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OBJECTIVES 
 
The microscopic morphology of bivalves is still poorly studied, particularly in 

quantitative terms, and that of peppery furrow shell (Scrobicularia plana) is no 

exception. With this scenario in mind, the general aim of the Thesis was to enrich the 

knowledge of the bivalves’ central nervous system, reviewing the state of art and 

unveiling new qualitative and quantitative cytological and histological data in S. plana, 

namely using technical approaches that were either never or seldom used in the 

neuroscience of bivalves. Based on these broad objectives, the specific aims were: 

To better understand the microscopic anatomy of the central nervous system, by 

conducting an unprecedented three-dimensional (3D) computer assisted reconstruction 

of S. plana ganglia, while estimating for the first time their total volumes and surface 

areas in the 3D models, and the relative volumes of cortex and medulla. Within this 

scope, we wanted to start studying whether sexual differences exist regarding ganglion 

size and its internal composition, in view of the key roles of the neurosecretory neurons 

in governing gonadal maturation, particularly in females. 

To examine the general histology and cytology of the neural cells in S. plana, 

registering its main aspects and looking after any still undescribed features, while trying 

a first identification of potentially neurosecretory neurons — viz. those putatively 

producing serotonin and dopamine — comparatively across the cerebral, pedal and 

visceral ganglia, and considering the gonadic sex. 

To start studying, with design-based stereological methods, theorized structural 

differences between the various nervous ganglia types, specifically connected with 

intrinsic features of those elements, like their different body locations and distinct 

functions, and in view of the gender and gonadal maturation staging (comparing adults 

with maturing vs. spent gonads). The expectable neural cell targets would be those 

identified by the previous histological and ultrastructural study. 

To work further on the possible effects of the animal’s gender in the structure of 

the central nervous system, and, in parallel, to start exploring the hypothesis that if adult 

bivalves, including S. plana, continue to grow during its lifespan, then its nervous 

ganglia may continue to develop with age — at least until senescence, if it happens — 

and eventually gains in cellularity and other morphofunctional changes plausible occur. 

Implementing design-based stereological strategies, one aim was thus to search for 

changes in ganglion size and in number of distinct neural elements. 
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To make the first experimental assay for start testing the hypothesis that if both 

the nervous ganglia signalling and oestrogens play a modelling role in the bivalves’ 

gonadal maturation and spawning — and all indicates that such impacts are not equal 

ways in females and males — then waterborne exposure to xenoestrogens can cause 

morphofunctional impacts in the central nervous system. This aim makes even more 

sense if the works proposed for other goals generate evidences supporting the 

hypothesis that sex may shape the structure of the S. plana central nervous system. 

Pursuing the cited goals will expand the knowledge of the bivalves’ nervous 

system, in S. plana especially, and has potential of introducing this species as a valuable 

model in neuroscience. 
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ABSTRACT 

This research was carried out on the bivalve peppery furrow shell, Scrobicularia plana, 

which already well-recognized as one of the important species in environmental monitoring 

and other types of researches. S. plana has its natural habitat in the intertidal soft sediment 

along the Atlantic coast from Europe to Africa. Its nervous system is poorly studied, and thus 

we aimed here to improve such lack of knowledge. A qualitative study was done to examine 

the general histology of the nervous ganglia, including the neural cell types at both light and 

electron microscopy. For light microscopy, animals were measured, anesthetized, dissected 

and fixed in 10% buffered formalin. They were routinely processed for paraffin embedding, 

and sectioned for varied purposes along the sagittal plane, using a fully motorized microtome. 

An immunohistochemical survey was also made for identifying neurons that could contain 

serotonin and dopamine, as a first step to gather the knowledge about the presence and role of 

neuroendocrine neurons in S. plana. For transmission electron microscopy, dissected ganglia 

were fixed in 2.5% glutaraldehyde, post-fixed in 1% osmium tetroxide, all buffered, and 

routinely processed for epoxy embedding. As to serotonergic and dopaminergic cell bodies 

and neurites, they were identified in all the ganglia, in adults of both sexes and in immature 

animals (with undefined sex). Both quantitative and qualitative methods were conducted to 

study three dimensional (3D) features of the ganglia, taking the 3D models to find out 

differences between ganglia types and if the biometric parameters can be correlated with the 

ganglionic volumes and surface areas, which was the case for some parameters. Stereology 

was applied later one, using the Cavalieri’s principle for estimating the ganglion volume and 

the optical disector-fractionator method for estimating cellularity (numbers of neurons, glia 

and pigmented cells); namely investigating the influence of the sex and gonad maturation on 

the quantitative structural parameters. The statistical approach relied on multi-way analysis of 

variance. In summary, the main findings were as follows: (1) 3D-reconstruction shows that 

each type of ganglia has a peculiar 3D-shape, and data suggest a slight left-right asymmetry 

as to the cerebral ganglia shape. Regarding total surfaces, correlations exist for the cerebral 

and visceral ganglia, but it is the visceral that consistently shows strong positive correlations 

with each biometric parameter. Despite the differences in volume/surface among ganglia, the 

volume ratio of cortex vs. medulla is fairly stable (≈ 1.5), suggesting a functional optimum. In 

this first approach it seemed that no major differences exist between sexes; (2) Histological 

analysis using light and transmission electron microscopic analysis shows that each ganglion 

has perineurium (outermost layer), outer cortex, and inner medulla. The neurons (smaller or 
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larger) are typically unipolar, gliocytes are elongated, roundish or triangular, and there are 

pigmented cells. Generally, glial cells are much smaller than neurons, having higher nucleus 

to cytoplasm ratio; (3) Unbiased stereology analyses were conducted in three studies. Firstly, 

for investigating eventual influences of the sex and gonadal maturation status of animals that 

did not differ in size. Quantitative parameters were estimated in the nervous ganglia and their 

cells, in males, females, and undifferentiated specimens. Overall, there was a tendency for the 

ganglionic volume to be greater in females, followed by males, and undifferentiated animals. 

As for the type of ganglia, the two cerebral ones are similar in size, but the volumes increased 

significantly towards the pedal ganglia, which is greater than the cerebral and much smaller 

than the visceral. The size differences between all ganglia types are independent of the 

gender and of the gonad maturation status at the time. As for the relative volumes (VV) of the 

cortex and medulla, the cortex is ≈ 60% and the medulla ≈ 40% of the all ganglia. As for the 

number neural cells, there were no significant differences among gender, but significant 

difference were found among ganglia types. The visceral ganglion has the highest number of 

cells (≈ 68000) and the cerebral ganglia have the lowest (≈ 12000). A second stereological 

study was on hypothesize impacts of age on the nervous ganglia in mature males vs. females. 

Considering that size is a proxy of age, the animals were split into two-size classes, that we 

named “Small” (age: 2+ years) and “Big” (age: 3+ years). We disclosed interganglionic, sex-

related and size-related significant effects upon the ganglionic volumes, relative volumes of 

cortex and medulla, and total numbers of neurons, glial cells, and pigmented cells. The effect 

of size (age) was consistently marked, and statistically significant, with the older specimens 

having approximately twice as bigger ganglia (regardless of its type and of the animals’ sex), 

that contained significantly more neural cells of all categories. The increase in cellularity took 

place if considering the entire ganglia, or the cortex and medulla separately. Data support our 

hypothesis that neurogenesis continues to occur in adult S. plana, irrespective of the animals’ 

sex. In this vein, S. plana can become a stimulating model for neurogenesis and age-related 

studies. Lastly, in view that nervous system signalling and sex-steroids both influence bivalve 

reproduction, acute exposure to ethinylestradiol (EE2) in water at two nominal concentrations 

(0.05 and 5 µg/L) was set up, to start determining whether or not endocrine modulation and/or 

disruption of the nervous system occurs in S. plana. Even though our preliminary data did not 

reveal significant impacts, either in the ganglion volume or in cellularity, the study served as a 

“kick off” for further tests, for instance using longer exposures, selecting other organic targets, 

and expanding the technical portfolio, viz. via stereological estimators of cell volume changes. 
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RESUMO 

Este estudo usou como modelo o bivalve lambujinha, Scrobicularia plana, reconhecida 
como uma espécie importante em monitorização ambiental e em outros tipos de pesquisas. A 
S. plana tem como habitat natural o sedimento macio intertidal, ao longo da costa atlântica da 
Europa e até ao norte de África. O seu sistema nervoso é pouco estudado e, assim, procurou-
se nesta Tese contribuir para minorar tais falhas de conhecimento. Foi executado um estudo 
qualitativo sobre a histologia geral dos gânglios nervosos, incluindo sobre os tipos de células 
neurais, tanto em microscopia de campo claro como microscopia eletrónica de transmissão. 
Para a primeira, os animais foram medidos, anestesiados, dissecados e fixados em formalina 
tamponada a 10%. As peças foram processadas de forma rotineira para inclusão em parafina, 
cortando-se o animal segundo o plano sagital, utilizando-se micrótomos motorizados. Entre 
outros, fez-se um estudo imuno-histoquímico para se identificarem neurónios que pudessem 
possuir serotonina e dopamina, como um primeiro passo para aumentar o conhecimento sobre 
a presença e papel de neurónios neuroendócrinos em S. plana. Para microscopia eletrónica, 
gânglios isolados foram fixados em glutaraldeído a 2,5%, pós-fixados em tetróxido de ósmio 
1%, ambos tamponados, e processados rotineiramente para inclusão em resina epóxi. Quanto 
aos somata e neurites serotoninérgicos e dopaminérgicos, eles foram identificados em todos 
os gânglios, em adultos de ambos os sexos e em animais imaturos (i.e., com sexo indefinido). 
Metodologias qualitativas e quantitativas permitiram estudar características tridimensionais 
(3D) dos gânglios, tendo os modelos 3D permitido elucidar diferenças entre os vários tipos de 
gânglios e se os parâmetros biométricos eram correlacionáveis com os volumes ganglionares 
e áreas de superfície; o que foi o caso para alguns parâmetros. Depois, foi usada estereologia, 
através do princípio de Cavalieri, para estimar o volume ganglionar, e do método “optical 
disector-fractionator” para estimar a celularidade (números de neurónios, de células gliais e 
de pigmentadas); estudando-se a influência do sexo e da maturação da gónada nos parâmetros 
estruturais quantitativos. A abordagem estatística baseou-se em análise de variância múltipla. 
Em resumo, os principais resultados foram os seguintes: (1) a reconstrução 3D mostrou que 
cada tipo de gânglio tem formas particulares e que os dados sugerem uma ligeira assimetria 
esquerda-direita na forma dos gânglios cerebrais. Em relação a áreas de superfície, existem 
correlações para gânglios cerebral e visceral, mas é este que mostra consistentemente fortes 
correlações, positivas, com cada parâmetro biométrico do animal. Apesar das diferenças de 
volume/superfície entre gânglios, a proporção volume do córtex vs. medula é bastante estável 
(≈ 1,5), sugerindo um ótimo funcional. Nesta primeira abordagem, não surgiram diferenças 
assinaláveis entre sexos; (2) A análise histológica e ultraestrutural mostrou que cada gânglio 
tem perineuro (um invólucro), córtex (externo) e medula (interna). Há neurónios (pequenos 
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ou grandes), tipicamente unipolares, células gliais alongadas, arredondadas ou triangulares, e 
células pigmentadas. Regra geral as células gliais são muito menores do que os neurónios, 
tendo uma razão núcleo citoplasma mais elevada; (3) A análise estereológica foi realizada em 
três estudos. Em primeiro lugar para a investigação de eventuais efeitos do sexo do animal e 
da maturação da gónada; em animais de dimensões similares. Os parâmetros quantitativos 
foram estimados nos gânglios nervosos e nas suas células, em machos, fêmeas e exemplares 
indiferenciados. Em geral, houve uma tendência para o volume ganglionar ser algo maior em 
fêmeas, seguindo-se machos e os indiferenciados. Quanto ao tipo de gânglio, os cerebrais são 
semelhantes em tamanho, mas os volumes aumentam significativamente no gânglio pedálico, 
que é maior do que os cerebrais e muito menor do que o visceral. As diferenças de tamanho 
entre todos os tipos de gânglios são independentes do sexo e estado de maturação da gónada; 
na fase estudada. Quanto aos volumes relativos (VV) do córtex e da medula, o córtex é ≈ 60% 
e a medula ≈ 40% d o volume ganglionar. Quanto ao número de células neurais, não houve 
diferenças significativas entre os sexos, mas foi encontrada diferença significativa entre tipos 
de gânglios. O gânglio visceral tem o maior número de células (≈ 68000) e gânglios cerebrais 
têm o menor (≈ 12000). Um segundo estudo estereológico foi feito para elucidar a hipótese 
da idade poder associar-se a impactos nos gânglios nervosos, em animais maturos de ambos 
os sexos. Sabendo-se que o tamanho do bivalve é um “proxy” da sua idade, os animais foram 
repartidos em duas classes, designadas por "Small" (idade: 2+ anos) e "Big" (idade: 3+ anos). 
Apuraram-se efeitos significativos, dependentes to tipo de gânglio, do sexo e da idade, nos 
volumes ganglionares, volumes relativos do córtex e medula, número total de neurónios, de 
células gliais e de células pigmentadas. O efeito da dimensão (idade) foi claro, e sublinhado 
na estatística, com os espécimes mais velhos a terem gânglios sensivelmente duas vezes 
maiores (independentemente do seu tipo e sexo dos animais), contendo mais células neurais 
de todas as categorias. O aumento da celularidade ocorreu no gânglio no seu todo, e no córtex 
e medula analisados separadamente. Os dados apoiam a nossa hipótese de que a neurogénese 
continua a ocorrer em adultos de S. plana, independentemente do sexo dos animais. Nesse 
sentido, a S. plana pode ser um modelo aliciante para estudar-se neurogénese e aspetos do 
envelhecimento. Por fim, dado que sistema nervoso e esteroides sexuais influem a reprodução 
de bivalves, fez-se um ensaio de exposição aguda a etinilestradiol, em duas concentrações 
nominais (0,05 e 5 µg/L). Iniciou-se assim a pesquisa para saber se há modulação/disrupção 
endócrina do sistema nervoso em S. plana. Embora os dados preliminares não demostrem 
impactos, pelo menos no volume do gânglio e na celularidade, o estudo foi um "pontapé de 
saída" para mais ensaios, e.g., com exposições longas, seleção de outros alvos biológicos, e 
expansão abordagens, viz. via estimadores estereológicos de alterações do volume celular. 
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Abstract

Bivalves are widespread invertebrates that are mostly marine and benthic, with great impacts in the
aquatic systems food chains. Their soft body is laterally compressed and covered with a hard shell, often
having bilateral symmetry. Strong adductor muscles help in the shell movement. Various species are
used as bioindicators of environmental quality. Many, such as mussels, clams, scallops, or oysters, are
heavily harvested/reared for human consumption. Bivalves availability, adaptability and simple anatomy
make them attractive for both fundamental and applied research. One particular target for such studies
is the nervous system. It is typically made of  a central nervous system holding three types of ganglia
(cerebral, pedal, visceral), organized into an outer neuron- and glia-rich cortex and an inner axon-rich
medulla. Nerves interconnect the ganglia as well as these and peripheral nervous system components,
made of sensorial structures such as eyes (mantle, tentacles), and osphradia (gills) and statocysts (foot);
They are involved in photoreception or are mechano or chemoreceptors. Among other roles, the nervous
system governs reproduction, via influences in the sexual development, gametogenesis, fertilization and
spawning. Such modelling is via neurotransmitters and neurohormones, interplaying with direct/
indirect impacts of biotic (eg, food abundance) and abiotic (eg, temperature, pH, salinity) factors. We
know now that many pollutants can disrupt the nervous system and gonads and their poorly known
interaction. Knowing the nervous system functional morphology is critical to understand such disruptions
and foreseen reproductive consequences. Accordingly, this work offers a systematic overview about the
bivalve nervous system and related reproductive events.

Keywords: Anatomy; Histology; Bivalves; Nervous system; Ganglia; Neurons; Glial cells;
Neurocytology; Neurophysiology; Reproduction.

Introduction

In almost all metazoans, the coordination is
accomplished by two main mechanisms, hormones
and nervous system signals. These two central
systems interact with each other to maintain the
homeostasis of animals and to respond appropriate
information to the environmental stimulus [1-2]. In
addition to these basic vital functions, the nervous
systems of higher organisms are able to perceive and
react to a greater range of environmental stimuli in
intricate and varied way including responsible for
feeling, thinking, and learning [3]. In vertebrates there
are more complicated components of the nervous
system. Anatomically, there are two systems: the
central nervous system (CNS) and the peripheral
nervous system (PNS). CNS consists of brain and
spinal cord. The PNS comprises the somatic and
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autonomic nervous systems. Somatic afferents carry
sensory information from the skin, muscle, and joints
to the CNS, while motor efferent nerves innervate
skeletal muscle to cause the movement contraction.
[4] The autonomic nervous system can be thought of
as a motor system for visceral organs, because it
projects to these organs to innervate and control the
function of smooth muscle, cardiac muscle,
endocrine, and exocrine glands. The autonomic
nervous system is typically further divided
anatomically and functionally into the sympathetic
and parasympathetic subdivisions. [2, 4, 5]

In lower invertebrates of the animal kingdom, like
Coelenterates or Cnidarians, the nervous system
consist of specialized nerve cells of ectoderm called
nerve net that consists of sensory and muscle cells
diffusely distributed. [6, 7] The most highly evolved
groups, like flatworms, show the first real CNS
because their sensory cells are grouped into special
anatomical collection forming a nerve ring or ganglia
organized in the bilaterally symmetrical longitudinal
body axis as nerve cords. Their ganglia can assume
a segment-like structure as a result of the more or
less regular array of cross-connections innervating
the whole body. [8] In the head region, there are
specialized structures, such as primitive “eye or
ocelli”. These structures are also be found in
annelids, in which in the anterior end there is a
distinct brain and segmented body plan, with ganglia
organized into a ladder-like chain in each segment.
[9] The dorsal brain is connected to the ventral chain
of segmental ganglia via circumesophageal
connectives. Each segmental ganglion, which
typically is said to consist of about 1000 neurons, is
organized in a bilaterally symmetrical way. Both halves
are linked to one another by commissures and to
neighboring ganglia by connectives. Peripheral nerves,
typically three pairs, projects from each ganglion and
innervate the segmental body wall. [10] All ganglia
have a structure which is characteristic for higher
invertebrates; neurons within cortex and the neuronal
processes (dendrites and axons) lie in a neuropil in the
core of the ganglion. In some annelids, distinctive giant
neurons occur, and these play an important role in fast
escape responses. [11] In some species the structure
of optic ganglia is formed. [12, 13]

In arthropods, however, the body organization is
different from that of annelids with articulated
appendages and the fusion of originally unitary,
metameric segments into the functional entities
comprising the head, thorax, and abdomen. For such
insects and crustaceans, their head region tends to
form a complex brain consisting of extensively fused
cerebral ganglia. These are often associated with the

processing of information from specialized sensory
organs, for example, a protocerebrum of insects,
which receives visual sensory input from both
compound eyes and from the simple ocelli, a
deutocerebrum which receives sensory input from
the antennae, and a tritocerebrum which receives
input from the head surface. [14] These brain
structures together contain about 90% of the neurons
in the central nervous system, which in the larger
crustaceans sum about one million nerve cells. In the
higher arthropods, there are brain regions which
consist of associative neuropil centres, cell body
regions, and aggregates of neurosecretory cells. [15,
16] The requirement for accurate motor control of the
articulated body appendages, especially the thoracic
legs, has led to an increasing specialization of the
ventral segmental ganglia. [17] There are the thoracic
ganglia typically containing more interneurons,
efferent projecting motor neurons and afferent
sensory fibers than the abdominal ganglion. The
latter, often associated with specialized structures, are
located in the posterior end of the animal. In addition,
there is a tendency toward fusion of the segmental
ganglia into fewer (in some cases single) ganglia. [18]
One such ganglion, the subesophageal, it is formed by
several ganglia and controls the mouthparts – this is
generally found enclosed in the head capsule. [19] The
segmental specializations of the arthropod nervous
system allow complex motor activity to be generated.
This includes flying, running, jumping,
manipulation, and sound production. [12, 18]

In molluscs, there are variations in the
organization of the nervous system. In order to get
sensations they have a collection of neurons in the
ventral cord which are called ganglia. The basic
organization of their CNS comprises about five pairs
of ganglia which are arranged around the gut,
normally near the head, and are linked to one another
by connectives and commissures. It is possible to
distinguish cerebral, buccal, pleural, pedal, and
abdominal ganglia. [13, 20] The basic organizational
plan can vary significantly among individual
molluscan species, to the extent that the various
ganglia can change their position and even fuse with
one another. [12, 13, 20] In Gastropoda, Scaphopoda,
Polyplacophora, Monoplacophora (slow-moving
animals) and Cephalopoda (active predatory
lifestyle), there is cephalisation. [7, 11, 21] There are
numerous studies on the nervous system of the
gastropod mollusc Aphysia californica, which is an
animal model for the neurobiologists’ study of
behaviours, namely learning and memory. [22, 23]
In bivalves, such as, clams, mussels, and scallops,
there is bilateral symmetry and soft body. They have
an interesting simple model of CNS, recognized as
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very useful for studies ranging from
neurobiochemistry to neurophysiology. [7, 24, 25]
However, little seems to be known about the detailed
anatomy of components in the bivalve nervous
system. This Chapter reviews two major parts in
bivalves. The first concerns the structure and
function of nervous system. The second describes
the neural control of reproduction.

General morphology and functions of nervous
   system in bivalves

Knowledge about the morphology and functioning
of central nervous system in bivalves is still somewhat
scarce and needing further study. The reasons for
this limitation are varied. The histology, though
studied to a certain extent, is different from that of
vertebrates; most of the available forms are small,
and the few experimental work has been performed
using methods fruitful in vertebrates but, possibly,
inadequate or insufficient for bivalves. A great feature
of the bivalve nervous system is the small number of
neuronal elements within ganglia and that contribute
to the peripheral tissue. [20, 26] This makes possible
a type of analysis that is difficult to achieve in
vertebrates. Also, interesting direct correlations
between the size of the ganglia and their function
can be disclosed in bivalves.

The central nervous system
Anatomy of the ganglia

The basic plan of organization of all bivalves
nervous system is bilaterally symmetric which each
half body segment possessing a ganglion. In typical
bivalves, they consist of three pairs of ganglia:
cerebropleural (commonly called as cerebral), visceral
and pedal; along with two pairs of long nerve cords.
Both cerebral ganglia are interconnected to visceral
and pedal ganglia by bilaterally running nerve cords.
Each ganglion gives rise to nerve fibers that supply
the organs and tissues in close proximity. [24, 26, 28]
For instance, the cerebral ganglia innervate labial
palps, anterior adductor muscle, anterior part of the
mantle, and sensory organs, including statocysts
(equilibrium organs) and osphradia (a chemo-
mechanical sense organ). [29] The visceral ganglion
innervates the gills, heart, posterior adductor muscle,
posterior part of the mantle, siphons, and sensory
organs in the mantle. [30] As in other bivalve species,
the visceral ganglion of Venus verrucosa comes from
the fusion of two original ganglia, thus showing

bilateral symmetry; pairs of symmetrical nerves
emerge from each pole and diverge. Lastly, the pedal
ganglion, as the name indicates, innervates the foot.
[28, 31, 32]

Cerebral ganglia

In most bivalves, the paired cerebral ganglia are
well separated from each other (left and right) and
they are usually triangular in shape, with the color
varying from milky white to bright red. These ganglia
are situated between the base of the labial palps and
the first esophageal subdivision of the digestive tract,
being shortly cross-connected by a commissure
arching over the esophagus, as well as, longitudinal
linked between pedal and visceral by connectives. In
reality, they are formed by fusion of the cerebral and
pleural ganglia around the anterior part, and that is
why they are commonly referred as cerebropleural
ganglia or cerebral ganglia in the literature [20, 32];
and herein we shall use the latter term henceforth for
consistency. From each cerebral ganglion not only
the principal two pair of nerves cords lead toward
the posterior of the animal: one, cerebro-pedal
connectives that extend posterior and ventrally to
the pedal ganglia in the foot; another, cerebro-visceral
connectives, running directly back from the cerebral
ganglia to the visceral ganglion, which is located on
the surface of the posterior adductor muscle. But,
there are also the pallial nerves innervating the labial
palp, anterior adductor muscle, gill [33], and part of
mantle margin, as well as the statocysts and
osphradia.  In the absence of cephalic sense organs
the cerebral ganglia are weakly developed and small.
[33] In snails, the central ganglia are more
concentrated and the visceral loop is so short that all
of the principal ganglia are in the anterior nerve ring
above the esophagus. [20, 21, 34]

Pedal ganglia

In general bivalves, the pedal ganglia is positioned
below the esophagus and is anterior to the base of
the foot. They have the same type of coloration but
are larger than the cerebral ganglia and more
rounded in appearance. The pedal commissures are
rare; in most forms the right and left ganglia have
met together in the middle line. Each ganglia extend
the following nerves: 1) the pedal nerve, which
innervates the foot, originates from the ventral
posterior surface; 2) in genus Mytilus, the ventral
byssus retractor nerve, innervating the byssus organ
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and muscle and arising from the posterior ventral
side of the ganglion; 3) the dorsal byssus retractor
nerve, which also innervates the upper byssus
muscles arise from the posterior dorsal of the
ganglion. In Crassostrea virginica, there are as well no
pedal ganglia in line with the lack of a foot for
moving. [24, 32, 35]

Visceral ganglia

In typical bivalves the visceral ganglion is the
largest ganglia, being derived from the fusion of two
original ganglia. Visceral ganglia either appear as
“rounded triangles” or else having multiple lobules,
with milky white to bright red in colour at the ventral
end of the visceral mass, on the anteroventral border
next to adductor muscle. The visceral ganglia are
much larger than the cerebral and nerves emanating
from it innervate the mantle, gills, intestine, anus,
skin, posterior part of the genital apparatus, kidney,
the main digestive gland and posterior adductor
muscle. [32-36]  In addition to their usual autonomic
functions, the visceral ganglia also receive sensory
inputs from the sensory tentacles of the mantle. The
tentacles are photoreceptive, mechanoreceptive,
and even chemoreceptive organs. [24, 32] It is of
interest to note that the distribution of the nerves
which originate from the visceral ganglia is not
always identical for each ganglion. Processes could
be seen to extend from nerve cell bodies. Fibres could
be seen in the cerebro-visceral connective and in
the origin of the branchial nerve. [36] The large
white visceral ganglion can be revealed by opening
the exhalant chamber and cloaca and looking
between the pyloric process and the posterior
adductor muscle. [30, 37, 38]

Histology of the ganglia

Irrespective of the ganglia types, they typically
consist of three layers, an outermost perineurium,
the outer cortex and the inner medulla, which can be
called neuropil. [20, 39] Accordingly, the typical
structural organization of the ganglia , bivalves like
those of most invertebrates, consist of a multilayered
rind of neuronal cell bodies which send their
processes  to a central core, are sheathed by a
connective tissue perineurium and contain two types
of cells: nerve cells (neurons) and glial cells.[13, 20]

Perineurium

Ultrastructural analysis of the V. verrucosa ganglia
shows — from the ganglion periphery the
perineurium — a limiting envelope formed by a
sheath of connective tissue that consists of collagen
fibers and fibroblasts; they are arranged in a loose
three-dimensional network, alternating with sheaths
of dense microfilamentous material with the
appearance of a basal lamina surrounding the
ganglia. [36] As for its function, the perineurium is
likely to provide not only a protective envelope, but
also a permeability barrier, which may be particularly
important in bivalve ganglia which probably lack a
glial blood-brain barrier. [13, 20] But the perineurium
in vertebrates is different from that in invertebrates,
because it is a concentric layer of bundled nerves
that it is a protective layer of connective tissue located
around nerves in the body and the internal organs.
Indeed, it is composed of concentric layers of
connective tissue that form a protective sheath around
bundles of nerve fibers. This structure is a transparent
tube-shaped layer that is easily pulled away from
the bundled nerves. Perineurium nerve coverings are
a part of the peripheral nervous system (PNS), which
is responsible for transmitting messages from the
central nervous system (CNS) in the brain to the
effectors, like arms, legs, and internal organs. [2]

The cortical part of ganglia (cortex)

The cortex, a multilayered area of neuron and
satellite glial cells in V. verrucosa [36], is to be the
complex network centre of neuronal cell bodies and
glial cells. The cortex is not only involved in the
control of many internal, homeostatic regulatory
processes, but also in the production of complex
behaviours. Many of nerve cell bodies located in the
cortex were radially oriented and closely associated
with the connective tissue sheath. Many of the
neurons  send their axons into the neuropil ganglion
(inner) zone.[40]

Medulla or neuropil region

As previous mention, in the most invertebrate
ganglia such as arthropods and annelids, the cell
bodies of neurons occur in a thin rind on the
periphery of the ganglion, and the core that contains
axons and dendrites is called the neuropil, a
ganglionic core containing the axonal processes of
the cortical neurons in V. verrucosa. [36] These nerve
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cell bodies appeared to be extensively innervated, as
indicated by the specific staining of endings on their
surface their process of the nerve cell body tapered
as it extended from the body. The neuropil region
has a fibre organization of axons in the nerve tracts
that form clustered areas of complex synapses, i.e.,
glomeruli. [20, 37]

Ganglionic structure follows a common pattern
in virtually all invertebrates, with an outer rind of
neuronal somata surrounding an inner core of axons
and dendrites. The somata are clustered in groups.
The axonal processes of motor neurons leave the
ganglion through the lateral nerves to innervate their
targets in the periphery (often muscles). Most motor
neurons have just one axon leaving the ganglion,
but a few have axons in several nerves that innervate
different targets. In this way a single motor neuron
can exert coordinated control over sets of muscles
that need to act together. Individual muscles are
generally innervated by just one or a few excitatory
motor neurons. [13, 20]

Neurons and glial cells (ganglionic cells)

There is no doubt that in all bivalves the number
of central neurons is smaller if compared to more
complex animals. Notwithstanding, each neuron has
a specific and often complicated task to perform
which involves receiving and making many synaptic
connections.[41, 42] In certain instances, differences
between the pair of neurons in each half of the central
nervous system are slight, so that one can replace the
other to a considerable extent. But in many other
cases the loss of one fibre must involve considerable
loss of function, which may be mitigated to a certain
extent by the overlapping fields of different neurons.
The nervous system also contains cells that
surround, nourish, and support the neurons and
their process, and these are called glial cells. [40]

Nerve cells or neurons

As in most invertebrates, unipolar neurons
predominate, even though a few bipolar and even
multipolar nerve cells have been described. [13, 20,
43] Neuronal cell bodies have overall ultrastructural
features similar to those of most vertebrate and
invertebrate neuron. They contain a pale round or
oval nucleus with one or more prominent nucleoli.
The cytoplasm is rich in granular and agranular
endoplasmic reticulum, free ribosomes, mitochondria
and glycogen deposits. Some mitochondria have a

paracrystalline structure, similar to that found in the
neurons of Spisula solidissima [32, 44], which may be
related to the accumulation of proteins and lipid; as
it is known to occur in a variety of vertebrate and
invertebrate cells. Microtubules and microfilaments
are bare. Golgi complexes are numerous and
developed, being formed by long cured cisternae filled
with finely granular electron-opaque material and
by vesicular profiles of variable size and electron
density. In most cell bodies, dense core vesicles are
an important component and can be found in large
amounts dispersed in the cytoplasm. They display a
great variability of size, shape and electron-opacity
and represent the only distinctive feature of the
neuron, which are comparable in other ultrastructural
respects. [37, 45]

Most neuronal bodies are in the cortex and close
to the perineurium sheath of the ganglia. There are
also the beginnings of the nerves fibres that are made
of axons (i.e., neurites in unipolar neurons) and
eventual dendrites. [46] Pigments can also be found
within neuron, namely as granules designated by
cytosomes or lipochondria, exactly alike described
in gastropods. [20, 37, 47] The cytoplasmic
membranes of neuronal cell bodies, which are in
extensive reciprocal contact, do not show particular
specializations, except for the presence of subsurface
cisternae in peripheral neurons of S. solidissima. [44]

The neuronal cell process originates from a large,
cone-shaped extension of the soma which gradually
taper. The cytoplasm contains microtubules,
neurofilaments, mitochondria and vesicles
displaying the same ultrastructural heterogeneity as
those in the cell bodies. The ganglionic core is formed
by a complex network of processes of different
diameters. Nerve processes containing cytoskeletal
elements are intermingled with others filled with
vesicles. Tracts are formed by wider axons of passage,
while non-glomerular neuropil contains finer
processes which arborise and establish synaptic
contacts. [20] Different types of neurons can be
identified from their branched process pattern and
in terms of function, and so they can be grouped into
three basic categories: a) neurons with specialized
endings that respond to energy from the environment
are called sensory neurons; b) neurons that have
axons terminating on muscle fibers are called motor
neurons c) all other neurons, that are interneurons.
[1, 21, 48]

The majority of synaptic contacts occur in the
neuropil between nerve processes, even if rare,
axomatic synapses have also been recognized within
the cortex. The presynaptic sides can be identified
both the presence of neurotransmitter vesicles and of
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electron dense areas collate to the membrane. In these
synaptic areas, organelles such as mitochondria and
cytoskeleton elements are sparse. Post synaptic sites
are simpler, being the most significant feature the
unevenness of the membrane. The synaptic space
(cleft) typically does not vary in width (H” 20 nm)
across the synapse. Despite this key features, more
than one type of synaptic characteristics may occur.
For instance, in the genus Mytilus there are synapses
with vesicles that only have a lucid content while
other have vesicles having either dense or clear cores.
In addition to the vesicle discharges at synapses, it
is accepted that neuromediators are released at non-
synaptic sites; a process that is not exclusive of
bivalves. More details on the above can be read
elsewhere. [46, 49]

Glial cells

As in vertebrates, the glial cells of invertebrates
have a vast array of structural and functional
specializations. [50] They can be feature of the higher
invertebrate groups like, the Arthropods, Annelids
and Molluscs. Their location is around the neurons,
especially at the nervous tissue interface. Glial cells
have an oval nucleus with chromatin clumped in
the periphery. Generally, two types of electron-dense,
membrane-bound inclusions can be discerned:
cytosome-like bodies and oval granules called
gliosomes (450-650 nm in length and 250-350 nm in
width). These later are a distinctive feature of glial
cells in several bivalve species (and also gastropods).
Their role in nervous activity appears to be necessary
when the neurons become aggregated into ganglia.
[13, 50, 52] In the Mytilus edulis, glial cells have an
oval or indented nucleus with chromatin clumped
in the periphery. Their cytoplasm is usually scanty
but nevertheless contains microfilaments,
mitochondria, cisternae of rough endoplasmic
reticulum, free ribosomes, and small Golgi
complexes.[53] Neuronal cell bodies in the cortex of
the pedal ganglion are subdivided in clusters by
septa formed by glial cell bodies and their processes,
among which there is a system of intercellular
channels, mainly evident in the subperineurial zone.
In this region, even in well-fixed tissues, there are
clusters of empty vesicular profiles of variable size,
which seem to bud off from glial processes: the nature
of dark glial cells characterized by a dense cytoplasm,
which are present in the deepest regions of the cortex
and in the neuropil. Glial cells appear less frequently
in the ganglion central fiber core, being completely
absent from wide neuropil regions. [20, 51]

The peripheral nervous system

The peripheral nervous system of bivalve is made
up of sensory structures regulated through the lateral
nerves. The organs are usually tentacles and most
are typically mechanoreceptors and chemoreceptors.
The sensory organs of bivalves are not well
developed, and are largely a function of the posterior
mantle margins. In scallops have complex eyes with
a lens and retina, but most other bivalves have much
simple eye or ocelli. In Septibranchs, the inhalant
siphon is surrounded by vibration-sensitive
tentacles for detecting prey.[7, 54]

Primary ciliary receptors

In bivalves, three types of ciliated sensory receptors
were described. [55, 57] The most common consists
of 35-40 nonmotile cilia on a cluster of four to six
sensory neurons, apparently mechanoreceptors
associated with a pair of glandular cells. The second
type, a monociliary receptor, has a long, stiff
kinocilium surrounded at the base by a corolla of
nine short, club-shaped microvilli. The third type
consists of 17-20 nonmotile cilia in a circle on a
single sensory neuron that distally envelops a gland
cell.  These structures work as mechanoreceptors
and can be seen in the tentacles of the scallop
Placopecten magellanicus [58], mantle edge of Donax
serra and Donax sordidus and on the siphon of
Macoma balthica. [56]

Ocelli (eye spots)

Bivalves have two types of eyes: paired cerebral
eyes, as well illustrated in the veliger (the planktonic
larval stage) and adults of M. edulis, and pallial eyes.
[32] The latter eyes are found on the siphons of Cardium
edule and on the middle mantle fold of the Pecten
maximus. [59] This organ is the light receptor,
containing  pigmented cells. In M. edulis, cerebral eyes
appear as dark spots located at the bases of the first
ctenidial filaments of the left and right inner
demibranchs. Each ocellus is an open cup, and the
retina is composed of sensory and pigment cells. Eyes
in P. magellanicus are on the middle of the mantle skirt.
[32] The photoreceptoral organelles are directed
toward the incoming light. The sensory cell has a
bulbous nuclear region, a slender cell process, and,
apically, rhabdomeres, and, compared to the eye of
genus Pecten, there are very few receptor cells. [59] In
Pecten maximus, more than 60 eyes are located in the
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sensory fold of the mantle. [58] Each consists of a
cornea, a large cellular lens, a distal and proximal
retina, a reflecting argentea, and a layer of pigment
cell around the eye. The lens cells contain few
organelles and rest on a thick basal lamina. Beneath
the lamina there are nerve fibres of the distal retinal
cells that bear few microvilli among numerous cilia at
their distal surface. The axon leaves the distal retinal
cell from the side, passes up to the basal membrane,
and joins other distal nerve fibers to form the optic
nerve. There are glial supporting cells between the
distal and the proximal retina, the cells of which face
in the opposite direction from the distal cells. [58, 59]

Statocyst

In bivalves, paired statocysts are located in both
dorsolateral sides of the pedal ganglia, and there are
nerve connecting them to the cerebral ganglia. In the
genus Pecten, each statocyst consists of a sac of hair
cells and supporting cells. Inside the sac is a statolith
composed of crystals, and a static nerve extends from
the sac and eventually connects to the cerebral
ganglion. [60] Hair cells have kinocilia, microvilli at
their distal ends, and one or more striated roots that
pass deeply into the cell cytoplasm. They function to
allow animal to maintain orientation. [32, 61]

Osphradium

The osphradium can detect incoming water as a
chemo- or mechanoreceptor around the ctenidial
axis, exhalent, and suprabranchial section of mantle
cavity. In a number of bivalve species, osphradia have
sensory processes, sensory cells, supporting cells,
and innervation of the ridge by nerves from ventral
ganglion. [29] The osphradium is an ancient sensory
structure in Mollusca, and it is better developed in
Gastropoda, where it is a strategically located chemo-
mechanical organ in the pallial cavity. [32, 62]

Abdominal sense organs

Abdominal sense organs are situated on the
ventral surface of the posterior adductor muscles in
bivalves. [32] The sensory epithelium is tall and
consists of two predominant cell types, electron-
dense supporting cells with microvilli only, pigment
granules and oval distal nuclei, and sensory cells
with round proximal nuclei and electron-lucent

cytoplasm. The narrow sensory processes always are
bunched and reach the surface bearing long stiff cilia.
Surrounding the cilium is nine ‘stereomicrovilli’
forming a basal plate in connection with the basal
body. In the prosobranch Nucula sulcata there is the
so-called Stempell’s organ, a tube-like sense organ,
situated immediately dorsal to the anterior adductor
muscle. Collar receptors in the sensory portion of the
organ indicated a mechanoreceptive function. [32]

The cellular components of an invertebrate
nervous system include: sensory neurons, which
convert physical variables (e.g., light level or muscle
force) into electrical signals; motor neurons, which
make synapses with muscles or other effector organs
(e.g., light-producing organs, glands); interneurons,
which transmit information between other neurons;
and glial cells, which are electrically excitable, that
influence the ionic environment surrounding neurons
and the transmission of signals between them. [13]
The transport of signalling of neurotransmitters is
considered to be a major function of ganglia in most
bivalves division of the ganglia. The central nervous
system of bivalves have neurons that contain the
biogenic amines dopamine (DA), norephinephrine
(NE) and serotonin (5-HT), each type might inhibit
the synthesis of the other transmitters.

Neuroactive substances

There are various techniques to study in nervous
tissue of bivalves, and one of the important technique
is immunocytochemistry, which for instance
characterized the neurons containing neuroactive
substances in M. edulis.[46]

Serotonin or 5-hydroxytrytamine (5-HT)

5-HT is found in the central nervous system of
vertebrates and invertebrates. [63] It is thought as the
key neurotransmitter that control reproductive
process of many invertebrates, such as the crustacean
Macrobrachium rosenbergii. [64] In M. edulis, serotonin
immunoreactive neurons were seen in light
microscopic immmunocytochemical studies. Most
often, those neurons are unipolar (8.5-25 µm) and
very numerous both in the pedal and the cerebral
ganglia. [65] Moreover, a great number of labelled
nerve processes were shown in the ganglionic cores,
in the connectives and in the nerves. In the bivalves
Anodonta cygnea  and Mactra stultorum ,  auto
radiographic studies indicated that there is a selective
uptake of 3H5-HT by ganglionic nerve processes
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containing dense core vesicles. The neuropil of the
pedal ganglia has small dopamine-containing
neurons closely associated with it. Situated ventrally
in the pedal ganglia is a large group of 5HT-
containing neurons. Both dopamine and 5-HT are
present in the cells at the junction of the visceral and
right parietal ganglia, and that dopamine and 5-HT
varicosities are present in the neuropil of the pedal
ganglia in molluscs. [63]

Neuropeptides

Neurons immunoreactive for gamma-
aminobutyric acid (GABA) have been verified in all
the ganglia using an antibody directed against the
amino acid itself. [66] GABA immunoreactive
neurons are represented more in the pedal and
cerebral ganglia than in the visceral ganglia, but are
less numerous than neurons displaying 5-HT-
positivity. For the majority, GABA-positive neurons
are small, unipolar (10 µm in diameter), the
exceptions being represented by a few small bipolar
and multipolar cells present almost exclusively in
the pedal ganglia. [48] In these latter there are also
two pairs of bilaterally symmetric, large (30 µm in
diameter) multipolar neurons with long processes
projecting widely throughout the neuropil.
Immunoreactive processes form networks in the
ganglionic cores and run in all the connectives and
nerves; even so, GABAergic fibers are very rare in the
foot. [48] Whether peptide releases occur at synaptic
contacts remains to be fully elucidated, as synaptic
terminals positive to neuropeptides have not yet been
recognized. In addition to the substances above-
mentioned, there is physiological and
pharmacological evidence for the presence of other
peptides, both in the central and peripheral nervous
system, such as the case of FMRFamide (Phe-Met-
Arg-Phe-NH2). [43]

Acetylcholine (Ach)

Acetylcholine has long been recognized as a
neurotransmitter. In most bivalves Ach acts as an
inhibitory neurotransmitter whereas in some it may
have an excitatory role. Ach actions can be even
inconsistent within a species. Ach has, therefore, a
wide variety of effects, e.g., on the heart where it is a
cardioinhibitory neurotransmitter. [67]

Dopamine

Dopamine is widely distributed in the invertebrate
nervous system and has a diverse effect of
reproduction in bivalves. [68] Dopamine was shown
to inhibit spawning activity in serotonin-treated
Dreissena polymorpha mussels, indicating that
spawning activity is stimulated by serotonin but
negatively controlled by dopamine (i.e. dopamine is
linked to gametogenesis rather than spawning and
fertilization) [69]. In the gonads of Mizuhopecten
yessoensis, dopamine acts both as a neurotransmitter
and neurohormone to rise the levels of cAMP, that
seem to play a regulatory role in the reproduction.
[70] This does not mean that dopamin have actions
restricted to reproduction, exemplified by its role in
the contro of ciliary beating as elegantely
demonstrated in C. virginica. [42]

Mechanisms of neuronal transmission

Knowing that nerve impulses were mediated by
chemical neurotransmitters, it became possible to
isolate the inhibitory and excitatory effects of nerve
stimulation and to identify the probable
neurotransmitter substances.

The action potential

Just as a quick reminder, a basic function of most
neurons is ability to produce nerve impulses or action
potentials along the cell membrane. Potential
differences cross the membrane known as the
membrane potential. In the resting potential
membrane, it is approximately -65 mV. When the
membrane potential is raised enough to reach the
threshold result in voltage-gated, sodium channels
open up and allowing Na+ to flow into the cell and
depolarizing the membrane. This is an action
potential (AP), the rapid depolarization is soon
opposed by the closing of Na+ channels (stopping
its influx from the exterior) and opening of K+
channels (allowing the efflux of K+, during both the
repolarisation and hyperpolarization phases for
restoring the resting potential). Finally, both Na+ and
K+ channels close and the membrane potential return
to resting stage and along the membrane is passively
extended and excited adjacent areas to do the same
step. The presynaptic terminal contains synaptic
vesicles-packets containing a chemical
neurotransmitter. The type of neurotransmitter varies
depending on the neuron. [1-5]
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Neurotransmitter activity

We know that there are different neuropeptides
and that small-molecule transmitters exist in the
neuron bivalves, including acetylcholine,
monoamines, and amino acids. [71] For the events
underpinning impulse conduction, the synapse
plays a critical role in integrating activities of the
nervous system. This synapse is one in which
transmission is chemically mediated, i.e., a substance
liberated from the nerve ending of one cell brings
about excitation in the plasma membrane of the next.
In many cases acetylcholine fulfils this function just
as it does in the classical myoneural junction. In other
instances norepinephrine plays a similar role,
although in these cases some structural differences
in the synapse appear. Indeed, specialized low-
resistance connections exist, coupling the pre and
postsynaptic neurons and resulting in extremely
rapid transmission. Finally, in all cases in which
electrical transmission has been seen a particular
structural type of intercellular junction has also been
present. [1, 20]

Neural modulation of the physiology of the
     reproduction in bivalves

Many substances have been candidates as
neurotransmitters in bivalves. Acetylcholine, 5-
hydroxytryptamine, dopamine, and FMRF amide,
they might be physiologically significant in a few
species. Acetylcholine and 5-hydroxytryptamine are
almost certainly neurotransmitter substances in the
gonad whether or not any other neuroactive
endocrine substances are release at sites remote from
the gonad. [1, 65] Bivalves possess large identifiable
nerve cells in their ganglia, and some of these have
been shown to be reproductive-regulatory. [72]

For example, in green lipped mussel, Perna
canaliculus, neurons in the visceral ganglia of both
male and female were characterized by
immunohistochemical techniques, and found that
there are immunoreactivity of anti-5HT and anti-DA
in large type and anti-APGWamide in small type of
neurons.[38] In the gastropod Haliotis asinina, which
has a predictable spawning cycle, there are various
neuropeptides secreted from anterior ganglia that
play a regulatory role in reproduction, like
APGWamide, myomodulin, and FMRamide. [73]

Morphological and physiological aspects of
     gonads and breeding cycles

Sexual differentiation

Gonochorism is the condition of most bivalves,
with no external morphological differences between
the sexes. [7, 74, 75] However, the presence of some
hermaphrodites in wild populations was reported,
e.g. in the form of oocytes within the normal testicular
tissue (ovotestis), namely in individuals of
Scrobicularia plana.[76, 77] Some species are naturally
predominantly hermaphrodites, with distinct male
and female portions of the gonad, like seen in scallop
Pecten maximus;  the mature gonad is divided into
two areas: dorsal testis with white colour and ventral
ovary with orange-red colour. [7, 78] In Anadara
broughtoni (48.3-52.5 mm in size), gonads are present
at sexual maturity and the sexes were reported as
being separated. In Anadara senilis from Nigerian
coast, studies on the sexuality concluded that it is a
protandrous hermaphrodite (monoecious), with
animals developing as males first and then changing
to be females. [79]

 Gametogenesis

Gametogenesis involves the production of gametes
in the gonad that occupy a major portion of the
visceral mass as in bivalves. Spermatogenesis and
oogenesis is related to a period of reproductive cycle
that is influenced by external environmental factors.
Spermatogenesis occurrence located along the inner
periphery of acinus. Spermatogonia are the first cells
to become primary spermatocytes by mitotic
divisions, later these cells undergo into meiosis to
become secondary spermatocytes and spermatids,
respectively, then following the differentiation of
mature spermatids into spermatozoa without further
cell divisions. [28, 32] As to oogenesis, the primary
oogonia have potential to do repeated mitosis and in
the process differentiate to secondary oogonia, which
ingress in the meiotic process until stopping at the
prophase stage of meiosis I — the completion of
meiosis occurs at fertilisation. During oogenesis, the
oocytes greatly increase in size by a process named
vitellogenesis, which basically consists in the
assemblage of lipids and some glycogen in the
ooplasm. [7, 78]
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Spawning

In most bivalves, there are various stimuli
suggested as being importance in control the
breeding cycle, like water temperature, pH range,
tide, latitude, and food abundance. [75-80] Whilst
extreme temperatures may inhibit spawning, these
seem to be less limiting in warmer climates than in
temperate waters. It is a widely suggested that in
each species may occur only over a critical spawning
period and also depending on the physiological
condition of the animals and/or their geographical
distribution. [81, 82] Generally, gametes are
discharged into the mantle cavity and then into the
environment by valve movements, relaxation of
adductor muscles, enlargement of ostia, and
increased ciliary action of the ctenidia [32-79] and
are fertilized externally. Internal fertilization in some
bivalves females collect sperm in the mantle cavity
or gill chamber and then the developing larvae are
brooded. The zygote continues develop in various
larval forms (trochophore and veliger) up to reaching
the juvenile stage. [32] Differences exist even in
species of the same genera. For example, the major
period of spawning of Anadara granosa in southern
Europe is from July to October with a peak in August,
and larvae can be found for over a two month period.
[83] This is different from A. senilis, as it appeared
that the major spawning period is in October, and
some spawning of A. gmnosa probably takes place
throughout the year. [79] But there are evidences of a
peak period in between June and September. In A.
broughtoni from Japan has spawning time in
beginning of August to the end of September. [79]

Evidence for neurosecretory (neuroendocrine)
substances involved in reproduction

Bivalve reproduction consists of many critical
steps, beginning in nerve centres and ending in the
gonads. The steps include sexual development,
gametogenesis, fertilization and spawning. On the
whole, sexual differentiation processes of bivalves
are still in doubt but some aspects are gaining a better
understanding. Serotonin, dopamine and sex
steroids are some agents that are involved in the
sexual differentiation process. [84]

Monoamine oxidase (MAO) regulated by
serotonin level is the main elimination pathway for
monoamines such as dopamine, serotonin,
octopamine and noradrenaline. The MAO activity
could be induced by a variety of secondary amines

in the environment and could likely modulate
serotonin levels in nerve tissues and perhaps sex
differentiation. For example, MAO activity in the
nerve ganglia and gonad was shown to be induced
with a concomitant decrease in serotonin and
dopamine in mussels exposed for 90 day, 10 km
downstream from a primary-treated municipal
effluent plume. [85] Indolamines (serotonin and
tryptomine) and catecholamines (i.e., dopamine and
noradrenaline) are particular neurotransmitters
involved in the integrated actions of neuronal
populations that implicate at the sexual
differentiation in bivalves.[86-87] The level of
dopamine increases after injections of E2 in the sea
scallop, but it dropped during active spawning
period.[88] Moreover, dopamine was shown to
inhibit spawning activity in serotonin-treated D.
polymorpha mussels. [69] There has been a quest to
locate the involved neurons. For instance, an
immunohistochemical study was made in the green-
lipped mussel, Perna canaliculus, using anti-sera
raised against neuropeptides and neurotransmitters
known to control reproduction and spawning. The
authors concluded that there are neurons positive
for serotonin (5-HT), dopamine (DA), APGWamide,
and egg-laying hormone (ELH) within the visceral
ganglia, despite not being able to prove the
physiological functions in the control of the
reproduction of the studied species. [38]

Many of the hormones in invertebrates are
neurohormones, so they are produced by nerve cells.
[89] As with conventional neurons, neurosecretory
cells are able to receive signals from other neurons.
However, unlike ordinary neurons that have cell-to-
cell communication over short distances at synapses,
neurosecretory cells ultimately release their product
into an extracellular space that may be at some
distance from the target cells. [89] In an organism
with a circulatory system, the neurohormones are
typically sent by the vascular route to their target. In
contrast, in lower invertebrates that lack an
organized circulatory system, the neurohormones
apparently simply diffuse from the release site to the
target. In molluscs, the neurosecretory cells and nerve
cells in ganglia are described as endocrine cells
producing neurohormones (dopamine,
noradrenaline and serotonin). [89] In V. verrucosa, 5-
HT was studied by immunohistochemistry, and it
was found in serotonergic neurons that were located
at a region of the cortex of the visceral ganglion, in
serotonergic fibers at the root of branchial nerve, and
along the walls of the ovarian follicles and also
running between the seminiferous acini. [36] In
Lamelliden scorrianus, two types of neurosecretory cells
were observed on the dorsal surface of cerebropleural
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ganglia, which accumulate the neurosecretory
material at low temperature. [90]

By all the above, it is logically possible to
hypothesize that there is a large potential for
xenobiotic endocrine disruption effects on the
nervous system controlled reproduction.

Effects of endocrine-disrupting chemicals on
bivalves

Endocrine-disrupting chemicals (EDCs) are
substances that can interfere with the endocrine
system of animals, being this simplistic definition
subject to refinements.[91] EDCs are known for a wide
range of chemical compounds, including, natural
estrogen and synthetic hormones (ethynylestradiol),
industrial chemicals (such as alkylphenols,
bisphenol A, ethoxylates and tributyltin) and
pesticides (eg, chlormephos and atrazine). [92-94]
Evidence of the effects of these compounds has been
presented in the majority of studies with fish,
crustaceans, annelids and molluscs. [95, 97] Certain
alarming concerns have been increased in human
health of EDCs, such as decline in sperm quality,
increase in the frequency of development
abnormalities of the male reproductive tract,
precocious puberty, and altered neuronal
development. [98, 99]

Aquatic organisms are being subjected to contact
with these substances because they are discharged
into the water, and thus appear in rivers, estuaries
and sea. [100] This lead to numerous studies on
wildlife and consequently the interest on endocrine
disruption of invertebrates is obtaining more
attention. Nowadays there are facts pointing that
bivalves seem to be affected by EDCs, as revealed by
the appearance of oocytes in the testes (ovotestis-
intersex) of the peppery furrow shell, S. plana, from
the Avon Estuary, United Kingdom, where there was
a likely source of estrogenic chemical from
agriculture, and also in the Guadiana Estuary, in
Portugal, where the presence of EDCs was thought
to mainly derived from urban, industrial and
agricultural discharges.[76, 77] In the freshwater
mussel, Elliptio complanata, waterborne exposure to
estrogenic compounds present in municipal effluents
(and also direct exposures by injection), were able to
alter the metabolism of serotonin and dopamine (both
players in the sexual differentiation), likely via E2
receptor-mediate pathway and serotonin
receptors.[85] All these examples do show the current
pertinence to address EDCs impacts over the nervous

system of bivalves, and looking for the impacts of the
gonadal maturation events.
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Abstract 

Scrobicularia plana is one of the most important marine bivalve that habitats widely in 

intertidal soft sediment along the Atlantic coast from Europe to Africa. There have been 

various researches on this species such as distribution, growth, reproduction. S. plana is 

primarily gonochoristic, and the gonadal reproductive sequence can be classified in four 

stages: indifferent (resting stage); development (pre-active stage); mature (active stage); 

and spawning. External fertilization occurs within an hour after mature gametes of both 

sexes are released in the water. While in the early development stages, the larvae live as a 

part of the plankton and, after one month, it becomes pediveliger and then a juvenile. The 

post-larva stage thus chooses a suitable surface to settle on and grow into adults. The 

pattern of breeding cycle can present difference according to the latitude of habitat, which 

is attributed mostly to thermal differences and food availability. Studies of the nervous and 

sensory systems of S. plana are still rare. Beside commercial value (protein source), from 

fishery and aquaculture in various countries, there is a growing interest in studying and 

using that bivalves as a bioindicator, i.e., to monitor aquatic environments, because of 

several characteristic, such as widespread location (namely in areas prone to pollution), 

abundance, easy to collect, considerable adaptability, and pollution tolerance. 
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2.1 Introduction 

This Chapter gives a brief summary of the general biology of the bivalve Scrobicularia 

plana, which common name is peppery furrow shell (in Portugal “lambujinha”). The 

species is commonly found along the Northeast Atlantic coast (Bocher et al. 2007), up 

from the Norwegian Sea down to the Senegalese coast, occurring also in the 

Mediterranean Sea. It lives in shallow intertidal soft-sediment habitats, either in sandy or 

in (preferably) muddy seacoasts. This bivalve is a filter feeder, with long siphons, burying 

itself into the sediment in a vertical position and with the siphons raised above the substrate 

level (Boldina-Cosqueric et al. 2010; Pizzolla 2002) and, when buried, it leaves star-

shaped marks on the sediment surface (Figure 1). The animal feeds on phytoplankton and 

benthic diatom, behaving slightly like a suspension feeder. The species’ patchy pattern of 

geographical distribution along the wide range of latitude (and of environmental 

conditions) indicates a very good adaptability and high physiological tolerance (Guerreiro 

1998). 

 
Figure 1. Star-shaped marks (black arrows) on the sediment surface and habitat 

aspect of Scrobicularia plana in the Ria Formosa, Portugal. Image 
credit: Sukanlaya Tantiwisawaruji. 

2.2 Taxonomy 

Scrobicularia plana (from the Latin word scrobiculus, a diminutive of scrobis, a ditch) 

belongs to the class Bivalvia (Figure 2), whose other members, like mussels, oysters, 

10 cm 
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scallops and clams have two calcareous valves enclosing a thin mantle surrounding the soft 

body. A muscular foot allows locomotion. S. plana is mentioned as belonging to the 

Family Semilidae (ITIS 2013; WORMS 2013) or to Scrobiculariidae (MarLIN 2013); it is 

characterized by its round, flattened and thin shell with both valves being symmetrical 

along the hinge line at the dorsal ridge. 

 
Figure 2. The complete taxonomy of Scrobicularia plana (IT IS 2013). 

 
2.3 Distribution and ecology 

2.3.1 Food 

Like most bivalves, S. plana is a deposit-feeder inhabiting aquatic sediments (Pizzola 

2002; Sola 1997). Benthic microorganisms serve as the main food, as well as, S. plana is a 

prey species for a variety of species, including humans (Gosling 2004; Sola 1997). In the 

planktonic stage, the species is an important food source in the aquatic ecosystem (Hughes 

1969; Morton 1983). As S. plana grows, its vulnerability decreases as it become sessile 

and its shell thickens. Adults are preyed upon by specific predators including starfish, crab, 

dog-whelk and birds (Wanink and Zwarts 2001). 

2.3.2  Temperature 

Temperature is a very important factor for bivalves. Variations in temperature bring 

changes in timing, composition and duration of nutritional algal blooms which affect 

growth, reproduction and survival of S. plana (Santos et al. 2011). These bivalves live in 

water temperatures ranging from 6 to 15.5°C in North Wales (Hughes 1971), or from 10 to 

27°C in the Mediterranean Sea (Casagranda and Boudouresqe 2005). Experiments testing 

the effect of environmental temperature changes indicated that this abiotic factor is directly 

proportional to the animal’s oxygen consumption, but inversely proportional to biomass 

and body growth (Lino 2010).  

Kingdom: Animalia 
Phylum: Mollusca 

                  Class: Bivalvia 
                 Order: Veneroida 

    Superfamily: Tellinoidea 
          Family: Semilidae or Scrobiculariidae 

        Genus: Scrobicularia 
          Species: Scrobicularia plana 
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Salinity  

Salinity plays a critical role in the estuarine habitat, for example by increasing the 

precipitation and aggregation of solids, which increases the water turbidity (Akberali and 

Davenport 1981; Sindermann 2006). Salinity varies with depth and shape of the estuary 

channel due to wind and tidal movement and evaporation from the water surface (Castro 

and Huber 2008). S. plana can be found in water salinities ranging from 11 ‰ (Green 

1957) to 34.5 ‰ (Freeman and Rigler 1957). 

2.3.3  Substrates 

Sediment conditions are key in the distribution and physiology of benthic organisms. The 

substrate of most estuaries is sand or soft mud (Gosling 2004; Sindermann 2006). Mud is 

the combination of silt and clay, which is rich in organic compounds. Mud substrates have 

poor water movement within and frequently become anoxic at a shallow depth of substrate 

(Boldina-Cosqueric 2010; Castro and Huber 2008). S. plana can inhabit sandy substrates, 

but prefers the muddy ones. This could be verified in the Tagus River (Portugal) estuary, 

where the specimens densities are higher in the muddy than in the sandy sediments (Conde 

et al. 2011). In mud substrates, the animal can bury itself ≈ 20 cm from the substrate 

surface in summer, but in winter they can descend to twice this depth (Santos et al. 2005; 

Mouneyrac et al. 2008).  

 

2.4 General morphology 

Information on this topic exists in works made across many decades (ITIS 2013; Hughes 

1969; Hodgson and Trueman 1981; Morton 1983; Pizzolla 2002; Lino 2010). In summary, 

S. plana has a thin, flattened, rounded, and typically bilaterally symmetrical shell (Figure. 

3). Externally, the valves appear white, grey, yellow or straw in color and have thin growth 

lines arranged concentrically until the umbo (the oldest shell part). The internal surface 

varies less in color and is usually whitish. On the dorsal region, near the umbo, the internal 

shell consists of hinge and teeth (two teeth in the right valve and one in left valve), which 

are supported by ligaments. Incurrent and excurrent siphons locate at the posterior end of 

the shell. 
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Figure 3. External views of the shell of Scrobicularia plana. 

Image credit: Sukanlaya Tantiwisawaruji. 

The internal organs are in the visceral mass, covered by mantle on both sides. Both sheets 

of the mantle are very thin and flat, with an epithelium rich in cilia that maintains constant 

the water current inside the mantle cavity, where the gills are situated. On the anterior area 

of the visceral mass, there is a pair of labial palps that bring food particles to the mouth. 

The foot emerges from the visceral ventral region. Within the latter and foot lie the 

digestive, excretory, circulatory, reproductive, and nervous systems (Figure 4). As the last 

two systems are the most relevant within the context of this Thesis, they are concisely 

described below.  

 

Figure 4. Internal structure of Scrobicularia plana without the right valve.  
Image credit: Sukanlaya Tantiwisawaruji. 
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2.4.1 Reproduction 

S. plana can reach sexual maturity at a mean length of ≈ 21.8 mm and at the age of 16 

months (Sola 1997), despite other studies reported ages above two years (Paes-da-Franca 

1956; Guerreiro 1998). This may depend on the population considering that Santos et al. 

(2011) reported that sexual development occurs in specimens that have minimal lengths 

from 14.8 (Portugal) to 25.0 mm (Norway). 

 

S. plana is predominantly gonochoristic (Hughes 1971; Ruiz et al. 1995; Pizzolla 2002) 

but some cases of intersex (in males that also exhibit oocytes, in various extents) were 

documented at the southwest coast of the United Kingdom (Chesman and Langston 2006; 

Ciocan et al. 2012) and at the Guadiana estuary, in Portugal (Gomes et al. 2009). 

 

Gonadal maturation happens after one year, during summer, with the gonads being then 

after retained in winter (Santos et al. 2011). In bivalves, gametogenesis can be classified 

via grading scales, such as using the stages defined by Sola (1997): Stage 0: There are few 

primary germ cells within small acini, localized near the wall of the digestive tubules. The 

sex cannot be identified at this stage; Stage 1: Sex cannot be identified but the walls of the 

acini are thicker; Stage 2: Sexual differentiation has occurred. The primary and secondary 

spermatocytes and a few spermatids are present in the acini of males. In females, the 

oogonia are arranged at the periphery of the acini; Stage 3: Acini are more grouped and 

bigger; Stage 4: Ripe sperm occupies most of the area of acini and ripe ova appear in the 

centre of the lumen. Some oocytes are attached to the acini wall by a thin stalk. When 

spawning starts, the free sperm and a number of ripe ova are released from the acini. Some 

are empty and appear isolated, with the outer wall broken down. Other evaluation schemes 

exist, such as that of Mouneyrac et al. (2008), in which the several stages of gonad in the 

reproductive cycle pass through: indifferent; development; mature (ripe); spawning; and 

spent. Summarizing, and for practical purposes, the gonadal development of S. plana can 

be classified in four developmental stages as in Table 1 (Sola 1997; Raleigh and Keegan 

2006).  
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Table 1. The stages of gonadal development of Scrobicularia plana. 

Stages Male Female 

1: Resting There are few germ cells. There are some residual large oocytes 
and larger lumens. 

2: Pre-active 
 

Germ cells are relatively rare and 
usually consist of a small 
peripheral layer of 
spermatogonia.  

There are no residual oocytes at all 
and only a limited number of oogonia 
and small oocytes occur peripherally. 

3: Active 
 

Central lumens inside large acini 
are small or absent. 

There are few nutritive particles and 
follicular cells. 

4: Spawning 
 
 

Sperm are often visible lying 
loose within these spaces, in 
radial row in the center of the 
lumens, and are ready to be 
released. 

The distal walls of many acini are 
interrupted and detached mature 
oocytes often occur within acini. 
Nutritive particles are found in some 
acini. 

 
Post-spawning fertilization occurs externally, within an hour after mature gamete release 

(Hughes 1971; Sola 1997). Embryos develop in the larvae trochophore and then in the 

veliger stage (a plankton-eating predator). During the early development stages, the larvae 

live as a part of the plankton, and this may happen for a long time in this species (Raleigh 

and Keegan 2006). In particular, at 18ºC, it was estimated that veligers took one month to 

become pediveligers, which still needed some weeks before completing metamorphosis to 

become juveniles with perfectly functioning siphons (Frenkiel and Mouëza 1979). The 

post-larva stage chooses a suitable surface to settle on and grow into adults. The S. plana 

breeding cycle can present different patterns according to the latitude of its habitat; this is 

attributed mostly to thermal differences and food availability (Sola 1997; Wanink and 

Zwarts 2001; Santos et al. 2011). For example, in French estuaries, the spawning period of 

S. plana can be observed from May to July, then a long pause occurs until the end of the 

year, and gametogenesis starts again from January, in an indifferent stage, completing the 

cycle again in May. The same can be observed in Ireland (Raleigh and Keegan 2006). At 

lower latitudes (e.g., Spain), the spawning period starts earlier (March), the reproductive 

pause lasting only from October to December (Rodrı́ guez-Rúa 2003). 
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2.4.2 Nervous and sensory systems 

There are scarce studies on the nervous and sensory systems of S. plana. The study of 

Odeite (1978b) investigated the fine structure of neurons in the mid-dorsal lobes of the 

visceral ganglia. It was found that neurons contain numerous glycogen granules and 

organelles such as mitochondria, endoplasmic reticulum, and “Golgi bodies”. Furthermore, 

there are large masses of orange or reddish multi-globular bodies in the extracellular space 

surrounding neural and glial cells and in the connective tissue associated to the ganglia.  

 

The mantle and siphon possess chemoreceptors that respond to external and internal water 

flows. Their stimulation may elicit siphonal withdrawal and valve closure as a general 

stress avoidance response. S. plana is an osmoconforming bivalve, in which the valve 

closure is mediated by the detection of osmotic pressure change (Freeman and Rigler 

1957). Ciliated tufts on the mantle and siphons behave as sensory organs that are involved 

in mechano- or chemoreception. Previous study suggests that the cruciform muscle and the 

papilla sense organ are chemoreceptors responsible for blood pressure regulation in the 

siphons. Moreover, it was proved that the papilla is a chemoreceptor and works together 

with the cruciform muscle (Odiete 1978a; Harrison and Kohn 1997). 

2.5 The relevance of peppery furrow shell for human consumption and in toxicology 

2.5.1 Economic importance  

There are many varieties of bivalves and a large number are commercially valuable from 

fisheries and aquaculture production. They are a cheap source of protein and minerals in 

tropical and warm temperate areas of over 13 million tons in the recent year (FAO 2014; 

Idayachandiran et al. 2014). On the Atlantic coast of Western Europe, Mediterranean, and 

Western coast of Africa S. plana is one of the key species of the intertidal community, 

being harvested and exploited on an intensive commercial scale in various countries 

(Casagranda and Boudouresque 2005).  

 
2.5.2 Bioindicators species 

There has been a long continued interest in the impacts of contaminants on aquatic 

systems, and numerous studies have been conducted focusing on aquatic animals as 

bioindicators (Andrew et al. 2008; Porte et al. 2006; Solé et al. 2009). S. plana is widely 

known as a valuable species for studies biomonitoring metallic contamination in estuarine 
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sediments (Bryan and Hummerstone 1978; Cheggour et al. 2000; Coelho et al. 2006), 

tributyltin (TBT) bioavailability as deposit-feeding bivalve in sediments (Ruiz et al. 1995; 

Norris and Carr 2006), estrogens as endocrine disruption compounds (Langston et al. 

2007). These investigations recommend S. plana as a suitable species for helping to 

understand and assess the biological impact of aquatic contaminants according to the 

typical criteria for ideal bioindicator organisms as following (Goldberg 1986; Mouneyrac 

et al. 2008): 

a) They are sedentary and abundant in the Europe and Africa; 

b) Their life span may be more than 7 years, which is sufficient to allow the sampling 

of more than one-year-class;  

c) They are good bioaccumulators of metals and do signal changes in the 

environment; 

d) They are easy to sample and strong enough to survive in the laboratory; 

e) Their size allows sufficient tissue collection for the most diverse types of analyses. 

As earlier mentioned, in estuarine English and Portuguese habitats some S. plana 

populations exhibited intersex (Chesman and Langston 2006; Gomes et al. 2009). This 

makes them potentially useful for measuring genetic changes related to intersex induction. 

Such condition is actually inducible with experimental exposure to endocrine disruptors 

(Ciocan et al. 2012).  
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Abstract 

The nervous system of bivalves is bilaterally symmetrical and consists of interconnected 

cerebral, pedal, and visceral ganglia, which may be partially to totally fused. We studied 

the microanatomy of the ganglia of Scrobicularia plana using three-dimensional (3D) 

reconstruction. We also address the hypothesis that intersex differences in the neural 

structure may exist. Each type of ganglion had a peculiar 3D-shape, and the cerebral 

ganglia shape was slightly asymmetrical. The visceral, pedal and cerebral ganglia are 

respectively smaller in volume, but only the pedal ganglion volume was positively 

correlated with the animal’s length, height and width; suggesting functional implications. 

As to total surface area, correlations were found for the cerebral and visceral ganglia, but it 

is the visceral that consistently showed strong positive correlations with each biometric 

parameter. The medulla may often penetrate the cortex and touch the capsule in areas that 

(contrary to what could be suspected) are not connected with emerging nerves. Despite the 

differences in volume and surface area among ganglia, the volume ratio of cortex vs 

medulla is fairly stable (≈ 1.5), suggesting a functional optimum. Finally, we conclude that 

the ganglia of males and females do not show significant quantitative differences. 
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Introduction 

The microanatomy of the nervous system of bivalves is somewhat simple in design, being 

overall bilaterally symmetrical and generally consisting of three pairs of ganglia (cerebral, 

pedal, and visceral), which are either partially, mostly or totally fused (Morse and 

Zardus1997; Gosling 2004). Despite the general aspects that are common among species, 

the detailed anatomy varies according to species. Even the types of ganglia that are either 

well separated or fused, and to what degree, varies among species (Morse and Zardus 

1997). This kind of anatomical variability occurs across other invertebrates and its 

phylogenetic implications have long been investigated in the most diverse organisms 

(Landacre 1920); and continues to the present (e.g., Martynov et al. 2011). Studies of the 

adult central nervous system (CNS) and its ontogeny (e.g., Ellis and Kempf 2011) have 

provided fundamental phylogenetic and taxonomic information. The focus of 

morphological studies of the CNS of invertebrates, particularly in Mollusca, has not been 

so much on details of the nerves but rather on the nervous ganglia components, at times 

including its 3D-anatomy (Martynov et al. 2011). Considering the large abundance of 

species, and the vast ecologic and economic importance of bivalves (Smaal 1991; FAO 

2004; Gosling 2004), there is a paucity of studies on the microanatomy of the CNS, even 

for the most common and/or economically important species. Moreover, sex-related 

differences in CNS anatomy are virtually unstudied in bivalves, although it is known that 

males and females can differ in morphofunctional aspects of their CNS, such as the 

significantly different response to serotonin, which has an important role in reproduction 

(Siniscalchi et al. 2004). 

 

The peppery furrow shell (Scrobicularia plana (da Costa, 1778)) is an intertidal bivalve, 

usually found buried in mud or muddy sand. It can be found from offshore to estuarine 

coastlines, and mostly between Northwest Europe and South Africa (Santos et al. 2011). 

This species is economically relevant in many of those regions (Guerreiro 1998) and it is 

being used as a bioindicator species in biomarker-based approaches that, among other 

targets, includes the evaluation of neurotoxicity by biochemistry (Solé et al 2009; Boldina-

Cosqueric et al. 2010). Nevertheless, there are no published detailed descriptions of the 

microanatomy of the nervous system. The only previous study of neuronal aspects in S. 

plana is that of Odiete (1978), which examined the fine-structure of neurons in mid-dorsal 

regions of the visceral ganglion. 
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Our aim herein was to conduct the first three-dimensional (3D) reconstruction of the S. 

plana ganglia, while estimating their total volumes and surface areas in the 3D models, and 

the relative volumes of the cortex and medulla. We also investigated whether sexual 

differences existed in ganglion size and internal composition. One rationale for the 

hypothesis relies on the key roles of the neurosecretory neurons in governing gonadal 

maturation, particularly in females. 
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Materials and methods 

We used adult S. plana obtained from the estuary of the Mondego River, Portugal. 

Samples were taken in April, when animals have mature gonads. After field collection, the 

animals were kept for 24 hours in glass aquaria, with well aerated seawater (salinity 30‰), 

and at a constant temperature of 15°C. For this study, 6 males and 6 females were sampled 

and used for the 3D-dimensional reconstructions. The shell length (cm), width (cm) and 

height (cm) were measured with a Vernier caliper. Before dissection, the animals were 

anesthetized in a seawater solution of magnesium chloride (6%). The bodies were removed 

carefully from their shells and then immediately fixed in 10% buffered formalin, at room 

temperature. After fixation for 24 hours, the samples were washed in 70% ethanol, and 

further processed through 90% and 100% ethanol, and xylene, using an automatic tissue 

processor (Leica TP1020, Germany). The samples were then embedded in high quality 

paraffin (Paraplast Plus, Sigma-Aldrich), using a modular tissue embedding center (Leica 

EG 1140H, Germany). Each animal was entirely and serially sectioned in the sagittal 

plane. A fully motorized rotary microtome (Leica RM2155, Germany) was used to produce 

12 µm thick sections, which were stained with hematoxylin and eosin, cleared in xylene, 

and mounted with DPX (Sigma-Aldrich). All the sections containing the ganglia were 

selected for software assisted 3D-dimensional reconstruction. 

 

In every selected slide each ganglion was photographed under a light microscope 

(Olympus BX50, Japan), equipped with a digital camera (Olympus Camedia C-5050, 

Japan). Each photograph provided a high resolution image (JPEG, 2560x1920 pixels), and 

was taken with the 10 X objective lens for capturing each entire ganglion profile. 

The three-dimensional reconstructions were made digitally from the original stacks of 

images, using the BioVis3D software (Ver. 3.0, BioVis3D, Uruguay). Final reconstructs 

presented in Results were exported as TIFF files. Estimates of surface areas, volumes and 

linear dimensions were computed by the software, after calibrating for magnification. 

 

The statistical analysis was conducted with the software STATISTICA 12 (Statsoft). Two-

way ANOVA was made (considering the sex and type of ganglia as fixed variables) for 

every quantitative parameter. Data normality was confirmed by the Shapiro-Wilks test. 

Homogeneity of variances was tested with the Levene test. The Newman–Keuls test post-

hoc was used after a significant ANOVA, considering the interaction (sex vs ganglia type) 

and the sex and ganglia type separately, according to the ANOVA primary output. We also 



Chapter 3 | 3D-reconstruction of S. plana nervous ganglia 

- 48 - 
 

conducted parametric correlation analyses, between the body size parameters of the 

animals and the total volumes and surface areas of each ganglion. The level of significance 

adopted was the usual standard of 0.05. 

 

Results 

Body morphometry and general microanatomy of the nervous system. 

Data in Table 1 illustrates that the shell size of the males and females used were 

approximately the same size, both as to the mean values and overall interindividual 

variability. Consequently, no statistically significant differences were found regarding 

length, height or width. All the three parameters were highly linearly correlated, with 

coefficients of correlation (r) showing very strong positive associations: length vs height (r 

= 0.95; p < 0.001); length vs width (r = 0.94; p < 0.001); height vs width (r = 0.928; p < 

0.001). The histological analysis involved the three types of neural ganglia (cerebral, pedal 

and visceral), interconnected by connectives (Figure 1). 

Table 1. Body morphometry (cm) of the S. plana used in the study. 

 Length Height Width 

Males 2.8 (0.18) 2.1 (0.17) 0.9 (0.19) 

Females 2.6 (0.20) 2.0 (0.18) 0.8 (0.25) 

All together 2.6 (0.19) 2.0 (0.25) 0.8 (0.24) 
A total of 6 males and 6 females were used. Data given in mean (coefficient of variation). There are no significant differences. 

 

 
Figure 1. A diagrammatic representation of the nervous system of Scrobicularia plana. A) Sagittal 

view showing the position of ganglia and connectives with the left valve removed. B) Dorsal view 

of neural elements. AAM - anterior adductor muscle; CG - cerebral ganglia; H - heart; I - intestine; 

LCG - left cerebral ganglion; N - nerves; PG - pedal ganglion; PAM - posterior adductor muscle; 

RCG - right cerebral ganglion, S - stomach, U - umbo, VG - visceral ganglion. 
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3D anatomy of the cerebral ganglia 

The cerebral ganglia were located just laterally to the mouth, between the latter and the 

posterodorsal end of the anterior muscle. The 3D reconstructions revealed that the cerebral 

ganglia were pear-shaped, somewhat elliptical or even roundish (Figure 2). Intriguingly, 

we found that in 90% of the analyzed animals the right ganglion could be considered pear-

shaped, whereas in 10% of the cases the 3D shape was of the elliptical type. To the 

contrary, the left cerebral ganglion was consistently roundish. Also, in all the specimens 

that had the right pear-shaped ganglia, the “tip” of the “pear” pointed to the median 

position, as depicted in both images in Figure 2.  

 
Figure 2. A) Frontal view of a 3D-reconstruction of the left (LCG) and the right cerebral ganglion 

(RCG) of Scrobicularia plana, showing the cerebral commissure (IC), together with the emergence 

of several nerves, which are shown truncated near the ganglia. B) A slightly rotated frontal view of 

the 3D-reconstruction of the pair of cerebral ganglia shown in A. In this semi-transparent mode the 

shape of medulla (M) (in blue) can be seen inside the ganglia. APN - anterior pallial nerves; CPC - 

cerebropedal connectives; CVC - cerebrovisceral connectives; IC - interganglionar commissure; N 

- nerves.  

 

In addition to the overall 3D outline, the reconstruction of the medulla revealed the precise 

anatomical spatial positioning between the cortex and medulla. We noticed the medulla 

generally followed the overall global shape of the ganglia (Figure 2B), but not exactly in 

all cases, so that the cortex did not have the same thickness along each ganglion. Also, the 

medulla bulged at times towards the neuronal capsule, where it connected with the 

emerging nerves (Figure 2B). Accordingly, to assist in understanding the shape variations 

of the medulla, we have shown the five to six nerves emerging from each ganglion in the 

reconstruction and confirm that all major bulges coincided with the point of emergence of 

the nerves. 
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3D anatomy of the pedal ganglia 

The two pedal ganglia were fused into one, being located in the median plane of the body 

between the gonad and the foot. The reconstruction shows a cylindrical to ovoid-barrel 

shape, usually with a slightly undulating contour along the long axis (Figure 3A). This long 

axis was always transverse with respect to the anterior-posterior axis of the animal. The 

tips of this ganglion were typically flat at the right side and pointed at the left (Figure 3A). 

The reconstructed medulla resembled a tube within a larger tube (Figure 3B). As seen in 

the cerebral ganglia, thin and flattened or thinner and roundish projections run towards the 

cortex. Such medullar projections ultimately anastomose with nerves (Figure 3C). Usually 

there are six nerves emerging from the ganglion but in a few specimens there were seven 

or even eight. Generally, three to four nerves emerge from both the anterior and the 

posterior surfaces of each ganglion. Sometimes medullar projections pierced into the 

cortex, reaching the capsule but not actually perforating it (Figures 3C, 3D). Thus, in such 

regions, immediately below the capsule there was medullar tissue instead of (the expected) 

cortex. Despite such kind of subcapsular medullar regions did not directly anastomose with 

an emerging nerve, they could be continuous with nearby medullar protrusions — that 

ultimately connected with a nerve. 

 
Figure 3. A) Ventral view of a 3D-reconstruction of the pedal ganglia of Scrobicularia plana. This 

specimen has an ovoid-barrel shape, with the more pointed tip located at the left. B) Anterior view 

of the 3D-reconstruction of the pedal ganglion shown in A. In this semi-transparent mode the 
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details of the medulla (M) (appearing in purple) can be observed, which has a fairly cylindrical 

shape. The capsule (C) is shown as a reference for the innermost medulla location. C) Anterior 

view of the 3D-reconstruction of the pedal ganglia shown in B, also in semi-transparent mode, but 

in which the purple colour is now restricted to the medullar areas (MA) connected with nerves. On 

the superior part of the medulla two medullar roundish sprouts (RS) can be seen that were not 

connected with any emerging nerve. Ct - cortex; M - medulla. D) Left view of a 3D-reconstruction 

of a pedal ganglion. In this case the medulla (M) (reddish) clearly pierced the all full thickness of 

the cortex (Ct) (in deep blue), thus reaching the ganglion capsule (C) (light grey). ApdN - anterior 

pedal nerve; CPC - cerebropedal connectives; PdN - pedal nerve; PPdN - posterior pedal nerves. 

 

3D anatomy of the visceral ganglia 

The visceral ganglia were located very close to the posterior adductor muscle. These 

ganglia were also totally fused into one, having an irregular lobular shape (Figure 4A) or a 

“deformed rectangle” (Figure 4B). There was no discernible left-right symmetry or shape 

consistency, except that the major axis of the fused ganglion was always perpendicular to 

the anterior-posterior axis of the animal. In contrast with the other ganglia, the medulla 

here did not follow so closely the overall shape of the ganglia, being particularly irregular 

in 3D. As seen in the other ganglia, there were medullar projections that pierced the 

capsule and merged with the nerves. Occasionally, the medulla touched the capsule, but 

did not actually cross it (Figure 4C). Usually, six to seven nerves are associated to a 

visceral ganglion, most often emerging from ventrolateral positions (Figure 4D). 
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Figure 4. A) Anterior view of a 3D-reconstruction of a visceral ganglion of Scrobicularia plana 

showing the somewhat irregular shape. The semi-transparent mode reveals that the medulla (M) 

(purple) is somewhat irregular, and does not exactly follow the shape and contour of the cortex (Ct) 

(blue). B) Anterior view of a 3D-reconstruction of a visceral ganglion. The overall shape is 

somewhat irregular, but now resembling a deformed, more or less rectangular box. The semi-

transparent mode reveals that the medulla (M) (reddish-orange) is quite irregular, not following the 

exact same shape and contour of the cortex (Ct) (green). C) Anterior view of a 3D-reconstruction 

of the visceral ganglion shown in B. In this semi-transparent view it can be seen on the top of the 

ganglion that the medulla (M) (reddish-orange) pierced the cortex (Ct), and on those locations the 

medulla directly touched the very thin external capsule (C) (lightest green, not shown at those 

places where the medulla touches the capsule). D) Posterior view of a 3D-reconstruction of a 

visceral ganglion. In addition to the irregular shape, the ventrolateral emerging nerves (N) can be 

seen, two more posteriorly (in blue) and three more anteriorly (in dark purple). The cortex (Ct) 

stands out in green, while the darker yellowish green corresponds to portions of the medulla (M). 

CVC - cerebrovisceral connectives, PAN - posterior adductor nerves; PPN - posterior pallial 

nerves. 

 

Morphometry of the cerebral, pedal and visceral ganglia 

The quantitative data derived from the reconstructions are given in Tables 2-5. As to the 

total volumes (Table 2) there are no intersex differences. Overall, the visceral ganglion is 

significantly larger than the other two ganglia, with the cerebrals the smallest. The mean 
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volume of the pedal ganglion differs significantly from both from the visceral and each 

cerebral ganglion. These display an almost perfect quantitative left-right symmetry as to 

the total volume (and also in the relative volumes of cortex and medulla; Tables 3-4). 

Contrasting with the other ganglia, the pedals have clear significantly linear correlations 

between the total volume and each of the body size parameters: length vs volume (r = 0.65; 

p < 0.05); height vs volume (r = 0.66; p < 0.05); width vs volume (r = 0.74; p < 0.01). The 

visceral ganglia volumes have lower moderate positive correlations, which are only 

statistically significant (despite marginally) with the height (r = 0.65; p = 0.04), and not 

significant regarding the length (r = 0.58; p > 0.05) and width (r = 0.59; p > 0.05). The 

cerebral volumes have residual positive correlations with each of the biometric parameters. 

Table 2. Total volumes (µm3) of the cerebral, pedal and visceral ganglia of S. plana. 

 
Cerebral 

Pedal Visceral 
Right Left 

Males 31.7x106 (0.51) 30.2x106 (0.17) 63.5x106 (0.14) 154.5x106 (0.51) 

Females 39.1x106 (0.41) 36.7x106 (0.53) 62.0x106 (0.18) 139.4x106 (0.28) 

All together 35.4x106 (0.44)A 33.8x106 (0.43)A 62.7x106 (0.16)B 146.9x106 (0.45)C 

A total of 6 males and 6 females were used. Data given in mean (coefficient of variation).Within a row, mean values with different 

superscript letters differ statistically (p < 0.05). There are no significant differences between sexes (ANOVA sex effect: p > 0.05). 

As to the relative volumes (Table 3-4), the cerebral and pedal ganglia display a very 

similar structure, with the cortex comprising ≈ 60% of the ganglion volume and the 

medulla ≈ 40%. Despite no significant differences in relative volumes, including by sex, 

ganglion type, or the interaction between them, it seems that the volume ratio of cortex vs 

medulla shows some small differences: ≈ 1.6 (cerebral), ≈ 1.5 (pedal), ≈ 1.3 (visceral). 
Table 3. Relative volumes (%) of the cerebral, pedal and visceral ganglia cortex of S. plana. 

 
Cerebral Cortex 

Pedal Cortex Visceral Cortex 
Right Left 

Males 60 (0.12) 61 (0.03) 62 (0.09) 54 (0.07) 

Females 64 (0.04) 64 (0.14) 59 (0.09) 60 (0.14) 

All together 62 (0.09) 62 (0.11) 60 (0.09) 57 (0.12) 

A total of 6 males and 6 females were used. Data given in mean (coefficient of variation).There are no significant differences. 
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Table 4. Relative volumes (%) of the cerebral, pedal and visceral ganglia medulla of S. plana. 

 
Cerebral Medulla 

Pedal Medulla Visceral Medulla 
Right Left 

Males 40 (0.18) 39 (0.05) 38 (0.15) 46 (0.08) 

Females 36 (0.07) 36 (0.25) 41 (0.14) 40 (0.21) 

All together 38 (0.15) 38 (0.18) 40 (0.14) 43 (0.16) 

A total of 6 males and 6 females were used. Data given in mean (coefficient of variation). There are no significant differences. 

As to the total surface area (Table 5), and in agreement with the volumetric trends, in both 

sexes there is a significant tendency for a smaller surface area in the cerebral ganglia, with 

the pedal intermediate and the visceral ganglion clearly having the largest surface area. The 

cerebral ganglia have matching averages for the surface area. As seen for both the total and 

relative volumes, there are no intersex differences, but the effect of ganglion type in the 

ANOVA is significant.  
Table 5. Total surface area (µm2) of the cerebral, pedal and visceral ganglia of S. plana. 

 
Cerebral  

Pedal  Visceral  
Right Left 

Males 1.3x106(0.29) 1.2x106(0.12) 1.8x106(0.23) 4.1x106(0.40) 

Females 1.3x106(0.32) 1.2x106(0.48) 1.7x106(0.20) 3.5x106(0.28) 

All together 1.3x106(0.29)A 1.2x106(0.34)A 1.7x106(0.21)B 3.8x106(0.35)C 

A total of 6 males and 6 females were used. Data given in mean (coefficient of variation). Within a row, mean values with different 

superscript letters differ statistically (p < 0.05).There are no significant differences between sexes (ANOVA sex effect: p > 0.05). 

Table 6. Surface-volume ratio (µm2/µm3) of the cerebral, pedal and visceral ganglia of S. plana. 

 
Cerebral  

Pedal  Visceral  
Right Left 

Males 3.4x10-2 (0.25) 3.9x10-2 (0.08) 2.8x10-2 (0.21) 2.8x10-2 (0.12) 

Females 3.4x10-2 (0.48) 3.0x10-2 (0.19) 2.9x10-2 (0.17) 2.4x10-2 (0.27) 

All together 3.4x10-2 (0.36) 3.3x10-2 (0.20) 2.8x10-2 (0.18) 2.6x10-2 (0.21) 

A total of 6 males and 6 females were used. Data given in mean (coefficient of variation). There are no significant differences. 

However, the correlation analyses of the total surface area in relation to the total volumes 

(Table 6) showed that the visceral ganglion was consistently strongly and significantly 

positively correlated with each of the biometric parameters: length vs surface area (r = 

0.84; p < 0.01); height vs surface area (r = 0.82; p < 0.01); width vs surface area (r = 0.83; 

p < 0.01). Both cerebral ganglia provide some moderate (mainly in the right side) to strong 

(in the left side) correlations, as follows: 1) right cerebral – length vs surface area (r = 0.65; 
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p < 0.05); height vs surface area (r = 0.73; p < 0.05); width vs surface area right cerebral (r 

= 0.68; p < 0.05); 2) left cerebral – length vs surface area (r = 0.79; p < 0.01); height vs 

surface area (r = 0.84; p < 0.01); width vs surface area (r = 0.87; p < 0.01).  

 

Discussion 

The value of computer assisted three-dimensional reconstructions for understanding either 

the macro or the microanatomy of cells, organs and even entire tiny organisms, based on 

serial histological sections, is well illustrated in the literature (e.g., Neusser et al. 2006, 

2011; Da Costa et al. 2007; Ge et al. 2012; Geiselbrecht and Melzer 2013; Neves et al. 

2013). The importance and wide range of potential applications of this strategy for 

anatomical research has long been recognised (Salisbury 1994), including the potential of 

deriving (besides qualitative aspects) unbiased/valuable morphometric data (namely object 

counting and volumetric measurements) from the reconstructs; sometimes even with 

advantages over other established approaches, like stereology. The program we used in this 

study for the 3D reconstructions from histological serial sections allowed us, with proper 

calibration, to additionally take both two dimensional (likes surface area) or three 

dimensional (namely volume) measurements, as well as detailed 3D features.  

 

Typically, the 3D anatomy of the ganglia of bivalves has been described from gross 

observations from dissections and microscopic observation. That approach can provide 

realistic information, but is prone to caveats, such as: it is difficult or even impossible to 

properly appreciate details when the ganglia are small: the possibility of inducing damage 

or deformations during collection: the inability to assess the inner 3D anatomy. The final 

result (typically a drawing) may depend much on the artistic skills of the observer. Careful, 

detailed comparisons are sometimes necessary, for example, the evaluation or re-

evaluation of the taxonomy of a species (e.g., Romera et al. 2013) or to properly look at 

the nervous system during larval development (e.g., Ellis and Kempf 2011). Drawings of 

the whole ganglia are rarely accompanied with photomicrographs, at least with respect to 

bivalves. Real images of ganglia are thus rare and normally from larger bivalves e.g., the 

visceral ganglia in the freshwater mussel Hyriopsis bialatus (Simpson, 1900) (Meechonkit 

et al. 2012). 

 

From our experience with Scrobicularia plana it is difficult not only to fully isolate all the 

ganglia from one animal to appreciate its standard 3D anatomy and also variability, but 
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also to conciliate such invasive strategy (involving delicate dissecting) with 3D 

measurements of the isolates. As far as we know our study is the first to conduct a 3D-

reconstruction of the ganglia on adult specimens of a bivalve. So far, we have found only 

one study that presents software supported 3D-reconstructs of the ganglia of the larvae of 

the brooding bivalve Lasaea adansonii (Gmelin, 1791) (Altnöder and Haszprunar 2008), 

but this did not provide insights into the medulla morphology or quantitative data. There 

are no previous studies comparing the ganglia in male vs female bivalves, despite recent 

evidence regarding their different function, such as the higher immunoreactivity for 

serotonin in the visceral ganglia of the female freshwater mussel H. bialatus (Meechonkit 

et al. 2012). 

 

Despite the lack of significant quantitative differences between reproductively mature 

individuals of different sex in S. plana they are presumably under the influence of a 

different constellation of key reproduction modulators,  such as sex steroids, neuropeptides 

and neurotransmitters (Croll and Wang 2007; Mahmud et al. 2008). However, as we 

provide only very general 3D size-related parameters, our data does not mean that there are 

no cytological or histochemical differences connected with the seasonal reproductive 

cycle. We aim to obtain in the future other parameters (e.g., neuron and glial cell counts) 

that may determine differences between sexes.  

 

Differences between the various types of ganglia are obvious, including total volume, with 

the cerebral ganglia being the smallest and the visceral the largest. Interestingly, the sum of 

the volumes of each cerebral ganglion is close to the total volume of the fused pedal 

ganglion. Some bivalves have separate pedal ganglia, even if closely connected by a 

commissure; for example Mytilus edulis Linnaeus, 1758 (Stefano et al. 1990). Curiously, 

the different shapes of the cerebral and pedal ganglia resulted in the surface area of the 

former being not much different to the latter. That is, the somewhat pear-shaped 

appearance of the cerebrals present a summed larger (more than double) surface per unit of 

volume when compared with the somewhat more cylindrical pedal ganglion. It is not clear 

whether or not such morphological differences have functional implications, or if they 

represent some ancient form of “early folding” as seen in the long history of brain 

evolution (Roth and Dicke 2013). To our knowledge, these volume-surface interrelations 

have not been reported in other bivalves. 
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Despite differences in volume or surface area, it is interesting to note that the relative 

volumes of the cortex vs medulla are fairly constant across the different ganglia. Whatever 

the shape of each ganglion and the diversity in size, the outer cortex and the inner medulla 

maintained a fairly stable volume ratio of ≈ 1.5  (with a small variance between 1.6 in 

cerebral and 1.3 in the visceral). This suggests an optimal and strictly regulated structural 

balance for the ganglia of this species. To our knowledge, only qualitative descriptions of 

the medulla and cortex are available in the literature, and if the rare qualitative 

observations that compared different ganglia in a species point to a equal cellular 

composition for each ganglia type — as very recently reported for the freshwater mussels 

Villosa nebulosa (Conrad, 1834), Fusconaia cerina (Conrad, 1838), and Strophitus 

connasaugaensis (Lea, 1858) (McElwain and Bullard 2014) — we seem to be the first to 

reveal this quantitative balance between the cortex and medulla bivalve ganglia. It would 

be interesting to study these aspects in other bivalves, as anatomical features such as cell 

densities and cortex volumes are relevant to understanding the evolution of the central 

nervous system (Roth and Dicke 2013). 

 

The left and right cerebral ganglia were a structural mirror in basic volumes and surface 

areas. But, interestingly, their shape was not exactly the same (confirmed in all the 

analyzed animals), as if the same amount of nervous tissue is modeled in a slightly 

different way, with the right cerebral ganglion fairly pear-shaped whereas the left was 

always roundish. Whether these observations result from an ancient adaptative 

morphofunctional asymmetry in the cerebral ganglia of bivalves, or of this species and/or 

its relatives in particular deserves further study.  

 

Finally, we wish to point out the linear correlations found in relation to the pedal volume 

and surface area vs the animals’ biometric parameters. Within the size range of the 

specimens we studied, the bigger the specimen the bigger the pedal ganglia, but the size of 

the two other types of ganglia do not necessarily increase. The pedal correlations were 

consistently found in relation to all the biometric parameters. It is known that the pedal 

ganglion serves primarily to control the musculature of the foot (Bullock and Horridge 

1965), and we noticed in dissections that specimen size appeared to be correlated with foot 

size, although this was not formally measured. Therefore, we hypothesize that the 

correlations found may be: 1) connected with the need of bigger animals to control the 

respectively larger foot, namely because of the coordination/power of its movements; 2) 
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and/or related with the fact that adults maturing their gonads (within the foot) may need 

bigger ganglia to cope with functional needs, namely to grant regulatory molecules and 

abundant nerve fibers coming from the pedal ganglia to the gonad wall (Henry et al. 1995; 

Tanabe et al. 2006).  
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CHAPTER4 
OVERVIEW OF THE NEUROCYTOLOGY OF GANGLIA AND 

IDENTIFICATION OF PUTATIVE SEROTONIN-AND DOPAMINE-

SECRETING NEURONS IN THE BIVALVE PEPPERY FURROW 

SHELL (SCROBICULARIA PLANA) 
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Overview of the neurocytology of ganglia and identification of putative serotonin- and 

dopamine-secreting neurons in the bivalve peppery fur row shell (Scrobicularia plana) 
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Abstract 

The cytology of the three ganglia types of Scrobicularia plana was never studied in fine 

detail, except in some regions of the visceral ganglia. However, to support fundamental and 

applied studies using this species nervous ganglia, it appears constructive to us that a baseline 

structural descriptive study is made at light and electron microscopy. To start filling the 

knowledge gaps we made a general histological (including special stainings) and 

ultrastructural study in S. plana. Adults of both sexes and immature specimens were collected 

from the Ria Formosa lagoon, Portugal. For light microscopy observations, the animals were 

measured, anesthetized, dissected and then fixed in 10 % buffered formalin. Then after they 

were routinely processed for paraffin embedding and sectioned for diverse purposes along the 

sagittal plane, using a fully motorized microtome. A systematic survey was made for a first 

identification of neurons that contain serotonin and dopamine, as a first step to gather to 

knowledge of the presence and role of neuroendocrine neurons in S. plana. For transmission 

electron microscopy (TEM) dissected ganglia were fixed in 2.5 % glutaraldehyde, post-fixed 

in 1 % osmium tetroxide, and processed for epoxy embedding. Sections were produced with a 

diamond knife using an ultramicrotome. As we expected, the general histology of the ganglia 

matched what is known for bivalves in general, with an outer cortex and an inner medulla. In 

the cortex there are two basic categories of neurons: large and small. Almost all are unipolar 

neurons; only a few bipolar were identified. We found no evidences of myelin like material. 

In all ganglia there is a decreasing size of the neurons as they ate located closer to the 

medulla. Glial cells appear around neurons, and also amidst the axons that route into the 

medulla. They typically have smaller sizes and greater nucleus-cytoplasm ratio when 

compared with neurons. For description, we considered three basic cytological types: 

fusiform, roundish and triangular. Facing their shapes and diverse ultrastructure we can 

hypothesize either they are different sub-types of glia, or at least they correspond to diverse 

functional status — a matter of debate in bivalves. Facing our immediate objectives our focus 

was on light microscopy, but as to the ultrastructure we noted differences in relation to earlier 

findings, mainly in type of inclusions and vacuoles. This discrepancies seem also worth 

exploring in future, correlating with ganglia type and biotic and abiotic factors. At last, 

serotonergic and dopaminergic cell bodies and neurites were identified in all ganglia. Our 

data suggested an identical expression pattern in adults of both sexes and in the immature 

animals (with undefined sex). However, the extent/intensity of serotonin positivity in visceral 

ganglia support that mature animals have stronger expression than undifferentiated ones, 
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which may be connected the role of that ammine in helping bivalve gonad maturation and 

spawning. Overall, our study offers a range of baseline data that are useful for further studies 

in S. plana. 
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Introduction 

The nervous system of invertebrates is composed of two main categories of cells, neurons 

and glial cells (Bullock and Horridge 1965; Coles and Abbott 1996; Harrison 1997; 

Oikonomou and Shaham 2011; Hidalgo et al. 2011), in line with what is seen in vertebrates 

(Brodal 1992; Galbiati et al. 2003; Laming et al. 2000). Also as in the latter group, there are 

neurosecretory cells in invertebrates, such as described in arthropods (Bharathi 2014; 

Padmaja et al. 2010; Perić-Mataruga 2011) and in molluscs (Meechonkit et al. 2010; Sleem 

2003; Wijdenes et al. 1980). Regarding cell peculiarities, there are cytological characteristics 

that the neurons have when they are secretory, particularly lipid droplets and granules filled 

with secretion, which products — e.g., dopamine, noradrenaline and serotonin — can act as 

neurohormones (Carroll and Catapane 2007; Gagné and Blaise 2003). Being produced in 

somata, the neurohormones are packed in granules that are ultimately moved into the axonal 

endings, like the synaptic vesicles (Bullock and Horridge 1965; Roubos 1975; Thorndyke and 

Goldsworthy 1988). Neurosecretory cells receive inputs from other neurons, but, unlike the 

regular neuronal cells (i.e., non-secretory), which display cell-to-cell communications over 

very short distances, at the synapses, neurosecretory neurons release their products into an 

extracellular space, which may be at some distance from their target. In an organism with a 

closed circulatory system, the neurohormones are typically sent through the vascular route up 

to their site of action. Yet, in lower invertebrates, which lack an organized circulatory system, 

the neurohormones seem to simply diffuse from the release site up to the target (Ketata et al. 

2008). 

 

In molluscs there are many evidences of neurosecretory activity — for example, in the central 

ganglia of the sea hare, Aplysia oculifera, and the sea snail, Neptunea arthritica, three and 

four types of neurosecretory cells, respectively, were characterized (Sleem 2003; Yahata and 

Takahashi 1972). Also in bivalves correlations have been found between, on the one end, the 

neurosecretory activity and, on the other end, the neuronal lipid stores and the breeding cycle 

— for instance, in the ganglia of the mussel, Crenomytilus grayanus, whereas numerous 

neuronal lipid droplets were present in the spawning period, very low amounts of those 

inclusions were found in the pre-spawning period; i.e., the lipid contents were inversely 

proportional to the extent of neurosecretion (Reunova et al. 1997). In the scallop, Nodipecten 

subnodosus, there is an increased concentration of monoamines (including norepinephrine, 

dopamine and 5-HT) in the gonad, gill, and mantle tissues during the maturing stage, with a 

drop after spawning, suggesting that the animals used varied neurotransmitters during the 
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reproductive cycle (López-Sánchez et al. 2009). In bivalves, as in other invertebrates, the 

monoamines, dopamine and serotonin are considered neurohormones, because they are known 

to act in several tissues/organs, either as a neurotransmitter or as a neuromodulator of diverse 

processes (Bullock and Horridge 1965; Gagné et al. 2007).  

 

Histological and ultrastructural studies about the neural cells (inc. neurosecretory) are very 

limited in the bivalve peppery furrow shell, Scrobicularia plana. Considering that this species 

is of economic importance and also that it is used as pollution bioindicator — that is prone to 

neuronal and reproductive disruption — a better knowledge of its nervous system is not only 

of a fundamental and comparative interest, but it also can be used for practical purposes. For 

instance, histopathological approaches for appreciating the impacts of pollutants do need a 

good baseline characterization of the normal histological and cytological features. In view of 

this background, we aimed: 1) to review the histology and cytology of the neural cells in S. 

plana, registering its main aspects and eventually looking after any still undescribed feature; 

and 2) to identify the neurosecretory neurons — viz. those putatively producing serotonin and 

dopamine — across the cerebral, pedal and visceral ganglia, and considering the gonadic sex. 

 

Materials and methods 

Animals 

Adult mature and immature S. plana were collected at ebb tide from the intertidal zone of the 

Ria Formosa Lagoon, south of Portugal. After capture, the animals were transferred to in 

house facilities in the same day, and maintained in glass aquaria (10 L) filled with aerated 

seawater (salinity 30 ‰), at a temperature of 15 oC. In the next day, the animals were 

anesthetized by immersion in a solution of MgCl2 (6 %) until total relaxation of the valves. 

Length, width, and height were measured using a Vernier caliper. The medium animals sized 

animals (3.4 ± 0.2 mm in length) were selected for light microscopy (including 

immunohistochemistry), and the bigger ones (3.9 ± 0.02 cm in length) were used for 

transmission electron microscopy (TEM). 

 

Light microscopy — Fixation to paraffin embedding 

Each animal was removed carefully from the shell and fixed in toto for 1-2 h, using 10 % 

neutral buffered formalin, at room temperature. Subsequently, most of the specimens were 

sliced with a sharp razor blade and 3 cross-sectioned slabs were taken around the body zones 

where the nervous ganglia are known to be positioned. The smallest animals were fixed only 



Chapter  4 | Neurocytological aspects of nervous ganglia of S. plana  

- 71 - 

 

in toto.  In mature specimens the procedure allowed an immediate confirmation of the sex, 

due to the distinctive gross aspect of the gonad. After slicing, all the pieces were kept in the 

fixative for 24 h. The fixed organic fragments were washed in 70 % ethanol, dehydrated in 

increasing concentrations of ethanol (up to 100 %), cleared in xylene, and then infiltrated 

with paraffin (Histosec, Merck) in an automatic tissue processor (TP1020, Leica, Germany). 

Embedding of the pieces in plastic cassettes was made in a paraffin station (EG 1140H, 

Leica, Germany). 

 

Light microscopy — Routine and special staining methods 

Animals were cut on a fully motorized rotary microtome (RM2155, Leica, Germany), either 

in non-serial (5 µm thin) or in serial sections (30 µm thick), in cross or in sagittal planes. The 

sections were deparaffinized in xylene, rehydrated in decreasing concentrations of ethanol 

(absolute up to 70 %), followed by water, and finally either subjected to routine hematoxylin 

and eosin (H&E) stain, Kluver-Barrera method (with cresyl violet counterstaining – a classic 

nucleic acid stain for highlighting the soma), Weil’s stain (usually used for detecting myelin), 

and, finally, to Bielschowsky's silver stain (for highlighting neuronal fibres). For observation 

of slides and recording of images we used a light microscope (BX50, Olympus, Denmark), 

equipped with a digital camera (Camedia C-5050, Olympus, Japan). 

 

Transmission electron microscopy (TEM) 

For TEM, ganglia were isolated from adult (biggest) animals and cut under a 

stereomicroscope (LSM 510 Meta, Zeiss Inc., Germany) into tiny pieces (approximately 1 

mm3). The cells were fixed in 2.5 % glutaraldehyde, in 0.2 M sodium cacodylate-

hydrochloric acid buffer, pH= 7.2, for 2 h, at 4ºC, and then washed twice in the same buffer, 

10 min each. Post-fixation was made in 1 % osmium tetroxide, also in 0.2 M sodium 

cacodylate-hydrochloric acid buffer at pH = 7.2, for 2 h, at 4ºC. The fixed pieces were then 

dehydrated in increasing series of ethanol (from 50 % to absolute ethanol p.a.), immersed, 2 

times, in propylene oxide for 15 min, and then in mixtures of propylene oxide and epoxy 

resin (3:1; 1:1; 1:3, in this order, each for 1 hour). Embedding was made in the same resin. 

After 2 days of polymerization in the oven, at 60ºC, the hardened blocks were trimmed and 

cut with a diamond knife (Diatome, Switzerland), in an ultramicrotome (Reichert Supernova, 

Leica, Germany). One µm thick semithin sections were stained with a mixture 1:1 of 1 % 

methylene blue and 1 % azure II. Ninety nm thick ultrathin sections were placed into 200 

mesh hexagonal copper grids, and contrasted with uranyl acetate and lead citrate. Sections of 
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several ganglia were observed and representative images taken with an electron microscope 

JEOL 100CXII, operated at 60 kV.  

 

Immunohistochemistry against serotonin and dopamine 

Paraffin blocks of 5 males, 5 females, and 5 undifferentiated animals were sectioned in the 

above referred motorized microtome, at 3 µm thick, either in cross or in sagittal planes. The 

resulting sections were placed on 3-aminopropyltriethoxysilane coated glass slides and kept 

at -80 ºC. The sections having the left and right cerebral, pedal, and visceral ganglia were 

brought up to room temperature, deparaffinized in xylene, and then rehydrated as described 

above. For immunohistochemistry an antigen retrieval method using citrate buffer (0.01 M, 

pH = 6) was made using a pressure cooker. After this, the, sections were cooled up to room 

temperature and then washed in distilled water. Afterwards, endogenous peroxidase was 

quenched by treatment with 0.3 % H2O2 in methanol (v/v), for 10 min at room temperature, 

to reduce non-specific binding. After washing in tap water and then PBST (phosphate 

buffered saline with 0.05 % of Tween 20), pH = 7.5, for 3 x 2 min, the sections were 

incubated in a 10 % goat non-immune serum blocking solution (Histostain kit, Invitrogen, 

USA) for 1 h. After draining the sections, they were incubated in a moist chamber overnight, 

at 4 ºC, either with the primary antibody against dopamine (rabbit polyclonal anti-dopamine 

antibody, Enzo, USA) or against serotonin (rabbit polyclonal anti-serotonin antibody, Sigma-

Aldrich, USA), used diluted in PBS, pH = 7.5, at 1:3000 and 1:10000, respectively. 

Afterwards, the sections were washed, 3 x 2 min with PBST, and then incubated with a 

biotinylated secondary antibody (Histostain Kit, Invitrogen, USA), for 25 min, and rinsed, 3 x 

2 min with PBS. This step was followed by the application of the enzyme conjugation 

streptavidin-peroxidase reagent (Histostain kit, Invitrogen, USA), for 25 min. After 

subsequent rinsing, the sections were incubated with 3, 3’-diaminobenzidine (DAB) (Novolink 

Max DAB, Leica, UK), for 5 min, and counterstained with Mayer’s hematoxylin (Merck, 

Germany), for 2 min. Negative controls, in which the primary antibody was omitted were 

always included. After dehydration and clearing, sections were coverslipped with DPX 

mountant (Sigma-Aldrich, USA). Study and image recording were made as for H&E staining. 

 

Semi-quantitative grading of serotonin- and dopamine-secreting neurons 

The extent of immunostaining intensity was semi-quantitatively rated by overall looking at all 

ganglia type of males, females and undifferentiated specimens. Grading followed the criteria 

exposed in Table 1; these were established after a pilot blind overview to evaluate the tagging 
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extent and intensity. Results were given as, median, minimum and maximum, and differences 

were statistically analyzed by the non-parametric Kruskal–Wallis test. Computations used the 

software STATISTICA 12.0 (StatSoft, USA). The significance level was set at 0.05. 

 

Table 1 – Semi-quantitative grading scale used for serotonin and dopamine immunostaining. 

Grade Criteria 

1 Less than 20% of sectioned neurons are labelled. Staining intensity is typically very faint. 

1.5 20 to 40% of sectioned neurons are labelled. Staining intensity is typically faint. 

2 40 to 60% of sectioned neurons are labelled. Staining intensity is typically moderate. 

2.5 60% to 80% of sectioned neurons are labelled. Staining intensity is typically strong. 

3 More than 80% of sectioned neurons were labelled. Staining intensity is typically the strongest. 
 

Results 

Light and transmission electron microscopy aspects of the neurocytology of S. plana 
Irrespective of details about the size and shape of the ganglia, all display the same 

fundamental histology, with the outer cortex being exuberant in cellularity of both neurons 

and glial cells, in contrast with the medulla that is rich in neurites and in projections of glial 

cells (Fig. 1). The bigger neurons clearly stand out from the other cells, being primarily 

located in at the periphery (cortex) of the ganglia, emerging immediately below the capsular 

connective sheath. Glial cells are typically smaller than neurons and with very scanty 

cytoplasm, often not even distinct at light microscopy level. Images illustrative of the staining 

procedures used in the observations at light microscopy are presented in Figure 2. The soma 

richness in RNA is well patent, both with the routine H&E (Fig. 2A) and particularly with 

cresyl violet in Kluver-Barrera’s stain (Fig. 2B). The neurites run from the cortex into the 

ganglia centrum (the neuropil or medulla). The absence of positive staining around the 

neurites with the Weil’s technique attested that the neuronal projections are unmyelinated 

axons (Fig. 2C.). With the Bielschowsky's stain it was confirmed that almost all neurons are 

unipolar (Fig. 2D-F); despite rare bipolar neurons exist. Despite thorough scrutiny in the 

silver stained sections, multipolar neurons were not detected. Scattered in cortex are 

pigmented cells, distinct by the yellowish cytoplasmic colour and by the fact that the nucleus 

tends to be located at the margin of the cell body (Fig. 2G-H); those cells also exist in the 

medulla, but being seen much more rarely when compared with the cortex.  
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The electron microscopy visualization (Fig. 3) confirmed in three ganglia the presence of the 

three cell types seen at light microscopy: glial cells, neurons, and pigmented cells. Glial cells 

exist in the medulla and cortex, displaying three morpho-phenotypes: fusiform, roundish, and 

triangular, with shape of the nucleus with the overall morphology of the cell body (Fig. 3A-

B). As perceivable in light microscopy, two morphotypes of nerve cells can be considered, 

based on their size, and that we name, for practical purposes, as small and large neurons. The 

large ones typically present a roundish euchromatic nucleus, bearing a prominent nucleolus, 

and the cytoplasm have sparse dispersed rough endoplasmic reticulum cisternae and plenty of 

mitochondria (Fig. 3B). The small neurons, often laying side by side with the larger ones, but 

predominating in inner half of the cortex, have also a roundish and centrally located nucleus; 

that is not so euchromatic and being less prominent than in large neurons. In line with size, 

smaller neurons have also a comparatively reduced amount of cytoplasm, without dense 

granules (at least they were not detected herein), and overall with a lesser load of organelles. 

Irrespective of the neuron size, the mitochondria content declined from the soma to the 

neurites. 

 

 
Figure 1. Photomicrograph of the cerebral ganglion of Scrobicularia plana, showing the cortex rich 
in neural cells — with the largest appearing in the outer cortex — contrasting with the inner neuropil 
rich medulla. H&E stain. C – capsule; Ct – cortex; GC – glial cells; M – medulla; Ne – neurons.   
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Figure 2. Histological details of the nervous ganglia cortex and medulla of Scrobicularia. plana. A) 
H&E stained section showing neurons and glial cells at the cortex of a pedal ganglion. B) Kluver-
Barrera stained section showing the violet stained neurons, with greater ones clustered in the outer 
cortex. C) Weil stained section showing neurons, also with larger ones crowded at a subcapsular 
location. The nerve fibers (neurites) run from the cortex into the medulla. D) Bielschowsky's silver 
staining, without gold toning, highlighting the intricate medullar network of nerve fibers and glial cell 
processes. E) Bielschowsky’s silver staining, toned with gold, unveiling the presence of thick nerve 
fibers. F) Higher magnification from a Bielschowsky’s silver staining section, toned with gold. G) 
H&E stained section of a visceral ganglion, showing pigmented cells in cortex, nearby neurons and 
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glial cells. H) Detail of H&E stained cerebral ganglion, with a magnification that details one 
pigmented cell, nearby neuronal soma and a thick nerve fiber (axon). C – capsule; Ct – cortex; – GC – 
glial cells; M – medulla; NF – nerve fibers; Ne – neurons; Pi – pigmented cells. 
 

 
Figure 3. Transmission electron micrographs of varied neural cells of Scrobicularia plana. A) Image 
from an outer ganglionic region, below the connective tissue capsule. Two elongated (electron dense) 
and one (electron lucent) triangular/roundish glial cells are seen close to a larger nearby neuron. B) 
Large neuron with a euchromatic nucleus, bearing a central nucleolus, and with the cytoplasm packed 
with organelles; these include dense granules. C) Detail of a medullar fusiform type of glial cell, from 
which apical slim projections emerge. D) Pigmented cell nearby a neuron, exposing the typical 
peripheral nucleus. E) Region with neurofilament-rich neurites and also exhibiting one that shows a 
varicosity filled with homogenously dense vesicles. C – Capsule; DG – dense granules; GC – glial 
cells; Mi – mitochondria; Ne – neurons; NG – neurotransmitter granules; Pi – pigmented cells; White 
arrows – Nucleolus. 
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Figure 4. Serotonin and dopamine immunostaining (as brown colour essentially in the neuronal 
soma) in the visceral ganglia of Scrobicularia plana. A) Serotonin and B) Dopamine in a male – 
Grade 3 (according with the criteria explained in Table 1). C) Serotonin and D) Dopamine in a female 
– Grade 3. E) Serotonin and F) Dopamine in an undifferentiated animal – Grade 2.5. Ct – cortex; M – 
medulla. 
 

Identification and semi-quantitative grading of serotonin- and dopamine-secreting neurons  

All ganglia exhibit serotonin and dopamine positive immunoreactivity of neurons, which 

seem relatively stronger in the larger neurons (Fig. 4). The negative (no antibody) controls 

sections do not evidence immunomarking (not shown). Also, the small glial cells with scanty 

cytoplasm do not stain at all or, at most, stained very faintly (and so interpreted as no specific 

background staining). The positive tagging is essentially located in the soma, but neurites, 

including in the medulla, show also some positivity, despite much weaker. There was a 
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degree of heterogeneity as to the signal strength within each ganglion, i.e., not all neurons 

stain equally. Qualitatively, no global patterns of immunostaining are seen as to the effect of 

sex status or of ganglia type. 

 

Grading data for the immunomarking is given on Table 2. The median grades were either 2.5 

or 3, despite values varied from 1.5 to 3. No animal was rated with the lowest possible score 

of 1. The most common scenario found was quite stable, with 60% to 80%, or more, of the 

sectioned neurons being labelled, and the staining intensity being strong to very intense. Only 

one significant difference was found, and in the visceral ganglion, with the females having a 

higher median score for serotonin when compared to males and undifferentiated specimens. 

 

Table 2. Immunologic intensity of positive neuron in cerebral, pedal and visceral ganglia. 

Ganglia and sex condition Serotonin Dopamine 

Cerebral  Median (Min-Max) Median (Min-Max) 

Males 3.0 1.5-3.0 3.0 3.0-3.0 

Females 2.5 2.5-3.0 3.0 2.5-3.0 

Undifferentiated animals 3.0 2.5-3.0 3.0 2.5-3.0 

Pedal  Median (Min-Max) Median (Min-Max) 

Males 3.0 2.0-3.0 3.0 2.5-3.0 

Females 3.0 2.5-3.0 2.5 2.0-3.0 

Undifferentiated animals 3.0 3.0-3.0 3.0 2.5-3.0 

Visceral  Median (Min-Max) Median (Min-Max) 

Males 3.0a 3.0-3.0 2.5 2.0-3.0 

Females 3.0a 2.5-3.0 3.0 2.5-3.0 

Undifferentiated animals 2.5b 2.5-3.0 2.5 2.0-2.5 

* Median values bearing different superscript letter differ significantly (P <0.05). 
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Discussion  

General light and electron microscopy aspects 

The general histological organization of the ganglia was the expected one, in accordance with 

that already studied in a 3D perspective (in the Chapter 3 of this Thesis). Our observations 

thus served the purpose to note any specificity as to the structure of the neural cells and/or of 

their distribution within the ganglia. As far as we know, in S. plana only Odiete (1978) 

studied the neurocytology of the visceral ganglia, reporting aspects of their fine structure. 

However, that study neither revealed the general histology nor provided data about eventual 

phenotypes of neurons (particularly regarding the size) and glial cells (namely as to size or 

particular shapes). In current study, we found that the neurons contrast much in size — for 

the sake of simplicity we just classified them as large and small — and that most of large 

neurons are located at the periphery of all three ganglia. Irrespective of the size and position 

of the neurons in the cortex, somata typically have a single process directed towards the 

medulla. Occasionally we spotted two processes emerging from the soma of large neurons. 

This finding is in accordance with the literature, as bipolar neurons are consistently found to 

be the far less dominant neuron types in ganglia of most invertebrates (Orrha and Muller 

2005; Croll 2001). The nomenclature about neuronal projections is often used in the literature 

in a non-systematic and unanimous form. According with the review recommendations of 

Richter et al. (2010) for invertebrates, “all cell processes of neurons” should “collectively be 

referred to neurites”, and, importantly in our context, “The single main process emerging 

from the soma of unipolar neurons and connecting them to dendrites and axons is then called 

primary neurite”. These aspects are worth citing here because it has been recognized for long 

that in invertebrates it is difficult to distinguish axons form dendrites, both in structural and 

functional points of view (Bullock and Horridge 1965). Here and elsewhere we use the term 

neurite and axon as neurites can be separated into primary neurites, axons (here mostly from 

unipolar neurons), and dendrites (Richter et al. 2010). 

 

The special staining procedures and the electron microscopy observations did not evidenced 

the presence of myelin-like material around neurites. However, Odiete (1978) illustrated in 

this species a sort of concentrically lamellar figures that were deemed as myelinated axons 

(but this only in small sized ones), stating, however, that most axons entering the medulla 

were typical unmyelinated. Our electron microscopy approach was not an extensive study, 

and, eventually, we may have missed such kind of structures. This is a matter worth further 
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study, namely in light of the divergent data and continuous research about the presence of 

early-to-recent forms of myelination throughout its complex evolution process (Zalc 2006; 

Castelfranco and Hartline 2015). Apropos, it must be stressed that axonal sheaths of true 

myelin (i.e., as in vertebrates) seem not to exist in invertebrates, including for instance the 

multi-lamellate glial sheets described in bivalves, crustaceans and annelids (Hartline 2008; 

Roots 2008). As to neurons cytoplasm, especially of large ones, there are vacuoles/vesicles, 

which appear as light roundish spaces at light and as membrane bounded bodies of varying 

electron-density when seen at electron microscopy. Some of these structures had large dense 

granules inside, much greater than the electron-dense or electron-lucent small vesicles that 

appeared at varicosities or pre-synaptic regions of the axons. These vesicles are thought to 

serve multiple purposes, from accumulation of proteins and lipids to storage of 

neurohormones and neurotransmitters, and they are known to appear in various invertebrates 

(Golding and Pow 1988; Siniscalchi et al. 2004; Meechonkit et al. 2010). The structure of 

neuronal vesicles is quite diverse in bivalves, and attempts were made to advance some 

systematization. For example, for Mytilus edulis the neuronal vesicles were described as 

small granular, large granular, large opaque, and pleomorphic vesicles, with variations 

(Vitellaro-Zuccarello and Biasi 1990). The diversity of structure is known for long to match a 

variety of neurotransmitters, in bivalves and other molluscs (Endean 1972), and studies have 

been made to know the vesicles/neural zones that have each neurochemical (e.g., Karhunen et 

al. 1993; Karhunen et al. 2004; Meechonkit et al. 2010). We did not find the so-called 

“yellow globules” or “cytosomes” that Odiete (1978) described in some neurons of the mid-

dorsal lobes of the visceral ganglia of S. plana; such globules were then characterized by 

displaying an electron-dense cortex and electron-lucent centrum. Most likely, such cytosomes 

occur in particular regions of the ganglia, and our electron study was quite general, based on 

random samples of the cortex that are not enough to discriminate between particular regions. 

As to other features of S. plana neuronal somata, histology and ultrastructure revealed 

neurons with one euchromatic round-to-oval nucleus with one salient nucleolus, and 

cytoplasm with the usual key organelles, standing out mitochondria; overall in line with the 

other bivalve species (Bullock and Horridge 1965; Stefano, 1990; Morse and Zardus 1997; 

Odiete 1978). 

 

As to glial cells, they were identified herein by their morphology and positioning, appearing 

in the cortex and medulla. In bivalves, the glial cells histology/cytology has deserved much 

less attention than neurons, but their comparatively smaller cell size and scanty cytoplasm has 
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been described, particularly in ganglia of M. edulis (Vitellaro-Zuccarello and Biasi 1990; 

Paemen et al. 1992). In S. plana, Odiete (1978) focused the attention on the diversity of glial 

granules. Our operational definition of the glial cells into fusiform, roundish, and triangular, 

is one first attempt to at least systematize their description, and it may not have functional 

implications. It is possible that these forms can be mere stages of the same cell type or it may 

correspond to different roles. Only more in depth studies can answer this question, but in our 

posterior studies we will maintain this operational definition, namely when making 

differential cell counting. The difficulty in characterizing the invertebrate glia based on clear 

consistent criteria is a well-recognized caveat, and there is no unique set of “morphological 

glial markers” (Hartline 2011). In the particular case of bivalves, it was recognized that the 

ultrastructure (not to mention function) of the glia within the ganglia is far from understood, 

and that tandem questions exist, such as if there is one or more glial subtypes and if 

environmental factors influence the often seen structural variations (Vitellaro-Zuccarello and 

Biasi 1990). Despite all this, there are some consistent features appearing in different 

bivalves, such as the existence in the ganglia of glial cells that have an electron-dense 

cytoplasm and thin projections, for instance in M. edulis Vitellaro-Zuccarello and Biasi 1990 

and Spisula solidissima (Prior and Lipton 1977), as we saw in S. plana. Whatever the 

variability and poorly characterized morphofunctional subtypes, it is well-recognized that 

glial cells are prominent in invertebrates, including molluscs, where they contact and cover 

neurons, and are absolutely critical for as increasing number of known functions, resembling 

those much better known in mammalian glial cells (Coles 2009). 

 

In all types of ganglia, we consistently found neuronal cells that showed a brown-yellowish 

colour at light microscopy. We labelled them as pigmented cells. They appear mostly in the 

cortex, but also in the medulla. In the vast majority of occasions these cells were of small size 

— compatible with that of many glial cells but also with that of small neurons — and showed 

an ovoid to ellipsoidal contour. For operational reasons and facing a degree of uncertainty 

about its true nature, we opted for presenting these cells as a separate neural cell entity. One 

of the reasons is the fact that pigments can be found in bivalves within both neurons and glial 

cells, namely as organelles. A diversity of pigmented cytoplasmic structures may appear in 

bivalves and other molluscs, such as the yellow globules or cytosomes of neurons and the 

multiglobular bodies/ fused yellow globules of glial cells, as described in the mid dorsal lobes 

of S. plana (Odiete, 1978). Membrane bound bodies with yellowish pigments in neural cells 

are not exclusive of bivalves. For example cytosomes (also named lipochondria) have been 
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studied in gastropods (e.g., Lay and Rogers 1956; Zs-Nagy 1971; Sugaya and Onozuka 1978; 

Robles et al. 1986). At light microscopy, the morphology of the pigmented cells we spotted 

were consistently more compatible with glial cells, and no large neurons displayed such 

yellowish inclusions/vacuoles. Despite this, further studies are needed to understand the 

differences in the pigmented vacuoles/globules we observed herein and those reported by 

Odiete (1978). Such divergences can be the reflex of biotic and abiotic factors, namely when 

knowing that pigment (lipochrome) serves various uses, such as anoxic endogenous oxidation 

that helps surviving low oxygen tension (Zs-Nagy 1971, 1974). In view of other functions, as 

for lipofuscin and/or lipochrome pigments in neurons of the gastropod Aplysia californica 

(Henkart 1975; Schwartz et al. 1979), more studies are warrant in S. plana. 

 

The serotonin- and dopamine-secreting neurons 

Although serotonin and dopamine have been reported within the ganglia of some other 

bivalves (Gagné et al. 2007; López-Sánchez et al. 2009; Meechonkit et al. 2010), our work is 

the first to report their immunoreactivity in mature (males and females) vs. undifferentiated S. 

plana. We observed cells with consistent positivity for serotonin and dopamine in all 

ganglion types. Qualitatively there were no perceivable interganglionic differences, but 

knowing that neuro-signalling is critical for the success of adult bivalve reproduction, we 

used semi-quantification of the staining as a pilot approach to search for clues of intersex and 

age-related differences. After implementing our pre-defined grading scores, both serotonin-

and dopamine secreting neurons were always present and showing what seems a continuous 

evident expression of the two peptides. However, one significant difference was found in 

visceral ganglia, where serotonin expression for undifferentiated animals (as measured by the 

extent and strength of immunostaining) was lower than in mature males and females. Such 

differences were not seen regarding dopamine. Assuming that the significant difference is not 

a mere occasional event, it suggests that adult visceral neurons of S. plana produce (use, 

release) greater quantities of serotonin, eventually connected with gonad maturation events. 

This interesting possibility is worth exploring in the future, using more refined techniques, 

including chemical determinations of neurotransmitters. Indeed, interactions of serotonin and 

dopamine in nervous tissue are recognized to be important for reproduction and other 

functions in bivalves, including muscle contraction in spawning and respiration (Beiras and 

Widdows 1995; López-Sánchez et al. 2009; Meechonkit et al. 2012). Our results make 

particular sense considering that serotonin is known to induce spawning in bivalves (Gibbons 

and Castagna, 1984); which agrees with lower levels in immature S. plana. Nevertheless this 
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explanation is partial, as it does not fit in the no difference between adult and immature 

specimens as to dopamine. Indeed, the latter monoamine is also evidently connected with 

gonadal maturation and spawning events (Osada et al. 1987; Klouche et al. 2015). Studies on 

distribution of monoamine production neurons in bivalves reported diverse patterns. For 

example, in M. edulis, histofluorescent localization in the cerebral ganglia showed that they 

enclose dopamine and serotonin positive cells, that the pedal contained mainly serotonin, and 

that the visceral possesses smaller amounts of dopamine; no data about the sex of the animals 

used was given (Stefano and Aiello 1975). In contrast, the more intense staining of serotonin 

was detected in the nerve fibres and termini of the visceral ganglia of Hyriopsis bialata 

(Meechonkit et al. 2010). In the latter study, the large neurons were the ones that staining 

stronger both with paraldehyde fuchsin and against serotonin, which is in accordance with 

our observation in neurons of S. plana. We can anticipate that interspecies differences can be 

due either to biotic (e.g., Burrell and Stefano 1981) and/or abiotic factors (e.g., Hiripi et al. 

1982), but we lack more analyses to be able to perceive global patterns. In view of the 

absence of studies, research on neuroamines in S. plana is warrant because they should play 

roles as neurotransmitters and neurohormones, expectable in accordance with those seen in 

bivalves so biodiverse as Mya arenaria, Misuhopecten yessoensis, Hyriopsis bialatus, and 

other (Carroll and Catapane 2007; Khotimchenko and Deridovich 1989; Meechonkit et al. 

2012). We found here that immunostaining for serotonin and dopamine was not restricted to 

the soma but that it was also present in neurites. Thus, it can be concluded that S. plana has a 

network of dopaminergic and serotonergic neurites distributed throughout the ganglionic 

medulla. Serotonergic neurites were also noticed in visceral ganglia and gonad of the bivalve 

Venus verrucosa (Siniscalchi et al. 2004). Despite the few studies, we know that serotonergic 

and dopaminergic networks can be formed soon in the bivalve embryonic development, as 

early as 24 h post-fertilization, as established in S. solidissima (Kreyling et al. 2001). Such 

knowledge on monoaminergic systems and the current new data for S. plana, offer large 

potential for basic and applied purposes, both in aquaculture (Khotimchenko and Deridovich 

1991; FAO 2004) and toxicology (Klouche et al. 2015). 
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Abstract 

Neurotransmitters do play key roles as to the maturation of gonads in bivalves. Also, sex 

steroids were suggested to have also critical functions in the reproductive control. Yet, it 

remains virtually unknown what kind of interplay may exist with those two kinds of controls, 

and if there are underlying differences in the nervous system structure between sexes. To help 

investigating this issue, a quantitative stereological study was made on the nervous ganglia of 

adult peppery furrow shell, Scrobicularia plana; a bioindicator species with relevancy for 

local economies. Mature males, mature females, and undifferentiated animals were collected 

at Ria Formosa Lagoon (Portugal), fixed with 10% buffered formalin, and processed for 

paraffin embedding, for studies at light microscopy. The animals were serially cut into 35 µm 

thick sections that were routinely stained with hematoxylin-eosin. Sections having the 

cerebral, pedal, and visceral ganglia were studied. The parameters of interest were the 

absolute volumes of the ganglia and the total and relative volumes of their cortex and 

medulla, and, finally, the total number of cells (neurons, glial, and pigmented) in the whole 

ganglia and each compartment. The volumes and the cell numbers were estimated, 

respectively, by the Cavalieri’s principle, and by the optical fractionator method. Data were 

analyzed by ANOVA and post-hoc tests. Apart from the fact that females have a higher glia-

to-neuron numerical ratio, we do not find other major differences between maturing males 

and females. These have a greater ganglionic volume when compared with undifferentiated 

adults; with males showing intermediate values. These facts point that size of the ganglia is 

related somehow with the sex and gonad maturation. The numerical data suggest that cell size 

differences may be at the basis of the differences, because there are no significant differences 

in the total cellularity among the gender studied. The three types of ganglia differ in total 

volumes and volume ratio of cortex versus medulla. The significantly greater volumes of the 

pedal ganglia (in relation to the cerebral ones) and of the visceral ganglia (in relation to all 

other) imply more voluminous cortexes and medullae, but more neuronal and non-neuronal 

cells only in the visceral. We disclose for the first time that a small bivalve as S. plana can 

have a mean total number of neural cells that may reach over 68000 in the visceral ganglia. 

The new fundamental data herein hopefully can help sustaining better interpretations as to the 

bivalve neurophysiology, and how it relates with unsolved issues in malacology, such as 

those related to nociceptive behavior and its implications in animal welfare. 
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Introduction 

Neuroscience research has shown that female and male brains can be different in various 

ways (Leenaars et al. 2013; Leong and Packard 2014; Cosgrove et al. 2007), and that gonadal 

steroidal hormones not only are involved in the regulation of reproduction, but they can also 

induce sexually dimorphic brain development and organization (Arnold 2003). All these facts 

make the brain – and by proxy the whole general central nervous system – a key target to 

study the basic questions that prevail as to intersexual differences. For example, it is still in 

doubt if the brains (cells) work differently for specific skills between sexes (Burgaleta et al. 

2012). Moreover, neuronal survival and degeneration are related with sex-steroids such as 

estrogens, progesterone, and testosterone (Garcia-Segura and Balthazart 2009; Gillies and 

Mcarthur 2010). These steroid hormones are thought to link behaviors either with an internal 

mechanism, like ovulation, or with an external factor, such as a nutritional condition (Gillies 

and Mcarthur 2010). In some animals the sexual dimorphism is often definitely observed. 

There are studies covering a range of animals, for instance birds, lamb, and rat, in which 

specific zones of the brains (individual behavior) of different sexes were investigated, namely 

by comparing the organ’s volume and the neuron number (Arnold 2003; Sahin et al. 2001).  

 

For invertebrates, the relation between the sex of individuals and differences in its nervous 

system structure and function is much less clear. However, some findings show that 

differences may exist; for instance, fruit flies show signs of the sex differences on decision-

making behavior in their mating – these modulations may occur by expression of neurons and 

networks in the fly’s brain (Dickson 2008). Similar findings as to olfactory preferences were 

found, in relation to behavior for movement and reproduction of nematodes, in which sexual 

dimorphism is related to specific groups of neurons within a core nervous system shared by 

both sexes. This specific sensory behavior seems to take place from functional modulation of 

common neural circuits controlled by sex chromosomes (Lee and Portman 2007). 

 

There are already a few examples of nervous system dimorphism in bivalves too. For 

instance, in the Pacific lion’s paw scallop, the detection of specific monoamines – including 

dopamine (DA), serotonin (5HT), and norepinephrine (NA) – was higher in male or females 

depending on the periods of the reproductive cycle (López-Sánchez et al. 2009). These 

monoamines were found in gonad, digestive gland, gill, and mantle, where it may modulate 

mechanisms involved in motor behaviors. Most of the 5HT was registered in the male gonad, 
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at nearly all the maturation stages, except at the spent stage, whereas norepinephrine was 

abundant in the female gonad (López-Sánchez et al. 2009). In the New Zealand mussel’s 

visceral ganglia, a few selectively targeted monoamines and neuropeptides were identified by 

immunohistochemistry, with peculiar expressions found either in small or in large neurons of 

both males and females (Mahmud et al. 2008). Although the latter study did not search for 

differences between sexes, it pointed the presence of substances labeled as “responsible for 

different aspects of reproduction and spawning”, and stressed the need to know the effects of 

seasons/gonad stages; dialogues between the nervous and gonad systems may logically occur. 

It should be noted that, as seen in other animal taxa, bivalve sex-steroid hormones are mostly 

produced in the gonads (Pazos and Mathieu 1999; Croll and Wang 2007; Yan et al. 2011). 

 

In addition to the neural mechanisms underlying the sexual differentiation/maturation, we 

know that many toxicants can disrupt the nervous system (including of bivalves), and this is a 

reason why much better descriptions of that system’s normal morphology and physiology in 

bivalves are in need. These will surely contribute to better diagnose, appreciate and predict 

the neurotoxic impacts that have been described in these organisms (e.g., Matozzo et al. 2005; 

Martin et al. 2008). Other reasons are more fundamental in nature, such as understanding the 

evolution of the nervous system intersexual differentiation, and the potential use of bivalves 

as experimental organisms, even in biomedicine, to get new mechanistic insights (Nelson et 

al. 2010). In line with the all the above considerations, we hypothesize herein that because of 

the key involvement of the nervous ganglia in the gonad differentiation and maturation in 

bivalves, the microscopic morphology of such ganglia can vary between sexes or maturation 

status. Also, because each ganglia type seems to have specific functions, we further theorize 

that the location/function of the ganglia shapes both its size and cellularity. To start tackling 

these hypotheses we did a stereological study on the nervous ganglia of gonad maturing and 

of exhausted peppery furrow shell, in similarly sized adult animals, looking into differences 

between gender and ganglia types. We elected their global and compartment volumes and the 

cellularity, using up-to-date gold-standard (design-based, unbiased, and efficient) stereology 

(Mayhew and Lucocq 2015). The species is of considerable ecological and economical value 

(Worrall et al. 1983), and has been used as a bioindicator organism for various pollutants 

(Chesman and Langston 2006; Gomes et al. 2009; Petridis et al. 2009; Ahmad et al. 2011). 
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Materials and methods 

Animals and histological procedures 

Wild adult peppery furrow shell (Scrobicularia plana) were collected at Ria Formosa 

Lagoon, Portugal. The animals were transferred to in house facilities in the day of capture, 

and maintained in glass aquaria (10 L), with aerated seawater (salinity 30 ‰) and at a 

temperature of 15oC. In the day after, arbitrarily sampled animals were anesthetized by 

immersion in a seawater solution of magnesium chloride (6%), kept at room temperature (≈ 

20ºC). Their length, width, height, and fresh and total mass were measured before processing.  

 

Each sampled animal (later identified, through histology, as 6 males, 6 females, and 6 

animals with undifferentiated/spent gonad) were removed carefully from the shell and fixed 

in toto for 24 h, using 10% buffered formalin, at room temperature. After fixation, the 

samples were washed in 70% ethanol, dehydrated with increasing concentrations of alcohol 

(70% to 100%), cleared in xylene, and infiltrated with paraffin. Dehydration to infiltration 

was carried out using an automatic tissue processor (Leica TP1020, Germany). Paraffin 

embedding used a station (Leica EG 1140H, Germany).  

 

Each animal was cut into serial sections (35 µm in thickness), on a motorized rotary 

microtome (Leica RM2155, Germany), and kept onto 3-aminopropyltriethoxysilane coated 

slides before hematoxylin-eosin (H&E) staining, xylene clearing, and DPX mounting. Sections 

having neural ganglia were used for stereology (other were occasionally used for sexing the 

animal). The left cerebral, right cerebral, pedal, and visceral ganglia were the targets. General 

qualitative observations were made with a light microscopy (BX50, Olympus). 

 

Stereological analyses 

The Cavalieri’s principle was used for estimating the volume (V) of each ganglion (and 

separately of its cortex and medulla), based on the formula: V = t ∙∑  A, where t is the mean 

distance between analyzed section planes, and A the sectional area of the target of interest 

(Gundersen and Jensen 1987). The volume of the ganglia was determined semi-automatically, 

using the stereological workstation CAST-Grid (version 1.5, Olympus Denmark), running with 

a light microscope (BX50, Olympus), equipped with a microcator (Heidenhain MT-12), a 

motorized stage with 1 µm X-Y movement accuracy (Prior), and a CCD video camera (Sony) 

displaying live image in a 17’’ CRT monitor (Sony). Analyses were done under the x10 
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objective lens. For each ganglion, the areas of the cortex and medulla were registered in 

every section across them, so to later apply the above cited formula. The t for a ganglion was 

confirmed by measuring the section thickness with the microcator (see below). The total 

volumes were used to estimate the relative volumes (VV) of cortex and medulla in the ganglion: 

VV (compartment, ganglion) = V (medulla or cortex) ÷ V (ganglion). 

 

The number of nervous ganglia cell was estimated via the optical disector-fractionator 

combination (Gunderson 1986) the total number (N), making use of the general formula: 

N = Q ∙ (1 / ssf) ∙ (1 / asf) ∙ (1/ hsf), 

where Q refers to the total number of cells actually counted in all the optical disectors; hsf is 

the height sampling fraction, captures the ratio of the section thickness that was screened; asf 

is the area sampling fraction, i.e., the ratio between the area of the counting frame and the area 

covered by each x,y movement; ssf is the section sampling fraction, i.e., the fraction of total 

sections sampled. Herein, half of total sections of each ganglia were sampled and a minimum 

of 100 neurons and 100 glia cells were counted per ganglia. The procedure was also enforced 

semi-automatically, with the above stereological workstation. Counting was done under the 

x100 (NA = 1.35) oil immersion lens, in systematically sampled fields. To check and account 

for any eventual non-uniform deformation, t was measured in every field, and as we did not 

notice such deformation the averaged t was used for hsf = h/t (Dorph-Petersen et al. 2001). 

Here, the average t was 33 µm and disector h was 25 µm. We set a minimal top guard zone of 

3 µm as there is no heterogeneous distribution of cells across the z-axis (von Bartheld 2002). 

 

As to cellularity, data is given in various forms, including splitting the N in numbers per 

cellular contingents defined by morphology, viz. large and small neurons, also fusiform, 

roundish, and triangularly shaped glial cells, and, finally, pigmented neural cells. Despite the 

concept of large and small may seem dubious, under the microscope it is easy to ensure; each 

counted cell is tagged as a “large” (oval/round, often with larger cytoplasmic granules, Ø of ≈ 

18 x 25 µm) or as a “small” neuron (oval/round, thick heterochromatin rim, Ø ≈ 7 x 15 µm). 

Statistical analysis  

The statistical analyses were performed using the software STATISTICA (version 12.0 

StatSoft Inc.). Data sets were checked for normality and homogeneity of variances — using 

the Shapiro–Wilk’s W-test and Levene’s test, respectively — prior to implement a two-way 

analysis of variance (two-way ANOVA). After a significant ANOVA, multiple comparisons 



Chapter 5 | Stereology of the neural ganglia of S. plana considering sex and gonadal stage 

- 103 - 

 

were made simultaneously using the Tukey’s and Newman-Keuls’ tests; in case only one test 

would indicate significance, the result would be considered as marginally significant. In some 

cases, logarithmic and square root transformations were carried out for normalizing and/or 

homogenization of variances of the raw data. When transformation was unsuccessful, a non-

parametric Kruskal–Wallis ANOVA was used, followed by Mann-Whitney U tests for pairs, 

with a sequential Bonferroni correction. The significance level was set at the usual 5%. Data 

in Tables are given either as mean (CV – coefficient of variation = standard deviation / mean) 

and data in graphs are given as mean connected to the respective 95% confidence interval. 
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Results 

Qualitative histological observations  

The general structure of three nervous ganglia types is presented in Figure 1, being easily 

distinguishable the outer basophilic and highly cellular cortex, which contrasts with the very 

eosinophilic inner medulla, essentially composed of neural cell processes.  

 

 
Figure 1. Transversely sectioned nervous ganglia of S. plana, picked randomly for illustration aims. 
A) Left cerebral ganglion. B) Right cerebral ganglion. C) Pedal ganglion. D) Visceral ganglion. The 
outer cellular cortex and the contrasting inner medulla are labeled. H&E staining. Scale bar = 200 μm. 

The neurons are recognizable for their bigger size, having a single roundish nucleus, typically 

with one nucleolus (Fig. 2A). The larger neurons usually are at the outermost cortex and the 

smaller ones are aggregated in between the larger neurons, and predominate in the inner 

cortex. Typical neurons and pigmented cells appear in the medulla as well, scarcely but 
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systematically. As for glial cells, they are scattered across the ganglia, amidst neurons and 

medullar neurites (Fig. 2B). They show three phenotypes: fusiform, roundish, and triangular.  

 

Figure 2. Photomicrographs taken from histological thick sections of a nervous ganglia of S. plana. 
A) Cortex (Ct), with a standing out large neuron (LN). B) Medulla (M), with neuronal and glial 
eosinophilic projections, and somata of glial cells (GC). C) Detail of cortex, where smaller neurons 
(SN), an elongated glial cell (GC) and a pigment cell (Pi) are seen. H&E Staining. Scale bar: 10 μm. 
 

For determining the sex/gonadal status of each animal, we looked at the foot zones near the 

pedal ganglion. The serial sections allowed us to definitely pin-point for each case which 

kind of gametes, if any, were differentiating, rating the animals as males, females or as 

undifferentiated (Fig. 3); in the latter, the gonadal acini do not exhibit active gametogenesis. 

 

 
Figure 3. Photomicrographs taken from histological thick sections of a nervous ganglia of S. plana. 
A) Male: spermatogenesis is evident within the gonadal acini (Gn); at upper and lower left corners of 
the image. B) Female: gonadal acini (Gn) are filled with roundish maturing oocytes. C) Image from 
one undifferentiated animal, with atrophic acini devoid of maturing gametes, occasionally appearing 
within the connective tissue (CT). PG – Pedal ganglion. H&E staining. Scale bar: 200 μm. 
 
The qualitative observations did not allow to discern cellularity differences between animals 

of different sexes (defined as per their gonad maturation/differentiation degree), or across the 

three nervous ganglia categories — left cerebral ganglion (LCG); right cerebral ganglion 

(RCG); pedal ganglion (PG); visceral ganglion (VG) —, and so we could conclude only 

A B 
F 



Chapter 5 | Stereology of the neural ganglia of S. plana considering sex and gonadal stage 

- 106 - 

 

about very obvious features, like the fact that the cortex is more cellular than the medulla and 

that the visceral ganglion is the biggest among all; despite we clearly could not infer about 

how much bigger it was in relation to the other types. 

 

Quantitative data - Body morphometry 

The body morphometric parameters of the animals are in Table 1, for all genders. No 

statistically significant differences exist. The mass was the most variable parameters. 

 
Table 1. Body morphometry of S. plana used in the study. 

Gender Length 
(cm) 

Height 
(cm) 

Width 
(cm) 

Fresh mass  
(g) 

Total mass 
(g) 

Males 3.1 (0.18) 2.5 (0.13) 0.9 (0.12) 1.28 (0.24) 3.03 (0.29) 

Females 3.3 (0.06) 2.7 (0.09) 1.1 (0.12) 1.67 (0.22) 4.55 (0.26) 

Undifferentiated 3.2 (0.13) 2.4 (0.17) 1.0 (0.21) 1.67 (0.53) 4.57 (0.58) 
Six animals per gender were used. Data given as mean (coefficient of variation). 

 

Quantitative data – Total and relatives volumes 
The volumes (V) of the three ganglia types are given in Table 2, split by gender, and in 

Figure 4A with all genders grouped. The two-way ANOVA highlights a significant effect for 

the “ganglion type”, where the visceral ganglion V is significantly bigger (3 to 4-fold) than 

the other ganglia (Fig. 4A). Additionally, there is an overall statistical significance as to the 

parameter “gender”, with females having a greater global/summed ganglionic V than that of 

undifferentiated specimens (Fig. 4B); with males do not differing from the other genders.  

 
Table 2. Total volumes (µm3) of the cerebral, pedal and visceral ganglia of S. plana. 

Genders 
Cerebral 

Pedal Visceral 
Left  Right 

Males 38.3x106 (0.19) 35.6x106 (0.23) 59.0x106 (0.29) 164.2x106 (0.26) 

Females 49.8x106 (0.23) 48.3x106 (0.29) 55.8x106 (0.12) 191.7x106 (0.32)  

Undifferentiated 36.8x106 (0.34) 31.9 x106(0.42) 51.6x106 (0.48) 133.0x106 (0.32) 
Six animals per gender were used. Data given as mean (coefficient of variation). 

 

The volumetric patterns for the ganglia analyzed as a whole also occur when we look at the 

two key structural ganglionic compartments separately. Indeed, both the cortex and the 

medulla follow the exact same trends, as it can be seen in Figure 5, with the visceral ganglion 

compartment standing out from all the other and with females differing from undifferentiated. 
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Figure 4. Volumes of the nervous ganglia of S. plana. A) Per ganglion. B) All ganglia per gender. Different letters 
mean significant differences. Data as mean and 95% confidence interval. LCG: left cerebral ganglion; RCG: right 
cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion; M: males; F: females; U: undifferentiated. 
 

 

 

Figure 5. Volumes of the nervous ganglia cortex and medulla of S. plana. A) Cortex per ganglion. B) All 
cortexes per gender. C) Medulla per ganglion. D) All medullae per gender. Different letters mean significant 
differences. Data as mean and 95% confidence interval. LCG, RCG, PG, VG, M, F, and U as in Fig. 4. *Based 
on our criteria, there is a marginally significant difference between M and F (Newman-Keuls’ test, p = 0.038). 
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The VV (cortex, ganglion) and VV (medulla, ganglion) per gender are displayed on Tables 3 

and 4. In all ganglia types the cortex occupies over 50% of the total volume. There are no 

differences at to the gender effect, but the analysis reveals a significant effect for the ganglia 

type (p<0.05), with the VV (cortex, ganglion) decreasing anterior-posteriorly, from the 

cerebral ganglia (that do not differ bilaterally) towards the visceral ganglion; in contrast, the 

VV (medulla, ganglion) follows a significant reverse pattern, raising towards the visceral. The 

patterns and the detailed statistical differences between ganglia are displayed in Figure 6. 

 
Table 3. Relative volumes (%) of the cerebral, pedal and visceral ganglia cortex of S. plana.  

Gender 
Cerebral Cortex 

Pedal Cortex Visceral Cortex 
Left Right 

Males 64 (0.02) 63 (0.06) 59 (0.03) 57 (0.12) 

Females 68 (0.03) 67 (0.04) 61 (0.09) 54 (0.03) 

Undifferentiated 69 (0.04) 68 (0.05) 62 (0.04) 57 (0.09) 
Six animals per gender were used. Data given as mean (coefficient of variation). 

 
Table 4. Relative volumes (%) of the cerebral, pedal and visceral ganglia medulla of S. plana. 

Genders 
Cerebral Medulla 

Pedal Medulla Visceral Medulla 
Left Right 

Males 36 (0.04) 36 (0.05) 41 (0.05) 43 (0.17) 

Females 32 (0.06) 33 (0.08) 39 (0.13) 46 (0.04) 

Undifferentiated 31 (0.09) 32 (0.10) 38 (0.06) 43 (0.12) 
Six animals per gender were used. Data given as mean (coefficient of variation). 

 

 
Figure 6. Relative volumes (%) of the cerebral, pedal and visceral ganglia cortex of S. plana, with all genders 
combined. A) VV (cortex, ganglion). B) VV (medulla, ganglion). Different letters means significant differences. 
Data as mean and 95% confidence interval. LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: 
pedal ganglia; VG: visceral ganglia. 
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Quantitative data – Number of neural cells 
Estimates of the (total) N of neurons (including their partition in the general groups of large 

and small), of glial cells (sub-divided into fusiform, roundish, and triangular shaped), and, 

finally, of pigmented cells data are shown in Tables 5-7 and Figures 7-8; the latter offer data 

sets for which statistically significant differences exist. In the tabular data the ganglia type 

and gender are taken into consideration, being genders grouped in Figures 7-8. Table 5 refers 

to the whole ganglia, whereas Tables 6 and 7 refer to cortex and medulla, respectively. 

 

There are no significant differences between genders as to cellularity, despite there is a 

consistent pattern towards a higher N of pigmented cells in the undifferentiated animals. In 

parallel to a high variability (expressed as high CV); which precludes a significant difference. 

As to the N considering the ganglia type, the ANOVA unveils a significant effect (p<0.001), 

with the visceral ganglion having statistically significant more neurons and glial cells, but not 

of pigmented cells. The N of these neural cells types are significantly greater both when we 

look at the whole ganglia (Fig. 7) and looking at each of its structural compartments (Fig. 8).  

 

Tables 5-7 illustrate that the subtypes of neurons and glial cells follow similar patterns as 

when considering all types. One exception is that the neurons N in medulla of the visceral 

ganglion is higher, as in for the whole ganglion; but this is so at the cost of the small neurons 

(p<0.05), as the bigger ones do not statistically change. The data in Tables 5-7 translate into 

numbers the fact that there are more cells in the cortex, but further demonstrates that the 

statistics is true for any type of neural cell, and not only for neurons. Despite being a minority 

in the medulla, the N of neurons still reach from hundreds to ≈ two thousands; as those cells 

are more erratic in the medulla, the variability associated to the N is higher than in the cortex 

– as it is seen by the relatively higher CV (Table 7) and wider confidence intervals (Fig. 8C). 

 

Based on the N, we further estimated the so called “glia-to-neuron” ratio (Table 8 and Figs. 9 

and 10). Looking at Table 8, for the whole ganglia, there is a trend for slightly more glial 

cells than neurons, but if we look at the cortex the glia-to-neuron ratio is more balanced, at 

least in the cerebral ganglia. Indeed, the ratio in cortex is ≈ 1 (LCG ≈ 0.9; RCG ≈ 0.9), and 

rises in PG ≈ 1.3 and VG ≈ 1.2. In the whole ganglia, thus including medullar neurons and 

glial cells, the ratio expectably rises in all three ganglia to ≈ 1.5 (LCG ≈ 1.2; RCG ≈ 1.3; PG 

≈ 1.7; VG ≈ 1.8). The ratio in the medulla is by nature very high, and as neurons are erratic 

the CVs are higher. The ANOVA revealed no significant interaction between the factors type 
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of ganglia and gender, but each of the factors significantly impacted in the ratio (Figs. 9 and 

10). In summary, we can say that the ratio is greater in the PG and particularly in the VG, that 

the females do have a larger ratio than males, and that the undifferentiated appear in between. 

 

 

Figure 7. Number of neurons and glial cells in the nervous ganglia of S. plana; data from all genders combined. 
A) Neurons. B) Glial cells. Different letters means significant differences. Data as mean and 95% confidence 
interval. LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion. 
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Figure 8. Number of neurons and glial cells in the cortex and medulla of nervous ganglia of S. plana; data from 
all genders combined. A) Neurons in the cortex. B) Glial cells in the cortex. C) Neurons in the medulla. D) Glial 
cells in the medulla. Different letters means significant differences. Data as mean and 95% confidence interval. 
LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion. 
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Table 5. Total mean number (N) of neural cells, by ganglia type and gender in S. plana. 

Ganglia Gender 
Neurons  Glial cells Pigmented 

cells Small Large Total  Fusiform Roundish Triangular Total 

LCG 
Males 2,636 (0.3) 4,056 (0.3) 6,692 (0.3)  1,613 (0.1) 2,461 (0.4) 1,672 (0.3) 5,746 (0.2) 997 (0.4) 

Females 2,886 (0.3) 4,977 (0.4) 7,863 (0.2)  2,047 (0.6) 3,904 (0.2) 3,584 (0.2) 9,535 (0.1) 1,595 (0.8) 

Undifferentiated 3,524 (0.4) 5,061 (0.2) 8,585 (0.3)  3,088 (0.4) 5,960 (0.6) 4,915 (0.5) 13,963 (0.5) 2,785 (1.3) 

RCG 
Males 2,430 (0.1) 3,052 (0.3) 5,482 (0.1)  1,379 (0.3) 2,416 (0.2) 1,926 (0.4) 5,721 (0.2) 817 (0.9) 

Females 2,268 (0.1) 3,555 (0.1) 5,823 (0.1)  2,866 (0.3) 4,248 (0.6) 2,365 (0.3) 9,479 (0.3) 1,458 (0.4) 

Undifferentiated 3,149 (0.6) 3,647 (0.5) 6,796 (0.6)  2,151 (1.0) 2,697 (0.9) 3,099 (0.2) 7,947 (0.6) 2,785 (1.3) 

PG 

Males 4,692 (0.4) 3,897 (0.2) 8,589 (0.2)  2,871 (0.4) 5,503 (0.4) 3,182 (0.4) 11,556 (0.3) 1,336 (0.5) 

Females 3,805 (0.2) 3,388 (0.3) 7,193 (0.2)  1,682 (0.3) 3,182 (0.5) 7,195 (0.2) 14,709 (0.3) 1,688 (0.5) 

Undifferentiated 4,745 (0.5) 3,534 (0.5) 8,279 (0.5)  2,894 (0.8) 7,438 (0.7) 3,914 (0.3) 14,246 (0.5) 2,906 (0.8) 

VG  

Males 7,408 (0.2) 8,578 (0.5) 15,986 (0.3)  6,200 (0.7) 11,455 (0.4) 8,670 (0.4) 26,325 (0.4) 3,241 (0.8) 

Females 8,964 (0.1) 9,339 (0.4) 18,303 (0.3)  7,833 (0.3) 14,407 (0.2) 10,207 (0.3) 32,447 (0.2) 3,554 (0.6) 

Undifferentiated 12,437 (0.6) 8,736 (0.4) 21,173 (0.5)  7,531 (0.7) 22,138 (0.8) 11,070 (0.4) 40,739 (0.7) 6,251 (1.3) 

Six animals per gender were used. Data given as mean (coefficient of variation). LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion. 
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Table 6. Total mean number (N) of neural cells in the cortex, by ganglia type and gender in S. plana. 

Ganglia Gender 
Neurons  Glial cells Pigmented 

cells Small Large Sum  Fusiform Roundish Triangular Sum 

LCG 
Males 2310 (0.3) 4001 (0.3) 6311 (0.3)  1218 (0.1) 1848 (0.4) 1335 (0.4) 4401 (0.2) 785 (0.4) 

Females 2745 (0.3) 4798 (0.4) 7543 (0.2)  1354 (0.6) 2806 (0.3) 2390 (0.2) 6550 (0.1) 1373 (0.8) 

Undifferentiated 3125 (0.4) 4887 (0.2) 8012 (0.3)  2173 (0.4) 4075 (0.6) 3345 (0.5) 9593 (0.4) 3274 (0.7) 

RCG 
Males 2171 (0.3) 2975 (0.3) 5146 (0.2)  1017 (0.3) 1513 (0.3) 1303 (0.4) 3833 (0.2) 498 (0.7) 

Females 2059 (0.1) 3273 (0.1) 5332 (0.1)  2112 (0.4) 2871 (0.6) 1571 (0.2) 6554 (0.4) 1027 (0.4) 

Undifferentiated 2801 (0.6) 3296 (0.4) 6097 (0.5)  1313 (1.1) 1477 (1.1) 2025 (0.4) 4815 (0.8) 2269 (1.3) 

PG 

Males 4382 (0.4) 3798 (0.3) 8180 (0.2)  2085 (0.4) 4358 (0.5) 2196 (0.4) 8639 (0.4) 978 (0.3) 

Females 3628 (0.3) 3206 (0.3) 6834 (0.2)  2467 (0.6) 5496 (0.2) 3188 (0.4) 11151 (0.3) 1407 (0.6) 

Undifferentiated 4346 (0.5) 3409 (0.5) 7755 (0.5)  2207 (0.8) 5230 (0.8) 2865 (0.4) 10302 (0.6) 2224 (0.9) 

VG  

Males 6903 (0.2) 8326 (0.5) 15229 (0.3)  4362 (0.7) 7279 (0.4) 5091 (0.4) 16732 (0.5) 2178 (0.7) 

Females 8371 (0.1) 9062 (0.4) 17433 (0.2)  5045 (0.3) 9595 (0.2) 6355 (0.3) 20995 (0.2) 2719 (0.5) 

Undifferentiated 10809 (0.5) 8322 (0.4) 19131 (0.5)  5398 (0.7) 12424 (0.6) 7752 (0.4) 25574 (0.6) 5000 (1.2) 

Six animals per gender were used. Data given as mean (coefficient of variation). LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion. 
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Table 7. Total mean number (N) of neural cells in the medulla, by ganglia type and gender in S. plana. 

Ganglia Gender 
Neurons  Glial cells Pigmented 

cells Small Large Sum  Fusiform Roundish Triangular Sum 

LCG 
Males 325 (0.6) 55 (1.0) 380 (0.4)  394 (0.1) 613 (0.5) 337 (0.6) 1344 (0.2) 212 (0.9) 

Females 141 (1.7) 180 (0.9) 321 (1.3)  693 (0.6) 1098 (0.1) 1194 (0.5) 2985 (0.3) 222 (0.7) 

Undifferentiated 398 (0.5) 174 (1.2) 572 (0.6)  916 (0.4) 1885 (0.6) 1569 (0.6) 4370 (0.5) 623 (0.8) 

RCG 

Males 259 (1.5) 77 (0.9) 336 (1.3)  362 (0.5) 903 (0.4) 623 (0.9) 1888 (0.4) 319 (1.3) 

Females 209 (0.9) 282 (0.5) 491 (0.5)  754 (0.2) 1377 (0.6) 794 (0.5) 2925 (0.2) 431 (0.4) 

Undifferentiated 347 (1.0) 351 (1.5) 698 (1.2)  837 (0.8) 1221 (0.6) 1075 (0.3) 3133 (0.4) 516 (1.3) 

PG 

Males 310 (1.2) 99 (1.3) 409 (1.2)  786 (0.6) 1145 (0.6) 986 (0.6) 2917 (0.4) 358 (1.4) 

Females 178 (1.1) 182 (1.3) 360 (1.1)  715 (0.4) 1700 (0.7) 1143 (0.3) 3558 (0.3) 280 (0.3) 

Undifferentiated 399 (0.7) 126 (1.3) 515 (0.8)  687 (0.9) 2208 (0.8) 1049 (0.3) 3945 (0.6) 682 (1.2) 

VG  

Males 505 (0.7) 252 (1.2) 757 (0.8)  1838 (0.7) 4176 (0.3) 3579 (0.4) 9593 (0.4) 1063 (1.1) 

Females 592 (0.8) 276 (0.8) 868 (0.6)  2789 (0.4) 4812 (0.5) 3851 (0.5) 11452 (0.4) 835 (0.9) 

Undifferentiated 1628 (1.0) 414 (1.0) 2042 (0.9)  2133 (0.7) 9714 (1.1) 3318 (0.5) 15165 (0.8) 1251 (1.8) 

Six animals per gender were used. Data given as mean (coefficient of variation). LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion. 
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Table 8. Glia-to-neuron (number) ratio in the cerebral, pedal and visceral ganglia medulla of S. plana. 

Ganglia Gender 
Glia-to-neuron ratio 

Whole ganglion Cortex Medulla 

LCG 
Males 0.9 (0.11) 0.7 (0.17) 3.7 (0.24) 

Females 1.3 (0.25) 0.9 (0.25) 26.7 (0.83) 

Undifferentiated 1.3 (0.40) 1.2 (0.23) 8.9 (0.56) 

RCG 
Males 1.1 (0.14) 0.7 (0.16) 6.9 (0.54) 

Females 1.2 (0.50) 1.2 (0.34) 16.9 (0.98) 

Undifferentiated 1.1 (0.40) 0.7 (0.30) 9.7 (1.13) 

PG 

Males 1.5 (0.17) 1.0 (0.23) 17.2 (0.91) 

Females 2.2 (0.37) 1.7 (0.21) 18.8 (1.05) 

Undifferentiated 1.7 (0.15) 1.3 (0.14) 6.8 (0.14) 

VG  

Males 1.6 (0.16) 1.1 (0.26) 13.7 (0.58) 

Females 1.8 (0.13) 1.2 (0.10) 22.6 (0.96) 

Undifferentiated 1.8 (0.22) 1.3 (0.10) 12.1 (1.00) 

Six animals per gender were used. Data given as mean (coefficient of variation). LCG: left cerebral ganglion; RCG: right cerebral ganglion; 
PG: pedal ganglion; VG: visceral ganglion. 

 

 
Figure 9. Glia-to-neuron (number) ratio in the nervous ganglia of S. plana, considering the whole ganglia. A) 
Data per ganglion type, irrespective of gender. B) Results from all ganglia, grouped per gender. Different letters 
mean significant differences. Data as mean and 95% confidence interval. LCG: left cerebral ganglion; RCG: 
right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion; M: males; F: females; U: undifferentiated. 
*Based on our criteria, there is a marginal statistical difference between M and U (Newman-Keuls’ test, p = 0.031). 
 

* 
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Figure 10. Glia-to-neuron (number) ratio in the cortex of the nervous ganglia of S. plana. A) Data per ganglion 
type, irrespective of gender. B) Results from all ganglia, grouped per gender. Different letters mean significant 
differences. Data as mean and 95% confidence interval. LCG: left cerebral ganglion; RCG: right cerebral 
ganglion; PG: pedal ganglion; VG: visceral ganglion; M: males; F: females; U: undifferentiated. *Based on our 
criteria, there is a marginal statistical difference between VG and both LCG and RGC (Newman-Keuls’ test, p = 
0.014 and p = 0.011, respectively). **Based on our criteria, there is a marginal statistical difference between M and 
U (Newman-Keuls’ test, p = 0.026). 

* 
** 
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Discussion 

To our knowledge this is the first study that makes quantifications of bivalve cells and organs 

with design-based (or unbiased) stereological tools, which do not rely on the older methods’ 

unrealistic and uncontrolled assumptions about the structure’s geometric shape or spatial 

orientation and distribution of structures in 3D space. The advantages of the unbiased 

methods have been established, illustrated and refined over the last three decades (Gundersen 

1986; Gundersen and Jensen 1987; Dorph-Petersen et al. 2001, Mayhew and Lucocq 2015). 

In bivalves we find only one article that used the optical fractionator, not for estimating any 

component of the animal, but rather for revealing the exact number of the infecting protozoan 

parasite Perkinsus marinus in the mantle of Crassostrea virginica (Remacha et al. 2008). The 

latter study and ours illustrate well how the same stereological techniques can tackle so 

varied questions, not to mention the latterly discussed key potential to be part of the new field 

of “morphomics”, in line with other “omics” (Mayhew 2015; Mayhew and Lucocq 2015). 

The stereology tools we used to study the nervous ganglia of S. plana are well recognized in 

vertebrate neurocytology, and have been paramount to sustain advances (Schmitz and Hof 

2005; Walløe et al. 2014). Our study is significant not only because it tests the technology 

and unveils new data for S. plana, suited to tackle hypotheses and sustain morphofunctional 

inferences, but also since it encourages further use of unbiased stereology in bivalve research. 

 

The quantitative approach herein aimed to compare a 3D-relevant size of the nervous ganglia 

of S. plana (absolute and additionally relative volumes of the whole ganglia and of its cortex 

and medulla) and of the cellularity, measured as the number of their constituent cells. The 

hypothetical background was a plausible fundamental influence of the animal sex (when it 

can be disclosed) in the microanatomy of the bivalve nervous system. We studied animals 

that were either males or females, as explicitly identified by their maturing gametes, and also 

specimens that could not be sexed because their gonads were spent and atrophic. Facing the 

key physiological modelling actions of the nervous system on the gametogenesis of bivalves 

(Siniscalchi et al. 2004; Gagné et al. 2007; López-Sánchez et al. 2009), and eventual (but not 

well established) feedback loops, at least in theory we studied animals that should be as 

functionally dissimilar as S. plana adults of a different sex could be. We thus opted to analyze 

the three “gender types” as a way to promote the odds of capturing a difference, it if existed. 

Also, this strategy helped to increase power for studying differences between ganglia types, 
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within the two-way ANOVA, particularly in case of a no significant effect for gender – this 

was relevant here as we wished to back/extend earlier suggested inter-ganglionic differences. 

 

As to gender differences, one that is statistically confirmed concerns the total volume of the 

ganglia, which is greater in females than in the undifferentiated, with the males do not 

differing from either of the other groups. The cortex and medulla evidence basically the same 

differences, with one additional marginal being found in cortex; with males having a smaller 

volume (Fig. 5B). The not significant difference between males and females concords with 

our previous data, that despite based on another technic (3D-reconstruction), offered estimates 

in the same order of magnitudes and close to those herein (Tantiwisawaruji et al. 2015). It 

would be speculative to point one particular reason for the difference between females versus 

undifferentiated, but it is a fact in perfect accordance with our hypothesis that the sex/gonadal 

status “shapes” the bivalve nervous system structure — either because of the activity of the 

latter in influencing gonads (e.g., Siniscalchi et al. 2004) or by effects of factors originated in 

the gonad (e.g., sex-steroids) and impacting on neural elements (e.g., Stefano et al. 2003). 

Irrespective of the functional implications, what makes females having greater volumes than 

the undifferentiated and tendentiously more than males? Are there more neuronal cells and/or 

bigger ones? Finally, are there any differences in the amount/size of neural processes? This 

study was not designed to answer all these questions, but later in this Discussion we will go 

back to those so interesting and puzzling differences, after debating the data on cell numbers. 

 

Despite there is no interaction between gender and ganglia type, there is a statistically 

significant effect of the latter in the volumes of the ganglia and of their compartments. The 

two CG are similar in size, but volumes overall increase significantly towards the PG, which 

is greater than the cerebral and much smaller than the VG. The cortical and medullar parts do 

significantly follow the trends of the whole ganglia. Once more, the facts nicely agree with 

our prior work, in which we unveil the same pattern in males and females (Tantiwisawaruji et 

al. 2015). We can thus confidently suggest that the size differences between all ganglia types 

are independent of the gender and of the condition of being in a process of gonad maturation. 

 

In addition to the absolute volumes, we look at the relative volumes (VV) of the cortex and 

medulla, quantifying that overall the cortex is ≈ 60% and the medulla 40%. Yet, if gender 

does not seem to matter for the cortex to medulla ratio, there is a statistically significant 
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effect of the type of ganglia in VV, with the less voluminous CG showing the highest mean 

values for the cortex VV, with PG being intermediate, and the VG having the smallest values; 

conversely, the VV for the medulla followed a matching opposite pattern (Fig. 6). It is worth 

mentioning that we noted an approximate trend in our previous study, but we could not prove 

significance (Tantiwisawaruji et al. 2015). Such fine structural differences between the VV of 

the ganglia likely are not a random event and should have a rational and a functional impact. 

One possible reason can be related with the number of neurites that emerging from the cortex 

go into the medulla, that in absolute terms is expected to be greater at least in VG, facing the 

higher total cellularity this ganglion has when compared with the others. A higher number 

and/or size of neuronal and glial projections would promote a relatively greater VV (medulla, 

ganglion), when compared with other ganglia types. The lowest cellularity of the LCG and 

RCG, logically with less projections going into the medullar neuropil, would also explain the 

smallest VV (medulla, ganglion). On the other hand, this sort of rationale does not explain the 

intermediate value of the PG, as in this case the total cellularity is not greater than that in 

either type of CG (see discussions on cellularity below). So, a mixture of morphofunctional 

factors must contribute to the differences in VV. Among them, we can also think about still 

unstudied differences as to the neuron and glia cell volumes, also the degree of complexity in 

their interconnections, particularly in the cortex of the ganglia, which can have impacts on the 

volume ratio of cortex to medulla, between each ganglion type, in view of their functions. 

 

To support the rational of our discussion we recall that each ganglia types has specific 

degrees of organization and function. For instance, the VG is viewed as the most differentiated 

central nervous system structure in bivalves (Bullock 1965; Harrison and Kohn 1997). Some 

evidences pointed that this ganglion is responsible for influencing the cardiac rhythm and 

motilities of the shell, mantle, siphons and gills (Stefano 1945; Bullock 1965; Carroll and 

Catapane 2007). The PG responds to stimulations of the foot, with local contractions, but 

requires the cerebral connection to allow digging (Bullock, 1965). The CG play roles in the 

anterior adductor control, in coordination of visceral and pedal actions, and it is dominant on 

behavioral rhythms (Bullock 1965); there can a dominance of the cerebral function (Wilkens, 

2006). Along with the VG, the CG have roles in respiratory metabolism (Mane et al. 1990; 

Jadhav et al. 2012). An update view of the ganglia functions can be found in Gosling (2015). 
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As to cellularity, despite the differences between genders as to the total V of ganglia, and also 

the differences between the volumes of the different ganglia types irrespective of the gender, 

there were no major dissimilarities as to the N of neurons, glial and pigmented cells, when 

comparing the LCG and RCG with the PG; despite the latter being significantly bigger. By 

other hand, the VG consistently — i.e., in whole ganglia, cortex and medulla — showed a 

significantly higher N of neurons and glial cells; but not of pigments cells. The higher total N 

in the VG is most surely directly related with the fact that they directly/functionally control a 

vast area, as recently stressed by Gosling (2015), which must be based on more neural cells.  

 

Above in the Discussion, a propos of the differences in the absolute volume of ganglia 

between females, viz. with the undifferentiated specimens — with females having greater 

volumes — we rose questions about what could structurally sustain the dissimilarities. As we 

did not found differences in the absolute numbers, this fact means that females must have a 

higher relative cellularity, or relative volume of cells per unit volume, typically represented in 

stereology as the NV. By dividing the V of a ganglion (or one of its compartment) by the N of 

cells it contains we get an estimate of the NV (cell, containing space). If we investigate this, in 

the neurons or glia in the cortex, we get a NV in the undifferentiated (of ≈ 4.3 ×105 neurons 

/mm3 and 5.5×105 glia cells/mm3) that more than doubles the values of females (of ≈ 2.0×105 

neurons/mm3 and 2.5×105 glia cells/mm3); with males situated in between both other gender. 

If we make this exercise with all neural cells, in all ganglia, we find that the undifferentiated 

animals have ≈ 2.3 more cells per unit of ganglionic volume (≈ 11×10 6 cells/mm3), when 

compared with either females (≈ 4.9×10 6 cells/mm3) or males (≈ 4.7×106 cells/mm3), that are 

globally quite similar. These inferences suggest that, overall, undifferentiated animals have a 

similar N of cells in their ganglia fitted into less volume, implying that both the neurons and 

glial cells are more “concentrated”, and so likely smaller in size; or else the ganglia volume 

would not be smaller. Overall, our data strongly point that in S. plana there are gender/gonad 

stage related undisclosed differences in the mean volume of neurons and/or glial cells, and/or 

of their projections — a matter of countless studies in vertebrate neuroscience (Schmitz and 

Hof 2005) but totally “untouched” in bivalves. Thus, looking at cell sizes is worth studying in 

the future to better understand the cytology and physiology of the bivalve nervous system. 

 

Still about cellularity, it is worth pointing that this is the first study in a bivalve that provides 

estimates of glia-to-neuron ratios, a fundamental aspect that has been hotly debated in 
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vertebrates and mostly for the human brain, with the once well-established 10:1 ratio being 

recently challenged with rigorous estimates pointing to a 1:1 ratio, supporting the conclusion 

that humans have an “isometrically scaled-up primate brain” (Azevedo et al. 2009; Hilgetag 

and Barbas 2009). Our global data for S. plana (i.e., all ganglia and gender combined) 

suggest a ≈ 1:1 glia-to-neuron ratio in the cortex, and when joining the medulla the ratio rises 

to ≈ 1:1.5. However, the exact ratio depends on the gender and on the ganglia type — either 

factor acting independently — with cerebral ganglia having significantly lower ratios, and 

females showing the highest ratio. In view of the neural supportive functions glial cells have 

across phylogeny, our data likely have functional effects. Speculations about the new facts 

would be farfetched, but it is very interesting to note that differences between sexes as to 

glia-to-neuron ratio were kept along evolution, up to humans, and that they may be also 

dependent on neural regions (Pelvig et al. 2008; Oliveira-Pinto et al. 2014). Our new findings 

add one more piece to the puzzle of the evolutionary origins of the glia and of their always 

acquired news roles (Hartline 2011), and offer “ancient roots” in line with the notion that, 

once there, brains gained non-neuronal cells in parallel with neuronal additions, resulting in 

fairly constant relative densities/ratios of non-neuronal cells (Herculano-Houzel 2011).  

 

Regardless of the interesting agreement among our study and other recent ones as to that cell 

ratio, and although we used a “gold-standard “technically counting procedure, we must view 

our data with caution, namely because we are identifying neurons versus glial cells based 

only on their morphology as seen at light microscopy. Despite we made a preceding 

histological and ultrastructural study to get further morphological insights about S. plana 

neural cells (see Chapter 4 of this Thesis), we cannot discard the possibility that a marginal 

number of very small neurons could be identified/counted as glial cells; being the opposite 

situation much more unlikely to occur, in our opinion. The first design-based stereological 

study (technically harder to do at the time) that estimated neurons and glial cells in humans 

dealt with this caveat too (Pakkenberg and Gundersen 1988). Only more recently there are 

antibodies that allow an unambiguous distinction between those cells types in humans and in 

commonly used rodents (Herculano-Houzel and Lent 2005; Lyck et al. 2008). Despite a few 

continuous attempts to produce and/or test antibodies for disclosing neuronal subpopulations 

in bivalves (Croll et al. 1993; Mahmud et al. 2008; Meechonkit et al. 2010), the current lack 

of tested and accepted specific immunomarkers for neurons and glial cells in bivalves is one 
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more aspect that needs progress, to allow for the characterization of the types of glial cells 

and of their roles, providing ways for sound phenotypical anchoring. Whatever caveats we 

may have in identification, we stress that irrespective of our operational divisions of neurons 

and glial cells we got the same patterns in relation to those disclosed for the total neural cells, 

proposing an ongoing steadiness at least of morphological cell subtypes. 
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Conclusion 

In summary, this is the first study that used unbiased stereology techniques to estimate the 

volume of the three types of nervous ganglia (including of their cortex and medulla parts) and 

the neuronal and non-neuronal cell number, in the whole ganglia and in every partition. We 

do not disclose many differences between adult maturing males and females, but these have 

an overall greater ganglionic volume when compared with other adults that could not be 

sexed because they had atrophic (exhausted) gonads – males exhibited intermediate values. 

So, this tells us that something connected to maturing relates somehow with the ganglia size. 

The numerical data suggest that cell size differences may be at the basis of the differences, 

because there are no significant differences in the total cellularity among the gender studied. 

Yet, females show a greater glia-to-neuron number ratio than males, and the undifferentiated 

are in between. This key ratio is significantly highest in the VG and lowest in both CG. We 

further show that the three types of ganglia have other fundamental differences, namely in the 

volume ratio of cortex versus medulla, and that the significantly greater volumes of the PG 

(in relation to the CG) and of the VG (in relation to all other) imply more voluminous cortex 

and medulla, but more neuronal and non-neuronal cells only in the VG. We disclose for the 

first time that a small bivalve as S. plana has a mean total number of neural cells that spans 

from over 12000 (in CG) to over 68000 (in VG). This is not only new data for malacology 

but makes think on how much intricate and integrative neural networks it offers to the animal, 

and how it relates with unsolved issues in mollusks physiology, such as related to nociceptive 

behavior, with currently at stake repercussions in animal welfare (Crook and Walters 2011). 
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Abstract 

Scientists are now certain that the nervous ganglia of bivalves control many of the animal’s 

life essential aspects, including growth and gonadal maturation and spawning-related events. 

Basic questions on the structure and function of the bivalve nervous system remain 

unanswered, such as eventual intrinsic influences and changes related with development and 

age and also gender. Within the scope of the structural characterization we are conducting on 

Scrobicularia plana, we start studying interganglionic and sex-related differences, and herein 

we propose to expand our investigation scope by looking at the size of the ganglia and neural 

cellularity with age. In view of the generally higher plasticity of the invertebrate nervous 

system, we hypothesise that if the adult animal continues to grow its ganglia could continue 

to develop too, increasing for example its cellularity, i.e., getting more neural elements, 

particularly neurons and glial cells. Twenty four adult specimens of S. plana, with well-

defined gonads, sampled in the estuary of the Mondego River estuary, were used; six animals 

per size-class and per gender. Considering that size is a proxy of age, the animals were split 

into two-size classes, that we named “Small” (age 2+ years) and “Big” (age 3+ years). 

Formalin-fixed and paraffin-embedded animals were cut into 35 µm thick sections that were 

stained in hematoxylin-eosin and used for stereological analyses. These estimated total 

volumes of ganglia, their cortex and medulla relative volumes, and total number of earlier 

characterised neural cells: neurons, glial cells and pigmented cells. In animals not differing in 

size/length and mass, we found interganglionic, sex-related and size-related significant 

effects upon the ganglionic volumes, relative volumes of cortex and medulla, and total 

numbers of both neurons, glial cells, and pigmented cells. Under multi-way analysis of 

variance, the effect of size (age) was consistently marked, and statistically significant, with 

the older specimens having approximately twice as bigger ganglia (irrespective of its type 

and of sex), that contained significantly more neural cells of all types. The increase in 

cellularity took place in each whole ganglion, and in both cortex and medulla. Data support 

our hypothesis that neurogenesis continues to occur in adult S. plana, irrespective of the 

animals’ gender. New questions arise from our results, namely about the nature and sources 

of neural cell progenitors. In line with recent interest of researchers as to the utility of 

bivalves as models in neurosciences, we think that S. plana can also be a stimulating model 

for neurogenesis and age-related studies. 
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Introduction 

Aging is a key event for living organisms, and typically entails continuous changes along life, 

from birth to maturity and then after by gradual declining towards senescence (Campisi and 

d'Adda di Fagagna 2007), which can ultimately lead to critical deterioration followed by 

death — considering the wide range of physiological mechanisms and outcomes, a plethora 

of deleterious changes typically occur in neural activities with the passage of time (Tardy 

2003; Betts et al. 2005). Mainly because of the frequent health problems related with Human 

aging, mammals have been particularly studied in what concerns the profusion of nervous 

system changes with aging. Such studies include innumerous morphological evaluations, 

including the use of quantitative approaches (such as stereological techniques), mostly made 

in rats, mice, monkeys and humans (e.g., Samorajski and Rolsten 1973; Monteiro et al. 1991; 

Henrique et al. 2001). Research on neuroscience of molluscs has been mainly made and 

increased based both on gastropods (Croll et al. 1993; Franchinfet al. 1985; Janse et al. 1996; 

Simmons and Young 1999; Torrska et al. 1968) and cephalopods (Amano et al. 2008; Di 

Cristo 2013; Takuwa-Kuroda et al. 2003). Yet, there are a few studies with bivalves, such as 

one with Mytilus edulis showing that aging is linked to a decline of dopamine-stimulated 

adenylate cyclase activity in the pedal ganglion (Stefano 1982), and alter the monoamine 

accumulation in the neuronal tissue (Burrell and Stefano 1983). So, aging makes a difference 

in what respects the nervous system of bivalves, and therefore these organisms can be much 

better understood in that respect, with potential gains for the overall understanding of aging. 

Indeed, it is recognized by research community that invertebrates have been very important to 

get new insights about the physiology of aging, working both with emerging and established 

models for the study of human aging (Yeoman and Faragher 2001; Yeoman et al. 2012) 

 

Despite the research potential of molluscs, and bivalves in particular, for studying the 

nervous system aging and plasticity, there are practical problems too. Particularly, there are 

difficulties for estimating the bivalve’s exact age when using incremental changes in growth 

lines or annual marks on the shell (Gosling 2004); even so, increases in shell size are well 

correlated with age. For instance, in the genus Prototheca animals reached a mean length of 

3.7 cm at the age of approximately 3.5-4 years, in Columbia (Shaw 1986), and in the genus 

Scrobicularia it was in the range of 2.2 cm at the age of about 1.4 year, in Bidasoa estuary 

(Sola 1997). On the side of advantages, it should be stressed that bivalves display a wide 

range of lifespans, from 1 to awesome ± 400 years as reviewed by Abele et al. (2009), which 
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makes them potentially prone to tackle quite different questions. To this aspect we must add 

the fact that the bivalves nervous system has a perceived (although not yet quantified) low 

number of neural cells, making them very attractive organisms for studying neural networks 

(Kotsyuba and Kotsyuba 2002). Despite relevancy and opportunities, rather few studies were 

conducted in the bivalves’ nervous system, and virtually none concerning its quantitative 

morphology. 

 

Irrespective of details, it is well known that the basic types of bivalve ganglia (cerebral, 

pedal, and visceral) contain neurons that are critical for controlling the portfolio of 

fundamental responses needed for the individual, and ultimately for the species, to survive, 

viz. reproduction (Khotimchenko 1991), feeding (Margaret et al. 2007), movement (Hodgson 

and Trueman 1981), and cardiac functions (Kodirov 2011). It is also evident that the ganglia 

cortex (the ganglionic external region) includes the vast majority of neural cells (Stefano et 

al. 1990). Both the neurogenesis and neuroplasticity along life are still poorly studied topics 

in bivalves, and the few existing publications are devoted not so much to what happens in the 

adults but focus instead the very earlier maturing stages (Flyachinskaya 2000; Raineri 2009). 

In true, adult neurogenesis (including brain regeneration) has been neglected, contrarily to the 

great attention that has been paid to this issue in invertebrate and vertebrate animal models 

(Chen et al. 2013; Kizil et al. 2012). In view of caveats, Voronezhskaya et al. (2008) 

emphasized that in spite of “understanding of neuronal development in Trochozoa has 

progressed substantially in recent years, relatively little attention has been paid to the bivalve 

molluscs in this regard”.  

 

In a previous work we devoted our attention to look after the size and cellularity of the 

nervous ganglia of the peppery furrow shell (Scrobicularia plana), quantitatively detailing 

and comparing each ganglia type in maturing males and females, and in animals that did not 

have a differentiated/maturing gonad to allow sexing them. Herein, we continue those new 

research efforts, by advancing the hypothesis that not only the sex but also the age factor, in 

adults, may influence the microscopic anatomy of the nervous system of this species; 

particularly the cellularity of the ganglia, with eventual implications for the size (volume) of 

the ganglia. Our rationale relies of the fact that neural plasticity existsin the nervous systems 

of invertebrates and vertebrates, both along development and in adults (Moffet 1996; Kizil et 

al. 2012; Ashton 2013; Chen et al. 2013). The quest for knowing if adults loose (or if gain) 
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neural cells along life has been a greater focus of attention to neuroscientists, and even the 

once reputable views of neurogenesis in humans have been continuously overturned (Curtis 

et al. 2011). As most bivalves grow continuously, perhaps S. plana and others can generate 

new neural cells as juveniles and during adult life; at least before senescence. To start 

studying our questions, we did a stereological study on ganglia of two size-cohorts of adult 

maturing males and females, knowing that the body size in bivalves correlates well with 

longevity (Ridgway et al. 2011). 
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Materials and methods 

Animals and histological procedures 

Wild adult peppery furrow shell (S. plana) were collected in the Mondego River estuary, in 

Portugal, in April. After capture, the animals were transferred to in house facilities in the 

same day, and maintained in glass aquaria (10 litres), with aerated seawater (salinity 30 psu), 

and at 15oC of water temperature. The animals’ length (L), width (W), and height (H) were 

measured, and two size-classes were created and designated for the sake of simplicity and 

readability as: a) “Small”, measuring 2.4 (1.3), 0.7 (0.4), and 1.8 (0.9) cm, respectively for L, 

W, and H; and b) “Big”, 3.8 (1.7), 1.2 (0.8), and 2.9 (1.8) cm — data given as mean 

(variation coefficient) (CV). In the next day, sampled animals were anesthetized by 

immersion in a seawater solution of magnesium chloride (6%), and kept at room temperature 

(≈ 20ºC).  

 

Each arbitrarily sampled animal used for this study — and later identified, by histology, as 6 

males and 6 females, per size-class, summing a total of 24 specimens — were removed 

carefully from the shell and then were fixed in toto for 24 hours, using 10% buffered 

formalin, at room temperature. After fixation, the samples were washed in 70% ethanol, then 

dehydrated with increasing concentrations of that alcohol (70% to 100%), cleared in xylene, 

and infiltrated with paraffin. Dehydration to infiltration was carried out using an automatic 

tissue processor (Leica TP1020, Germany). Paraffin embedding used a station (Leica EG 

1140H, Germany). 

 

Each animal was cut into serial sections (35µm in mean thickness), on a motorized rotary 

microtome (Leica RM2155, Germany), and kept onto 3-aminopropyltriethoxysilanecoated 

slides before hematein-eosin staining, xylene clearing, and DPX mounting. Sections having 

neural ganglia were used for stereology (other were occasionally used for sexing the animal). 

The left cerebral (LCG), right cerebral (RCG), pedal (PG), and visceral ganglia (VG) were all 

targets of study. Their presence was confirmed at light microscopy, using an Olympus BX50.  

 
Stereological analyses 

The Cavalieri’s principle was used for estimating the volume (V) of each ganglion (and 

separately of its cortex and medulla), based on the formula: V = t ∙∑A, where t is the mean 

distance between analysed section planes, and A the sectional area of the target of interest 



 Chapter 6 | Does size/age matters for neural ganglia of the peppery furrow shell? 

- 139 - 

 

(Gundersen and Jensen 1978). The volume of the ganglia was determined semi-

automatically, using the stereological workstation CAST-Grid (version 1.5, Olympus), 

running in a light microscope Olympus BX50, equipped with a microcator (Heidenhain MT-

12), a motorized stage with 1 µm X-Y movement accuracy (Prior), and a CCD video camera 

(Sony) displaying live image in a 17’’ monitor (Sony). Analyses were done under a x10 

objective lens. For each ganglion in an animal, the areas of the cortex and medulla were 

registered in every section the ganglion appeared, so to later apply the above cited formula. 

The t for a ganglion was confirmed by measuring the section thickness with the microcator 

(see below). The final total volumes were used to estimate the volume densities (VV) of 

cortex and medulla in the ganglion: VV (medulla or cortex) = V (medulla or cortex) ÷ V 

(ganglion). 

 

The total number (N) of cells within each nervous ganglia was estimated via the optical 

disector-fractionator combination (Gunderson 1986), making use of the general formula: 

N = Q ∙ (1 ÷ ssf) ∙ (1÷asf) ∙ (1÷hsf), 

where Q refers to the total number of cells actually counted in all the optical disectors; hsf is 

the height sampling fraction, captures the ratio of the section thickness that was screened; asf 

is the area sampling fraction, ie, the ratio between the area of the counting frame and the area 

covered by each X-Y movement; ssf is the section sampling fraction, ie, the fraction of total 

sections sampled. Herein, half of total sections of each ganglia were sampled and a minimum 

of 100 neurons and 100 glia cells were counted per ganglia. The procedure was also enforced 

semi-automatically, with the above stereological workstation. The counts were made under 

the x100 (NA=1.35) oil immersion lens, in systematically sampled fields. To check and 

account for any eventual non-uniform deformation, t was measured in every field, and, as we 

did not notice such deformation, the averaged t was used for hsf = h/t (Dorph-Petersen et al. 

2001). 

 

As to cellularity, data is given in various forms, including splitting the total numbers in 

number per type of cellular contingent, defined by morphology, viz. large and small neurons, 

fusiform, roundish, and triangularly shaped glial cells, and, finally, pigmented (neural) cells.  
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Statistical analysis  

The statistical analyses were performed using the software STATISTICA (version 12.0. 

StatSoft Inc.). Data sets were checked for normality and homogeneity of variances prior to 

make a two-way analysis of variance (two-way ANOVA). After each significant ANOVA 

multiple comparisons were made using simultaneously the Tukey’ and Newman-Keuls’ test. 

In some cases, logarithmic and square root transformations were carried out for normalizing 

and/or homogenization of variances of the raw data. When transformation was unsuccessful, 

a non-parametric Kruskal–Wallis ANOVA was used, followed by Mann-Whitney U tests for 

pairs, with a sequential Bonferroni correction. The significance level was set at the usual 5%. 
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Results 

Body morphometry 

Table 1 presents the morphometric data of the animals according to size (operationally 

divided into small and big) and gender. The ANOVA shows that within a size class there are 

no statistically significant differences in any of the parameters (no gender effect), but that the 

effect of size class was significant for all parameters, with greater values in bigger animals. 

 
Table 1. Body morphometry of S. plana used in the study, according with gender and size class. 

Size Gender Length 
(cm) 

Height 
(cm) 

Width 
(cm) 

Fresh mass 
(g) 

Total mass 
(g) 

Small 
Males 2.4 (0.06) 1.8 (0.06) 0.7 (0.04) 0.57 (0.20) 1.13 (0.19) 

Females 2.4 (0.05) 1.8 (0.05) 0.6 (0.06) 0.51 (0.21) 1.02 (0.16) 

Big 
Males 3.8 (0.04) 2.9 (0.07) 1.1 (0.06) 2.12 (0.20) 5.25 (0.23) 

Females 3.8 (0.05) 3.0 (0.05) 1.2 (0.06) 2.03 (0.20) 5.48 (0.27) 
Six animals per gender in each size class. Data given as mean (coefficient of variation). For all the parameters, the Big 
animals have significantly greater mean values (Tukey's test, p < 0.001, irrespective of the parameter). 

 

Total volumes of ganglia 

The absolute volumes (V) of the three ganglia types are given in Table 2 and Figures 1 and 2. 

From Table 2 we sense that the pattern point for greater values in bigger animals, which also 

tend to have a higher variability (their CVs are all higher against the corresponding ones in 

the smaller specimens). The V tends to increase anterior-posteriorly, i.e., from the CB to the 

VG, which is evidently several times larger than the other. In agreement with to the 

descriptive trends, the MANOVA reveals highly significantly independent effects for the 

factors size (p <0.001), ganglia type (p<0.001), and for gender (p = 0.044, a significant but 

marginal effect). 

 
Table 2.Total volumes (µm3) of the cerebral, pedal and visceral ganglia, as per size-class and gender. 

 Small  Big 

Ganglia Males Females  Males Females 

LCG 19.6x106 (0.24) 15.4x106 (0.16)  46.8x106 (0.32) 40.9x106 (0.39) 

RCG 17.6x106 (0.19) 17.3x106 (0.10)  48.1x106 (0.28) 35.1x106 (0.53) 

PG 31.5x106 (0.19) 32.7x106 (0.12)  63.4x106 (0.28) 59.4x106 (0.21) 

VG 90.6x106 (0.15) 78.5x106 (0.16)  172.0x106 (0.29) 177.7x106 (0.23) 
Six animals per gender in each size class. Data given as mean (coefficient of variation). 
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Figure 1. Volumes of the nervous ganglia and of their respective cortexes and medullae in S. plana. A) Whole 
ganglia, per the defined size classes Small and Big. B) Whole ganglia, per ganglia type. C) Cortex, per size 
classes. D) Whole ganglia, per ganglia type. E) Medulla, per size classes. F) Medulla, per ganglia type. 
Different letters mean significant differences. Data given as mean and 95% confidence interval. LCG: left 
cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion. 

The Figure 1 illustrates the data grouped according to the independent effects of size and 

ganglia type. As to whole ganglia V, overall the bigger animals have definitely the highest 

mean, and, regardless of the animals’ size or sex, while the VG is the most voluminous of all 
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ganglia, the PG is significantly greater than both LCG and RCG, and these do not differ (Fig. 

1A, 1B). When splitting the whole V into cortex and medulla, both compartments follow 

similar significant trends than those for whole ganglia (Figs. 1C-E). Globally, i.e., 

considering all animals, irrespective of size and ganglia type, males tend to have a 

significantly lesser V, both of the entire ganglia (p = 0.044) and the cortex (p = 0.023) (Fig. 

2); but not for medulla. 

Figure 2. Volumes of the nervous ganglia and of their cortexes in S. plana. A) Whole ganglion per gender. B) 
Cortex per gender. Different letters mean significant differences. Data given as mean and 95% confidence 
interval. 
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Relative volumes of cortex and medulla 

Tables 3 and 4 present data for the VV (cortex, ganglion) and VV (medulla, ganglion), 

respectively. The cortex always occupies more than half the ganglionic volume, and 

variability is overall low (many of the CVs are below 10%) to moderate (higher CVs seen in 

the bigger animals). The descriptive data is suggestive that VV of the cortex tend to decrease 

from the CG towards VG; also, specimens sized as Big seem to have that consistently higher 

mean values. 
 

Significant differences between size-class animals were observed — males and females being 

equal — with the VV (cortex, ganglion) of bigger specimens being significantly greater 

(p<0.001) than that of smaller ones (Fig. 3A). In accord, the VV (medulla, ganglion) is 

smaller (p<0.001) in bigger animals (Fig. 3C). When considering the data per ganglia type 

(Figs. 3B, 3C), there are no differences between genders but there are significant effects for 

ganglia type (p<0.001), with the VV (cortex, ganglion) decreasing anterior-posteriorly, from 

the cerebral ganglia (that do not differ bilaterally) towards the visceral ganglion; the VV 

(medulla, ganglion) follows a significant reverse pattern (p<0.001), increasing the % towards 

the visceral ganglia. 
 

Table 3. Relative volumes (%) of the cerebral, pedal and visceral ganglia cortex of S. plana. 

 Small  Big 
Ganglia Males Females  Males Females 

LCG 73 (0.04) 70 (0.08)  77 (0.05) 77 (0.07) 

RCG 68 (0.05) 67 (0.03)  75 (0.05) 72 (0.08) 

PG 59 (0.08) 56 (0.07)  63 (0.03) 65 (0.07) 

VG 63 (0.09) 58 (0.07)  66 (0.06) 66 (0.11) 
Six animals per gender in each size class. Data given as mean (coefficient of variation). 
 

Table 4. Relative volumes (%) of the cerebral, pedal and visceral ganglia medulla of S. plana. 

 Small  Big 
Ganglia Males Females  Males Females 

LCG 27 (0.11) 30 (0.18)  23 (0.18) 23 (0.23) 

RCG 32 (0.11) 33 (0.06)  25 (0.16) 28 (0.21) 

PG 41 (0.11) 44 (0.09)  37 (0.06) 35 (0.13) 

VG 37 (0.16) 42 (0.09)  34 (0.12) 34 (0.22) 
Six animals per gender in each size class. Data given as mean (coefficient of variation).
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Figure 3. Relative volumes (%) of the cerebral, pedal and visceral ganglia cortex and medulla of S. plana: A) 
VV (cortex, ganglion), accordingly to size class and B) accordingly to ganglia type. C) VV (medulla, ganglion), 
accordingly to size class and D) accordingly to ganglia type. Different letters represent significant differences. 
Data given as mean and 95% confidence interval. LCG: left cerebral ganglion; RCG: right cerebral ganglion; 
PG: pedal ganglia; VG: visceral ganglia. 
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Total number (N) of neurons, glial cells, and pigmented cells per ganglion 

Three types of cells (neurons, glial cells and pigmented cell) are identified in the ganglia of S. 

plana. The most numerous are neurons and glial cells (combined they make ≈ 94 % of the 

neural cell population), with pigmented cells representing ≈ 6 %. 

 

Tables 5 and 6 display the N of ganglionic cells, represented by the two types of neurons 

(small, large), glial cells (separated by phenotypes: fusiform, roundish and triangular) and the 

pigmented cells. For better readability, data sets are organized per body size-class, gender 

and type of ganglia (cerebral, pedal, and visceral). To better appreciate the significant 

differences, graphical outputs are additionally provided (Figs. 4, 5). The statistics revealed 

significant effects for size, gender and ganglion type, but with no significant interactions 

between factors; there was one exception, mean N of roundish glial cells (size vs. gender) that 

was not valorised.  

 

As to the mean N of neurons per ganglion, the bigger specimens had almost the double of 

cells (p<0.001) (Fig. 4A). The neuronal mean N was almost three times greater in the visceral 

ganglia when compared with all the other (p<0.001) (Fig. 4B). Finally, the mean neuronal N 

altogether was significantly higher in males than in females (p = 0.013); however, it is worth 

noticing that inter-gender differences were not disclosed when analysing only larger neurons. 

 

As to the mean N of glial cells, the patterns followed those of neurons (Figs. 4D-F). On 

average, bigger animals had more cells (p<0.001), which were more numerous in the visceral 

ganglia (p<0.001), and with males having more numbers of those cells than females 

(p<0.001). 

 

As for the average N of pigmented cells (Figs. 5A, 5B), there were significant effects for 

size-class (p<0.001), and type of ganglia (p<0.001). The bigger animals showed ≈ 9 times 

more cells than the smaller ones, and the visceral ganglia presented about twice the average N 

when compared with all other. No significant differences existed between genders (p = 0.07). 
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Total number (N) of neurons, glial cells, and pigmented cells per ganglionic regions 

In addition to the above analyses, we organized the data sets considering the location of the 

cells. Accordingly, the neural cells considered were separated as elements in the ganglia 

cortex (Tables 7, 8, and Figs.6, 7) and in the medulla (Tables 9, 10, and Fig. 8). 

 

Patterns found in cortex (Figs. 6, 7) were generally in line with those in ganglia as a whole 

(i.e., considering cortex and medulla all together), with ANOVA unveiling significant effects 

of factors body size (p<0.001), ganglia type (p<0.001) and gender (p = 0.025), for neural 

cells, effects of factors body size (p<0.014) and ganglia type (p<0.001), for glial cells, and at 

last the effects of body size (p<0.001) and ganglia type (p=0.003) for pigmented cells. 
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Figure 4.Total mean number of neurons and glial cells in the ganglia of S. plana.A) Neurons per size 
class, B) per ganglion, and C) per gender. D) Glial cells per size class, E) per ganglion, and F) per 
gender. Different letters signify significant differences. Data given as mean and 95% confidential 
interval. LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglia; VG: visceral 
ganglia. 
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When considering only those cells that were located in medulla, variability of data sets is 

overall much higher compared with that in cortex; the coefficients of variance are much 

higher in Tables 9 and 10 when compared with those appearing is Tables 5-8. The 

statistically significant effects were restricted to glial and pigmented cells (Fig. 8).  As to glial 

cells, patterns found in cortex match those in whole ganglia, with bigger animals having more 

cells (p<0.001), visceral ganglia having more cells (p<0.001), and males having more cells 

(p=0.034). As to the pigmented cells (Fig. 8D), the body size effect is illustrated by the 
greater values seen in bigger animals (p<0.001). 

 

 
Figure 5.Total mean number of pigmented cells in the ganglia of S. plana. A) Cells per size class and B) 
per ganglion. Different letters mean significant differences. Data given as mean and 95% confidential 
interval. LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglia; VG: visceral 
ganglia. 
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Table 5. Total mean number (N) of neural cells in body size class Small, by ganglia type and gender of S. plana. 

Size Ganglia Gender 
Neurons  Glial cells Pigmented 

cells Small Large Sum  Fusiform Roundish Triangular Sum 

Small 

LCG 

Males 1381 (0.2) 1640 (0.2) 3021 (0.2)  551 (0.7) 1539 (0.4) 1722 (0.1) 3812 (0.2) 482 (0.8) 

Females 965 (0.4) 1356 (0.2) 2321 (0.2)  509 (0.5) 1022 (0.3) 1065 (0.4) 2596 (0.3) 245 (0.9) 

Mean 1173 (0.3) 1498 (0.2) 2671 (0.2)  530 (0.5) 1281 (0.4) 1393 (0.3) 3204 (0.3) 364 (0.9) 

RCG 

Males 1046 (0.2) 1532 (0.3) 2578 (0.2)  554 (0.1) 1193 (0.3) 1234 (0.6) 2981 (0.3) 303 (0.8) 

Females 1062 (0.2) 1512 (0.1) 2574 (0.1)  325 (0.4) 1094 (0.6) 1276 (0.4) 2155 (0.4) 312 (0.5) 

Mean 1052 (0.2) 1524 (0.3) 2576 (0.1)  463 (0.3) 1153 (0.4) 1251 (0.5) 2606 (0.4) 307 (0.7) 

PG 

Males 1769 (0.4) 2004 (0.4) 3773 (0.3)  749 (0.2) 3375 (0.2) 2477 (0.4) 6601 (0.2) 497 (0.6) 

Females 1606 (0.3) 1680 (0.1) 3286 (0.2)  727 (0.5) 3021 (0.3) 2056 (0.2) 5804 (0.2) 621 (0.9) 

Mean 1704 (0.3) 1874 (0.3) 3578 (0.3)  740 (0.3) 3233 (0.2) 2309 (0.3) 6282 (0.2) 547 (0.7) 

VG 

Males 3155 (0.3) 3549 (0.3) 6704 (0.3)  1637 (0.3) 6136 (0.4) 4896 (0.5) 12668 (0.3) 1096 (0.9) 

Females 3021 (0.3) 3979 (0.3) 6999 (0.3)  1930 (0.4) 4074 (0.1) 3835 (0.4) 9839 (0.2) 587 (0.6) 

Mean 3094 (0.3) 3744 (0.3) 6838 (0.3)  1770 (0.3) 5199 (0.3) 4414 (0.5) 11382 (0.3) 1053 (0.8) 

Six animals per gender were used. Data given as mean (coefficient of variation). LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion.
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Table 6. Total mean number (N) of neural cells in body size class Big, by ganglia type and gender of S. plana. 

Size  Ganglia Gender 
Neurons  Glial cells Pigmented 

cells Small Large Sum  Fusiform Roundish Triangular Sum 

Big 

LCG 

Males 2368 (0.3) 4071 (0.3) 6439 (0.2)  1395 (0.8) 2601 (0.1) 2300 (0.4) 6297 (0.2) 3101 (0.7) 

Females  1442(0.5) 3341 (0.4) 4783(0.4)  861 (1.0) 1050 (0.6) 2102 (0.7) 4013 (0.4) 2039 (0.5) 

Mean 1863 (0.4) 3673 (0.3) 5536 (0.3)  1104 (0.8) 1755 (0.5) 2192 (0.5) 5051 (0.5) 2522 (0.6) 

RCG 

Males 2196 (0.3) 3715 (0.3) 5911 (0.2)  1606 (0.7) 2329 (0.3) 2461 (0.7) 6396 (0.4) 2381 (0.5) 

Females  2164 (0.4) 2543 (0.3) 4707 (0.3)  728 (0.6) 1113 (0.4) 2188 (0.5) 4029 (0.4) 1738 (0.9) 

Mean  2169 (0.4) 3129 (0.3) 5279 (0.3)  1167 (0.9) 1721 (0.6) 2325 (0.6) 5213 (0.6) 2060 (0.5) 

PG 

Males 3451 (0.4) 2451 (0.4) 5902 (0.4)  1048(0.6) 4105 (0.3) 3421 (0.4) 8574 (0.3) 2340 (0.4) 

Females  2113 (0.2) 2494 (0.3) 4607 (0.2)  560 (0.7) 2506 (0.3) 3120 (0.5) 6186 (0.3) 2735 (0.3) 

Mean  2843 (0.4) 2471 (0.4) 5314 (0.3)  826 (0.7) 3379 (0.4) 3284 (0.4) 7489 (0.3) 2519 (0.3) 

VG 

Males 6528 (0.3) 6781 (0.3) 13309 (0.3)  3501 (0.7) 7760 (0.5) 7846 (0.6) 19107 (0.5) 5422 (0.4) 

Females  5873 (0.3) 7358 (0.3) 13231 (0.3)  2743 (0.8) 5891 (0.4) 6505 (0.8) 15138 (0.6) 5321 (1.1) 

Mean  6200 (0.3) 7070 (0.3) 13270 (0.3)  3122 (0.7) 6825 (0.5) 7175 (0.7) 17122 (0.5) 5371 (0.8) 

Six animals per gender were used. Data given as mean (coefficient of variation). LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion. 
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Table 7. Total mean number (N) of cortical neural cells in body size class Small, by ganglia type and gender of S. plana. 

Size Ganglia Gender 
Neurons  Glial cells Pigmented 

cells Small Large Sum  Fusiform Roundish Triangular Sum 

Small 

LCG 

Males 1329 (0.2) 1611 (0.2) 2940 (0.4)  400 (0.7) 985 (0.3) 1250 (0.2) 2635 (0.2) 342 (0.6) 

Females 862 (0.3) 1304 (0.3) 2166 (0.2)  361 (0.5) 828 (0.3) 770 (0.4) 1959 (0.3) 194 (1.1) 

Mean 1096 (0.3) 1457 (0.3) 2553 (0.3)  380 (0.6) 907 (0.3) 1010 (0.4) 2297 (0.3) 268 (0.8) 

RCG 

Males 1018 (0.2) 1494 (0.3) 2512 (0.2)  423 (0.3) 920 (0.3) 894 (0.6) 2237 (0.2) 257 (0.9) 

Females 1047 (0.1) 1462 (0.1) 2509 (0.1)  188 (0.8) 798 (0.6) 897 (0.4) 1883 (0.5) 218 (0.4) 

Mean 1030 (0.2) 1481 (0.2) 2511 (0.2)  329 (0.5) 871 (0.4) 895 (0.5) 2095 (0.3) 241 (0.7) 

PG 

Males 1673 (0.4) 1940 (0.3) 3613 (0.3)  575 (0.2) 2887 (0.3) 1836 (0.4) 5298 (0.2) 383 (0.5) 

Females 1492 (0.2) 1645 (0.1) 3136 (0.2)  587 (0.6) 2419 (0.3) 1571 (0.3) 4577 (0.2) 424 (1.0) 

Mean 1601 (0.3) 1822 (0.3) 3423 (0.3)  580 (0.4) 2700 (0.3) 1730 (0.3) 5009 (0.2) 400 (0.7) 

VG 

Males 3052 (0.3) 3501 (0.3) 6553 (0.3)  1034 (0.3) 4684 (0.3) 2979 (0.5) 9697 (0.3) 850 (0.9) 

Females 2933(0.3) 3902 (0.3) 6835 (0.3)  1282 (0.5) 3282 (0.2) 2688 (0.4) 7252 (0.2) 707 (0.5) 

Mean 2998 (0.3) 3683 (0.3) 6681 (0.3)  1147 (0.4) 4047 (0.3) 2847 (0.4) 8041 (0.4) 785 (0.8) 

Six animals per gender were used. Data given as mean (coefficient of variation). LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion. 
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Table 8. Total mean number (N) of cortical neural cells in body size class Big, by ganglia type and gender of S. plana. 

Size  Ganglia Gender 
Neurons   Glial cells  Pigmented 

cells Small Large Sum  Fusiform Roundish Triangular Sum 

Big  

LCG 

Males 2251 (0.3) 4000 (0.3) 6251(0.2)  1071 (0.6) 1986 (0.2) 1476 (0.3) 4533 (0.4) 2807 (0.7) 

Females 1087 (0.6) 3221 (0.6) 4308 (0.5)  606 (0.9) 892 (0.6) 1647 (0.6) 3145 (0.6) 1596 (0.4) 

Mean 1616 (0.5) 3575 (0.4) 5191 (0.3)  818 (0.8) 1389 (0.5) 1569 (0.5) 3776 (0.5) 2147 (0.7) 

RCG 

Males 2117 (0.3) 3676 (0.2) 5793 (0.2)  1116 (0.7) 1842 (0.3) 1735 (0.6) 4693 (0.4) 1870 (0.5) 

Females 2104 (0.4) 2496 (0.3) 4600 (0.3)  533 (0.7) 779 (0.5) 1484 (0.5) 2796 (0.4) 1348 (0.8) 

Mean 2110 (0.4) 3086 (0.3) 5196 (0.3)  825 (0.8) 1311 (0.6) 1609 (0.6) 3745 (0.4) 1609 (0.5) 

PG 

Males 3350 (0.4) 2396 (0.5) 5746 (0.4)  642 (0.6) 3076 (0.3) 2276 (0.4) 5994 (0.2) 1848 (0.4) 

Females 2079 (0.2) 2438 (0.3) 4517 (0.2)  379 (0.5) 1958 (0.3) 2399 (0.6) 4736 (0.4) 2214 (0.2) 

Mean 2772 (0.4) 2415 (0.4) 5187 (0.3)  522 (0.6) 2568 (0.4) 2332 (0.5) 5422 (0.3) 2014 (0.3) 

VG 

Males 6143 (0.2) 6361 (0.3) 12505 (0.3)  2184 (0.5) 5601 (0.3) 4864 (0.6) 12649 (0.4) 3861 (0.2) 

Females 5521 (0.3) 7216 (0.3) 12738 (0.3)  1776 (0.8) 4868 (0.4) 2012 (0.7) 8656 (0.5) 3984 (1.0) 

Mean 5832 (0.3) 6789 (0.3) 12621 (0.3)  1980 (0.6) 5234 (0.3) 3438 (0.8) 10652 (0.5) 3922 (0.7) 

Six animals per gender were used. Data given as mean (coefficient of variation). LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion. 
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Figure 6. Total mean number of neurons and glial cells in the cortex of ganglia of S. plana. A) 
Neurons per size class, B) per ganglion, and C) per gender. D) Glial cells per size class, E) per 
ganglion, and F) per gender. Different letters mean significant differences. Data given as mean and 
95% confidential interval. LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglia; 
VG: visceral ganglia. 
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Figure 7.Total mean number of pigmented cells in the ganglia cortex of S. plana. A) Cells per size 
class and B) per ganglion. Dissimilar letters mean significant differences. Data given as mean and 
95% confidential interval. LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal 
ganglia; VG: visceral ganglia. 
 

 
Figure 8. Total mean number of glial cells and pigmented cells in the medulla of the ganglia of S. 
plana. A) Glial cells per class size, B) per ganglia type, and C) per gender. D) Pigmented cells per 
size class. Different letters signify significant differences. Data given as mean and 95% confidential 
interval. LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglia; VG: visceral 
ganglia. 



Chapter 6 | Does size/age matters for neural ganglia of the peppery furrow shell?  

- 156 - 

 

Table 9. Total mean number (N) of medullar neural cells in body size class Small, by ganglia type and gender of S. plana. 

Size  Ganglia Gender 
Neurons   Glial cells  

Pigmented 
cells Small Large Sum  Fusiform Roundish Triangular Sum 

Small  

LCG 

Males 52 (1.7) 29 (1.9) 81 (1.8)  151 (0.8) 554 (0.9) 472 (0.8) 1177 (0.8) 141 (1.7) 

Females 103 (1.2) 52 (1.7) 155 (1.0)  148 (0.8) 195 (0.8) 295 (0.9) 638 (0.7) 52 (0.5) 

Mean 77 (1.3) 41 (1.6) 118 (1.0)  150 (0.8) 374 (1.0) 383 (0.9) 907 (0.9) 96 (1.7) 

RCG 

Males 28 (0.9) 38 (1.8) 66 (1.3)  131 (0.8) 273 (0.4) 340 (1.0) 744 (0.6) 46 (1.3) 

Females 14 (1.6) 50 (0.4) 64 (0.6)  137 (0.3) 296 (0.6) 379 (0.6) 812 (0.4) 95 (0.7) 

Mean 23 (1.3) 43 (1.2) 66 (1.0)  134 (0.6) 282 (0.5) 356 (0.8) 772 (0.5) 66 (1.0) 

PG 

Males 96 (0.4) 63 (1.3) 159 (0.7)  175 (0.9) 488 (0.9) 641 (0.6) 1304 (0.7) 114 (1.1) 

Females 114 (0.8) 36 (0.8) 150 (0.7)  140 (0.6) 602 (0.4) 485 (0.2) 1227 (0.2) 198 (0.8) 

Mean 103 (0.6) 52 (1.3) 155 (0.7)  161 (0.8) 534 (0.7) 579 (0.5) 1274 (0.5) 148 (0.9) 

VG 

Males 104 (0.7) 47 (0.9) 151 (0.7)  1452 (0.5) 1917 (0.5) 1452 (0.5) 4821 (0.4) 246 (1.1) 

Females 87 (0.8) 77 (0.8) 164 (0.7)  792 (0.6) 1147 (0.5) 792 (0.6) 2731 (0.4) 294 (1.2) 

Mean 96 (0.7) 61 (0.9) 157 (0.6)  1152 (0.6) 1567 (0.5) 1152 (0.6) 3871 (0.5) 268 (1.1) 

Six animals per gender were used. Data given as mean (coefficient of variation). LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion. 
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Table 10. Total mean number (N) of medullar neural cells in body size class Big, by ganglia type and gender of S. plana. 

Size  Ganglia Gender 
Neurons   Glial cells  

Pigmented 
cells Small Large Sum  Fusiform Roundish Triangular Sum 

Big  

LCG 

Males 117 (1.2) 71 (1.8) 188 (1.4)  324 (1.3) 615 (0.7) 824 (0.7) 1763 (0.5) 293 (0.8) 

Females 66 (1.7) 121 (1.0) 188 (1.0)  255 (1.1) 158 (0.6) 455 (1.2) 868 (1.0) 442 (0.8) 

Mean 90 (1.3) 98 (1.2) 188 (1.0)  286 (1.1) 366 (1.0) 623 (0.9) 1275 (0.7) 375 (0.8) 

RCG 

Males 79 (1.5) 39 (0.8) 118 (1.1)  489 (1.1) 488 (0.5) 727 (1.0) 1703 (0.7) 511 (0.6) 

Females 38 (0.8) 9 (2.4) 47 (0.9)  195 (1.0) 334 (0.9) 704 (0.8) 1233 (0.6) 391 (1.2) 

Mean 59 (1.7) 24 (3.8) 83 (1.4)  342 (1.2) 411 (0.6) 715 (0.9) 1468 (0.8) 451 (0.7) 

PG 

Males 102 (1.2) 55 (1.5) 157 (0.9)  406 (0.8) 1030 (0.5) 1144 (0.5) 2580 (0.4) 492 (0.5) 

Females 34 (1.4) 56 (1.1) 90 (0.9)  181 (1.0) 548 (0.6) 720 (0.3) 1450 (0.3) 521 (1.0) 

Mean 71 (1.2) 56 (1.3) 126 (0.8)  304 (0.9) 811 (0.6) 952 (0.5) 2066 (0.5) 505 (0.7) 

VG 

Males 385 (1.4) 420 (1.3) 805 (1.3)  1317 (1.1) 2159 (1.0) 2982 (0.8) 6458 (0.9) 1561 (0.9) 

Females 351 (0.6) 142 (1.3) 493 (0.5)  966 (0.8) 1023 (0.5) 4493 (0.9) 6482 (0.7) 1337 (1.4) 

Mean 368 (1.1) 281 (1.5) 649 (1.2)  1142 (1.0) 1591 (1.0) 3738 (0.9) 6470 (0.8) 1449 (1.1) 

Six animals per gender were used. Data given as mean (coefficient of variation). LCG: left cerebral ganglion; RCG: right cerebral ganglion; PG: pedal ganglion; VG: visceral ganglion. 
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Discussion  
This study was undertaken on adult S. plana of two size classes to investigate if and in what 

extent the age factor can influence microscopic anatomy of central ganglia of this species, 

and in particular the number of neural cells. Our fundamental interest and question are 

founded on the possibility that as the animal grows the number of cells could eventually 

increase with age. If true, this event could be explored in the future, both in fundamental and 

applied research. Because of the unknown impacts of the animals’ sex in this (and other) 

bivalves neurocytology, we opted to study males and females, which could allow disclosing 

novel interactions between age and gender; in this way we extend prior pioneer work on 

intersex differences (Chapter 5). 

 

Before discussing and concluding about our primary question, it is relevant to address the 

validity of using a bigger size of the animal as a proxy of age. If by one hand, as stressed in 

Introduction, body size in bivalves correlates well with age (Ridgway et al. 2011), by other 

hand there are already specific information about the relation of shell size and age in S. plana. 
Whereas our size cohort Small has an average length of 2.4 cm, for both sexes, the group Big 

averages a significantly higher 3.8 cm (in both sexes as well). In view of earlier works with S. 

plana specimens sampled in Mondego River estuary (Verdelhos et al. 2005) and in Ria de 

Aveiro coastal lagoon (Coelho et al. 2006), our Small group has animals regarded as 2+, i.e., 

having from 2 to 3 years of age, and our Big group integrates 3+ year old animals, and so 

having from 3 to 4 years of age. However, this should be viewed as an approximate age 

because as the length of the animal’s shell increases the age estimation seem to become more 

inaccurate (Green 1957). It is also relevant to mention that S. Plana can live at least as long 

as 18 years (Green 1957), but its longevity in southern Europe is reported to be of about 5 

years (Verdelhos et al. 2005). Irrespective of the lifespan range, and some uncertainty, there 

is no doubt that we worked with adult animals that differed in ≈1 year  in age, and that were 

not extremely old. 

 

This study generated numerous data sets that were presented for allowing the readership to 

appreciate the global scenario and so having the chance to build its own critical thinking. 

Additional data can even be derived from the current data sets, such as the glia-to-neuron 

ratio. The present discussion will focus on the main message that can be explored further in 

future. Importantly for comparative purposes regarding total numbers of neuronal cells, while 
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older specimens were bigger and heavier, females and males of the same age did not differ in 

mass. As in our previous studies, the visceral ganglia are more voluminous, followed in size 

by the pedal, which was bigger than each of the cerebrals. Considering the effect of sex, and 

overall, males have a marginally greater ganglionic volume, matching with a bigger cortex 

and medulla. Interganglionic differences were also found when looking at the relative 

importance of the cortex and medulla, with the visceral and the pedal ganglia having 

significantly greater relative volumes of the cortex (and smaller in what concerns medulla) 

compared with the cerebral ones. This scenario is partially in agreement with our previous 

study (see Chapter 5), in the sense that earlier we found no differences in the relative volume 

compartments of visceral vs. pedal ganglia. These aspects are still very poorly studied, and 

for instance age can be on factor that influences both the relative and total volumes. Indeed, 

in our earlier study we used animals that have mean size values (and therefore age) that are in 

between those of size-cohorts used here. Our idea is supported by the fact that relative 

volumes found herein are significantly influenced by age, with big/older animals having 

greater cortical (and lesser medullar) relative volumes. 

 

In our previous study looking for gender differences and impact of gonadal maturation status 

in adults (Chapter 6) we could not demonstrate many differences in between males and 

females. Herein, having somewhat more statistical power, we detect a significant gender 

effect, with males having a global higher mean number of neurons and glial cells (but not of 

pigmented cells), both when considering the entire ganglia and when considering each 

compartment. This sex effect likely justifies the slightly (but significant) greater mean 

ganglion volume in males. 

 

Notwithstanding the influences of ganglia type and/or sex of the animal over the studied 

parameters, the size/age effect was consistently significant. It can be estimated that within an 

average period of ≈ 1 year (i.e., 2+ vs. 3+ years of age), the volumes of every ganglia 

doubled, and the number of neuronal cells were at the core mechanism of those global size 

increments. Without significant interactions either with sex or with ganglia type, generation 

of new neural cells occurred, largely irrespective of the structural phenotype and both in 

cortex and medulla. So, age does matter as to what concerns the nervous ganglia of this 

bivalve, and it is quite likely that the same kind of findings exit in other species, with adult 

neurogenesis ongoing throughout life, at least for a long period (years). Our data implicates 
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that adult neurogenesis thus occur in S. plana. New puzzling questions instantly emerge, e.g., 

what sources of new neural cells are? Bivalve neurogenesis has been studied in a few 

species, but very rarely and typically focusing the nervous system formation during early 

ontogeny, namely in embryos and larvae, eventually up to the young adult (e.g., Raineri 

1995; Voronezhskaya et al. 2008; Ramsmayer 2014). In other invertebrates, including 

aquatic species, adult neurogenesis has been deserving attention, namely for identifying the 

sources of precursor cells, their proliferation and migratory patterns. On this matter, 

sequences of articles on decapods beautifully illustrate the search for insights on such new 

fundamental questions (Zhang et al. 2009, 2011; Benton et al. 2011, 2013). These and other 

studies have been strongly supporting that neurogenesis emerge from local or non-neuronal 

precursors derived from hematopoiesis (Beltz et al. 2011; Chaves da Silva et al. 2015). In 

view of the potential longevity of S. plana and considering our current data that show that 

adults keep incrementing in an impressive way the numbers of their “neural soldiers”, in 

every ganglia and irrespective of gender, we propose using this and other baseline knowledge 

of the species to make it one more stimulating bivalve model for studying adult neurogenesis 
aging, and even resistance to senescence. Our vision is perfectly in line with that expressed 

by Abele et al. (2009), when stating that “Bivalves are newly discovered models of natural 

aging”, adding to the great interest in the exceptionally long-lived bivalves (Philipp and 

Abele 2010). 

 

Conclusion 

In summary, this is the second study that used unbiased stereology techniques to estimate the 

volume of the three types of nervous ganglia (including of their cortexes and medullae) and 

the neuronal and non-neuronal cell numbers, in the whole ganglia and in each compartment. 

All this in a study comprising adult specimens of two size cohorts. Because animals were 

caught from the same locations at the estuary of the Mondego River, sizes are comparable 

and can be faced as proxies of the individuals’ age; corresponding to individuals with 2+ and 

3+ years old. In animals that did not differ in size/length and mass, we disclosed 

interganglionic, sex-related and size-related significant effects upon the volumes of the 

ganglia, relative volumes of cortex and medulla, and total numbers of neurons (large and 

small phenotypes), glial cells (fusiform, roundish and “triangular” phenotypes), and 

pigmented cells. Extending previous findings we were able to disclose significant differences 

between males and females; in view of the ganglia together, the females displayed a smaller 
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average total number of neurons and glial cells. The comparisons between the animals of the 

two size classes Small (younger) and Big (older) supported that neurogenesis continues to 

occur in adult S. plana, with increasing numbers of neurons, glial cells, and pigmented cells 

in every ganglia, and irrespective of the animals’ sex. Further statistical exploration of the 

data is worth their functional significance are at question: which factors govern increased 

cellularity; does the increase continues during lifespan; what is the nature of the neural cell 

progenitors; are increases in numbers occurring in parallel with bursts and/or cycles of cell 

death vs. renewal — among other, are fascinating questions worth pursuing. Facing the 

species abundance, wide distribution and range of biotic/abiotic factors, and new wealth of 

neural data being generated, we now view S. plana as one promising model for neurogenesis 

and age-related researches; well beyond its current use in ecology/toxicology. 

 

Acknowledgments 

The author Sukanlaya Tantiwisawaruji was supported by a Thai Government Science and 

Technology Scholarship. This research was partially supported by the Strategic Funding 

UID/Multi/04423/2013, through national funds provided by FCT – Foundation for Science 

and Technology and by European Regional Development Fund (ERDF), in the framework of 

the program PT2020. Further support was given by ICBAS, via its Ph.D. Program in 

Biomedical Sciences. We do thank Fernanda Malhão and Célia Lopes for their wise 

histotechnical advices. 



Chapter 6 | Does size/age matters for neural ganglia of the peppery furrow shell?  

- 162 - 

 

References 

Abele, D., Brey, T. & Philipp, E. (2009) Bivalve models of aging and the determination of 

molluscan lifespans. Experimental Gerontology 44, 307-315.  

Amano, M., Oka, Y., Nagai, Y., Amiya, N. & Yamamori, K. (2008) Immunohistochemical 

localization of a GnRH-like peptide in the brain of the cephalopod spear-squid,  

Loligo bleekeri. General and Comparative Endocrinology 156, 277-284. 

Ashton, Q.A. (2013) Issues in Neuroscience Research and Application. Scholarly Editions, 

Atlanta, Georgia. 

Beltz, B.S., Zhang, Y., Benton, J.L. & Sandeman, D.C. (2011) Adult neurogenesis in the 

decapod crustacean brain: a hematopoietic connection? European Journal of 

Neuroscience 34, 870-883.  

Benton, J.L., Chaves da Silva, P.G., Sandeman, D.C. & Beltz, B.S. (2013) First-generation 

neuronal precursors in the crayfish brain are not self-renewing. International Journal 

of Developmental Neuroscience 31, 657-666. 

Benton, J.L., Zhang,Y., Kirkhart, C.R., Sandeman,  D.C. & Beltz, B.S. (2011) Primary 

neuronal precursors in adult crayfish brain: replenishment from a non-neuronal 

source. BMC Neuroscience 2, 12- 53. 

Betts, L.R., Taylor, C.P., Sekuler, A. B. & Bennett, P. J. (2005) Aging reduces center-

surround antagonism in visual motion processing. Neuron 45, 361-366. 

Burrell, D.E. & Stefano, G.B. (1983) Analysis of monoamine accumulation in the neuronal 

tissues of Mytilus edulis (Bivalvia). IV. Variation due to age. Comparative 

Biochemistry Physiology: Part C 74, 59-63. 

Jansen, R.F., Pieneman, A.W. & ter Maat, A. (1996) Spontaneous switching between ortho- 

and antidromic spiking as the normal mode of firing in the cerebral giant neurons of 

freely behaving Lymnaea stagnalis. Journal of Neurophysiology 76, 4206-4209. 

Campisi, J. & d'Adda di Fagagna, F. (2007) Cellular senescence: when bad things happen to 

good cells. Nature Reviews Molecular Cell Biology 8, 729-740. 

Chaves da Silva, P.G., Santos de Abreu, I., Cavalcante
,
, L.A., Monteiro De Barros, C.& 

Allodi, S. (2015) Role of hemocytes in invertebrate adult neurogenesis and brain 

repair. 

Chen, C.-H., Chen, Y.-C., Jiang, H.-C., Chen, C.-K. & Pan, C.-L. (2013) Neuronal aging: 

learning from C. elegans. Journal of Molecular Signaling 8, 14-14. 

http://www.journals.elsevier.com/experimental-gerontology/�
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1460-9568�
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1460-9568�
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1460-9568�
http://www.biomedcentral.com/bmcneurosci�


Chapter 6 | Does size/age matters for neural ganglia of the peppery furrow shell? 

- 163 - 

 

Coelho, J.P.  Rosa, M. Pereira, E. Duarte, A. & Pardal , M.A. (2006) Pattern and annual rates 

of Scrobicularia plana mercury bioaccumulation in a human induced mercury 

gradient (Ria de Aveiro, Portugal). Estuarine, Coastal and Shelf Science 69, 629-635. 

Croll, R.P., Nason, J. & VanMinnen, J.A. (1993) Characterization of central neurons in 

bivalves using antibodies raised against neuropeptides involved in gastropod egg-

laying behavior. Invertebrate Reproduction and Development 24, 161-168. 

Curtis, M.A., Kam, M. & Faull, R.L. (2011) Neurogenesis in humans. European Journal of 

Neuroscience 33, 1170-1174. 

Di Cristo, C. (2013) Nervous control of reproduction in Octopus vulgaris: a new model. 

Invertebrate Neuroscience13, 27-34. 

Dorph-Petersen, K.A., Nyengaard, J.R. & Gundersen, H.J.G. (2001) Tissue shrinkage and 

unbiased stereological estimation of particle number and size. Journal of Microscopy 

204, 232-246. 

Flyachinskaya, L.P. (2000) Localization of serotonin and fmrfamide in the bivalve mollusc 

Mytilus edulis at early stages of its development. Journal of Evolutionary 

Biochemistry and Physiology 36, 66-70. 

Franchinf, A., Ottavianp, E. & Caselgrandi, E. (1985) Biogenic amines in the snail brain of 

Helicella virgata (Gastropoda, Pulmonata). Brain Research 347, 132-134. 

Gosling, E. (2004) Bivalve Molluscs: Biology, Ecology and Culture. Fishing News Books, 

Blackwell Publishing, Oxford. 

Green, J. (1957) The Growth of Scrobicularia plana (da Costa) in the Gwendraeth estuary. 

Journal of the Marine Biological Association of the United Kingdom36, 41-47. 

Gundersen, H.J. (1986) Stereology of arbitrary particles: A review of unbiased number and 

size estimators and the presentation of some new ones, in memory of William R. 

Thompson. Journal of Microscopy 143, 3-45.  

Gundersen, H.J. & Jensen, E.B. (1987) The efficiency of systematic sampling in stereology 

and its prediction. Journal of Microscopy 147, 229-263. 

Henrique, R.M.F., Rocha, E., Silva, M.W. & Monteiro, R.A.F. (2001) Age-related changes in 

rat cerebellar basket cells: a quantitative study using unbiased stereological methods. 

Journal of Anatomy 198, 727-736. 

Hodgson, A.N. & Trueman, E.R. (1981) The siphons of Scrobicularia plana (Bivalvia, 

Tellinacea) Observations on movement and extension. Journal of Zoology 194, 445-

459. 

https://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=http%3A%2F%2Flink.springer.com%2Fjournal%2F10158&ei=W0QDVL2OI8LuyQPap4GgAg&usg=AFQjCNFGlaJiZZlA8MKJIImBTsVREZ8YUw&sig2=duoX1gUwlCVd0wR0ycUK5Q�
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1469-7580�


Chapter 6 | Does size/age matters for neural ganglia of the peppery furrow shell?  

- 164 - 

 

Kodirov, S.A. (2011) The neuronal control of cardiac functions in Molluscs. Comparative 

Biochemistry and Physiology Part A: Molecular and Integrative Physiology 160, 102-

116. 

Kizil, C., Kaslin, J., Kroehne, V. & Brand, M. (2012) Adult neurogenesis and brain 

regeneration in zebrafish. Developmental Neurobiology 72, 429-461.  

Khotimchenko, Y.S. (1991) Biogenic monoamines in oocytes of echinoderms and bivalve 

molluscs. A formation of intracellular regulatory systems in oogenesis. Comparative 

Biochemistry and Physiology Part C: Comparative Pharmacology 100, 671-675. 

Kotsyuba, E.P. & Kotsyuba, A.E. (2002) Ultrastructural characteristics of interneuronal 

connections of the central nervous system of bivalve molluscs. Journal of 

Evolutionary Biochemistry and Physiology 38, 330-335. 

Margaret, A., Carroll, E. & Catapane, J. (2007) The nervous system control of lateral ciliary 

activity of the gill of the bivalve mollusc, Crassostrea virginica. Comparative 

Biochemistry and Physiology Part A: Molecular and Integrative Physiology.148, 445-

450. 

Moffett, S.B. (1996) Nervous System Regeneration in the Invertebrates. Springer, New York. 

Monteiro, R.A.F. (1991) Age-related quantitative changes in the organelles of rat 

neocerebellar Purkinje cells. Histology and Histopathology 6, 9 -20. 

Philipp, E.E. & Abele, D. (2010) Masters of longevity: lessons from long-lived bivalves--a 

mini-review.Gerontology 56, 55-65. 

Raineri, M. (1995) Is a mollusc an evolved bent metatrochophore? A histochemical 

investigation of neurogenesis in Mytilus (Mollusca: Bivalvia). Journal of the Marine 

Biological Association of the United Kingdom 75, 571-592. 

Raineri, M. (1995) Is a mollusc an evolved bent metatrochophore? A histochemical 

investigation of neurogenesis in Mytilus (Mollusca: Bivalvia). Journal of the Marine 

Biological Association of the United Kingdom75, 571-592. 

Ramsmayer, P.D. (2014) Neurogenesis in Nucula tumidula and Kurtiella bidentata 

(Mollusca: Bivalvia) as revealed by immunocytochemistry and confocal laser 

scanning microscopy.Master thesisUniv.-Prof. DDr. Andreas Wanninger. 

Ridgway, I., Richardson, C.A. & Austad, S.N. (2011) Maximum shell size, growth rate, and 

maturation age correlate with longevity in bivalve molluscs. The Journals of 

Gerontology Series A: Biological Sciences and Medical Sciences 66A, 183-190.  



Chapter 6 | Does size/age matters for neural ganglia of the peppery furrow shell? 

- 165 - 

 

Samorajski, T. & Rolsten, C. (1975) Nerve fiber hypertrophy in posterior tibial nerves of 

mice in response to voluntary running activity during aging. Journal of Comparative 

Neurology159, 553-558. 

Shaw, W.N. (1986) Species profiles: life histories and environmental requirements of coastal 

fishes and invertebrates (Pacific Southwest)-common littleneck clam. In: U.S. Fish & 

Wildlife Service Biological Report 82 (11.60): U.S. Army Corps of Engineer.  

Sola, J.C. (1997) Reproduction, population dynamics, growth and production of 

Scrobicularia plana da Costa (Pelecypoda) in the Bidasoa estuary, Spain. Aquatic 

Ecology 30, 283-296. 

Simmons, P.J. & Young, D. (1999) Nerve cells and animal behaviour, 2 ed: Cambridge 

University Press. 

Stefano, G.B. (1982) Comparative aspects of opioid-dopamine interaction. Cellular and 

Molecular Neurobiology 2, 167-178. 

Stefano, G. B., Cadet, P., Sinisterra, J., Charles, R., Barnett, J., Kuruvilla, S. & Aiello, E. 

(1990) Functional neural anatomy of Mytilus edulis: Monoaminergic and opioid 

localization. In: G. B. Stefano (Ed.), Neurobiology of Mytilus edulis, Manchester 

University Press, Manchester pp. 38-56. 

Takuwa-Kuroda, K., Iwakoshi-Ukena, E., Kanda, A. & Minakata, H. (2003) Octopus, which 

owns the most advanced brain in invertebrates, has two members of 

vasopressin/oxytocin superfamily as in vertebrates. Regulatory Peptides 115, 139-

149. 

Tardy, M. (2003) Brain aging: insights into neuron-glia interactions. Journal of Biology and 

Medicine, Salvador  2, 114-122. 

Torrska, I.V., Bilokrinitskyi, V.S, Burchinska, L.F. & Genis, Y.D. (1968) Properties of 

neurons of the central nervous system of the freshwater gastropod mollusc, Planobis 

corneus. Neuroscience Translations 2, 745-755. 

Verdelhos,T., Neto, J.M., Marques, J.C. & Pardal, M.A. (2005) The effect of eutrophication 

abatement on the bivalve Scrobicularia plana. Estuarine, Coastal and Shelf Science 

63, 261–268. 

Voronezhskaya, E., Nezlin,L. Odintsova, N. Plummer, J. & Croll, R. (2008) Neuronal 

development in larval mussel Mytilus trossulus (Mollusca: Bivalvia). Zoomorphology. 

127, 97-110. 

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1096-9861�
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1096-9861�
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1096-9861�


Chapter 6 | Does size/age matters for neural ganglia of the peppery furrow shell?  

- 166 - 

 

Yeoman, M.S. & Faragher, R.G.A. (2001) Ageing and the nervous system: insights from 

studies on invertebrates. Biogerontology 2, 85-97.  

Yeoman, M., Scutt, G. & Faragher, R. (2012) Insights into CNS ageing from animal models 

of senescence. Nature Reviews Neuroscience 13, 435-445. 

Zhang, Y., Benton, J.L. & Beltz, B.S. (2011) 5-HT receptors mediate lineage-dependent 

effects of serotonin on adult neurogenesis in Procambarus clarkii. Neural 

Development 6, 2-2. 

Zhang, Y., Allodi, S.D., Sandeman C. & Beltz, B.S. (2009) Adult neurogenesis in the 

crayfish brain: proliferation, migration, and possible origin of precursor cells 

Developmental Neurobiology 69, 415-436.  

 

 

http://neuraldevelopment.biomedcentral.com/�
http://neuraldevelopment.biomedcentral.com/�
http://neuraldevelopment.biomedcentral.com/�
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1932-846X�


CHAPTER7 
DO ESTROGENS INFLUENCE THE BIVALVE NERVOUS 

GANGLIA SIZE AND CELLULARITY? A STUDY ON THE PEDAL 

GANGLIA OF THE PEPPERY FURROW SHELLSCROBICULARIA 

PLANA ACUTELY EXPOSED TO ETHINYLESTRADIOL 



 



Chapter 7 | Pedal ganglia volume and cellularity in adult S. plana acutely exposed to an estrogen   

- 169 - 
 

Do estrogens influence the bivalve nervous ganglia size and cellularity? A study on the 

pedal ganglia of the peppery furrow shell Scrobicularia plana acutely exposed to 

ethinylestradiol 

 

 

[Formatted as a manuscript to be submitted for publication in an international journal. The 

version in this Thesis may change after the revision to be made by all prospective authors.] 

 

 

Sukanlaya Tantiwisawarujia,b,c*, Catarina Cruzeiroa,b*, Ana Silvab, 

Uthaiwan Kovitvadhid, Maria J. Rochaa,b and Eduardo Rochaa,b 

 

*Joint first authors 

 
a Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical 

Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Porto, Portugal. 
b Histomorphology, Physiopathology and Applied Toxicology Group, Interdisciplinary Centre of 

Marine and Environmental Research (CIIMAR), University of Porto (U.Porto), Porto, Portugal. 
c King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand. 

d Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand. 

.  

Running title: Pedal ganglia volume and cellularity in adult S. plana acutely exposed to an estrogen 

 

Keywords: EDCs, nervous ganglia, glial cells, neurons, bivalves, ethinylestradiol 

 

Correspondence to: 

Eduardo Rocha 

Laboratory of Histology and Embryology  

Institute of Biomedical Sciences Abel Salazar (ICBAS)  

University of Porto (U.Porto)  

Rua de Jorge Viterbo Ferreira n.º 228  

4050-313 Porto  

Portugal  

E-mail: erocha@icbas.up.pt 

mailto:erocha@icbas.up.pt�


Chapter 7 | Pedal ganglia volume and cellularity in adult S. plana acutely exposed to an estrogen   

- 170 - 
 



Chapter 7 | Pedal ganglia volume and cellularity in adult S. plana acutely exposed to an estrogen   

- 171 - 
 

Abstract 

Differences between sexes and influences of sex-steroids in the structure and function of the 

nervous system in bivalves are still poorly studied. Yet, that system’s activity and presence of 

estrogens (viz. of 17β-estradiol) influence vital aspects of those organisms, and particularly 

reproduction. Water/sediment pollution by xenoestrogens is common nowadays and impose 

risks for biota because of the physiological disruption they may cause. The synthetic estrogen 

17α-ethinylestradiol (EE2) is an active ingredient of many contraceptive pills. Due to its large 

use and resistance to degradation, EE2 pollutes aquatic ecosystems, particularly those 

receiving urban inputs. Toxicological impacts of EE2 (particularly on reproduction) are far 

better known for fish than for invertebrates, including bivalves. We hypothesize that 

estrogens may cause impacts on the structure/cellularity of these organisms’ nervous system. 

Therefore, the estuarine bivalve Scrobicularia plana was collected from Mondego River 

(Portugal) to start testing our hypothesis that EE2 can cause neural impacts. Animals were 

exposed for 5 days to EE2 (0.05 or 5 µg/L), for comparison with a solvent control group 

(0.01% ethanol). Each treatment was done in triplicate, each comprising 12-15 adults. At the 

end, the animals were euthanized and routinely processed for histology. The three 

experimental groups did not differ in body morphometry. The pedal ganglion was selected as 

target, being totally serially cut into 35 µm thick sections that were stained with hematoxylin-

eosin. Stereology was used to unbiasedly estimate the: 1) total number (N) of neurons, glial 

and pigmented cells, by the optical fractionator method; and 2) total volume (V) of the 

ganglia, by the Cavalieri’s principle. Data were analyzed via ANOVA, which did not uncover 

statistically significant differences. Thus, the current data did not support that estrogenic 

stimuli acutely impact on the cellularity and volume of the nervous ganglia of S. plana. 

Anyway, facing the literature background and possible modes of action of steroidal estrogens 

in both vertebrates and invertebrates, including bivalves, more studies are justified, viz. using 

more technical approaches/targets, both with acute and chronic exposures, and, in parallel, 

exploring in vitro assays. 
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Introduction 

Considering what is known about the immense range of physiological roles that sex-steroids 

play in vertebrates, we can consider that the same kind of knowledge in invertebrates is still 

at its infancy. As to mollusks, and bivalves in particular, sex-steroids have been continuously 

associated with the physiology of reproduction, but many general doubts do exist, not to 

mention that exact mechanisms remain so far from clear that even the sources of estrogens 

and androgens is debated (Ciocan et al. 2011; Liu et al. 2014). Despite the knowledge gaps, 

we know already that bivalves are sensitive to physiological influences of estrogens, being 

capable of showing “vertebrate-like” responses after exposure to natural or synthetic 

estrogens (via waterborne or by injections); including up-regulation of estrogen receptors 

(Ciocan et al. 2010; Li et al. 1998) or increased expression of egg yolk proteins (Ciocan et al. 

2010; Osada et al. 2003). Nonetheless, the standard vertebrate estrogen responsive genes may 

also fail to be up-regulated after bivalve exposure to estrogens, evoking varied explanatory 

hypotheses for the differences (Puinean et al. 2006). Anyway, tests looking at differentially 

expressed genes in the mussel Mytilus edulis do support that bivalves can be negatively 

impacted by exogenous estrogen exposure (Ciocan et al. 2010). One key aspect of bivalve 

reproduction is that it is controlled by neurotransmitter and neurohormones (Siniscalchi et al. 

2004), and that estrogens correlate with the reproductive cycle and modulate the process, e.g., 

by controlling the levels of serotonin and of its receptor (Cubero-Leon et al. 2010; Osada et 

al. 2003; Liu et al. 2014). Nonetheless, if the overall functional role and mechanistic aspects 

of estrogens in bivalves remains meagre (Ciocan et al. 2010), the fine modulation, the 

impacts and mode(s) of action of the endogenous/exogenous estrogens in the bivalve nervous 

system are nearly unknown. Fundamental and practical reasons call for more studies. 

 

From over 25 years, there has been a concern about pollutants from anthropogenic sources 

that enter aquatic systems and that, by mimicking natural hormones, physiologically act as 

endocrine disrupting chemicals (EDCs), leading to mild-to-severe disruptive effects on both 

vertebrates and invertebrates, particularly on the reproductive organs and the closely related 

physiology (IEH 1999; Gauthier-Clerc et al. 2006; Porte et al. 2006; Segner et al. 2003), and 

beyond them (Canesi et al. 2007). Despite regulatory measures, waterborne EDCs are still 

prevalent in Europe and elsewhere (Rocha and Rocha 2015). Bivalves, like vertebrates, can 

be feminized by exposure to such EDCs (Langston et al. 2007). 
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Among the most potent estrogenic EDCs is the synthetic steroid 17α-ethinylestradiol (EE2), 

which is widely used in oral contraceptives and presents a chemical structure derivate from 

that of the natural hormone 17β-estradiol (Soto and Sonnenschein 2005). Typically, after 

internalization, EE2 strongly binds to intracellular estrogen receptors, that once dimerized and 

translocated to the cell nucleus cause activation or inhibition of specific functions — besides 

being high relative estrogenic potency, EE2 is a most often found waterborne xenoestrogen 

(Aris et al. 2014; Rocha and Rocha 2015). Yet, the fact is that to this date estrogen receptors 

from mollusks have been shown to be insensitive to activation by steroidal estrogens, 

therefore we do not know yet what exact mechanisms mediate estrogen signaling and 

disruption (Keay et al. 2006; Matsumoto et al. 2007; Keay and Thornton 2009). 

 

In view of the above context, because both estrogens and neuro-mediated signaling pathways 

do play roles in governing the bivalve reproduction, because estrogens have seasonal 

fluctuation patterns that may impact on the nervous system structure and/or function 

(Gauthier-Clerc et al. 2006; Liu et al. 2014), because nervous system plasticity exists in 

adults, particularly in invertebrates (Cayre et al. 2002; Beltz et al. 2015), and, at last, because 

estrogenic stimulus is linked to neurogenesis, including neuronal proliferation and survival, 

in various organisms (Fowler et al. 2005; Fowler et al. 2008; Li et al. 2011), we hypothesize 

that neural ganglia cellularity in bivalves can be impacted by exposure to EE2. To start 

investigating this hypothesis we used as model organism the peppery furrow shell 

Scrobicularia plana and elected the pedal ganglia as target for counting the number of 

neuronal cells. In parallel, we estimated the ganglionic volume and of its major compartments 

(cortex and medulla). To our best knowledge, this is the first experimental study with 

bivalves using design-based unbiased stereological methods capable of producing technically 

sound estimations of numbers of neural cells. 
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Materials and methods 

Collection and maintenance  

Wild bivalves were collected manually at 0.1-1 m depth from a brackish site in the Mondego 

River Estuary. The bivalves were sampled during low tide in May 2013 (pre-spawning). 

Specimens were transferred into 10 L boxes with local sediment, and then transported to the 

laboratory. For in-house acclimatization, they were kept in glass aquaria, without sediment, 

with well-aerated artificial sea water (30 ‰ salinity, as in the field), at 15oC. The animals 

were fed with chlorella during adaptation. 

 

Chemicals  

The EE2 (≥ 98%) was purchased from Sigma-Aldrich (Germany). The stock solution (1 

mg/L) was prepared in ethanol (99.9%), bought from Merck (Germany), and stored in an 

amber flask at -20ºC.  

 

Experiment 

Two nominal concentrations of EE2 were used on this trial (environmental and 100-fold 

higher), the environmental one (0.05 µg/L) was based on concentrations found in Douro 

River estuary (≈ 0.05 µg/L) (Ribeiro et al. 2009; Rocha et al. 2011). Each EE2 treatment 

concentration (T1 = 0.05 and T2 = 5 µg/L) had 3 replicates of 12-15 adult animals 

(practically with uniform size). The parallel control groups were subjected to ethanol only 

(0.01% (v/v)). The experiment was set under semi-static conditions, in glass aquaria, with a 

daily renewal of 100% of water volume (5 L), during 5 days. The animals were kept spatially 

well separated from each other. In every replicate, the water temperature was measured daily 

and the ammonia, nitrite and salinity were monitored at least twice a week. 

 

Histological preparation 

After the exposure period the animals were anesthetized using magnesium chloride (60 g/L; ± 

98%) (Butt et al. 2008), and their length, width, height, and fresh and total mass were 

measured. 

 

The soft body of each specimens was removed carefully and then prepared following a 

standard procedure for histology. Briefly, the fragments were fixed in 10% buffered formalin 

overnight, at room temperature. After 24 hours, the samples were dehydrated with increasing 

concentrations of ethanol (from 70% to 100%), cleared in xylene and infiltrated with paraffin 
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(Histosec, Merck); the dehydration and infiltration procedures were done using an automatic 

tissue processor (Leica TP1020, Germany). Final paraffin embedding was performed in an 

laboratory bench station (Leica EG 1140H, Germany).The paraffin blocks of randomly 

sampled animals from each treatment were serially sectioned (35-µm thick) on a motorized 

rotary microtome (Leica RM2155, Germany), and placed onto APES (3-amino 

propyltriethoxysilane) coated slides. The resulting slides were stained with hematoxylin and 

eosin and mounted with DPX media (Sigma-Aldrich, Germany). 

 

Stereological analyses 

Stained sections from the three treatments (solvent control: Sc, 0.05 µg/L: T1, and 5 µg/L: 

T2) were examined under a light microscope (Olympus BX50, Japan) equipped with a digital 

camera (Camedia C-5050, Olympus, Japan). The efficient Cavalieri’s principle (Gundersen 

and Jensen 1987) estimated the volume (V) of the pedal ganglion (and separately of its cortex 

and medulla), based on the formula:  

V = t ∙∑ A, 

where t is the mean distance between analyzed section planes, and A is the sectional area of 

the target of interest. The areas were determined via the stereological workstation (Olympus 

CAST-Grid, version 1.5, Denmark), running in a light microscope (Olympus BX50, Japan), 

equipped with a length gauge (microcator) (Heidenhain MT-12, Germany), a motorized stage 

with 1 µm X-Y movement accuracy (Prior, USA), and a CCD video camera (Sony, Japan) 

displaying live image in a 17’’ monitor (Sony, Japan). Analyses were done in fields captured 

with the 10 × objective lens. The areas of the cortex and medulla were read semi-

automatically in every section, by manually delineating the region of interest. The t was 

confirmed by measuring the section thickness with the microcator (see below). The total 

ganglionic volumes were further used to estimate the volume densities (VV) of the cortex and 

medulla in the ganglion: VV (medulla or cortex) = V (medulla or cortex) / V (ganglion).  

 

The total number (N) of the diverse neural cells in the ganglia was estimated via the optical 

disector-fractionator combination (Gunderson 1986), using the general formula: 

N = Q ∙ (1 / ssf) ∙ (1 / asf) ∙ (1 / hsf), 

where Q refers to the total number of cells actually counted in all the optical disectors; hsf is 

the height sampling fraction, which captures the ratio of the section thickness that was 

screened; asf is the area sampling fraction, i.e., the ratio between the area of the counting 

frame and the area covered by each x,y movement; ssf is the section sampling fraction, i.e., 
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the fraction of total sections sampled. Herein, half of total sections of each pedal ganglia were 

systematically sampled, and a minimum of 100 neurons and 100 glial cells were counted per 

ganglia. The procedure used the cited stereological workstation. Counts were done in live 

images captured under the 100× (NA=1.35) oil immersion objective lens. A systematic 

random sampling procedure was made for selecting the fields. The area of the counting frame 

(with forbidden lines) was 9600 µm2, and the XY-sampling step was set at 507 µm. To check 

and account for eventual non-uniform deformations, t was measured in every field; as we did 

not notice much variability the averaged t was used for hsf = h/t (Dorph-Petersen et al. 2001). 

Herein the average t was 33 µm and the disector h was 25 µm. We set a small top guard zone 

of 3 µm, viz. because we found no heterogeneous distribution of cells across the z-axis (von 

Bartheld 2002). 

 

As to cellularity, the data are given herein as N of neural cell, and further presented as N of 

neurons N of glial cells and, finally, N of pigmented cells. Additionally, when recoding the N 

of neurons each cell was tagged either as a “large” neuron (oval/round, often with 

cytoplasmic granules, diameter of ≈ 18 x 25 µm) or and as “small” neuron (oval/round, thick 

heterochromatin rim, diameter ≈ 7 x 15 µm). 

 
Statistical analyses 

The analyses were performed using the software SigmaStat (version 3.5; Systat software 

Inc.), where all data were tested for normality and homogeneity of variances, using the 

Shapiro–Wilk’s W-test and Levene’s test, respectively; square root transformation was 

applied to obey both conditions. Data were analyzed by one-way ANOVA, considering the 

three treatments (Sc, T1 and T2), a priori choosing the post hoc Tukey’s test in case of 

statistical significance of the ANOVA (i.e., p < 0.05). Data are given as mean ± standard 

deviation. Because the males and females did not show significant differences in what 

concerns the currently studied parameters, they were grouped in the presentation of the 

Results. 
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Results 

During the experiment physicochemical water parameters, viz. ammonia and nitrites, ranged 

from 0.13 to 1.18 mg/L and 0.01 to 0.24 mg/L, respectively. The mortality was 10%, with no 

statistical differences between groups. The morphometry of the animals sampled for the 

stereological analysis did not differ among the experimental groups; excluding the animal 

size as a possible confounding factor that could affect the results. The grouped morphometric 

results are as follows: length (3.6 ± 0.4 cm); width (1.1 ± 0.2 cm); height (2.7 ± 0.3 cm); 

fresh weight (1.8 ± 0.7 g); total weight (3.9 ± 1.5 g). 

 

Looking at the stereological data we found no significant differences in any of the studied 

targets in relation with the exposure conditions. The total mean V of the pedal ganglion and 

of its cortex and medulla were fairly constant across groups (Figure 1). The VV (cortex, 

ganglion) and VV (medulla, ganglion) was stable too, overall: 61 ± 5% and 39 ± 5%, 

respectively. Such stable volumes are in line with the N of all neural cells summed in the 

pedal ganglion, which were: Cs = 23895 ± 4056; T1 = 19430 ± 6119, T2 = 21962 ± 7599. 

Figure 2 offers a view of the total results for the N of glial cells, neurons, and pigmented 

neural cells, in decreasing order of abundance. Splitting the neurons in two size-related 

classes — the less numerous “larger” and the more abundant “smaller” nerve cells —no 

differences existed between across groups all assays; the N were: A) larger: Cs = 1235 ± 464; 

T1 = 1992 ± 1515; T2 = 1199 ± 665; B) smaller: Cs 4540 ± 1807; T1 = 4087 ± 1401; T2 = 

5296 ± 2076. 
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Figure 1. Total volume (µm3) of the whole pedal ganglion, and of its cortex and medulla, in animals 
from the three experimental treatments. Sc: Solvent control (ethanol at 0.01%); T1: EE2 at 0.05 µg/L; 
T2: EE2 at 5 µg/L. Data given as: mean ± SD. 
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Figure 2. Total number of neurons, glial cells and pigmented cells in the pedal ganglion of animals 
from the three experimental treatments. Sc: Solvent control (ethanol at 0.01%); T1: EE2 at 0.05 µg/L; 
T2: EE2 at 5 µg/L. Data given as: mean ± SD. 
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Discussion 

Herein, adult specimens of S. plana were exposed for a period of 5 days to nominal 

concentrations of 0.01% of ethanol (used as solvent) or to EE2, either at 0.05 or at 5 µg/L. 

This first experiment targeted the volume of the pedal ganglia and its cellularity as structural 

proxies of neural influences, having as a baseline framework pillars, among other, the 

knowledge that the invertebrate nervous system is quite plastic, that steroidal estrogens seem 

to model diverse physiological processes on bivalves by still unclear ways, that at least some 

neurons control these organisms reproductive processes, and that their neuropeptides and 

neurohormones may functionally interplay with other elements (viz. steroids). In addition, but 

relevant in the context, estrogenic action was shown able to interfere with agents, e.g., 

mitogen-activated protein kinases, which are known to govern cell mitosis (Canesi et al. 

2004, 2007). 

 

Considering that neither concentration of the synthetic estrogen could trigger quantitative 

changes in the structural proxies of pedal ganglion, our first exploratory data sets do not 

endorse the hypothesis that neural ganglia cellularity in bivalves can be impacted by acute 

exposure to EE2; at least within the range of the concentrations tested, that cover 

environmental scenarios. Additionally, even if some neurotrophic effects may have occurred, 

they did not impact on the gross volume of the ganglia, and both in the cellular cortex and in 

the neural fiber rich medulla. However, we must bear in mind that our findings do not imply 

that other sort of structural or functional changes may have occurred, or that longer exposure 

periods will not impact on the neuronal cell numbers. Indeed, in higher taxa we now know 

that estrogens, viz. 17β-estradiol, do have trophic effects on a variety of brain regions and in 

key neurocytological aspects, such as spine density and axonal outgrowth/retraction (de Lacalle 

2006). The estrogenic effects attain not only neurons but also glial cells, and include 

functional and structural (morphometric) parameters and proliferation, both in adult and 

developing brains (Fowler et al. 2005; McCarthy 2008). We could argue that it could be far 

reaching to hypothesize that the same sort of impacts could attain the nervous system of 

lower taxa, and particularly bivalves. Yet, the notion that estrogen stimulation can impact on 

neuronal elements of bivalves is strongly backed up by quite direct evidences. Particularly, 

Stefano et al. (2003a) elegantly proved that there is estrogen signaling in the pedal ganglia of 

M. edulis and that 17β-estradiol model the activation of its ganglionic microglia. 

Additionally, Stefano et al. (2003b) demonstrated that 17β-estradiol and an ERβ receptor 

were both present in the pedal ganglia of the same species, and that those elements governed 
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local NO release. In the latter work, the authors concluded that “estrogen processes appear to 

have been developed much earlier in evolution than previously thought”, and we do agree 

that more research is needed.  

 

Herein we used pre-spawning animals of both sexes that were grouped in the data 

presentation, because they did not show any major significant differences in the selected 

parameters. This is in agreement with our previous studies, where maturing animals of both 

sexes did not differ in those parameters either. Despite we do not expect that bivalves have 

the same kind of well-described endocrine feedback mechanisms like those the 

hypothalamic–pituitary–gonadal axis of vertebrates, one aspect that we can postulate that 

may influence the animal’s responses to experimental exposure to estrogens is the 

endogenous status in terms of amount of sex-steroids, and particularly of estradiol. Notably, 

at least in several bivalve species, including S. plana at the spawning period, we must bear in 

mind that animals of both sexes may not differ significantly as to organic levels of sexual 

steroids, and particularly of 17β-estradiol (Wang and Croll 2006; Ketata et al. 2007; 

Mouneyrac et al. 2008). With this in mind, if by one hand there are signs of differential 

responses between males and females when exposed to an estrogen (e.g., Wang and Croll 

2006), evidences support that experimentally induced estrogen responses seem depend on the 

gonadal maturation status. For instance, adult M. edulis exposed to estrogens (for 10 days) 

displayed a significant rise in estrogen receptor mRNA, as far as the mussels were exposed at 

an early stage of gametogenesis (Ciocan et al. 2010). Contrarily, exposure of mature M. 

edulis to the estrogens did not affect the mRNA level (Ciocan et al. 2010). In view of the 

above, it is justified to extend our tests to less maturate and particularly to undifferentiated 

specimens. This idea is also justified by the fact that despite the above cited interestingly 

similarity between males and females on (at least certain) sex steroid levels in tissues, there 

are also reports of seasonal changes, and not necessarily equal in either sex (Ketata et al. 

2007; Mouneyrac et al. 2008).  

 

The value of publishing “negative results” has been often stressed (Dirnagl and Lauritzen 

2010; Matosin et al. 2014). So, despite our “negative findings”, in view of supportive 

literature and logical rational, we propose to test our hypothesis further, by adding new tools 

and targets for shorter/acute exposures, conducting longer exposure assays, and by exploring 

in vitro assays with isolated ganglia. Importantly, this work stands as the 1st that used 
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unbiased stereology tools in bivalve experiments, and consequently the new quantitative data 

constitutes a sound baseline reference for future studies. 
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Final Remarks 

 

This Thesis contributed to advance the knowledge of the structure of the nervous ganglia of 

Scrobicularia plana, thus contorting to better understanding of the bivalve neuroscience in 

general. This study was the first to implement 3D-reconstruction techniques and stereology 

(firstly applied to the bivalve nervous system) to generate new qualitative and quantitative 

data on this species, considering the diverse ganglia types, the gonadal maturation status, and 

the age as facts and factors that could influence the neurocytology of this and other species. 

Also, we made a first effort to examine if exposure to estrogens impact on ganglia structure. 

 

Typically, 3D anatomy of the ganglia of bivalves has been described from gross observations 

from dissections and from general microscopic observations. These approaches can provide 

realistic information. Yet, there was no information about the 3D aspect of S. plana nervous 

ganglia (NG), and this fundamental aspect was studied and fully described in Chapter 3, in 

order to qualify and quantify that sort of structure. Total volumes, surfaces and NG relative 

proportions of cortex and medulla were measured for the first time. Data reveals that the size 

(total volume) and the internal composition (cortex and medulla) of NG no differ among 

sexes across ganglia. This study also proves that both males and females display specific 

differences among the different types of ganglia. These are seen firsthand in the total 

volumes, with the cerebral ganglia being these smaller than the visceral ones. Curiously, the 

different shapes of the cerebral and pedal ganglia resulted in the surface area of the former 

being not much different to the latter. That is, the somewhat pear-shaped appearance of the 

cerebrals present a summed larger (more than double) surface per unit of volume when 

compared with the somewhat more cylindrical pedal ganglion. It is not clear whether or not 

such morphological differences have functional implications, or if they signify some ancient 

form of “early folding” as seen in the long history of brain evolution. To our knowledge, 

these new volume-surface interrelations and facts seem still unreported in other bivalves.  

 

Herein we provide broad 3D size-related parameters that do not disclose major differences 

between sexes. However, this fact does not mean that there are no cytological, histological 

and other differences connected with the sex and seasonal reproductive cycle. We thus aimed 

to get other parameters (e.g., neural cell counts) that may illustrate differences between sexes.  
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Despite differences in volume or surface area, it is interesting to note that the relative 

volumes of the cortex vs. medulla are fairly constant across the different ganglia. Whatever 

the shape of each ganglion and the diversity in size, the outer cortex and the inner medulla 

maintained a fairly stable volume ratio of ≈ 1.5 (with a small variance between 1.6 in cerebral 

and 1.3 in the visceral). This suggests an optimal and strictly regulated structural balance for 

the ganglia of this species. It would be interesting to study these aspects in other bivalves, as 

anatomical features such as cell densities and cortex volumes are relevant to understand the 

evolution of the central nervous system (Roth and Dicke 2013). Finally, we wish to point out 

the linear correlations found in relation to the pedal volume and surface area vs. the animals’ 

biometric parameters. Within the size range of the specimens we studied, the bigger the 

specimen the bigger the pedal ganglia, but the size of the two other types of ganglia do not 

necessarily increase. The pedal correlations were consistently found in relation to all the 

biometric parameters. Maybe this is connected somehow with the fact that the pedal ganglion 

serves primarily to control the musculature of the foot (Bullock and Horridge 1965). 

 

Due to the findings reported above, it was considered vital to characterize the normal features 

of the neurocytology of S. plana. In this vein, further histological and ultrastructural studies 

were done in the nervous system of S. plana (Chapter 4). These studies revealed that the 

ganglionic cell population can be divided into three main categories (neurons, glial cells and 

pigmented cells). Nonetheless, two types of neurons were classified taking in account their 

size and cytological characteristics. So, one type of neurons showed bigger dimensions with a 

single main process emerging from the soma (unipolar neurons). Because in invertebrates it is 

often difficult to distinguish axons form dendrites, both in structural and functional points of 

view (Bullock and Horridge 1965), we also use the term neurite, which can be divided into 

primary neurites, axons (here mostly from unipolar neurons), and dendrites (Richter et al. 

2010). Rarely, we saw two processes emerging from the soma of large neurons. This finding 

is in accordance with the literature, because bipolar neurons are consistently found to be the 

far less dominant neuron types in ganglia of most invertebrates (Croll et al 2001; Orrha and 

Muller 2005). Our electron microscopy approach was not an aimed to be a fully detailed 

study, but revealed that large neurons are organelle rich cells, containing higher amounts of 

rough endoplasmic reticulum, mitochondria, and secretory granules. The other category of 

neurons, smaller in size, has less amounts of cytoplasm. Finally, glial cells, even smaller 

sized then neurons, were identified and classified in three morphotypes, according to their 
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approximate geometrical shape: fusiform, roundish, and triangular. Scattered in cortex are 

pigmented cells, distinct by the yellowish cytoplasmic colour and by the fact that the nucleus 

tends to be located at the margin of the cell body. Those cells also exist in the medulla, but 

being seen much more rarely when compared with the cortex. We have found only 

unmyelinated neurites but this is a matter worth further study, namely in light of the divergent 

data and continuous research about the presence of early-to-recent arrangements of 

myelination throughout its complex evolution process (Zalc 2006; Castelfranco 2015). Still 

regarding the neurons cytoplasm, especially of large ones, there are vacuoles/vesicles, which 

appear as light roundish spaces at light and as membrane bounded bodies of varying electron-

density when seen at electron microscopy. Some of these structures have large dense granules 

inside, much greater than the electron-dense or electron-lucent small vesicles that appear at 

varicosities or pre-synaptic regions of the axons. These vesicles are thought to serve multiple 

purposes, from packing of proteins and lipids to storage of neurohormones and neurotransmitters, 

and they are known to appear in various bivalves (Golding and Pow 1988; Vitellaro-

Zuccarello and Biasi 1990; Siniscalchi et al. 2004; Meechonkit et al. 2010). Herein we also 

verified that the extent/intensity of serotonin (immunohistochemical) positivity is in visceral 

ganglia in maturing females and males, higher than that observed in undifferentiated animals 

(i.e., with spent gonads). This connection with gonad progress is in line with a study of 

Hyriopsis (Hyriopsis) bialata, which show more intense staining of serotonin in the nerve 

fibres and termini of the visceral ganglia (Meechonkit et al. 2010). It can be concluded that 

mature S. plana specimens have stronger expression than undifferentiated ones, which may 

be connected with the role of serotonin in promoting bivalve gonad maturation and spawning. 

Overall, such a result strongly supports the need of further studies to get more baseline data 

in S. plana. Our work (Chapter 4) is the first to report immunoreactivity of neurotransmitters 

in mature (males and females) vs. undifferentiated S. plana. We show cells with consistent 

positivity for serotonin and dopamine in all ganglion types, while using a semi-quantification 

(pilot) approach of the staining to search for clues of sex-related and age-related differences. 

 

Then, in Chapter 5 both stereological and statistical approaches allowed us to evaluate the 

cellularity of the nervous ganglia of S. plana. Herein it was firstly hypothesized that due to 

the key involvement of the NG in the gonad differentiation and maturation of bivalves, their 

microscopic morphology could also vary between sexes. Also, because each NG type seems 

to have specific functions in bivalves, we further theorized that the location/function of the 
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NG may shape its size and also cellularity. To start tackling these hypotheses quantitative 

studies were made to obtain the total ganglion volume and amount of cells in each ganglion, 

for mature (males and females) and undifferentiated animals. Our data revealed that there is 

no interaction between gender and ganglia type. Nonetheless the significant effect of ganglia 

was found in their volumes and compartments (cortex and medulla). The left cerebral and the 

right cerebral ganglia are much similar in size. Considering all ganglia types, the volumes 

increase significantly towards the pedal ganglion; which is greater than the cerebral ganglia 

and much smaller than the visceral ganglion. The cortex and medulla significantly follow the 

trends of the whole ganglia and, overall, the relative volumes (VV) of the cortex are ≈ 60% 

and the medulla ≈ 40%. As to gender differences, one that is statistically valid concerns the 

total volume, which is greater in females than in the undifferentiated animals, with the males 

not differing from either of the other groups. Anyway, in whole, cortex, and medulla show 

significantly higher number of neurons and glia; but not of pigmented cells. The higher total 

number in the visceral ganglion is likely related with the direct/indirect control of a vast body 

area, which must be based on more neural cells. We disclosed for the first time that a small 

bivalve as S. plana has a mean total number of neural cells from 12000 (cerebral ganglia) to 

over 68000 (visceral ganglion). Additionally, the estimation of numerical densities [NV (cell, 

containing space)] for all neural cells and in all ganglia, between females vs. undifferentiated 

specimens, was taken into consideration, and we found that undifferentiated animals have ≈ 

2.3 more cells per unit of ganglionic volume when compared with either females or males; 

that are globally quite similar. These inferences suggest that, undifferentiated animals have a 

similar number of cells in their ganglia fitted into less volume. To conclude, it was estimated 

the glia-to-neuron ratio. As to the latter, our global data (all ganglia and gender combined) for 

suggest a ≈ 1:1 glia-to-neuron ratio in the cortex, and when joining the medulla the ratio rise 

to ≈ 1:1.5. Although the factor s gender and ganglia type act independently, the exact ratio 

depends on both of them, with cerebral ganglia having significantly lower ratios, and females 

showing the mean highest ratio. This are new data for malacology that makes us think about 

how much intricate and integrative neural networks it offers to the animal, and how it relates 

with unsolved issues in mollusks physiology; for instance related to nociceptive behavior, 

with presently at stake repercussions in animal welfare. 

 

The informative potential of using design-based stereological methods have been extended in 

Chapter 6, to investigate impacts of age of volume and cellularity in two adult size-classes, 
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and related with the gender (males and females). The Small group (average length of 2.4 cm 

in either sex) has from 2 to 3 years of age, and the Big group (3.8 cm) (in both sexes as well) 

has from 3 to 4 years of age. However, this should be viewed as an approximate age because 

as the length of the animal’s shell increases, the age estimation becomes more inaccurate 

(Green 1957). Irrespective of the lifespan range, and some uncertainty, there is no doubt that 

we worked with adult animals that differed in ≈ 1 year in age, and that were not extremely 

old. Importantly for comparative purposes regarding total numbers of neuronal cells, while 

older specimens were bigger and heavier, females and males of the same age did not differ in 

mass. As in our previous studies (viz. Chapter 5), the visceral ganglia are more voluminous, 

followed in size by the pedal, which was bigger than each of the cerebrals. Considering the 

effect of sex, and combining all animals, males have a marginally (but significantly) greater 

ganglionic volume, matching with a bigger cortex and medulla. Interganglionic differences 

were also found when looking at the relative importance of the cortex and medulla, with the 

visceral and the pedal ganglia having significantly greater relative volumes of the cortex (and 

smaller in what concerns medulla) compared with the cerebral ones. This scenario is partially 

in agreement with our previous study (Chapter 5), because earlier we found no differences in 

the relative volume compartments of visceral vs. pedal ganglia. These aspects are still very 

poorly studied, and for instance age can be one factor that influences both the relative and 

total volumes. Indeed, in our earlier study we used animals that have mean size values (and 

therefore age) that are in between those of size-cohorts used here. Our idea is supported by 

the fact that relative volumes found herein are significantly influenced by age, with big/older 

animals having greater cortical (and lesser medullar) relative volumes. Transversely to size 

classes, there is always a tendency for an increase in volume with more numbers of ganglion 

cells in bigger animals. In summary, as for gender effect, one that is statistically confirmed 

concerns the total volume of the ganglia, which is greater in males than in the females. As for 

the effect of ganglia type, visceral ganglia volumes are significantly larger than in pedal and 

cerebral ganglia. The cortex and medulla evidence basically similar differences’ pattern. 

Importantly is to tackle the question of the possibility that as the animal grows the number of 

cells could continually increase with age in all central ganglia of this species, in particular the 

number of neural cells. This will request further studies with bigger and surely older animals; 

following the fact that body size in bivalves correlates well with age (Ridgway et al. 2011). 

Finally, facing S. plana abundance, wide dispersal and tolerance to a range of biotic/ abiotic 
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factors, and the new neural data being generated, we now view this species as one promising 

model not only (e.g.) in ecotoxicology but also for neurogenesis and age-related researches. 

 

Estrogenic compounds, like ethinylestradiol (EE2), are widely distributed in the aquatic 

system. With this is mind we know that the invertebrate nervous system is quite plastic, that 

steroidal estrogens seem to model diverse physiological processes on bivalves by still unclear 

ways, that at least some neurons control these organisms’ reproductive processes, and that 

their neuropeptides and neurohormones may functionally interplay with other elements. In 

addition, but relevant in the context, estrogenic action was shown able to interfere with some 

mechanisms, e.g., mitogen-activated protein kinases, which are known to govern cell mitosis 

(Canesi et al. 2004, 2007). They may influence the microscopic anatomy of the nervous 

system of bivalves. Thus in Chapter 7 we start studying the possibility of implications of EE2 

exposure namely in the size (volume) of pedal ganglion and cellularity in S. plana. To start 

testing our hypothesis that EE2 can cause these (and other) neural impacts. Animals exposed 

for 5 days to EE2 (0.05 or 5 µg/L) were compared with those from a solvent control group 

(0.01% ethanol). The result of the stereological approach provided that they did not show any 

significant differences in the selected parameters (both sexes did not differ). No significant 

difference was found among all treatments for the volume and cellularity (negative findings). 

Anyway, facing the literature background and possible modes of action of steroidal estrogens 

in both vertebrates and invertebrates, including bivalves, more studies are justified, viz. using 

more technical approaches/targets, both with acute and chronic exposures in further studies. 

However, we must bear in mind that our findings do not imply that other sort of structural or 

functional changes may not have occurred, or that longer exposure periods will not impact on 

the neural cell numbers. Indeed, in higher taxa we know that estrogens, viz. 17β-estradiol, do 

have trophic effects on a variety of brain regions and in key neurocytological aspects. The 

estrogenic effects attain not only neurons but also glial cells, and include functional and 

structural (morphometric) parameters and proliferation, both in adult and in developing brains 

(Fowler et al. 2005; McCarthy 2008), and we therefore think that more research is needed 

and justified to extend our tests, namely to less maturated and particularly to undifferentiated 

specimens. More studies on the nervous and sensory systems of S. plana will useful, namely 

bearing in mind a growing interest in using S. plana as bioindicator of aquatic environments.  
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