

 Based on the literature, eight explanatory variables (Fig. 2.6), grouped in three 

thematic fields, were selected as potential driving forces of forest change (Table 2.2): 

topography (‘slope’, ‘elevation’ and ‘aspect’), neighbourhood (‘distance to trails’, 

‘distance to streams’, ‘density of settlements’ and ‘density of bare land’) and spectral 

related (‘NDBR index’) (Geist and Lambin, 2002; Mahapatr and Kant, 2005; Echeverria 

et al., 2008; Müller et al., 2011; Arekhi S, 2011; Vieilledent et al., 2013; Mayaux et al., 

2013; Kumar et al., 2014).  

 The NASA STRM Digital Elevation Model (DEM; 30 m resolution) was used to 

generate the topography variables: slope, elevation and aspect maps. These variables 

served as a proxy for the effect of landscape shape and exposure on forest loss (Geist 

and Lambin, 2002). The circular variable aspect (º) was transformed to cosine aspect 

and sine aspect to be represented as a continuous variable with output values respect 

to North and East (Piedallu and Gégout, 2008). Northness varies from -1 (south-facing) 

to 1 (north-facing), and eastness from -1 (west-facing) to 1 (east-facing). 

 Neighbourhood variables were estimated using trails, DEM and satellite-derived 

information. In specific, major trails and trails networks were manually digitized with 

very high resolution imagery data for 2010 in Google Earth (2015). Next, data was 
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imported in QGIS 2.6.1 (QGIS Development Team, 2014) converted to raster format 

and applied a proximity operator to estimate ‘distance to trails’. Ideally, should be used 

images from ~2001 to depict this variable, but most close available image for the study 

area with appropriate resolution refers to 2010. We assume that this may carry 

limitations in the interpretation of the variable, but we decided to risk since data for 

forest conservation in Angolan Scarp forest is urgently necessary and missing. In 

addition, we observe that is unlikely that deforestation occurred much before 2010 (as 

proved by an additional MLA forest cover mask performed for the year of 2010 not 

present in this thesis; Cáceres et al., in prep) due to civil conflict.   

 Hydrologic features were extracted from DEM after removing pits by filling 

depressions. Pits are artificial depressions that usually result from the pre-processing 

operations that can create discontinuities in drainage patterns (Grimaldi et al., 2007). 

Pit filling method increases the elevation of the pits until they drain out (Jenson and 

Domingue, 1988). Once we had hydrologically corrected the DEM, the Catchment area 

(Parallel) module of QGIS 2.6.1 (QGIS Development Team, 2014) was executed using 

the D8 algorithm and set a channel initiation threshold greater than 10000000 using the 

Channel Network algorithm. Once again the Proximity operator was applied in order to 

obtain the ‘distance to streams’ variable. Settlements were also manually identified in 

Google Earth in 2010, imported in QGIS (QGIS Development Team, 2014) and convert 

from KML to a vector layer. Settlements do not change easily as trails do, so the 

outlined in 2010 image is not a major limitation. The ‘density of settlements’ was then 

obtained using the Heatmap tool, where was settled a radius of 1000 m around the 

center of each of the identified settlements. All distance explanatory variables were 

transformed to the natural log (ln) and evaluated the effect of accessibility and the 

influence of water resources on forest loss (Geist and Lambin, 2002). The ‘density of 

settlements’ evaluated the influence of settlements structure in the surrounding 

vegetation (Monteiro et al., 2011). To estimate the ‘density of bare land’ (e.g., bare soil, 

rock, dirt, etc.) the satellite-derived Normalized Differenced Vegetation Index (NDVI) 

was estimate for the LANDSAT scene of 2001 (Rouse et al., 1973; Glenn et al,. 2008) 

and a threshold of 0.5 applied, with values below this threshold identifying bare land 

features. This variable measured the effect of bare land structure on forest loss 

(Monteiro et al., 2011). The spectral related variable ‘NDBR’ evaluated the effect of 

vegetation density in forest loss and it was calculated as described in section 2.1 for 

the LANDSAT scene of 2001.  

 All data layers were in grid format (30 m spatial resolution)  

 

https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CD0QFjAD&url=http%3A%2F%2Ffuture-megacities.org%2Ffileadmin%2Fdocuments%2Fkonferenzen%2FMegacities_in_Action_2013%2FJakob_Kopec_small.pdf&ei=qyqTVcH5BYGtUaHal_AE&usg=AFQjCNEkjfqPGbHgWpJpZM_HF562C14RWQ&sig2=ct--z290RmqNiLOEL__F5Q&bvm=bv.96952980,d.d24
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Fig. 2. 6 – Explanatory variables used for LRM and SBA. (A) Slope, (B) elevation, (C) distance to roads, (D) distance to 

streams, (E) density of settlements, (F) density of bare land and (G) NDBR index. Since aspect was transformed to cosine aspect 
and sine aspect is not represented here.  

 

2.4.2 Logistic Regression model run and validation 

 

For the logistic regression analysis, 500 pixel observations were selected through 

stratified random sampling from the dependent data layer (‘forest cover change’), with 
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equal sampling to 1 (change) and 0 (no change) observations. For each independent 

variable, observations were obtained through spatial overlay using ENVI-IDL 4.7 (Fig. 

2.7). The set of independent variables was tested for multicollinearity by examining 

correlation structure between explanatory variables using the Pearson’s rank 

correlation coefficient, since high collinearity violates the assumption of independence 

between data points (Graham, 2003; Legendre, 1993). Pairs of variables with 

magnitudes > 0.5 (Booth et al., 1994)   and VIF ≥ 2 (Zuur et al., 2010) indicate high 

collinearity. For this analysis, the ‘car’ package of R version 3.1.1 (R Core Team, 2014) 

was used. Then, the change/no change dataset was split into a training dataset 

using 75% of the 500 observations, and a test dataset using the remaining 25% (Papeş 

et al., 2012; Vieilledent et al., 2013). The training dataset was used for model 

calibration purposes and the test dataset to validate the best fitted model. In logistic 

regression, the probability of forest change is described as a function (equation 4) of 

the explanatory variables:  

eq. 4)  p=E(Y)
eβ0+β1X1+β2X2+β3X3+β4X4

1+eβ0+β1X1+β2X2+β3X3+β4X4
 

 

where p is the probability of forest change, E(Y) is the expected value of the dependent 

variable Y, β0 is a constant to be estimated, βi is the coefficient to be estimated for each 

explanatory variable Xi. This function is logistic transformed into a linear function 

(equation 5) and the dependent variable of regression is bounded between 0 and 1:  

 

eq. 5)  logit(p)= ln (
p

1-p
) = β

0
+β

1
X1+β

2
X2+β

3
X3+β

4
X4 

 

Initially, we assessed the extent of any remaining collinearity by fitting a preliminary 

generalized linear model (GLM) (Guisan et al., 1998) with the training dataset and all 

variables and looking at the variance inflation factors (VIFs) of the resulting model 

(Rhodes et al., 2009). By suggestion of Zuur et al. (2010), explanatory variables with 

VIFs above 2 were dropped from the dataset, which in our case excluded from analysis 

the variables ‘density of bare land’ and ‘NDBR index’. Like multicollinearity, spatial 

autocorrelation between observations may be a problem.  Spatial  autocorrelation  in  

the  preliminary  GLM  was  assessed  with  a  spline correlogram  of the Pearson 

residuals (Bjørnstad  and  Falck,  2001)  using  ‘ncf’  package  of  R  3.1.1  (R  Core  

Team, 2014). These correlograms use a spline function and produce graphical 



FCUP 
The potential of REDD+ as a conservation opportunity for the Angolan Scarp Forests: Lessons from the unique Kumbira forest 

25 

 

  

representations of the spatial correlation between locations of the observations at a 

range of lag distances (Zuur et al., 2009). In this case the maximum lag distance was 

10 km. 

In addition to the modeling task, spatial bivariate analysis was performed in order to 

describe the relationship between forest loss and the variation of each explanatory 

variable (exception for density variables) not excluded from the multicollinearity 

analysis (Table 2.2).  

 
Table 2.2 – List of variables included in the spatial bivariate analysis and GIS-based logistic regression model. 

a 
DEM (digital elevation model); GE-10(Google Earth image 2010); 7ETM01 (LANDSAT 7ETM+ 2001). 

b
 Analysis where the variable was included: SBA (spatial bivariate analysis); GIS-LRM (GIS-based logistic regression model) 

c Variable represented by cosine aspect and sine aspect in the GIS-LRM. 

 

Once a suitable set of independent variables were identified, they were grouped in 

six explanatory sets with different combinations. The set-1 included all the topography 

and neighbourhood related variables, the set-2 only the two distance variables, the set-

3 was formed by all the neighbourhood related variables, set-4 included the distance 

and all the topographic variables, set-5 only the topographic and set-7 the  topographic 

and the ‘density of settlements’ variables. Also, was constructed a ‘null’ model that 

includes no explanatory variables as a check of our assumption of the importance of 

the selected variables. To find the set producing the best model and that would be 

used to make predictions, each model was fitted to the training data and ranked by 

their AIC values using equation 6: 

eq. 6)  AIC=-2L+2K 

Variable description Unit Proxy for Sourcea Task levelb 

Topography related     

Slope º Landscape shape DEM SBA/GIS-LRM 

Aspectc º Exposure DEM SBA/GIS-LRM 

Elevation m Landscape shape DEM SBA/GIS-LRM 

Neighbourhood related     

Distance to trails m Accessibility GE-10 SBA/GIS-LRM 

Distance to streams m Accessibility/Water resources DEM SBA/GIS-LRM 

Density of settlements nº/1000 m Settlements structure GE-10 GIS-LRM 

Density of bare land index Bare land structure 7ETM01 GIS-LRM 

Spectral related     

NDBR index Vegetation density 7ETM01 GIS-LRM 
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where L is the maximum log-likelihood of the model and K is the number of parameters 

in the model (Akaike, 1973). The chosen model is the one with low values of AIC. Also, 

we calculated the relative probability of each model being the best model by calculating 

their Akaike weights, wi (equation 7): 

 

eq. 7)  wi=
exp (-

1
2

∆i)

∑ exp (-
1
2

∆j)R
j = 1

 

 
where Δi is the difference between the AIC for model I and the model with the lowest 

AIC and the sum is over all the alternative models in the set j = 1,...,R. AIC and wi were 

calculated with the ‘MuMIn’ package in R 3.1.1 (R Core Team, 2014).  

 

Fig. 2.7 – Overview of the LRM process. GIS and remote sensing data are used to produce the binary dependent variable ‘forest 

cover change’ and the eight explanatory variables to be included in the GLMs.  DEM – Digital Elevation Model; ML – Maximum 

Likelihood.  

 

Predictions on the test dataset were done in order to assess the quality of the 

selected model, which were then validated using the Relative Operating 

Characteristic/Area Under Curve (ROC/AUC) (Pontius and Schneider, 2001) using the 

‘pROC’ package in R 3.1.1. ROC compared the probability for forest loss against the 

forest loss layer resulting in a curve of true positive fraction vs. false positive fraction 
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with values ranging between 0.5 (completely random) and 1(perfect fit) (Monteiro et al., 

2011; Kumar et al., 2014). Also, other model statistics like pseudo R2 (1 − (ln L (L = 

Likelihood)) for the best fitting model / ln L0 for the null hypothesis) were calculated 

using the ‘rms’ package in R 3.1.1.  

 

2.5 Quantification of carbon emissions from forest change 

 

The mean carbon content obtained after conversion of AGB into AGC in 49 plots 

surveyed during field work at Kumbira was used as reference to quantify the carbon 

emissions associated to forest change. 

The change in the carbon content was determined from the change in the area of 

the two classes (‘forest’ and ‘non-forest’) derived from the change detection analysis 

across forest classifications with satellite data. The carbon emissions were estimated 

by multiplying the area of the ‘forest’ converted to ‘non-forest’ by the average carbon 

content. Only gross carbon emissions caused by deforestation were recorded. In future 

work, we aim to improve our carbon estimates and better understand the forest 

dynamics by developing methodologies to assess both forest regrowth and degradation 

in Kumbira forest.    

 

2.6 Evaluation of REDD+: scenarios development  

 

To evaluate the potential of REDD+ as incentive for reducing forest loss, three 

scenarios for a 13-year period were projected: 1) business-as-usual scenario (BAU); 2) 

full-conservation (FC); and 3) give-and-take (GAT). The BAU scenario implies no 

REDD+ intervention and incorporates forest loss following the linear trend and rate of 

deforestation measured during the historical reference period (2001-2014). In the FC 

model, the allocation of REDD+ payments would be used by the government to monitor 

and enforce the total protection of the current forest area. All land owners and farmers 

with forest are directly payed with REDD+ incentives and they opt to maintain forest 

instead to cut or convert tor farming uses. This scenario represents the maximum 

potential of reducing emissions from deforestation.  In the GAT scenario, REDD+ 

payments would be used to ensure the protection of a delimited area corresponding to 

50% of the current forest. Land owners and farmers opt to receive incentive to preserve 

this forest land and all farming activities would restricted to the remaining area by 

allowing deforestation at the current rate. 
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3. Results 
 

3.1 Aboveground carbon stocks 

 

A total of 496 trees were recorded across all 49 survey plots considered for the 

quantification of carbon stocks. Medium shadow plots show the highest mean values of 

AGB and DBH, 225.2 Mg ha-1   (s.d. = 366.3) and 17.1 cm (s.d = 14.1), respectively 

and a mean tree height of 9.2 m (s.d. = 4.2).  Low shadow plots presents the lowest 

mean values of AGB, DBH and tree height, 84 Mg ha -1 (s.d. = 196.9), 13.6 cm (s.d. =  

8) and 9.2 m (s.d. = 3.9), respectively.  The highest mean tree height value belongs to 

the high shadow plots (9.5 m, s.d. = 3). This class also presents a mean DBH of 14.8 

cm (s.d. = 7.7) and mean AGB of 149.3 Mg ha-1 (s.d. = 143.3). However, the AGB 

estimates for the three spectral categories calculated by NDBR were not significantly 

different (Kruskall Wallis test, p = 0.4731). The AGC in the 49 plots ranged from 0.7 to 

737.1 Mg ha-1, with a mean of 89.4 Mg ha -1 (s.d. = 126.4).  

 The relationship between DBH and tree height as well as the distribution of AGB 

and AGC estimates are provided in Fig. 3.1 and 3.2, respectively. The AGB and AGC 

estimates and the number of trees measured for each plot are shown in Appendix I – 

Ib.   

 

 
Fig. 3.1 – Relation between DBH and tree height. A stratified random sampling was used for the selection of 49 plots, where 496 

trees (DBH ≥ 5 cm) were tree height measured using either a clinometer or a laser range finder 
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Fig. 3.2 – Aboveground biomass and carbon (Mg ha-1) for forest plots. Box plots show 25% quartile, median and 75% quartile 

of the distributions (horizontal lines); vertical lines extend a further 1.5 times the interquartile (25–75%) range; vertical lines extend 

a further 1.5 times the interquartile (25–75%) range. 

 

3.2 Forest classification and change detection  
  

The overall accuracy of the forest/non-forest classification indicated that accurate forest 

masks were obtained for the years 1991, 2001 and 2014. Accuracies ranged from 

95.13% for 2014 to 98.2% for 1991, with Kappa (k) coefficients varying from 0.82 to 

0.97, respectively. For 2014, MLA performed better than the Linear Spectral Unmixing 

with Principal Component Analysis for endmember collection  method ( PCA + LSU; 

Fig. 3.3 and Table 3.1), supporting the decision of chosen this method for the multi-

temporal forest classification (Table 3.2 and Fig. 3.4). The producer’s accuracy or the 

fraction of correctly classified pixels with regard to all pixels of that ground-truth class 

was high to all classifications, with values ranging from 96.08% (2014) to 100% (2001) 

for the ‘forest’ class and from 95.24% (2001) to 100% (2014) for the ‘non forest’ class 

(Table 3.2). The user’s accuracy or the fraction of correctly classified pixels with regard 

to all pixels classified in a given class in the classified image were also very good, with 

values  varying from 96.4% (2001) to 100% (2014) for the ‘forest’ class and from 

93.85% (2014) to 100% (2001) for the ‘non-forest’ class (Table 3.2).  

 Table 3.3 summarizes the forest cover changes occurred in Kumbira during the 

period 1991-2014. Results indicated that the greatest change took place in post-conflict 

society between 2001 and 2014 where 40,8% of forest was lost in only 13 years, at a 

deforestation rate of 4.04% year-1. Both Table 3.3 and Fig. 3.5 illustrate the 

accentuated decrease of forest in this period. In 2001, almost 39.3% (13501.53 ha) of 

the study area was forest, while in 2014 only 23.3% (7988.85 ha) remained forest. For 

the early period (1991-2001), which coincided with the last third of the civil war conflict 
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in Angola, the forest cover remained constant over the 10 years and may even have 

increased by about 35 ha.  

 

 

Fig. 3.3 – Forest cover during 2014 extracted by the combination method. The forest mask was obtained by the fusion of the 

high-resolution panchromatic band to the low-resolution multispectral image. A PCA was used for the forest endmembers collection 

and LSU to determine the relative abundance of forest in each pixel. 

 

Table 3.1 – Confusion matrix for the classification of the forest cover map using the PCA + LSU method, LANDSAT 2014. 

Year Error matrix Accuracy 

Class Reference data  

Forest Non-forest Total 

2014 

Forest 190 0 190 

Overall = 95.13% 

Producer’s (%):  

 Forest = 93.13, Non-forest = 100 

Omission error (%):  

Forest = 0.14, Non-forest = 1 

User’s (%):  

Forest = 100, Non-forest = 85.71 

Comission error (%):  

Forest = 0, Non-forest  = 0.14 

k = 0.8162 

Non-forest 14 84 98 

Total 204 84 288 
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Table 3.2 – Confusion matrix for the classification of the forest cover map using the MLA method, LANDSAT 1991, 2001 

and 2014.  

Year 

Error matrix 

Accuracy 
Class 

Reference data 

Forest Non-forest Total 

1991 

Forest 155 3 158 

Overall = 98.2143% 

Producer’s (%):  

Forest = 100, Non-forest = 95.24 

Omission error (%):  

Forest = 1.9, Non-forest = 1.69 

User’s (%):  

Forest = 98.1, Non-forest = 98.31 

Comission error (%):  

Forest = 1.9, Non-forest  = 0 

k = 0.9673 

Non-forest 3 175 178 

Total 158 178 336 

2001 

Forest 107 4 111 

Overall = 97.9% 

Producer’s (%):  

Forest = 98.1, Non-forest = 98.31 

Omission error (%):  

Forest = 0, Non-forest = 4.73 

User’s (%):  

Forest = 96.4 Non-forest = 100 

Comission error (%):  

Forest = 3.6, Non-forest  = 1.69  

k = 0.9573 

Non-forest 0 80 80 

Total 107 84 191 

2014 

Forest 196 0 196 

Overall = 97.546 % 

Producer’s (%):  

Forest = 96.08, Non-forest = 100 

Omission error (%):  

Forest = 3.92, Non-forest = 0 

User’s (%):  

Forest = 100, Non-forest = 93.85 

Comission error (%):  

Forest = 0, Non-forest  = 6.15  

k = 0.9483 

Non-forest 8 122 130 

Total 204 122 326 
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Fig. 3.4 – Forest classification for LANDSAT scenes (1991, 2001, 2014) obtained by MLA classifier. Dark green is the forest that has been maintained since 1991. Light green is the potential regenerated forest. 

However, due the 10 years intervals, it is probable that many areas classified as ‘forest since 1991’ may also be regenerated area
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Table 3.3 – Forest cover changes and deforestation rates for the 1991-2001 and 2001-2014 periods.  

Year Class Area (ha) Area (%) 
Deforestation rate 

r Puyravaud (% yr-1) 

1991 
Forest 13466.52 39.2  

Non-forest 20893.68 60.8 

2001 
Forest 13501.53 39.3 

Non-forest 20858.67 60.7 

2014 
Forest 7988.85 23.3 

Non-forest 26371.35 76.7 

Change 1991-2001 Forest 35.01 0.26  

Change 2001-2014 Forest -5512.68 -40,8 4.04 

 

 

Fig. 3.5 – Forest cover for the years 1991, 2001 and 2014 and deforestation rates. Forest cover remained constant between 1991 

and 2001 (war period) and was followed by a dramatic reduction for the period 2001-2014. 

 

3.3 Identification of  the significant drivers for forest loss 

 

3.3.1 Correlation and multicollinearity among the spatial explicative factors  

 

Pearson’s correlations and VIF values identified that ‘density of bare land’ and ‘NDBR’ 

variables were highly correlated (r= 0.86; VIF= 2.8039 and 2.8918) and were excluded 

(Zuur et al., 2010) from the candidate models (see Fig. 3.6 and Table 3.4). This is 

understandable, since in bare ground NDBR values are supposed to be lower. 

Moreover, correlogram showed that (Fig. 3.7) that spatial autocorrelation between 

observations was not observed, and modelling task can proceed without any previous 

treatment.   
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Table 3. 6 – Variance inflation factors for each explanatory variable. Variables with VIFs above 2 were excluded from the 

dataset (Density of bare land and NDBR index). 

Slope 
Cosine 

aspect 
Sine 

aspect 
Elevation 

Distance 

to trails 

Distance 

to 

streams 

Density of 

settlements 

Density 

of bare 

land 
NDBR 

1.1528 1.0293 1.0268 1.1429 1.1464 1.0755 1.1490 2.8039 2.8918 

 

Fig. 3.6 – Pairplot of the explanatory variables and Pearson’s correlation coefficients. Coefficient values greater than 0.5 

indicate high collinearity (‘density of bare land’ vs ‘NDBR’). The circular variable aspect is not represented but did not show any 

signal of collinearity with the remaining variables. 

 

 

Fig. 3.7 – Correlogram to evaluate spatial autocorrelation between observations. Spline correlogram of the Pearson residuals, 

with 95% confidence intervals, including all the explanatory variables, and fitted to the training data.

0.10 

0.14 
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Spatial bivariate analysis was used for the selection of the explanatory variables to 

be included in the forest loss model. Fig. 3.8 shows the relationship between the 

dependent variable and each explanatory variable. Maximum forest loss has occurred 

at mid slopes (≥ 5 and < 10; 22.8%) (Fig. 3.8A), occurrences of forest change within 

lower slopes (> 5) were noticed to be distinct, indicating a non-linear relationship 

between forest loss and slope. A non-linear relationship was also observed between 

forest loss and ‘elevation’, with maximum forest loss occurring between 750 and 850 m 

of altitude (19.2%) (Fig. 3.8B) and mainly exposed to East (30.8%) or South (25.6%) 

(Fig. 3.8C). Similar pattern is observed for ‘distance to streams’, with forest loss 

occurring preferentially between 65 and 130 m (Fig. 3.8E). Also, forest loss has taken 

place near the trails, mainly within 1 km of distance (34%) (Fig. 3.8D).  
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Fig. 3.8 – Variation of the areas of forest loss according to the explanatory variables. (A) Slope, (B) elevation, (C) aspect, (D) 

distance to trails and (E) distance to rivers. 

 

3.3.2 Drivers of forest cover change in Kumbira forest 

 

 In the LRM analysis, six explanatory sets of variables were compared. Table 3.5 

summarizes the results obtained for all sets.  Results evidenced low model uncertainty, 

with the Akaike weights confirming that two models (set-4 ad set-1) are much more 

likely to be the best model than the other models. The explanatory set-4, including all 

topography-related and the two distance variables, was found to be the best 

combination for prediction with an AIC of 406.85.  However, this model is only 1.5 times 

more likely than the next best model, which also includes ‘density of settlements’ 

(evidence ratio=0.576/0.390), but it is 23 times more likely than the third model. This 

strongly suggests that topography together with distance variables are important 

determinants of forest loss in Kumbira. This is further supported by the comparison of 

the AICs of the models containing only the topography or the distance variables 

(415.25 and 503.48, respectively) relatively to the null models AIC of 521.4. The 

pseudo R2 of the best model was 0.278, which according to Hensher and Johnson 

(1982) is considered as extremely good fit. The ROC/AUC graph generated between 

training data and the test data used to evaluate the quality of the selected model is 

shown in Fig. 3.9.  The area under ROC curve is 0.78 which gives an accuracy of 78% 

for the predicted forest loss. 

 Hence, the regression equation (8) of the best-fitted explanatory set-4 is given 

below: 

 
eq. 8)  logit(p)=4.719+0.036(SP)-0.005(ELE)-1.405(cASC)-0.015(sASC)-2.079(DT)+0.100(DS) 

0

2

4

6

8

10

12

14

16

18

20

F
o

re
s
t 

lo
s
s
 (

%
)

Distance to streams (m)

E 



FCUP 
The potential of REDD+ as a conservation opportunity for the Angolan Scarp Forests: Lessons from the unique Kumbira forest 

37 

 

  

where 4.719 is the intercept and the remaining values are the regression coefficients 

for slope (SP), elevation (ELE), cosine aspect (cASC), sine aspect (sASC), distance to 

trails (DT) and distance to streams (DS).  

 

 

      Fig. 3.9 – Validation of LRM prediction (AUC/ROC) of best-fitted model. 

 

The relative contribution of the explanatory variables was evaluated using the 

corresponding odds ratio (hereafter, ‘OR’) in the LRM (Table 3.5). An OR tells us the 

factor by which the odds of forest loss versus no forest loss change when the 

continuous variable is increased by one unit. Specifically, the distance variables seem 

to be more important than the topographical ones. ‘Slope’, ‘elevation’ and ‘sine aspect’ 

show OR values of roughly 1. There is an increase of 4% (1 – e β) in forest loss for one-

unit increase in slope and a decrease of 0.4% for one-unit increase in elevation. The 

results of ‘cosine aspect’ supports the southerness of forest loss (OR = 0.894) as 

observed in the SBA, but suggest a western trend (OR = 0.980). However, ‘sine 

aspect’ together with ‘elevation’ are the variables that less predicted forest change. And 

among the distance variables, ‘distance to trails’ was the best single predictor for forest 

change with an OR of 0.803. This means that the odds of forest loss decreases by a 

factor of 0.803 (almost 20%) for one-unit increase in the distance to trails. For ‘distance 

to streams’ was obtained an OR of 1.115. The variable ‘density of settlements’ is not 

included in top ranked model but given that this model is not obviously the best when 

compared with the second ranked model (set-1), a sensible approach is to 

acknowledge for the influence of ‘density of settlements’. In this case, a strong impact 

of this variable (OR = 1.432) was observed, with the second model assigning high 

values of forest loss in areas where settlements are denser.   
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Table 3.5 – Regression equation coefficients, AICs, w, and model rankings for all the explanatory sets of GIS-based logistic regression models. Set-4 was confirmed as the best predictor set to explain forest loss 

in Kumbira.  GLM - Generalized logistic model; AIC - Akaike’s information criteria; w - Akaike weights. 
 

Rank 
Explanatory 

set 
LRM Slope Elevation 

Cosine 

aspect 

Sine 

aspect 

Distance 

to trails 

Distance to 

streams 

Density of 

settlements 
(Intercept) AIC w 

                   
1 set-4 Coefficient (β) 0.036 -0.005 -0.145 -0.015 -0.279 0.100  4.719 406.82 0.576 

  Standard error 0.014 0 0.177 0.176 0.086 0.096  0.823   
  Odds ratio (eβ) 1.040 0.996 0.894 0.980 0.803 1.115     
                    

0.390 2 set-1 Coefficient (β) 0.037 -0.005 -0.151 0.002 -0.247 0.114 0.606 4.368 407.51 

  Standard error 0.014 0 0.177 0.177 0.090 0.097 0.541 0.869   
  Odds ratio (eβ) 1.041 0.996 0.886 0.995 0.819 1.128 1.432    
                  

3 set-5 Coefficient (β) 0.035 -0.005 -0.146 0.017   0.981 3.083 413.2 0.025 

  Standard error 0.013 0 0.174 0.174   0.510 0.458   
  Odds ratio (eβ) 1.040 0.996 0.893 1.004   1.907    
                 

4 set-6 Coefficient (β) 0.033 -0.005 -0.128 -0.007    3.215 415.25 0.009 

  Standard error 0.013 0 0.172 0.173    0.459   
  Odds ratio (eβ) 1.038 0.996 0.914 0.976       
               

5 set-2 Coefficient (β)     0.083 -0.071  2.828 503.48 0 

  Standard error     0.079 0.083  0.709   
  Odds ratio (eβ)     0.779 1.029     
                

6 set-3 Coefficient (β)     -0.308 -0.068 0.287 2.688 505.17 0 

  Standard error     0.082 0.084 0.524 0.750   
  Odds ratio (eβ)     0.779 1.029 1.004    

             
7 null Coefficient (β)        -0.069 521.41 0 

  Standard error        0.103   
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3.4 Emissions from forest change  
 

Because Kumbira forest area was stable between 1991 and 2001, only gross carbon 

emissions from forest change that occurred in the period 2001-2014 were recorded. 

During these 13 years, forest change lead to gross carbon emissions of 492833.6 

MgC, this corresponds to annual gross carbon emissions of around 37910.6 MgC 

(Table 3.6). 

 

  Table 3.6 – Gross carbon emissions from forest change for 2001-2014. 
 

Years Change  Area (ha) 
Carbon emissions 

Annual (Mg yr-1) Total (Mg) 

2001-2014 Forest to non-forest - 5512.68 37910.6 492833.6 

 

 

3.5 Feasibility of REDD+ as forest conservation strategy 
 

As expected, assuming the same trend in deforestation under the BAU scenario, forest 

cover will be significantly reduced in 13 years (the same range of the reference period 

2001-2014). Forest area will decrease by 41.5% and will contribute with 296377.7 MgC 

of gross carbon emissions to the atmosphere (Table 3.7 and Fig. 3.10). The total 

amount of gross carbon emissions that will be emitted if the forest disappears 

completely is around 714203.2 MgC. This value represents the maximum potential of 

carbon emissions that can be saved by the immediate stop of deforestation under the 

FC scenario. The GAT scenario, involving the delimitation of a protected area covering 

50% of the total actual forest will save almost 1658 ha of forest by 2027 compared with 

BAU scenario and half of gross carbon emissions, with emissions totalling 148188.2 

MgC. 

 As mentioned before, change detection allowed the quantification of deforestation 

but it was not possible to detect and quantify forest degradation and regrowth, whereby 

carbon gained by the natural reforestation and additional losses due to degradation 

were not taken into account.    
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Table 3.7 – Predicted forest cover, forest change and gross carbon emissions for the next 13 years (2014-2027) under two 

different deforestation scenarios. Business-as-usual (BAU) and give-and-take (GAT) are defined in section 2.6.  

 

 

Fig. 3.10 – Cumulative gross carbon emissions from forest cover change under three different deforestation scenarios. 

Business-as-usual (BAU), give-and-take (GAT) and full-conservation (FC) are defined in section 2.6.  
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FCUP 
The potential of REDD+ as a conservation opportunity for the Angolan Scarp Forests: Lessons from the unique Kumbira forest 

41 

 

  

4. Discussion  
 

Within the United Nations Framework Convention on Climate Change (UNFCCC) it is 

explored how mechanisms for reducing emissions from deforestation and forest 

degradation and promote sustainable management of forests as well as biodiversity 

conservation (REDD+) can be included in a post-Kyoto agreement for reducing global 

greenhouse gas emissions. Despite some uncertainties still remaining, REDD+ 

projects are being implemented across most of the tropical countries that show high 

forest cover and high deforestation rates. However, small-scale projects in low forest 

countries have also potential to provide significant carbon emissions reductions and 

valuable co-benefits. 

 The potential of REDD+ was investigated for one of the most emblematic forests of 

the Angolan Central Escarpment using satellite data for the analysis of the historical 

changes in the forest cover from 1991 to 2014. The results confirm a high historical 

deforestation rate of 4.04%, taking place predominantly in the proximity of trails. If 

current deforestation rates continue, the forest is likely to emit 296377.7 MgC until 

2027 and the exceptional biological diversity of the Kumbira will be seriously 

compromised. These trends are likely to be transversal to the remaining Scarp forests. 

A forest-management conservation strategy under REDD+ involving rural-communities 

could help to prevent this scenario and even enhance carbon stocks in the area.  

 In the following sections the results and the methodologies used are discussed in 

more detail. 

4.1 Forest classification 

 

The assessment of the historic forest cover change is a key requirement for the 

estimation of carbon emissions from forest loss over time. This trend was analysed 

based on a thematic land cover classification of LANDSAT scenes from 1991, 2001 

and 2014 using MLA classifier and one additional method for 2014 scene where after 

the fusion of the high-resolution panchromatic band, two different techniques were 

combined (forest endmembers collection by Principal Component Analysis, and Linear 

Spectral Unmixing). However, we are aware that each step in the classification process 

involved uncertainties that will affect the accuracy of the classification and 

consequently the end result of the change detection.  

 In the first place, high quality of historical remote sensing data is required to achieve 

reliable estimates of CO2 emissions. This is particularly difficult for tropical ecosystems 
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because their complex structures, such as dense canopy closure, often tend to 

saturate the signals from remote-sensing instruments resulting in the underestimation 

of carbon stocks. Moreover, cloud cover is frequent in the tropics and this generally 

limits the performance of technologies that rely on optical remote-sensing data. The 

three LANDSAT images used in this study are some of the few cloud free images 

available for the study site. A new, promising, technology called Light Detection and 

Ranging (LiDAR) uses light in form of a pulsed laser and measures the signal return 

time to directly estimate the distances to the Earth’s surface (Meyer et al., 2013). This 

remote-sensing technique has the ability to penetrate clouds and usually produces 

more accurate estimates of forest biomass than optical (Gonzalez et al., 2010) and 

radar satellite sensors (Asner et al., 2012), without saturation problems (Santos et al., 

2003). But not only it is highly costly, as there are no historical data available, thus 

limiting the analysis of past trends in forest distribution.  

 To obtain accurate estimations of carbon stocks a detailed classification is needed 

because different land cover characteristics store different levels of carbon. However, 

there is a trade-off between the number of land cover classes and the overall accuracy 

of a classification. In traditional per-pixel spectral-based classification methods, which 

is the case of this study, increasing the number of classes usually increases the class 

confusion within alike vegetation classes due the similarity of spectral signal (Lu et al., 

2010). Considering the complexity of our study region, where forest patches merge into 

other dense vegetation classes associated with the escarpment, and the shadow 

problem due the influence of a mountain region, only ‘Forest’ and ‘No forest’ classes 

were defined. Even knowing that the ‘Forest’ class contains a large variability habitats 

with tree cover, we wanted to ensure that the validation and training data were correctly 

assigned to the corresponding land cover class. The use of only two major classes can 

explain the high overall accuracy of the all classifications performed.  

 The sampling of the ground-truth data in the field used as validation data for the 

classification of the LANDSAT scene from 2014 helped to gain knowledge on the 

characteristics of the land cover, being of greater importance for the visual sampling of 

the land cover classes within the LANDSAT satellite images. The poorer performance 

of the combination method for the classification of LANDSAT scene from 2014 in 

comparison with the MLA method is likely explained by the lack of field based 

information in training data, since the collection of forest endmembers was only based 

in the classes’ spectral features. As depicted in the PCA from Figure 2.4, vegetated 

areas have spectral signatures that are easily distinguishable from bare land for 

instance. However the identification of ‘Forest’ is not precise because other potential 
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vegetated habitats that do not qualify as ‘Forest’ show similar spectral signals. The 

class ‘Forest’ achieves the lower average omission error across all scenes with the 

MLA classifier, indicating that we can use this classification method to accurately 

estimate the deforestation rate and the resulting emissions. Nevertheless, contrary to 

the expected, the LANDSAT scenes from 1991 and 2001 were those that achieved the 

highest accuracies for ‘Forest’ class. Both the training and validation data was visually 

collected within the LANDSAT satellite images of 1991 and 2001 and would be expect 

lower accuracies considering the lack of in-field data for the historic forest cover. 

Ground-truth data was collected around each of the 54 plots pre-selected in the 

LANDSAT scene from 2014 after applying the NDBR index and dividing the region into 

three sampling categories according to the level of canopy shadow, a proxy for the 

complexity of the forest structure. It turns out that poor accessibility, limited time for 

data collection and scarce human resources have forced the establishment of plots in 

the proximity of the defined buffer of 50 m around the pre-know trails. This, together 

with a coarse LANDSAT pixel resolution of 30 m and limited number of ground-truth 

samples, made the sampling very homogeneous as can be observed in the Figure 3.1 

where most of the trees sampled are below the 15 m in height and 20 cm in DBH. 

Consequently, 50% of the AGB and AGC estimates are concentrated in a small range 

(Fig. 3.2). In this study ‘Forest’ class includes forest with human interventions and a 

homogeneous ground-truth data may have undermined the classification.  

 The absence of a clear definition of forest degradation makes its mapping 

challenging. While deforestation corresponds to a permanent conversion of land use 

(Margono et al., 2012), forest degradation is related with a progressive forest 

fragmentation that alters the canopy cover and overall forest structure along a 

vegetation gradient, reducing carbon content, biodiversity, ecological integrity and the 

ability to provide ecosystem services (Sasaki and Putz, 2009; Zhuravleva et al., 2013). 

Therefore, a thematic land cover classification with discrete classes based in a 

parameter such as tree cover is not sufficient for analysing and quantifying forest 

degradation. Also, the regrowth of secondary vegetation creates a dense cover that 

can be confused with stable forest but that could still be in a degraded state. In Figure 

3.4 it is possible to observe some potential regenerated areas. However due to the 10 

years intervals, it is probable that many areas classified as ‘forest since 1991’ may also 

be regenerated areas. The Intact Forest Landscape (IFL) method is a novel approach 

for mapping and monitoring the extent of forest degradation (Potapov et al., 2008), 

which determines the boundaries of large intact forest areas and uses these 

boundaries as a baseline for monitoring forest degradation (Zhuravleva et al., 2013). 
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The IFL method should be used in future work, when carbon quantification will be 

extended to all forests of the Angolan Scarp region, since IFL requires a minimum area 

of 50 thousand ha.  

 

4.2 Forest change 
 

The forest area in Kumbira remained constant during the early period (1991-2001) 

analysed, which corresponds to the last 10 years of civil conflict in the country.  

Contrary to the pattern observed in the remaining countries of Central Africa that have 

lived armed conflicts (Draulans and van Krunkelsven, 2002), during its 27 years of civil 

war Angola experienced a large depopulation of rural regions (USAID, 2008). This 

allowed the vegetation to recover in areas that were once cultivated, mainly with coffee 

plantations. With the onset of peace most people settled back in the rural areas and 

pressures in the forest resources have increased. From 2001 to 2014 the forest cover 

in Kumbira experienced a loss of 41%. This dramatic decline over the past decade 

suggests that deforestation in Kumbira is mostly driven by the increase in the demand 

for land in order to grow food, cash crops and infrastructures as result of population 

growth, which is also seen in other central African nations (Mayaux et al., 2013). The 

estimated loss corresponds to an annual deforestation rate of 4.04%, which is much 

higher than the 0.21% national deforestation rate presented by the FAO for the 2000-

2010 period (FAO, 2010). This highlights the need of including project-level strategies 

in the scope of the REDD+ mechanism, since an exclusive focus at the national and 

regional levels can obscure realities on the ground (Phelps et al., 2010).  

4.2.1 Drivers of forest change  

Our analysis of forest loss drivers for a 13 years’ period are in concordance with 

previous research on land cover change, showing that roads promote deforestation 

(Soares-Filho, et al., 2006; Gaveau et al., 2009; Margono et al., 2012; Zhuravleva et 

al., 2013; Gaveau et al., 2014). The trails identified in this study are used either for 

illegal logging or to reach terrains for agriculture expansion. The former is a plausible 

approach since forest canopy gaps were observed in Kumbira in the vicinity of the 

trails. ‘Slope’ and ‘elevation variables have not produced an extensive impact in forest 

loss when compared with ‘distance to trails’ but we have to be aware that no single 

cause ever operates alone, especially when discussing driving forces of land cover 

change (Geist and Lambin, 2002). Although the higher soil fertility in rainforests is 

located on lower slopes and valley bottoms (Porder et al., 2005), these areas are not 
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usually used for farming due their dense vegetation. Consequently, the forest loss in 

Kumbira is mostly concentrated at mid and moderate steep slopes as observed in the 

field. At these slopes, forest is more open and plantations are less vulnerable to the 

rainy season, which also explains the increase of deforestation with the distance to 

streams. The sudden increase of forest loss between the 750 and 840 m of elevation is 

most likely explained by the establishment of the settlements at this altitudes and a 

contiguous cultivation that follow the road network linking the different villages – a 

pattern already present during the colonial period (Mayaux et al., 2013). However, 

there exists possibly important geophysical and socioeconomic factors influencing 

spatial deforestation patterns that we failed to include in the model due to the 

unavailability of suitable data. For example, distance to forest edges, post-war land 

tenure challenges (Foley, 2007) that we suspect to be of great importance in the study 

area, travel time to urban areas and the actual population density (Geist and Lambin, 

2002; Gaveau et al., 2009; Mayaux et al., 2013; Kumar et al., 2014). 

  The overall explanatory power of our GIS-based logistic regression model is in line 

with similar studies applying logistic regression to characterize forest cover dynamics, 

but despite having a good discrimination ability (Pearce and Ferrier, 2000) the 

accuracy of the prediction (78%) was lower than the reported ones (85 - 96%) (Gaveau 

et al., 2009; Müller et al., 2011; Vieilledent et al., 2013; Kumar et al., 2014). These 

studies fit the models to the forest change data from an early period and then compare 

model predictions to forest change data from a later period, ensuring the independency 

of the data set. However, in our case we adopted a cross-validation approach by 

splitting the forest change data from one period (2001-2014) into a training dataset to 

calibrate the model and a test dataset to validate it, which could have introduced some 

bias in the measurement of predictive performance (Pearce and Ferrier, 2000). 

4.2.2 CO2 emissions from forest change 

The average abovegound biomass (AGB) of 190.1 Mg ha-1 estimated in Kumbira forest 

is not within the range (216 - 429 Mg ha-1) of AGB found in the most recent studies 

conducted in tropical forests of Central Africa (Nasi et al., 2009; Djomo et al., 2011; 

Lewis et al., 2013). The divergence between these values and our results is most likely 

due the differences in the methodologies adopted for AGB estimation. Firstly, we 

recognized that the small size of our plots may have underestimated stem density and 

biomass. According to Chave et al. (2004) the size of one quarter of a hectare should 

be the minimal size for biomass estimations. Within the 49 plots sampled, AGB ranged 

from 1.44 to 1568.18 Mg ha-1. This wide variation should be lower with the increase of 
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the plot size and the number of trees sampled (Keller et al., 2001). To estimate AGB all 

studies integrated the parameters diameter, height and wood density in the allometric 

equations. In our case we do not include specific values of wood density since the 

identification of tree species was not possible. Ignoring the variation of wood density 

among species can result in poorer model performance and introduce bias in the 

overall estimates of AGB (Baker et al., 2004; Muller-Landau, 2004; Henry et al., 2010; 

Fayolle et al., 2013; Chave et al., 2014). However, some researchers argue that there 

is little evidence of species-specific allometric relationships (Gibbs et al., 2007; Malhi, 

2006). Stegen et al. (2009) showed that there is no general relationship between forest 

biomass and wood density.  

Unlike the other studies that sampled trees with more than 10 cm, in this study was 

used a minimum DBH of 5 cm, but Berenguer et al. (2015) concluded that the sampling 

of the stems with ≥ 20 cm of DBH without taxonomic identification can identify with 

confidence areas that are relatively carbon-rich or carbon-poor, plus being more 

cheaper than sampling and identifying all the stems with ≥ 10 cm of DBH. This may 

constitute an effective sampling method for countries like Angola that are lacking in 

reliable assessments of forest carbon stocks. The NDBR index was used by Sharma et 

al. (2013) and Sofia et al. (2014) to extract the canopy shadow fraction since this is 

related with canopy biological and structural features. However, the AGB calculated for 

the three categories generated by NDBR index was not significantly different. This is 

most likely due the reasons already mentioned: sampling plots had to be located close 

to the trails or in the borders of the delimited NDBR categories, which in addition with a 

coarse LANDSAT resolution generated a very homogenous sample. Additionally, the 

performance of NDBR may have been influenced by atmospheric scattering (even after 

correction) due to the intensity of cloud cover in tropical forest regions (Sharma et al., 

2013). 

 As consequence of the AGB estimates, the AGC values found in Kumbira (84.2 Mg 

ha-1) are also lower than those reported in other studies (Nasi et al., 2009; Djomo et al., 

2011; Lewis et al., 2013). From 2001 to 2014 the total gross carbon emissions were 

estimated to be 492833.6 Mg ha-1 and the annual gross carbon emissions from an area 

of around 13500 ha amounted to 37910.6 Mg ha-1. Large carbon emissions occur when 

old-growth forests are degraded to give way for plantations. These plantations may not 

lead to a reduction in forest area but to a change in biomass that ends up decreasing 

the carbon stocks. We have therefore to take into account that not considering 

degradation and other components of biomass beyond the AGB is likely to 

underestimate total emissions (Houghton, 2007). Carbon gains from forest 
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regeneration and/or tree plantations together with carbon losses from deforestation are 

included in the ‘net deforestation’ estimation. Yet, net carbon emissions targets have 

may easily lead to perverse outcomes by “equate the value of protecting native forests 

with that of planting new ones” to achieve an erroneously “zero deforestation” 

certification (Brown and Zarin, 2013, p. 805).  

 REDD+ projects aim to halt the dynamics of deforestation and/or degradation in a 

given area by generating tradable carbon credits in exchange of a verified emission 

reduction. Both the environmental and financial potential of a REDD+ project are 

evaluated in comparison with a baseline scenario that establishes the level of 

business-as-usual (BAU) emissions without the project. The BAU in Kumbira forest 

was extrapolated from the historical deforestation between 2001 and 2014. The total 

amount of carbon that would be emitted under the BAU scenario was estimated as the 

carbon in aboveground related to the loss of 41, 5% of the actual forest. This was 

projected to be 296377.7 MgC until 2027, almost 33000 MgC per year. It must be 

highlighted that these values are almost certainly underestimated. They should be 

greater if we had modeled the effect of the likely expansion of the road network, the 

most important driver of forest loss assessed in this study, and the growth of croplands 

plantations, which we believe is one of the most important underlying causes of 

deforestation in the area.  

 

4.3 Outlook on possible strategies for REDD+ 

The premise behind the REDD+ initiative is apparently simple and straightforward, but 

turning it into actions is a very complex process. Any REDD+ proposal seeks to reduce 

emissions (effectiveness) at a minimum cost (efficiency), while also contributing to 

sustainable development (equity and co-benefits) (Angelsen et al., 2008). However, 

each project needs to be adapted to specific issues as comprehensive as the features 

of forest dynamics and the governance context of the country. The ideal conditions are 

hard to find and even those may not be attractive from a financial point of view.  

 Projects at the national scale have the potential to be more climate-effective, since 

they cover a significant carbon pool and address indirect drivers that come into play at 

much larger scales, such as those related with demographic, political and economic 

factors. Also, constraints related to additionality (emissions reductions would not have 

taken place without the generation of carbon value), non-permanence and leakage are 

less likely. The matter of transferring emissions elsewhere is particularly difficult to 

handle in small-scale projects, since the opportunity costs to displace the deforestation 

are expected to be smaller than the adoption of alternative resources. According to 
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some methodologies and standards like the Voluntary Carbon Standard, the definition 

of a reference zone that covers both the project perimeter and the leakage area is 

essential. Brown et al. (2007) suggests for projects covering more than 100000 ha that 

the reference zone should be 5 to 7 times larger than the project zone, and 20 to 40 

times larger for projects covering less than 100000 ha. However, there are no 

guarantees that national scale projects will be more cost-effective in the long-term than 

a medium or a small-scale project. The larger the area, the higher the costs of reducing 

deforestation and of monitoring the implementation of the project. Also, there is 

evidence that small-scale projects are more flexible by facilitating tight management in 

specific contexts (Corbera, 2005). This attracts private stakeholders that can invest in 

countries that are not institutionally ready to implement a national approach (Angelsen 

et al., 2008). 

 Angola is a LFLD country (low forest cover at low deforestation rates), which means 

that it is not an immediate priority for a national REDD+ implementation. However, 

taking Kumbira forest as a reference, we conclude that the forests of the Angolan 

Scarp, and specifically those located in the Central Scarp, show potential to be 

included in a future REDD+ project on the voluntary market. The overall potential of 

emissions reduction by avoiding immediately and completely the deforestation in 

Kumbira is 714203.2 MgC, but we believe that this value should be higher as 

discussed in section 4.2. Moreover, if we had extended our analysis to all forests of the 

Scarp we would probably find higher values of AGC in the forests located in the north 

of the Scarp due their stronger affinities with the vegetation-types from the Guinea-

Congo forest. We hypothesized a REDD+ scenario (GAT), where 50% of the actual 

forest area of Kumbira would be protected. This area should be located in sectors that 

remained forest since 1991 in order to increase the likelihood of conservation tracts of 

native forest and also where the probability of forest loss is smaller, namely away from 

trails. A REDD+ activity must be targeted to the agents and drivers of deforestation, 

otherwise it is likely to be ineffective. Also, the habitat requirements of the forest-

dependent species must be evaluated and integrated in order to avoid strategies with 

limited conservation success (Gaveau et al., 2009). In the Angolan Scarp, this is 

particularly important for the communities of the endemic bird species. Protected areas 

have been proven to be an efficient mitigation strategy in reducing deforestation and 

degradation (Gaveau et al., 2009; Zhuravleva et al., 2016; Ernst et al., 2013; Barber et 

al., 2014). This scenario is likely to avoid 148189. MgC of gross carbon emissions and 

save almost 1658 ha of forest by 2027 in comparison with a BAU scenario where no 

action is taken. However, we recognize that the payments used to compensate rural 
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communities for their opportunity costs in not clearing protected forests may not be 

enough to prevent the leakage effect, which is accentuated by the threat of illegal 

logging. An alternative income for rural communities could be the provision of 

additional payments for the improvement of agricultural techniques in the non-protected 

area. For example, turning traditional land use schemes into shade and regulated 

coffee plantations, as a result of replanting degraded and abandoned plantations from 

the colonial period. Beyond the enhancement of carbon stocks, this promotes the 

decentralization and community-based forest management, which has often been 

called into question according to the actual requirements of REDD+ (Phelps et al., 

2010).  

 It is important to bear in mind that Voluntary Carbon Markets have limited capacities 

for generating tradable carbon credits in comparison with the compliance markets. Only 

if the forestry sector is integrated into compliance markets together with 

afforestation/reforestation under the Clean Development Mechanism will attract 

significant financial flows from the reduction of deforestation (Calmer et al., 2010). 

Currently, REDD+ is not able to compete with highly profitable human activities, such 

as oil palm agriculture (Butler et al., 2009). Therefore, good forest governance is vital 

for guaranteeing a sustainable use and protection of forest ecosystems. Angola often 

receives weak overall governance scores, with ongoing corruption and lack of 

transparency. According to the Ibrahim Index of African Governance (IIAG, 2014), 

governance has improved significantly since 2000 but effective environmental 

governance policy is still missing (USAID, 2008).  
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5. Conclusion 
 

Angola is emerging from a longstanding war, where its economy and infrastructures 

were seriously damaged. Rehabilitating the country and stimulating the economic 

growth are the priorities of the Angolan government. Angola is now one of the world’s 

fastest growing-economies, mostly driven by the exploitation of its vast reserves of oil 

and diamonds. However, all of this is taking place in the absence of an institutional and 

regulatory framework to ensure that the environmental impact of economic activities 

are incorporated into development planning. Furthermore, the profits of the export of 

non-renewable resources are mostly canalized by the government and cannot meet the 

needs of the larger percentage of the Angolan population. Faced with reduced 

livelihood options, people naturally look to the exploitation of Angola’s vegetation and 

wildlife. Due their exceptional resources, tropical forests are particularly vulnerable to 

human pressures.  

The unique forests of the Angolan Scarp are a hotspot of diversity with high levels of 

endemism. They are also one of the most threatened habitats of Angola. This was 

clearly demonstrated in this study from the first ever estimate of rates of deforestation 

for the Scarp forests. We found a deforestation rate of 4.04% per year in the last 13 

years in Kumbira, one of the most representative forests of the Angolan Scarp. 

Although these forests are of global conservation significance they are not represented 

in Angola’s protected areas system. If the same deforestation trend continues Kumbira 

forest is likely to be completely lost within two decades. 

Due the urgency of the adoption of conservation measures we evaluated the 

potential of a REDD+ strategy for Kumbira forest. This forest stores 89.4 Mg of carbon 

per hectare, a value close to the actual range of those reported by other tropical forests 

studies. Under a REDD+ scenario, where 50% of the actual forest will be protected, 

213168.3 Mg of gross carbon emissions will be avoid by 2027. If forest degradation will 

be monitored it is likely that the potential for REDD+ will be even greater. A scenario 

that promotes the improvement of carbon stocks in degraded lands by involving rural 

communities is strongly recommended and would consequently increase the potential 

of carbon emissions reduction.  

Despite the apparent potential of a REED+ strategy for the Scarp, additional 

research is still needed.  First, there is the need to increase the number of sample plots 

in order to obtain a carbon quantification for a bigger area of the Scarp. This is also 

valid for the quantification of forest degradation, which is lacking due the insufficient 

ground-truth data and the limits of differentiating the stages of forest degradation with 
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multispectral satellite data. The stratification between forest categories and the 

identification of trees species must be achieved in future works too. Finally, it should be 

address the influence of economic and social variables in forest loss and integrate 

them in the baseline scenario together with those reported in this study. That way, we 

will be able to estimate a more realistic BAU scenario and obtain a better evaluation of 

the REDD+ potential. The methodologies concerns are just one of the problems that 

REDD+ still needs to address, especially when dealing with tradable credits. Failing to 

acknowledge the limitations of REDD+ project could even promote the loss of areas 

that are rich in carbon and biodiversity, apart from impairing the livelihoods of forest-

dependent communities. Currently, analyses to assess the spatial congruence between 

carbon stocks and the diversity and endemism of forest-restricted birds are being 

made. This will allow to identify the priority zones for conservation.  

The REDD+ mechanism is heavily reliant on global and national systematic 

approaches and we are aware that it will be difficult to adapt it to help protect smaller 

forest areas. However, under the likely assumption that the remaining forests of the 

Scarp follow the trends of Kumbira, we consider that this region has the potential to 

integrate voluntary schemes. Voluntary schemes are usually more flexible and 

incorporate the additional co-benefits for biodiversity conservation. Also, this work has 

highlighted the importance of an expanded selection criteria for identifying REDD+ 

projects, by allowing the inclusion of small forests of high conservation significance and 

valuable carbon stocks.  
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7. Appendix 
 

 Appendix I – Field work 

Ia. Field data sheet form 
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 Ib.  Aboveground biomass and carbon for each sampling plot.  

ID Latitude Longitude AGB (Mg ha-1) AGC (Mg ha-1) 
Nº trees 

(DBH ≥ 5cm) 

L23 -11.14 14.30 62.30 29.28 35 

L24 -11.15 14.29 323.75 152.62 15 

L26 -11.16 14.29 18.91 8.89 8 

L28 -11.19 14.28 36.96 17.37 10 

L29 -11.18 14.27 83.29 39.15 19 

L30 -11.20 14.27 568.34 267.12 6 

L37 -11.21 14.26 318.10 149.51 11 

L38 -11.18 14.27 15.68 7.37 19 

L39 -11.19 14.27 189.56 89.09 8 

L42 -11.18 14.26 494.01 232.19 7 

L41 -11.15 14.29 2.25 1.06 1 

L51 -11.15 14.29 84.69 39.80 6 

M11 -11.14 14.29 594.77 279.54 3 

M12 -11.15 14.30 101.98 47.93 7 

M13 -11.15 14.30 144.65 67.98 8 

M14 -11.15 14.29 264.38 124.26 8 

M15 -11.16 14.28 23.31 10.95 16 

M16 -11.17 14.29 594.86 279.58 17 

M17 -11.19 14.27 160.63 75.50 7 

M18 -11.19 14.28 35.68 16.77 11 

M19 -11.21 14.26 122.67 57.65 2 

M20 -11.18 14.27 136.92 64.35 12 

M21 -11.21 14.25 10.95 5.15 6 

M43 -11.20 14.25 69.34 32.59 7 

M44 -11.21 14.25 28.38 13.34 20 

M45 -11.20 14.24 1568.18 737.04 4 

M46 -11.20 14.26 1.44 0.68 3 

M47 -11.20 14.27 61.43 28.87 12 

M48 -11.18 14.27 118.33 55.61 10 

M49 -11.18 14.26 626.96 294.67 2 

M50 -11.15 14.29 10.07 4.73 9 

M52 -11.14 14.29 45.72 21.49 25 

M54 -11.16 14.28 8.90 4.18 7 

H01 -11.21 14.26 137.29 64.53 18 

H02 -11.22 14.25 336.69 158.24 7 

H03 -11.21 14.25 255.17 119.93 4 

H05 -11.19 14.28 15.17 7.13 12 

H06 -11.19 14.27 200.52 94.24 5 

H07 -11.20 14.27 77.38 36.37 7 

H08 -11.19 14.28 297.31 139.74 13 

H09 -11.16 14.30 92.84 43.63 11 

H04 -11.21 14.25 16.15 7.59 9 

H31 -11.15 14.29 177.32 83.34 4 

H32 -11.15 14.30 88.86 41.76 6 

H33 -11.16 14.29 525.41 246.94 2 

H34 -11.16 14.29 22.41 10.53 6 

H35 -11.18 14.28 69.88 32.84 32 

H36 -11.18 14.27 45.43 21.35 9 

H53 -11.15 14.28 31.76 14.93 10 
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