Anti-Pneumocystis carinii and antiplasmodial activities of primaquine-derived imidazolidin-4-ones

Nuno Vale, Margaret S. Collins, Jiri Gut, Ricardo Ferraz, Philip J. Rosenthal, Melanie T. Cushion, Rui Moreira and Paula Gomes

CIQUP—Centro de Investigação em Química da Universidade do Porto, Departamento de Química, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal
Escola Superior de Tecnologias de Saúde do Porto, Instituto Politécnico do Porto, P-4000-294 Porto, Portugal
Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati, OH 45267-0560, USA
Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA 94143-0811, USA
iMed.UL, CECF, Faculdade de Farmácia de Lisboa, P-1600-083 Lisboa, Portugal

Received 11 October 2007; revised 22 November 2007; accepted 27 November 2007
Available online 3 December 2007

Abstract—A series of primaquine-derived imidazolidin-4-ones were screened for their in vitro activity against Pneumocystis carinii and Plasmodium falciparum W2 strain. Most compounds were active against P. carinii above 10 µg/mL and displayed slight to marked activity. The imidazolidin-4-ones most active against P. carinii were also those most active antiplasmodial agents, in the µM range. One of the tested imidazolidin-4-ones was slightly more active than the parent primaquine and may represent a lead compound for the development of novel anti-P. carinii 8-aminoquinolines with increased stability and resistance to metabolic inactivation.

Pneumocystis pneumonia (PCP) is a fungal opportunistic infection caused by Pneumocystis jirovecii (formerly Pneumocystis carinii) and is one of the most frequent causes of mortality in patients with acquired immunodeficiency syndrome (AIDS). PCP also affects other immunocompromised individuals such as those undergoing cancer therapy and organ and bone marrow transplants. Despite the decline in incidence of PCP in AIDS patients as a consequence of the highly active antiretroviral therapy (HAART), PCP remains the most prevalent opportunistic infection found in individuals infected with the human immunodeficiency virus (HIV). P. jirovecii is insensitive to standard antifungal therapy and thus, the antifolate combination of trimethoprim and sulfamethoxazole (TMP-SMX) has been used for both its prophylaxis and treatment of PCP. However, emerging resistance and allergic reactions against the sulfa component often lead to the alternative use of pentamidine and atovaquone. Unfortunately, pentamidine is ineffective orally and toxic effects have been reported for this drug, while failure of atovaquone treatment in AIDS patients with PCP is a major concern.

Primaquine (1a), an 8-aminoquinoline antimalarial, is effective against mild to moderate PCP and is co-administered with clindamycin to AIDS patients with comparable efficacy to TMP-SMX. Optimization of 8-aminoquinolines to improve their antimalarial activity as well as to reduce adverse effects such as neutropenia and methemoglobinemia also resulted in an improvement of activity against PCP. This observation led to the suggestion that such synchrony between the structure–activity relationships (SARs) for the protozoal and fungal diseases could be useful to develop novel 8-aminoquinolines with improved efficacy against PCP (e.g., 1b, c). We recently reported that imidazolidin-4-one derivatives of primaquine, 2 (Scheme 1), exert potent gametocytocidal activity against Plasmodium berghei infection developed in BalbC mice. Such promising results encouraged us to go on further investigating the in vitro anti-P. carinii activities of com-

Keywords: AIDS; Antimalarial; Antiplasmodial; HIV; Infection; Malaria; Plasmodium falciparum; Pneumocystis carinii; Primaquine.

* Corresponding author. Tel.: +351 22 040 2563; fax: +351 22 040 2659; e-mail: pgomes@fc.up.pt
pounds 2, which are now herein reported. Since most of the SARs available for 8-aminoquinolines refer to liver or blood schizontocidal activities, we also decided to screen the activity of primaquine imidazolidin-4-ones, 2, against the chloroquine-resistant *Plasmodium falciparum* strain W2.

Imidazolidin-4-ones 2a–m were evaluated against *P. carinii* in an ATP measurement assay based on a luciferin–luciferase mediated reaction and against chloroquine-resistant *P. falciparum* strain W2; the results obtained are given in Table 1. Inspection of Table 1 shows that imidazolidin-4-ones 2a–m exhibit a twofold variation in anti-*P. carinii* activities, ranging from practically insignificant (2b) to marked (2j), in this case even slightly higher (in μM) than that of the parent PQ (1a). Considering the effect of substituents R₂ and R₃ at imidazolidin-4-one C-2 on the activity, those compounds derived from propa-none (2a–d) are among the less active of the set, whereas the top-three compounds are those derived from cycloheptanone (2g, 2j–k). The substituents R₂ and R₃ brought by the carbonyl reactant seem to play a major role in the modulation of the anti-*P. carinii* activity of compounds 2, with larger and more hydrophobic groups being apparently preferable. This is illustrated by analysis of the (S)-Val series, where the activity increases 2c < 2e ≈ 2f < 2g. Imidazolidin-4-ones 2 are hydrolyzed very slowly to the corresponding amino acid derivatives, 3, in pH 7.4 buffer with half-lives ranging from ca. 10–30 days in pH 7.4 buffer at 37 °C. In the present study, we assessed the stability of compound 2g, which presents a half-life higher than 10 days in the same reaction media. This result is consistent with the observation that imidazolidin-4-ones 2 containing a seven-membered ring and derived from amino acids containing large α-substituents are stable in aqueous solutions, thus suggesting that 2g is active against *P. carinii* per se. Finally, comparison of data from 2m₁, 2m₃, and 2m₃+2m₄ shows that (i) when R² = H, the activities are identical to those

Scheme 1. Reagents and conditions: (i) N°-Boc-protected amino acid, diisopropyl- or dicyclohexyl-carbodiimide, 1-hydroxybenzotriazole, dichloromethane; rt, 120 h; (ii) a—neat TFA, rt, 2 h; b—30% aq Na₂CO₃ + extraction with chloroform; (iii) molecular sieves, refluxing methanol, 72 h.
When analyzing the effect of the amino acid side chain, that is, the R¹ substituents at the C-5 position of imidazolidin-4-ones 2 on the anti-<i>P. carinii</i> activity, the results suggest that R¹ has not a well-defined or marked influence on the anti-<i>P. carinii</i> activity. If the three most active compounds (2g, 2j, and 2k) are considered, the IC₅₀ values follow the order 2g, (S)-Val > 2k, (S)-Leu > 2j, (S)-Ala, but differ at the most by 3-fold (2g vs 2j). On the other hand, if we consider the propanone-derived subset 2a-d, the highest IC₅₀ is displayed by the (S)-Ala derivative (2b), differing from the second highest value (for 2e) by as much as 55-fold. Interestingly, the anti-<i>P. carinii</i> SAR herein described is not entirely coincidental with that for the gametocytocidal activity of 2, as in this case small amino acid side chains significantly improved the gametocytocidal activity of those compounds against <i>P. berghei</i>, whereas bulky/hydrophobic amino acids had detrimental effects. In contrast, the reported influence of R² and R³ on the gametocytocidal activity of compounds 2 is not marked, which suggests that the stereoelectronic requisites for the fine-tuning of 2 as gametocytocidal do not exactly match those for optimal anti-<i>P. carinii</i> activity. However, if the antiplasmodial activities of 2 against the chloroquine-resistant <i>P. falciparum</i> strain W2 are considered (Table 1), one observes that (i) the most active antiplasmodial agents are also those most active against <i>P. carinii</i> (i.e., 2g, 2j–k) and (ii) excepting propanone derivative 2a, all remaining compounds 2 are inactive against <i>P. falciparum</i> in this screen. Thus, the presence of larger and more hydrophobic groups, such as a seven-membered ring, at C-2 of the imidazolidin-4-one moiety is also a major requirement for antiplasmodial activity.

Table 1. Anti-<i>P. carinii</i> activity and cytotoxicity of PQ (1) and its imidazolidin-4-one derivatives 2a–m^a

<table>
<thead>
<tr>
<th>Compound</th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>R<sup>3</sup></th>
<th>IC<sub>50</sub> <i>P. carinii</i> in μM (in μg/mL)<sup>b,c</sup></th>
<th>IC<sub>50</sub> <i>P. falciparum</i> W2 in μM<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>2.5 (0.6)</td>
<td>3.34</td>
</tr>
<tr>
<td>2a</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>23 (8.3)</td>
<td>9.08</td>
</tr>
<tr>
<td>2b</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>226 (83.7)</td>
<td>>50</td>
</tr>
<tr>
<td>2c</td>
<td>'Pr</td>
<td>Me</td>
<td>Me</td>
<td>40 (16)</td>
<td>>50</td>
</tr>
<tr>
<td>2d</td>
<td>Bzl</td>
<td>Me</td>
<td>Me</td>
<td>32 (14)</td>
<td>>50</td>
</tr>
<tr>
<td>2e</td>
<td>'Pr</td>
<td>(CH<sub>3</sub>)<sub>4</sub></td>
<td>Me</td>
<td>23 (9.7)</td>
<td>>50</td>
</tr>
<tr>
<td>2f</td>
<td>'Pr</td>
<td>(CH<sub>3</sub>)<sub>5</sub></td>
<td>Me</td>
<td>26 (11)</td>
<td>>50</td>
</tr>
<tr>
<td>2g</td>
<td>'Pr</td>
<td>(CH<sub>3</sub>)<sub>6</sub></td>
<td>Me</td>
<td>6.0 (2.7)</td>
<td>8.89</td>
</tr>
<tr>
<td>2h</td>
<td>Bzl</td>
<td>(CH<sub>3</sub>)<sub>4</sub></td>
<td>Me</td>
<td>12 (5.7)</td>
<td>>50</td>
</tr>
<tr>
<td>2i</td>
<td>H</td>
<td>(CH<sub>3</sub>)<sub>5</sub></td>
<td>Me</td>
<td>43 (17)</td>
<td>>50</td>
</tr>
<tr>
<td>2j</td>
<td>Me</td>
<td>(CH<sub>3</sub>)<sub>6</sub></td>
<td>Me</td>
<td>1.9 (0.8)</td>
<td>2.42</td>
</tr>
<tr>
<td>2k</td>
<td>'Bu</td>
<td>(CH<sub>3</sub>)<sub>6</sub></td>
<td>(o-Me)Ph</td>
<td>4.1 (1.9)</td>
<td>2.63</td>
</tr>
<tr>
<td>2l</td>
<td>Me</td>
<td>4-Me<sub>5</sub></td>
<td>Me</td>
<td>23 (9.8)</td>
<td>ND</td>
</tr>
<tr>
<td>2m<sub>1</sub></td>
<td>Bzl</td>
<td>H</td>
<td>(o-Me)Ph</td>
<td>21 (11)</td>
<td>ND</td>
</tr>
<tr>
<td>2m<sub>2</sub></td>
<td>Bzl</td>
<td>H</td>
<td>(o-Me)Ph</td>
<td>13 (6.7)</td>
<td>ND</td>
</tr>
<tr>
<td>2m<sub>1</sub>+2m<sub>4</sub></td>
<td>Bzl</td>
<td>H</td>
<td>(o-Me)Ph</td>
<td>20 (10)</td>
<td>ND</td>
</tr>
</tbody>
</table>

^a All biological activities resulted from the average of at least three determinations.
^b Drug activity scale: highly active, <0.01 μg/mL; very marked, <0.1 μg/mL; marked, 0.1–0.9 μg/mL; moderate, 1.0–9.9 μg/mL; slight, 10.0–49.9 μg/mL.²¹
^c Assays of parasite development were performed as described earlier. In conclusion, the reported imidazolidin-4-ones prepared from amino acid derivatives of primaquine exhibit potent activity against <i>P. carinii</i>. The present screening of compounds 2 allowed the selection of 2j as a potential lead structure for the future development of effective anti-PCP agents. Although <i>P. jirovecii</i> is the causative agent of PCP in humans, in vitro drug screening systems using organisms derived from rodent models have provided investigators with the only method to identify and screen new candidate anti-<i>Pneumocystis</i> compounds. However, in vivo studies have shown that there is a high degree of correlation between animal models and human beings. In general, those derivatives containing larger and more hydrophobic R² and R³ substituents at C-2 are superior to those containing small substituents. Another interesting finding is that the imidazolidin-4-one weakly basic amino group (pK_a, ca. 4) is not detrimental to the anti-<i>P. carinii</i> activity, thus suggesting that the strongly basic primary amino group present in primaquine and other 8-aminoquinoline side chains is not a major requirement for anti-PCP activity. Taking into account that acylation of primary amino group blocks cytochrome P450- and MAO-catalyzed oxidative deamination of primaquine, imidazolidin-4-ones 2 might offer a useful approach to overcome metabolic inactivation of primaquine into carboxyprimaquine. Finally, the antiplasmodial activity seems to be a useful indicator of the anti-<i>P. carinii</i> activity.

Acknowledgments

N.V. thanks Fundação para a Ciência e Tecnologia (FCT, Portugal) for Ph.D. Grant SFRH/BD/17754/2004. P.G. and R.M. thank FCT for financial support to CIQUP and CECF, respectively. P.J.R. was supported by grants from the National Institutes of Health and Medicines for Malaria Venture. M.T.C. and M.S.C. derived from propanone and cyclopentanone (e.g., 2m vs 2d and 2h) and (ii) there are no marked differences between diastereomers, even though 2m₂ is slightly more active than 2m₁.

In conclusion, the reported imidazolidin-4-ones prepared from amino acid derivatives of primaquine exhibit potent activity against <i>P. carinii</i>. The present screening of compounds 2 allowed the selection of 2j as a potential lead structure for the future development of effective anti-PCP agents. Although <i>P. jirovecii</i> is the causative agent of PCP in humans, in vitro drug screening systems using organisms derived from rodent models have provided investigators with the only method to identify and screen new candidate anti-<i>Pneumocystis</i> compounds. However, in vivo studies have shown that there is a high degree of correlation between animal models and human beings. In general, those derivatives containing larger and more hydrophobic R² and R³ substituents at C-2 are superior to those containing small substituents. Another interesting finding is that the imidazolidin-4-one weakly basic amino group (pK_a, ca. 4) is not detrimental to the anti-<i>P. carinii</i> activity, thus suggesting that the strongly basic primary amino group present in primaquine and other 8-aminoquinoline side chains is not a major requirement for anti-PCP activity. Taking into account that acylation of primary amino group blocks cytochrome P450- and MAO-catalyzed oxidative deamination of primaquine, imidazolidin-4-ones 2 might offer a useful approach to overcome metabolic inactivation of primaquine into carboxyprimaquine. Finally, the antiplasmodial activity seems to be a useful indicator of the anti-<i>P. carinii</i> activity.
acknowledge the support of Public Health Service Grant N01 AI75319 from the National Institutes of Allergy and Infectious Diseases and the Medical Research Service Department of the Veterans Affairs, USA.

References and notes

18. Compounds 2 can be synthesized in good yields from the corresponding amino acid derivatives AA-PQ. 3, by refluxing with an excess of ketone or aldehyde in methanol in the presence of triethylamine and 4 Å molecular sieves.

As an example, compound 2g was prepared by refluxing 3g (R = Pr, 1 mol equiv) with cycloheptanone (2 mol equiv) in dry methanol for 72 h. The crude mixture was separated by column chromatography on silica, using dichloromethane/tetrahydrofuran (5:1 v/v) as eluant, to isolate 2g as a yellow oil (72% yield) with the following spectroscopic data: δH (CDCl3, 300 MHz) 8.51 (dd, 1H, J = 3.90, 1.35 Hz); 7.91 (dd, 1H, J = 8.25, 1.35 Hz); 7.29 (dd, 1H, J = 8.25, 3.90 Hz); 6.32 (d, 1H, J = 2.70 Hz); 6.29 + 6.28 (d + d, 1H, J = 2.70 Hz); 6.01 (dd, 1H, J = 7.95, 3.15 Hz); 3.88 (s, 3H); 3.64 (m, 1H); 1.32 (d, 1H, J = 4.50 Hz); 3.01 (m, 1H); 2.12 (m, 1H); 1.89 (m, 1H); 1.71−1.34 (m, 16H); 1.30 (d, 3H, J = 6.60 Hz); 1.01 (d, 3H, J = 6.90 Hz); 0.89 (d, 3H, J = 6.30 Hz). δC (CDCl3, 75 MHz) 174.3; 174.2; 159.5; 135.4; 134.7; 129.9; 121.8; 96.8; 96.7; 91.6; 80.9; 80.8; 77.3; 62.3; 55.2; 47.9; 47.5; 41.0; 40.9; 40.2; 40.1; 38.2; 38.1; 34.0; 30.3; 29.5; 29.4; 29.2; 26.2; 26.1; 25.6; 22.5; 22.4; 22.1; 21.9; 20.7; 20.6; 19.3; 19.2; 17.1; 17.0. mlz [M+H]+ = 452.3847 (Calcd, 452.3151).
19. Pneumocystis carinii were obtained from chronically immunosuppressed rats housed under barrier conditions at the Cincinnati VA Medical Center (VAMC) and inoculated intratracheally with P. carinii. P. carinii were extracted and purified from the lungs of rats after 8-12 weeks of immunosuppression, enumerated, cryopreserved, and stored in liquid nitrogen. Typically, infected rat lungs yield up to 2 x 10^10 organism nuclei with the vast majority (about 95%) of the life cycle forms present as trophic forms with the remainder (about 5%) being composed of cysts. P. carinii preparations were evaluated for microbial contamination, ATP content, karyotype, and host cell content prior to use in the ATP assay. Each concentration of every compound is assayed in triplicate wells and the results expressed as the average relative light units. Triplicate runs for each concentration are performed using different organism isolation batches.