T1 – Myokines
T1:PO.034
Change of circulating irisin concentrations in morbidly obese patients after roux-en-y gastric bypass
Lee Y.1, Hur Y.2, Choi J.1
1Department of Family Medicine, Obesity center, University Hospital and Faculty of Medicine in Inha University in Incheon, Republic of Korea, 2Department of Surgery, Obesity center, University Hospital and Faculty of Medicine in Inha University in Incheon, Republic of Korea

Background: Irisin, a humoral factor secreted from muscle (myokine), has been known to stimulate the program of brown fat development in adipose tissue (“browning”). Recent animal studies suggested that irisin has possibility to enhance energy expenditure in obese patients. However, we have limited clinical data to understand biology of irisin in human, especially in morbidly obese patients taken bariatric surgery.

Methods: This is a pilot, single center, longitudinal, observational study. We recruited twelve morbidly obese subjects (25–56 years, 29.6~45.9 kg/m² of BMI) who underwent Roux-en-Y gastric bypass surgery (RYGBP) and visited the obesity center postoperatively. Fasting serum samples for measuring irisin were collected preoperatively, and one and nine months after RYGBP. We analyzed the association between irisin concentrations and clinical characteristics.

Results: Serum irisin concentrations, 1.0115 ± 0.2282 μg/ml ranging from 0.7347 to 1.4928 pre-operatively, altered bidirectionally on one month after RYGBP. Five out of twelve subjects showed increased irisin levels from 0.9028 ± 0.7387 to 1.0891 ± 0.2738 (range, 0.8393 – 0.9865) μg/ml to 1.6975 ± 0.6593 (range, 1.0439 – 2.5102) μg/ml, while seven of them had decreased irisin levels from 1.0891 ± 0.2738 (range, 0.7347 – 1.4928) μg/ml to 0.8304 ± 0.1855 (range, 0.5535 – 1.1560) μg/ml. Serum irisin concentrations on 9 months were 1.1108 ± 0.1515 μg/ml (range, 0.9158 – 1.3481), and eight had elevated irisin levels by 0.1827 ± 0.1400 μg/ml and four had non-elevated levels by -0.0675 ± 0.0538 μg/ml compared with pre-operative values.

Conclusions: The alteration of serum irisin level was associated with weight loss effect of Bariatric surgery.

T1 – Gut microbiota
T1:PO.035
Influence of panax ginseng on obesity and gut microbiota in obese middle-aged Korean women
Song M.1, Kim H.1, Choi H.1, Choi Y.2, Chin Y.3, Wang J.1
1Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 2Department of Endocrinology, Dongguk University, 3College of pharmacy, Dongguk University

Gut microbiota is regarded as one of the major factors involved in control of body weight. The anti-obesity effects of ginseng and its main constituents have been demonstrated, however, the effects on gut microbiota are still unknown. To investigate the effect of ginseng on gut microbiota, 10 obese middle-aged Korean women took Panax ginseng extracts for eight weeks and assessment of body composition parameters, metabolic biomarkers, and gut microbiota composition was performed using 16S rRNA gene-based pyrosequencing at baseline and at wk 8. Significant changes were observed in body weight and BMI, however, slight changes were observed in gut microbiota. We divided the subjects into two groups, the effective weight loss group (EWG) and the ineffective weight loss group (IWG), depending on weight loss effect, in order to determine whether the anti-obesity effect was influenced by composition of gut microbiota, and the composition of gut microbiota was compared between the two groups. Before ginseng intake, significant differences of gut microbiota were observed between both at phyla and genera and the gut microbiota of the EWG and IWG was segregated on a principal coordinate analysis plot. Results of this study indicate that ginseng exerted a weight loss effect and slight effects on gut microbiota in all subjects. In addition, its anti-obesity effects differed depending on the composition of gut microbiota before ginseng intake.

T1:PO.036
High-fat diet-induced obesity rat model: A comparison between wistar and sprague-dawley rat
Marques C.1,2, Meireles M.1,2, Norberto S.1, Leite J.1, Freitas J.1,3, Pestana D.1,2, Faria A.1,4,5, Calhau C.1,2
1Departamento de Bioquimica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal, 2CINTESIS, Centro de Investigação em Tecnologias e Sistemas de Informação em Saúde, Porto, Portugal, 3Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 4Faculdade de Ciências da Nutrição e da Alimentação, Universidade do Porto, Porto, Portugal, 5Faculdade de Ciências, Universidade do Porto, Porto, Portugal
Introduction: In the past decades, obesity and associated metabolic complications have reached epidemic proportions. For the study of these pathologies, a number of animal models have been developed. However, a direct comparison between Wistar and SD rats as models of high-fat (HF) diet-induced obesity has not been adequately evaluated so far.

Methods: Wistar and SD rats were both assigned for two experimental groups for 17 weeks: standard (S) and high-fat (HF) diet groups. To assess some of the features of the metabolic syndrome, oral glucose tolerance tests, systolic blood pressure measurements and blood biochemical analyses were performed throughout the study. The gut microbiota composition of the animals from each group was evaluated at the end of the study by real-time PCR.

Results: HF diet increased weight gain, body fat mass, mesenteric adipocyte’s size, adiponectin and leptin plasma levels and decreased oral glucose tolerance in both Wistar and SD rats. However, the majority of these effects were more pronounced or earlier detected in Wistar rats. The gut microbiota of SD rats was less abundant in Bacteroides and Prevotella but richer in Bifidobacterium and Lactobacillus comparatively to the gut microbiota of Wistar rats. Nevertheless, the modulation of the gut microbiota by HF diet was similar in both strains, except for Clostridium leptum that was only reduced in Wistar rats fed with HF diet.

Conclusion: Both Wistar and SD Rat can be used as models of HF diet-induced obesity although the metabolic effects caused by HF diet seemed to be more pronounced in Wistar Rat. Differences in the gut microbial ecology together with other mechanisms, such as increased gut permeability, may account for the worsened metabolic scenario observed in Wistar Rat.

Acknowledgement: This work was supported by Fundação para Ciência e Tecnologia (PTDC/AGR-TEC/2227/2012; SFRH/BPD/75294/2010; SFRH/BD/78367/2011 and SFRH/BD/93073/2013).

T1 – Gut hormones/incretins

T1:PO.037

The relationship between serum amylase and fasting plasma ghrelin, peptide Y3-36 in healthy men

Tak Y.J.1, Lee S.Y.2

1Department of Family Medicine, Pusan National University Hospital, Pusan National University Hospital, Busan, South Korea,
2Obesity, Nutrition and Metabolism Clinic, Department of Family Medicine, Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea

Objective: Both appetite and carbohydrate metabolism are important in development of obesity. Recently serum amylase has been shown to be associated with obesity as well as metabolic disorder. Here, we investigated the relationship between total amylase, ghrelin and peptide YY (PYY) in healthy men.

Materials and Methods: In this cross-sectional study, twenty-one men were enrolled and all subjects had no symptoms and no any medical history or diseases. Serum total amylase, fasting serum levels of ghrelin and PYY3-36 together may relate to obesity, although further research is required to find the mechanism behind these associations.

Results: Statistical significance test between groups was done by Mann-Whitney U-test.

Conclusion: Serum amylase levels were related with ghrelin and PYY3-36 in men. Amylase, ghrelin and PYY3-36 together may relate to obesity, although further research is required to find the mechanism behind these associations.

Fig. 1. Serum amylase (A) and Ghrelin levels (B) between obese and non-obese group. Statistical significance test between groups was done by Mann-Whitney U-test

Fig. 2. Correlation between waist circumference and serum amylase (A), ghrelin (B), peptide YY3-36 (C)