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Abstract 

Mindelo Migmatitic Complex (MMC) outcrops in the coastal zone north of Porto 

(Portugal) and consists of a set of migmatitic and granitic lithologies.  

All migmatites represent the sum of a series of processes occurring in parallel, or 

sequentially, under the influence of various factors and generally show lithological 

heterogeneity.  In MMC was recognized the presence of metagreywackes and calc-

silicate rocks that remain as resisters, patch-metatexites, banded-metatexites, 

diatexites, leucogranites, two-mica granites and aplite-pegmatites.  

Field relationships, accurate petrographic observations, geochemistry, Sm-Nd and Rb-

Sr isotopic signature and SHRIMP zircon analyses allowed making a comprehensive 

characterization of various aspects of the rocks cropping out in this area and their 

relationship with the metasedimentary rocks in its surroundings. 

The dominant process for generating the MMC migmatites was partial melting, being 

the Injection a minor contributor.  

The data obtained by the diverse analytical methods suggest that the Schist-

Greywacke Complex (SGC) metasediments cropping out in the neighbouring of MMC 

were the protolith that originated the migmatitic lithologies. Moreover, a co-genetic 

relationship between the different lithologies of MMC was inferred. The chemical and 

mineralogical dissimilarity between them result from their derivation from different 

crustal levels and different melting rates rather than of a marked difference in the 

protolith lithologies. 

A metamorphic gradient was observed from the coastal zone to the interior showing a 

gradual transition from the sillimanite-K-feldspar zone to sillimanite, staurolite-, biotite- 

and chlorite-zone. The metamorphic sequence, the mineralogical associations and the 

geometric relations Si/Se suggest that the process in the origin of the metamorphic 

gradient has a regional character, reached moderate pressure and temperature 

conditions and is related with the first Variscan deformation phase. During the last 

Variscan deformation phase (D3) an increase in temperature and decompression 

occurred, conditioned by the installation of the two-mica syn-tectonic granites. A first 

metamorphic event (M1), attaining condition of P > 490 MPa and 560 < T > 600 ºC, 

reflects the burial and heating. This metamorphic event was followed by 

decompression and temperature increase leading to andalusite and cordierite 
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development during a later metamorphic event (M2). The migmatization and anatexis 

are the result of the last metamorphic event. 

The melting has occurred in several structural levels and thus at different pressure and 

temperature conditions, resulting in rocks with specific characteristics: i) in shallow 

levels (<350 MPa) migmatites are formed essentially by fluid-present partial melting 

followed by fluid-absent incongruent biotite melting producing peritectic cordierite, 

quartz, plagioclase and minor amounts of K-feldspar. The melt segregation led to its 

crystallization in dilatant sites forming massive bodies and veins of leucogranite.; ii) in 

slightly deeper levels the melting rate is higher, which leads to the formation of 

diatexites that intruded metatexites; (iii) at deeper levels higher pressure permits the 

occurrence of muscovite and biotite melting reactions that produced a large amount of 

typical two-mica granite melts. This material rises in the crust and incorporates 

abundant xenoliths forming a very heterogeneous granitic body.  

It is suggested that multiple fluid pulses affected the MMC in subsolidus conditions: a 

first pulse with K-bearing fluids, a second pulse with boron-bearing fluids and a third 

pulse containing silica-bearing aqueous-fluids.  

The K-bearing fluids affected all the MMC lithologies and caused structurally controlled 

sub-solidus K-metasomatism, revealed by: i) the filling of miarolitic cavities and micro-

fracturing; ii) alteration processes in the metagreywacke and calc-silicate nodules; iii) 

replacement of plagioclase crystals in leucosomes, leucogranites and two-mica 

granites; iv) wide variation in the K content, especially in leucosomes and leucogranites 

(unrelated to the silica content), and the inverse correlation between the K and the 

Na2O+CaO content in this lithologies.  

The existence of leucogranites and two-mica granites showing localized replacement of 

biotite by tourmaline and symplectitic intergrowth of tourmaline + quartz + K-feldspar, 

the occurrence of tourmalinites associated with fractures and the character post-

kinematic of tourmaline in the SGC metasediments, as well as the occurrence of aplite-

pegmatite veins showing abundant tourmaline suggest that latte boron-rich fluids also 

affected the MMC and surrounding metasedimentary sequence.  

The entrainment of later silicate aqueous fluids is inferred from: i) the muscovitization of 

tourmaline, biotite and plagioclase all over the MMC; ii) presence of quartz-veins 

cutting all the lithologies; iii) large quartz-crystals bands in some calc-silicate nodules 

that include the mineral paragenesis of the fresh rock; iv) retrograde alteration of 

staurolite, garnet, andalusite and biotite in the metasedimentary sequence.  
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The several pulses of different fluids that affected the MMC are probably related to the 

installation of the variscan syn and late- D3 tectonic granites since their influence is 

more intense in the neighbouring of the granitic bodies and the isotopic signature of the 

aplite-pegmatites coincide with the isotopic signatures of the Central Iberian Zone syn-

tectonic granites studied by Beetsma (1995).   

U-Pb SHRIMP analytical procedure was performed in zircons from a diatexite sample. 

Zircons show an inhered core and an overgrowth rim. The ages measured in the 

inhered cores are mostly Ediacaran (75%), showing a concentration peak around 590 

Ma. The overgrowth rims show Variscan ages (Carboniferous) between 319 ±11 and 

309 ±3 Ma and are suggested to reflect the age of the anatectic process.  The 

Ediacaran age to the protolith and the Carboniferous ages for the anatectic process are 

also confirmed by Rb-Sr system results.  

The Mindelo Migmatite Complex represents an example of migmatites formed in low 

pressure conditions and illustrates some of the reactions involving melting in high 

grade pelitic rocks and subsequent mineral alterations due to infiltration of late different 

fluids.  

 

Key-words: LP-HT migmatites, anatexis processes, fluids, metamorphic gradient.  
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Resumo 

O Complexo Migmatítico do Mindelo (CMM) aflora na área costeira a norte do Porto 

(Portugal) e é composto por um conjunto de litologias migmatíticas e graníticas.  

Todos os migmatitos representam a soma de uma serie de processos que ocorrem em 

paralelo ou sequencialmente, sob a influência de vários factores e geralmente 

apresentando heterogeneidade litológica. No CMM foi reconhecida a presença de 

metagrauvaques e rochas calcossilicatadas que permanecem como resisters, 

metatexitos “mosqueados”, metatexitos bandados, diatexitos, leucogranitos, granitos 

de duas micas e aplitopegmatitos.  

As relações de campo, petrografia, geoquímica, assinatura isotópica de Sm-Nd e Rb-

Sr e a análise de zircões pelo método de SHRIMP permitiram uma caracterização 

abrangente das rochas aflorantes nesta área e da sua relação com os 

metassedimentos do Complexo Xisto-grauváquico aflorantes na sua proximidade.  

O processo dominante para a geração dos migmatitos foi a fusão parcial e anatexia, 

tendo o processo de injecção uma contribuição menor.  

Sugere-se que os metassedimentos do Complexo Xisto-grauváquico (CXG) são o 

protólito que originou as litologias do MMC tendo como base as relações de campo, a 

similitude litológica, composição química e assinatura isotópica idênticas e idade de 

zircões coincidente. Foi também estabelecida uma relação cogenética entre as 

litologias graníticas e migmatíticas aflorantes no MMC. A heterogeneidade litológica 

parece ter resultado essencialmente da ocorrência de processos anatéticos em 

diferentes níveis estruturais e com diferentes taxas de fusão.  

Foi assinalado um gradiente metamórfico desde a zona costeira para o interior (para 

Este) que apresenta transição gradual desde a zona da sillimanite-feldspato-potássico, 

silimanite, estaurolite, biotite e, finalmente, zona da clorite. A sequência metamórfica, 

as associações minerais e as relações geométricas sugerem que o processo que 

gerou as zonas metamórficas tem um caracter regional, atingindo pressões e 

temperaturas moderadas relacionadas com a primeira fase de deformação Varisca. 

Durante a terceira fase de deformação Varisca ocorre aumento de temperatura e 

descompressão, condicionadas pela instalação dos granitos de duas micas sin-

tectónicos. O primeiro evento metamórfico terá atingido condições de P > 490 MPa e T 

~580 ºC. Após este primeiro evento ocorre um segundo evento, em condições de 
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baixa pressão (< 350 MPa)  e alta temperatura. A migmatização e anatexia seriam 

resultantes deste último evento metamórfico.  

A fusão ocorreu em vários níveis estruturais e, por isso, sob diferentes condições de 

temperatura e pressão, resultando em rochas com características específicas: i) em 

níveis superficiais (< 350 MPa) ocorre fusão parcial em regime hidratado, originando 

principalmente leucossomas trondhjemíticos,  seguida por fusão incongruente de 

biotite com produção de cordierite peritética, quartzo, plagioclase e quantidades 

menores de feldspato potássico - os leucogranitos e os veios de leucogranito são o 

resultado da migração de leucossomas trondjemiticos; ii) a níveis ligeiramente mais 

profundos, a taxa de fusão é superior levando à formação de diatexitos que intruem os 

metatexitos; iii) em níveis mais profundos ocorrem reações de fusão de moscovite e 

biotite que produzem grandes quantidades de fundido representativo de granito de 

duas micas. Este material eleva-se na crusta e incorpora abundantes xenólitos 

formando um corpo granítico muito heterogéneo. 

Em condições subsolidus, vários tipos de fluidos afectaram as rochas do CMM: um 

primeiro pulso de percolação de fluidos ricos em potássio, um segundo pulso contendo 

fluidos ricos em boro e, por último, fluidos silicatados.    

Os fluidos ricos em potássio afetam todas as litologias do Complexo Migmatítico de 

Mindelo provocando metassomatismo potássico estruturalmente controlado com 

feldspatização da plagioclase, preenchimento de cavidades miarolíticas e 

desenvolvimento de megacristais de feldspato em alinhamentos bem definidos. 

Posteriormente, fluidos ricos em boro levam à turmalinização parcial de leucogranitos, 

granitos de duas micas e da sequência metassedimentar, à ocorrência de turmalinitos 

em zonas de falha, assim como à instalação de aplitopegmatitos com turmalina que 

cortam todas as outras litologias. O mais recente influxo de fluidos aquosos levou à 

muscovitização da turmalina, biotite, plagioclase, andaluzite, cordierite e estaurolite. 

Os vários pulsos de percolação de fluidos podem estar relacionados com a instalação 

dos granitos sin a tardi-tectónicos, uma vez que a sua influência é mais intensa junto 

aos corpos graníticos e a assinatura isotópica dos aplitopegmatitos coincide com a 

assinatura isotópica dos granitos sin-tectónicos da ZCI estudados por Beetsma (1995).  

Foram realizadas análise de zircões de uma amostra de diatexito por SHRIMP e 

obtidas idades com base no método U-Pb. Os zircões apresentam um núcleo herdado 

e um bordo sobrecrescido. As idades medidas para o núcleo são principalmente 

Ediacáricas (75%) com um pico de concentração próximo dos 590 Ma. Os bordos 
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sobrecrescido apresentam idades Carboníferas (Variscas) entre os 319 ±11 e os 309 

±3 e considera-se que representam a idade do processo anatético. A idade Ediacárica 

para o protólito e a idade Carbonífera para o processo anatético são confirmadas 

pelos resultados do sistema Rb-Sr.  

O Complexo Migmatítico do Mindelo representa um exemplo de migmatitos originados 

sob baixa pressão. Migmatitos em vários estágios de evolução afloram nesta área, o 

que permitiu inferir a evolução destas rochas durante o processo anatético e as 

alterações mineralógicas posteriores, devido à infiltração de vários tipos de fluidos. 

 

Palavras-chave: Migmatitos BP-AT, processos anatéticos, fluidos, gradiente 

metamórfico. 
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“I think that there is only one way to science – or to 

philosophy, for that matter: to meet a problem, to see its 

beauty and fall in love with it; to get married to it, and to 

live with it happily, till death do you part - unless you 

should meet another and even more fascinating problem, 

or unless, indeed, you should obtain a solution. But even 

if you obtain a solution, you may then discover, to your 

delight, the existence of a whole family of enchanting 

though perhaps difficult problem children for whose 

welfare you may work, with a purpose, to the end of your 

days.” 

Karl Popper 

 

1.1. Objectives 

In 2008 the 8th meeting of the Structural Geology Group took place. One of the field-

trips, monitored by M. A. Ribeiro, was on the costal line north of Porto. Recently 

graduated, I was fascinated to discover “so close to home” a type of rock on which I 

had just heard about: “migmatites”. 

After examining the previous studies on the area, only general descriptions about these 

lithologies in papers published back in the 60s were found, as well as a didactic 

approach realized by Lopes (2008) and Ferreira (2011).  Thus, it was concluded that 

this migmatitic massif and surroundings require further investigation. That was the task 

we intent on the realization of this PhD thesis. 

 

As is characteristic of migmatite areas, in Mindelo Migmatite Complex (MMC) distinct 

lithologies crop out, both of sedimentary and magmatic origin, namely: 

metagreywackes, patch-metatexites, banded-metatexites, diatexites, leucogranites, 

two-mica granites and aplite-pegmatites (and later lamprophyres that will not be 

studied in this thesis).  

This work seeks to answer some questions about the conditions governing the genesis 

of these rocks, specifically:  
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1 – Did partial melting produce the migmatites?  

In fact there are processes other than partial melting that can produce rocks resemble 

migmatites, showing light-colored patches, layers and veins in a dark host, namely sub-

solidus segregation and injection of vein of felsic magma into a host of another 

composition. To answer this question it is necessary to find evidences of partial 

melting. That can be provided by accurate petrographic studies since there are several 

microestrutural criteria that can be used to infer the former presence of melt.  

 

2 – What is the relationship between the surrounding lower-metamorphic grade 

metasediments and migmatites?  

In intimate relationship with the migmatites there are several granitic massifs and 

metasedimentary sequences. The metasedimentary sequence adjacent to the Mindelo 

Migmatite Complex has been associated with the Schist-Greywacke Complex (Douro-

Beiras Super Group) (e.g. Teixeira et al. 1965; Pereira et al., 1992). More recently, it 

was assigned more specifically to the Beiras-Group (Oliveira et. al., 1992).   In an 

attempt to understand the relationship between migmatites and surrounding rocks the 

study was distributed into two distinct sectors:  

 Sector 1, covers the coastal area, from Póvoa do Varzim to Leça da Palmeira, 

where crop out the migmatitic lithologies and the spatially associated granites.  

 Sector 2, includes an area parallel to the Sector 1, from Aguçadoura to 

Fânzeres, where crops out the Douro-Beiras Super Group. This 

metasedimentary sequence will be called “Schist-Greywacke Complex (SGC)” 

from now on, in accordance with the classic denomination (Carrington, 1950).  

 

3 - What is the metamorphic zoning and field gradient in the area? 

The field relations, structure and metamorphic gradient of the two Sectors was studied 

in an attempt to understand the spatial and temporal relationship between deformation 

and metamorphic blastesis and pressure / temperature conditions that controlled the 

metamorphism and migmatization. 
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4 - What was the protolith of these migmatites?  

The metasediments cropping out in the vicinity of migmatites may or may not be the 

protolith that give rise to the migmatitic lithologies. To respond to this question, field 

relations, geochemistry and isotopic chemistry (Rb/Sr, Sm/Nd and U/Pb) studies were 

conducted in an attempt to understand if the chemical and isotopic characteristics of 

metasediments and metatexites are coincident or whether, conversely, are distinct. 

 

5 - Is there a relationship between the migmatites and the granitic rocks surrounding 

them? 

The granitic massifs that outcrop within and surrounding the migmatites were 

considered syn-tectonic relatively to the third variscan deformation phase and assigned 

to two-mica granite series in several studies (e.g. Ferreira et al., 1987; Pereira, et. al.; 

1992; Almeida et al., 2001,2014). Field work, petrographic, geochemical and isotopic 

studies were made trying to find if there is a cogenetic relationship between the 

migmatites and these granitic rocks. That is, we try to know whether the granites derive 

from the same type of protolith in the same anatectic process, or if the anatectic 

process that gave rise to the two-mica granites is different.  

 

6 - What was the cause of the lithological diversity and heterogeneity in the MMC?  

We try to understand if the lithological diversity in the MMC is related to different 

anatectic events or to a single anatectic process that develops at different structural 

levels and consequently at different pressure and temperature conditions, resulting in 

rocks with specific characteristics.  

 

7 – What types of fluids were present during the anatectic process?  

Petrographic examination of fluid inclusion assemblages, microthermometric 

measurements and Raman spectroscopy of some samples were used to provide 

information about the thermal and chemical evolution of the fluids present during 

mineral crystallization.  
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8 – Is it possible to date the anatexis event? 

U–Pb SHRIMP zircon dating was performed in a diatexite sample. Given the constraint 

of time and money that limited the dating to only one sample, it was considered that the 

diatexites would be the most appropriate type of lithology to provide information about 

the age of the geological processes that gave rise to the MMC. Diatexites show 

relatively high quantity of zircon and underwent a rate of partial fusion more elevated 

than migmatites. Leucosomes show very low zircon quantity, most of them associated 

with restitic biotite.  

A diverse methodological approach was taken in addressing these questions: field 

relations were used to elucidate migmatite and surroundings organization and 

structure; detailed petrography and mineral chemistry were used to determine which 

minerals co-existed at peak metamorphism; whole-rock chemistry was used to 

geochemically characterize the various lithologies and establish the possible 

relationships between them; Rb-Sr, Sm-Nd and U-Pb  isotopic studies were used to 

constrain age and protoliths; thermobarometric calculations were used to establish a 

pressure temperature framework for metamorphism;  and, lastly, fluid inclusion studies 

helped to recognize the fluid history of the area. 

 

 

1.2. Migmatites and anatexis concepts  

The debate about what the migmatites represent and the processes involved in its 

formation was directly related to the prevailing concepts about the regional high-grade 

metamorphism.   

Hutton (1795) believed that partial melting changed the pelitic sediments and 

crystalline schists in gneisses. Lyell (1855) was a step forward and held that the 

granites are formed where the partial melting process was stronger and more 

complete. However, the migmatite terminology has evolved only later, when Sederholm 

(1907) introduced the word anatexis, meaning melting or re-melting rocks, to describe 

all cases in which the melting was not complete. Also introduced the term migmatite to 

describe the rocks with "mixture of two genetically different constituents, being an 

intrusive for other ...”.  Mehnert (1968) made intense work in migmatites from Finland 
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that defined as "... a rock that consists of two or more megascopic different parts, one 

of which is usually in the stage more or less metamorphosed and the other showing 

pegmatitic, aplitic, granite or generally plutonic appearance”. Ashworth (1985) refined 

the concept of migmatite as "a metamorphic rock located in areas of medium to high 

grade metamorphism, that is heterogeneous on a macroscopic scale …". Sawyer, 

(2008) considers that “one of these migmatite parts must have been formed by partial 

melting of rocks and the other must be the restitic component”.  

Currently it is recognized that the anatectic processes, the transport of melts and the 

accumulation of magmas are fundamental mechanisms by which the crust 

differentiates and heat and mass are redistributed in orogens (Brown, 1994; Sawyer, 

1996, 2001; Brown & Solar, 1998; Vanderhaeghe, 2001; Teyssier & Whitney, 2002; 

Olsen et al., 2004; Teyssier, et al., 2005; Brown, 2007, 2008, 2013). Exhumed 

orogens commonly expose migmatite cored gneiss domes that represent former 

partially molten crust (Whitney et al., 2004). Orogenic crust differentiates through 

partial melting, melt segregation and extraction, melt transport, and emplacement of 

melt as granite into upper crustal levels.  

The record of transfer of melt from segregation to emplacement is commonly preserved 

in migmatite terrains and migmatite-cored gneiss domes as a remnant permeability 

network, represented by interconnected leucosomes and granite dikes and veins 

(Brown, 2008; Weinberg & Mark, 2008).  

The studies of migmatites are of crucial importance in the understanding of the genesis 

of the large volume of granitic magma. The migmatites are considered to represent the 

paragenesis of these magmas at the time of his generation. Thus, migmatites provide a 

unique perspective of a fundamental process of evolution of the earth (Sawyer, 2008a). 

The migmatites are some of the most complex and aesthetically interesting rocks 

showing a variety of textures and structures. The most impressive consist of light-

colored quartz-feldspathic segregation on a darker host, with lighter segregation often 

presenting a diverse and spectacular appearance, sometimes meandering, other 

cutting, and other still discrete, or diffuse or bent. 

All migmatites represent the sum of a series of processes occurring in parallel, or 

sequentially, under the influence of various factors and are mechanically 

heterogeneous. There are four basic parts of a migmatite, although not always occur in 

all migmatites: 1) partial melted fractions; 2) fractions where the melt was removed; 3) 

fractions where the melt accumulated, or injected, and 4) fractions which do not melted 



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

 

8 

 

at all. Each of these fractions has its own morphology (or structure), mineral 

paragenesis, composition and microstructure. Consequently, there is a terminology to 

describe and define each of them.  

The terminology used to the lithological description will be that proposed by IUGS 

Subcommission on the Systematics of Metamorphic Rocks (Web version of 01.02.07), 

namely:  

Metatexite is a variety of migmatite with discrete leucosomes and melanosomes, 

generally preserving the former structure;   

Diatexite is a type of migmatite where the darker and the lighter parts form schlieren 

and nebulitic structures which merge into one another; 

Leucosome is the lightest-colored parts of a migmatite;  

Melanosome is the darkest parts of a migmatite, usually with prevailing dark minerals;  

Paleosome is a part of a migmatite representing the parent rock;  

Neosome is the newly formed parts of a migmatite. The neosome generally consists of 

leucosome and restite;  

Restite is the remnant of a metamorphic rock from which a substantial amount of the 

more mobile components have been extracted without being replaced; 

Resister is a rock offering greater resistance to granitization than another by virtue of 

its composition or its ‘impenetrable’ fabric.  

 

 

 

 



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

 

9 

 

 

 

 

 

 

 

 

CHAPTER II - GEOLOGICAL SETTING 

  



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

 

10 

 

  



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

 

11 

 

 

“Knowledge of Nature is an account at bank, where 

each dividend is added to the principal and the interest 

is ever compounded; and hence it is that human 

progress, founded on natural knowledge, advances 

with ever increasing speed.”  

           G.K. Gilbert  

 

 

2.1. Regional geology 

Geologically, the studied area lies within the Central Iberian Zone (CIZ), the innermost 

zone of the Iberian Massif, one of the most complete exposures of the European 

Variscan Belt. It is located in the westernmost part of the European Variscan Chain, 

and together with the Armorican Massif defines a major mega-structure, called Ibero-

Armorican Arc (Dias e Ribeiro, 1995; Ribeiro et al., 2007).  

In this chapter we will frame the study area in the context of the European and 

Peninsular geology, particularly regarding the Iberian Massif and the Central Iberian 

Zone.  

 

2.1.1. Variscan Orogeny 

The Early Devonian to Middle Carboniferous collision of Laurasia (Laurentia + Baltica) 

and Gondwana, between which smaller Precambrian continental blocks (Avalonia, 

Armorica, Iberia and Bohemia) were squeezed, resulted in the closure of three major 

ocean basins, (Rheic, Theic and Galicia-Massif Central) (e.g., Ribeiro et al., 1990, 

2007; Matte, 1991, 2001; Debelmas and Mascle, 2002). The resulting Variscan or 

Hercynian orogenic chain extends from Iberia to east through Central Europe into 

Poland. 

The Variscan cycle began in the Upper Proterozoic and early Paleozoic with episodes 

of continental rifting, followed by the occurrence of subduction and obduction of the 

oceanic crusts during the Silurian/lower-Devonian and, finally, acretionary process by 

convergence during the period of 390-300 Ma, with amalgamation of various 
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continental domains of peri- (or north-) Gondwanan origin, and the resorption of the 

intervening oceanic domains. After the collisional stage an extension in intra-

continental context occurs between 380 and 280 Ma (Matte, 1991, 2001). The orogenic 

variscan events affected both the Cadomian basement, which was heterogeneously 

reworked and overprinted, and the Paleozoic cover (Ribeiro et al, 2007). 

The Variscan chain is characterized by axial geotectonic zones, where the oldest 

terrains (Upper Proterozoic to Lower Paleozoic) crop out, as well as most of the 

variscan granitoids. On both sides these axial zones occur Devonian-Carbonic basins 

with low-grade metamorphism and absence of granitoids. This symmetry shows dual 

convergence structures and deformation migration to the outside of the chain over time 

(e.g. Matte, 1991; Debelmas and Mascle, 2002). In the SW Europe Variscides the main 

structure is dominated by the Iberian-Armorican Arc (Ribeiro, et al. 2007).  

  

The studied area belongs to the Iberian Massif. This massif had a complex evolution 

that is reflected in the individualization of tectonostratigraphic zones based on 

stratigraphic, tectonic, magmatic and metamorphic criteria and on the occurrence of 

exotic terranes (ophiolites) and shear zones (e.g. Lotz, 1945; Julivert et al., 1972; 

Quesada, 1991, 1992; Martinez Catalan et al., 2014). The tectonostratigraphic division 

of the Iberian Massif has evolved over time depending on the available data and the 

elements considered. Currently essentially six major divisions are considered, including 

the Cantabrian Zone, the West Asturian–Leonese Zone, the Central Iberian Zone, the 

Ossa-Morena Zone; the South Portuguese Zone and the Galiza-Trás-os-Montes Zone 

(Fig. II.1).  

There are two interpretations of the geodynamic evolution of the SW Europe Variscides 

(including Armoricam and Iberian massifs) that consider differently the role of Variscan 

and Cadomian tectonics cycles to produce the present geological materials and 

structures. For some authors the main geological events are Variscan (e.g. Matte, 

1991, 2001; Simancas et al., 2001); for others  the main Variscan geological events 

overprint relicts of a Cadomian (and pre-Cadomian?) cycle (e.g. Quesada, 1992; 

Eguíluz et al., 2000; Ribeiro et al., 2007; Ugidos, 2010; Pereira et al., 2011, 2012). 

Eguíluz et al. (2000) and Ribeiro, et al. (2007) considered that the accretion of Ossa 

Morena Zone (OMZ) and Central Iberian Zone (CIZ), the axial zones in the Iberian 

Massif, took place during the Cadomian orogeny. Pereira et al. (2011, 2012) and Solá 

et al. (2008) consider that the contact between CIZ and OMZ is not be pre-Early 
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Ordovician and consequently cannot be a Cadomian suture. These authors consider 

that the detrital zircon populations of the Beiras-Group greywackes (Ediacaran) point to 

the existence of three major episodes of zircon crystallization probably associated with 

long-lived Neoproterozoic magmatism located near or at the northern Gondwana 

margin at c. 850 to 545 Ma. 

 

 

Fig.II. 1 - Outcrops of the Variscan basement in the Iberian Peninsula and subdivision of the Iberian Massif after 

(Martinez Catalán et al., 2014). Signed the location of the Mindelo Migmatite Complex (black arrow). Shear Zones:  

BCSZ, Badajoz-Cordoba; DBSZ,Douro-Beira; JPSZ, Juzbado-Penalva; PTSZ, Porto-Tomar; SISZ, Southern Iberian.  

 

2.1.2. Central Iberian Zone  

The lithostratigraphic sequence defined for the Central Iberian Zone (CIZ) comprises a 

number of units aged Neoproterozoic to Lower Devonian and Carboniferous. These 

units were divided in tree major domains (Fig. II.2): 
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 The Olho de Sapo domain is a plutono-vulcanic complex on the NE limit of CIZ 

characterized by the presence of Cambro-Ordovician metavolcanic and 

metagranitic rocks (Parga Pondal et al., 1964); 

 The Schist-Greywacke Complex domain (Carrington da Costa, 1950) is a thick 

terrigenous sequence aged Neoproterozoic to Cambrian that occupies most of the 

CIZ and is characterized by the occurrence of a thick, monotonous succession of 

shales and sandstones/metagreywackes.  

 Overlying this metasedimentary sequence there are several Variscan 

synclines/anticlines where lithologies aged from Ordovician to Devonian outcrop. 

 

2.1.2.1. Deformation phases in Central Iberian Zone 

In the Central Iberian Zone is possible to identify structures that allow distinguishing 

different stages of deformation, which can be integrated into two major tectonic 

processes: (1) extensional deformation processes coeval with sedimentation during 

lower Paleozoic and (2) subsequently deformation phases related to the collisional 

process responsible for the genesis of the Variscan Chain.  

 

Pre-variscan deformation - Several authors recognize the existence of tectonic 

phases in the Neoproterozoic/Paleozoic cover, namely in Schist Greywacke Complex 

metasediments that although subsequent to Cadomian Orogeny, are prior to the main 

Variscan inversion (e. g. Sousa, 1982; Couto, 1992; Ribeiro et al., 1993; Ponte & 

Gama Pereira, 2004; Romão, 2005; Romão et al., 2013). The folds associated with 

these deformation episodes are difficult to detect, since they are obliterated by 

subsequent variscan deformation phases. Usually show interference structures that 

indicate mesoscopic folding, orientation NE-SW, with sub-vertical axial plane verging 

SE without associated cleavage (Ponte & Gama Pereira, 2004; Romão, et al., 2013).   
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Fig.II. 2 - Major stratigraphic domains in the Central Iberian Zone with location of the study area. (After Soares de 

Andrade, Lições de Geologia de Portugal, not published) 

 

 

Variscan deformation - Different authors have made the description of the structures 

generated by the Variscan deformation with relative consensus with regard to its 

geometry, but with some differences as to their chronological position,  geodynamic 

and cinematic meaning. Generally three phases of Variscan deformation are 

recognized: D1, D2 and D3 (e.g. Ribeiro, 1974; Noronha et al., 1979; Ribeiro et al., 

1990, Dallmeyer et al., 1997; Romão et al, 2013). 

Fig. II.3 represents a scheme of the main deformation events that affected the northern 

sector of the Iberian Massif during the Variscan cicle (Dias & Ribeiro, 1995). 
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1st Variscan Deformation Phase (D1) – The main structuration of the studied region 

is the result of the action of the first Variscan deformation phase, D1. This tectonic 

event folded all ante-Mesozoic formations of the region and is accompanied by 

cleavage (S1). However, the geometry and kinematics of D1 structures are variable and 

different sectors in CIZ are considered (Pereira et al., 1993): (1) the sector SW and S 

of Douro-Beiras and Juzbaldo-Penalva do Castelo Shear Zones; (2) the sector N and 

NE of these shear zones and the sector in the vicinity of Porto-Tomar Shear Zone. 

To the sector S and SW of Douro-Beiras and Juzbaldo-Penalva do Castelo Shear 

Zones (the study area) the folding shows a general NW-SE (N150º to N160º) trend 

which is well expressed by the Armorican Quartzite Formation cartographic pattern 

(Couto, 1993; Ponte & Gama Pereira; 2004 Romão et al., 2013). The fold axes are 

sub-horizontal and the axial planes tend to be sub-vertical, with exception on the 

neighborhood of shear-zones or thrust (Ribeiro et al., 1990; Pereira, 1993). Regionally 

the S1 foliation is the most pervasive and tends to be sub-concordant with the 

stratification. 

The genesis of granite rocks aged 379 ± 12 Ma, related to the action of depth shear 

zones marks the time assigned to this phase (Pereira, 1988; Pereira et al., 1993;). Dias 

et al. (1998) proposed the time period set between 380-360 Ma, while Noronha et al. 

(1979, 1981) considered that the migration of the tectonic front will have finished by the 

end of the Devonian period, i.e., about 360 Ma.  

 

2nd Deformation Phase (D2) – Unlike what happens with the D1 Variscan deformation 

that affects in a generalized way all sectors of CIZ, the second deformation phase (D2) 

was detected only in localized areas and manifests mainly through movement along 

the base of sub-horizontal major thrusts that laminated previous structures, especially 

in the N and NE sector of Douro-Beiras and Juzbaldo-Penalva do Castelo Shear Zones 

(Pereira et al., 1993). To the south sector the D2 deformation show localized character 

and induced the formation of folds and shear zones with a general orientation NNW-

SSE with moderate to strong inclinations to WSW and ENE vergence (Romão et al., 

2013). Valle Aguado (2005) refers the development of localized sub-horizontal shear 

zones (in Porto-Viseu metamorphic belt), with development of sub-horizontal folds and 

foliation in metamorphic sequences of the Schist-Greywacke Complex (Beiras-Group).  

These thrust movements can interact with the regional metamorphism, inducing 

melting of crustal materials and the consequent formation of granitic rocks (Pereira, 
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1988; Diez Balda, 1992; Pereira et al., 1993). These rocks correspond to early 

granodiorites, with about 320 Ma, which would have resulted from lower crust and 

mantle materials melting (e.g. Ribeiro M.L., 1993).  

 

Syn-convergent distension - Subsequently to these Variscan compressive phases 

(D1+D2), a distension phase took place, leading to the Carboniferous continental 

sedimentation basins (e.g. Pinto de Jesus, 1986; Ferreira et al. 1987; Couto, 1993).  

Several authors (Valle Aguado et al., 1992, 2005, Diaz Balda, 1995, Martinez Catalan, 

2004, 2014)  consider that the extensional character of this detachment is indicated by 

the geometry of the metamorphic structures and the transition from initial intermediate 

pressure metamorphic conditions (Barrovian type) to a HT-LP regime indicating a 

decompressive regional metamorphic episode, coeval with the syn-convergent 

extensional phase. Also suggest a narrow time-span between the thermal peak and the 

intrusion of granitic melts (Valle Aguado, 1992; Valle Aguado et al., 1993). This major 

extensional event is attributed to a large-scale gravitational collapse of the thickened 

continental crust (e.g. Noronha et al., 1979; Escuder Viruete et al., 1994; Dıéz Balda et 

al., 1995; Ábalos et al., 2002). 

 

3rd Deformation Phase (D3) - After deposition of the Carboniferous sediments there 

was a new episode of deformation now in intra-continental context, that appear to have 

occurred at the same time as active erosion and subsidence of the Upper 

Carboniferous basin was taking place. The D3 deformation event ends with the 

inversion of this basins (Couto, 1993; Valle Aguado et al. 2005; Romão et al., 2013). 

This deformation phase generated folds with axial plans oriented N100º to N130º 

plunging 65º-90° to S. The D3 event locally developed a S3 crenulation cleavage sub-

parallel to the axial plane of the folds, which in some places is the main cleavage 

(Couto, 1993). Ribeiro et al. (2008) consider that this phase generates structures 

parallel to the first D1 structures that are bent or reactivated during D3.  

The early granodiorites aged 320 Ma supported all the D3 deformation and the 

Westphalian B conglomerates include fragments of some of these granitoid (Ribeiro, 

et. al., 1993). The age attributed to this phase is c. 314 Ma to 308 Ma based in syn-

kinematic granitoids ages (Noronha, 1979; Valle Aguado et al., 2005). Acciaioli et al., 

(2003) dated micas developed during this deformation phase by the Ar-Ar method. 
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Biotite from a sample where the last recorded metamorphic event was of an early D3 

stage yielded an age of 333.5±4.4 Ma. In contrast, measurements on muscovite that 

resulted from fluid ascent during the late episodes of D3 gave a result of 312.8±3.3 Ma. 

Therefore, the third Variscan deformation phase must have operated during a 

significant period: at 335-330 Ma folding of the previous structures was taking place, 

whilst at ca. 310 Ma major late-D3 shear zones and the emplacement of granites were 

active (Acciaioli et al. 2003).  

 

Late deformational episode - At the end of the collisional process the decrease of 

temperature led to the transition of ductile to brittle behavior causing the genesis of a 

tardi-Variscan extensive network of fractures (Parga, 1969; Arthaud & Matte,1975; 

Ribeiro, 1980).  

A first fracturing episode (D4 phase), led to the genesis of two conjugated fracture 

systems: the main sinistral NNE-SSW to ENE-WSW and a subsidiary dextral system 

NNW-SSE a NW-SE. The chronology of this episode is marked by the age of alkaline 

granites (280 ± 10 Ma), whose emplacement was controlled by these structural 

accidents (Ribeiro et al., 1980; Martins et al., 2001, 2009, 2011). 

A second episode generated inverse fractures with N-S orientation and NNE-SSW to 

NE-SW (N40º) kink-bands (Ribeiro et al., 1990; Couto, 1993; Romão et al., 2013).  

 

 

Fig.II. 3 - Time scheme of the main deformation events that affected the northern sector of the Iberian Massif during 

Variscan Orogeny (Dias & Ribeiro, 1995).  
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2.1.2.2. Metamorphism in Central Iberian Zone 

It is advocated by several authors that the Variscan metamorphism is structured in 

metamorphic bands following a NW-SE orientation, according to the main structural 

directions of the Variscan Chain (Bard, 1978; Martinez & Ibarguchi, 1983; Castro et al, 

2002). In these bands the metamorphic grade decreases within a few kilometres, 

perpendicular to its axis, from granulite or amphibolite to greenschist metamorphic 

facies. Still there are some issues about the meaning of the architecture of these 

metamorphic bands (Ribeiro, 1992). Bard (1978) considers that the existence of 

metamorphic alternating bands is associated to deep fracturing structures, while others 

make the metamorphic features coincide with 3rd Variscan phase antiform structures 

related to thermal axis, almost invariably marked by syn-tectonic plutonism (e.g. Oen, 

1970; Martinez et al.,1988; Castro et al., 2002; Valle Aguado et al., 2005) (Fig. II.4).  

The metamorphic evolution the early stages of deformation took place at intermediate 

pressure and low temperature conditions (Barrovian metamorphism) as a result of 

crustal thickening. Only under the basal thrust of the nappes in alochtonous terrains the 

high pressure conditions were recorded. The initial P and T gradients are modified 

during the last deformation phase and have evolved to low pressure conditions 

associated with thermal gradients varying from low to high temperature, the latter being 

spatially and temporally associated with the granite plutonism (Ribeiro M. L., 1992, 

Ábalos et al., 2002; Castro et al., 2002; Arenas & Martínez Catalán, 2003, Valle 

Aguado, 2005, Martinez Catalán et al. 2014). The relationship between the low-P and 

high-T metamorphism and the granitoid emplacement is widely accepted considering 

that the advective heat has been an important mechanism on the development of 

thermal domes of the Iberian Massif (Martinez et al, 1988; Reavy, 1989; Acciaioli, 

1997; Castro et al., 2002; Valle Aguado, 1992, 2005). 

Some authors (Oen, 1970; Reavy, 1989; Acciaioli, 1997, 2005) consider that in some 

areas only a single low-P and high-T event is registered associated with granitic 

intrusions. In these areas only thermal metamorphism with a prograde zoning from the 

chlorite- to the biotite-, andalusite- and sillimanite-zones is registered, being the 

staurolite and chloritoid the result of these metamorphic event in Fe rich rocks. Acciaioli 

(1997), considers that the metamorphism is low-P (syn -tectonic and syn-magmatic) 

and nearly isobaric, although locally present peaks of syn-tectonic pressure in the early 

stages of D3 deformation phase. The shear zones have favoured the channelling of 

fluids and the genesis and emplacement of granites, causing an addition of thermal 
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effects and subsequent metamorphism. In the shear zones a coeval mineral 

assemblages reflect P values slightly higher than the pressure of regional paragenesis. 

These localized metamorphic domains (>P) are coincident with areas of greater 

penetration of quartz-veins network, suggesting a relationship with increased fluid 

pressure, migration and channelling of fluids and potassium metasomatism.  

 

 

Fig.II. 4 – Distribution of metamorphic zones and variscan granitic rocks in the NW of Iberian Peninsula (after Martinez 

et al., 1988 and Castro et al, 2002). 
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2.1.2.3. Granitic rocks in Central Iberian Zone  

The Central Iberian Zone is the segment of the European Variscan Chain where the 

granitic rocks outcrop to a greater extent and have greater typological diversity. Fig. II.5 

represents the distribution of Variscan granitoids in central and northern Portugal. 

The magmatic activity that prevailed during the Variscan orogenic cycle developed 

along different deformational stages. Thus, the magmatic rocks mainly represent 

orogenic granitoids, which are defined according to different age groups.  

The first schemes for classification of granitic rocks were based on different criteria, 

namely, geochronological, structural and geochemical/petrographic, recently 

complemented with geochronological data.  

One of the first proposals for the granitic rocks classification based on geological 

criteria and supported on granitoid / wall rock field relations, admitted the existence of 

three main groups of granites: ”oldest granites”, installed before the Variscan orogeny; 

the ”older granites” installed during the Variscan Orogeny e ”younger granites” installed 

after the Variscan Orogeny (Schermerhorn,1956).  

Based on petrographic criteria, the existence of two main groups was proposed: the 

rare “peralkaline granites” with amphibole and/or pyroxene and the abundant 

“aluminous granites” only with micas (biotite/muscovite) in addition to the major 

minerals (Ribeiro, 1993). The late were sub-divided in two different series (Capdevila et 

al., 1973): (1) “two-mica granites” closely related to migmatites and high metamorphic 

grade areas and (2) “calc-alkaline granodiorites with biotite" often associated with mafic 

and intermediate igneous rocks.  

In recent years, both structural and geochronological data, point to the definition of 

several intrusion times for Peninsular granitic rocks, which can be divided in three 

major groups: pre-orogenic granites, orogenic granites and post-orogenic granites. In 

the group of orogenic granites various stages of installation relatively to D3 deformation 

variscan phase are distinguished (Ferreira et al., 1987; Pinto et al., 1987; Ribeiro M.L., 

1993; Mateus & Noronha, 2010; Azevedo & Aguado, 2013).  

Based on available data from Rb-Sr, K-Ar and U-Pb, three groups of granitic rocks can 

be distinguish: 1) Cambrian–Ordovician granitic rocks of 462–498 Ma (e.g. Bea et al., 

2007; Solá, 2007; Antunes et al., 2009; Neiva et al., 2009; Rubio-Ordónez et al., 2012); 

2) syn to late-tectonic granites aged ~336-304 Ma and 3) post-tectonic granites ~300-

280 Ma (e.g.; Ferreira et al. 1987; Dias et al.,1998;  Fernandez Suarez et al., 2000;  
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Almeida, 2001; Neiva & Gomes, 2001, Valle Aguado et al., 2005; Zeck et al., 2007; 

Antunes et al., 2008; Martins et al., 2009; Neiva et al., 2009; Solá et al., 2009; Carvalho 

et al. , 2010; Teixeira et al., 2011; Almeida et al., 2014). Azevedo & Valle Aguado 

(2013) distinguish two major cycles of magmatic activity during the Variscan Orogeny 

in the Portuguese sector of the Central Iberian Zone: ~ 320-310 Ma and ~ 310-290 Ma, 

corresponding to the installation of syn-D3 granitoids and late-and post-D3 granitoids, 

respectively.  

 

 

Fig.II. 5 - Distribution of variscan granitoids in central and northern Portugal with location of the study area (Modified 

from Ferreira et al., 1987).  
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2.2. The studied area  

2.2.1. Location of the studied area and regional geology 

The study area is located in the NW of Portugal and covers the metasedimentary and 

granitic rocks from Mindelo Migmatitic Complex (Areias et al, 2014) as well as the low 

grade to high grade metasediments dated Neoproterozoic/Cambrian that surround it. 

Thus, this study focused on a range of metasedimentary and granitic rocks cropping 

out from Póvoa do Varzim to Rates and extending south to Foz-do-Sousa (Gondomar).  

The study area includes metasedimentary and granitic rocks in the vicinity of three NW-

SE megastructures: (1) the Porto – Sátão antiforms/synforms; (2) the Douro-Beiras 

Shear Zone and (3) the Porto-Viseu Metamorphic Belt. Figure II.6 represents 

schematically the location of these structures and its lithological division, as well as the 

location of the studied area.  

 

Porto-Sátão antiforms/synforms - In the NE sector of the study area the landscape is 

marked by Armorican Quartzite elevations that can be followed for several kilometers in 

a NW-SE direction. Among them, and from NW to SE, there are several elevations like 

Serra de Rates, Serra de Bougado and Serra de Santa Justa. These elevations 

represent Variscan antiforms (related to 1st deformational phase, D1). In the antiforms 

and associated synforms marine metasediments dating from late 

Neoproterozoic/Cambrian to Devonian outcrop (Couto, 1993, Pinto de Jesus, 1986, 

Pereira et al., 1992). This structure defined by Paleozoic syncline begins in Esposende 

(Porto), passes through Satão and ends in Salamanca (Regêncio & Portugal 

Ferreira,1981; Azevedo & Valle Aguado, 2013).  

 

Douro-Beiras shear zone (DBSZ) - Adjacent to Porto-Sátão Paleozoic 

metassediments, to SW, there is the so-called Douro-Beiras Shear Zone extending 

from the vicinity of Apúlia (NW) to Viseu (SE). This structure corresponds to a sinistral 

shear-zone whose activity was particularly important during the entire Variscan Cycle 

(Dias & Ribeiro, 1991), having controlled the opening of several continental intra-

mountainous sedimentary basins during the Carboniferous.  These basins of NW-SE 

orientation are composed by conglomeratic deposits with fragments of granite, 
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quartzite and arkoses as well as by sandstones, shales with plant fossils and coal 

(Teixeira e Medeiros, 1965).  

Valle Aguado et al. (2000) considers that the DBSZ may represent the western 

termination of the Juzbado–Penalva do Castelo sinistral shear system. These shear 

zones are an important boundary between domains with distinct structural and 

stratigraphic styles: from the structural point of view there is the change in vergence of 

major D1 folds between northern and southern sectors  and from the stratigraphic point 

of view these shear-zones represent a paleogeographic boundary during Schist-

Greywacke Complex deposition allowing individualization between the two basins 

where the Douro Group and the Beiras-Group sediments were deposited (e.g. Díez 

Balda et al., 1992; Pereira et al., 2007). 

 

Porto-Viseu Metamorphic Belt - To the SW, and adjacent to the Douro-Beira Shear 

Zone, there is another NW-SE megastructure called Porto-Viseu Metamorphic belt 

(Schermerhorn, 1956; Oen, 1970; Reavy, 1989; Esteves et al.,  2006;  Valle Aguado et 

al., 1993, 2005; Azevedo & Valle Aguado, 2013). This metamorphic belt is composed 

of pelitic rocks interbedded with greywackes and relatively thin calc-silicate layers of 

the Schist-Greywacke Complex and constitutes a classical example of a gneiss dome 

showing HT-LP migmatites and anatectic granites in the core and low- to very low-

grade metasediments in the limbs (Valle Aguado et al., 2005, Acciaioli, 1997). The core 

of the antiform consists of syn-tectonic two-mica granites that intruded the Schist-

Greywacke Complex metasediments. The metamorphic grade of the metasediments is 

highest in the antiform core and decreases continuously towards the flanks. Intimately 

associated with the granitic rocks there are migmatitic complexes as exemplified by 

Mundão Anatectic Complex (Valle-Aguado et al., 2010), in the Viseu region, and 

Mindelo Migmatitic Complex in the studied area (Areias et al, 2014).   

Our study focuses on the metasedimentary sequence, in the NW of the Porto-Viseu 

Metamorphic Belt, from the lowest metamorphic grade up to the central anatectic 

complex. In the last published geological maps (Oliveira et al, 1992) these lithologies 

are correlated to the Schist-Greywacke Complex (Beiras-Group) whose profile-type 

was established by Romão (1994, 2013) in the Beiras region.   

The SGC is a thick turbidity sequence that occupies the major part of Central Iberian 

Zone. Although the precise ages of these metasedimentary sequences are still poorly 

known, the maximum deposition age of the SGC has been constrained by U-Pb data of 
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its youngest zircon population, approximately placed at the Ediacaran-Cambrian 

boundary at 542 Ma (e.g., Teixeira et al., 2011, 2012; Pereira et al., , 2012, Talavera et 

al. , 2012 ). 

It is well exposed in Douro and Beiras regions in Portugal and in Salamanca, 

Extremadura, Montes de Toledo and Alcudia in Spain. Two main units have been 

recognized:  the lower unit is of Ediacaran age and the upper unit is of Early Cambrian 

age. In Portugal these two units were nominated as Beiras-Group and Douro Group 

respectively. The existence of distinctive features between the Douro and the Beiras-

Group metasedimentary sequences together with gravimetry studies led many authors 

to consider the existence of two independent sub-basins, whose existence was 

conditioned by the occurrence among them of a major crustal anisotropy associated 

with the Douro–Beiras and the Juzbado–Penalva do Castelo sinistral shear zones (e.g. 

Sousa, 1982; Silva et al., 1988; Vidal et al., 1994; Jensen et al., 2007; Valladares et al., 

2000; Ugidos et al. 2003; Rodriguez Alonso et al., 2004; Talavera et al., 2012; 

Villaseca et al., 2014). Provenance from continental deposits derived from the interior 

orogens in North Gondwana is proposed for Neoproterozoic sediments, whereas for 

the Lower Cambrian sediments a source derived from an older crust beneath those 

continental deposits is pointed (Valladares et al., 2000; Villaseca, 2014).  

The SGC presents very low to low-grade metamorphism in extensive regions and 

regional metamorphic zoning shows a symmetric pattern parallel to the syntectonic 

peraluminous granite plutons. The metamorphic field gradient is marked by condensed 

isograds parallel to the granites, varying in a short extension from chlorite-zone to 

biotite-andalusite or sillimanite-zone (Valle Aguado, 1993, 2005; Acciaioli, 1997; 

Ribeiro,. et al. 2008). 

 

2.3. Previous studies 

Previous studies conducted in MMC are scarce. Most of them were written in the 

sixties, for the preparation of Póvoa de Varzim and Porto geological maps.  

Torre de Assunção, in 1962, published a paper where characterizes the rocks in the 

vicinity of Porto. In that paper he describes the “migmatitic coastal region" that 

considers occurring in places like Lavadores, Foz do Douro, Lavra, Angeiras and Vila 

Chã. In this paper there are also petrographic descriptions of the granitic intrusions of 

the region and of the calc-silicate rocks that outcrop within the migmatites.  
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Fig.II. 6 - Simplified geological map of the study area with the major megastructures and location of the studied area 

(based on Ferreira et al., 1987 and Oliveira & Pereira, 1992). 

 

Teixeira et al. (1965) in the 1: 50 000 scale Póvoa de Varzim geological map, refers a 

migmatitic band on the coastal zone, north of Porto, which classify as "Schist-granite-

migmatitic Complex". It is mentioned the gneissic character of the formations and the 

occurrence of dark nodules within the migmatite, as well as granites, pegmatites and 

basic veins (lamprophyres). 

Latter, Teixeira (1970), describes the “migmatitic-gneissic” formations north of Porto, 

occurring between Póvoa de Varzim and Angeiras.  It considers that the Foz-do-Douro 

and Lavadores units are an extension, to the south, of these gneisses. Also refers that 

Porto Granite intruded these gneissic units and considered that this granite is pre-

Silurian.  

In 2001 and 2014, U-Pb geochronological studies in the Porto granite, conducted in 

two populations of zircon and monazite, interpreted the age 318 ± 2 Ma as the most 

Porto

Espinho

P. Varzim

Beiras Group - SGC 

Paleozoic metassediments

Pre-D3 orthognaisses

Post-D3 granites – related to late fractures

Late-D3 biotite granitoids

Syn-D3 two-mica granites

Syn-D3 biotite granitoids

Late to pos-D3 granitoids 

Migmatites, gneisses and micaschists

Arada Formation

Famalicão

Mindelo

Arouca

Castro Daire

Mundão

Foz do 

Sousa

Sátão



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

 

27 

 

likely age of granite installation, being in accordance with the age constrained by the 

tectonic frame (Almeida, 2001, 2014; Martins et al. 2001).  

More recently a master's thesis (Lopes, 2008b) and a PhD thesis (Ferreira, 2011) 

added lithological and structural field data and some petrological data in Angeiras and 

Vila do Conde, respectively.  These works emphasized the interest of the area for 

teaching and divulgation of the local and regional geology. The didactic interest of this 

area is relevant for the diversity, complexity and beauty of geological structures as well 

as the prodigious exposition present in the beaches outcrops. Remember that in these 

beaches it is possible to show different granite rocks, metamorphic rocks, migmatitic 

rocks and various types of veins (pegmatitic, basic, etc.). 

In the last years, during the preceding work of this thesis, several publications have 

emerged that focus on aspects of the petrography, geochemistry and isotopic 

chemistry of the area, particularly with regard to calc-silicate resisters (Ribeiro M.A. et 

al., 2011, Areias et al., 2012a,b,c), migmatite rocks and associated granites (Areias et 

al., 2012d; 2013a,b; 2014a,b) and pegmatitic veins (Areias et al. 2013c). 
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Why may we not add Geology to the list of poetical 

sciences? Why shall not that science, which is the 

second science in eras and magnitudes, and the first, 

in affording scope for the imagination, be brought 

into favor with the Muses and afford themes for the 

Poet?  

 E. Hitchcock   

 

3.1 - Introduction  

In this chapter it will be made a description of the field relations and characteristics of 

the different studied lithologies. The lithological description will be divided into two 

distinct sectors:  

Sector 1 – Between Póvoa do Varzim and Leça da Palmeira, comprising the Mindelo 

Migmatitic Complex and spatially associated granitic rocks; 

Sector 2 - Between Laundos and Gondomar, comprising the Schist-Greywacke 

Complex metasediments located to SW of Beiras-Douro Shear Zone.  

 

The location of sampling was dependent and conditioned by the existence of outcrops 

showing fresh or relatively fresh rocks.  Since the region under study is densely 

populated and intensively used for agricultural and industrial production the number of 

outcrops in good condition is scarce. Thus, the resulting sampling distribution is quite 

irregular as there are several locations that do not meet the conditions for achieving a 

good geochemical study. 

During the field work 161 mesoscopic samples of all recognized units and rock types 

were collected for use in the different methodologies addressed by this dissertation.  

In the appendix A the coordinates of the points mentioned in the figures captions are 

listed (e.g. P. 450). These coordinates are the location where the photos were taken.  

 

 

http://todayinsci.com/H/Hitchcock_Edward/HitchcockEdward-Quotations.htm
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3.2. Sector 1 - Póvoa de Varzim ↔ Leça da Palmeira  

In the coastal zone between Póvoa do Varzim and Leça da Palmeira the Mindelo 

Migmatite Complex (MMC) outcrops. The MMC is composed of several distinct 

lithologies. Like in other metatexite complexes also in MMC the most preponderant 

feature is the intricate way in which the lithologies relate to each other and the 

heterogeneous morphologies.   Accordingly to field relations and petrographic 

observations the MMC lithologies were divided in seven different types: 1) patch-

metatexites; 2) banded-metatexites; 3) metagreywacke resisters; 4) diatexites; 5) 

leucogranites; 6) two-mica granites and 7) aplite-pegmatites.  

Fieldwork extended up from north to south along the coast. Migmatites were observed 

from Aguçadoura to Leça da Palmeira, but also inland, where was possible collect 

some fresh samples of migmatites and of two-mica granite. Towards E the occurrence 

of migmatites extends from the coastline to Modivas. The number of samples collected 

in the interior is small relative to the number of samples collected in the coastal zone. 

This is mainly due to the limited number of outcrops in this heavily populated area.  

Figures III.1 and III.2 represent geological sketches of the Mindelo Migmatite Complex, 

and Migmatite Zone, respectively. The location and type of sampling is marked with a 

colour code. These geological sketches are based on the geological map scaling 1:200 

000 with modifications based on field observations. Patch-metatexites, banded-

metatexites and diatexites, with some greywackes, are prevalent in the central part of 

the MMC, called in this thesis “Migmatitic Zone” (MZ). This zone extends from north to 

south along about 6 km from Vila Chã to Angeiras. Out of MZ leucogranites crop out 

especially to the north and to the south of the migmatitic zone and two-mica granites 

predominate in an extensive area that surrounds both migmatites and leucogranites.   

The entire Sector shows heterogeneity of lithologies and intricate relationship between 

them. In the Migmatitic Zone there are several dykes and small intrusive two-mica 

granite bodies, leucogranites and aplite-pegmatites. Moreover, within the two-mica 

granites there are abundant masses of metatexites and diatexites mostly incorporated 

by the two-mica granites as xenoliths of variable dimension. As an example of this 

heterogeneity, Figure III.3 shows an outcrop in Vila Chã where in the space of 100 x 

50m metatexites, diatexites, aplite-pegmatites and leucogranite veins crop out. Figure 

III.4 presents an outcrop in Vila do Conde where within two-mica granite, leucogranites, 

diatexites and metagreywacke bodies are shown. 
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Fig. III. 1 – Geological sketch of Sector 1 based on field observations and geological map. Also signalled the location 

and lithological type of sampling. The migmatite zone (MZ) is marked by the black rectangle and is more detailed 

showed in the Fig. III.2.  Legend key: GWK – metagreywackes; BMM – banded-migmatites; PMM – patch migmatites; 

DTX – diatexites; L.Gnt – leucogranites; TL.Gnt – tourmaline-bearing leucogranites; 2m.Gnt – two-mica granites ; APG 

– aplite-pegmatites; SGC – Schist-Greywacke Complex.   

MZ
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Fig. III. 2 – Detail of Fig.III.1 showing the geological sketch of Mindelo Migmatite Complex – Migmatite Zone. Also 

signalled the sampling location and lithological type.  

 

3.2.1. Metatexitic rocks  

In the Metatexite Zone (MZ) the dominant lithology showing varied morphology and 

structure are the banded-metatexites. Banded-metatexites crop out over a wide area in 

Metatexite-zone forming a splendid mosaic of roughly dark and light layers and 

beautiful folds. Most of them consist of discrete discontinuous centimetric-thick layers 

of medium grained quartz- and plagioclase-rich light leucosomes alternating with 

millimetric to centimetric thick dark melanosomes (Figs.III.5 and III.6).  

 



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

 

35 

 

 

Fig. III. 3 - Field photograph showing lithological heterogeneity in an outcrop were metatexite predominates. MTX – 

metatexite; GWK – metagreywacke; APG – aplite-pegmatite (P. 462-Vila Chã). 

 

Fig. III. 4 – Field photograph showing lithological heterogeneity in an outcrop where two-mica granite predominates. 

DTX – diatexite; GWK – metagreywacke; L.Gnt – leucogranite; 2m.Gnt – Two-mica granite (P. 577-Vila do Conde). 
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Leucosomes are coarse grained, white colored and can be classified using a two-fold 

division based on relationships with surrounding banded-metatexites – they are either 

concordant or discordant to local foliation. Concordant leucosomes are in petrographic 

continuity with discordant leucosomes (with similar microstructure, mineralogy and 

mode) (Fig. III.6) and they filling dilatant sites.  

Metatexites in the vicinity of the leucogranites (see Fig. III.1) show darker colour and 

high melanosome/leucosome ratio consistent with residual composition, substantial 

leucosome extraction and passive enrichment in residual minerals after the removal of 

melt (Figs. III.5A and III.28A).  

Banded-metatexites are intensely folded (Figs. III.5A and III.6D). The structural aspects 

related to the deformation will be described further in the final of the chapter.  

Patch migmatites are rare and occur always associated with thick layers of 

metagreywacke resisters that inhibit more widespread partial melting in these rocks. 

They are dominated by paleosome and are characterized by the occurrence of small 

scattered patches of leucosome resulting from discrete partial melting (Fig. III.7). There 

are two types of patch leucosomes: type I is composed essentially of quartz, sillimanite 

and cordierite (Fig. III.7A) and type II is composed essentially of large crystals of quartz 

and plagioclase (Fig. III.7B). The last type of leucosome incorporates the first type of 

leucosome and minerals from melanosome. Dark selvedges border both type of patch 

leucosomes, generally being inferred to be the result of local (in situ) segregation of 

melt (e.g. Sawyer, 2008).  

 

 

Fig. III. 5 – Field photographs showing aspects of banded-metatexites. A) Banded-metatexite showing textural features 

consistent with residual composition after the removal of melt (P.492); B) Banded-metatexite showing roughly layers of 

leucosome (P.587).  

(A) (B)

(C) (D)
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Fig. III. 6 – Field photographs showing aspects of banded-migmatites. A and B) Banded-metatexite and transverse 

leucogranite dike exhibiting petrographic continuity (with similar microstructure, mineralogy and mode) with concordant 

leucosome (P.707 and 587 respectively); C) Banded-metatexite showing segregation of leucosome and accumulation in 

dilatant site. The leucosome is coming from various parts of the metatexite that connected in the accumulation site 

(P.462); D) Folded banded-metatexite (P. 686). 

 

 

Fig. III. 7 – Field photographs of patch-metatexites.  A) Layer of patch-metatexite parallel to a layer of metagreywacke 

resister (P.681); B) Patch-metatexite showing quartz feldspathic leucosome (Type II). Within the leucosome there are 

fragments of the type I leucosome and melanosome. Note the dark selvedge around the leucosome patchs. (P.615). 

(C)

(A) (B)

(D)

(A) (B)
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3.2.2. Metagreywackes and calc-silicate rocks 

Within the metatexites there are dark metagreywacke layers and nodules.  These rocks 

crop out as tabular layers varying thicknesses from centimetric to metric, alternating 

with pelite metatexites (with metapelite high proportion) (Figs. III.8 to III.12). Most of 

them have lenticular geometry. This geometry is usual in migmatitic areas where “tick 

layers of metagreywacke appear to detach from the metatexite and progressively 

transformed from tabular to round to lenticular shapes as they are incorporated into the 

migmatite” (Sawyer, 2008). These lenticular bodies are generally called schollen.  

Within most of the metagreywacke layers and lenticular bodies there are calc-silicate 

nodules that stand out from the metagreywacke by its darker color. From now on these 

rocks will be called calc-silicate nodules (CSN). These bodies show sub-cylindrical or 

ovoid shape, and can be in vertical position, oblique or horizontal position within the 

metagreywacke layers (Figs. III.9 and III.10). The diameter varies from a few 

centimeters to about 50 cm at most. The length reaches about 1.5 m. It is important to 

note that the nodular calc-silicates are completely surrounded by the metagreywackes. 

This is, the calc-silicate rocks are totally inserted in the metagreywackes and do not 

occur as independent layers. However, there are some metagreywacke bodies without 

any calc-silicate nodule. Thus, the calc-silicate nodules seem to be an inherent feature 

of the metagreywackes, which show preferred concentration of calc-silicate minerals in 

specific sites.  

Most of the calc-silicate nodules show two distinct concentric zones: a core zone (CZ) 

containing clinopyroxene and an outer zone (OZ) with amphibole. The relative 

thickness of these zones is highly variable. There are calc-silicate nodules where the 

core zone prevails and the outer zone is relatively thin, and others, were the outer zone 

is dominant or even exclusive.   

Around some of the metagreywackes there are signs of partial melting (migmatized 

metagreywackes) revealed by the formation of layered concentric leucosomes. The 

leucosomes occur as concentric thin layers contouring the more calcic nodular portions 

of the metagreywackes and pass gradually to more pelitic and less calcic, banded-

metatexites (Fig. III. 11).   

Some of the metagreywacke and calc-silicate bodies show evidence of being affected 

by later fluids. The fluid entered the rock after the metamorphic peak that established 

the dominant mineralogy of these rocks (visible in unaffected rocks).  These rocks 

show the following aspects (Fig. III.12): 1) retrograde calcite development in the most 
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Ca rich core-zone; 2) lighter color bands between the calc-silicate and the 

metagreywacke related to preferred cloritization of biotite; 3) silica infiltration bands 

composed of large quartz crystals that include the calc-silicate assemblage.   

 

 

Fig. III. 8 - Field photographs of metagreywackes and calc-silicate nodules. A) Metagreywacke lenticular bodies showing 

calc-silicate nodules within (P.462). B) Lenticular metagreywacke resister body and calc-silicate nodule showing core-

zone (CZ) and outer-zone (OZ). (P.462). Abbreviations: CSN – Calc-silicate nodule; GWR – Metagreywacke resister; 

BMM – Pelitic metatexite. 

 

Fig. III. 9 - Field photographs showing aspects of metagreywackes and calc-silicate nodules. A) Vertical cylindrical calc-

silicate nodule within tabular metagreywacke layer; B); Calc-silicate nodule containing relatively high proportion of 

diopside zone (core zone) and a tiny rim of outer zone (Horizontal plan). Abbreviations: CSN – Calc-silicate nodule; 

GWK – Metagreywacke; MM – Pelitic metatexite. 
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Fig. III. 10 – Field photographs showing aspects of calc-silicates: A) Ellipsoidal calc-silicate nodule and metagreywacke 

parallel to migmatitic foliation (P. 702); B) Calc-silicate cylindered nodule within rounded metagreywacke schollen (P. 

463); A – horizontal plan; B – vertical plan). Abbreviations: CSN – Calc-silicate nodule; GWK – Metagreywacke; MM 

metatexite. 

 

Fig. III. 11 – Field photographs of migmatized metagreywackes showing concentric accumulation of leucosome.. (A= P. 

538 and B = P.462). Abbreviations: CSN – Calc-silicate nodule; GWK – Metagreywacke.  

 

Fig. III. 12 – A) Calc-silicate resisters showing lighter bands resulting from infiltration of silica-rich fluids (P. 616); B) 

Calc-silicate nodule showing clearer core related with late alteration and subsequent secondary calcite development (P. 

580). 
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3.2.3. Granitic Rocks  

Within and surrounding the metatexite zone several distinctive granitic rocks crop out. 

These different granitic rocks show complex relationship with the metatexites and 

different mesoscopic aspect. Diatexites crop out as mesocratic massive bodies or 

dykes, showing granitic appearance and containing abundant schlieren and some 

schollen within. Leucogranites crop out as white granitic bodies showing rare residual 

dark schlieren. Two-mica granites occur mostly in massive bodies around the 

migmatitic zone but also cutting the migmatites. It exhibits uniform mineral distribution, 

typical of granite, although showing rare schlieren.  

 

Diatexites (DTX) crop out within the metatexite zone both as bodies of few tens of 

square meters and as metric thick dykes (Figs. III.13 and III.14). In both cases the 

contact between diatexites and metatexites is sharp. The melt-depleted remains of 

pelitic layers (biotite schlieren) stand out as dark alignment within the rock. The 

schlieren gives to the rock a mesocratic appearance although with nuances derived of 

the variability in the intensity of schlieren that, although generally abundant, are more 

intense in some areas of the diatexite bodies. The matrix is composed mostly of 

dispersed medium-grained crystals of quartz, feldspars and rare biotite. However, most 

of the biotite occurs in the schlieren as well as sillimanite, cordierite and rare garnet. 

Large crystals of muscovite occur in some of the diatexites, principally in those showing 

signs of being affected by structurally controlled fluids and show coarse grained quartz 

and muscovite (Fig. III.14).  

 

 

Fig. III. 13 - Field photographs showing several aspects of diatexites. A) Diatexite showing dark schlieren (P. 462). B) 

Diatexite dyke cutting the metatexite rocks (P. 705).  

(A) (B)
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Fig. III. 14 - A) Diatexite showing intense dark schlieren; B) Photograph of a diatexite hand sample showing large white-

mica crystals and coarse-grained quartz. 

 

The leucogranites (L.Gnt) outcrop immediately north and south of the Migmatite Zone 

where they occur as bodies with several tens of square meters but also occur as veins 

that cut the migmatites and even the metasedimentary sequence in the vicinity of the 

migmatite complex (Fig. III.1). The most relevant feature of the leucogranites is the light 

colour and scarcity of biotite or other dark minerals. The grain size varies from medium-

grained to coarse-grained. (Figs. III.15 and III.16).  

Leucogranites are composed mostly of quartz and feldspars, and some biotite 

associated with sillimanite and rare garnet clustered in aligned dark spots. These dark 

agglomerates seem to result from the dissolution of aligned pelitic restitic xenoliths 

(Figs. III.15A and III.15B). Pelitic and metagreywacke xenoliths are abundant 

(Fig.III.16). Unlike diatexites and in situ leucosomes, cordierite is absent in the 

leucogranites.  

Few K-feldspar megacrystals occur in the leucogranites matrix. K-feldspar also 

develops in miarolitic cavities, indicating the existence of later K-bearing fluids that 

filled the open spaces in the leucogranite (Fig. III.16A).  

Locally the biotite clusters disappear and they are replaced by tourmaline clusters with 

the same texture as the biotite clusters.  These tourmaline-bearing leucogranites 

(TL.Gnt) occur as metric thick tabular bodies both within the metatexites and within the 

leucogranites (Fig. III.17). It is possible to find unaffected portions of leucogranite within 

the tourmaline-bearing leucogranites (Fig.III.17B). This suggests that the tourmaline-

bearing parts of the leucogranites result from structurally controlled flow of fluids that 

cause the tourmalinization of biotite.   

(A) (B)

2 cm
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The transition between leucogranites and metatexites is gradual. There is a 

progressive increase in the amount of schlieren in the transition from the leucogranites 

to metatexites. Also the network of veins of leucogranite is more intense within the 

metatexites near the bodies of leucogranite. 

 

 

Fig. III. 15 - Field photographs of leucogranite. A) General aspect of leucogranite showing a light matrix with dark 

aligned biotite spots (P. 482). B) Aligned Schlieren of residual material inside leucogranite (P.485). 

 

 

Fig. III. 16 - A) Leucogranite showing development of K-feldspar (Kfs) in miarolitic cavity (P.709). B) Metagreywacke 

(GWK) xenolith inside leucogranite (P.437).   
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Fig. III. 17 – Field photographs of tourmaline-bearing leucogranite. A) Leucogranite showing dark spots of tourmaline 

(P.709); Tourmaline-bearing leucogranite dyke containing a small portion of biotite bearing leucogranite (P. 487).  

 

Two-mica granites crop-out north, south and east of leucogranites and migmatites and 

also as small bodies (hundred square meters) within migmatites (see Fig.III.1). 

Generally show medium-grain size, locally containing few K-feldspar megacrystals. 

Biotite is mostly dispersed in the quartz-feldspathic matrix but also forming dark 

schlieren, although more rarely than in diatexites (Fig. III.18).  

There are several granitic dikes and veins, generally fine-grained, which cut the 

migmatites. In the low grade metasedimentary sequence (SGC) surrounding the 

metatexite zone, porphyritic two-mica granites occur.   

The two-mica granite bodies include abundant fragments (xenoliths) of metagreywacke 

resisters as well as metatexites (Figs.III.19A and III.19B). These xenoliths generally 

show preferred orientation parallel to the schlieren.  

Locally, feldspar megacrystals developed in well-defined structural alignments, 

showing preferred orientation striking N120º to N130º (Figs. III.19C and D).  

 

 

(A)

(B)
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Fig. III. 18 – Field photographs of two-mica granites. A) Medium grained two-mica granite with scarce K-feldspar 

megacrystals (P.606); B) Two-mica granite with aligned schlieren (P. 575). 

 

Fig. III. 19 – Field photographs of two-mica granites. A) Migmatite xenolith within two-mica granite (P583); B) 

metagreywacke xenolith within two-mica granite (P. 580); C and D) Strips of K-feldspar megacrystals developing in the 

granitic matrix in well-defined  corridors striking N130º, 70º SW (P.608 and 587).  
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3.2.4. Aplite-pegmatites 

Cutting all lithologies mentioned above there are several aplite-pegmatite veins 

showing centimetric to metric thickness and length > 10 m meters.  These veins are 

characterized by its internal structure with compositional bands, generally showing (Fig. 

III.20):  

 In the centre there is an aplitic band with quartz + plagioclase + tourmaline + 

garnet; 

 Occurring symmetrically on one side and the other of the aplitic band, there is 

an intermediate band containing K-feldspar and plagioclase large grains; 

 In the contact with the host rock there are quartz and plagioclase intergrowths 

showing comb-structure.  

The thickness of each compositional band is variable, specially the intermediate band 

that could have few centimetres to more than a meter. In the last case the biggest 

modal percentage is clearly of K-feldspar that could form huge accumulations more 

than 1.5 m tick (Fig. III.20C). There is also repetition of the banding, i. e., some aplite-

pegmatites show intermediate- and aplite-bands alternating several times.  

In the granite zone, there are aplite-pegmatites that develop over the K-feldspar 

megacrystal alignments. In these type of aplite-pegmatites there is an inner part 

constituted by K-feldspar centimetric crystals inserted in the granitic matrix and 

bordered symmetrically by the aplite-pegmatite showing the typical zonation (Fig. 

III.21). Thus, the aplite pegmatite develops accordingly to the direction of the K-

feldspar alignments and, eventually, from the alignment itself. This suggests that the K-

feldspar alignments and the aplite-pegmatite emplacement could be related to the 

same event.  

Locally, e specially associated with the leucogranites and with the aplite-pegmatites 

there are masses of muscovite agglomerates that give to the rocks a satin appearance.  

When associated with the pegmatites the development of muscovite occurs 

preferentially in the contacts with the wall-rock, although veins constituted exclusively 

by muscovite and minor quartz could also occur (Fig. III.21B).  
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Fig. III. 20 – Field photographs showing aspects of aplite-pegmatite veins. A) Aplite-pegmatite cutting the migmatites; B, 

Aplite pegmatite showing zoning structure (P. 463); C) Huge K-feldspar development in the intermediate zone of aplite-

pegmatite (P. 440).  

 

Fig. III. 21 - A) K-feldspar megacrystals (Kfs) alignments within granite (Gnt), symmetrically bordered by aplite-

pegmatite (APG) (P. 792) ; B) Pegmatite vein bordered in both sides by muscovitic agglomerates in the contact with the 

wall-rock (P. 499).  From a certain point the muscovitic masses derive from the pegmatite vein and form an independent 

“vein”. 
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3.2.5. Structure 

All over the MMC several deformation structures are observed.  These various 

structures are the result of the action of various stages of deformation and/or anatexis 

concomitant with deformation. 

 

3.2.5.1. Stratification 

The best way to get information about the stratification would be to measure the 

contacts between the metagreywackes and the pelitic metatexites. However, the 

metagreywacke lenticular bodies show all possible orientations between NE-SW to NS 

(parallel to migmatite foliation). Also, in the vertical plan, the orientation of the lenticular 

bodies of metagreywacke shows pronounced heterogeneity (Fig. III.22). This is the 

result of the metagreywacke layers disruption coeval with melting under dynamical 

conditions,  forming lenticular bodies dispersed in the migmatite matrix, that  usually 

are called schollen or rafts (Sawyer, 2008a and b).  

However, it was possible measure the stratification in some rare metagreywacke 

thicker layers (>50 cm), without evidence of disruption and in patch-migmatite layers 

preserved within metagreywackes (Fig. III.23).The metagreywacke layers show a 

planar surface striking N020º to N050º. The patch-migmatites show the same NE-SW 

preferential orientation, varying from N025º to N050º.   

 

 

Fig. III. 22 –Metagreywacke showing random orientation within heterogeneous metatexite. Three aplite/pegmatite veins 

cut the earlier structure (Vertical plan). 
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Fig. III. 23 – Field photographs showing S0 planar structures. A) Thick metagreywacke layer striking approximately 

N30º. B) Patch-migmatite layer striking N50º (horizontal plan view). (Horizontal plan). 

 

3.2.5.2. Foliation  

In MMC/MZ the most penetrative planar structure is the migmatite foliation (Sn). This 

foliation is well marked in the metatexite zone and is defined by the preferred 

orientation of melanosome minerals (biotite and sillimanite) and by the gneissic 

layering formed by leucosome and melanosome (Fig. III.24). 

The good definition of the migmatitic foliation allowed the measurement of data in order 

to be used in a stereographic projection (Fig. III.25). The stereographic projection 

revealed the occurrence of three concentration peaks: 

 The main concentration peak strikes from N160º to N000º dipping 70º to 90º to 

E. This migmatitic foliation shows the typical alternating banding with millimeter 

to centimeters thick leucosomes.   

 The other concentration peak strikes from N025º to N045º dipping 60º SE to 

90º.  

 To the south of S. Paio (Fig.III.1) there is a gradual transition to a sub-horizontal 

foliation. This foliation strikes from ~NS to NE-SW, dipping from 50º to 10º E. 

The sub-horizontal foliation is predominant between the S. Paio granitic massif 

and the granitic massifs that outcrop in Leça da Palmeira (see Fig. III.1).  

 

(B)(A)
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Fig. III. 24 – Field photographs showing migmatitic foliation (Sn). A)  Foliation striking N035º in P. 494 and B) Foliation 

Striking N175º in P. 497. Both attitudes are widespread in metatexite zone, although NS predominates. (horizontal 

plan).  

 

Fig. III. 25 - Density diagram of Sn planes in MMC/MZ. There are two concentration peaks around N177º and N026º 

dipping 85º to NE. To the south of the S. Paio Granite the dip is progressively more sub-horizontal, with average dipping 

27º to E.  

 

The migmatitic foliation is folded by a late deformation phase. Thus, after the action of 

Dn, a later Dn+1 phase affected the migmatitic foliation, but was not enough intense to 

transpose Sn and form a new foliation. There are several features related to this later 

deformation phase, that suggest a simply shear character, namely: 

(A)
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 Folds related to this deformation phase show strong asymmetry (Fig. III. 26)  

 In the most intensely deformed layers the metagreywacke schollen have rounded 

morphology and the calc-silicate nodules within show curved shape or asymmetric 

mantled shape (Fig. III.27);  

 There are boudinated leucosomes along Sn foliation (Fig. III.28A and B);  

 Some metagreywacke schollen parallel to Sn show shortening and amalgamation 

(Fig. III.28C).  

The Dn+1 asymmetric folds bend the melanosome and leucosome homogeneously, 

suggesting that when folding occurred the banding was almost completely formed and 

was affected as a whole. Also the boudinage in leucosomes and the amalgamation of 

schollen suggests that the anatexis predates the latter deformation phase.   

 

 

Fig. III. 26 – A and B) Field photographs showing asymmetric folding affecting the Sn (~NS) migmatitic foliation. The 

leucosomes thickness is homogeneous in the hinges and limbs of the folds (P. 711). C) Fold Interference patterns 

resulting from action of Dn+1 in previous Sn folds. ( P.710; horizontal plan). 
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Fig. III. 27 – Field photographs showing rounded metagreywacke schollen containing folded calc-silicate nodules. A) P. 

701 and B) P.439. 

 

 

Fig. III. 28 - A and B) Boudinated leucosomes in residual melanosomes (P. 507 and 504); C) metagreywacke schollen 

showing shortening and amalgamation (P.710).  

 

As referred before, the granitic rocks of MMC are anisotropic, with evidence of a 

foliation resulting from a magmatic flow, which is locally overlapped by a later foliation 

in ductile-brittle regime.  
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The anisotropy associated with magmatic flow is more or less penetrative, being 

marked by the orientation of K-feldspar megacrystals, pelitic xenoliths and dark 

schlieren that generally show preferred orientation striking NW-SE (Fig. III.29). 

However, in the granitic dykes, the orientation of the schlieren is parallel to the dyke’s 

walls (Fig. III.13B).  

In general, all the granitic rocks show signs of minor solid state deformation. However 

is notorious the existence of corridors of intense deformation, as is the case of Leça da 

Palmeira two-mica granite (sample VC45, see Fig.III.1) and Fornelo two-mica granites 

(samples FM30 and FM33, see Fig. III.1). In these areas, the foliation that developed in 

ductile-brittle regime caused the development of CS-like shear structures with 

orientation ~N120º (Fig. III 30A).  

Aplite-pegmatite veins have sharp contacts with the migmatites and two-mica granites 

showing predominant striking N110º to N140º with peak concentration around N120º, 

80º NE (Fig. III.30). Although the aplite-pegmatites show straight and sharp contacts 

with the wall rocks, internally they show evidences of a deformational regime during its 

emplacement. Folded layers (Fig. III.31) and deformed plagioclases are a common 

feature in these rocks (see chapter IV).  

The described structural characteristics suggest that MMC structures are the result of 

two deformation phases, the first corresponding to the regional D1 and the second 

correspond to the regional D3. The migmatization is coeval with the last D1 stages and 

continue during D3 non-coaxial phase. The granite emplacement occurred under 

deformational regime related to the last regional D3 deformation phase.  

 

Fig. III. 29 - Density diagram of schlieren and xenoliths in two-mica granites showing concentration peak striking N150º, 

and variable dip. 
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Fig. III. 30 – A) Granite showing ductile-brittle deformation.B) Internal structure in of an aplite-pegmatite vein. 

 

 

Fig. III. 31 - Density diagram of aplite-pegmatite veins in MMC, showing peak concentration N120º, 85º NE. 
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3.3. Sector 2 - Aguçadoura ↔ Fânzeres  

Sector 2 is located to the SW of Douro-Beiras Shear Zone in the NE flank of Porto-

Viseu metamorphic Belt. Localities like Laundos, Aguçadoura, Alvarelhos, and 

Fânzeres are situated in this Sector (Fig. III.32).  

The field work to the N of Alvarelhos was hampered by the intense human activity and 

subsequent lack of outcrops as well as the state of alteration of the few existing 

outcrops. In the Fânzeres zone the access to fresh rocks was easier. 25 samples 

representative of the lithologies and metamorphic grade were collected. 

Sector 2 covers metasediments of “Schist-Greywacke Complex – Beiras-Group” 

(Pereira et al. 1992) and consists of thick sequences of alternating shales and 

metagreywackes, occasionally interspersed with quartzites and metaconglomerates.  

These metasediments contact with several granitic massifs that embody the core of the 

Porto-Viseu antiform like Stº André granite, Ermesinde granite, Barcelinhos granite, 

Póvoa granite, Porto granite, Fânzeres, Gondomar, and Pedregal granites (this 

terminology reflects the one used in the last published geological map; Pereira et al., 

1992). There are several granite porphyries, especially situated in Alvarelhos, intrusive 

in the metasediments. To the W the metasedimentary sequence passes gradually to 

the MMC migmatites.  

In this sector, gradations from weakly metamorphosed to strongly metamorphosed 

rocks can be seen. From the west towards the east the metamorphic grade varies in 

few kilometres (max 10 Km) from sillimanite-zone and staurolite/sillimanite-zone 

(adjacent to granites) passing to staurolite/almandine zone, to biotite-zone and finally  

to chlorite-zone. The description of lithologies will be taken from west to east 

highlighting the metamorphic grade of the different units. 

From the Mindelo Migmatite Complex towards east, the outcrops are rare and intensely 

altered. However, it is possible to observe a gradual transition from migmatites to 

sillimanite-zone metasediments as it moves toward east. The transition zone is very 

heterogeneous showing zones where sporadic granites cut the metatexites passing 

gradually to zones where granites prevail although containing great amount of 

metatexitic xenoliths. Gradually, the metatexites disappear and sub-vertical layers of 

sillimanite-schists, metagreywackes and metaconglomerates occur (Fig. III.33). In 

Fânzeres the sillimanite occurs only in metasediments adjacent to the granitic 

intrusions.  
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Fig. III. 32  – Geological sketch showing Sector 2 with representation of the sampling location and lithological type. 
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Fig. III. 33 – Metaconglomerate and sillimanite-schist near Maia (P. 704). 

 

To the E, the sillimanitic rocks disappear (except near granites) and staurolite-bearing 

rocks crop out in a NNE-SSE range, between Aguçadoura and Fânzeres (Fig. III.32).   

Staurolite-zone rocks unit is composed of mica-schists, metagreywacke and rare 

intercalations of calc-silicate rocks associated with the metagreywackes. Mica-schists 

are dominant and the metagreywacke/calc-silicate layers show centimetric thickness 

(Fig. III.34). 

Mica-schists show granolepidoblastic texture and demarcation in quartz-feldspathic 

and micaceous domains with variable thickness. Staurolite porphyroblasts are 

abundant and can reach 5 cm in length along the longest axis. Staurolite 

porphyroblasts show an internal foliation. In most of them this internal foliation is 

oblique and truncated by the external foliation (Sn) that generally is anastomosed 

around staurolite porphyroblasts (Figs. III.35A, 35B and 35D). There are also lenticular 

quartz that resulted from metamorphic segregations that show the same relation with 

the main foliation as the staurolite porphyroblasts. Garnet porphyroblasts are less 

abundant than staurolite and some of them occur included in the larger staurolite 

crystals (Fig. III.35D).  

There are folded quartzite layers showing axial plan parallel to Sn. These folds are 

symmetric and tight or isoclinal (Fig. III.36A). A later Dn+1 deformation phase crenulated 

the Sn foliation and folded the quartz veins parallel to Sn. Both the crenulation and the 

folds are asymmetric (Figs. III.35B and 35C). The crenulation is not penetrative and 
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shows variable intensity. The staurolite-schists from Fânzeres show less intense and 

less penetrative crenulation than the staurolite-schists from Aguçadoura.  

Locally, in the contact with the Paleozoic metasediments and associated with fault 

zones, there are dark layers of tourmalinites, mostly showing replacement of micas by 

tourmaline.  

Locally, and restricted to bands of about 2 to 3m, large sillimanite/kyanite “veins” were 

developed,  where the replacement of staurolite and the great size of the 

aluminosilicates are notoriuos (Fig. III. 36B). 

From west towards east the dimension of staurolite porphyroblasts decreases till they 

disappear. The staurolite-schists are replaced by schists with biotite porphyroblasts in 

the biotite-zone (Fig. III.37). The dominant lithologies of this metamotphic zone are 

biotite-schists showing granolepidoblastic texture interbedded with metric 

metaconglomerates, whose size of clasts decreases towards the top (Fig. III.37B). 

These lithologies are composed of biotite, quartz, plagioclase and rare garnet. The 

structures are the same as the structures present in the staurolite-zone.   

In the region of Alvarelhos – Fornelo several dykes of porphyritic granite intruded these 

metasediments leading to the development of tiny andalusite crystals in a small area 

around the intrusion.   

Towards east the dimension of the biotite porphyroblasts decreases and the biotite-

schist show a gradual transition to chlorite-schists, so to the chlorite-zone.  

In the chlorite-zone the grey phyllites are the dominant lithology and they show a 

laminated texture with variable thickness from centimetric to metric (with a higher 

proportion of metapelites) (Fig. III. 38).  

The lithologies mentioned above are interspersed by metaconglomerate layers with 

variable thickness (from 1 to 10 m). The metaconglomerates are composed of very 

coarse-grained quartz elongated grains, usually with dimensions between 1 and 3 cm 

in the greatest axis. The quartz grains are surrounded by white-mica films (Fig. III.39).  

In Alvarelhos, in the top of the unit, close to the Carboniferous contact, a level of satin 

dark phyllites with kaolinite was found (Fig. III.38C). Couto (1993) refers the occurrence 

of the same type of lithology in the top of Montalto unit (SW of the Valongo anticline). 
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3.3.1. Structure  

The geometry of the planar structures is similar in all metamorphic zones, since in all of 

them the overlap of three main ductile phases is evident. 

The bedding is oriented N160º to N170º plunging to NE with high inclination. The main 

foliation (Sn) observed in the field is defined by the phyllosilicates and opaque minerals 

and varies from N160º to 200º. This cleavage is crenulated by a later deformation 

phase, which is also represented by asymmetric folded quartz veinlets parallel to Sn.   

In the microstructural level it is possible to detect, in all metamorphic zones a previous 

foliation (Sn-1) which is preserved in quartzose bands and in the most protected regions 

adjacent to porphyroblasts, as well as inside the staurolite porphyroblasts.  

The first phase generated a pervasive cleavage (Sn) which is dominant in this Sector. A 

later deformation (Dn+1) phase folded and reoriented and / or reactivated the earlier Sn 

foliation, which is revealed by the ubiquitous presence of asymmetric crenulation 

cleavage and mesoscopic folds.  

Stereographic measurements of the principal foliation indicate two concentration peaks 

from N177º/87º E to N010º/62º E and N152º/82º E. The NW-SE (~N152º) peak occurs 

in metasediments that show intense crenulation and other features suggesting 

reorientation by the latter deformation phase (Fig. III.40).    

 

 

Fig. III. 34 - Field photographs showing staurolite schist and metagreywacke layer (S0=N010º; 68º N).  
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Fig. III. 35 – A) Staurolite-schists showing staurolites with major axis parallel to Sn. Staurolite porphyroblasts show  

internal foliation (Si) oblique and truncated by Sn (P. 454; vertical plane); B) Staurolite-schist from Aguçadoura showing 

crenulation cleavage affecting Sn (P.791; horizontal plane); C) Metamorphic segregation banding composed by 

quartzose and micaceous domains parallel to Sn foliation. The Sn foliation is crenulated by a later deformation phase 

(Vertical plan; P. 456); D) Staurolite-schist hand-specimen showing the micaceous and quartz-feldspathic domains, the 

staurolite porphyroblasts (St) and garnet (Grt) porphyroblasts dispersed in the matrix and also inserted in the staurolite.  

 

 

Fig. III. 36 – A) Folded quartzite showing axial plan parallel to Sn. B) Aluminosilicate “vein” in the staurolite-zone (P. 

779). 
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Fig. III. 37 – Field photographs showing aspects of biotite-zone. A) Biotite-schist showing biotite porphyroblasts (P.460); 

B) Normal sequence from metaconglomerate to metapelite.  

 

 

Fig. III. 38 – Field photographs showing aspects of chlorite-schists. A) Chlorite-schist showing crenulation (vertical 

plane; P.554). Sn= N5; 60 E; crenulation: N120º, 90º; B) Chlorite-schist alternating with metasiltite (P. 632; Sn = N155º, 

80º NE e S0 = N169º, subvert.); C) Hand specimen of the satin dark phyllites level cropping out in the top of the chlorite-

schists unit  
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Fig. III. 39 - A) Metaconglomerates from Gondomar (P. 784) showing elongated quartz clasts and mica around the 

clasts; B) Metaconglomerate hand specimen from Alvarelhos (P. 648) 

 

 

 

Fig. III. 40 - Density diagram to Sn poles in Sector 2. There are two concentration peaks. One varied from N177º/87º E 

to N010º/62ºE and the other is ~N152º/82º E. The NW-SE (~N152º) peak occurs in metasediments that show intense 

crenulation and other features suggesting reorientation by the latter deformation phase. 

 

3.4. Synthesis 

The field observation and sampling were done in an area of about 300 km2. In this area 

metasediments and granitic rocks crop out. From west to east the metamorphic grade 

decreases rapidly from sillimanite-K-feldspar-zone, to sillimanite-zone, staurolite-zone 

biotite-zone and chlorite-zone. These observations are in agreement with previous 

studies in the Porto-Viseu Metamorphic Belt that refer a metamorphic field gradient 
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marked by condensed isograds parallel to the granites, varying in a short extension 

from chlorite-zone to sillimanite-zone (e.g. Schermerhorn, 1956; Oen, 1970; Reavy, 

1989; Couto, 1993; Acciaioli, 1997; Valle Aguado et al., 1993, 2005; Esteves et al., 

2006; Ribeiro, M.A. et al. 2008; Azevedo & Valle Aguado, 2013).  

In Sector 1 there is great heterogeneity of lithologies and intricate relationship between 

them, which is a typical characteristic of the migmatitic zones (e.g. Brown, 2008; 

Sawyer, 2008). Granitic anatectic rocks predominate in this Sector, although in the 

coastal zone it is possible to observe extensive range of migmatites and minor granitic 

masses (metatexite zone – MZ). There are also metagreywackes and calc-silicate 

lithologies that remain as resisters within the more pelitic metatexites.  

In the MZ patch-metatexites, banded-metatexites, diatexites, leucogranites and two-

mica granites crop out (Fig. III.1).  

The contacts between the granitic rocks and the metatexites are distinct: the passage 

from metatexites to leucogranites is gradual, while the contacts with diatexites and two-

mica granites are abrupt. The latter contains huge fragments of metatexites and calc-

silicate rocks within.  

The metatexite zone shows interconnected leucosomes and granite dikes and veins 

that cut the metatexites. The younger veins, cutting all the referred lithologies are 

aplite-pegmatitic.  

The lithostratigraphic sequence cropping out in the Sector 2, which consists of 

alternating shales and metagreywackes, is similar to the metasedimentary lithologies 

cropping out in Mindelo Migmatite Complex. However, the metagreywacke layers 

proportion and thickness seem to be higher in the last, while the quartzites and 

metaconglomerates are absent. The pelitic lithologies mark the gradational 

metamorphic grade from west to east with development of sillimanite immediately after 

the Migmatitic Zone and also in contact with the granitic bodies, followed by staurolite 

development in pelitic and psammitic lithologies. To the east the biotite and chlorite 

porphyroblasts are the markers of the metamorphic grade.  

The principal foliation and fold axial plans in the Sector 1 and Sector 2 show 

predominant striking to NNE-SSW (varying from N170º to N025º).  The folds related 

with this phase are isoclinal and tight.   

These planar structures were affected by a latter deformation phase that crenulated the 

foliation in the more pelitic lithologies and folded the more competent layers.  The folds 
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and other structural aspects related to these last phase (boudinage and amalgamation 

of schollen) are asymmetric and indicate non-coaxial strain for these last phase. 

The migmatitic banding and mineral alignments that mark the foliation in the Sector 1 

are parallel to the SGC main foliation present in Sector 2. Accumulation of leucosome 

occurs in the hinges of Dn folds and other dilatant sites, while the later asymmetric folds 

show uniform distribution of leucosome. This suggests that migmatization started in the 

end of the principal deformation phase (Dn) and continued during the last deformation 

phase (Dn+1). 

The orientation of structures in the MMC (Sector 1) and in the SGC (Sector 2) seems to 

be related to the first Variscan ductile phase (D1) later reoriented, reactivated and 

crenulated by the last deformation phase (D3)  that is simultaneous of the thermal peak 

and decreasing pressure conditions (Ribeiro M.A et al., 2008).  In some segments the 

reorientation of structures is complete. The two-mica granites emplacement is syn-

tectonic with D3 since the orientation of magmatic foliations is the same as the main 

orientation of the Paleozoic structures.  The dispersion of orientation in the structures 

of Sector 1 and Sector 2 could be related to the ante-Variscan deformation episode 

that folded the ante-Paleozoic metasediments (Couto, 1992; Ribeiro et al., 1993; Ponte 

& Gama Pereira, 2004; Romão, 2005; Romão et al., 2013).  
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“Every now and then one paints a picture that 

seems to have opened a door and serves as a 

stepping stone to other things.”  

       Pablo Picasso 

 

“A picture can tell a thousand words, 

but a few words can change its story.”  

                                                     Sebastyne Young 

 

 

4.1. Sector 1 – Mindelo Migmatite Complex 

 

4.1.1. Petrography of metatexites 

Banded-metatexites predominates in the Metatexite Zone but locally patch-metatexites 

also crop out. Patch-metatexites are characterized by the predominance of 

melanosome over leucosome. Leucosomes consist of small scattered patches less 

than 10 mm, dispersed in the melanosome and generally surrounded by dark selvedgs 

(Fg.III.7). Banded-metatexites are characterized by the occurrence of aligned bands of 

melanosome intercalated with bands of leucosome of variable thickness and proportion 

(Fig.III.6).   

Patch-metatexites melanosomes show granolepidoblastic texture with anastomosed 

foliation marked by aligned biotite and sillimanite. The foliation drapes around biotite + 

sillimanite aggregates that look like pseudomorphs after staurolite, although staurolite 

was never observed in this rocks (Fig. IV.1.1A).  

In the banded-metatexites the melanosome minerals are aligned, forming continuous 

bands separated from each other by leucosomes, developing a gneissic foliation (Fig. 

IV.1.1B). The gneissic foliation is disturbed in folded metatexites (Fig. IV.1.1C).  

Melanosomes are composed of biotite + sillimanite + garnet + quartz + plagioclase + 

cordierite ± secondary muscovite. Zircon, monazite, apatite, rutile and ilmenite are 

widespread accessory minerals. 

http://www.goodreads.com/author/show/3253.Pablo_Picasso
http://www.goodreads.com/author/show/4489284.Sebastyne_Young
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Biotite arises either in elongated crystals oriented parallel to the bands or in smaller 

grains with random orientation (Fig. IV.1.2). Biotite crystals show xenomorphic textures 

and symplectitic intergrowths related with corrosion and melt forming reactions (Figs 

IV.1.2C and D).  

Sillimanite can be fibrolitic, pseudomorphing biotite, or prismatic when associated with 

quartz (Fig. IV.1.3). It is mostly concentrated in melanosomes although also occurs as 

alternating strips, aligning parallel to the melanosome bands, within leucosomes. There 

are textural aspects that suggest replacement of sillimanite by cordierite (Fig. IV.1.3D). 

Garnet is rare, xenomorphic and shows replacement coronas with cordierite + 

sillimanite + quartz (Fig. IV.1.4).  

Most of the cordierite is located in the frontier between melanosome and leucosome, 

although also occurs within melanosomes. It is generally xenomorphic or 

pseudomorphic after biotite and is associated with biotite and quartz (Fig. IV.1.5). 

Quartz and plagioclase grains occurring in the melanosomes are xenomorphic and 

smaller than the ones occurring in the leucosomes.  

Muscovite is essentially secondary, replacing biotite or plagioclase (Fig.IV.1.6).  

Leucosomes from patch-metatexites show two distinct types: Type I leucosomes are 

composed of sillimanite + cordierite + quartz + plagioclase (Fig. IV.1.7). Type II 

leucosomes are composed of large crystals (magmatic) of quartz + plagioclase ± K-

feldspar and contain fragments of Type I leucosome. K-feldspar is rare and always 

associated with plagioclase or in fine films around biotite crystals.  

Leucosomes from banded-metatexites show large anhedral to subhedral crystals of 

quartz + plagioclase ± K feldspar. These large crystals include small grains of anhedral 

or rounded quartz, plagioclase, biotite and accessory minerals. Fragments of 

melanosome are entrained in the leucosome (Figs. IV.1.8 and IV.1.9).  

Both patch-metatexites and banded-metatexites show several textures typical of partial 

melting (e. g. Sawyer, 2008a; Holness, 2008), either in leucosomes or in 

melanosomes, namely:  

 Presence of peritectic cordierite (Fig. IV.1.5); 

 Magmatic microstructures in leucosome crystals (Figs. IV.1.8, IV.1.9 and IV.1.12);  

 Plagioclase, quartz and cuspate K-feldspar grain (Fig. IV.1.8);  
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 Magmatic rims on subsolidus cores of grains (e.g. magmatic rims of plagioclase2 

and K-feldspar enclosing anhedral remnant plagioclase1 (Fig. IV.1.9);   

 Quartz or K-feldspar films surrounding biotite grains (Fig. IV.1.10); 

 Melt pools enclosing euhedral crystals which grew directly from the liquid (Fig. 

IV.1.11A).  

K-feldspar is rare in metatexites (in some of them only it was detected by 

backscattered images, Fig. V.24). It is possible to find metatexites without any K-

feldspar side by side with K-feldspar 

bearing metatexites less than 3 m 

away from each other. When it is 

present, K-feldspar includes all the 

other minerals in the assemblage, 

shows anhedral morphology and 

occurs both as product of biotite 

melting reaction (Fig. IV.1.10) and 

replacing plagioclase (Fig.IV.1.12). 

Textural evidence of plagioclase 

replacement by K-feldspar are 

widespread (Fig. IV.1.12), namely K-

feldspar in cores of plagioclase 

crystal,  plagioclase “inclusions” in K-

feldspar which are in parallel 

continuity with plagioclase outside 

the K-feldspar and ghost myrmekites, 

i.e. myrmekites included in K-feldspar 

crystals (Collins, 2013).  

It is noteworthy that the calc-silicate 

nodules adjacent to metatexites 

without K-feldspar show no 

replacement textures or mineralogy; 

however, those inserted in K-

feldspar-bearing migmatites show 

local retrograde replacement (Sub-

chapter III. 1.3.2.2.).  

500 µm

(B)

500 µm

500 µm

(C)

(A)

Bt Gnt

Sil + Crd

Qtz + Pl

Fig. IV.1. 1– Photomicrographs of metatexites: A) Patch-

metatexite B) Banded-metatexite showing migmatitic foliation 

marked by aligned alternating bands of melanosome and 

leucosome; C) Banded-metatexite showing folded foliation. 
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Fig. IV.1. 2– Photomicrographs showing some aspects of melanosomes. A) Melanosome showing aligned biotite and 

sillimanite (CPL); B) Melanosome band showing random biotite aggregates (PPL); C) Irregular border of biotite due to 

corrosion in contact with quartz (CPL); D) Biotite symplectitic with quartz adjacent to plagioclase (PPL ). 

 

Fig. IV.1. 3 – Photomicrographs showing aspects of sillimanite. A) Fibrolitic sillimanite replacing biotite in the 

melanosome (PPL); B) Prismatic sillimanite in the melanosome (CPL); C) Sillimanite inserted in large quartz crystal in 

the leucosome (CPL). D) Cordierite replacing sillimanite in the melanosome (CPL). 
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Fig. IV.1. 4 - Photomicrographs showing aspects of garnet. A) Garnet with small quartz inclusions and a tiny cordierite 

corona (CPL); B) Residual garnet crystal surrounded by cordierite and quartz (CPL). 

 

 

Fig. IV.1. 5 – Photomicrographs showing aspects of cordierite. A) Cordierite after biotite inserted in the leucosome 

(CPL). B) Cordierite and muscovite after biotite in melanosome (PPL); C) Cordierite between melanosome layer and 

leucosome (CPL); D) Cordierite replacing biotite and quartz and containing xenomorphic quartz inclusions (CPL).  
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Fig. IV.1. 6 - Photomicrographs showing some aspects of biotite partial replacement by muscovite: A) in the 

melanosome (CPL) and B) in the leucosome (CPL).  

 

 

Fig. IV.1. 7 - Photomicrograph showing textural aspects of patch-metatexites: A) leucosome composed of sillimanite + 

cordierite + quartz surrounded by biotite selvedge (PPL); B) Detail of previous image.  

 

 

Fig. IV.1. 8 – Photomicrographs showing aspects of banded-metatexites leucosomes. A) Xenomorphic plagioclase 

inserted in large quartz crystal and containing quartz round inclusions (CPL); B) Cuspate plagioclase between quartz 

crystals( CPL). 
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Fig. IV.1. 9 - Photomicrographs showing aspects indicative of melting reactions: A) Residual biotite and plagioclase (Pl1) 

inside neo-formed plagioclase (Pl2) and vermicular intergrowths of quartz and feldspar nucleated on plagioclase; B) 

plagioclase (Pl1), quartz and biotite relicts inserted in neo-formed plagioclase larger crystal (Pl2); (Photos in CPL). 

 

Fig. IV.1. 10- Photomicrographs showing aspects indicative of melting reactions: A) Xenomorphic biotite incorporated in 

large plagioclase crystal. Biotite shows a fine quartz film in the contact with plagioclase; B) Xenomorphic biotite with a K-

feldspar fine film in contact with quartz; (Photos in CPL). 

 

Fig. IV.1. 11 - Photomicrographs showing textural aspects indicative of melting reactions. A) Melt pool defined by 

feldspar enclosing subhedral quartz crystals; B) Plagioclase + K-feldspar + biotite complex intergrowths and myrmekites 

replacing biotite; (Photos  in CPL). 
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Fig. IV.1. 12 - Photomicrographs showing textural evidence of plagioclase replacement by K-feldspar. A)  Incipient 

development of K-feldspar in the core of plagioclase; B) Plagioclase “inclusions” in K-feldspar which are in optical 

continuity; C) Plagioclase inclusion in K-feldspar which are in optical continuity with plagioclase outside the K-feldspar.  

D) Ghost myrmekite associated with muscovite within K-feldspar; (Photos in CPL). 

 

4.1.2. Petrography of metagreywackes and calc-silicate nodules 

As referred in the sub-chapter 3.2.2., dispersed in the Metatexite Zone there are dark 

metagreywacke layers containing calc-silicate nodules that remain as resisters within 

the pelitic-metatexites.     

Metagreywackes show granoblastic texture with discrete and aligned biotite dispersed 

in a quartz-feldspathic matrix (Fig. IV.1.13). The mineral association is biotite + 

oligoclase + quartz + ilmenite ± almandine.  

Where biotite is abundant the microstructure is dominated by biotite. Owing to the 

dominance of the mica {001} planes, some of the quartz and plagioclase grains tend to 

be elongate parallel to the foliation marked by the mica grains (Fig. IV.1.14A). In the 

samples where the quartz-feldspathic matrix prevails over the biotite, the texture is 
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more granoblastic, with polygonal aggregates, although most of the boundaries 

between quartz and oligoclase crystals are curved (Fig. IV.1.14B). Some of the 

plagioclase crystals show small rounded quartz inclusions (Fig. IV.1.14C). Garnet is 

rare and xenomorphic, randomly dispersed in the matrix (Fig. IV.1.14D).The polygonal 

aggregates and the accentuated curved boundaries between quartz and plagioclase is 

indicative of the high temperature underwent by these rocks.  

 

 

Fig. IV.1. 13 – A) Photomicrograph showing general aspects of the metagreywacke resisters (PPL). 

 

Fig. IV.1. 14 - Photomicrographs showing textural aspects of metagreywackes: A) Aligned biotite within the quartz-

feldspathic matrix (CPL); B) Aggregate of quartz, plagioclase and biotite. (CPL). C) Plagioclase showing inclusions of 

rounded quartz; D) Xenomorphic garnet crystal within the quartz-feldspathic matrix (PPL).   
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Calc-silicate nodules show fine-grained granoblastic texture. Poikiloblasts of 

pyroxene, garnet and amphibole develop in a matrix consisting of plagioclase and 

quartz. Titanite, zircon, apatite, allanite and sulphides occur as accessory minerals 

(Fig. IV.1.15). 

The calc-silicate nodules present two zones (eventually three zones) with the same 

texture but different mineralogy: a core-zone with diopside + grossular + plagioclase + 

quartz + sphene + allanite + sulfides and an outer-zone showing the same paragenesis 

except for the absence of diopside and instead, occurrence of hornblende. Some of the 

calc-silicate nodules show biotite in the most external part of the outer-zone, instead of 

hornblende (Figs. IV.1.15 to IV.1.19).  

In the interface between the core-zone and the outer-zone diopside and hornblende 

develop in association, generally parallel to the direction of zoning (Fig. IV.1.17). 

However there is no evidence of retrograde replacement of diopside by hornblende. 

There are no replacement coronas and no replacement of diopside in the cleavages or 

fractures. Diopside never occurs in the outer-zone and hornblende is absent in the 

core-zone. Thus, this mineralogical boundary is the result of a side-by-side growth and 

not the result of later replacement. A similar relationship occurs between amphibole 

and biotite in the external part of the outer-zone, were occurs instead of amphibole.  

Diopside porphyroblasts show poikilitic texture with rounded quartz and plagioclase 

inclusions, smaller than the same minerals crystals of the surrounding matrix (Fig. 

IV.1.16A). Locally it occurs in polygonal clusters with triple junctions (Fig. IV.1.16B). 

There are diopside, garnet and plagioclase associations that resemble a relationship 

host/inclusion. However, this type of association is the result of interpenetrative 

contacts between the crystals, since it can be observed minerals that look like both 

host and inclusion, i.e., the cutting angle of the irregular crystals and the perspective in 

two-dimensions produced what can be called "false inclusions". The only true 

inclusions in these minerals are quartz and plagioclase rounded crystals.  

Amphibole, like diopside, is poikilitic and develops in the interstitial space between the 

quartz-feldspathic matrix (in association with garnet, titanite, plagioclase and allanite) 

(Fig. IV.1.17 and IV.1.18A). 

Biotite occurs in the border of the calc-silicate nodules outer-zone, adjacent to the 

contact with the surrounding metagreywackes. It shows a poikiloblastic texture, 

mimetizing the skeletal texture of hornblende (Fig. IV.1.18B). The morphology of this 

biotite is quite different from that which occurs in the metagreywackes. Here is skeletal, 
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filling spaces between the quartz and the plagioclase of the matrix whereas in 

metagreywackes is always idiomorphic (compare Fig. IV.1.14 with Fig. IV.1.18B).  

Garnet is poikilitic or even skeletal with inclusions of quartz and plagioclase and shows 

an interstitial relationship with the quartz-feldspathic matrix (Fig. IV.1.18A). 

Plagioclase shows two distinct textures: (i) idiomorphic, fine-grained, forming polygonal 

aggregates (Fig. IV.1.19A) and (ii) slightly coarser grained, poikilitic, with lobate 

boundaries (Fig. IV.1.19B).  

Quartz is abundant, although with variation in the modal proportion. It shows medium to 

fine-grain, lobate boundaries and polygonal clusters characteristic of static 

recrystallization (Fig. IV.1.19). Quartz inclusions in clinopyroxene, amphibole, garnet 

and plagioclase are rounded or irregular. 

Sphene is abundant and distributed in the matrix both in the core- and in the outer-

zone (Fig. IV.1.19B).  

  

 

Fig. IV.1. 15 - Photomicrographs on the magnifying glass of calc-silicate nodule showing core-zone with diopside (right) 

and outer-zone with hornblende (left) (PPL).  
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Fig. IV.1. 16 – Photomicrographs of calc-silicate nodules core-zone. A) Diopside showing poikiloblastic texture with 

quartz and plagioclase rounded to sub-rounded inclusions (CPL); B) Polygonal aggregate of diopside (CPL). 

 

 

Fig. IV.1. 17 - A) Contact between diopside and hornblende in the boundary between core- and outer-zones (CPL). B) 

Hornblende crystal with plagioclase and quartz inclusions (PPL).  

 

 

Fig. IV.1. 18 – Photomicrographs of calc-silicate nodules outer-zone: A) Skeletal hornblende and garnet crystals within 

the quartz-feldspathic matrix (PPL); B) Skeletal biotite in the border of the outer-zone (PPL). 
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Fig. IV.1. 19 – Photomicrographs of calc-silicate nodules showing aspects of the quartz-feldspathic matrix. A) polygonal 

aggregate of idiomorphic plagioclase and quartz (CPL); B) Large titanite crystal within the quartz-feldspathic matrix 

(CPL). 

 

4.1.2.1. Retrograde processes 

Locally the metagreywacke and calc-silicate resisters show mineralogy and texture 

related to retrograde processes. Two types of alteration occur: in Type I the silica 

content is apparently unchanged and in Type II the silica content is considerably 

increased.  

Type I retrograde process occur in calc-silicate and metagreywacke resisters situated 

in the vicinity of K-feldspar bearing metatexites. In these rocks plagioclase is replaced 

by epidote and clinozoisite in the core-zone and by sericite in the outer-zone 

(Figs.IV.1.20A, B and E).Diopside is replaced by actinolite (Fig.IV.1.20C) and some of 

the hornblende is replaced by chlorite (Fig. IV.1.20D). There are also fractures filled 

with epidote minerals (Fig. IV.1.20F). The metagreywackes surrounding these calc-

silicate nodules do not show accentuated replacement textures.  It is important to note 

that nodules almost completely altered, such as those described herein, and nodules 

without significant retrograde paragenesis, can be found at a distance of 3 meters from 

each other. Moreover, the altered nodules are located within K-feldspar bearing 

metatexites, while those with no significant changes are located within migmatites 

without K-feldspar in its mineral composition.  

 

(A) (B)

Pl

Qtz

Qtz

Ttn

Pl



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

 

80 

 

 

Fig. IV.1. 20 - Photomicrographs of calc-silicate nodules showing aspects of Type I retrograde alteration. A and B) 

Epidote minerals replacing anorthite in the core-zone (CPL); C) Actinolite replacing diopside (PPL); D) Chlorite replacing 

hornblende (PPL); E) Sericite replacing plagioclase in the outer-zone (CPL). E) Fracture filled with epidote (CPL).  

 

Type II retrograde process occurs in calc-silicate and metagreywacke resisters that 

show sharp quartz-bands where large quartz crystals develop that include the calc-

silicate paragenesis (Figs.IV.1.21, 1.22A). In the more calcic core-zone, besides quartz 
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IV.1.22B). The calc-silicate minerals included in the calcite and quartz bands show 

retrograde features. Plagioclase is almost totally replaced by clinozoisite and sericite in 

the core-zone and by muscovite in the outer-zone (Fig.IV.1.22). Prehnite and chlorite 

replace garnet and actinolite replaces diopside (Fig. IV.1.22).The metagreywackes also 

show quartz-rich bands, where chlorite after biotite and sericite after plagioclase occur. 

The alteration bands in the metagreywackes are specially situated in the frontier 

between the calc-silicate nodules and the metagreywackes. It is possible to see, in the 

same thin section, bands of completely retrograde paragenesis and bands where the 

biotite and the plagioclase have no alteration features (Fig.IV.1.23).    

Both types of retrograde processes are local: there are samples that do not show any 

type of alteration, most of them show only slightly signs of retrograde alteration, and 

locally there is intense retrograde paragenesis. This suggests that the retrograde 

process is specially related to fluid infiltration and not with retrograde regional 

metamorphism. 

 

 

 

Fig. IV.1. 21 - Panoramic of the sample showing Type II retrograde alteration. CZ – Core-zone; OZ – outer-zone; GWK 

– metagreywacke; A – crosscutting bands almost totally composed of large quartz crystals; B – large calcite crystals 

enclosing all the core-zone paragenesis; C – contact between quartz band and metagreywacke showing retrograde 

alteration of biotite and plagioclase; D – metagreywacke without retrograde alteration. 
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Fig. IV.1. 22 - Photomicrographs of calc-silicate nodules showing Type II retrograde alteration. A) Clinozoisite and 

sericite replacing plagioclase within the quartz-band; (CPL); B) Calcite crystals including diopside and sericite after 

plagioclase (CPL); C) Muscovite and sericite after plagioclase in the outer-zone (CPL); D) Diopside relict  after actinolite 

replacement and surrounded  by sericite after plagioclase (CPL). 

 

 

Fig. IV.1. 23 - A) Chlorite after biotite adjacent to a quartz-band in the frontier between the metagreywacke and the calc-

silicate nodule (PPL); B), Biotite and plagioclase, in the same sample, without any alteration (CPL). 
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4.1.2.2. Migmatized metagreywackes 

Some metagreywackes show evidence of having undergone partial-melting while most 

of them remain as resisters within the pelitic-metatexites. The migmatized 

metagreywackes are generally located in the outermost part of the metagreywacke 

resisters or between the metagreywacke schollen.  It was possible to observe a 

gradual transition from the resister-zone to the migmatized-zone within a single thin 

section (Figs. IV.1.24 and 1.25). The metamorphic texture prior to fusion is preserved 

in the resister-zone showing fine grained granoblastic texture (Fig. IV.1.25A). A 

progressive increase in the grain-size occurs towards the migmatite zone, being the 

biotite, quartz and plagioclase crystals progressively larger. Adjacent to the migmatized 

zone there are biotite agglomerates associated with fibrolitic sillimanite that do not 

occur in the resister metagreywacke (Fig.IV.1.25B).  The leucosome is composed of 

plagioclase and quartz large crystals that enclose smaller crystals of all the mineral 

assemblage present in the metagreywacke. There are cuspate grains in the leucosome 

and residual plagioclase within larger neo-formed plagioclase (Fig. IV.1.25D and 

1.25E). Garnet shows a corona of peritectic cordierite (Fig. IV.1.25F). 

 

 

 

Fig. IV.1. 24 – Microphotographs showing passage from metagreywacke resister-zone (right) to the migmatized-zone 

(left) in the migmatized metagreywacke sample.  
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Fig. IV.1. 25 – Photomicrographs showing aspects of migmatized metagreywackes: A) Metagreywacke resister zone; B) 

Selvedge adjacent to the leucosome; C) Cuspate crystal of quartz between large quartz and plagioclase crystals; D) 

Plagioclase surrounded by neo-formed plagioclase; E) Garnet replaced by cordierite; F) Large quartz crystal containing 

plagioclase and biotite inclusions.   
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4.1.3. Petrography of diatexites 

Diatexites show an equigranular matrix consisting of medium to coarse grained quartz 

+ plagioclase + K-feldspar + biotite.  Dispersed in the matrix there are abundant 

surmicaceous restitic enclaves (schlieren). The schlieren are composed of aligned 

biotite + sillimanite + cordierite ± garnet. The modal proportion of accessory minerals 

such as monazite, zircon and apatite is relatively high generally associated to the 

schlieren minerals. 

Biotite occurs in aligned bands defining a foliation (Fig. IV.1.26A), or distributed in the 

matrix in aggregates (Fig. IV.1.26B). The biotite dispersed in the matrix show corroded 

borders in contact with quartz and plagioclase (Figs. IV.1.27A and B) . 

Garnet is rare and restricted to the schlieren (Fig. IV.1.27C).  

Fibrolitic sillimanite occurs within the schlieren, associated with biotite and skirting the 

matrix grains (Fig. IV.1.27D).  

Cordierite is abundant. Occurs in the schlieren and also distributed in the matrix. There 

are tiny rounded cordierite crystals surrounded by later cordierite. The inherited crystal 

could be a metamorphic corroded cordierite crystal where peritectic subhedral 

cordierite nucleated (Fig. IV.1.28). There are several cordierite crystals inside large 

crystals of K-feldspar and quartz (IV.1.29A).  

Plagioclase occurs as large anhedral to subhedral crystals (Pl2), most of them 

containing subhedral inherited plagioclase (Pl1) (Fig. IV.1.29B). 

 K-feldspar occurs as large subhedral crystals generally containing inclusions of all the 

residual or peritectic minerals, namely cordierite, plagioclase, apatite and quartz (Figs. 

IV.1.29A and 1.29D). There are K-feldspar inclusions that show a previous complex 

texture, namely corroded crystal of inherited plagioclase surrounded by newly formed 

plagioclase and both surrounded by K-feldspar or biotite euhedral crystals inside 

anhedral plagioclase that is inside K-.feldspar large crystals (Fig. IV.1.29D). These 

feldspar crystals will be formed after the migmatisation process incorporating inclusions 

with typical textures of partial melting. 

Like metatexites also diatexites show myrmekite intergrowths, in most of the cases 

associated with micas or sillimanite suggesting a relationship between the biotite 

melting reactions and the occurrence of myrmekite.  There are myrmekites protruding 

into K-feldspar crystals but most of them occur as inclusions both in K-feldspar and in 

quartz large crystals (“ghost myrmekite”) (Fig. IV.1.29). This suggests that myrmekites 
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developed in a previous process (biotite melting) and were enclosed by the later larger 

crystals of K-feldspar and quartz. (Fig. IV.1.30). 

Flame perthites in K-feldspar, slightly deformed plagioclase and quartz crystals 

showing undulose extinction are evidence of fragile-ductile deformation processes 

affecting these rocks.  

Locally the diatexites show corridors where the grain size is larger, the modal 

proportion of quartz increased, the biotite is intensely replaced by muscovite and there 

are several aggregates of radiating muscovite. This suggests that later fluids affected 

this rocks (Fig. V. 1.31).  

 

 

 

Fig. IV.1. 26 – Microphotographs showing textural aspects of diatexites  
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Fig. IV.1. 27 – Photomicrographs showing textural aspects of diatexites. A and B) Corroded biotite in contact with 

plagioclase and quartz; C) Restitic garnet surrounded by folia of muscovite (PPL); D) Fibrolitic sillimanite next to a 

coarse K-feldspar crystal. The K-feldspar has a morphology adapted to the space between the sillimanite schlieren 

(CPL ). 

 

 

Fig. IV.1. 28 – Photomicrographs showing textural aspects of cordierite in diatexites: A) Cordierite associated with biotite 

and muscovite; B) Rounded and pinitized cordierite inside subhedral cordierite (CPL).  
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Fig. IV.1. 29 - Photomicrographs showing some textural aspects of diatexites. A) Large K-feldspar crystal containing 

apatite, cordierite, biotite, quartz and plagioclase inclusions; B) Zoned subhedral inhered plagioclase (Pl1) e inside 

magmatic large plagioclase crystal (Pl2); C) Plagioclase inclusions in K-feldspar showing vermicular quartz and irregular 

form. D) Chlorite after biotite inclusion in plagioclase that is inside a K-feldspar crystal. 

 

 

Fig. IV.1. 30 - A) Myrmekite projecting into K-feldspar associated with biotite. B) Myrmekite projecting into K-feldspar 

and quartz crystals associated with sillimanite. K-feldspar shows flame perthites. 
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Fig. IV.1. 31 – Secondary muscovite in diatexites.  

 

 

4.1.4. Petrography of leucogranites 

Leucogranites show magmatic equigranular texture, although locally rare K-feldspar 

megacrystals occur (Fig. IV.1.32A). The mineral association is quartz + plagioclase + 

biotite + muscovite ± K-feldspar ± garnet ± chlorite (sec.). There are rare zircon and 

monazite tiny crystals dispersed in the matrix. Biotite is not abundant and generally is 

aggregated in clusters (Fig. IV.1.32B). Sillimanite is rare, fibrolitic and always 

associated with biotite (Fig. IV.1.32C). Garnet is very rare, showing corroded texture 

and residual aspect (Fig. IV.1.32D)  

Several partial melting microstructures denounce the anatectic origin of this rock, 

namely (Fig. IV.1.33): i) anhedral residual biotite that locally shows evidence of partial 

melting reactions; ii) residual plagioclase inside larger grains of neoformed plagioclase; 

iii) cuspate grains of plagioclase and quartz; iv) plagioclase including rounded quartz 

crystals.   

Like leucosomes, there are leucogranites with abundant K-feldspar and leucogranites 

with rare K-feldspar. In general, all the leucosome and leucogranite samples with K-

feldspar show textural evidence of plagioclase replacement by K-feldspar namely K-

feldspar in cores of some plagioclase crystals, occurrence of plagioclase inclusions in 

K-feldspar which are in parallel optical continuity and K-feldspar development in 

miarolitic cavities. Ghost myrmekites are also present inside k-feldspar crystals 

(Fig.IV.1.34). 
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The tourmaline-bearing leucogranites show tourmaline dispersed in the matrix (Fig. 

IV.1.35). Biotite is absent or very rare. Tourmaline occurs as pseudomorphs after 

biotite, showing pleochroic halos and quartz inclusions and/or occurs in symplectitic 

intergrowths with quartz in contact with K-feldspar, indicating reaction with the k-

feldspar (Fig. IV. 1.35C and 1.35D).  

Both leucogranite types show intense later muscovitization of biotite, tourmaline and K-

feldspar and chloritization of biotite. There are also large muscovite random 

agglomerates that give to the rock a satin appearance and seem to result from later 

alteration processes (Fig. IV.1.36). 

 

 

Fig. IV.1. 32 - Photomicrographs showing textural aspects of leucogranite. A) General aspect of leucogranites; B) Biotite 

cluster (PPL); C) Sillimanite adjacent to biotite (PPL); C) Residual garnet (PPL). 
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Fig. IV.1. 33 - Photomicrographs showing textural aspects of leucogranites. A) K-feldspar megacrystal showing 

plagioclase and quartz inclusions and Carlsbad twining; B) Residual plagioclase crystals (Pl1) and neo-formed 

plagioclase overgrowth (Pl2). C) Cuspate quartz and K-feldspar crystals; D) Highly irregular contact between 

plagioclase and K-feldspar;  (Photos in CPL). 

 

 

Fig. IV.1. 34 - Photomicrographs showing textural aspects of leucogranites. A) Anhedral plagioclase crystal partially 

replaced by K-feldspar. Vermicular quartz within plagioclase. B) K-feldspar replacing plagioclase. Plagioclase fragments 

included in the K-feldspar show the same optical orientation, indicating that it is a single plagioclase crystal. Highly 

cuspate quartz crystal showing subgrains formation restricted to the area between two feldspar grains. (Photos in CPL) 
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Fig. IV.1. 35 - Photomicrographs showing textural aspects of tourmaline-bearing leucogranites. A) General aspect. 

Tourmaline is dispersed in the plagioclase/quartz matrix (PPL); B) Large tourmaline crystal with quartz inclusions and 

pleochroic halos (PPL); C and D) Tourmaline showing intergrowth with vermicular quartz in the contact with feldspar 

(PPL and CPL).  

 

Fig. IV.1. 36 – Replacement aspects in leucogranites; A) Chlorite replacing biotite; B) Muscovite replacing biotite; C) 

Secondary muscovite replacing tourmaline;  D) Agglomerate of secondary muscovite. 
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4.1.5. Petrography of two-mica granites 

Two-mica granites show equigranular and phaneritic texture and are composed of 

quartz + plagioclase + K-feldspar + biotite + apatite + muscovite + zircon + monazite ± 

andalusite ± tourmaline (Fig. IV.1.37). Locally there is development of K-feldspar 

megacrystals (2 to 10 cm). 

Rare aligned schlieren containing biotite + sillimanite ± garnet occur. Biotite in the 

schlieren is corroded (Fig. IV. 1.37B).  Sillimanite and garnet are rare and restricted to 

the aligned schlieren (Fig.IV.1.37C). 

Apatite is abundant and associated with biotite (Fig. IV.1.37C). Tourmaline occurs 

locally as pseudomorph after biotite (Fig. IV.1.37E). Most of muscovite is secondary, 

showing opaque minerals concentration in the cleavages (IV.1.37F).  

Plagioclase occurs as medium grained euhedral crystals or showing corroded borders 

when associated with K-feldspar.  

K-feldspar occurs as large euhedral crystals that include biotite, sillimanite quartz and 

plagioclase fine grained and rounded crystals and also as cuspate grains between 

quartz and plagioclase (Fig. IV.1.38A and 1.38B).  

Myrmekite are abundant, generally associated with corroded biotite (Fig. IV. 1.37B)    

Like the other rocks in MMC, two-mica granites also show textural evidence of 

plagioclase replacement by K-feldspar, namely plagioclase corroded crystals 

surrounded by K-feldspar (Fig. IV.1.38C to 1.38F). Plagioclase quartz round inclusions 

passed continuously to the K-feldspar crystal (Fig. IV.1.38F and E).  

The corridors of K-feldspar megacrystals (Fig. III. 19) have mineral composition similar 

to the two-mica granites but showing larger K-feldspar crystals (5 to 10 cm), abundant 

and euhedral muscovite and tourmaline and more intense deformational textures (Fig. 

IV.1.39). K-feldspar megacrystals replace plagioclase (Fig. IV. 1.39A), filled plagioclase 

fractures (Fig. IV. 1.39B) and contain inclusion of quartz and plagioclase (Fig. 

IV.1.39C). There are deformed K-feldspar, plagioclase and muscovite crystals (Fig. 

IV.1.39C and 39E).   
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Fig. IV.1. 37 - Microphotographs showing textural aspects of two-mica granites. A) General aspect (PPL). B) Corroded 

biotite producing K-feldspar in contact with myrmekite (CPL); C) Garnet and sillimanite folia in the schlieren (CPL); D) 

Biotite containing apatite and zircon inclusions (CPL); E) Tourmaline associated with quartz and biotite (PPL); F) 

Muscovite showing concentration of opaque minerals in the cleavages (CPL).  
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Fig. IV.1. 38 - Microphotographs showing textural aspects of two-mica granites. A) K-feldspar anhedral large crystal 

containing sillimanite and quartz inclusions. Cuspate K-feldspar between K-feldspar and micas; B) Cuspate K-feldspar 

between two quartz crystals; C) K-feldspar containing plagioclase rounded inclusions and irregular borders. Plagioclase 

containing biotite inclusion showing rounded corners. D) Anhedral plagioclase crystal surrounded by K-feldspar. The K-

feldspar shows quartz vermicules or quartz blebs inclusions in the border; E) K-feldspar replacing plagioclase. The 

quartz inclusions in plagioclase remain as inclusions in K-feldspar although showing smaller size. F) K-feldspar 

pseudomorphic after partially replaced plagioclase. Plagioclase is intensely corroded in the center and fragments of the 

same plagioclase crystal border the pseudomorph. (All photos in CPL).  
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Fig. IV.1. 39 - Microphotographs showing textural aspects of K-feldspar corridors within two-mica granites. A) K-feldspar 

replacing plagioclase; B) Cuspate K-feldspar filling plagioclase fracture; C) Deformed K-feldspar large crystal containing 

zoned plagioclase inclusions; D) Tourmaline replaced by muscovite; E) Deformed muscovite dispersed in the matrix.  
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4.1.6. Petrography of aplite-pegmatite veins 

Aplite-pegmatite veins cut all the previous lithologies forming sharp contacts with 

metatexites, diatexites and two-mica granites. Most of the aplite-pegmatite veins show 

three distinct zones comprising:  

 Aplitic central zone composed of quartz + albite and aligned trails of tourmaline 

and garnet. The quartz/plagioclase grain size is coarser beyond the tourmaline 

trails, towards the contact with the wall rock. Very rare anhedral biotite occurs. 

There is no muscovite in the internal zone (Fig.IV.1.40). 

 Intermediate coarser-grained zone showing perthitic feldspar, albite, quartz, 

muscovite and tourmaline. The feldspar, quartz and plagioclase crystals seem to 

be distributed in the fine-grained aplitic matrix, since they are surrounded by fine 

grained minerals identical to the aplite zone and contain several mineral inclusions 

from the aplite. The borders of the large minerals include the aplite minerals that 

delimited them (Figs.IV.1.40 and 1.41).  

 Quartz-albite fringe adjacent to host rock showing parallel elongated albite/quartz 

intergrowths. The albite contains abundant submicroscopic apatite inclusions 

(Figs. IV.1.41).   

There are fine-grained muscovite, quartz and tourmaline agglomerates that appear to 

be pseudomorphs after K-feldspar megacrystals Plagioclase is partially replaced by 

muscovite as well as the rare biotite (Fig. IV.1.42).   
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Fig. IV.1. 40 – Photomicrographs showing textural aspects of aplite-pegmatite veins. A) Aplitic internal zone showing 

fine grained quartz/plagioclase matrix and an aligned band with fine-grained tourmaline and garnet. There is an increase 

in grain size beyond the tourmaline band, towards the intermediate zone (CPL); B) Detail of the previous picture 

showing the tourmaline/garnet band (PPL); C, D, E and F) beginning of the intermediate coarse grained zone, showing 

large plagioclase and quartz crystals in contact with aplite. The borders of large crystals have inclusions of the aplitic 

matrix (CPL). 
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Fig. IV.1. 41 - Photomicrographs showing textural aspects of aplite-pegmatite veins: A, B and C) Intermediate zone 

showing perthitic K-feldspar crystals; D, E and F) Comb structure zone showing parallel elongated plagioclase and 

quartz intergrowth. (All photos in CPL).  
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Fig. IV.1. 42 – A, B, C and D) Muscovite replacing plagioclase (CPL); E) muscovite agglomerates in the Intermediate 

zone; F) Rare biotite in the intermediate zone (PPL).  
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4.1.7. Synthesis and discussion 

The textural and compositional evidence suggest that the dominant process for 

generating the MMC migmatites was partial melting. Injection is not a major contributor 

since there are no traceable field relations between the leucosomes in the analyzed 

outcrops and the granitic intrusions (except for leucogranites). In addition, the diverse 

compositions exhibited by the leucosomes over short distances argue against a 

common intrusive source, as well as the diversity of granitic rocks associated with the 

metatexites 

Textural evidence of partial melting processes are widespread both in metatexites and 

in granitic rocks. Moreover, the abundance of peritectic cordierite and relicts of 

sillimanite + biotite in leucosomes support an anatectic origin through an incongruent 

melting reaction involving biotite and sillimanite as the reactants and cordierite plus K-

feldspar as incongruent products. The following reaction in the KFMASH system is 

consistent with the observed textures and seems to be one of the melt-producing 

reactions of these migmatites: 

Bt + Qtz + Sil=Crd + Kfs + L 

The lithological heterogeneity present in MMC is common in migmatitic/anatectic 

terrains and must result from differentiation in the partial melting rates. The more calcic 

metagreywackes did not melted at all, the patch-metatexites show a low rate volume of  

melt, represented by the patchy leucosomes, the banded-metatexites show a similar 

proportion of leucosome and melanosome,  the diatexites show larger volume of 

leucosome relatively to restitic phases and two-mica granites contain only few 

remaining restitic phases.  

The structural level where the partial melting started could also be different since 

diatexites and two-mica granites show intrusive contacts with the metatexites and 

contain metatexitic xenolith, indicating a generation at greatest depth. Leucogranites, 

however, have a different relationship with metatexites, showing gradual transition. The 

modal proportion of feldspars and quartz is relatively high and the biotite is scarce. 

Apparently the leucogranites cropping out at the north and south of the Metatexite 

Zone are the result of massive segregation of leucosomes that dragged a few pieces of 

restitic phases. The proportion of these restitic phases is higher in the areas adjacent 

to the metatexites and progressively lower away from the Metatexite Zone. 
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The leucosomes are coarser-grained than the surrounding host-rock and show igneous 

fabrics. The average grain-size of the plagioclase and quartz in leucosomes is ~10 

times larger than that of the corresponding host-rocks. In general, the plagioclase and 

quartz leucosome crystals have restitic plagioclase, biotite, cordierite inclusions. This 

fact can be explained by the continued growth of plagioclase and quartz in a melt with 

high amount of solid phases that are incorporated as inclusions in the larger crystals, 

as is expected in rocks showing limited rate of partial melting. 

The presence of abundant peritectic cordierite in melanosomes and in restitic schlieren 

in diatexites indicates low-pressure anatectic conditions. The absence of peritectic 

garnet (the rare garnet crystals show residual character) and the absence of 

orthopyroxene, indicate temperatures below 810º considering the system 

NCKFMASHTO (Brown, 2013, White, 2008). The thermobarometric conditions 

prevailing in MMC condition will be discussed in the chapter VII. 

Two-mica granites and diatexites show approximately equal modal proportion of K-

feldspar and plagioclase. Metatexites and leucogranites show great heterogeneity in 

the K-feldspar modal proportion. In fact, there are metatexites and leucogranites where 

K-feldspar was not detected while others show high modal proportion. Within two-mica 

granites there are well defined corridors where the K-feldspar crystals reach 10 cm and 

evidence of plagioclase replacement by K-feldspar are observable in all the MMC 

lithologies. Moreover, calc-silicate rocks adjacent to K-feldspar bearing metatexites 

show marked alteration textures and mineralogy.  Thus, it seems that sub-solidus K-

metasomatism has influenced the composition and contributed to the heterogeneities 

of the MMC lithologies. Evidence that the K-metasomatism occurs at temperatures 

below the solidus exists in places where K-feldspar projects into microfractures in 

plagioclase and where broken plagioclase crystals are surrounded by the K-feldspar so 

that plagioclase islands are created in parallel optic continuity with the adjacent, 

unbroken plagioclase crystal, as well as the filling of miarolitic cavities by K-feldspar.  

Several studies described K-feldspar megacrysts as having been formed by K-

metasomatism, especially in deformation zones and associated with a specific type of 

myrmekite (e.g. Pitcher & Berger, 1972; Barton & Sidle, 1994; Collins 1997). Recent 

studies show that mineral-water interface reactions could occur that cause minerals to 

develop porosity so that fluids can flow through a granitic rock and produce large scale 

replacements (Putnis & Putnis 2007; Putnis, 2009; Putnis & John 2010; Putnis & 

Austrheim 2010; Putnis & Ruiz-Agudo 2013). These authors considered that K-
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metasomatism could produce more albitic plagioclase, quartz and K-feldspar 

accordingly to the following reactions:  

CaAl2Si2O8/NaAlSi3O8 + K+1 → KAlSi3O8 + NaAlSi3O8/ CaAl2Si2O8 + SiO2 + Ca+2 +Al+3  

CaAl2Si2O8 + 4SiO2 + 2K+1 → 2KAlSi3O8 + Ca+2 

NaAlSi3O8 + K+1 → KAlSi3O8 + Na+1.  

 

Tourmaline was not detected in metatexites, diatexites and most of the leucogranites. 

However, tourmaline-bearing leucogranites and two-mica granites containing rare 

tourmaline locally occur.  Tourmaline in two-mica granites is rare and is associated with 

biotite. Tourmaline in leucogranites is, in general, the only ferromagnesian mineral 

present since biotite is absent or very rare. Tourmaline is subhedral to anhedral, 

contains pleochroic halos and also occurs in symplectitic intergrowths in contact with K-

feldspar. 

Granitic melts are likely to be undersaturated in tourmaline from the start of their 

crystallization, and their initial boron contents will be limited by the abundance of 

tourmaline in their source rocks. Most leucogranitic magmas will initially crystallize 

biotite, cordierite or garnet, but not tourmaline (Deer et al., 1997).  In the pneumatolytic 

phase tourmalinization can occur by introducing boron-rich fluids. Generally, biotite is 

the first mineral to be replaced and subsequently K-feldspar (Deer et al. 1992). The 

leucogranites with tourmaline spots could be the result of complex metasomatic 

process involving migrating boron-rich fluids which cause the breakdown of biotite and 

locally reacted with feldspar to give tourmaline plus quartz (symplectitic intergrowth).  

Late magmatic fluids enriched in B are probably responsible not only for accessory 

tourmaline in MMC, but also for the occurrence of late tourmaline in metapelites and 

tourmalinites associated with quartz veins in the surrounding metasedimentary 

sequence (sub-chapter 4.2 and 4.3.).   

Tourmaline shows later replacement by muscovite, biotite is replaced by muscovite and 

chlorite + rutile, cordierite is pinitized and plagioclase and K-feldspar are replaced by 

sericite and muscovite. There are calc-silicate nodules and metagreywackes that show 

intense later silicification and quartz veins cut all the MMC lithologies. Locally, the 

diatexites and leucogranites show coarse grain size, abundant muscovitization of 

feldspars and occurrence of radiating muscovite aggregates. This indicates that later 

aqueous silica-rich fluids also have played a role in the MMC.  
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4. 2. Sector 2 - Aguçadoura  ↔ Fânzeres  

Sector 2 is located to SW of Douro-Beiras Shear Zone and comprises the NE flank of 

Porto-Viseu antiform (to NE from the antiform core granitic intrusions) and covers 

lithologies related to the “Schist-Greywacke Complex – Beiras-Group”.  The 

petrological description will be made accordingly to the metamorphic zones, from 

chlorite-zone to sillimanite -zone.  

 

4.2.1. Chlorite-zone 

In the chlorite-zone the chlorite-schists and the metaconglomerates were studied. 

Chlorite-schists are fine-grained and show alternating micaceous-rich and quartz-

feldspathic–rich bands parallel to the principal continuous cleavage defined by chlorite 

and white-micas (Sn). The textural aspect of the cleavage indicates a sedimentary 

origin since there are bands with different size and irregular borders. There are also 

parallel quartz veinlets (Fig. IV.2.1).   

The mica-rich bands are composed of white micas, chlorite and abundant opaque 

minerals that define a slaty cleavage. The quartz-feldspathic bands are composed 

mainly of quartz, minor plagioclase and dispersed white-mica flakes (Fig. IV.2.2).  

The continuous Sn cleavage is locally crenulated. A Dn+1 deformation phase 

crenulated Sn and formed a discrete cleavage and microlithons (Fig.IV.2.3). The quartz 

veinlets are folded showing fold attenuation coincident with the concentration of micas 

along the crenulation cleavage (Fig. IV.2.3).  

Metaconglomerates are composed of large quartz grains and fine-grained quartz 

agglomerates surrounded by phyllosilicates. Phyllosilicate aggregates contour the 

quartz and are composed of white-mica and chlorite associated with opaque minerals 

and late tourmaline. These agglomerates contour the quartz grains and form a marked 

cleavage that is parallel to the quartz grains elongation. This Sn cleavage is locally 

crenulated.  Mica alignments circumvents the larger quartz crystals, indicating that the 

morphology of quartz clasts prevail over cleavage. The larger quartz grains show 

ondulose extinction, subgrains formation and bulging. The fine-quartz agglomerates 

are composed of quartz, rare plagioclase and dispersed white-mica flakes parallel to 

the Sn.  The quartz grains show ondulose extinction and are elongated parallel to the 

main cleavage (Sn) (Fig. IV.2.4).  
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Fig. IV.2. 1 – Photograph showing general aspect of chlorite-schists. 

 

 

Fig. IV.2. 2 - Photomicrographs showing textural aspects of chlorite-schists. A) Micaceous band composed of white-

micas/chlorite/opaque minerals forming alignments that define a continuous slaty cleavage; B) Quartz domain showing 

fine-grained quartz and plagioclase and minor chlorite and white-mica alignments. C) Cleavage anastomosing around 

quartz crystals elongated parallel to Sn cleavage. D) Sample cut perpendicularly to the bedding showing lenticular 

coarser-grained quartz agglomerate. 
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Fig. IV.2. 3 – Photomicrographs of chlorite-schists showing discrete crenulation cleavage and folded quartz veinlet 

showing fold attenuation coincident with the concentration of micas along the crenulation cleavage.  

 

Fig. IV.2. 4 – Photomicrographs showing textural aspects of metaconglomerates layers in the chlorite-zone. 
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4.2.2. Biotite-zone 

In biotite-zone the biotite-schists, metaconglomerates and metagreywackes were 

studied. 

Biotite-schists show coarser grain-size than chlorite-schists, granolepidoblastic 

texture and are composed of biotite + muscovite + quartz + plagioclase ± chlorite ± 

garnet. There are zircon, monazite, apatite, ilmenite, rutile and tourmaline as accessory 

minerals.  

In the transition from chlorite- to biotite-zone the cleavage is defined by muscovite, 

opaque minerals and elongated quartz and plagioclase. The biotite porphyroblasts 

resulted from the replacement of chlorite and are dispersed as “starks” in the matrix 

(Fig. IV.2.5A).To the upper limit of the biotite-zone, the biotite porphyroblasts replace 

mimetically the aligned muscovite and define the foliation (Sn) (Figs. IV.2.5B to 5F). In 

this part of the biotite-zone rare garnet porphyroblasts develops (Fig.IV.2.5B) and the 

delimitation in quartz-domains and micaceous-domains is more evident. Quartz shows 

elongation parallel to the foliation in the micaceous bands and more isotropic 

morphology in the quartzose domains.   

Biotite-schists adjacent to the porphyritic granites develop late andalusite (outcropping 

in Alvarelhos; Fig. IV.2.5C). 

The crenulation affecting Sn cleavage is widespread, folding the micaceous domains 

and also the quartzose domains (Fig. IV.2.5D and 5E).   

There are retrograde replacement of biotite by chlorite, muscovite and sericite, and 

dispersed late tourmaline.  

Metaconglomerates in the biotite-zone are similar to the metaconglomerates in the 

chlorite-zone, showing large quartz clasts, fine grained quartz and plagioclase 

aggregates, both surrounded by aligned mica. However, in these rocks, biotite grains 

develop in the micaceous bands replacing white-micas, especially in the vicinity of the 

quartz large crystals. The biggest quartz clasts are, in this zone, transformed into 

smaller grained polygonal aggregates with triple junctions due to thermal effects (Fig. 

IV.2.5F).  

Metagreywackes in the biotite-zone are composed of quartz, plagioclase and biotite. 

Ilmenite, zircon, apatite and tourmaline occur as accessory minerals. Micas are aligned 

and define a foliation. The texture is typical of aggregates dominated by crystal faces 

(Vernon, 2004). Biotite occurs in numerous small aligned mica flakes. The 
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quartz/quartz interfaces meet mica {001} quartz interfaces at approximately 90◦ or are 

joined to the edges of the mica flakes. 

The quartz/quarts and quartz/plagioclase contacts are curved but intense dynamic or 

static recrystallization features are absent (no undulose extinction, no bulging, no 

subgrains) (Fig. IV.2.6). 

 

 

Fig. IV.2. 5 - Photomicrographs showing textural aspects of biotite-schists. A) Biotite-schist from the base of biotite-zone 

showing granolepidoblastic texture with biotite porphyroblasts; B) Garnet within the micaceous domains in the top of 

biotite-zone; C) Biotite-schist located in the vicinity of a porphyritic granite showing andalusite and retrograde muscovite 

and sericite. D and E) Folded quartz veinlet and crenulation cleavage affecting Sn;  F) Metaconglomerate showing 

biotite and polygonal quartz. 
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Fig. IV.2. 6 - Photomicrographs showing textural aspects of metagreywackes in biotite-zone. A) Magnifying glass photo 

showing aligned biotite flakes (PPL). B) Detail of the previous photo PPL); C) Photomicrograph showing curved contacts 

between quartz/quarts and quartz/plagioclase but not dynamic recrystallization features (no ondulose extinction, no 

bulging, no subgrains (CPL); D) Zircon, tourmaline and apatite dispersed in the quartz-feldspathic matrix (CPL and 

PPL).  
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feldspathic domains is wide-ranging, occurring zones where the micaceous domains 

prevail and zones where the quartz-feldspathic domains prevail. 

The quartz-feldspathic domains show polygonal or elongated fine-grained quartz and 

plagioclase and aligned but dispersed biotite. The modal amount of plagioclase is 

variable, occurring bands where the quartz predominates (approximately 90%) and 

areas where the plagioclase reaches about 40%. 

The micaceous domains show agglomerates of aligned biotite, ilmenite, tourmaline and 

a lower modal percentage of quartz and plagioclase.  

Three planar anisotropies are patent in these rocks: i) the main foliation, Sn, defined 

mainly by biotite (and muscovite + chlorite pseudomorphs after biotite), quartz and 

opaque minerals (ilmenite) elongated in the same direction; ii) a previous cleavage (Sn-

1) is preserved in quartz-feldspathic domains (microlitons) and also as folded inclusion 

trails inside staurolite porphyroblasts (Figs. IV.2.8 and IV.2.16); and iii) a crenulation 

cleavage, that locally bends the main foliation (Sn) (Fig. IV.2.9).  

Biotite occurs as fine-grained aligned crystals dispersed in the quartz-feldspathic 

domains and as aligned agglomerates parallel to Sn in the micaceous domains. Biotite 

in micaceous domains shows two different textures: i) elongated crystals aligned 

parallel to Sn and ii) as transverse “stacks” similar to those in biotite-zone (Fig.IV.2.10). 

These different types of biotite could result from two processes: 

 Biotite that developed in dynamic conditions (aligned) and late biotite growing in 

static conditions (stacks); 

 Biotite that replaces muscovite (aligned) and biotite that replaces chlorite 

stacks.   

This last hypothesis is suggested by the similar morphology and by the late alteration 

processes that show muscovitization of the aligned biotite and chloritization of the 

transverse biotite (Fig. IV.2.23).    

Garnet is rare (less than two crystals in most of the thin-sections), shows idiomorphic 

to sub-idiomorphic morphology and occurs both in the quartz-feldspathic domains and 

in the micaceous domains. When located in the quartz-feldspathic domains is poikilitic, 

almost skeletal, containing rounded quartz inclusions slightly smaller than the quartz in 

the matrix (Fig. IV.2.11B). In the micaceous domains, garnet is less poikilitic, containing 

few quartz inclusions with heterogeneous size. The Sn foliation is wrapped around the 

garnet porphyroblast and the inclusions trails are oblique to Sn (Fig. IV.2.11A).   Garnet 
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also occurs as inclusion inside the largest staurolite porphyroblasts.  Most of the 

porphyroblast are totally or partially replaced showing prograde substitution by 

biotite/staurolite/plagioclase pseudomorphs after garnet (Fig. IV.2.11C and D). In 

samples showing late retrograde alteration with muscovitization and cloritization of 

biotite, garnet is replaced by chlorite (Fig. IV.2.23).  

Staurolite occurs in micaceous domains and in the quartz-feldspathic domains. When 

exclusively in quartz-feldspathic domains, shows poikiloblastic to skeletal texture with 

random quartz inclusions. When exclusively in micaceous domains, only contains tiny 

graphite inclusions.  However, most of the staurolites show a complex inclusion pattern 

that records a long history of mineral growth. The following aspects can be highlighted: 

1 - Staurolite porphyroblasts are contoured by the Sn foliation (Figs. IV.2.12 and 

IV.2.17); 

2 – Some staurolite porphyroblasts preserve evidence of bedding and Sn-1.  That is 

revealed by:  

 The smallest staurolite porphyroblasts show apparently heterogeneous quartz 

inclusions trails (Si), oblique to each other and truncated by Sn (Fig. IV.12A).   The 

heterogeneity of the Si pattern suggests that the staurolite porphyroblasts grew over 

a folded Sn-1 cleavage; 

 Bedding and Sn-1 are preserved in the largest staurolite porphyroblasts. These 

have overgrown the compositional layering or bedding preserving the alternating 

quartz-rich and quartz-poor bedding planes parallel to Sn-1 foliation. The quartz rich 

layers remain as quartz-rich bands within the staurolite porphyroblasts and the 

micaceous-rich layers are replaced by staurolite, leaving graphite tiny inclusions that 

remain aligned parallel to the bedding layers marking a Sn-1 foliation (Fig. IV.2.13).  

 The internal foliation (Si) is curved at the edges of some staurolite porphyroblast 

showing inclusions trails that are continuous to Sn-1 cleavage preserved in the low 

strain sites adjacent to staurolite (Fig. IV.2.14). The sense of curvature of the 

foliation at one end of the porphyroblast is opposite to that at the other end 

(‘millipede structure’) (Figs.IV.2.15);  

 There are microlithons impressed in the staurolite porphyroblasts by inclusions 

trails. These are defined by relics of quartz-rich versus quartz-poor layers (Q and M-

domains). The quartz-rich “microlithons” are defined by quartz and ilmenite 
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inclusions and the quartz-poor micaceous domains are defined only by ilmenite and 

graphite inclusions (Fig. IV.2.16). 

3 – The borders of the biggest staurolite porphyroblasts show trails of elongated and 

aligned ilmenite inclusions parallel to Sn. This results of the continuous porphyroblast 

growth after the Sn main foliation having drape around the staurolite crystal (Bell & 

Johnson, 1989a, Figs. IV.2.17 and 2.18).  

4 – Some samples show staurolite fine-grained crystals dispersed in the matrix that 

show static growth, no foliation deflection and no inclusions (Fig.IV.2.19).  

5 – Adjacent to most staurolite porphyroblasts there are pressure-shadows, where 

quartz has recrystallized occupying dilatant sites adjacent to the porphyroblast. The 

position of the pressure-shadow, extending parallel to the Sn foliation, indicates the 

formation of the pressure shadow during Dn deformation phase. 

6 – The crenulation cleavage (Dn+1) is not recorded in Si staurolite inclusion trails.  

7 – Andalusite replaces staurolite and late retrograde processes provoke replacement 

of staurolite by muscovite and biotite agglomerates or by sericite in the borders and in 

fractures (Fig. IV.2.23).   

The staurolite porphyroblasts can be inferred to have grown during the Dn deformation 

phase that folded and transposed an earlier Sn-1 cleavage. Some of them, however, 

continue to grow after the last stages of progressive development of Sn, which is 

revealed by the replacement of the phyllosilicates that define the Sn foliation wrapped 

around the staurolite porphyroblasts.  

Andalusite porphyroblasts occur both dispersed in the micaceous domains and in 

association with staurolite.  All the porphyroblasts overgrow the Sn foliation showing Si 

parallel to Se, which is revealed by straight inclusion trails of elongated ilmenite and 

biotite (Si) in continuity to the matrix Sn foliation (Fig. IV.2.21). There are andalusite 

porphyroblasts overgrowing the crenulation cleavage and showing mimetic 

development over the crenulation (Fig. IV.2.21D).   There are evidences of staurolite 

replacement by andalusite + biotite revealed by staurolite relics inside andalusite 

porphyroblasts (Fig. IV.2.20). This indicates that andalusite grew after the development 

of the Sn foliation and that the earlier staurolite porphyroblasts were replaced by 

andalusite.  

Tourmaline occurs as dispersed crystals in the staurolite-schists and overlaps Sn 

foliation without deflection in the surrounding matrix (Fig. IV.2.22A). In the tourmalinites 
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associated to fault-zones all the phyllosilicates were replaced by tourmaline that 

mimetized the previous foliation (Fig. IV.2.22B). This suggests the entrainment of later 

boron-rich fluids in the metasedimentary sequence. 

Retrograde processes affect the staurolite-schists, what is revealed by the substitution 

of staurolite by sericite, muscovite and biotite, the replacement of garnet by chlorite, 

replacement of biotite by chlorite and muscovite and replacement of andalusite by 

sericite (Fig. IV.2.23). 

 

 

Fig. IV.2. 7 – A) Photomicrographs of staurolite-schists showing quartz-feldspathic domains and micaceous domains. 

Quartz-feldspathic domains contain fine-grained quartz and plagioclase crystals and rare aligned biotite. Micaceous 

domains contain biotite aligned agglomerates (CPL). B) Photomicrographs showing three staurolite poikiloblasts. 

Included in staurolite there are a pseudomorph after garnet (CPL).  
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Fig. IV.2. 8 – Photomicrographs showing textural aspects of staurolite-schists. A) Panoramic photo showing micaceous 

domain and quartz-feldspathic domain. In the quartz-feldspathic domain can be distinguished the Sn foliation parallel to 

the micaceous domain and an oblique Sn-1 cleavage; B and C) Sn-1 cleavage truncated by Sn; (All photos in CPL). 

 

 

Fig. IV.2. 9 - Photomicrographs showing folding affecting the Sn cleavage  (All photos in CPL). 
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Fig. IV.2. 10 – Photomicrograph showing textural aspects of biotite in staurolite-schists. A) Biotite in quartz-feldspathic 

domains; B) Biotite in micaceous domains showing two different textures: fine elongated flakes marking Sn foliation and  

biotite as “stacks”. 

 

 

Fig. IV.2. 11 - Photomicrograph showing textural aspects of garnet in staurolite-schists. A) Garnet in micaceous domain 

(PPL); B) Poikilitic garnet in quartz-feldspathic domain. (CPL); C and D) Garnet inside staurolite (CPL). 
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Fig. IV.2. 12 – Photomicrograph showing textural aspects of staurolite in staurolite-schists. Conspicuous staurolite 

porphyroblasts showing abundant quartz inclusions defining an heterogeneous internal pattern (Si), discordant to the Sn 

foliation, which is strongly flattened around staurolite. Note the heterogeneity of the Si pattern.  

 

 

Fig. IV.2. 13 - Photomicrographs showing staurolite porphyroblasts fossilising the bedding and Sn-1 parallel to the 

bedding. The micaceous bands were replaced by staurolite leaving aligned graphite as inclusions and the quartz-rich 

bands are revealed by the quartz aligned inclusions trails. These inclusions trails are not parallel to the exterior foliation. 
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Fig. IV.2. 14 – Photomicrographs showing textural aspects of staurolite-schists. Sn cleavage defined by biotite and 

secondary muscovite. Quartz fine-grained crystals are elongated parallel to Sn. The low-strain site adjacent to staurolite 

porphyroblast reveals residual crenulation microfolds (Sn-1) that have been obliterated in the unprotected areas of the 

matrix. The staurolite poikiloblast quartz inclusions trails are continuous to Sn-1 crenulation cleavage. The curvature of 

Si at the edges of the staurolite porphyroblast indicates that the crenulations began to form as the porphyroblast 

completed its growth.  

 

 

 

Fig. IV.2. 15 - Folded quartz trails in the border of the staurolite porphyroblasts, top and bottom, respectively. The sense 

of curvature of the foliation at one end of the porphyroblast is opposite to that at the other end (‘millipede structure’). 
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Fig. IV.2. 16 - Photomicrographs showing textural aspects of staurolite-schists. A) Staurolite showing fossilized 

“microlithons” defined by folded trails of quartz truncated by oblique elongated inclusions (Si); B) detail of previous 

figure; C) Staurolite showing fossilized “microlithons” impressed by quartz and ilmenite inclusions inside staurolite 

porphyroblast. D) Detail of previous picture showing relics of quartz-rich (Q-domains) versus quartz-poor layers (M-

domains). The quartz-rich “microlithons” are defined by quartz and ilmenite inclusions which preserve the previous 

foliation and the micaceous domains are defined only by ilmenite and graphite (Gr) inclusions. 

 

 

Fig. IV.2. 17 – Photomicrographs showing textural aspects of staurolite in staurolite-schists. A) Border of staurolite 

showing aligned ilmenite and graphite inclusions trails parallel to Sn external foliation. Note that inclusions trails record 

the deformation caused by the deflection of Sn around the porphyroblasts. B) Staurolite edge showing ilmenite and 

graphite inclusions trails parallel to external Sn foliation.  

1 cm

0.7 cm

(A) (B)

(C) (D)

St

And

St
Qtz

St

(D)

(B)

St

Qtz

St

(A) (B)

Qtz

Ilm

Qtz

Ser

1 mm



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

 

119 

 

 

Fig. IV.2. 18 - Sketches showing progressive growth stages of an hypothetical porphyroblast during progressive, 

foliation-forming deformation of the matrix, according to the model of Bell & Johnson (1989).  

 

Fig. IV.2. 19 – Photomicrographs showing staurolite porphyroblasts overlapping on Sn foliation without deflection in the 

surrounding matrix suggesting they grew under static conditions. 

 

Fig. IV.2. 20 – Photomicrographs showing staurolite replacement by andalusite and biotite 
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Fig. IV.2. 21 – Photomicrographs showing andalusite porphyroblasts in staurolite schists. A,B andC) The Sn foliation is 

not deflected by andalusite and Si is parallel to Se. D) The andalusite porphyroblasts show slightly flexure mimetic of 

previous structures (Sn folded by Dn+1).   

 

 

Fig. IV.2. 22 – Photomicrographs showing tourmaline textural aspects in staurolite schists. A) Tourmaline overlapping 

Sn foliation without deflection of the surrounding matrix; B) Tourmalinite associated to a fault in staurolite-zone. All the 

phyllosilicates were replaced by tourmaline that mimetized the previous foliation.    
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Fig. IV.2. 23 - Photomicrographs showing alteration aspects in staurolite-schists. A) Muscovite partially replacing 

staurolite in quartz-feldspathic domain. Muscovite shows the same poikilitic texture as the staurolite. B) Random  flakes 

of muscovite replacing staurolite (top) and aligned muscovite replacing biotite and mimetizing biotite alignment; C) 

Chlorite replacing transverse biotite and muscovite replacing aligned biotite. D) Chlorite + muscovite+ quartz replacing 

garnet.  

 

4.2.3.1 - Calc-silicate rocks 

The calc-silicate rocks in the staurolite-zone show the mineral assemblage: amphibole 

(hornblende) + quartz + plagioclase (anorthite) + garnet + titanite + ilmenite + pyrrhotite 

± epidote (sec) ± chlorite (sec) ± smectite (sec).  

The matrix is quartz-feldspathic showing polygonal quartz and minor amount of 

anorthite. Titanite is dispersed in the matrix. Hornblende occurs as aligned crystals 

most of them pseudomorphs after actinolite. Garnet is poikilitic, containing quartz 

inclusions with heterogeneous size and distribution. Late alteration processes show 

replacement of anorthite by epidote and replacement of hornblende by chlorite and 

smectite (Fig. IV.2.24).  
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Fig. IV.2. 24 - Photomicrograph showing textural aspects of calc-silicate rocks in the staurolite-zone. A) General aspect 

of the sample (PPL). B) Amphibole and titanite associated with epidote and quartz (CPL); C) Smectite after hornblende 

(PPL). 

 

4.2.3.2. “Aluminosilicate veins” 

The aluminosilicate veins occurring in the staurolite-zone are composed of muscovite + 

sillimanite + andalusite + kyanite ± quartz (Fig. IV.2.25). Muscovite is abundant and 

occurs in radiating aggregates or as large flakes. Large prismatic sillimanite crystals 

occur associated with muscovite. Fibrolitic sillimanite is also abundant. Kyanite and 

andalusite occur in idiomorphic crystals dispersed in the rock. Staurolite is rare, shows 

aluminosilicate vermicular inclusions and is replaced by andalusite, which suggests a 

later emplacement of the aluminosilicate veins.    
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The idiomorphic texture and the linear contacts between the aluminosilicate crystals 

and the absence of reactional textures suggest textural equilibrium between the 

aluminosilicate minerals. 

 

 

Fig. IV.2. 25 – Photomicrographs showing aspects of aluminosilicate “veins”: A) Staurolite partially replaced by 

andalusite and containing aluminosilicate vermicular inclusions. B) Staurolite replaced by andalusite associated with 

quartz and kyanite; C) Sillimanite and muscovite intergrowths; D) Muscovite agglomerate.   
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Sillimanite-zone is restricted to areas adjacent to the MMC or in contact with the 

granitic massifs in Fânzeres.  

In the metaconglomerates (Figs. IV.2.26A and B), micas skirting the quartz grains are 

replaced by clusters of sillimanite. The mineral assemblage is: quartz + biotite + 

sillimanite (and retrograde muscovite + chlorite).  
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In schists the sillimanite replaces biotite, which defines the Sn foliation (Figs. IV.2.26C 

and D). The mineral assemblage is: quartz + plagioclase + biotite + sillimanite ± 

muscovite. There are some aspects that suggest incipient partial melting, namely 

plagioclase overgrowth and cuspade quartz crystals. It is important to highlight the 

absence of staurolite, andalusite or cordierite in these samples.   

 

 

Fig. IV.2. 26 – Photomicrographs showing textural aspects of sillimanite-zone rocks. A and B) Metaconglomerate 

showing replacement of biotite by prismatic sillimanite; C and D) Sillimanite-schists showing fibrolitic sillimanite 

replacing biotite and evidence of initial partial melting as cuspate quartz and plagioclase overgrowth.  
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4.2.5. Metamorphic conditions in Sector 2  

In this sub-chapter we will discuss the mineral assemblages and their relationship with 

the possible metamorphic condition found in Sector 2, from chlorite-zone to sillimanite-

zone. 

It is known that mineral assemblages and compositions of minerals are controlled 

either by the bulk composition of the rock or/and by metamorphic factors, notably the 

pressure and temperature conditions (Turner, 1948). The bulk rock composition is 

fundamental to understand the sequence of assemblages displayed by the analyzed 

rocks.   

The system K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH) is useful and appropriate to the 

study the metamorphic conditions of pelitic rocks containing Fe and Mg bearing 

minerals (Bucher & Grapes, 2011).  

Figure IV.2.27 represents the bulk rock composition of biotite- and staurolite-schists in 

the AFM diagram as well as the composition of the aluminosilicate-vein present in the 

staurolite-zone. The pelites bulk composition is characterized by “A” parameter values 

between 0.40 and 0.53 and XFe between 0.43 and 0.48. Moderate to low values of Mn, 

generally < 0.04 and low CaO content. This values are considered typical of pelites 

although they show slightly low Al and high Mg content. The bulk composition of these 

rocks determines its behavior during metamorphism.  

As was observed in the petrographic studies, the mineral zone sequence of index 

minerals in Sector 2 is: Chl → Bt →Grt → St →Sil. Chloritoid, kyanite or pyrophilite 

were not detected during the petrographic observations. Figure IV.2.28 represents a 

sequence of assemblages displayed as an arrangement of schematic AFM diagrams in 

the KFMASH system (AFM-diagrams) in a Barrovian metamorphism context (after 

Bucher & Grapes, 2011) where the bulk-rock composition of the studied pelitic rocks is 

marked (red diamond). The analysis of AFM diagrams sequence allows to understand 

the particular paragenesis found, form Chlorite- to migmatite-zone, namely the 

appearance of garnet before staurolite since, generally, in higher Al rocks staurolite 

predates garnet (Spear, 1995; Bucher & Grapes, 2011) and the absence or rarity of 

chloritoid and aluminosilicates in the staurolite-zone (common in higher Al rocks). The 

staurolite first appearance occurs at ~560 ºC to the bulk composition of this pelitic 

rocks (Fig. IV.2.28h).   
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Figure IV.2.29 shows the distribution of mineral assemblages for typical pelitic bulk-

rock composition showing relatively low Al and moderate Fe contents (Bucher & 

Grapes, 2011). In all fields muscovites, quartz and H2O are present in addition to the 

indicated minerals (the curve 1 represents the breakdown of muscovite to K-feldspar). 

It is notably that this type of rock will not develop sillimanite along a Barrovian type 

geotherm and that it will not contain kyanite at any P and T conditions. Chloritoid 

occurs only at pressures higher than 500 MPa. This can explain why the staurolite-

schists do not contain aluminosilicates in equilibrium with staurolite and why chloritoid 

was not detected in the biotite-zone samples. The coexistence of aluminosilicate with 

staurolite is only possible in rocks that contain higher Al content.  Considering the first 

occurrence of staurolite at 560 ºC, the peak pressure conditions attained by these 

rocks was at least 490 MPa (Fig. IV.2.29 – red shaded area). 

As referred, the staurolite-schists are interbedded with calc-silicate rocks. This rocks 

show the mineral paragenesis amphibole + quartz + garnet + anorthite + titanite. 

Diopside is absent. Considering XCO2 normal values to calc-silicate rocks, and the 

system SiO2-MgO-CaO-H2O-CO2 (Spear, 1995), the diopside starts to develop 

between 550 and 600 ºC. Thus, using this data, it is possible to constraineven more the 

metamorphic conditions during this metamorphic event to temperatures between 560 

and  600 ºC (Fig. IV.2.29 – red shaded area).  

The development of andalusite at staurolite expenses and showing a 

blastesis/deformation relationship indicative a post-kinematic character, suggests that a 

decompression process occurred after the attainment of the first metamorphic event  

conditions (M1). Sillimanitic rocks near the granitic intrusions could be the result of 

increasing temperature and decompression (Bucher & Grapes, 2011). The PT 

conditions of this metamorphic event were delimited in the pseudosection diagram in 

the field of andalusite (orange shaded area; Fig. IV.2.29) and indicated P < 380 MPa 

and T > 530 ºC.  
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Fig. IV.2. 27 - AFM diagram. Compositions for typical pelitic composition is represented by “P” (Bucher & Grapes, 2011).   

Staurolite schist composition show XFe between 0.4 and 0.6 and “A” parameter between 0.3 and 0.4. The composition 

of aluminosilicate vein shows A= 0.98 (red filled diamond).  

 

Fig. IV.2. 28  - Arrangement of assemblages displayed as a sequence of schematic AFM diagrams in the KFMASH 

system (AFM-diagrams) along Barrovian type geotherm (after Bucher & Grapes, 2011). The bulk rock composition of 

sector 2 pelitic rocks is indicated by the red diamond.  
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Fig. IV.2. 29 - Stable assemblages in metapelitic rocks that originally contained Chl–Ms–Qtz (model system KFMASH). 

Note that this type of rock will not develop sillimanite in a Barrovian type geotherm and does not contain Ky at any P and 

T. The fields that contain Kfs do not carry Ms (high T low P). The central amphibolite facies assemblage is Grt–Bt–St 

(shaded in green). Delimited the stability field of the staurolite-schists paragenesis at a first metamorphic event (M1) and 

during a second metamorphic event were andalusite replaces and coexists with staurolite.  
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4.2.6. Synthesis and discussion 

In sector 2, the chlorite, biotite, staurolite and sillimanite metamorphic zones already 

identified by other authors for the Porto-Viseu Metamorphic Belt (e.g. Accioaioli, 1997; 

Valle Aguado et al., 1993, Ribeiro et al., 2008, 2014) were recognized. It was also 

observed the spatially delimited occurrences of “veins” showing the anomalous mineral 

association muscovite/quartz/ aluminosilicates as well as small contact aureoles 

around porphyritic granites in the biotite-zone were reported.    

Three distinct deformation phases were observed: i) the oldest (Dn-1) is defined by 

residual foliation (Sn-1) which is only found in quartzose domains and in the staurolite 

and garnet inclusions trails. It is parallel to S0 and probably of diagenetic character; ii) 

A second phase (Dn) causes a penetrative foliation (Sn) which is characterized by 

phyllosilicates and ilmenite alignment and inclusions trails in the border of the 

staurolites; iii) The last deformation phase (Dn+1) redirected, transposed and / or 

crenulated the previous foliations. 

It is considered that Dn-1 is likely to have diagenetic character or correspond to an 

earlier not penetrative deformation phase.  Sn corresponds to the first Variscan 

deformation phase (D1) and Dn+1 to the third deformation phase (D3) (considering D2 

the deformation phase correlated with the allochthonous thrusts).   

The blastesis period probably was contemporaneous of the end of crustal thickening 

caused by the thrusting of the allochthonous units. Andalusite blastesis is late-D3 

deformation phase which suggests decompression and increased temperature during 

this last phase. 

The metamorphic sequence, the mineralogical associations and the geometric relations 

Si / Se suggest that the process that originated the metamorphic zones has a regional 

character, reached moderate pressure and temperature conditions and is related to D1 

deformation phase. During D3 an increase in temperature and decompression process 

occurred, conditioned by the granitization and installation of the two-mica syn-tectonic 

granites.  

A first metamorphic event (M1), attaining condition of P > 490 Pa and 560 < T > 600 

ºC, reflects thinckening and heating. These conditions were followed by decompression 

and temperature increase leading to andalusite and cordierite development during a 

later metamorphic event (M2). The sillimanite-zone and migmatization are the result of 

the last metamorphic event. 
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Figure IV.2.30 represents the blastese/deformation relation as deducted by the 

petrographic studies. 

Aluminosilicate-bearing quartz veins are observed in metamorphic rocks of several 

orogens, including the Alps, the Himalayas and the North-American Cordillera (Sauniac 

& Touret, 1983; Kerrick, 1990; Cavosie et al., 2002; Putlitz et al., 2002) as well in 

contact aureoles (e.g. Cesare, 1994). Also in the Serra da Freita region, to the south of 

the studies area, Acciaiolli (1997) found the same mineral association.  The processes 

of Al transfer and the source of the fluids that originate these lithologies are not 

completely understood. For example, some studies infer transport of Al by regional fluid 

flow, associating Al mobility with large channelized fluid fluxes (Ague, 2003; Bucholz & 

Ague, 2005) or typical regional fluxes arising from the devolatilization of metasediments 

(Acciaioli, 1997; Beitter et al., 2008). Other studies provide evidence that the Al needed 

to form aluminosilicate veins can be derived locally from adjacent wallrocks by diffusion 

through a pore fluid phase (Widmer & Thompson, 2001). They generally are 

considered to record near peak, high-temperature conditions (Cavosie et al., 2002; 

Putlitz et al., 2002). 

The contact between the aluminosilicate vein and the host-rock is sharp. However, the 

staurolite-schist adjacent to the aluminosilicate vein shows a zone of about 20 cm 

where sillimanite, andalusite and kyanite develop, although showing low modal 

proportion, that decreases gradually from the contact with the vein. This suggests that 

the K-Si-Al were transported regionally by fluids from out of the local rock system, what 

is also corroborated by the relatively large size of the “vein” (> 2 m) and the abundant 

presence of secondary muscovite plates and quartz.   

The circulation of B- K- Al- Si-rich later fluids (syn- to post-D3) is also suggested by the 

abundance of late tourmaline, by the muscovitization of staurolite, biotite, andalusite, 

cordierite and plagioclase and by the chloritization of biotite and garnet, as well as by 

the abundance of quartz veins and tourmalinites associated with fault-zones. These 

late alteration processes are more evident in the regions proximal to the granitic 

intrusions. This could indicate a relation between the crystallization of the granites and 

the circulation of later fluids.  
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Fig. IV.2. 30 - Blastesis/deformation connections based on the mineral assemblages present in the diverse metamorphic 

zones and their relationship with the foliations.   
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To trace the series of these revolutions, to explain their 

causes, and thus to connect together all the indications 

of change that are found in the mineral kingdom, is the 

proper object of a Theory of the Earth. 

 

John Playfair (The Huttonian Theory of the Earth; 1802) 

 

5.1. Introduction 

In order to characterize the different mineralogical phases, present in the studied rocks, 

polished thin sections were analysed by microprobe/WDS and by SEM/EDS. 

Metagreywackes, calc-silicate rocks, metapelites and granitic rocks minerals were 

analysed and the results are reported in Appendix B. The sampling is distributed as 

follows: 

 Eight calc-silicate nodules and metagreywacke samples, one of which occurs in 

the Staurolite-zone.  

 One biotite-schist and two staurolite-schist samples from sector 2 (Fânzeres and 

Aguçadoura);  

 Six patch-metatexite and banded-metatexite samples; 

 Four diatexite samples; 

 Two tourmaline-bearing leucogranite samples; 

 Three two-mica granite samples; 

 Two aplite-pegmatite samples. 

WDS analyses were performed using the JEOL model JXA-850 electronic microprobe 

at the Laboratório Nacional de Energia e Geologia em S. Mamede de Infesta, Porto 

and at the Laboratório de Microssonda Electrónica of Faculdade de Ciências da 

Universidade de Lisboa, using a JEOL JXA-8200 electronic microprobe. The 

quantitative analyses were collected using an accelerating potential of 15 kV and a 

beam current of 20 nA. The counting time for each element was 20s except for Rb, Cs 

and Sr which was 60s and beam diameter of 1 mM was used for most tests except for 

http://todayinsci.com/P/Playfair_John/PlayfairJohn-Quotations.htm
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the micas where the beam was defocus up to 8 µm to prevent migration of the lighter 

elements such as the case of fluorine mica.  

SEM/EDS analyses  were performed using a High resolution (Schottky) Environmental 

Scanning Electron Microscope with X-Ray Microanalysis and Electron Backscattered 

Diffraction analysis: Quanta 400 FEG ESEM / EDAX Genesis X4M, at CEMUP – 

Centro de Materiais da Universidade do Porto.  Samples were coated with a C thin film, 

by vapor deposition, using the JEOL-JEE 4X Vacuum Evaporator equipment.  

 

The structural formulas of the different minerals were calculated as follows:  

Pyroxene - based on 6 oxygen atoms and the formula M2M1T2O6; 

Amphibole - based on 23 oxygen and the formula A0-1B2C5T8O22 (OH,F)2;  

Garnet - based on 24 oxygen atoms and the formula A3O2T3O12; 

Epidote – based on 12,5 oxygen atoms and the formula X2Y3Z3(O,OH,F)13; 

Feldspars - based on 8 oxygen atoms and the formula (Ca, Na, K) Al (Al, Si) Si2O8;  

Biotite and muscovite - based on 24 oxygen atoms and the formula X2Y4-6Z8O20 

(OH,F)4;  

Staurolite – based on 23 Oxygen atoms and the formula (Fe,Mg,Zn,Li)2Al9Si4O22(OH)2; 

Tourmaline – based on 31 (O,OH,F) and the formula XT3Z6B3Si6(O,OH)30(OH,F). 

 

5.2. Pyroxene 

Pyroxene occurs exclusively in the core-zone of the calc-silicate nodules. In 

migmatites, in granitic rocks or in metagreywacke resisters, pyroxenes were not 

detected.  

In the Morimoto et al., (1988) diagram the pyroxenes from all fresh samples classify as 

diopside although in more altered samples (VC28) the composition is Fe richer 

(hedembergite). There are minor amounts of Mn (< 0.58 p.f.u.) and Na (< 0.024 p.f.u.) 

(Figs. V.1 and V.2).    

Analytical traverses did not exhibit systematic compositional zoning, although could 

occur heterogeneous patchy zoning within the grains, showing slight variations in 

Fe/Mg and Mn content (Figs. V.1 to V.3). These variations are mostly related with the 
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substitution of Mg by Fe, the same process that occurs in the more altered samples 

and probably resulted from incipient alteration processes.  

Minerals of intermediate composition between diopside and hedembergite occur in 

calcium rich metasediments which undertake regional metamorphism forming by the 

reaction (Deer, 1992):  

Hornblende + Calcite + Quartz ↔ Diopside + anorthite + 3CO2 + H2O. 

 

 

Fig. V. 1 - Classification diagram for pyroxenes (Morimoto, et al, 1988). Clinopyroxene from calc-silicate nodules is 

diopside with variable content in #Mg. The more hedembergite composition belongs to a sample showing intense Type 

II alteration. The numbers refers to different points within a single diopside crystal (see Fig. V.3).  

 

 

Fig. V. 2 - #Mg versus Mn compositional variation in pyroxenes from the calc-silicate nodules.  
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Fig. V. 3 –  Backscattered image of diopside. It is possible observe a patchy zoning, showing slight variations in Mg and 

Fe content within the grains. 

 

5.3. Amphibole 

Amphibole occurs in the outer-zone of the calc-silicate nodules and in the rims that 

mantle diopside in altered samples. The amphibole in calc-silicate rock from lower 

metamorphic grade (Staurolite-zone) was also analysed.  

All the amphiboles show Ca > 1,5 and (Na+K) < 0.5, belonging to the calcic-amphibole 

category.  On the Mg/(Mg+Fe) versus Si (p.f.u) diagram for calcic amphiboles with low 

Na+K content (Leake et al, 1977), the analysed amphiboles from calc-silicate nodules 

are classified as magnesiohornblendes (Fig. V.4 and V.5A). 

Amphibole from lower-grade (Staurolite-zone) calc-silicate rocks is also 

magnesiohornblende, although containing slightly less Si and Mg (p.f.u.) and higher Alt 

than the hornblende from MMC calc-silicate nodules (Fig. V.4 and V.5B).  

The amphibole that replaces diopside is actinolite in calc-silicate nodules with Type I 

alteration (GC2) and ferro-actinolite in calc-silicate nodules showing Type II alteration 

(VC28) (see sub-chapter III.1.3.2.2).  

The Na + K average is low (< 0,1), Ti average is ~0,051 to Mg-hornblende and ~0,033 

to actinolite.  
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Hornblende crystals do not show compositional zoning in unaltered samples. In more 

altered samples hornblende shows a tiny border of more actinolitic composition.  

The composition of calcic amphiboles in metamorphic rocks is sensitive to pressure 

and temperatures but also to bulk rock composition and oxygen fugacity.  Generally in 

low metamorphic grade the composition is actinolitic. With increasing of metamorphic 

grade the amphibole becomes hornblende and in high grade is tchermakitic or 

pargasitic (Deer et al., 1997).  

The transition from greenschist to amphibolite facies can be represented by the 

reaction which was referred to occurring experimentally at about 550 °C (2 kbar) (Deer 

et al., 1992, 1997): 

Albite + chlorite + epidote + actinolite ↔ hornblende + plagioclase  

Chlorite + epidote + quartz ↔ hornblende + anorthite  

Tremolite + chlorite + epidote + quartz ↔ hornblende + H2O 

 

Typical hornblendes of regional metamorphic rocks are stable within the range 550º to 

900 ºC. In water-rich environment hornblendic amphiboles could be stable in high P-T 

conditions (Jan & Howie, 1981). Actinolite is characteristic of rocks that formed at 

temperatures below 550 ºC, at low pressure or as products of retrograde 

metamorphism (Dear, et al. 1997). 

 

 

Fig. V.4 – Diagram #Mg versus Si for amphiboles classification after Leake et al. (1997).  Calc-silicate nodules 

amphiboles (OZ) and amphiboles from staurolite-zone (LG) classify as magnesiohornblende.  Amphiboles occurring as 

alteration coronas in diopside crystals (Alt.Di) classify as actinolites.  
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Fig. V. 5 – Backscatter images of hornblende: A) Hornblende and diopside in the contact between core-zone and outer-

zone; B) Staurolite-zone calc-silicate sample (FM25) showing hornblende, quartz, anorthite, titanite and ilmenite.  

 

5.4. Epidote  

The epidote minerals in the analysed samples are solid solution between epidote and 

clinozoisite and, based on textural criteria, are interpreted as secondary. This 

hypothesis is confirmed by the low pistacite component1  (Pst < 11,4%) (Fig. V.6). 

Epidote occurs uniformly distributed in the matrix, generally replacing anorthite 

(saussurization), and filling fractures in the nodules that underwent Type I retrograde 

alteration (Fig. V.7). Saussurization retrograde process is frequent in the studied rocks 

were clinozoisite replaces anorthite through the reaction (Deer et al., 1992). 

 

4Anorthite + H2O ↔ 2Clinozoisite + 2Quartz + Al2O3 
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Fig. V. 7 – Backscatter images from calc-silicate nodules. A) Epidote minerals replacing anorthite; B) Epidote filling 

fractures.  

 

5.5. Garnet  

Garnet group minerals occur in calc-silicate nodules, metagreywackes, migmatites and 

leucogranites. Mineral analyses were performed in all the garnet bearing lithological 

types.   

 

5.5.1. Garnet from metagreywackes and calc-silicate rocks 

Garnet crystals were analysed from calc-silicate nodules with and without retrograde 

replacements, Staurolite-zone calc-silicate rocks and metagreywackes. The following 

can be highlight:  

 Garnet from the calc-silicate nodules shows chemical composition variation from the 

core to the outer-zone. At the core-zone grossular and andradite components are 

higher (88 < #Grs > 90; 2 < #And < 7). Towards the outer-zone the Ca component 

decreases (28 < #Grs < 23) and Fe, Mg and Mn components increase (#Alm = 50; 

#Py = 10; #Sp = 14) (Fig. V.8A).  

 In the core-zone was found rare garnet enclosed in diopside whose composition 

shows less Ca and more Fe and Mn than the matrix garnet (Fig. V.8A). 

 The garnet composition from the Staurolite-zone calc-silicate sample is similar to the 

garnet composition of calc-silicate nodules outer-zone (Fig. V.8).  

 Metagreywacke garnet is almandine with moderate Mn and Mg component 

(51%<#Alm<65%; 21<#Sp<28; #Py~13) (Fig. V.8 and V.12).  
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 Only the samples that show clear retrograde alteration processes contain zoned 

garnets, showing a profile where Ca component decreases and Fe + Mn 

components increase towards the crystal edge (Fig. V.9 and V.11B).  

 In samples showing Type II retrograde alteration grossular is replaced by retrograde 

prehnite (Fig. V.11A). According to Deer et al. (1992) the stability field of prehnite is 

established by the reaction: 

5 prehnite = 2 grossular + 2 zoisite + 3 quartz + 4H2O  (at 400 ºC ; 2-4 Kbar when 

PH2O = Ptotal) 

 

 

Fig. V. 8 - Fe/(Fe+Mg) versus grossular and spessartine components (p.f.u.) for garnets from calc-silicate nodules, 

metagreywackes and low-grade calc-silicate rock. (Legend key: CZ – calc-silicate nodule core-zone; OZ – calc-silicate 

nodule outer-zone; GWK – metagreywacke resister; LG– staurolite-zone calc-silicate rock).  

 

 

Fig. V. 9 - Compositional profiles for a garnet crystal from sample VC50. Profile showed in Fig. V.11. Legend Key: Alm – 

almandine; Sp – spessartine; Gr – grossular; Py – pyrope. 
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Fig. V. 10 – Backscatter images from calc-silicate samples. Grossular in the core-zone showing skeletal texture.  

 

 

Fig. V. 11 - Backscatter images from calc-silicate nodules showing retrograde processes. A) Prehnite replacing 

grossular in Type II retrograde alteration. B) Zoned garnet with location of analysed pointes (Fig.V.9).   

 

 

Fig. V. 12 – Backscattered image of metagreywacke sample showing garnet + andesine (Pl) + biotite + quartz.  
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5.5.2. Garnet from metapelites and granitic rocks 

Garnets occurring in staurolite-schists from Fânzeres and staurolite-schists from 

Aguçadoura were analysed.  In MMC rocks, were analysed garnets from patch- and 

banded-metatexites, the residual garnets from diatexites and leucogranites, as well as 

the garnets from aplite-pegmatites. Summarizing their main characteristics the 

following can be highlighted: 

 Garnet from staurolite-schists is almandine (~77%) with ~13% pyrope, ~7% 

grossular and ~4% spessartine. The garnet from the Fânzeres sample shows a 

composition slightly different from the Aguçadoura sample. The last one shows 

more intense retrograde alteration and the garnet is Mn richer and Fe poorer (Fig. 

V.13). Analytical traverses did not exhibit systematic compositional zoning in the 

Fânzeres staurolite-schist garnet but the compositional profile in garnet from 

Aguçadoura shows a border slightly enriched in Fe and Mg and depleted in Ca and 

Mn (Fig. V.14).  

 Garnet from patch-metatexites is sub-euhedral, shows a cordierite plus biotite 

substitution corona and is associated with sillimanite, biotite, plagioclase and quartz 

in the melanosomes. Almandine component varies between 70 and 73%, pyrope 

~16%, grossular ~3% and spessartine ~8%. The compositional profile does not 

show any variation from the core to the border of the crystal (Fig. 15A).  

 Garnet from banded-metatexites shows composition similar to the patch-metatexite 

garnet although showing slightly more Mn and less Mg (Fig. V.13).  

 Garnet from diatexite is rare, corroded and surrounded by fibrolite and biotite. 

Almandine component varies between 67 and 77%, pyrope component varies 

between 8 and 12%, grossular component is ~2% and spessartine component is 

~10%. The garnet compositional profile shows a border depleted in Mg and Fe and 

enriched in Mn (Figs. V.15B).  

 Garnet from leucogranites shows texture and composition similar to the garnet from 

metatexites and diatexites. Almandine component is ~75%, pyrope 6 to 12%, 

grossular ~1% and spessartine ~13%. Like in garnets from diatexites, the 

compositional profile also shows a border depleted in Mg and Fe and enriched in Mn 

(Fig. 16A).  

 Garnet from aplite-pegmatite is euhedral and associated with tourmaline, albite and 

quartz. Is an almandine–spessartine garnet (58-62 % almandine; 37-39% 

spessartine) with very low Mg and Ca (< 2%). The F component is about 6%. A 
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compositional profile shows only a small decrease in Fe and increase in Mn content 

towards the garnet rim (Figs. V.13, V.16 and V.17B).  

 

Fig. V. 13 - Fe/(Fe+Mg) vs Mn composition  for garnets in Sector 1 and Sector 2. Legend key: St-sch – staurolite-

schists; PMM – patch-metatexites; DTX – diatexites; L.Gnt – leucogranites; APG – aplite-pegmatites.  

 

 

Fig. V. 14 - Compositional profile for staurolite-schist garnet from Fânzeres (sample FM14) and from Aguçadoura 

(sample VC65).The composition is similar although the garnet from Aguçadoura shows a border slightly enriched in Fe 

and Mg and depleted in Ca and Mn.  

 

 

Fig. V. 15 – Compositional profile for patch-metatexite and diatexite samples garnet. The garnet from diatexite does not 

show compositional variation. The garnet from diatexite is depleted in Mg and Fe and enriched in Mn in the borders.  
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Fig. V. 16 - Compositional profile for leucogranite (sample VC62) and aplite-pegmatite (sample VC58) garnets. The 

garnet from leucogranite is depleted in Mg and Fe and enricher in Mn in the border. Garnet from aplite-pegmatite is 

almandine/spessartine with high F component. In the core is slightly richer in Fe and poorer in Mn. 

 

 

Fig. V. 17 - A) Garnet inside a large crystal of staurolite in staurolite-schist from Aguçadoura. Points localization of the 

profile in Fig. V.14B; B) Garnet from aplite-pegmatite with the points location of the profile in Figure V.16B .   
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garnet Ca and Mg content from core- to outer-zone is related to the variation in the 

bulk-rock content. The variation in Mn content is not correlated with the bulk-rock 

content. However, as the core-zone contains diopside high modal proportion, that is 

absent in the outer-zone, and diopside concenters more Mn than amphibole, is 

possible that the Mn has been allocated preferably in the diopside structure in the core-

zone and in the garnet structure in the outer-zone. In the samples showing later 

alteration the Fe and Mn contents increase to the border of the garnet crystal.  

In metapelitic rocks, the garnets from Staurolite-zone and patch-metatexites show 

similar composition. However the Mn content in Aguçadoura and in the Metatexite 

Zone is slightly higher. The whole-rock composition of MMC lithologies and 

Aguçadoura schists also revealed an increase in the Mn content relatively to the whole-

rock composition of staurolite-schists from Fânzeres. Thus, the difference in Mn could 

reflect the host rock composition.  

It is notorious the similarity in composition and texture between the garnets from 

metatexites and from granitic rocks. This suggests that garnets from diatexites and 

leucogranites are residual, as is also suggested by their scarcity and corroded texture.  

The garnets from staurolite-schists and patch-metatexites do not show any zonation. 

However the garnets from granitic rocks and from the more altered staurolite-schist 

sample (VC65) show a tiny border with a composition slightly different from the core. 

The garnet from granitic rocks shows increase in Mn and decrease in Fe content in the 

border. This probably is related with an exchange ion processes between the melt and 

the residual garnet, as is suggested by the abrupt differences between the core and the 

border.  The border of the garnet from the Aguçadoura schist shows slightly higher Fe 

and less Mn and Ca. The zonation may be related with retrograde processes since this 

sample is intensely affected by later fluids. 

 

5.6. Feldspars 

5.6.1. Feldspars from metagreywackes and calc-silicate rocks  

Plagioclase and K-feldspar analyses were performed on calc-silicate nodules core-

zone and outer-zone and in metagreywackes. Summarizing their main characteristics 

the following can be highlighted (Figs. V.18 to V.21): 

 Calc-silicate nodules core-zone plagioclase is anorthite.  
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 Plagioclase from calc-silicate nodules outer-zone is slightly less calcic than 

plagioclase from core-zone. Classifies between anorthite and bytonite.  

 The Staurolite-zone calc-silicate sample contains anorthite.  

 In the sample showing Type I retrograde alteration a single K-feldspar crystal was 

detected in the outer-zone. Its composition is relatively rick in K and Ba and poor in 

Ca and Na. This suggests that K-rich fluids affected these rocks as well as the 

adjacent migmatites (Fig. V.18 and V.23B).  

 Plagioclase from metagreywacke is oligoclase to andesine.  

 Analyses were performed in the sample of metagreywacke that underwent partial 

migmatization, both in the zone without signs of partial melting and in the 

migmatized-zone. The composition of the plagioclase is the same in the fine-grained 

plagioclase crystals from metagreywacke resister part and in the large grained 

plagioclase from migmatized-zone. Compositional profiles show no variation from 

cores to borders (even in crystals that show textural dissimilarities; Figs. V.20 and 

V.21). A tiny border of more albitic composition surrounds some of the larger grains 

in the migmatized-zone.   

 

 

Fig. V. 18 - Feldspar classification diagram (Deer et al., 1992) for calc-silicate nodules, metagreywackes and staurolite 

zone calc-silicate rocks. Legend key: GWK.m – Migmatized metagreywacke; CZ – calc-silicate nodules core-zone; ; LG 

– low-grade calc-silicate rocks; GWK – metagreywacke resister; OZ – calc-silicate nodules outer-zone.  
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Fig. V. 19 – Ca vs. Na (p.f.u.) of plagioclases from calc-silicate nodules core-zone and outer-zone, metagreywackes and 

lower-grade calc-silicate rock. Legend key: CZ – calc-silicate nodules core-zone; OZ – calc-silicate nodules outer-zone; 

LG – low-grade calc-silicate rock;  GWK – metagreywacke resisters; GWK.m – metagreywacke showing evidences of 

partial melting.  

 

  

Fig. V. 20 – Compositional profile of the plagioclase from (A) metagreywacke resister zone and (B) migmatized zone in 

sample FP21c. The composition is similar in both zones and throughout the plagioclase crystals. Only a tiny border in 

plagioclase larger crystal from migmatized zone shows more albitic composition.  

 

 

Fig. V. 21 – Photomicrographs of metagreywacke partially migmatized: A) Plagioclase from metagreywacke sample 

showing signs of partial melting (FP21c). A) Zone with only minor signs of partial melting were plagioclase is fine 

grained and B) zone showing intense partial melting were plagioclase is coarse-grained and shows a residual core 

surrounded by magmatic plagioclase. Location of the analysed points in Fig. V.20 (point 4 is outside of the picture).  
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5.6.2. Feldspars from metapelites 

Plagioclase and K-feldspar analyses were performed on biotite-schists, staurolite-

schists, patch-metatexites and banded-metatexites. Summarizing their main 

characteristics the following can be highlighted (Figs. V.22 and V.23): 

 Plagioclase from biotite-schists classifies as albite (An3); 

 Plagioclase from staurolite-schists also classifies as albite, although showing a more 

calcic composition (An7 to 8);  

 Plagioclase from metatexites is oligoclase (An17 to 26), both in melanosome and in 

leucosome.  

 Some oligoclase crystals from leucosome show a very thin albite border, especially 

in the contact with K-feldspar or associated with fractures. 

 K-feldspar in the leucosomes is orthoclase (#Or = 82 to 86). In some metatexites K-

feldspar is only detectable in backscattered images were occur as incipient tiny 

crystals inside plagioclase (Fig. V.24A).  

 Plagioclase from myrmekites in metatexites is more albitic (An12) than the 

plagioclase in melanosomes and leucosomes (Fig. 24B).  

 

 

 

Fig. V. 22 - Feldspar classification diagram (Deer et al., 1992) for metapelites and metatexites. Legend key: St.Sch – 

staurolite–schists; BMM – banded-metatexites; PMM – patch-metatexites; Bt-Sch – biotite-schists.  
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Fig. V. 23 – A) Ca vs. Na (p.f.u) diagram for plagioclase from metapelites and metatexites.  B) K vs Na+Ca (p.f.u) for K-

feldspar from metatexites and calc-silicate rock. Legend  key: Bt.Sch – biotite-schists; St.Sch – staurolite-schists; PMM 

– patch-metatexites; BMm – banded-metatexites melanosome; BMl – Banded-metatexites leucosome;  Olg rim – 

Oligoclase  albitic rim); CSR – calc-silicate rocks; MM - metatexites.  

 

 

Fig. V. 24 – Backscattered image from: (A) patch-metatexite plagioclase with vermicular quartz inclusions. Note the 

incipient grow of orthoclase within plagioclase, only detected in the backscattered image. (B) Albite tiny rim and 

vermicular quartz in the plagioclase border that contacts whit the orthoclase.   

 

5.6.3. Feldspars from granitic rocks 

Analyses were performed in plagioclases from diatexites, leucogranites, two-mica 

granites and aplite-pegmatites. The aplite-pegmatites analyses were taken from aplite 

inner zone, intermediate zone and comb-structure border.  

 Summarizing their main characteristics the following can be highlighted (Fig. V.25 and 

V.26): 
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 Plagioclase from diatexite matrix is oligoclase (An17-21). Albite (An6-2) occurs as tiny 

rims in oligoclase or associated with fractures within oligoclase (Figs. V.26 and 

V.27).   Besides the albitic rim, oligoclase does not show any zoning. 

 Leucogranites contain both oligoclase crystals and albite crystals (An14-7) (Figs. V.25 

and V.26). The Ca content of this oligoclases is lower than the Ca content of 

oligoclase from diatexites. Some larger plagioclase crystals show normal 

compositional zoning, passing from An16 to An6 towards the border of the crystal 

(Fig.V.30). Albite crystals do not show compositional zoning. There is also an albitic 

rim in some oligoclase crystals.  

 Two-mica granites contain both oligoclase crystals and albite crystals (An22-2) (Figs. 

V.25 and V.26).  There is also an albitic rim in some oligoclase crystals. Some 

crystals show heterogeneous zoning (Figs.V.30).   

 The perthites composition is albitic (An7) (Fig.V.35). 

 Plagioclase from aplite-pegmatite, both in aplite-zone, in intermediate zone, in 

comb-structure zone and in perthites is albite (An1-5).  

 

 Diatexites K-feldspars show two slightly distinct compositions: crystals showing #Or 

ranging from 77 to 81 and higher Ca, Na and Ba content and crystals showing #Or 

ranging from 87 to 91 and lower Ca, Na and Ba content (Figs. V.25, V.31 and V.33). 

 Leucogranites K- feldspar is orthoclase with #Or ranging from 88 to 95 and low Ca, 

Na and Ba content.  The modal proportion of K-feldspar crystals in leucogranites 

varies from high to moderate to absent and the majority of crystals clearly replace 

plagioclase.  

 Two-mica granite K-feldspar is orthoclase with #Or ranging from 87 to 97. The Na 

and Ca contents are relatively low but Ba is higher than in leucogranites.   

 K-feldspar from aplitopegmatite is orthoclase showing #Or ranging from 91 to 93 

(Fig. V.25 and V.31).  

 Crystals showing heterogeneous zoning occur in all the lithologies. There are also 

crystals without any zoning (Fig. V.32 to V.35).  

 All the lithologies show incipient development of K-feldspar within plagioclase 

crystals (Figs. V.33 to V.35), showing high K content.  
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Fig. V. 25 - Feldspar classification diagram (Deer et al., 1992) for granitic rocks. Legend key: L.Gnt – leucogranites; 

2m.Gnt – two-mica granites; DTX- diatexites; PGM – aplite-pegmatites. 

 

 

Fig. V. 26 - Ca vs. Na (p.f.u.) diagram for granite rocks plagioclase. Legend key:  DTX- diatexites; L.Gnt – leucogranites; 

2m-Gnt – two-mica granites; APG – aplite-pegmatites; Olg rim  – oligoclase rim). 

 

 

Fig. V. 27 – A) Backscattered image from diatexite sample showing oligoclase with an albite rim in the contact with K-

feldspar. B) Major feldspar crystal associated whit oligoclase. Oligoclase shows an albitic rim. 
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Fig. V. 28 – Backscattered image of leucogranite plagioclase showing an oligoclase core and albite crystals. K-feldspar 

replaced plagioclase.  

 

 

Fig. V. 29 – Profiling points in zoned plagioclase from leucogranites.  

 

 

Fig. V. 30 – Profiling points from a two-mica granite plagioclase crystal showing heterogeneous patchy zoning.  
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Fig. V. 31 – K vs Na, K Vs Ca and K vs Ba (p.f.u.) diagrams for K-feldspar from MMC granitic rocks. Legend key: DTX- 

diatexites; L.Gnt – leucocratic granites; 2m-Gnt – two-mica granites; PGM – aplite-pegmatites. 

 

 

Fig. V. 32 –Variation in K, Na and Ba (p.f.u.) in K-feldspars from leucogranite, diatexite and two-mica granite.  
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Fig. V. 33– Backscattered image showing diatexite orthoclase large crystal and profile points of Figure V.32; B)  

Incipient development of orthoclase within oligoclase.  

 

 

Fig. V. 34 – Leucogranite backscattered image showing: A) Orthoclase and profile points of Figure V.32. B) Orthoclase 

associated to tourmaline and quartz.   

 

 

Fig. V. 35 – A) Backscattered images of two-mica granite showing: A) perthitic feldspar showing plagioclase and quartz 

inclusions and profile points of Figure V.3; B) Incipient orthoclase occurrence within plagioclase large crystal. 
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5.6.4. Summary 

The characteristics of the analysed feldspars permit to highlight some aspects:  

Albite from biotite-schist and staurolite-schists is characteristic of low to medium-

metamorphic grade rocks.  

The plagioclase composition from calc-silicate nodules and metagreywackes mainly 

reflects the change in whole-rock chemical composition.  

In metatexites and diatexites, textural evidences of restitic oligoclase surrounded by 

magmatic plagioclase are common. It is noted that the composition of the restitic 

plagioclase and the surrounding magmatic plagioclase is similar, generally in the 

oligoclase field, without any zoning. Moreover, in samples showing partial 

migmatization, although the texture and size of plagioclase are very different in partially 

melted areas and in areas of the sample without signs of partial melting, the 

composition of plagioclase is identical. Thus, in these rocks there are no appreciable 

difference in plagioclase composition between the leucosomes and the host rock, a 

common observation in migmatites (Johannes, 1988; Ashworth, 1979, 1985). Ashworth 

suggested that subsequent to crystallization the leucosome plagioclase re–equilibrated 

with the surrounding metamorphic rock producing a homogeneous plagioclase 

composition in the migmatites. 

Plagioclases from diatexites show the same composition and texture as the 

plagioclases from metatexites, including the albitic rim. This suggest, as expected, that 

diatexites result from the same process as metatexites but showing higher partial 

melting rate. 

Oligoclase from leucogranites and two-mica granites is Ca poorer than in diatexites 

and coexists with albite crystals in the matrix (that are absent in migmatites). Whole-

rock Ca content is also variable, being the diatexites richer than leucogranites and two-

mica granites. However, the Ca content of pelitic metatexites is also low and the 

plagioclase shows the same Ca richer composition as in diatexites. Thus, this suggests 

that plagioclases from leucogranites and two-mica granites are more fractionated than 

the source-rock plagioclases. In rocks formed by partial melting the phase relations 

dictate that plagioclase compositions should be more sodic in the anatectic melts than 

in the protoliths (Ashworth, 1979). Moreover, the existence of separate crystals of K-

feldspar and albite is synonymous of subsolvus granites, that is, granites that 
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crystalized at low-temperature (Philpootts, 1989). Thus, it is possible that leucogranites 

and two-mica granites crystalized at lower temperatures than metatexites.  

When occurs, the plagioclase zoning is not homogeneous: some crystals show a 

gradual transition from core to border and others show patchy zoning. The more albitic 

crystals do not show any zoning. In magmatic systems, plagioclase is, most 

communally, zoned (except if the crystals are isolated from the melt). The progressive 

normal zoning can result from temperature decrease during crystallization of the 

magma that originated these granitic rocks. Unzoned plagioclase may occur but is not 

common in magmatic rocks (e.g. Hibbard, 1995; Vernon, 2004). Thus, the patchy 

zoning and the absence of zoning in the oligoclase crystals is probably related with the 

inhered character of these plagioclase crystals in rocks where the rate of partial melting 

is low. In these conditions, necessarily the space to grow is limited giving rise to 

crystals that do not grow evenly and grow constrained by the limited space available. 

The albitic rims in metatexites and diatexites and the unzoned albite crystals in 

leucogranites and two-mica granites could be related with later fractionation phases 

that are relegated to intergranular positions and rims-growth on larger plagioclase 

crystals (Hibbard, 1995).  

K-feldspar is absent in most of the metatexites and leucosomes, rare in some and 

abundant in others. The same occurs in leucogranites. In diatexites and two-mica 

granites the modal proportion of K-feldspar is higher and the distribution is 

homogeneous. There are many K-feldspar crystals that replace plagioclase, both at 

incipient scale or at large scale. The incipient crystals within plagioclase show higher K 

content,  are anhedral and do not follow the cleavages of the host crystal, being 

considered as resulting from nucleation (replacement) and not saturation (exsolution) 

(Vogel, 1970; Deer et al., 1992).    The larger ortoclase crystals show heterogeneous 

zoning in all the lithological types. The myrmekite plagioclase is more albitic than the 

plagioclase from the migmatites matrix. This also suggests that some of the K-feldspar 

(especially in metatexites and leucogranites) is the result of K metasomatic processes 

that replaces plagioclase (e.g. Putnis et al. 2007), in agreement to the petrographic and 

field observations.  
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5.7. Biotite 

Biotites were analysed on metagreywackes, calc-silicate nodules, biotite-schists, 

staurolite-schists, metatexites, diatexites, leucogranites and two-mica granites.  

 

5.7.1. Biotites from metagreywackes and calc-silicate nodules 

Analyses were taken from calc-silicate nodule border, metagreywacke resisters and 

migmatized metagreywackes.  

Besides the texture and morphology (Fig. V.36), also the biotites composition from 

metagreywackes and calc-silicate nodules is different. According to Foster (1960) 

nomenclature (Fig. V.37), biotites from metagreywackes classify as Mg-biotites and 

biotites from calc-silicate classify as eastonites, showing higher Mg content (Fig. V.38). 

The Ti, Mn and K content is similar in the two types of rocks. Biotites from calc-silicate 

nodules show Aliv and F contents slightly higher than the F and Aliv contents of biotites 

from metagreywackes (Fig. V.38). On the FeO - MgO - Al2O3 diagram (Gokhale, 1968) 

all biotites plot on the metamorphic biotites field (Fig. V.39).  

Migmatized greywacke sample is composed of two zones: a zone that shows 

evidences of partial melting and other zone that remains as resister, without any signs 

of partial melting. Biotites from the two zones were analysed.  

The biotites from migmatized metagreywacke show slightly lower Mg content than the 

biotites from metagreywacke resister, overlapping the composition of pelitic-

metatexites biotites (Fig. V.38). Within the migmatized metagreywacke the biotites 

show similar composition in the part of the rock that remains as resister and in the 

migmatized zone. Only Mn and F show slight variation that is not related with the 

position of biotite in metagreywacke resister zone or in migmatized zone. This suggests 

complete re-equilibrium of the biotites during migmatization processes.  

 

5.7.2. Biotites from metapelites and metatexites  

Analyses were taken from biotite-schists and staurolite-schists from SGC (Sector 1) 

and from patch- and banded-metatexites from MMC (Sector 2).  Biotite is the only 

ferromagnesian mineral phase occurring in metapelites and metatexites.  
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According to Foster nomenclature (1960) biotite-schists contain Fe-biotite, staurolite-

schists and metatexites contain Mg-biotite (Fig. V.40).  

Low-grade biotites (from Biotite-zone) show a composition richer in Fe and poorer in F, 

K, Na and Mn than the biotites from the other lithologies. #Fe in biotites from staurolite-

schists and metatexites is similar. However the Ti, Mn, F and K content of biotites from 

metatexites is higher than of biotites from staurolite-schists, with exception of biotites 

resulting from staurolite alteration were the F content is higher (Fig. V.41). 

The leucosome biotites have slightly higher #Fe and Ti content than the biotites from 

melanosome (Fig. V.41). These biotites are generally inside plagioclase or quartz 

major leucosome crystals. Figure V.42 display backscattered images showing textural 

aspects of biotites from patch-metatexites, banded-metatexites and leucosomes. All 

the analysed biotites from metapelite rocks plot on metamorphic field in the FeO - MgO 

- Al2O3 and MgO-TiO2-(FeO+MnO) (Gokhale, 1968) diagrams (Fig. 43).  

 

 

Fig. V. 36 – Backscattered image from: A) Metagreywacke; B) Calc-silicate nodules outer-zone. Note the distinct 

morphology and relation with other minerals.  
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Fig. V. 37 – Foster (1960) classification diagram. Greywacke micas classify as magnesio-biotite and calc-silicate micas 

classify as eastonites.. (Key: GWK.m – greywacke metatexite; CSN – calc-silicate nodule; GWK – metagreywacke 

resister). 

 

 

Fig. V. 38 - Ti versus #Fe compositional variation diagrams for metagreywacke and calc-silicate biotites. The calc-

silicate biotites have more Mg than biotites from metagreywackes. The shaded space represents the composition of 

metatexite biotites for comparison.  Key: CSN – calc-silicate nodule; GWK – metagreywacke resister; GWK.m – 

migmatized greywacke. 
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Fig. V. 39 – Greywacke biotite compositions on the FeO - MgO - Al2O3 diagram. Fields from Gokhale (1968): I - 

metamorphic rocks biotite, II - igneous rocks biotite. Metagreywacke and calc-silicate biotites plot on metamorphic field.  

Key: GWK.m – migmatized metagreywackes; CSN - calc-silicate nodule; GWK – metagreywacke resister. 

 

 

Fig. V. 40 - Foster (1960) classification diagram. Metapelite and metatexite tri-octahedral micas are essentially 

magnesio-biotite. Key: St.Sch – staurolite-schists; BMM – banded-metatexites; PMM - patch-metatexite; Bt.Sch – 

biotite-schists. 
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Fig. V. 41 - Compositional variation diagrams for metapelite and metatexite biotites. Legend key: Bt.Sch – biotite-

schists; St.Sch – staurolite-schists; PMM - patch- metatexites; BMM – banded-metatexites. 

 

 

Fig. V. 42 – Backscattered images showing: A) Melanosome biotite in patch-metatexite showing quartz + sillimanite 

intergrowths; B) Leucosome biotite included in a plagioclase large crystal. 
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Fig. V. 43 – A) Metapelite and metatexites biotite plots on (FeO - MgO - Al2O3) and (MgO – TiO2 – FeO+MnO) diagrams 

from Gokhale (1968): I - metamorphic rocks biotite, II - igneous rocks biotite. All the analysed biotites from metapelites 

and metatexites plot on the metamorphic field, inclusive the biotites found in leucosomes. Legend Key: St.Sch – 

staurolite-schists; BMM – banded-metatexites; PMM - patch-metatexite; Bt.Sch – biotite-schist. 

 

5.7.3. Biotites from granitic rocks 

Biotites from diatexites, tourmaline-bearing leucogranites and two-mica granites were 

analysed. The rare biotites occurring in leucogranites matrix show intense chloritization 

and thus were not considered in this study.  Biotite is the only ferromagnesian mineral 

phase occurring in the MMC granitic rocks.  

According to the Foster (1960) nomenclature (Fig. V.44), the Gokhale (1968) 

classification (Fig. V.45) and the Ti, Mn, K, Na, Aliv and #Fe contents (Fig. V.46) the 

following can be highlighted:  

 Biotites from diatexites classify as Mg-biotites and plot as metamorphic type biotites. 

The Ti content varies from 0.23 to 0.33 (p.f.u.), slightly lower than metatexites. Mn, 

K and Aliv contents are similar to the metatexites biotites.  

 The rare biotite from tourmaline-bearing leucogranites classifies as Fe-biotites and 

plot as igneous type biotites. Ti content is variable but similar to the other lithologies. 

Mn content is clearly higher and Na and Mg content is lower in these biotites.  Biotite 

adjacent to tourmaline shows a distinct composition with lower Ti and F content and 

higher Fe and Mn content (classifying in the transition to syderophilite).  

 Two-mica granites show two distinct types of biotite that classifies as Mg-biotites 

and as Fe-biotites and plot as metamorphic and as igneous type biotites, 
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respectively. The Fe-biotites have lower K and higher F contents than the Mg-

biotites.  

The chemical composition of biotite is an important indicator of the granitic rocks types 

in which they occur.  Its composition is classically used to estimate the conditions of 

crystallization of the parental magma such as chemical composition, oxygen and 

halogen fugacities (e.g. Speer, 1984; Nachit et al, 1985, Abbel-rahmam, 1994). The Alt 

vs. Mg diagram after Nachit et al. (1985) and the FeO – Mg - Al2O3 diagram after Abell-

Rahmam (1994) distinguish biotites from potassic-aluminum series to alkaline series. 

All the biotites from MMC granitic rocks plot in the field of alumino-potassic series in the 

Nachit et al. (1985) diagram, more specifically in the field of the rocks where biotite 

coexists with cordierite (Fig. V.47). However, cordierite is absent in the two-mica 

granites and in leucogranites.   On the Abell-Rahmam (1994) diagram all the biotites 

from granitic rocks plot on the field of “peraluminous series including S type granites” 

(Fig.V.48A).  

Compositional profiles of biotites from diatexites and two-mica granites show slightly 

zoning from core to border. However, the zoning is not homogeneous since a single 

element could be depleted in the border of some biotites and enriched in the border of 

others (Fig. V.49).   

 

Fig. V. 44 - Mica classification diagram of Foster (1960). Diatexite biotites classify as Mg-biotites, two-mica granite 

(GNT) biotites classify as both Mg and Fe-Biotites and leucogranite biotites plot as Fe-biotites. Legend key: L.Gnt – 

leucogranites; 2m.Gnt – two-mica granites; DTX – diatexites.  
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Fig. V. 45 - Granitic rocks biotites composition plotted on the FeO - MgO - Al2O3 and MgO-TiO2-FeO+MnO diagrams. 

Fields from Gokhale (1968): I - metamorphic rocks biotites, II - igneous rocks biotites.  Key: L.Gnt – leucogranites; 

2m.Gnt – two-mica granites; DTX – diatexites. 

 

 

Fig. V. 46 - MMC granitic rocks representation in the #Fe versus Ti, Mn, K and Na diagrams. The shaded space 

represents the composition of biotites from metatexites. Legend key: L.Gnt – leucogranites; 2m.Gnt – two-mica granites; 

DTX – diatexites.  

 

FeO Al2O3

MgO

II

I

2m.GNT

DTX

Symbols & colours by group

2

3

5

L.GNT

MgO FeO MnO

TiO2

II

I

0.1

0.2

0.3

0.4

0.5

0.4 0.5 0.6 0.7 0.8

Ti
  (

p
.f

.u
)

Fe/(Mg+Fe)

DTX

L.Gnt

2m.Gnt

0.00

0.05

0.10

0.15

0.20

0.25

0.4 0.5 0.6 0.7 0.8

M
n

 (
p

.f
.u

)

Fe/(Mg+Fe)

DTX

L.Gnt

2m.Gnt

Assoc. Tml

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.4 0.5 0.6 0.7 0.8

K
 (

 p
.f

.u
.)

Fe/(Mg+Fe)

DTX

L.Gnt

2m.Gnt

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.4 0.5 0.6 0.7 0.8

F 
(p

.f
.u

)

Fe/(Mg+Fe)

DTX

L.Gnt

2m.Gnt

A B

C D



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

 

167 

 

 

Fig. V. 47 – MMC granitic rocks representation in the Alt vs. Mg diagram of Nachit et al. (1985). Abbreviations: Bt + Ms – 

Alumino-potassic series where biotite coexists with muscovite; Bt + Crd – Alumino-potassic series where biotite coexists 

with cordierite.  

 

 

 

Fig. V. 48– MMC granitic rocks representation in the FeO-MgO-Al2O3 diagram. Fields from  Abell-Rahmam (1994): Alc 

– Anorogenic alkaline series biotites; CA - Calc-alcaline series biotites; Per-Al - Peraluminous series biotites). Legend 

key: L.Gnt – leucogranites; 2m.Gnt – two-mica granites; DTX – diatexites.  
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Fig. V. 49 - Profile diagrams for three biotites from diatexites and three biotites from two-mica granites (each colour 

shading represents a different biotite crystal). The variation is not homogeneous since there are biotites where an 

element is enriched in the border of some biotites and depleted in the border of others.  Obs: b = border; c = core. 

 

 

5.7.4. Summary 

The composition of biotites depends on a number of interdependent variables, namely 

P, T, fO2, fH2O, and element activities. According to the data presented above we can 

highlight the following: 

The biotites from metamorphic rocks plot in the metamorphic biotite field and seem to 

reflect mostly the partition of elements with coexistence ferromagnesian minerals. For 

example, in calc-silicate rocks, as M4 sites in amphibole take Fe in preference to Mg, 

the distribution of iron is shifted somewhat in favour of that mineral, being the biotite 

more riche in Mg (Gorbatschev, 1970).  This could explain the Mg-rich biotite from calc-

silicates relative to metagreywackes, although the whole-rock #Mg in calc-silicate rock 

is slightly lower than in metagreywackes. 

The biotite from staurolite-schists is Mg richer than biotite from biotite-schists. This can 

be related with the increase in metamorphic grade (Feet, et al., 2003 and references 

therein) and can be explained by the partition of elements in staurolite-schists, since 
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staurolite carries iron in 4-coordination, which is a type of lattice site not easily 

occupied by Mg in silicates, so the distribution of Mg is anticipated to be strongly in 

favour of biotite (Gorbatschev, 1970, Guidoti, 1984).   

From staurolite-zone biotites to migmatite biotites the Ti content increases 

substantially, what could be related with the metamorphic grade increase (Guidotti, 

1984; Henry & Guidotti., 2002; Feet et al., 2003).   

Mn, K and F contents also increase in the MMC biotites relatively to the staurolite-zone 

biotites. This is consistent with the hypothesis that oxidized F- and K-bearing fluids 

entrained the MMC lithologies (Gunow et al., 2008; Bath et al., 2013), as is suggested 

by field and petrographic observations. 

Biotites inserted as inclusions in the leucosome crystals have slightly higher Mg 

content than the biotites from melanosomes. This could indicate that this biotites where 

included in the minerals from leucosomes before the development of cordierite, that 

provoke a repartition of Mg between this two minerals in the melanosomes.  

The biotites from migmatitic-greywacke do not show substantial differences between 

the migmatized-zone and the unmigmatized-zone, indicating a rebalancing of the 

composition of biotite that affects both sides of the rock. 

The biotites from diatexites retain their metamorphic character and show a composition 

similar to the metatexites biotites (except in the F content that is higher in the 

migmatites biotites), being mainly of restitic origin. This suggests that diatexites result 

of anatexis of the same metapelites that originated the metatexites and show moderate 

degree of partial melting and melt production, being the magmatic texture mostly 

impressed by the recrystallization of plagioclase, quartz and K-feldspar large crystals.  

The biotites from tourmaline-bearing leucogranite plot as igneous biotites in the 

diagram of Gokhale (1968), due to its relatively low Mg content.  However, the field and 

petrographic observations indicate that these biotites have a restitic character and were 

affected by latter fluids. This is also suggested by its high F contents, especially in the 

biotite associated with tourmaline.  

 The biotite from two-mica granites presents igneous and metamorphic character, 

indicating that some biotite could be restitic and other could be newly-formed of 

magmatic origin. The petrographic observations also suggest this double origin since 

there are anhedral and euhedral biotite crystals in the two-mica granites matrix.  This 
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would be expected in a rock resulting from anatexis of metamorphic rocks but showing 

a higher rate of partial melting than the diatexites.  

Although not all the MMC granitic rocks show cordierite, its biotites plot in the field of 

alumino-potassic series containing biotite and cordierite due to their relatively high Mg 

content. This is also in agreement with the origin mostly restitic for this biotites since 

they show a composition similar to the composition of the biotites from metatexites.  

 

5.8. White-mica  

White micas were analysed from metapelites, metatexites and granitic rocks.  

White-micas from low-grade metapelites (Chlorite- and Biotite-zone) are aligned along 

the main foliation. The higher grade metasediments white-micas (Staurolite and 

Migmatite-zones) essentially resulted from staurolite, biotite, plagioclase and K-feldspar 

alteration processes.  

 According to the white-micas classification of Deer et al. (1962, 1992), white-micas 

from all the studied lithotypes are muscovites where the X position is essentially 

occupied by K and the Y position by Al (Fig. V.50).  

Regarding paragonite and celadonite components the studied muscovites show the 

following characteristics (Fig. V.51):  

 Muscovite from chlorite-schists shows a ratio celadonite/paragonite of about 1; 

 Paragonite component is prevalent on biotite from staurolite-schists;  

 Celadonitic component is prevalent in biotites from metatexite; the muscovites that 

result from feldspars alteration show low paragonitic component; 

 Muscovite from granitic rocks shows predominance of celadonitic component; 

 Paragonitic component prevails in the Micas from aplite-pegmatites.  

 

The distinction between primary and secondary origin is the major question concerning 

the occurrence of muscovite in igneous rocks. The primary status of muscovite in many 

two-mica granites is questionable. The larger interstitial muscovite crystals in granites 

could have formed in equilibrium with magma, or have formed in the solid state at any 

P-T condition below the stability curve of muscovite (Feet et al., 2003). Muscovite can 

crystallize from granitic magma at pressures above 3.5 kbar, but at lower pressures 

muscovite can only form in the solid state (Deer et al., 1992). 
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It was considered that magmatic muscovites are richer in Ti, Al and Na and poorer in 

Mg and Si (Deer et. al., 1997). As referred, in staurolite-schists, metagreywackes and 

metatexites all the muscovites are secondary. In these rocks, the muscovites that 

clearly substitute biotite show relative high Ti and Na content. It is the case of the 

muscovites in metatexites (Fig. V.53A) and in diatexites (Fig. V.53B). The content in Ti 

and Na is related with the replaced mineral, since the muscovites replacing feldspar 

show minimal Ti and Na content and muscovites replacing biotite show the higher Ti 

content. Muscovites after staurolite show moderate Ti content and high Na content 

(Fig. V.53A and 54). Muscovites from calc-silicates, that replace plagioclase, also show 

low Ti and Na content.   

Muscovites from diatexites are all anhedral and clearly result of replacement of biotite 

or feldspars, or occur as radial aggregates in diatexite veins (Fig. V.55 and V.57B). The 

Ti content is highly variable and like in metatexites is related with the replaced mineral. 

The hydrothermal radiating aggregates show the lower Ti content (Fig. 54B).  

Two-mica granites and leucogranites show both, muscovites that replace biotite or 

feldspars and large plates of euhedral muscovite dispersed in the matrix (Fig. V.57A). 

The euhedral muscovites do not occur in all the samples since these muscovites only 

occur in samples that show other signs of hydrothermal alteration, like chloritization of 

biotite and sericitization of plagioclase. Spatially are related with zones where the 

granitic rocks show fracturing and are slightly deformed.  The Ti and Na composition is 

similar to the diatexite and metatexite muscovites (Fig. 53). The core and border of two 

subhedral muscovites from two-mica granites were analysed. The border is slightly 

depleted in Ti and Mg+Fet and enriched in Na.  

Since the composition of muscovites depend of the replaced mineral the use of Miller 

et al., (1981) and Monier et al. (1984) diagrams is inconclusive, since the muscovites 

that replace biotite or staurolite plot in the field of primary origin. The muscovites clearly 

replacing feldspars plot in the fields of secondary/hydrothermal muscovites but 

muscovites replacing biotite have Ti content similar to the primary muscovites (Fig. 54).   

To conclude about the existence of primary muscovite in two-mica granites and 

leucogranites it will be necessary more accurate studies, although a secondary origin 

seem to be more probable regarding the texture of the muscovites, the coexistence of 

other hydrothermal replacements and the inexistence of euhedral muscovites in some 

of  the two-mica granites samples.  



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

 

172 

 

 

Fig. V. 50 – Representation of the white micas in the Na vs. Al
VI

-2 classification diagram (after Deer et al., 1962,). (A) 

metapelites and (B) granite rocks. Legend Key: Chl-Sch – chlorite-schists; Bt.Sch – biotite-schists; St.Sch – staurolite- 

schists; MTX - metatexites; CSN – calc-silicate nodules; DTX – diatexites; L.Gnt – leucogranites; 2m-Gnt – two-mica 

granites; APG – aplite-pegmatites. 

 

 

Fig. V. 51 – Al
IV

 versus Al
VI

 – 1 diagram showing trend-line that represents the phengite substitution. All the analysed 

muscovites have Al
VI

/(Al
VI

-1) < 1 and do not follow the phengite substitution trend. Legend Key: Chl-Sch – chlorite 

schists; Bt.Sch – biotite-schists; St.Sch – staurolite-schists; MTX - metatexites; CSN – calc-silicate nodules; DTX – 

diatexites; L.Gnt – leucogranites; 2m-Gnt – two-mica granites; APG – aplite-pegmatites.  

 

 

Fig. V. 52 – Celadonite versus paragonite component diagram for (A) metapelites and (B) granite rock white-micas. 

Legend Key: Chl-Sch – chlorite-schists; Bt.Sch – biotite-schists; St.Sch – staurolite-schists; MTX - metatexites; CSN – 

calc-silicate nodules; DTX – diatexites; L.Gnt – leucogranites; 2m-Gnt – two-mica granites; APG – aplite-pegmatites.   
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Fig. V. 53 – (A) Ti versus Na diagram for metapelite and metatexite muscovites; (B) Ti versus Na diagram for granitic 

rocks muscovites. Legend Key: Chl-Sch – chlorite-schists; Bt.Sch – biotite-schists; St.Sch – staurolite-schists; MTX - 

metatexites; CSR – calc-silicate nodules; DTX – Diatexites; L.Gnt – leucogranites; 2m-Gnt – two-mica granites; APG – 

aplite-pegmatites. 

 

 

Fig. V. 54 - Projection of muscovites in Miller et al. (1981) diagram (A and C) and Monier et al. (1984) diagram (B and D) 

for discrimination of primary and secondary muscovites. Key: Bt.Sch – biotite-schists; Chl-Sch – Chlorite-schists; CSN – 

calc-silicate nodules; MTX –metatexites; St.Sch – staurolite-schists; L.Gnt – leucogranites;  2m-Gnt – two-mica granites; 

DTX – Diatexites; APG – aplite-pegmatites 
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Fig. V. 55 – Backscatter Electron Images from diatexite of (A) primary biotite with crystal faces replaced by muscovite 

and showing symplectitic border and (B) reequilibrated xenomorphic biotite replaced by muscovite and showing 

symplectitic border.  

 

Fig. V. 56 – Bachscattered images of metatexites showing muscovite replacing biotite and replacing K-feldspar.  

 

Fig. V. 57 – Backscattered images showing A) euhedral to subhedral muscovite in leucogranite; B) Radial aggregate of 

muscovite associated with quartz in diatexite. 

 

Fig. V. 58 – Euhedral muscovite in two-mica granites associated with chlorite after biotite.  
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5.9. Staurolite 

Staurolites are characterized by an internal zone containing great amount of quartz 

inclusions and an external rim showing mostly ilmenite inclusions. Most if the 

staurolites show hydrothermal alterations zones with development of secondary micas.  

Were made profiles across the staurolite crystal, from the core to the edges (Figs.V.59 

and V.60) and also in staurolite pseudomorph after garnet and staurolite surrounding 

garnet (Fig.V.61). The following can be pointed out: 

 The composition of staurolite has little variation from sample to sample. In general 

classify as Fe-staurolites (0.77< #Fe < 0.80 p.f.u.) showing low Zn, Mn and Cr 

content (< 0.037, < 0.034 and < 0.019 p.f.u. respectively). The Fe content is 

inversely correlated with Si+Al (r2 = 0.7). The H2O content varies between 1.86 and 

3.19 w%; 

 There are no systematic differences across the vertical or horizontal profiles;  

 There are no systematic variation between the quartz inclusion zone, the opaque 

mineral inclusion zone and the free inclusion zone;  

 The only systematic chemical variation is observed in the staurolite adjacent to the 

alteration zone (point 9, 15 and 16; Fig. V.59). These points show a sharp drop in 

the Fe, Mn and Zn contents and an increase in the Al+Si content; 

 The staurolite pseudomorph after garnet has more Fe and less Si+Al than the 

staurolite surrounding garnet (Fig. V.61). 

The slight, non-systematic chemical variations observed across the staurolite crystals 

suggests that the compositional dissimilarities are more probably related to the 

staurolite structure and hydrothermal alteration processes than to metamorphic 

processes.  

Sector-zoning in staurolite related to the development of distinctly different 

compositions accordingly to the crystallographic distinct faces of a growing staurolite 

crystal is well known (e.g. Hollister, 1970).  
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Fig. V. 59 - Staurolite profile in core-zone (1-4), upper edge (5-8), alteration zone (9) and border (10-16) for several 

elements. From inner zone to the upper edge there are no significant differences; From the inner part  towards the 

alteration zone and the border the water content increases and the Cr content decreases. On the alteration zone there 

are a sudden decrease in Zn, Mn and Fe. Ti shows a flat profile. 
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Fig. V. 60 – Vertical central profile (a to e).   

 

 

 

 

Fig. V. 61 – Staurolite replacing garnet (1-2) and surrounding garnet (3; with opaque and quartz inclusions). The 

staurolite replacing garnet has more Fe and less Si+Al than the staurolite surrounding garnet.   

2 3

4

a

b

c

d

e

1

1.2 mm

0.0

1.0

2.0

3.0

4.0

0.0

0.2

0.4

0.6

0.8

1.4

1.5

1.6

Fe

b c da
1.25

1.26

1.27

1.28

1.29

Si+Al

Mg

Zn

Ti

Cr

e b c da e

H2O

Mn

1

2

3

0.0

2.0

4.0

6.0

0.0

0.2

0.4

0.6

0.8

1.4

1.5

1.6

Fe

2 31
1.24

1.25

1.26

1.27

1.28

1.29

Si+Al

2 31

Mg

Zn

Ti

Cr

H2O

Mn



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

 

178 

 

5.10. Tourmaline 

Analyses were performed on tourmalines from leucogranites and from aplite-

pegmatites.   

The analyzed tourmalines chemical composition corresponds to schorl. In all the 

samples the Z-site is fully occupied by Al and the X-site is predominantly occupied by 

Na (Fig. V.63).  

Tourmaline from aplite-pegmatites shows 0.15 < #Mg < 0.50, sodium ranging from 0.55 

to 0.72 (p.f.u.) and very low Ca content ranging from 0.023 to 0.05 p.f.u.. Some 

tourmalines show a tiny border with slightly differences in the Fe, Ti, Mn and Mg 

contents (Figs. V.65A and V.66A).  

Tourmaline from leucogranites shows 0.30 < #Mg < 0.42, sodium ranging from 0,56 to 

0,74 p.f.u. and low Ca content (< 0,01 p.f.u.). Titanium contents are low (0.025 to 0.089 

p.f.u.). Compositional profiles show a border enriched in Mg and Ti and depleted in Mn, 

although with some heterogeneous variation. The Ti content in this crystal is especially 

low (~0.25 p.f.u.), except in one of the borders where there is a abrupt increase to 

values equivalent of the other crystals (~0.8 p.f.u.) (Figs. V.65B and V.66B).  

 

On Henry & Guiddoti (1985) diagrams (Fig.V.64) all the tourmalines plot on the Li-poor 

granite and associated pegmatites field.  

Fe-Mg tourmaline is a common accessory mineral in evolved granites, associated 

hydrothermal products and pegmatites and is widespread in the European Hercynian 

Belt leucogranites (Pivec et al. 1998), including in Portuguese granites and pegmatites 

(Neiva, 1974; Neiva et al., 2007).   

Neiva et al., (2007) found systematic differences in composition and zoning in 

tourmalines from magmatic and hydrothermal origin.  These authors consider that 

“magmatic tourmaline is either unzoned or shows an increase in Fe/(Fe+Mg) and a 

decrease in Mg from core to rim, while hydrothermal tourmaline is either oscillatory 

zoned or shows an increase in Al and a decrease in Fe and Mg from core to rim;  

hydrothermal tourmaline shows lower content in Fe/(Fe+Mg) than magmatic 

tourmaline”.  

The tourmaline from leucogranite show lower Fe content (#Fe ~0.63) than the aplite-

pegmatites tourmalines (#Fe ~0.77). Also the zoning is heterogeneous. This suggests 
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that the tourmaline from leucogranites is of hydrothermal origin, what is in agreement 

with the petrographic observations. Aplite-pegmatites tourmalines are enriched in Mn. 

The same enrichment in Mn is found in the aplite-pegmatites garnets, what indicates 

that these minerals reflect the Mn-rich composition of the host rock.  

 

Fig. V. 62 – Classification diagram for staurolites with fields defined by London and Manning (1995). All the tourmalines 

plot on the scroll field.  Key: APG – aplite-pegmatite; L.Gnt – leucogranite.  

 

 

Fig. V. 63 – A) Ca- Fet -Mg and diagram of Henry & Guidotti, (1985) (molecular proportions) for tourmaline from 

leucocratic granite (L.Gnt) and aplitopegmatite (APG). The fields represent: l - Li-rich granite pegmatites and aplites; 2 - 

Li-poor granites and pegmatites; 3 - Ca-rich metapelites and metagreywackes; 4 - Ca-poor metapelites or 

metapsammites rocks and quartz-tourmaline rocks; (5) Metacarbonates;  6 -Meta-ultramafic rocks; B) Fet – Al – Mg 

diagram  The fields represent:  1 - Li-rich granite pegmatites and aplites; 2 – Li-poor granites and pegmatites; 3 - 

hydrothermal altered granites 4 / 5- Metapelites /psammites; 6 - Fe3*-rich quartz-tourmaline rocks 7 - Low-Ca meta-

ultramafic rocks 8 - Metacarbonates and meta-pyroxenites Legend key: APG – aplite-pegmatite; L.Gnt – leucogranite.  
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Fig. V. 64 – A) Backscattered image of tourmaline in aplite-pegmatite (A) and leucogranite (B) showing location of 

analyses referred in Fig. 66. 

 

 

 

Fig. V. 65 – Profile of analysed points in tourmaline from leucogranite and tourmaline from aplite-pegmatite. The location 

of analysed points is in Fig. V.66.  
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CHAPTER VI – GEOCHEMISTRY  
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“I consider nature a vast chemical laboratory in 

which all kinds of composition and 

decompositions are formed.” 

Antoine Lavoisier 

  

 

6.1. Introduction 

Whole-rock major and trace-element analyses were carried out using ICP and ICP-MS 

(inductive coupled plasma / mass spectrometry) procedures at “Activation 

Laboratories” (Ancaster, Ontario). Fused samples are diluted and analysed by Perkin 

Elmer Sciex ELAN 6000, 6100 or 9000 ICP/MS. Three blanks and five controls (three 

before sample group and two after) are analysed per group of samples. Duplicates are 

fused and analysed every 15 samples. Instrument is recalibrated every 40 samples. 

Precision and accuracy for concentrations ≥100× the minimum detection limit (MDL) 

was generally better than ±5 percent relative, and in many cases such as for major 

elements was better than ±1 percent relative. For concentrations approximately 10× the 

MDL, precision and accuracy were about ±10–20 percent relative depending on the 

method used. The Cu, Pb, Zn, Ni, Ag, As and Sb values provided by Fusion ICP/MS, 

are semi-quantitative and are provided for general information, thus were not used in 

this work.   

The samples selected for the chemical analyses were chosen on the basis of a 

previous petrographic study and covering all lithologies of the study area, distributed as 

follow:   

Sector 1 – In this Sector samples were analysed from metagreywacke resisters and 

calc-silicate nodules, metatexites, leucosomes and granitic rocks including three 

metagreywacke samples, four calc-silicate samples, twelve metatexite samples (two 

patch-metatexite and ten banded-metatexite samples), two leucosome samples, five 

diatexite samples, seven leucogranite samples (four leucogranite samples and three 

tourmaline-bearing leucogranite samples), fourteen two-mica granites s.l. samples 

http://www.brainyquote.com/quotes/quotes/a/antoinelav357245.html?src=t_chemical
http://www.brainyquote.com/quotes/quotes/a/antoinelav357245.html?src=t_chemical
http://www.brainyquote.com/quotes/quotes/a/antoinelav357245.html?src=t_chemical
http://www.brainyquote.com/quotes/authors/a/antoine_lavoisier.html
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including medium to coarse-grained granites (nine samples), fine-grained granites (two 

samples) and porphyritic granites (three samples from Ferreira, 2011).  

Sector 2 – In this Sector samples were analysed from Schist-Greywacke Complex 

including one quartzite (or metasiltstone) sample, one pelite sample from biotite-zone, 

one calc-silicate sample, two psammite and four pelite samples from staurolite-zone. 

Three of the staurolite-schists samples are from Fânzeres and one is from Aguçadoura 

(Fig. III.32). 

The results of chemical analyses are presented in Appendix C. 

 

6.2. Geochemistry of metasedimentary rocks 

6.2.1. Major elements 

The lithological diversity of metasedimentary rocks under study, although matched by 

different metamorphic evolution, is the major cause of the differences in 

lithogeochemistry composition.  

Various classification schemes for clastic sediments based on whole-rock chemical 

data have been established (e.g. Pettijohn et al. 1972; Herron, 1988). Figures VI.1 and 

VI.2 represent the Herron (1988) classification diagram and ACF diagram (Eskola, 

1915; with fields of Barton et al, 1991 and Winter, 2001) applied to MMC and SGC 

samples that were used to give an idea of the lithogeochemical  types present in 

Mindelo Migmatite Complex (MMC) and Schist-Greywacke Complex (SGC) 

metasediments. Herron (1988) diagram distinguishes between lithologies according to 

whole-rock major elements chemistry based on SiO2/Al2O3 vs. Fe2O3/K2O ratios and 

their proportion reflects the sedimentary evolution. With an increasing SiO2/Al2O3 ratio 

the grain size also increases, as do the grade of recycling and the maturity of the 

sediment. The Fe2O3/K2O ratio is used as an indicator of mineralogical stability and 

distinguishes lithic fragments from feldspar. Eskola diagram with fields defined by 

Barton et al., (1991) and Winter (2001) takes into account the Ca, Na, Mn, and Mg 

besides Al, K and Fe giving a broader classification.  

These diagrams are used to emphasize the lithological diversity of MMC, SGC and 

PLZ, in spite of their application to low-grade metasedimentary contexts. Although in 

many post-depositional and metamorphic processes the element mobility does not 
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appear to be an important factor in determining the lithogeochemical composition 

(McLennan et al., 1991; Rollinson, 1993), in high grade metamorphic conditions some 

chemical mobility may occur during the metamorphic processes (Barbey & Cuney, 

1982). 

All the lithologies in the MMC are relatively rich in Ca (average of 11wt.% of CaO in 

calc-silicate nodules, 2 wt.% in metagreywackes and 2,5 to 0,4 wt.% in metatexites). 

MMC metasedimentary lithologies can be divided in: 

 Metagreywackes show low variation in major elements composition.  CaO content 

between 2 and 3 wt.%, SiO2 average content ~74 wt.%, Al2O3 average content 

14,8 wt.%, Fe2O3 content ~4,7 wt.%, K2O average content 1,5 wt.% and Na2O 

average content ~ 2,6 wt.%.  

 Calc-silicate nodules plot in Fe-shale (Fig. VI.1) and marls field (Fig. VI.2). Calc-

silicate classification in the Herron diagram is conditioned by their very low K and 

Na content and high Ca content (content average of 0,76 wt.%, 0,51 wt.% and 11 

%wt.%,  respectively).  SiO2 content is lower than the metagreywackes SiO2 

content (57 and 67 wt.%). Calc-silicates showing Type II alteration plot in the 

sandstone field due to its higher silica content. 

 Metatexites plot between shale and greywacke fields (Fig. VI.1) and in the pelite 

field (Fig. VI.2). They show SiO2 between 57 and 72 wt.%, Al2O3 between 13,5 and 

21,0 wt.%,  Fe2O3t between 3,9 and 8,8 wt.%, Na2O between 1,0 and 3,4 wt.% and 

K2O between 2,1 and 6,1. 

SGC samples are composed of: 

 Biotite-schists and staurolite-schists show similar composition and occupy the shale 

(Fig. VI.1) or pelite (Fig. VI.2) fields. SiO2 content varies between 56 and 64 wt.%, 

Al2O3 content between 17 and 24 wt.%, Fe2O3t average content ~7 wt.%, K2O 

average content ~4 wt.%. Na2O content is variable in staurolite-schists (0,5 to 2 

wt.%). This variability is reflected in mineralogy of the units, since there are layers 

showing higher plagioclase modal proportion and layers were quartz is dominant, as 

referred in Chapter III. 

 Staurolite-bearing metapsammites (staurolite-schist showing low-mica content) are 

staurolite-schists samples collected in the thicker quartz-feldspathic domains as 

referred in the chapter III. The SiO2 content is ~84 wt.%, Al2O3 content ~6 wt.%, 

Fe2O3t ~3 wt.% and, Na2O ~ 1 wt.% K2O ~1 wt.% in average.  
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 Metasiltstones and quartzites from biotite-zone show low K2O content and high SiO2 

(~90 wt.%) what projects this sample in the Fe-sandstone field in Herron (1988) 

diagram, although the Fe content is similar to the other lithologies.  

 Calc-silicate rocks from staurolite-zone plot in the transition marl/ greywackes in 

ACF diagram and in Fe-Sandstone field in Herron diagram. The composition is 

similar to the calc-silicate nodules from MMC but showing slightly higher silica and 

lower Fe2O3t and CaO contents. 

The geochemical classification is broadly coincident with the petrographical 

observations. 

Leake (1964) proposed a diagram to distinguish volcanogenic metasedimentary 

sequences based on the Niggli parameters (si versus (al + fm) – (c + alk)) for pelitic 

rocks (Fig. VI.2). None of the studied samples plot in the field of volcanogenic rocks in 

the diagram. The same samples plot out of the mafic rocks field defined by Winter 

(2001) in the ACF diagram (Fig. VI.3). 

 

 

 

Fig.VI. 1 – Whole-rock analyses from (A) Mindelo Migmatite Complex and (B) Schist-Greywacke Complex projected in 

Herron (1988) diagram. Legend key: CSN – calc-silicate nodule; CSNalt – Calc-silicate nodules showing type II 

retrograde alteration; GWK – metagreywackes; PMM – patch-metatexites; BMM – Banded-metatexites; Bt.Sch – biotite-

schists; St. Sch – staurolite-schists; St.Psm – staurolite psammites; Qtz – quartzites; CSR – calc-silicate rock. 
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.  

Fig. VI. 2- Diagram based on Niggli parameters si versus (al + fm) – (c + alk) with delimitation fields by Leake's (1964) 

for Schist-Greywacke Complex pelitic rocks (SGC) and Mindelo migmatite Complex metatexites (MM), metagreywackes 

(GWK) and calc-silicate nodules (CSN).   

 

 

Fig.VI. 3 – Whole-rock analyses from (A) Mindelo Migmatite Complex, (B) Schist-Greywacke Complex projected in ACF 

diagram (Eskola, 1915) with fields of Barton et al., (1991) and Winter (2001). Legend Key: CSN – Calc-silicate nodules 

showing type II retrograde alteration; CSN – calc-silicate nodule; GWK – metagreywackes; PMM – patch-metatexites; 

BMM – Banded-metatexites; Bt.Sch – biotite-schists; St. Sch – staurolite-schists; St.Psm – staurolite-psammites; Qtz – 

quartzites;  a = [Al2O3 + Fe2O3] - [Na2O + K2O];  c = [CaO] - 3.33[P2O5]; f = [FeO + MgO + MnO] in molar proportions.  

 

6.2.2. Multielement diagrams  

Trace elements are useful tracers of the petrogenetic processes and of their 

geotectonic context, namely the alkali elements (K, Rb, Cs), the alkaline-earth 

elements (Sr, Ba) the rare-earth elements (REE), the high field strength elements 

(HFSE) (Ti, Nb, Ta, Hf, Zr), and Th and U. 

The analysis of the trace elements content in metasedimentary rocks using multi-

elemental diagrams normalized to a standardized average is one of the ways to the 
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interpretation of its distribution and fractionation during the petrogenetic processes. The 

Neoproterozoic Iberian Average Shale - NIBAS (Ugidos et al., 2010) is one of these 

standardized averages. Further examples of the widely standardized averages for 

multi-elemental normalization of metasedimentary rocks are NASC (North American 

Shale Composite) (Gromet et al., 1984), PAAS (Post-Archaen Australian Shale) (Taylor 

& McLennan, 1985) and the UCC (Upper Continental Crust) (Taylor & McLennan, 

1985). 

The elements were selected in the following sequence: 1) elements associated with 

feldspars and micas and related to crustal sources like Ca, Mn, Sr, Na, Ba, Rb, K, U;  

2) elements associated with heavy minerals, with lower mobility in the 

sedimentary/metamorphic processes like  Th, Zr, Y, Ti and Al;  3) elements associated 

with basic sources and dark micas and quite immobile like Fe, Mg and V;  and 4) 

elements associated with metasomatic processes or volatile phases like Nb and Ta.   

The normalization to NIBAS (Ugidos et al., 2010) was made by sector and by lithology. 

Below, the most important aspects of these multi-elemental diagrams are highlighted 

(Figs. VI.4 and VI.5): 

Sector 1 (MMC): 

 Calc-silicate nodules show positive anomaly in Ca, Mn and Sr related with the high 

Ca content and negative anomaly in alkalis and associated elements as well as in 

ferromagnesian elements. The samples relative to calc-silicate rocks showing Type I 

and Type II retrograde alteration (GC2, FM21a, VC50 and FM16a) are richer in K, 

Rb and Ba than the samples without any signs of alteration. The Type II retrograde 

alteration provokes also a relative depletion in Ca, Mn and ferromagnesian elements 

(and increase in silica as referred before);  

 Metagreywacke from MMC show Ca, Mn and Sr positive anomaly. All the other 

elements show slight depletion relative to NIBAS. The composition is quite 

homogeneous although the samples that show signs of partial melting (FP21c and 

FP46c) contain slightly more Ba, Rb, K and P than the metagreywacke resisters.   

 Metatexites are enriched in Ca, Mn, Sr and Ti relative to NIBAS, although in variable 

proportions and always less than metagreywackes.  The variability in Ca is related 

to the distance from metagreywackes, being the Ca richer adjacent to 

metagreywackes. The migmatized metagreywackes composition is in general 

intermediate between metagreywacke resister and pelite metatexites compositions 
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showing a gradual transition between the metagreywackes layers and the adjacent 

pelitic metatexites.  

 Patch-migmatites (VC28 and VC37c) show a composition similar to the NIBAS and 

to the banded-metatexites although the sample VC37 shows an excess of Ca and 

Sr.  

 

Sector 2 (SGC): 

 In SGC the pelitic lithologies show variation in LILE, especially in Ca, Mn and Na 

content. The staurolite-schist from Aguçadoura (VC65) is the richest in Na, Ca and 

Sr. The HSFE composition is similar to NIBAS, although showing Ti enrichment. The 

staurolite-psammites are depleted in all the elements relative to NIBAS except Ca, 

Zr and Ti. The quartzite from biotite-zone is depleted in most elements except SiO2.  

 

The average compositions of MMC metatexites and SGC pelites normalized to NIBAS 

were plotted in a multielement diagram for comparison (Fig. VI.6). The average 

composition of metatexites is quite similar to pelites from SGC. Only the Ca, Sr and Mn 

content is slightly higher in metatexites. However, if compared to staurolite-schist from 

Aguçadoura (VC65) the chemical composition is almost coincident.  The SGC average 

composition is quite similar to NIBAS although the Ti content is slightly higher and Nb 

and Ta slightly lower.  
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Fig. VI. 4 – Multielement diagram for MMC lithologies normalized to NIBAS. A) Calc-silicate nodules including sample 

without signs of alteration (VC48 and FM21a), samples showing type I alteration (FM16a, Vc50 and GC2) and samples 

showing type II alteration (VC26a and VC49); B) Metagreywackes; C) Metatexites including patch-metatexites (VC28 

and VC37c), pelitic banded-metatexites (VC6a, FM23, VC27b and FM4a) and  migmatized metagreywackes (FM22, 

FP21c; FP46a, FM16c).  
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Fig. VI. 5 – Multielement diagram for SGC lithologies normalized to NIBAS: A) Pelitic lithologies from biotite-schist to 

staurolite-schists. B) Staurolite-psammites, quartzite from biotite-zone and calc-silicate rock from staurolite-zone. 

Legend Key: St.Psm –staurolite-psammite from staurolite-zone; Bt.Qtz – quartzite from biotite-zone; Bt.Sch – biotite-

schist; St.Sch – staurolite-schist.; CSR – calc-silicate rock. 

 

 

Fig. VI. 6 – A) Projection of pelitic banded-metatexites, pelitic patch-metatexites and SGC pelitic samples average 

compositions. Legend key: VC65 – staurolite-schist from Aguçadoura; SGC – Schist-Greywacke Complex average 

composition of samples from Fânzeres and Aguçadoura; PMM –pelitic patch migmatite sample; BMM – average 

composition of pelitic metatexites;  
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6.2.3. Rare Earth Elements  

The rare earth elements (REE) are regarded as amongst the least soluble trace 

elements and are relatively immobile during low-grade metamorphism, weathering and 

hydrothermal alteration. They present a very low concentration in hydrothermal and 

meteoric solutions, therefore the REE in sediments are chiefly transported as 

particulate matter and reflect the composition of their source (Taylor & McLennan, 

1985). However, in high metamorphic grade or when the water/rock ratio is very high 

the REE are not totally immobile and caution must be taken in interpreting the REE 

patterns. In clastic sediments the single most important factor contributing to the REE 

contents is its provenance, thus, nevertheless the necessary caution, REE patterns can 

faithfully represent the original composition of the parent rock (Rollinson, 1993).  

Figures VI.7 and VI.8 represent the REE profiles normalized to chondrite, (Boynton, 

1984) for MMC metagreywackes, calc-silicate nodules, metatexites and Schist-

Greywacke Complex samples. 

All samples reveal a REE profile with negative Eu anomaly and light rare-earth 

elements enrichment in respect to heavy rare-earth elements, the ratio LaN/YbN is 

positive, with higher fractionation of light than heavy REE as is typical of terrigenous 

rocks (Condie, 1993). The massive incorporation of vulcanoclastic detritus in these 

lithologies is discarded by the REE profiles (besides major elements, Fig.VI.3) since 

sediments near active volcanic arcs often show flatter REE patterns, less well-

developed Eu anomalies and lower REE abundances (Plank and Langmuir, 1998).  

The main characteristics of the REE patterns can be summarized as follow:  

Sector 1 (MMC):  

 Metagreywackes show homogeneous profiles, both in light REE and in heavy 

REE. They have the lowest REE total content (∑REEn ~ 323 ppm in average). The 

HREE profile is flattened relatively to the LREE profile.  

 Calc-silicate nodules show higher REE content than metagreywackes although 

with parallel profiles (∑REEn ~ 550 ppm in average). The samples showing Type II 

retrograde alteration (VC26 and VC49) show depletion in REE although the REE 

profile is parallel to the other calc-silicate samples.  

 Metatexites show relatively high REE content similar to NIBAS. However, is 

notorious the higher REE content in pelitic metatexites than in migmatized 
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greywackes, although showing continuous variation (∑REEn ~558 ppm and ~446 

ppm in average, respectively). LREE profiles are similar to each other and parallel 

to NIBAS. HREE profile is slightly more fractionated in migmatized greywackes 

than in pelitic metatexites. Patch-metatexites have REE pattern similar to the 

banded-metatexites pattern.  

Sector 2 (SGC): 

 In the SGC the pelitic lithologies have a REE profile similar to NIBAS and almost 

coincident with each other showing ∑REEn ~ 510 ppm in average.  

 The staurolite-psammites (FM15a and FM15b) shows lower REE content (∑REEn  

~ 235 ppm in average) and greater HREE flattening.   

 The quartzite from biotite-zone (FM38c) has the lowest REE content although 

showing a REE pattern sub-parallel to the other lithologies. 

 Calc-silicate rock from staurolite-zone shows a REE profile similar to the REE 

profile of the MMC calc-silicate nodules although with slightly less total REE 

content and lower Eu negative anomaly (Fig.VI.7A). 

 

 

Fig. VI. 7 - Chondrite-normalized (Boynton, 1984) REE profiles for calc-silicate and metagreywacke resisters. A) 

Samples VC49 and VC26a correspond to calc-silicate rocks showing type II retrograde alteration. Sample FM25 

corresponds to calc-silicate rock from staurolite-zone; B) Chondrite-normalized (Boyron, 1984) REE profiles for patch-

metatexites (green), pelite banded-migmatites (blue) and migmatized greywackes (brown). The NIBAS REE profile is 

also plotted. 
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Fig. VI. 8 - Chondrite-normalized (Boynton, 1984) REE profiles for SGC lithologies. The pelitic lithologies show a REE 

profile similar to NIBAS. The staurolite-psammites (FM15a and FM15b) shows lower REE content and the greater 

flattening of HREE.  The quartzite from biotite-zone (FM38c) has the lowest REE content although showing a profile 

sub-parallel to the other lithologies.  

 

The presence of quartz has a dilution effect on REE concentrations and the heavy 

minerals as zircon, monazite and allanite have a significant but erratic effect on the 

REE pattern of an individual sample (Rollinson, 1993). To understand the influences of 

this minerals in the REE content the samples were projected in binary diagrams ∑REE 

versus Zr, Th, Al2O3 and Y and these elements versus the ferromagnesian elements 

(Figs. VI.9 and VI.10). The following can be highlighted:  

 In SGC and MMC pelitic lithologies the REE content is correlated with Th, Y 

and Al2O3 content.  Zr seems not to be so determinant in the total REE content.  

 Ferromagnesian elements correlate with Th especially in the more pelitic 

samples (the less ferromagnesian samples from migmatized metagreywackes 

show similar Th content). Considering that Th is associated with monazite, this 

suggests that monazite is linked to biotite in pelitic lithologies and dispersed in 

the matrix in more greywacke lithologies.  
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 Al2O3 correlates with ferromagnesian elements in metatexites but not in the 

SGC pelite lithologies, where most likely the Al2O3 is associated with staurolite 

besides biotite.  

 Metagreywacke and calc-silicate nodules show ∑REE positive correlation with 

Y (r2=0.80), There is no correlation with Zr or Th. The linear positive correlation 

coefficients between ∑REE and Y, suggests that Y-bearing heavy minerals 

were important in hosting the REE in the metagreywackes and calc-silicate 

nodules. Since Y is strongly partitioned into garnet the REE content is probably 

associated with this mineral in these lithologies. In fact, calc-silicate nodules 

show higher garnet content and its REE content is also higher than the 

metagreywackes REE content.   

 The presence of quartz in quartzite lithologies and in calc-silicate nodules 

showing Type II alteration processes have an effect similar which is revealed by 

REE profiles parallel to the pelitic samples but showing lower REE content.  

 

 

Fig. VI. 9 – Diagrams relating ∑REE with Zr, Th and Y and the relationship of these elements with the ferromagnesian 

elements for Metatexites and SGC lithologies. Legend Key: SGC – Schist-Greywacke Complex pelitic samples; SGCq – 

SGC psammitic and quartzite samples; MM – metatexites from MMC.  
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Fig. VI. 10 - Diagrams relating ∑REE with Zr, Th and Y for metagreywackes and calc-silicate rocks. Legend key: GWK – 

metagreywackes, CSN – calc-silicate nodules; LG-CSN calc-silicate rock from staurolite-zone. The ∑REE is mostly 

related to Y content. 

  

6.2.4. Core and outer-zone of calc-silicate nodules 

As referred before the calc-silicate nodules show two distinct zones and are always 

inserted in metagreywacke layers. In order to evaluate the compositional variation 

within the zoned calc-silicate nodules, core-zone, outer-zone and surrounding 

metagreywackes were separately analyzed in two nodules (VC50 and GC2, both with 

10 cm length) (Fig. VI.11).  

 

 

Fig. VI. 11 – Calc-silicate nodule schematic representation showing core-zone, outer-zone and surrounding 

metagreywacke.   
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Enrichment/depletion diagrams are a convenient way to show the relative enrichment 

and depletion in trace or major elements (Rollinson, 1883). Figure VI.12 represents 

enrichment/depletion diagrams that compare the relative concentrations of the nodules 

core-zone and outer-zone and the relative concentration of nodules outer-zone and 

surrounding metagreywacke. In these set of diagrams it is possible define the elements 

that are specially concentrated in each of the analyzed zones. The following can be 

highlighted:  

 The core-zone is the most enriched in Ca, Mn, Fe, Y and REE (especially La).  

 The elements Mg, P, Sr, Co, Ti, Al, Sc, Nb are specially concentrated in the 

outer-zone (intermediate between calc-silicate nodules and metagreywackes) 

relatively both to core-zone and to metagreywacke.  

 The metagreywackes are the most enriched in Na, Ba, Rb and Sr.  

Figure VI.13A shows the REE profile (normalized to chondrite, Boynton, 1984) for core-

zone and outer-zone of the same nodules. It is evident the highest REE content in the 

core-zone. Figure VI.13B represents ACF diagram (Eskola, 1915) with delimited fields 

for diverse metasomatic composition types (after Barton et. al., 1991 and Winter, 

2011). None of the samples plots in the skarn field or other metasomatic composition.  

Zoned calc-silicate nodules associated with high grade metamorphic rocks, in 

amphibolite/granulite facies conditions and normally associated with pelitic and semi-

pelitic migmatite rocks are well reported (e.g. Buick et al., 1993, Morand, 1994; Owen, 

1994; Hudson & Kearns, 2000; Morel, 1961).  

In high metamorphic grade, most of the nodules show an inner-zone with higher 

temperature assemblage (with clinopyroxene as index mineral) and an outer-zone with 

lower temperature assemblage (with amphibole or biotite as index minerals). Obviously 

the metamorphic conditions are the same all over the nodule.  The zonation is in 

general explained by metasomatic diffusion (Buick et al., 1998; Owen et al., 1994) or 

as a result of metamorphism affecting compositionally zoned cemented psammites 

(Hudson & Kearns, 2000; Morel, 1961). 

It is unlikely that the zoning was formed only by syn-metamorphic boundary diffusion 

metasomatism since (Fonteilles, 1978; Coelho, 1993):  

 The chemical gradient between core-zone and the metagreywacke is not 

enough to promote the exchanges. For example, SiO2 content is comparable 

between the core-zone of calc-silicates and the metagreywackes (71 to 73 wt.% 
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in GC2 and 64 to 75 wt.% in VC50) and  Al2O3 content is similar (~12 wt.%). 

Only Ca and Mn are higher in core-zone (12 to 2 wt.% and 0.6 to 0.06 

respectively).  

 The outer-zone composition is not quantitatively intermediate between the two 

supposed reactants rocks.  Several elements (including some considered 

immobile like Al, Sc and Ti) are concentrated in the outer-zone that is in-

between the core-zone and the metagreywackes.  If the concentration in these 

elements is lower in both the zones that surround the outer-zone, it is unlikely 

that they could result of diffusion processes between them.  

Moreover, the zoning formation exclusively by infiltration fluids is also inconsistent, 

considering that (Fonteilles, 1978; Korzinsky, 1979; Barton, 1991; Coelho, 1993):  

 The concentric morphology of the zoning. Generally the infiltration metasomatism 

depends on external fluids structurally controlled and shows linear shape;  

 Absence of monomineralic zones common in infiltration metasomatic fronts; 

 Absence of water induced textures or paragenesis in the zoned calc-silicate nodules 

without any signs of retrograde alteration (e.g. no replacement textures, no 

wollastonite);  

 Absence of precipitated minerals in veins or other kind of open spaces.    

In ACF diagram with fields represented compositions for metasomatic types (after 

Barton et al. 1991) none of the samples plot in the metasomatic fields (Fig. VI.13B). 

These factors allied to the variability in composition from nodule to nodule and 

variability on CZ/OZ thickness ratio can only be explained by pre-metamorphic 

constraints. However, in the calc-silicate nodules affected by Type I and Type II 

retrograde processes the higher concentration of K, Ba and Rb is evident in altered 

rocks (0.48 to 0,95 wt.% for K, 45 to 75 ppm for Ba and 18 to 30 ppm to Rb).  

The characteristics of the calc-silicate nodules from MMC suggested that the gradual 

mineral differentiation from core- to outer-zone (Fig. VI.12) could have resulted from 

variation of the original mineralogy of the nodules and cementation processes and did 

not resulte from metasomatic processes. The same origin is proposed by Hudson and 

Kearns (2000) and Morel (1961) for other high metamorphic grade zoned calc-silicate 

nodules. The cementation process probably starts with Ca-Mn richer calcite and 

progressively changes to Mg-P-richer calcite. These leads to centrifugal decrease in 
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Ca and Mn and increase in Mg and P content towards the border of the nodule.  These 

centrifugal changes reflect the dynamics of nodular growth (Gluyas, 1984). The gradual 

change in composition of the cement leads, in higher metamorphic grade, to the 

development of different mineralogy, adequate to the composition, between the core 

and outer-zone, namely the occurrence of diopside in the core-zone and hornblende in 

the outer-zone. After that some of the zoned nodules were affected by external K-rick 

or/and silica-rich fluids.  

 

 

 

Fig. VI. 12 - Enrichment/depletion diagrams that compare the element concentrations of the nodules core-zone relative 

to the outer-zone (A) and the relative concentration of nodules outer-zone relative to the surrounding metagreywacke 

(B) of the same nodule (VC50 and GC2).  The elements Mg, P, Sr, Co, Ti, Al, Sc are specially concentrated in outer-

zone (intermediate zone) relatively both to the core-zone and to the metagreywackes. 
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Fig. VI. 13 – A) Comparison between the REE profiles of calc-silicate core-zone (CZ) and outer-zone (OZ) of two nodules (VC50 and 

CG2). B)  ACF diagram (Eskola, 1915). General bulk compositions of unaltered arkoses, pelites, metagreywackes, marls, carbonates and 

basic rocks are represented by shaded fields; compositions for metasomatic types are represented by outlined dotted lines (after Barton 

et .al., 1991 and Winter, 2011). 

 

 

6.2.5. Summary  

The lithogeochemical study of the lithostratigraphic units in Sector 1 and 2 allowed the following 

observations and conclusions: 

Samples of sector 1 (MMC) consist of migmatized pelites and metagreywackes (metatexites) as 

well as Ca-rich metagreywackes and calc-silicate nodules which have resisted to migmatization 

(resisters). All lithologies show crustal signature and compared to NIBAS have similar composition 

although showing Ca, Sr, Mn, Rb and Ti slightly higher content and Ta and Nb lower content.  

Samples of sector 2 (SGC) are composed of metapelites, quartzites and metapsammites as well as 

scarce calc-silicate rocks. The metapelitic rocks show composition similar to pelitic metatexites of 

sector 1 (MMC), especially those collected in Aguçadoura, either in major- as in trace elements. The 

calc-silicate rocks from sector 2 show similar composition to the calc-silicate rocks from MMC.  
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The REE profiles of all the lithologies are typical of metasedimentary rocks. The REE content is 

similar in metapelites from sector 1 and sector 2. In sector 1 and 2 the REE content is directly 

correlated with heavy accessory mineral content (particularly those which concentrate Th) and to 

ferromagnesian elements. This means that these minerals are associated with biotite, the more 

frequent ferromagnesian mineral present (garnet is rare). In metagreywacke rocks the REE are 

particularly associated with garnet (Y content).  

The calc-silicate nodules zonation could fundamentally have resulted from variation on the original 

mineralogy of the nodules, generated by diagenetic/cementation processes that leads to centrifugal 

decrease in Ca and Mn and increase in Mg and P content toward the border of the nodule. These 

compositional differences conditioned distinct metamorphic paragenesis, which are not related to 

different PT conditions. 
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6.3. Geochemistry of granitic rocks 

  

6.3.1. Introduction 

Granitic rocks are granular rocks consisting of quartz, plagioclase and K-feldspar with 

variations in the ferromagnesian minerals content. This type of paragenesis can be 

originated in a number of different processes including partial melting of various crustal 

components, evolution of mantle melts or a mixture of crustal and mantle sources 

(Frost et al., 2001). Its origin, source, evolutionary processes, emplacement at different 

structural levels and in different tectonic environments promote great diversity within 

the granitic rocks. This variety of sources led to a corresponding variety of classification 

schemes, which include the presumed origin of the granitoid, mineralogy, geochemistry 

and tectonic environment.  

The sampling includes leucosomes (LCS), diatexites (DTX) leucogranites (L.Gnt), 

tourmaline-bearing leucogranites (TL.Gnt) and two-mica granites s. l. including 

medium-grained granites (2m.Gnt), fine-grained granites (F.Gnt) and porphyritic 

granites (P.Gnt). Leucosomes were collected in in situ banded-metatexites (VC8) and 

in veins cutting the metatexites (FM19).  Leucogranites were collected from 

leucogranite masses (VC2, VC3 – Vila Chã and VC43 - Lavra) and from leucogranite-

veins outcropping in the metatexite zone (VC52 - Vila Chã) and in the surrounding 

metasedimentary sequence (VC44b - Malta, VC55 – Vila do Conde and VC68 - 

Aguçadoura). Two-mica granites were collected in Lavra (VC39), Leça (VC45), S. Paio 

(VC22 and VC34); Vila do Conde (FP21a and FP21b), Junqueira (VC49 and VC50) 

and Fornelo (FP30a); fine-grained granites dikes from Vila Chã (VC16 and VC32) and 

porphyritic granites dikes from Fornelo (after Ferreira, 2011). Aplite-pegmatite veins 

were collected in S. Paio (VC64) and in Vila Chã (VC58). The designation two-mica 

granites s.l. is used when the two-mica granites, the fine-grained granites and the 

porphyritic granites are considered together.  

 

6.3.2. Chemical-mineralogical characteristics 

The most traditional petrographic classification of granitoids is based on the modal 

abundance of quartz, plagioclase and alkali feldspar (Streckeisen, 1974). However, in 

this work we chose to consider the normative classification and chemistry of granitic 
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rocks due to the coarse grain size of the rocks and the presence of solid solutions that 

limit the modal analysis. The following classification diagrams were used: 

 

Diagram Q'-ANOR of Streckeisen and Le Maitre (1979) (Fig. VI.14) using the 

normative compositions (Barth mesonorme, 1958). The Q-ANOR diagram was derived 

empirically by Streckeisen and Le Maitre (1979) as a CIPW normative equivalent to the 

IUGS classification of Streckeisen (1974) matching to the upper triangle of QAPF 

diagram. It employs the parameters Q=100*(Qtz/(Qtz+Ab+Or+An)) and ANOR= 

(100*An/(An+Or)).  

Diatexites plot mostly as syenogranites or in the frontier between syenogranites and 

monzogranites and show high Q’. One of the samples (FP46) plot out of diagram field 

due to its high silica content (74,02 wt%)  and low Ab+An+Or proportion.   

Leucosomes and leucogranites plot in the field of alkali feldspar granites, although one 

sample of leucogranite and one sample of tourmaline-bearing leucogranite plot in 

syenogranites and monzogranite field, due to their low K content.  Like in diatexites, 

one sample from Malta (FP44b) shows higher proportion of silica relatively to 

An+Ab+Or and plot out of the diagram.  

Two-mica granites, including fine-grained granites and porphyritic granites, and aplite-

pegmatites plot in the field of alkali feldspar granites.  

 

Diagram SiO2 versus K2O from Le Maitre et al. (1989) (Fig. VI.15). The projection of 

MMC granitic rocks show that leucogranites plot in the fields of low, medium, higher 

and very high K content, what is a reflex of their great K content variation (from 1,44 to 

7,37 wt%). Leucosomes show also very high K content (~6,6 wt%). The other MMC 

granitic rocks plot in the field of high K content showing lower dispersion. Aplite-

pegmatites show medium K2O content. The silica content variation is low and there are 

no correlation between the K2O content variation and the SiO2 variation.  

 

The B-A diagram as proposed by Debon & Le Fort (1983) with classification fields 

for various types of peraluminous rocks designed by Villaseca et al. (1998) (Fig. VI.16). 

The B = Fe + Mg + Ti parameter reflects the content of mafic minerals and the A = Al – 

(K + Na + 2Ca) parameter reflects the amount of aluminum incorporated into feldspars 

(calculations are based on millications). 
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All the granitic rocks from MMC plot in the peraluminous domain. Leucosomes, 

leucogranites, two-mica granites s. l. and aplite-pegmatites plot in the felsic 

peraluminous field (with exception of one sample of leucosome that show more 

ferromagnesian elements content). Diatexites show higher ferromagnesian elements 

content and plot in the highly to moderately peraluminous fields.  

 

Diagram of Debon & Le Fort (1988) (Fig.VI.17). These diagrams are considered 

effective in distinguishing evolutionary trends, as well as in the establishment of types 

of magmatic associations and in defining different subtypes. The aluminous 

associations and evolutionary trends are divided in: (1) mesocratic and sodium-

potassium association following a silica-potassic evolutionary trend; (2) leucocratic 

association following a silica-sodic evolutionary trend and (3) meso to leucocratic and 

potassic association following a silica evolutionary trend.  

All lithologies plot in the leucocratic to sub-leucocratic associations (only one sample of 

diatexite plot in mesocratic field) and the potassic association is dominant. 

Leucogranites show variation in K and Na that causes the dispersion between potassic, 

sodic-potassic and sodic associations. Aplite-pegmatites plot in the field of leucocratic/ 

sodic associations. The MMC granitic rocks do not follow any well-defined evolutionary 

trend both regarding the individual lithologies or considering the lithologies as a whole, 

since the distribution of samples is scattered and some overlaps each other.  

 

Frost et al. (2001) classification scheme that is composed of three indexes (Fig. 

VI.18): 

Fe-number -   Fe-number is calculated as weight proportion of FeOt/(FeOt+MgO). Fe 

number determine whether the rocks are mainly magnesium or ferroan and provide 

information about the history of differentiation of the granitic magma. The iron 

enrichment is used to distinguish between granitoids from different tectonic 

environments. Frost et al. 2001 proposed the terms “ferroan” for rocks where the Fe is 

more abundant than Mg and “magnesian” for rocks were the Mg is more abundant than 

Fe. Mg is considered more abundant than Fe if the ratio FeO/(FeO+MgO) < 0,5.  
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MMC granitic rocks plot as magnesian granitoids, except the aplite-pegmatites and one 

sample of leucogranite that plot as ferroan granitoids. Diatexites and leucosomes are 

the most magnesian rock types. One sample of porphyritic granite is highly magnesian.  

MALI (modified alkali-lime index) is expressed by the composition and abundance of 

feldspar or other minerals containing K and Na relatively to the silica content. Many 

magmatic igneous suites show similar trends in Na2O + K2O – CaO versus SiO2 

diagrams that can be divided in Calcic, calc-alkalic, alkali-calcic and alkali fields (Frost 

et al. 2001). 

MMC granitic rocks show some dispersion in the MALI  and do not follow any particular 

trend. Diatexites and leucogranites show high MALI dispersion and plot in calcic, calc-

alkalic and alkali-calcic field. The former due to their CaO variable content (0,61 to 

1,12) and the lasts due to their high K2O and Na2O variation. Two-mica granites s.l.  

and leucosomes plot as alkali-calcic. Aplite-pegmatites plot as calc-alkalic and alkali-

calcic due to their low K content (~2.96 in average). Thus, in the MMC, the variations 

are principally related with Na2O and K2O content since there are not accentuated 

variations in the CaO content (only diatexites show slightly higher CaO content).  

Aluminium Saturation Index (ASI): A=NK vs. ASI diagram, where A/NK stands for 

molecular Al2O3/(Na2O + K2O) and ASI for molecular Al2O3/(Na2O + K2O + CaO – 

1,67*P2O5). In fact, it is the A/CNK parameter of Shand (1943), corrected for the Ca 

content in apatite. ASI makes the chemical discriminant between peraluminous 

granitoids (ASI > 1) and metaluminous granitoids (ASI < 1).  

All the granitic rocks in MMC are peraluminous showing ASI > 1.17. Diatexites follow a 

trend distinct from the trend of leucogranites and two-mica granites due to its higher Ca 

content.The peraluminous granitoids have more Al that can be accommodated in 

feldspars and must have another aluminous phase present (Frost et al., 2001). In the 

case of diatexites, the phase is mostly biotite and cordierite and in the case of two-mica 

granites is biotite and rare andalusite. Given the terminology used by Bea et al. (1987), 

specifically for the Variscan Massif granitoids with SiO2 content > 62%, it appears that 

all the granitic rocks from MMC belong to strongly aluminous series (A / (CNK) > 1.15). 

In summary, the MMC granitic rocks are magnesian, peraluminous and range from 

calc-alkalic to alkali-calcic in the Frost classification. 
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Rb-Ba-Sr diagram proposed by Bouseily & El Sokkary (1975) (Fig. VI.19). The 

relationship between Rb - Ba - Sr in granitoids has been used to define paths of 

differentiation in granitic series, as well as to distinguish between granite formed 

exclusively by magma from those formed by metasomatism or in intimate association 

with the host rocks (anomalous granites).  

Metatexites, diatexites, leucosomes and leucogranites plot on the anomalous granites 

field that is considered represent granitoids formed by metasomatism or in intimate 

association with the host rocks (anatexites). Tourmaline-bearing leucogranites show 

higher Rb and Sr content relatively to the tourmaline-absent leucogranites and plot in 

the field of differentiated granites. Two-mica granites (including fine-granites and 

granitic porphyry) plot on the normal granites field showing variable differentiation. The 

porphyritic granites show slightly higher differentiation than the other two-mica granite 

types. On the contrary, fine-grained granites show lower differentiation. The aplite-

pegmatites show pronounced differentiation, plotting in the extension of the field of 

highly differentiated granites. 

 

Diagram Na-K-Ca of Raju & Rao (1972) (Fig. VI.20): This ternary diagram demarks 

the field of granitic rocks originated by magmatic processes from granitic rocks 

originated by metamorphic/metasomatic processes.  In general, the granite rocks from 

MMC plot close to the magmatic origin granites but in the metamorphic/metasomatic 

fields (except three diatexite samples due to its higher Ca content). The authors 

considered that the granitic samples that plot outside the magmatic field and the 

samples with considerably higher K content could most probably indicate K-

metasomatism.  
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Fig. VI. 14 – Classification of MMC granitic rocks using the normative compositions in the diagram Q'-ANOR of 

Streckeisen and Le Maitre (1979). B) Modal classification of oversaturated plutonic rocks corresponding to the upper 

triangle of QAPF Streickeisen (1974). The numbers in both diagrams match to the same classification. Fields: (2) – 

Alkali feldspar granites; (3a) – Syenogranites; (3b) – Monzogranites.  Legend key: LCS – leucosomes; L.Gnt – 

leucogranites; 2m.Gnt – two-mica granites; APG – aplite-pegmatites; DTX – diatexites; TL.Gnt – tourmaline-bearing 

leucogranites; P.Gnt – porphyritic granites; F.Gnt – fine-grained granites. 

 

 

Fig. VI. 15 –  Projection of MMC granitic rocks on the K2O versus SiO2 diagram of Le Maitre et al. (1989).  Legend key: 

DTX – diatexites; ;  LCS – leucosomes; L.Gnt – leucogranites;  TL.Gnt – tourmaline-bearing leucogranites; 2m.Gnt – 

two-mica granites s.l. ; APG – aplite-pegmatites. 
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Fig. VI. 16– B-A diagram as proposed by Debon & Le Fort (1983) modified after Villaseca et al. (1998) with fields for 

various peraluminous rock types.  The calculations are based on millications. Abbreviations: l-P = Low peraluminous; m-

P – moderate peraluminous; h-P – high peraluminous and f-P felsic peraluminous. Legend key: LCS – leucosomes; 

L.Gnt – leucogranites; 2m.Gnt – two-mica granites; APG – aplite-pegmatites; DTX – diatexites; TL.Gnt – tourmaline-

bearing leucogranites; P.Gnt – porphyritic granites; F.Gnt – fine-grained granites. 

 

 

Fig. VI. 17 – Projection of MMC granitic rocks in the Debon & Le Fort (1988) diagram distinguishing evolutionary trends 

and magmatic associations. 1 - Mesocratic and sodium-potassium association with silico-potassic evolutionary trend, 2 - 

Leucocratic and sodium association, with silico-sodic evolutionary trend; 3 - meso to leucocratic and potassic 

association with silica evolutionary trend. Legend key: DTX – diatexites; LCS – leucosomes; L.Gnt – leucogranites; 

2m.Gnt – two-mica granites; F.Gnt – fine-grained granites; P.Gnt – porphyritic granites; APG – aplite-pegmatites. 
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Fig. VI. 18 – Frost et al. (2001) classification scheme for MMC granitic rocks. Legend key: LCS – leucosomes; L.Gnt – 

leucogranites; 2m.Gnt – two-mica granites; APG – aplite-pegmatites; DTX – diatexites; TL.Gnt – tourmaline-bearing 

leucogranites; P.Gnt – porphyritic granites; F.Gnt – fine-grained granites. 
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Fig. VI. 19 - Rb - Ba - Sr diagram of El Bouseily & El Sokkary (1975) for MMC granitic rocks and metatexites. Legend 

key: LCS – Leucosome; MTX – Metatexite; L.Gnt – leucogranite; 2m.Gnt – two-mica granites; APG – aplite-pegmatites; 

DTX – diatexites; TL.Gnt – tourmaline-bearing leucogranites; P.Gnt – porphyritic granites; F.Gnt – fine-grained granites. 

 

 

Fig. VI. 20 -Diagram Na-K-Ca (in milications) of Raju & Rao (1972). Fields: I - magmatic granitic rocks; II – replacement 

granites rocks. Legend key: LCS – Leucosomes; L.Gnt – leucogranites; 2m.Gnt – two-mica granites; APG – aplite-

pegmatites; DTX – diatexites; TL.Gnt – tourmaline-bearing leucogranites; P.Gnt – porphyritic granites; F.Gnt – fine –

grained granites. 
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6.3.3. Tectonic discrimination 

Several authors (ex. Batchelor & Bowden, 1985; Foster et al. 2001, Pearce et al.; 

1984) consider that magmas produced in different tectonic environments can be 

distinguished based on their chemical composition. The exclusive use of chemical 

diagrams to distinguish the geodynamic context of granite emplacement, without any 

other independent data, must always be done with care, since it can lead to wrong 

conclusions.  In fact, competing factors, independent of the tectonic environment, could 

determine the composition of granitic rocks. In particular the anatectic granites 

composition is mostly a function of the protolith rock composition and of the melt 

crystallization history, being the tectonic environment secondary (Rollinson, 1993; 

Foster et. al, 2001).  

Batchelor & Bowden (1985) propose a tectonic environment discrimination considering 

the parameters R1 and R2 based on major elements (Fig. VI.21) which distinguishes 

between granites from mantle fractionates, pre-orogenic granites, post-collisional uplift 

granites; late-orogenic granites, anorogenic granites, syn-collisional granites and post-

orogenic granites.  

Pearce et al. (1984) suggest a set of diagrams using HFSE such as Ta, Zr, Y and Nb 

that are the most stable under various conditions and hydrothermal metamorphism 

(Fig. VI.22). For granitic rocks these authors proposed distinguish four kinds of tectonic 

environment: ORG - granites of oceanic rift, fore-arc and back-arc; VAG - oceanic 

volcanic arc and active margins granites; WPG - intra-plate granites in attenuated crust 

and island arcs; COLG - collisional granites, syn-tectonic, associated with continent-

continent collision and continent-arc. 

In both diagrams two-mica granites s. l. plot in the field of syn-collisional granites. 

Diatexites and leucosomes plot in the field of post-orogenic granites in the Bachelor 

and Bowden (1985) diagram and mostly in the field of Oceanic Volcanic Arc granites 

and Active Margins in the Pearce et al. (1984) diagrams. Leucogranites plot between 

the syn-collisional and active margins fields.  

In the Whalen et al. (1987) 1000Ga/Al vs. Zr or Zr+Nb+Ce+Y discriminant diagrams 

(Fig. VI.23) the MMC granitic rocks plot in the field of S or I-type granites and fall 

outside the A-type compositional field. Two-mica granites, aplite-pegmatites and one 

sample of tourmaline-bearing leucogranites plot in the field of fractionated felsic 

granites. Diatexites plot in the frontier between fractionated and unfractionated granites 

and leucosomes and leucogranites clearly in the unfractionated granites field.  
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Fig. VI. 21 – Projection of MMC granitic rocks in the Batchelor and Bowden (1985) discrimination diagram, which 

distinguishes between granites from fractional mantle, pre-orogenic granites, post-collisional uplift granites, late-

orogenic granites,  anorogenic granites, syn-colisional granites and  post-orogenic granites. Legend key: LCS – 

Leucosomes; L.Gnt – leucogranites; 2m.Gnt – two-mica granites; APG – aplite-pegmatites; DTX – diatexites; TL.Gnt – 

tourmaline-bearing leucogranites; P.Gnt – porphyritic granites; F.Gnt – fine-grained granites. 

 

 

Fig. VI. 22 – Projection of MMC granitic rocks in a suite of four diagrams for discrimination of geotectonic environment of 

granitoid rocks proposed by Pearce et al. (1984).  Abbreviation: ORG - Ocean Ridge Granites; VAG - Volcanic Arc 

Granites; WPG - Within Plate Granites; syn-COLG – syn-Collisional Granites. Most of the two-mica granites and the 

aplite-pegmatites plot on the syn-collisional granites field and most of the diatexite, leucosome and leucogranite plot on 

volcanic arc granites field. Legend as in Fig. VI.21.   
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Fig. VI. 23 - 10000Ga/Al vs. Zr and Zr+Nb+Ce+Y vs 10000 Ga/Al discrimination diagram (Whalen et al., 1987). 

Abbreviations: OGT (unfractionated M-, I- and S-type granites) and FG (fractionated felsic granites). Legend key: DTX – 

diatexites; LCS – Leucosomes; L.Gnt – leucogranites; 2m.Gnt – two-mica granites; APG – aplite-pegmatites. 

 

6.3.4. Variation Diagrams 

Harker variation diagrams are used to understand the processes occurring during the 

evolution of magmas. The correlation patterns between selected elements provide an 

indication in this regard since they are generally related to mixtures of magmas, 

addition or subtraction of solid phases by contamination or fractional / partial melt 

crystallization. Fractional crystallization is considered responsible for most of the 

correlations between major elements in Harker diagrams. In the case of partial melting 

the correlation patterns are controlled by the geochemistry of the solid phases that are 

being added to the melt. In the case of fractional crystallization with assimilation, the 

patterns of correlation show variability which is related to the inclusion of country rock 

in the magma during fractionation (Rollinson, 1993).  

Figures VI.24 and VI.25 show the projection of major and selected trace elements 

versus SiO2 for MMC granitic rocks. All the granitic rocks from MMC show relatively 

high SiO2 content (two-mica granites ~72,6 wt.%, leucogranites ~74,0 wt.% and 

diatexites ~72,9 wt.% in average). Two-mica granites and diatexites K2O content is 5,2 

and 4,5 in average. In leucogranites the K2O content is highly variable ranging from 1,4 

to 7,4 wt.%.  The ferromagnesian elements content is low in two-mica granites and 

leucogranites (1,38 and 0,78 in average, respectively). Diatexites show the higher FeO 

+ MgO content (2,78 wt.% in average),  CaO (0,9 wt.% in average), Ba, Sr, Y, Zr and 

La contents.  Leucogranites show the lowest ferromagnesian, HSFE and TiO2 contents, 

high variation in K2O content and high Na2O and Ba contents. Two-mica granites s.l. 
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show the highest P2O5 (0,39 in average) and Rb contents (specially the granitic 

porphyry). However there are no systematic variations relative to SiO2 from two-mica 

granites to fine granites to porphyritic granites.  

Considering the lithologies independently or considering the granitic rocks as a whole 

there are no evident correlations between major or trace elements and the silica 

content. Only a slight inverse correlation between SiO2 and Al2O3 is observed. This 

suggests that the classic model of fractional crystallization is not the principal process 

influencing the lithological diversity in the MMC granitic rocks. 

 

 

Fig. VI. 24 – Harker diagrams for MMC granitic rocks projecting major elements versus silica content.  Legend key: LCS 

– Leucosomes; L.Gnt – leucogranites; 2m.Gnt – two-mica granites; APG – aplite-pegmatites; DTX – diatexites; TL.Gnt – 

tourmaline-bearing leucogranites; P.Gnt – porphyritic granites; F.Gnt – fine granites. 
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Fig. VI. 25 – Harker diagrams for MMC granitic rocks projecting selected trace elements versus silica content.  Legend 

key: LCS – Leucosomes; L.Gnt – leucogranites; 2m.Gnt – two-mica granites; APG – aplite-pegmatites; DTX – 

diatexites; TL.Gnt – tourmaline-bearing leucogranites; P.Gnt – porphyritic granites; F.Gnt – fine granites. 

 

 

Figures VI.26 and VI.27 show the patterns defined by major and selected trace 

elements versus the content in mafic components (Fe2O3t + MgO) for the MMC granitic 

rocks. A notable feature is the positive correlation between TiO2, CaO and HSFE 

content and the content in mafic minerals (in this case biotite since it is the only mineral 

that contains Fe2O3 and MgO in these rocks).   

In contrast, the elements compatible in reactant phases during the melting processes 

(Rb, Ba and Sr) show a higher range of variation with no clear correlation with mafic 

components. These elements are concentrated in minerals that are key reagents in the 
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melting reactions that produce granites, e.g., biotite, quartz, plagioclase and garnet 

(Sawyer, 2008).  

 

 

Fig. VI. 26 -  Projection of major elements contents versus mafic components to the MMC granitic rocks. Legend key: 

LCS – Leucosomes; L.Gnt – leucogranites; 2m.Gnt – two-mica granites; APG – aplite-pegmatites; DTX – diatexites; 

TL.Gnt – tourmaline-bearing leucogranites; P.Gnt – porphyritic granites; F.Gnt – fine granites. 
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Fig. VI. 27 - Projection of selected trace elements contents versus mafic components to the MMC granitic rocks. Legend 

key: LCS – Leucosomes; L.Gnt – leucogranites; 2m.Gnt – two-mica granites; APG – aplite-pegmatites; DTX – 

diatexites; TL.Gnt – tourmaline-bearing leucogranites; P.Gnt – porphyritic granites; F.Gnt – fine granites. 

 

6.3.4.1. Large Ion Lithophile Elements variation diagrams 

Close geochemical association of potassium and rubidium has led to the extensive use 

of K/Rb ratio in petrogenetic analysis of igneous systems as a potential indicator of 

petrogenetic evolution, in particular to the separation between primary and secondary 

trends (Shaw, 1968). Being larger in size, rubidium accumulates in residual melts more 

rapidly than does potassium. Hence, with progressive differentiation the K/Rb ratio of 

rocks should decrease with increasing acidity.  Therefore K/Rb ratios can indicate the 

extent and direction of differentiation in a suite of igneous rocks (Tombale et al., 1984).   
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Shaw (1968) compiled K and Rb data for a variety of igneous rock types and defined 

several igneous fractionation trends on the Rb vs K diagram. It was established a main 

trend that characterize K and Rb concentrations in rocks ranging from granite to 

continental basalts. The “main trend” lies near a K/Rb ratio of 230 and shows an 

increase in Rb and K with magmatic differentiation.  A second trend which diverges to 

higher K/Rb ratios at very low K concentrations is defined by ocean tholeiite basalts.  

The third trend is the pegmatitic-hydrothermal trend showing extreme Rb concentration 

relative to nearly constant (or even decreasing) K resulting in a trend parallel to the Rb 

axis.  

Figure VI.28A and B represents the K vs. Rb diagram and K/Rb vs. K2O for MMC 

granitic rocks compared with Show’s Main Trend. MMC granitic rocks display high K 

and Rb contents showing K/Rb ratio between 105 in aplite-pegmatites to 422 in 

leucosomes (in average).  

Diatexites, leucosomes and tourmaline-absent leucogranites show high K/Rb ratio and 

plot above Shaw’s “main trend” related to their lower Rb content.  In situ leucosomes 

show the highest K content to moderate Rb content. This confirms the low 

differentiated character of these lithologies. Two-mica granites, aplite-pegmatites and 

tourmaline-bearing leucogranites plot below the Shaw’s “main trend”, showing a 

moderate to highly differentiated character. Aplite-pegmatites show the lower K/Rb 

values as is typical of highly differentiated rocks. The aplite-pegmatite samples do not 

plot in continuity with any of the other granitic rocks. 

Also is notorious that the MMC granitic rocks do not follow the normal differentiation 

trends since diatexites and two-mica granites show a trend parallel to the Rb axis and 

leucogranites show highly dispersion in K content that is not related with the Rb content 

nor with the hydrothermal increasing of Rb. Thus, it seems that the differentiation trend 

of two-mica granites is related to hydrothermal processes.  The variation in 

leucogranites shows a hydrothermal component (increase in Rb in tourmaline-bearing 

leucogranites) but also another influence that cannot be associated with magmatic 

neither with hydrothermal differentiation. This suggests the influence of later 

metasomatic processes. 

 

As mentioned before, the K2O content variation in MMC granitic rocks is not related to 

silica content. In SiO2 versus K2O diagram (Fig. VI.28C) two-mica granites and 

diatexites show a trend almost parallel to the silica axis with little variation of K2O 
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content. In contrast, leucogranites have an opposite behavior, showing strong 

potassium enrichment relatively to SiO2 variation (following a vertical trend in the 

diagram). The K2O content in leucogranites is correlated with CaO+ Na2O content (r2 = 

0,9, except sample FP44b that show low Na2O relatively to SiO2 content). This 

demonstrate extremely high gains of K at the expense of Na and Ca, suggesting the 

occurrence of a feldspatization process that is not accompanied by increasing acidity, 

probably post-magmatic, associated with K-metasomatism/potassic alteration (Pirajno, 

1992). These data are in agreement with petrographic observations since there are 

several indications of plagioclase replacement by K-feldspar.  

 

The initial concentration of Rb, Sr and Ba in granitic rocks is controlled by processes of 

fractional crystallization and is dependent on their relative partition coefficients. It is 

expected that concentration of Sr and Ba decrease and Rb increase in residual fluids 

with increasing crystallization. This translates to a relative increase in Rb upwards in 

the granite series with a reciprocal decrease in Ba and Sr, being the deviation to the 

expected trends as being a function of geochemical modification due to alteration. 

Bivariate trace element plots of Rb vs. Sr or Rb vs. Ba tend to be the most sensitive to 

crystal fractionation as shown by numerous authors; for example Hunter (1973), 

Kleeman & Twist (1989). 

Figures VI.28E and VI.28F represents the Rb vs. Sr and Sr vs CaO diagrams for MMC 

granitic rocks. In general the lithologies showing higher Sr content have lower Rb 

content. However the behavior is different of each lithology.  Two-mica granites show 

low Sr and high Rb content, low Sr variation and a slight correlation between Sr and 

Rb. (r2=0,57). Diatexites, leucosomes and leucogranites show low Rb content and high 

variation in Sr content, without evident correlation between Rb and Sr variations. Aplite-

pegmatites show the lowest Sr content. The usual relation between Sr and CaO 

content only is evident in diatexites (r2=0,96).  

Ba vs. Rb/Sr diagram (Fig. VI.28H) shows marked individualization between the 

different lithologies. Diatexites, leucosomes and leucogranites show low Rb/Sr content 

and high Ba content and slightly correlation between Sr and Rb (r2=0.5). Two-mica 

granites show variation in Rb/Sr content (due to Rb variations) and low variation in Ba 

content. Aplite-pegmatites show lower Ba content and do not follow the same pattern 

as any of the other lithologies.   
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Fig. VI. 28 – Projection of MMC granitic rocks in the: A) Rb vs. K (wt.%) diagram compared with Shaw’s main trend 

(MT).  B) K2O (wt.%) versus K/Rb diagram for MMC granitic rock compared with Shaw’s main trend.  C) SiO2 vs. K2O 

diagram; D) K2O vs. Cao+Na2O diagram; E) Rb vs. Sr diagram; F) Sr vs. CaO diagram; H) Rb/Sr vs. Ba diagram. 

Legend key: DTX – diatexites; LCS – leucosomes; L.Gnt – leucogranites; TL.Gnt – tourmaline-bearing leucogranites; 

2m.Gnt – two-mica granites; APG – aplite-pegmatites.  
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6.3.4.2. HSFE variation diagrams 

The recognition that REE, Y, Th and U-rich accessories minerals may play an 

important role in controlling the geochemistry of crustal melts is well stablished (e.g. 

Watson, 1988; Watt et al., 1996; Bea, 1996; Sawyer, 2008). Crustal rocks always 

contain REE, Y, Th, U-rich accessory minerals which usually account for an elevated 

fraction of REE, Y, Th and U contents in bulk rock (e.g. Gromet & Silver, 1983; Sawka, 

1988) and may therefore disturb or even completely mask the effects produced by 

major minerals during melting and crystallization (Miller & Mittlefehdlt, 1982; Yurimoto 

et al., 1990, Bea & Montero, 1999). The geochemistry of HSFE reflects the behaviour 

of accessories and some key major minerals such as garnet, feldspars and amphibole, 

and may therefore give valuable information about the conditions of partial melting, 

melt segregation and crystallization of granite magmas in different crustal regimes 

(Bea, 1996). 

Figure VI.29A, 29B and 29C represents the TiO2 vs Zr, TiO2 vs. Mg and La + Ce vs Zr 

diagrams for MMC granitic rocks. Diatexites show the highest HSFE and MgO content, 

two-mica granites show moderate content and leucogranites show the lowest HSFE 

content. Leucosomes, although showing low Zr and La+Ce contents have moderate 

MgO and TiO2 contents. TiO2 correlates with the MgO and Zr content and Zr content 

with the La + Ce content.  

Figure VI.29D represents the U vs. Th diagram to the MMC granitic rocks. Comparing 

with average standard granite (Condie, 1993) the Th/U ratio is lower for all the 

lithologies. Diatexites show Th/U values slightly lower but closer to metatexites (Th/U = 

2,12) and follow the same trend (except one sample), showing Th content ~8,9 ppm in 

average and U content 4,3 ppm in average. Leucogranites and leucosomes show low 

Th/U values (1.3 and 0,7 respectively) and have low Th and U contents. Two-mica 

granites s.l. show variability in the Th/U ratio ranging from 2,8 to 0,55 which is 

exceptionally low compared to the Th/U ratios of average granite (3,5 to 4, Roger & 

Adams, 1978) and do not follow the Th/U trends.  They show high U content (7,2 ppm 

in average) much higher than the average granite of 4 ppm (Roger e Adams, 1978). 

The Th content (10 ppm in average) is low relatively to the average granite of 18 ppm. 

Fine granites and porphyritic granites show the lowest Th content and the lowest 

ferromagnesian elements content.  Aplite-pegmatites show very low Th content that 

plot them beyond the scope of the diagram, although the U content is similar to two-

mica granites.  It seems that the diatexites Th and U contents is inherited from the 
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metatexites with some depletion in both. However, the other MMC granitic rocks 

apparently were produced by a process that excludes the accessory minerals 

containing Th, in special the leucogranites and leucosomes.   

The higher U content in two-mica granites s.l. could be related to the presence of 

magmatic xenotime since xenotime unlike monazite exhibits a substantial preference of 

U over Th (e.g., Forster 1998). The same author (Foster, 1999) find that magmatic 

Uraninite is widespread as an accessory mineral  in peraluminous variscan granites 

and is the dominant contributor to the bulk-rock U content, showing only insignificant 

portions of the thorium concentrations which are predominantly controlled by monazite-

group minerals. 

 

 

 

Fig. VI. 29 - Variation diagrams TiO2 vs Zr, TiO2 vs  MgO, La+Ce vs Zr and Th vs. U for MMC granitic rocks. Legend 

key: LCS – leucosomes; DTX – diatexites; L.Gnt – leucogranites; 2m.Gnt – two-mica granites; F.Gnt – fine-grained 

granites; P.Gnt – porphyritic granites; APG – aplite-pegmatites; GNT – average standard granite (Condie, 1993). 
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6.3.5. Multielement diagrams 

Figure VI.30 represent multielement diagrams for MMC granitic rocks normalized to the 

average of medium-grained sin-F3 two-mica granites from NW of Portugal (Pereira et 

al., 1992; n=14 for two-mica and n=54 for trace elements).  The multielement patterns 

show the high dissimilarity between the distinct MMC granitic lithologies compositions, 

in special in what concerns minor and trace elements. The following can be highlighted: 

 Diatexites are enriched in ferromagnesian elements, Ca, Sr, Ba Zr and Ti and 

depleted in Mn, P, Na, K, Rb, U, Ta and Nb relatively to the normalization 

standard.   

 Leucosomes show multielement pattern similar to diatexites but exhibiting 

anomalous low Zr content, less ferromagnesian elements and higher K content. 

 Leucogranites show higher compositional variation, low ferromagnesian and 

HSF elements content, high Ba and Sr. Tourmaline-bearing leucogranites stand 

out from tourmaline absent leucogranites by their lower Ba and Sr content and 

higher Ta and Rb content. 

 Two-mica granites, fine-grained granites and porphyritic granites show low 

compositional variation and a pattern more approximate to the normalization 

standard. However it is notorious the lower Ca, Mn, Na, Rb, U, Zr, Y, Ta and Nb 

content that distinguishes the MMC two-mica granites s.l.  from the 

normalization standard medium-grained two-mica granites analysed by Pereira 

et al., 1992. Fine-grained granites show slight variations in the Ta and Nb 

contents and porphyritic granites show lower Fe, Ca and Mn contents.  

 Aplite-pegmatites are poorer in Ca, Sr, K, Rb, Ba, ferromagnesian and HSF 

elements and richer in Mn, Na, Ta and Nb content relatively to both other MMC 

granitic rocks and to the normalization standard.  
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Fig. VI. 30 –  A) Diatexites from Vila Chã (FM6, VC59 and VC60), Malta (VC46b) and Fornelo (VC37);  leucosome in 

situ (VC8) and leucosome vein (FM19) from Metatexite Zone. B) Leucogranites from Mindelo (VC2), Malta (FP44b), Vila 

do Conde (VC55) and Aguçadoura (VC68) and tourmaline-bearing leucogranites from Mindelo (VC3), Vila Chã (VC52) 

and Lavra (VC43a). C) Two-mica granites from Lavra (VC39), Leça (VC45), S. Paio (VC22 and VC34); Vila do Conde 

(FP21a and FP21b), Junqueira (VC49 and VC50) and Fornelo (FP30a). D) Fine-grained granite dikes from Vila Chã 

(VC16 and VC32) and porphyritic granites dikes from Fornelo, and D) Aplite-pegmatite from S. Paio (VC64) and Vila 

Chã (VC58). 
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6.3.5.1.  Rare earth elements 

Rare Earth Elements pattern diagrams normalized to Chondrite (Boynton, 1984) for 

MMC granitic rocks are shown in Figures VI.31, VI.32, VI.33 and VI.34. The 

observations of REE patterns allows highlight the following:  

 Diatexites REE pattern is characterized by moderate total REE content, absence 

of Eu anomaly and variable HREE fractionation.  

 Leucosomes REE pattern is characterized by low total REE content, positive Eu 

anomaly and variable HREE fractionation. Leucosome in situ (VC8) show higher 

REE content and smaller Eu anomaly than leucosome vein (FM19).  

 Leucogranites REE pattern is characterized by low REE total content, positive Eu 

anomaly and variable HREE fractionation. The leucogranites (both with and 

without tourmaline) situated in the zone immediately adjacent to the Metatexite 

Zone (Mindelo and Lavra) show higher REE total content and lower Eu positive 

anomaly than the leucogranites dispersed in dikes that intrude the 

metasedimentary sequence (samples VC55 and VC68).  

 Two-mica granites REE pattern is characterized by moderate REE content, 

accentuated negative Eu anomaly and marked REE fractionation.  

 Fine granites show a REE pattern similar to two-mica granites but with higher 

variation in REE content and HREE fractionation.  

 Porphyritic granites show a REE pattern very similar to two-mica granites.  

 Aplite-pegmatite REE pattern is characterized by low total REE content, negative 

Eu anomaly and low HREE fractionation.  

Many investigators have shown that a large part of the total budget of some trace 

elements, including REE, Y, Th, U, Hf and Zr is located in accessory minerals and are 

conditioned by the distribution coefficient of these elements between the anatectic melt 

and the residuum (e.g. Bea 1996; Watt et al., 1996; Bea & Monteiro, 1999). Diagrams 

with the ∑REE, LREE and HREE content versus Zr, Th, Y, and P2O5 (Figs. VI.35, VI.36 

and VI.37) show that these processes of distribution are clearly observed in MMC 

granitic rocks: 

In diatexites the ∑REE show a positive correlation with Zr (r2=0.95). Leucogranites 

show ∑REE correlation with Zr, Th and Y (r2=0.5, 0.76 and 0.86 respectively).  In two-

mica granites the ∑REE correlation is especially related to Zr and Th content (r2= 0,76 

and 0.86 respectively ) (Fig. VI.35). 
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As expected, Th content correlates with Nd content and with ∑LREE suggesting that 

monazite strongly influences LREE concentrations in the MMC granites. However, in 

two-mica granites there are an enrichment in Th that do not follow the monazite Th/Nb 

ratio (0.26) suggesting other mineral apart monazite could influence the Th content in 

these rocks (Fig. VI.36A). The Y content correlates with Ho and near the chondrite 

Y/Ho ratio of 27.5 suggesting a relation between the Y-bearing minerals, namely garnet 

and xenotime and the ∑HREE.  

The Eu anomaly is related to the leading role of accessory minerals with respect to 

plagioclase. The lower the Th and Zr content smaller is the negative Eu anomaly in 

diatexites and two-mica granites. The leucogranites and leucosomes, with positive Eu 

anomaly, show the minor amount of these elements. The Na2O/CaO ratio is inversely 

correlated with Eu positive anomaly (Fig. VI. 37).  

 

 

Fig. VI. 31 – Rare Earth Elements pattern diagrams normalized to Chondrite (Boynton, 1984). A) Diatexites from Vila 

Chã (FM6, VC59 and VC60), Malta (VC46b) and Fornelo (VC37) and   B) Leucosome in situ (VC8) and leucosome vein 

in Metatexite zone (FM19).  
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Fig. VI. 32 - Rare Earth Elements pattern diagrams normalized to Chondrite (Boynton, 1984) to A) Leucogranites from 

Mindelo (VC2), Malta (FP44b), Vila do Conde (VC55) and Aguçadoura (VC68);  B) tourmaline-bearing leucogranites 

from Mindelo (VC3), Vila Chã (VC52) and Lavra (VC43a).  

 

 

Fig. VI. 33 - Rare Earth Elements pattern diagrams normalized to Chondrite (Boynton, 1984) to: A) Two-mica granites 

from Lavra (VC39), Leça (VC45), S. Paio (VC22 and VC34); Vila do Conde (FP21a and FP21b), Junqueira (VC49 and 

VC50) and Fornelo (FP30a). B) Fine granites from Vila Chã (VC16 and VC32) and porphyritic granites from Fornelo 

(porphyritic granites data from Ferreira, 2011).  
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Fig. VI. 34 - Rare Earth Elements pattern diagrams normalized to Chondrite (Boynton, 1984) to aplite-pegmatite from S. 

Paio (VC64) and Vila Chã (VC58).  

 

 

Fig. VI. 35 – Binary diagrams showing the relation between total REE content and  elements associated with acessorry 

minerals (Zr, Hf, Th and Y) in granitic rocks from MMC. Legend key: DTX – diatexites; L.Gnt – leucosomes, 

leucogranites and tourmaline-bearing leucogranites; Gnt – two-mica granites s.l.. 
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Fig. VI. 36 – Projection of MMC granitic rocks in Nd vs.Th and Ho vs. Y diagrams showing the relation between the 

LREE and Th content and HREE and Y content, respectively. Legend key: LCS – leucosomes; DTX – diatexites; L.Gnt 

– leucogranites; 2m.Gnt – two-mica granites.  

 

 

Fig. VI. 37 - Binary diagrams showing the relation between Eu anomaly and the content in elements associated with 

accessory minerals (Zr, Hf, Th ) and plagioclase fractionation (relation between Na2O/CaO) in MMC granitic rocks. 

Legend key: DTX – diatexites; L.Gnt – leucosomes, leucogranites and tourmaline-bearing leucogranites; Gnt – two-mica 

granites s.l.. 

 

6.3.6. Comparison with other granitoids  

6.3.6.1. Comparison with S- and I-type granites 

The concept of I- and S-type granites was introduced in 1974 by Chappell & White to 

account for the observation that the granites in the Lachlan Fold Belt have properties 

that generally fall into two distinct groups. This has been interpreted to result from 

derivation by partial melting of two different kinds of source rocks, namely sedimentary 
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2001). Like S-type granites, the MMC granitic rocks are highly peraluminous, showing 

normative corundum between 2,0 and 6,0 and high silica content. The Harker variation 

diagrams show overlap and irregular distribution as is expected in S-Type granites.   

Figure VI.38A represents the projection of MMC granitic rocks in K2O vs Na2O diagram 

showing the fields corresponding to granites occurring in other regions of the globe, 

namely S and I-type granites from Australian Lachlan Fold Belt (Chappel & White 

1974), leucogranites from European Variscan (Stussi, 1989) and Himalayas belt (Vidal 

et al., 1982). MMC granitic rock plot in the S-type granite field showing high K2O and 

Na2O content and its composition is close to Himalayan leucogranites as referred 

before by Vidal et al. (1982) for the two-mica Hercynian granites. The leucogranites 

variation in K2O and Na2O content is notorious and make them plot in- and-out of the 

S-Type granites field, suggesting later processes (Fig. VI.38). Chappell and White 

(2001) consider that Ca is a much better discriminant between S- and Y-Type granites. 

Figure VI.38B represent the diagram CaO vs Fe2O3t for the MMC granitic rocks with 

delimitation of I and S type granites. All the MMC granitic rocks plot in the S-type 

granites.  

 

 

 

Fig. VI. 38 – Projection of MMC granitic rocks in K2O vs Na2O and in CaO Vs. Fe2O3t diagrams. Also represented the 

fields corresponding to S and I-type granites from Lachlan Fold Belt (Chappell and White 2001) and leucogranites from 

European Variscan and Himalayas belts. Abbreviations: S – S-type granites; I – I-type granites; H – Himalayan 

leucogranites (Vidal et al, 1982);F - French massif alumino-potassic granites (Stussi, 1989).  
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6.3.6.2. – Comparison with CIZ granites of N Portugal 

In agreement with petrographic and structural interpretation made by several 

investigators, the granitoids of NW of Portugal can be divided into the following types: 

ante-Hercynian gneiss and / or early Hercynian generally called early granitoids; two-

mica Hercynian granites (mesocrustal genesis) and biotite granites with calcic 

plagioclase considered Hercynian to late-Hercynian (deep crustal genesis) (Pereira et 

al., 1992 and references therein). The different types of granitic rocks show some 

differences from the chemical point of view that allow to characterize and evaluate the 

genetic processes that governed its emplacement and crystallization (Pereira et al. 

1992). 

In terms of major elements these three different granitoids overlap each other, although 

in general silica is higher in the early gneisses (~ 72% wt.) decreasing slightly in the 

two-mica granites but remaining above 70 wt.% in biotitic granitoids (~69 wt%). The 

Na2O and K2O show variability although early gneisses show a highly potassic 

character (~ 5.6 wt.% in average).  CaO, MgO TiO2 and P2O5 show generic 

enrichments in biotitic granitoids.  

In order to overcome the difficulty in individualize the types of granitic rocks Pereira et 

al., (1992) propose the use of trace elements that consider  a good way to delimit areas 

pertaining to the different granitic types. In the  ternary diagrams Sr – Zr – 30Y and in 

the binary diagrams TiO2 versus Y two-mica granites show random distribution related 

to the response of different melting intensity in sedimentary rocks of initial varied 

composition (Ugidos & Bea, 1976), and the biotite granites evidence trends of 

magmatic differentiation. The early granites tend to plot separated from the two-mica 

and biotite granitoids. 

Figure VI.39 represent the projection of MMC granitic rocks in the diagrams Zr-Sr-30Y 

and TiO2 vs. Y with delimitation fields for two-mica granites, biotite granites and early 

granites defined by Pereira et al. (1992). Most of the samples from MMC granitic rocks 

plot out of any specified fields. Although nearer to two-mica granites than to biotite 

granites, the lower Zr and Y content distinguish geochemically the MMC lithologies 

from the other granitoids.  

Figure VI. 40 represents the multielement diagram for MMC two-mica granites 

normalized to medium grained two-mica granites form NW of Portugal (Pereira et al., 

1992). As seen in the sub-chapter 6.3.5. all the MMC granitic rocks show depletion in 

Mn, Rb, U, Y, Nd and Ta and enrichment in Ba and V relatively to the two-mica 



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

 

232 

 

granites analysed by Pereira et al. (1992). It is interesting the notorious lower Fe, Mn, 

Na, Rb, U, Zr, Y, Nd and Ta and enrichment in Ba Ti and V contents in MMC two-mica 

granites  that separate them from the medium-grained two-mica granites studied by 

Pereira et al. (1992) in the NW of Portugal. Relatively to the early gneissic granites the 

multielement pattern is also different although with coincidence in K and Ba enrichment 

and Na, Rb, Zr and U depletion.  

 

 

Fig. VI. 39 - Zr-Sr-10Y and Y vs. TiO2 diagram with delimitation of the NW Portugal two-mica granite, orthogneiss and 

granodiorites fields according to Pereira et al., 1992. The majority of samples plot out of any specified fields. Legend:  1 

– Orthogneiss (pre-orogenic); 2 – Gneissic granite (ante-D3); 3 – Two-mica granite; 4 – Granodiorites s.l.. Legend key: 

LCS – leucosomes; L.Gnt – leucogranites and tourmaline-bearing leucogranites, 2m.Gnt – two-mica granites. APG – 

aplite-pegmatites; DTX – diatexites; TL.Gnt – Tourmaline-bearing leucogranites.  

 

 

Fig. VI. 40 – Multivariate diagram for MMC average two-mica granites and early granites normalized to medium grained 

two-mica granites from Pereira et al. (1992). 
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6.3.7. Summary  

The different granitic rocks types were classified as diatexites, leucosomes, 

leucogranites, tourmaline-bearing leucogranites, medium to coarse grained two-mica 

granites, fine-grained two-mica granites and porphyritic granites, accordingly to their 

field relations and petrographical textures and mineralogy.   

The most significant characteristic shared by all of these granitic rocks is their S- type 

affinity (highly peraluminous, high SiO2, K2O and low CaO and Na2O contents), and the  

lower MnO, U, Y, Ta, Nb contents and higher Mg, V, Sr and Ba contents relatively to 

the two-mica granites from CIZ in NW of Portugal. However, the MMC granitic 

lithologies show different mineralogy and chemical composition:  

 Diatexites are classified generally as syenogranites showing magnesian and calcic 

to alkali-calcic character (accordingly to the Frost (2001) classification). They are 

enriched in Ca, HSFE, Ba and Sr relatively to the other MMC lithologies. The REE 

profile is characterized by high REE total content and absence of Eu anomaly.  

The only differentiation processes observed are related with the ferromagnesian 

content that influences the HSFE content; 

 Leucosomes in situ and leucosome-veins in the Metatexite Zone are classified as 

alkali feldspar granites showing magnesian and alkalic-calcic character.  They are 

characterized by high K, Sr and Ba content. The ferromagnesian content is close 

to the diatexites but the Zr content is lower. REE pattern is characterized by low 

REE content and positive Eu anomaly. The leucosome in situ shows higher HSFE 

content and lower Eu positive anomaly than the leucosome-veins;   

 Leucogranites are classified as alkali feldspar granites and syenogranites, showing 

magnesian and alkali-calcic to calc-alkali character (Frost, 2001). They are 

characterized by high variation in K content that is not correlated with silica content 

but is inversely correlated with CaO+ Na2O content and by their low 

ferromagnesian and HSFE content. REE pattern is similar to leucosomes, showing 

Eu positive anomaly and low REE total content. Tourmaline-bearing leucogranites 

although showing similar HSFE and REE patterns, stand out from of tourmaline-

absence leucogranites by their lower Ba and Sr  and higher Ta and Rb content;  

 Two-mica granites are classified as alkali feldspar granites showing magnesian 

and alkali-calcic character. They are characterized by higher P, Rb and U content 

relatively to the other MMC granitic lithologies showing a composition in general 
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intermediate between the diatexites and leucogranites. REE profile is 

characterized by moderate REE content, Eu negative anomaly and high HREE 

fractionation. The fine-grained granites show a composition similar to two-mica 

granites but low differentiation character and variable HREE fractionation due to 

their Y content. Porphyritic granites show composition similar to two-mica granites 

although with slightly more differentiated character and lower ferromagnesian 

elements and Th content.  

 Aplite-pegmatites show a quite different composition, poor in ferromagnesian 

elements and richer in volatile elements and Mn. The REE pattern shows low REE 

content, Eu negative anomaly and low REE fractionation.  

Like other S-type granites, the MMC granitic rocks do not show clear correlation 

between silica content and major or minor elements, indicating that the magmatic 

differentiation by fractional crystallization is not an important process of differentiation 

in these rocks.  The only observed correlations are between ferromagnesian elements 

and HSFE, indicating that the entrainment of mafic components and accessory 

minerals in the melt is the most important process of differentiation in the MMC granitic 

rocks. The mafic components and HSFE content individualize diatexites and 

leucosomes (higher content) from two-mica granites (moderate content) from 

leucogranites (low content).  

Also the LILE discrimination diagrams are liable to individualize the different MMC 

granitic rocks. Diatexites, leucosomes and leucogranites are characterized by the high 

Ba and Sr content, close to metatexites composition, revealing their low differentiated 

character. Two-mica granites show higher Rb content revealing a more differentiated 

character. However, the evident deviation of the trends, accepted as significant of 

increasing crystallization processes, suggests the occurrence of latter processes that 

altered the MMC granitic rocks.  Hydrothermal processes seem to have affected two-

mica granites as revealed by the K/Rb ratios. The differentiation in leucogranites 

seems to be more related with K-metasomatism as suggest the petrographic 

observations, the random distribution of K, the correlation between K and CaO+Na2O, 

the lack of relation between K and Rb and the strong potassium enrichment relatively 

to silica variation, that accompanies these styles of alteration (Pirajno, 1992) 

The major elements composition of MMC granitic rocks is similar to the major elements 

composition of two-mica granitic series of the Variscan Belt and to the Himalayan 

leucogranites. Concerning the composition of two-mica granites series of NW of 

Portugal the MMC two-mica granites show also similar major elements composition 
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although the minor and trace elements composition reflect some particularities, namely 

in what concerns  the depletion in Fe, Mn, Na, Rb, U, Zr, Y, Nd and Ta and enrichment 

in Ba, Ti and V contents.  

 

6.4. Chemical relations between SGC metasediments, 

metatexites and granitic rocks  

 

6.4.1. Variation diagrams 

The understanding of the sequence and processes of migmatite formation benefits 

from using the whole-rock chemical composition. This type of analysis, used for 

classification of rocks and interpretation of the petrogenetic context, in the case of 

migmatites and related anatectic granites can still have an important role in 

understanding the processes occurring during its formation, definition of the protolith 

composition and the various parts of neossome (Sawyer, 2008). 

Most geological processes produce sets of rocks defining patterns or trends in the 

variation diagrams, because the processes advance in some lithologies more strongly 

than on others. To interpret these trend patterns is essential to obtain relations 

between the composition of the starting material and the composition of the final 

products to understand the changes that occur during the processes in the mineral 

paragenesis and modal proportions. The bivariate diagrams using an element that 

characterizes the residue versus an element representing the anatectic melt can 

provide information about the migmatization processes (Sawyer, 2008). 

Figure VI.41 represents SiO2 vs. Fe2O3 + MgO, SiO2 vs. Na2O + CaO, K2O vs. CaO + 

Na2O and Fe2O + MgO vs. K2O bivariate diagram used to interpretation of general sets 

and trends of granitic rocks and metatexites from MMC. One sample from SGC in 

staurolite-zone from Aguçadoura (the sample with composition most approximate to 

patch migmatites) was considered to represents the protolith (P) and in situ 

leucosomes were considered to represent the initial anatectic melt.  Also the 

composition of experimental anatectic melts of pelitic protolith was plotted for 

comparison (Sawyer, 2008). 

SiO2 versus Fe2O3 + MgO diagram (Fig. VI.41A) shows that two metatexite samples 

(FM23 and FM4) and the patch-migmatites represent residual metatexites showing 
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higher concentration in ferromagnesian minerals and lower SiO2 content than the 

protolith. The other banded-metatexite samples show depletion in ferromagnesian 

minerals and increase in silica content. These results are compatible with petrographic 

observations since the residual samples show high concentration in biotite, sillimanite 

and cordierite and darker colour than the other banded-metatexites.  Metatexites follow 

the trend for anatectic melt + residuum that goes from protolith to granitic rocks which 

suggests a continuous relation between metatexites and the granitic rocks in MMC. 

The greywacke and calc-silicate resisters have compositions that fall outside the 

protolith field and do not follow the same trend as metatexites. Diatexites and two-mica 

granites are concentrated around the leucosomes and thus are considered typical 

anatectic melts (Sawyer, 2008). Comparing to experimental anatectic melts the MMC 

granitic rocks are less SiO2 rich and show slightly higher ferromagnesian content.  

SiO2 versus Na2O + CaO diagram (Fig. VI.41B) shows that within metatexites there is 

no coherent correlation between the silica content and the alkalis content. Within 

granitic rocks also there is no correlation between silica and alkalis content but there is 

a tendency of leucogranites to concentrate melt-produced plagioclase or quartz 

(especially those cropping-out in distal sites) relative to other lithologies.   

K2O versus CaO + Na2O and K2O versus Fe2O3 + MgO diagram (Fig. VI.41C) show 

enrichment in residual plagioclase in metatexites. All the granitic rocks plot in the field 

of melts contaminated with residuum, except one sample of leucogranite that show K 

enrichment relatively to leucosomes. The K2O content in leucogranites is variable 

although with tendency to correlate with CaO + Na2O content.  In the samples 

containing < 4 wt% of K2O (blue line in the diagram) K-feldspar is absent or is very 

rare. That includes metatexites, diatexites and leucogranites.  

In summary the metatexites show both a residual character (PMM, FM23 and FM4 

samples) with enrichment in biotite, cordierite and rarely garnet (only in the rare Ca-rich 

pelitic layers – sample VC32c) or enrichment in plagioclase and quartz relative to 

protolith. The former reflect melt segregation and the latter melt accumulation. The 

zone of melt segregation is mostly detected in Vila Chã, near the Mindelo 

leucogranites. The diatexites and two-mica granites show a composition similar to 

anatectic melts since they do not differ greatly from leucosomes, although with 

tendency to slightly accumulate melt produced plagioclase. The leucogranites show 

higher scattering with tendency to accumulate melt produced plagioclase and quartz. 

None of the diagrams follow the trend of fractioned melts. 
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Fig. VI. 41 – Diagrams plotting compatible vs. incompatible element. A SGC sample was considered to represent the 

protolith (P) and in situ leucosomes were considered to represent the initial anatectic melt. Abbreviations: FM - trend of 

fractional melts; CAM – trend of melts contaminated with residuum; EAM – field of experimental anatectic. Legend Key: 

SGC – sample from Schist-Greywacke Complex; PMM – patch-metatexites; BMM – banded-metatexites; DTX – 

diatexites; LCS – leucosomes; L.Gnt – leucogranites; 2m.Gnt – two-mica granites. 
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6.4.2. Multielement diagrams 

Figure VI.42 represents a multielement diagram where the average composition of the 

MMC rocks was normalized to the staurolite-schist from Aguçadoura. It is clear the 

similarity in the composition between the SGC sample and the pelite metatexites 

average composition. However there are a slight enrichment in Mg, Mn, Th, Nb and Ta 

content and depletion in Na, V and Y content in metatexites.  

The granitic rocks show in general lower Mn, Ta, Nb, ferromagnesian and HSF 

elements than the protolith and the metatexites.  The diatexites, leucosomes and 

leucogranites show similar content in Ba, Sr and Rb to the metatexites, although 

diatexites show higher Ca and Sr content. Two-mica granites s.l.  show the lower Ca 

and Sr content and K, Rb, Na, U, Nb and Ta enrichment relatively to the other 

lithologies (except tourmaline-bearing leucogranites and aplite-pegmatites).  

 

 

Fig. VI. 42 – Multielement diagram with values moralized to staurolite-schist sample for average composition of MMC 

Rocks.  Legend Key: PMM – patch-metatexites average; BMM – banded-metatexites average; DTX – diatexites 

average; LCS – leucosomes average; L.Gnt – leucogranites average; TL.Gnt – tourmaline-bearing leucogranites 

average; 2m.Gnt – Two-mica granites s. l.  average. 
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6.4.3. Rare Earth Elements 

Figure VI.43 represents the REE patters for each lithological type average, where is 

well reflected the specificity of the REE patterns of diatexites, leucogranites and two-

mica granites s.l..  

The REE content of granitic rocks is lower than that of metatexites. Diatexites, 

leucosomes and leucogranites show REE fractionation similar to metatexites but very 

distinct Eu anomaly. Two-mica granites s.l., show Eu negative anomaly but larger 

HREE fractionation.  

Figure VI.44A represents binary diagram related ferromagnesian content with total 

REE content. As referred before the REE total content of all the MMC lithologies are 

related with the mafic components (biotite). Two-mica granites also show this positive 

correlation but it is notorious the abrupt enrichment in Th that does not follow the trend 

of other lithologies. These observations are better reflected in the Sc vs. Th/Sc diagram 

(Fig. VI.44B) where is notorious the abrupt enrichment in Th relatively to Sc. However 

the LREE content of two-mica granites and diatexites is similar. In migmatites the 

LREE fractionation is directly correlated to Th content (r2=0.6) and HREE content is 

inversely correlated with the Y content (r2=0.7). However, in two-mica granites no 

correlation is observed. This suggests that Th in two-mica granites is not exclusively 

associated with monazite. This could be related to the fact that monazite and zircon 

commonly have different average grain size, and probably monazite was preferentially 

dissolved in two-mica granites since the differential flux of trace elements into the melt 

during dissolution of accessory phases is a function of dissolution rate and surface 

area, which are correlated to grain size and the degree of under-saturation of the melt 

with respect to the element(s) concerned (Watson, 1996). Magmatic xenotime is a 

possible Th containing mineral as well as U in the two-mica granitic rocks. 

The distribution of yttrium, rare-earth elements (REEs), zirconium, and hafnium  may 

be used to verify whether Y, REEs, Zr, and Hf in rocks or minerals have been 

deposited from pure silicate melts or modified by aqueous fluids (Bau, 1996). Unlike 

other magmatic rocks, highly evolved magmas are rich in components such as H2O, Li, 

B, F, P, and/or Cl and often show non-chondritic Y/Ho and Zr/Hf ratios and reveals that 

non-CHARAC (CHARAC: charge-and-radius-controlled) trace-element behaviour 

prevails in highly evolved magmatic systems. Fluid metasomatism (specialy F–rich 

fluids) has been proposed to account for nonchondritic Zr/Hf values in granitic rocks 
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(Bau, 1996; Veksler  et al., 2005), but other authors maintain that this ratio can be 

explained by crystal fractionation (Pan, 1997). 

Figure VI.44D represents the Y/Ho vs. Zr/Hf diagram for MMC rocks and SGC pelitic 

samples. The most marked feature observed in the diagram is the overlap between 

SGC samples, metatexites and granitic rocks from MMC and the proximity to CHARAC  

values, if compared to fractionated/evolved granites (e.g. Eibenstock granite pluton, 

Calamity Peak pluton,  Pleasant Ridge Granite).  

 

 

Fig. VI. 43 - Rare Earth Elements pattern diagrams normalized to Chondrite (Boynton, 1984) to Schist-Greywacke 

Complex and MMC rocks averages. Legend Key: SGC – Schist-Greywacke Complex from Aguçadoura; PMM – patch-

metatexites average; BMM – banded-metatexites average; DTX – diatexites average; LCS – leucosomes average; 

L.Gnt – leucogranites average; TL.Gnt – tourmaline-bearing leucogranites average; 2m.Gnt – Two-mica granites s. l.  

average. 
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Fig. VI. 44 – Variation diagrams for MMC granitic rocks, relating A and B) ferromagnesian elements to REE and TiO2. C) 

Th/Sc and Sc; D) Y/Ho vs. Zr/Hf; Abbreviations: E - Eibenstock granite pluton; CP - Calamity Peak pluton; PR -

 Pleasant Ridge Granite.  Legend; Key: LCS – leucosomes;. DTX – diatexites; SGC –Schist-Greywacke Complex pelitic 

samples; L.Gnt – leucogranites;  2m.Gnt – Two-mica granites; MM – metatexites. 

 

 

6.5. Geochemical characteristics and anatectic 

processes 

One of the most distinctive aspects of the MMC granitic rocks is their lithological, 

mineralogical and textural variation, the lack of evidence of magmatic differentiation by 

fractional crystallization, the low ferromagnesian, Ta-Nb and HSF elements content 

and the positive correlation between mafic components and HSFE and REE.  

Melting experiments performed by Garcia-Arias et al. (2012) have shown that two 

protoliths of virtually the same major and trace-element composition yield melts 

showing different trace-element composition at the same P-T-%H2O conditions. The 

reason resides in the different solubility of accessory phases. In felsic rocks, the main 

trace elements are hosted in accessory phases rather than in major phases (Watson et 

al., 1989; Wolf & London, 1994; Bea, 1996, 1999). Rb, Sr and Ba, other trace elements 
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of petrogenetic interest, are incorporated by major phases (Harris and Inger, 1992; 

Bea, 1996). It was verified that the mineral phases release their trace-element content 

proportionally to their melting ratio. Other experimental studies show that melts formed 

by partial melting of crustal material at T: 800°C have relatively low FeO and MgO 

contents (Johannes & Holtz, 1996). Most crustal melts generated at these "Iow" 

temperature conditions (%H2O and P have much less influence), have a leucogranitic 

composition, except for those melts carrying residuum minerals. Experimental 

peraluminous melts generated at higher temperatures (T=850-950°C), have higher 

FeO, MgO and CaO contents reaching monzogranite/granodiorite composition, 

although controlled by the chemistry of the protolith (Johannes & Holtz, 1996).  

Considering that MMC granitic rocks are the result of melt segregation from a pelite 

protolith, lower ferromagnesian and HSFE contents relatively to both metatexites and 

two-mica granites from NW of Portugal should be expected and could be explained by 

the retention of biotite,  zircon, monazite and other accessory minerals in the residual 

phases.  The other anatectic two-mica granites from NW of Portugal probably 

underwent much higher melt-rate and consequent incorporation of ferromagnesian and 

heavy minerals than the granitic rocks from MMC. 

The Mn and Y lower content of all the MMC granitic rocks (exception for aplite-

pegmatites) could be related with the same process since Mn and Y are widely 

distributed as accessory elements in garnet and this mineral is mostly associated with 

the melanosomes, being rare in the granitic rocks.  

Ta and Nb low content are influenced by two factors – in diatexites, leucosomes and 

tourmaline-absent leucogranites is exclusively related with the ferromagnesian 

elements content what suggests the retention of these elements in rutile associated 

with biotite and to the residual phase - the same processes that influenced the other 

HSFE content. However, tourmaline-bearing leucogranites, although showing major 

and HSF elements contents similar to the tourmaline-absent leucogranites show an 

increase in Nb and Ta content and a low Nb/Ta ratio (2.5 in average).  The high Ta 

content of tourmaline-bearing leucogranites and aplite-pegmatites correlates positively 

with Rb. This suggest that an addition of internally derived fluids played a key role in 

the variation of the Nb/Ta ratio since generally granitic rocks show a positive correlation 

between Ta and Rb, Li and F that are strongly enriched in the evolved rocks (Dostal & 

Chatterjee, 2000).  Two-mica granites from MMC show low Ta and Nb content 

relatively to the two-mica granites from NW of Portugal due to the anatectic process 

and retention in residua. The higher content relatively to the other MMC granitic rocks 
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is due to hydrothermal differentiation and higher melt ratio, i.e. both processes could 

have actuated in these last rocks.  

The high V, Ti and Ba content in all the MMC granitic rocks probably relates with 

characteristics of the protolith since SGC metasediments and the metatexites also 

show enrichment in these elements.   

These observations reinforces the hypothesis that the MMC granitic rocks resulted 

from anatectic processes with variable melt-rate but still in intimate association with the 

metasedimentary protolith. Thus, the chemical and mineralogical dissimilarity between 

the MMC granitic rocks could result from their derivation from different crustal levels, 

different fusion rates and/or different melt segregation process rather than from a 

marked difference in the source lithologies involved. 

The relationship between MMC granitic rocks, metatexites and SGC is suggested by 

several geochemical characteristics, namely: 

 The SGC samples and metatexites similar composition; 

 The Ba – Rb - Sr overlap between SGC samples and metatexites, diatexites, 

leucosomes and leucogranites (Sr is slightly lower in SGC pelitic samples due to 

its low Ca content). Two-mica granites and tourmaline-bearing leucogranites show 

higher Rb content and lower Ba content.  

 The SGC samples Y/Ho and Zr/Hf composition overlaps the MMC lithologies 

composition. 

 The continuous differentiation between MMC granitic rocks, metatexites and SGC 

samples in what concerns HSFE.  

 All the differences between SGC samples/metatexites could be explained by the 

anatectic processes and/or fluids entrainment that are corroborated by the field 

relations and petrological observations.  

 

It is likely that a first fluid-present melting pulse took place in MMC and produced most 

of the leucogranites and leucogranite-veins. This hypothesis is corroborated by the 

following observations: 

 The leucogranite chemical composition, namely the high HSFE depletion relatively 

to metatexites and the distinct REE patterns can be produced by removal of 

leucosome before complete equilibration due to the inhibited dissolution of 

accessory phases (Watt et al., 1996) and are expected in leucosomes formed 
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during the early stages of segregation and extraction (Brown, 2013). Evidence for 

channelized flow and deformation-enhanced melt segregation on an outcrop scale 

is present all over the MMC, where melt migration occurs over several distances. 

 Leucogranites (and in situ leucosomes) show high variability in the K2O content 

and consequent heterogeneity in K-feldspar abundance.  The K content is 

inversely correlated with Na2O+CaO content is reflected in the replacement of 

plagioclase by K-feldspar in these lithologies. The SGC metasediments and 

consequently most of the migmatites are poor in potassium and phosphorous. So, 

the few K-bearing metatexites cannot be identical in composition to the primary 

rock; an addition of potassium must have taken place. This indicates that locally, in 

structurally controlled zones, occurred K-diffusion that metasomatized some 

leucogranites and metatexites. Thus, the initial melt composition was essentially 

trondhjemite and became granitic by large-scale K-diffusion. Several authors 

postulate that K-poor leucosomes formed preferentially by H2O fluxed melting of 

mainly plagioclase and quartz (e.g. Patiño Douce and Harris, 1998. Conrad et al. 

1988; Garcìa-Casco et al. 2001, Jung, 2005; Zeng et al., 2005b).  

 Fluid-present melting, which mainly consumes plagioclase and minor amounts of 

mica, will produce strong Sr enrichment and marked Rb and Ba depletion (Harris 

and Inger, 1992). MMC leucogranites are characterized by low Rb/Sr values, much 

lower than the two-mica granite values (average Rb/Sr = 1.07 and 4.44 

respectively) and higher Ba/Sr values (average Ba/Sr = 0.38 to leucogranites and 

0.22 to two-mica granites).  

 The positive Eu anomaly observed in most leucosomes and leucogranites also 

argues in favour of prevailing fluid-present melting, inasmuch as fluid-absent 

melting is known to have negative Eu anomalies (Harris and Inger, 1992).  

 It was proposed (Brown, 2013; Milord et al., 2001) that mica-bearing leucosomes 

without incorporation of peritectic minerals in mica-bearing hosts are more likely to 

be the product of fluid-present melting whereas leucosomes that carry nominally 

anhydrous (peritectic) minerals, such as cordierite, garnet or pyroxene, are more 

likely to be a product of fluid-absent hydrate-breakdown melting. In fact, as 

previously referred, the leucosomes and leucogranites are cordierite free (unlike 

diatexites).  

 Fluid-absent melting experiments in low-pressure conditions indicated that the 

production of pronounced amounts of melt at low-P and beyond 800º ºC requires 

the presence of a fluid phase during partial melting (Spicer, 2011). 
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So, it is suggested that leucogranites result from fluid-present melting in the first stages 

of migmatization, involving essentially quartz and plagioclase through the reaction:  

Qtz + Pl + H2O = Melt    (1) 

The melt produced was rapidly segregated and crystalized in dilatant sites north and 

south of the metatexite zone and in veins across the metasedimentary sequence and 

the metatexite zone.  

The fluid source for this first melt could result from the aqueous fluid already in the 

pores, leads to water saturated melting, at least initially or to water-added melting due 

to infiltration of H2O (as an aqueous fluid) into hot rocks (Sawyer, 2010). Oxygen 

isotopes studies show that the source for infiltrating fluids could be basically 

metamorphic water (δ18O unchanged) (Scaillet et al., 1996; Sawyer, 2010) or basically 

seawater (δ18O reduced) (Wickham & Taylor, 1987; Holloway et al., 2008).  

The availability of water for melting reactions decreases since water is rapidly dissolved 

into the melt (Sawyer, 2008). Thus, and in agreement with the observed textures, the 

migmatization continues by fluid-absent biotite breakdown reactions (Brown, 2008; 

White, 2008):   

Bt + Pl1 + Sil + Qtz = Crd + Pl2 (± Kfs) + Melt (2) 

Bt + Sil + Qtz = Crd + Kfs + Melt (3) 

These reactions take place in relatively shallow crustal levels. The peritectic cordierite 

and the absence of peritectic garnet or ortopyroxene (either in metapelites or in 

metagreywackes) indicate that melt occurred at P < 4 Kbar and T < 760 ºC (assuming 

that chemical equilibrium is attained; White, 2008). 

The diatexites show mineralogical and chemical composition coherent with in situ 

partial melting containing all the same mineral phases as the banded-metatexites but 

the leucosome/melanosome ratio is much higher with consequent relatively low 

ferromagnesian elements and HSFE content.  They show the sequential evolution from 

low melt-fraction metatexites to high melt-fraction diatexites. The absence of resisters 

within diatexites and its higher Ca content (higher than metatexites) is an outcome of 

calc-silicate metagreywackes incorporation in their composition, which gives them a 

calc-alkaline character. This suggests that the melting temperature and consequently 

the melting rate were probably higher for diatexites than metatexites.  The abrupt 

contacts between diatexites and metatexites suggest that the diatexites intruded 

metatexites and have been formed at deeper levels. However the P-T conditions and 
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melting reactions of diatexites and migmatites formation were not much different since 

the mineralogy is identical. 

In MMC several factors must be taken into account with regard to the relationship 

between two-mica granites and migmatites:  

 Two-mica granites have a truly intrusive character: there are numerous sills, dikes 

and other bodies of two-mica granites which cut the migmatite rocks and 

incorporate migmatite xenoliths;  

 The mineralogical and chemical composition of two-mica granites is different from 

that of migmatites and leucogranites. The former have andalusite which is absent 

in migmatites and have more K-feldspar and apatite. Cordierite is present in 

migmatites but not in two-mica granites. This is reflected in the chemical 

composition since two-mica granites show a different REE, higher K and P content 

and Rb/Sr ratio. This could indicate a different protolith or a different anatectic 

process.  

 The content in rubidium, which is quite independent of that of potassium, is similar 

to the hydrothermal pegmatitic trend of Shaw (1968) and may be an indication of 

the part played by a fluid phase during the late history of the granite. 

 

It is known that at low P (below ≈ 3.5 Kbar) only biotite breakdown melting reactions 

occur, as muscovite is typically consumed in subsolidus conditions (Holland & Powell, 

2002; White, 2008; Spicer, 2011). However, at deeper levels (about 5 kbar) muscovite 

persists at higher temperature and both muscovite and biotite melting reactions occur 

with rising temperature. So, the anatectic processes at deeper levels could result of the 

muscovite breakdown reactions at moderate P (White, 2008):  

 

Ms + Pl + Qtz = Als + Kfs + Melt   (3.5 < P < 6 Kbar; T < 800 ºC)  (4) 

This reaction generates large amounts of melt showing the typical mineralogical and 

chemical composition of MMC two-mica granites. This is confirmed by the enrichment 

in Rb and depletion in Sr and Ba relatively to the metasedimentary protolith, 

characteristic of melts generated by incongruent melting of muscovite under fluid-

absent conditions (Harris & Inger, 1992).  
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The textures and geochemistry of the MMC rocks suggests that multiple fluid pulses 

affected the MMC in subsolidus conditions: a first pulse with K-bearing fluids, a second 

pulse with boron-bearing fluids and a third pulse containing silica-bearing aqueous-

fluids.  

The K-bearing fluids aforementioned affected all the MMC lithologies and caused 

structurally controlled sub-solidus K-metasomatism. This is suggested by: 

 Presence of K-feldspar in some metatexites and spatially associated calc-silicate 

rocks and absence in adjacent metatexites. The same occurs in some 

leucogranites that show much higher K-feldspar modal content and abrupt 

enrichment in K content. 

 The textures observed in these metatexites and leucogranites. In fact, all the 

leucosomes and leucogranite samples containing K-feldspar show textural 

evidence of plagioclase replacement by K-feldspar, namely K-feldspar in cores of 

plagioclase crystals, occurrence of plagioclase inclusions in K-feldspar which are 

in parallel optical continuity with plagioclase outside of the K-feldspar and K-

feldspar development in miarolitic cavities, etc. (Chapter III).  

 The two-mica granites wall rocks (SGC metasediments) are poorer in potassium 

(~3,3 wt.%) and usually their only potassium-rich mineral is biotite. Therefore, the 

huge amounts of potassium-rich granite (~ 5,2 wt.%) cannot result exclusively from 

segregations in situ. Like leucosomes and leucogranites, some two-mica granites 

and diatexites also show replacement of plagioclase by K-feldspar. There are two 

types of k-feldspar crystals: one type is magmatic (euhedral to subhedral) and the 

other is anhedral always replacing plagioclase.  Besides, Na2O+CaO and K2O 

content are uncorrelated. This is due to the different anatectic processes that 

originate these last lithologies: they incorporate all the components resulting from 

anatectic reactions plus restites, while leucogranites resulted from melt 

segregations. Also the diatexite and two-mica granite resulted from higher melting 

rate and formed in deeper levels. So it is likely that two-mica granites and 

diatexites include both K-feldspar resulting from micas breakdown and also later K-

feldspar resulting from K diffusion.  

 

The occurrence of leucogranites and two-mica granites showing localized replacement 

of biotite by tourmaline, late tourmaline in the metasediments and the occurrence of 

aplite-pegmatite veins with abundant tourmaline suggest that latte boron-rich fluids also 

affected the MMC and surrounding metasedimentary sequence. These fluids are 
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unrelated to those with K since there are tourmaline-bearing lithologies without K-

feldspar. The rocks affected by these fluids show abrupt enrichment in Ta, Nb and Rb 

and depletion in Ba relatively to the unaffected adjacent rocks. 

 

The entrainment of later silicate aqueous fluids is inferred from: i) the muscovitization of 

tourmaline, biotite and plagioclase all over the MMC; ii) presence of quartz-veins 

cutting all the lithologies; iii) large quartz-crystals bands in some calc-silicate rocks that 

include all the minerals of the rock; iv) retrograde alteration of staurolite, andalusite and 

biotite in the metasedimentary sequence.  
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Geology is the study of pressure and time. That's all it 

takes really, pressure and time. 

Red (Morgan Freeman) in movie The Shawshank Redemption.  

 

``. . . and I argue that there is no necessary connection 

between the size of an object and the value of a fact, and 

that, though the objects I have described are minute, the 

conclusions to be derived from the facts are great.''  

H.C. Sorby (1858) 

 

7.1. Introduction  

Already in the XVIII century the presence of fluid inclusions in minerals was observed 

and used by Neptunists in support their theory. Later ( in the mid-1800s) Henry Clifton 

Sorby microscopic studies revealed the presence of small fluid-filled cavities in 

minerals that were considered relics of the fluid phase which intervened in the genetic 

process of the host mineral and became trapped in a given moment in its history. 

Technological advancements (heating-freezing stages) promote accurate studies that 

revealed the importance of the fluid inclusion studies as a method which, in conjunction 

with others, allows a better understanding of the geologic history and the evolution of a 

given lithotype.  

During the last two decades, petrologists have directed increasing attention to the role 

of fluids in metamorphic and migmatitic terranes (e.g. Touret, 1977, 1981, 1985, 1986, 

2001; Lamb et al., 1987; Newton, 1992; Giorgetti et al., 1996; Guedes, 2001, Byn Fu et 

al., 2001; Guedes et al., 2002;  Cesare et al., 2007; Kerkhof et al, 2014).  

Fluids are especially important in high-grade metamorphic environments because it 

can lower a rock’s melting point (Arzi, 1978; Ashworth, 1979). Moreover, the fluid 

amount and composition will control the temperature of initial melting, the amount of 

melt produced and the temperature of melt crystallization. In addition, the study of fluid 

inclusions may give an indication as to whether fluid-absent or fluid-present conditions 

dominated during partial melting. Indeed, it is important to determine whether anatexis 

occurs by dehydration melting, in which fluids are released by the breakdown of 



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

252 

 

hydrous minerals such as muscovite, biotite and hornblende (vapour-absent melting), 

or whether a free fluid, migrating in the middle and lower crust, played an active role 

during metamorphism (vapour-present melting) (Touret, 1981, 1985; Lamb & Valley, 

1987; Newton, 1992). 

Of additional interest are the trapping conditions of any later fluids that infiltrated the 

area after peak metamorphism. Such secondary fluid inclusion data may help to 

delineate the path followed during decompression and cooling. 

As the fluid inclusions are the only direct fluid samples from which the host crystal 

grew, their study is conditioned on five fundamental assumptions (Roedder & Bodnar, 

1997):  

 The trapped fluid is representative of an homogeneous solution;  

 The inclusion behaves as a closed system and, once trapped, the fluid cannot be 

modified;  

 The volume of the cavity around the fluid inclusion neither increases nor decreases 

after imprisonment;  

 The relation between the geological  event and the trapping is identified;  

 The pressure effects are negligible or known.  

 

Methods of investigation 

In any fluid inclusion study three successive steps are required: observation, 

measurement and interpretation. These steps should be carefully evaluated and 

planned (Touret, 2001).  

There are several methods to study fluid inclusions. The present work was based on 

petrographic observations, microthermometry and Raman microspectroscopy.   

A fluid inclusion petrographic study, requiring any other instrument than a conventional 

petrographic microscope, is the first and an essential step to stablish the temporal 

relationship between the different fluids, the fill degree of inclusions and evaluate 

whether the inclusions are suitable for fluid inclusions studies (Kerkhof, 2001, 2014). 

Next to petrographic examinations, microthermometry is the most important analytical 

technique for characterizing fluid inclusions. It involves measuring, under the 

microscope, the temperatures at which phase-transitions are observed to occur in fluid 

inclusions. 
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The microthermometric measurements are performed in the range of -180 to +20 ºC 

(cryometry) and +20 to +600 ºC (thermometry). Among the temperatures that can be 

recorded, two are particularly important: the melting temperature (Tm - solid to liquid) 

and the homogenization temperature (Th - liquid to vapor or vice-versa). The 

homogenization temperatures allow, with the help of PVT diagrams, determine the 

density of the fluid trapped and the melting temperatures allow the determinations of 

fluids composition. For example, the extent to which the melting point of ice is 

depressed provides an indication of the bulk salinity of the inclusions. 

A homogeneous fluid of a specified composition has a certain density for a given 

temperature and pressure. If the fluid is trapped in a closed cavity, its volume and mass 

will always remain constant, as the density, thus maintain its original value. If the fluid 

remains homogeneous, any further developments after its entrapment will happen at 

constant density. Thus it is possible trace a line in the PT diagram that represents an 

isochore, i.e. a line of equal density for each PT pair conditions.  

Thus, microthermometry is a method to obtain melting and homogenization 

temperature data from which it is possible to calculate the salt composition or the 

density of the trapped fluids. The delimitation of variation of PT real trapping conditions 

can be obtained by the method of intersection of isochores (inclusions considered 

synchronous) or by intersection with geothermometers and/or geobarometers based in 

the mineral paragenesis.  

In the analysis of fluid inclusions, Raman microspectroscopy is mostly used for 

identification of gases and solids in the inclusions but it is also a quick method of host 

mineral identification. In addition to the qualitative identification of different gas species 

Raman spectroscopy can also be used to calculate the composition of some the gases. 

Of all the components of fluid inclusions only a limited number of species can be 

quantitatively analysed by Raman microspectroscopy, in particular polyatomic gas 

phases, and some polynuclear phases in solution (Burke, 2001). 

 

Genetic classification of fluid inclusions 

Genetically, the fluid inclusions can be classified as: 

 Primary: those which constitute a fluid present at the time of the mineral 

crystallization. Fluid inclusions of primary origin will occur as a single inclusion (or 

isolated group) in an otherwise inclusion free crystal; 

 Secondary: those whose entrapment is evidenced by, for example, a period of 

fracturing or recrystallization; generally occur along a healed fracture or in trails 
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along planes that cross cut several crystals (transgranular trails),  or are parallel to 

the mineral cleavages; 

 Pseudo-secondary: those that have appearance of secondary but a meaning similar 

to the primary inclusions because they represent filling of fractures that occurred 

during the growth of the mineral. It occurs in alignments that are confined to the 

limits of the crystal (intergranular trails). 

Diagnostic criteria for classifying genetically the fluid inclusions as primary or 

secondary have been proposed by Roedder (1979). When these terms are applied to 

massive rocks may be misleading as primarily grown minerals that are not generally 

preserved. In this case the terms “early” versus ”late” are more suitable for 

characterizing the trapping chronology. For that reason, in massive rocks, fluid 

inclusions can be mainly subdivided in, (i) isolated, (ii) clustered, and (iii) in trails 

essentially healing microcracks (Kerkhof, 2001). 

 

7.2. Sampling and methodology 

Three samples (FM19, VC51, and FP21) were selected in order to carry out the fluid 

inclusion studies. Sample FM19 is an in source leucosome that crops out in Vila Chã, 

at the coordinates point 462. Sample VC52 is a tourmaline-bearing leucogranite 

cropping out in Vila Chã, at the coordinates point 503. Sample FP21 is a two-mica 

granite from Vila do Conde cropping out at the coordinates point 575 (see Appendix A 

for coordinates points).  

The fluid inclusion studies were performed in quartz. Fluid inclusion petrography, 

microthermometric and Raman microspectroscopy analyses were performed at the 

laboratories of Centro de Geologia da Universidade do Porto (CGUP), in doubly-

polished wafers of about 150 µm thick. Microthermometric characterization of the fluids 

was performed using a calibrated Chaixmeca heating-freezing stage (Poty et al., 1976) 

for cryometric analyses, and a calibrated Linkam THMSG 600 heating-freezing stage 

(Shepherd et al., 1986) for the thermometric studies. Calibration was conducted using 

pure CO2 inclusions in quartz from Calanda, Switzerland and synthetic H2O fluid 

inclusions standards at T≤0ºC with melting-point standards at T>25ºC. The accuracy 

was ±0.1 °C during cryometric measurements and ±1 °C during heating. The degree of 

filling (volume of liquid phase/total volume – Flw) was estimated optically at room 

temperature by using volumetric charts proposed by Roedder (1984) and Shepherd et 

al. (1985). Molar fractions of CO2, CH4 and N2 were determined by Raman 
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microspectroscopy analyses in selected individual inclusions using a Labram Dilor-

Jobin Yvon Spectrometer attached to an Olympus microscope. The excitation source 

was a He–Ne laser with 632.8 nm wavelength operated at 20 mW. The quantification of 

the different species in the inclusions was obtained using a computer program 

developed at CGUP that follows routine procedures described by Prieto et al. (2012). 

Aqueous fluid salinity (expressed as equivalent wt% of NaCl) was calculated using the 

temperature of last ice melting and the equation of Bodnar (1993). Bulk composition of 

both types of fluids was calculated using the computer program package FLUIDS-1 

(Bakker, 2003). Isochores for the non-aqueous fluids were calculated using Bakker 

(2003) software and the state equations of Flowers (1979). The isochores for the H2O-

NaCl inclusions were calculated from the equation of state of Knight & Bodnar (1989). 

 

7.3. Microthermometric and Raman data 

Based on its morphology, number of phases (at room temperature) and phase 

behaviour on cooling, four major types of fluids have been recognized in the studied 

samples: (i) N2-CO2-CH4; ii) N2-CH4; iii) CO2-N2, and iv) aqueous fluids (H2O-NaCl). 

Microthermometric and Raman microspectroscopy data are reported in Appendix D.  

 

7.3.1. Leucosome - FM19 

Sample FM19 is an in source leucosome, i.e., the product of anatectic melt that has 

migrated away from the place where it formed but still within the confines of the source 

layer (Fig. III.6C). It is essentially composed of coarse-grained quartz + plagioclase + 

K-feldspar and contains dispersed fragments of restitic biotite + sillimanite (Fig. VII.1). 

K-feldspar is abundant (~38% in modal composition) and englobe all the other minerals 

as inclusions. The later alteration processes were limited to biotite muscovitization. The 

solid state deformation was not very intense although some quartz crystals evidence 

slightly ondulose extinction and K-feldspar crystals show incipient flame-perthites. The 

studied quartz shows subhedral to anhedral coarse-grains (1 to 4 mm). Its morphology 

and texture point to a magmatic origin. However, taking in account the lithology, some 

of this coarse quartz grains may have grown from fine-grained crystals nucleated in the 

metamorphism process. This is also suggested by the numerous round quartz 

inclusions in leucosome plagioclase and K-feldspar crystals. 
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Fig. VII. 1 –Thick double-polished section of sample FM19 

At room-temperature this sample is essentially characterized by the presence of 

monophasic and two-phase liquid+vapour (L+V) aqueous fluid inclusions trapped in 

quartz (Fig. VII.2 to VII.4)  

Monophasic inclusions were observed in intragranular trails (Simmons & Richter, 1976; 

Kranz, 1983), which never cross-cut quartz grain boundaries, and occasionally 

isolated. They are mainly polygonal to ellipsoidal in shape; ranging in size from 2 to 17 

µm (av. 13.1 µm). Even though the inclusions look like monophasic, a presence of a 

thin film of liquid (not visible under the microscope) cannot be excluded.    

The two-phase aqueous inclusions occur in clusters associated with the monophasic 

inclusions and in alignments that cut the previous intragranular trails. 

 

Monophasic inclusions 

The monophasic inclusions show two sub-types (Fig. VII.10 and VII.15): 

 Mixed N2 - CO2 - CH4- inclusions. N2 is the dominant specie in the volatile phase 

ranging from 55.6 to 72.3 mole%, CO2 content ranges from 15.1 to 29.1 mole% 

and CH4 from 12.6 mole % to 16.5 mole %. In some inclusions it can be observed 

separation of N2 gas and liquid in the presence of solid CO2 when cooled to T< -

150ºC The partial-homogenization temperatures (Thpartial) occur majority in the 

vapor phase but some inclusions homogenize in the liquid phase ranging from -

132.9 to -132.4 and -135.8 to -133.2 °C, respectively. The final melting 

temperatures (Tm) range from -78.6 to -64.9 ºC. 

 N2-CH4 inclusions showing Thpartial in the range of -134.4 to -131.6 °C, all in the 

vapor phase. N2 is also the dominant specie in the volatile phase ranging from 68.8 

to 88.8 mole%. 
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Aqueous two-phase inclusions 

The aqueous two-phase (H2O-NaCl) inclusions in sample FM19 occur (Figs. VII.11 and 

VII.17): 

 Dispersed in clusters and associated with the monophasic inclusions. The inclusions 

size varies between 5 and 12 µm and show a degree of filling varying from 0.70 to 

0.95. Ice melting temperatures (Tmice) lie between -5.5 and -3.4 ºC corresponding to 

salinities of 5.6 to 8.6 eq. wt.% NaCl (average of 7.8 eq. wt.% NaCl). In this type of 

fluid inclusions the total homogenization (Thtotal) occurs always in the liquid phase 

between 144 and 257 ºC (average of 204ºC).  

 In intragranular trails showing regular shapes. The inclusions range in size from 5.4 

and 27 µm (av. 11 µm) and show a degree of filling from 0.90 to 0.95. Ice melting 

temperatures lie between -2.2 and -1.8 ºC which corresponds to salinities of 3.1 to 

3.7 eq. wt.% NaCl (average of 3.5 eq. wt. % NaCl). Total homogenization (to liquid) 

occurred between 164 and 208 ºC (average of 186ºC). 

 In trails that cut the previous intragranular planes. These inclusions display irregular 

shapes, a degree of filling (Flw) varying from 0.70 to 0.95. Tmice lie between -0.7 and 

-0.4 ºC which corresponds to salinities of 1.2 to 0.7 eq. wt.% NaCl (average of 0.9 

eq. wt.% NaCl). Temperatures of total homogenization (into liquid) range from 161 

and 312 ºC (average of 245ºC). It was not possible confirm if the last type of 

inclusions cross-cut grain boundaries. However, its later origin relatively to the 

monophasic and two-phase inclusions clustered in intragranular trails is evident.  

 

Fig. VII. 2 – Photomicrograph of the quartz from leucosome (FM19) showing fluid inclusions intragranular trails 
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Fig. VII. 3 – Photomicrograph of the pseudo-secondary clusters of monophasic and two-phase inclusions in quartz from 

leucosome.  

 

Fig. VII. 4 – High magnification photomicrographs showing the relation between the fluid inclusions in leucosome 

(sample FM19) and respective Ice melting temperatures of aqueous inclusions and partial homogenization temperatures 

of monophasic inclusions.  
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7.3.2. Tourmaline bearing leucogranite - VC52  

Sample VC52 is a leucogranite where almost all the biotite has disappeared and, 

instead, dispersed crystals of tourmaline occur within a coarse grained matrix of quartz 

+ plagioclase ± K-feldspar (Fig.VII.5). Very rare corroded garnet occurs. The K-feldspar 

content is relatively low (< 20 % in mode), occurs associated with tourmaline or 

replacing plagioclase. Biotite and garnet are considered residual in these rocks. Later 

retrograde alteration is marked by chloritization of biotite and muscovitization of biotite, 

tourmaline and feldspars.  

In this sample were analyzed fluid inclusions in coarse-grained quartz crystals, and in 

plagioclase.  

The studied quartz does not show ondulose extinction or other deformation textures. 

Rutile needles randomly oriented, subhedral biotite and euhedral tourmaline was 

observed within the quartz crystals.  

 

 

Fig. VII. 5. Thick double-polished section from the tourmaline leucogranite (sample VC52). 

 

The leucogranite contains at room-temperature mainly two inclusion types: monophasic 

and two-phase liquid+vapour (H2O-NaCl) aqueous fluid inclusions (Figs. VII.6 to VII.8). 

 

Monophasic inclusions 

The monophasic inclusions were observed in poorly defined intragranular trails and 

clusters, exhibit regular shapes (sub-rounded to elliptical), many having a negative 

crystal shape. Liquid water is not visible, indicating very low water content. They range 

in size from 10 to 24 µm (av. 13.9 µm) (Figs. VII.6 and VII.8).  
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Microthermometry and Raman analyses identified N2 and CH4 as the main species in 

the volatile phase. N2 is the dominant specie ranging from 86.1 to 91.8 mole% and CH4 

content ranges from 8.2 to 13.9 mole% (Fig. VII.15). 

This type of inclusions shows temperatures of partial-homogenization (Thpartial) in the 

interval of -140.6 to -137.6 °C into vapor and in the range of -140.3 to 140.1°C into 

liquid phase (Fig. VII.10). 

 

 

Fig. VII. 6 – Cluster of monophasic and two-phase fluid inclusions in leucogranite.  

 

Fig. VII. 7- Photomicrographs showing aqueous two-phase fluid inclusions with A) negative crystal shape; B) Fluid 

inclusions in plagioclase.   

 

Two-phase inclusions 

Two-phase aqueous inclusions occur in clusters associated with the monophasic 

inclusions and in trails that cut the previous intragranular trails.  

Two-phase inclusions show three distinct sub-types (Figs. VII. 17 and VII.11): 

A B
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 Two-phase inclusions aligned in well-defined intragranular trails showing NE-SW 

direction (orientation relatively to the edge of the sample) and generally show 

‘negative’ crystal shape (Fig. VII.7). Their size range from 5 to 27 µm (av. 11.6 µm) 

and show degree of filling varying from 0.70 to 0.90. Ice melting temperatures 

(Tmice) lie between -3.4 and -2.4 ºC which corresponds to salinities of 4.0 to 5.6 eq. 

wt.% NaCl (average of 5.0 eq. wt. % NaCl). Total homogenization occurs always in 

the liquid phase with Th values between 215 and 382 ºC (average of 343ºC).  

 Two-phase inclusions observed in poorly defined intergranular trails and clusters, 

occasionally isolated. They show a degree of filling varying from 0.60 to 0.80. Ice 

melting temperatures (Tmice) lie between -2.6 and -1.7 ºC which corresponds to 

salinities of 2.9 to 4.34 eq. wt.% NaCl (average of 3.1 eq. wt. % NaCl). In this type of 

fluid inclusions the total homogenization was observed only in one inclusion showing 

359 ºC.  

 Two-phase Inclusions aligned in well-defined intragranular trails showing NW-SE 

direction (orientation related to the edge of the sample) and generally have irregular 

shape. These inclusions rang in size from 7 to 23 µm (av. 11.9 µm) and show a 

degree of filling (Flw) varying from 0.70 to 0.90. Ice melting temperatures (Tmice) lie 

between -0.9 and -0.4 ºC which corresponds to salinities of 1.7 to 0.7 eq. wt.% NaCl 

(average of 1.1 eq. wt. % NaCl). Total homogenization occurs always in the liquid 

phase and is characterized by Th between 335 and 348 ºC (average of 341ºC). 

 

 

Fig. VII. 8 – Photomicrograph showing a group of monophasic and two-phase inclusions and respective partial 

homogenization temperature and ice-melting temperature (VC52).  
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Fig. VII. 9 – Photomicrograph showing different directions of aqueous fluid inclusions trails and respective ice-melting 

temperatures (sample VC52). 

 

 

Fig. VII. 10 – Frequency histogram of partial homogenization temperatures of monophasic inclusions from leucosome 

and leucogranite samples (FM19 and VC52, respectively).  

 

          

Fig. VII. 11 - Frequency histogram of two-phase inclusions total homogenization temperatures from leucosome and 

leucogranite samples (FM19 and VC52, respectively). 
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Only a few fluid inclusions have been observed in plagioclase. They occur associated 

with cleavages and show an elongated morphology measuring ~7.5 µm in the longest 

side (Fig. VII.7B). These inclusions are two-phase, showing ice melting temperatures 

(Tmice) between -1.2 and -0.7 ºC which corresponds to salinities of 1.2 to 2.1 eq. wt.% 

NaCl (average of 1.5 eq. wt. % NaCl). 

 

 

7.3.3. Two-mica granite - FP21 

Sample FP21 is a two-mica medium-grained granite and is composed of plagioclase + 

quartz + K-feldspar + biotite + apatite ± sillimanite ± garnet + muscovite (sec.) ± chlorite 

(sec). K-feldspar occurs as medium-grained crystals in the matrix and as sparse 

megacrystals of about 2 cm. K-feldspar contains inclusions of plagioclase, quartz, 

biotite and sillimanite. Biotite, sillimanite and rare garnet occur in aligned schlieren that 

are considered restitic. Biotite also occurs as dispersed flakes in the matrix (Fig. 

VII.12). Deformation features are rare and limited to slight ondulose extinction in quartz 

and incipient flame perthites in K-feldspar. This rock underwent later alteration 

processes revealed by the commonly observed muscovitization of biotite and feldspars 

and chloritization of biotite.  

 

 

Fig. VII. 12 – Thick double-polished section from sample FP21 

 

In the quartz from two-mica granite it can be mainly observed monophasic and two-

phase aqueous fluid inclusions at room-temperature (Figs. VII.18 and VII.20). 
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Monophasic inclusions 

This type of inclusions was observed in clusters and also in well-defined intragranular 

trails extending from border to border (Fig. VII.13). Liquid water is not visible, indicating 

low water content although an invisible film of water could exist. The size of the 

inclusions range between 5 to 38 µm (av. 18 µm). 

 

 

Fig. VII. 13 - Intragranular trail (grain boundary to grain boundary) in two-mica granite (FP21).  

 

These inclusions show two distinct groups: A and B (Fig. VII.14 and VII.15):  

 Group A inclusions occur in poorly defined intragranular alignments and in clusters. 

The melting temperature of the CO2 phase was observed between -61.6 and -

60.1ºC and the partial homogenization temperature was observed in the range of -

39.0 to -32.2 (into vapor). Raman microspectroscopy analyses identify CO2-N2 as 

the main species in the volatile phase. CO2 is dominant ranging from 61 and 66 

mole% CO2 with average of 63 mole%.  

 Group B inclusions occur in well-defined intragranular alignments and appear 

posterior to the type A. The melting temperature of the CO2 was observed between -

61.6 and -60.5ºC and the partial homogenization temperature was observed in the 

range of -24.5 to -14.4 ºC (into vapor). Raman microspectroscopy analyses identify 

CO2-N2 as the main species in the volatile, being CO2 dominant with a molar 

composition of 79 and 92 mole% with average of 84 mole%.  
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Fig. VII. 14 - Plot of homogenization temperatures versus melting temperatures for mixed N2-CO2 inclusions in two-mica 

granite (sample FP21). 

 

 

Fig. VII. 15 – Ternary plot of the volatile phase composition obtained by Raman microspectroscopy analyses of the 

fluids from the studied samples.  

 

Aqueous two-phase inclusions 

Two-phase inclusions show two principal types (Fig. VII.16 and VI.17). 

 Inclusions occurring in intragranular trails associated or parallel to the monophasic 

inclusions trails. This type of inclusions show size ranging from 5 to 10 µm and a 

degree of filling (Flw) varying from 0.85 to 0.90. Ice melting temperatures (Tmice) lie 
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between -4.4 and -3.4 ºC which corresponds to salinities of 5.6 to 7.0 eq. wt.% 

NaCl (average 6.4 eq. wt. % NaCl);  

 Inclusions occurring in well-defined alignments that seem to cut the other inclusion 

trails. The shape of these inclusions is irregular and the size varies between 10 to 

37 µm with degree of filling between 0.85 and 0.90. Ice melting temperatures lie 

between -1.0 and -0.7 ºC corresponding to salinity between 1.23 and 1.74 

(average 1.5 wt.% Eq. NaCl). 

 

 

Fig. VII. 16 – Photomicrographs of sample FP25 showing: A) monophasic inclusions (group B) in trails and parallel to a 

trail of tiny two-phase inclusions; C) Trail of later aqueous inclusions. 

 

 

Fig. VII. 17 - Frequency histogram for fluid inclusions salinity in quartz from leucosome (FM19), leucogranite (VC52) and 

two-mica granite (FP21). 
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7.4. P-T evolution 

 

Leucosome – FM19 

Figure VII.18B represents the pressure-temperature plot of fluid inclusions isochores 

for sample FM19, superimposed on the aluminosilicate fields (Holdaway & 

Mukhopadhyay, 1993; Fig. VII.18A) and the granite minimum melt (Thompson and 

Tracy, 1979). The PT pseudosection calculated for a typical pelite melting in the 

system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (Brown & 

Korhonen, 2009; Brown, 2013) is also plotted for the paragenesis Bt + Sil + Crd + 

Mag/Ilm + Kfs + Qtz + Pl corresponding to the paragenesis observed in the metatexites 

from MMC. 

The N2-CH4 and the N2-CO2-CH4 fluid inclusions occur in clusters and in poorly-defined 

intragranular trails, indicating that they could have been trapped during the 

crystallizations of the quartz. The N2-CH4 inclusions isochores intersect the pressure-

temperature conditions for the referred mineral paragenesis. This feature corroborates 

a primary origin of these fluid inclusions and permits the delimitation of the PT 

conditions for the crystallization of leucosomes in MMC metatexites. The values found 

are 400 to 500 MPa and 720 to 840 ºC. The isochores for the mixed N2-CO2-NH4 fluid 

inclusions were not calculated. None of the aqueous fluid inclusions isochores intersect 

the PMC field, suggesting a re-equilibration process or secondary origin for these fluid 

inclusions. The higher saline fluid inclusions (eq. wt% NaCl>6) occur in clusters and 

associated with the monophasic inclusions. So, they are interpreted as inclusions 

trapped close to PMC conditions and later re-equilibrated. The inclusions that have the 

lowest salinities are considered secondary and could represent the later fluids affecting 

the MMC in subsolidus conditions. 

 

Tourmaline leucogranite - VC52 

Figure VII.19 represents the pressure-temperature plot of fluid inclusions isochores for 

sample VC52 superimposed on the aluminosilicate fields (Holdaway & Mukhopadhyay, 

1993) and the granite minimum melt (Thompson & Tracy, 1979).  

Considering the leucogranites paragenesis (absence of peritectic minerals) and whole-

rock composition it is suggested that leucogranites result from a fluid-present melting in 

the first stages of migmatization, involving essentially quartz and plagioclase. 
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Fig. VII. 18 – A) Metamorphic PT fields for the melting of pelitic rocks accordingly to the mineral paragenesis (after 

Brown & Korhonen, 2009) and Brown, 2013). The fields corresponding to the metatexites mineral paragenesis (yellow 

shaded area) and to the two-mica granites mineral paragenesis (orang shaded area) are marked. B)  Pressure-

temperature plot of N2-CH4 fluid inclusions isochores for sample FM19 superimposed on aluminosilicate fields 

(Holdaway and Mukhopadhyay, 1993) and the granite minimum melt (Thompson and Tracy, 1979). Isochores of 

aqueous inclusions are represented by the filled stippled regions between higher and lower isochores. The migmatite 

mineral paragenesis is indicated by the yellow shaded area. The anatexis conditions are positioned between the 

intersection of the isochores and the mineral paragenesis field (red shaded area).  

0

100

200

300

400

500

600

700

800

900

1 000

200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

P
(M

p
a

)

T ºC

FM19

IF13 IF14 IF1

PMC

Ky

And

Sil

Bt Crd Mg
Kfs Qtz Pl Mlt

B



FCUP 
Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 

 

 

269 

 

The T conditions of leucogranites crystallization are considered proximate to the H2O 

saturated granite melting temperatures of ~ 680 ºC.  

The N2-CH4 fluid inclusions occur in clusters and in poorly-defined intragranular trails, 

indicating that they could correspond to primary inclusions, i.e., inclusions trapped 

during the crystallizations of the quartz. These fluid inclusions isochores intersect the 

wet granite melting line (considered the beginning of anatexis), pointing to a primary 

origin, and allowing the delimitation of the P conditions (430 and 550 MPa) for the 

leucogranites crystallization. 

None of the aqueous fluid inclusions isochores intersect the pressure-temperature field 

for the beginning of anatexis, suggesting its later origin and sub-solidus entrapment. 

The aqueous fluid inclusions showing salinity ~5 eq.wt% NaCl only occur in this sample 

and are absent in the leucosome and two-mica granite samples. This suggest that this 

fluids could be related to the influx of boron-rich fluids that lead to the development of 

tourmaline in this rocks (absent in the other two samples). The latest aqueous fluid 

inclusions are probably related to post-solidus entrapment and muscovitization and 

chloritization processes.  

 

Fig. VII. 19 - Pressure-temperature plot of the N2-CH4 fluid inclusions isochores for sample VC52 superimposed to 

aluminosilicate fields (Holdaway & Mukhopadhyay, 1993) and the granite minimum melt are also represented 

(Thompson & Tracy, 1979). The anatexis conditions are indicated by the red shaded area. The inclusions that 

homogenized at liquidus are marked with (L). The aqueous fluid inclusions isochores are restricted to the filled stippled 

regions between higher and lower isochores.  
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Two-mica granite - FP21 

Figure VII.20 represents the pressure-temperature plot of fluid inclusions isochores for 

sample FP21 superimposed on the aluminosilicate fields (Holdaway & Mukhopadhyay, 

1993), the granite minimum wet melt (Thompson & Tracy, 1979) and the PT 

pseudosection calculated for the anatexis of pelitic rocks in the system NCKFMASHTO 

(Brown & Korhonen, 2009; Brown, 2013; Fig. VII.18A) for the paragenesis Bt + Sil + 

Mag/Ilm + Kfs + Qtz + Pl corresponding to the paragenesis observed in the two-mica 

granites. 

The CO2-N2 fluid inclusions occur in poorly-defined intragranular trails, indicating that 

they could correspond to primary inclusions, i.e., inclusions trapped during the 

crystallizations of the quartz crystals.  

The isochores of the N2-CH4 inclusions with higher and lower CO2 proportion overlap 

wish other indicating that they were trapped under the same PT conditions. The fluid 

inclusions isochores intersect the pressure-temperature conditions of peak 

metamorphism, what confirms its primary origin and permits the delimitation of the PT 

conditions for the crystallization of two-mica granites quartz in MMC. The delimited PT 

conditions are 320 to 520 MPa and 680 to 780 ºC.  

 

 

Fig. VII. 20 - Pressure-temperature plot of CO2-N2 fluid inclusions isochores for sample FP21 superimposed on the 

aluminosilicate fields (Holdaway & Mukhopadhyay, 1993) and the granite minimum melt (Thompson and Tracy, 1979). 

Possible metamorphic conditions are delimited by the pseudosection fields for the melting of pelitic rocks showing the 

mineral paragenesis of two-mica granites, proposed by Brown & Korhonen (2009) and Brown (2013). The anatexis 

conditions are indicated by the intersection of the isochores with the mineral paragenesis field (red shaded area). 
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7.5. Synthesis and discussion 

Monophasic inclusions occur in all the studied samples but showing different 

compositions and conditions of entrapment: Leucosomes are characterized by N2-CH4 

and N2-CO2-CH4 fluids showing high N2 content; leucogranites only show N2-CH4 fluids 

with high N2 content as well; two-mica granites only show CO2-N2 fluids being CO2 the 

dominant species in the volatile phase. All these fluid types occur in fluid inclusions 

trapped in intragranular trails or in clusters and transect the metamorphic conditions of 

the respective lithologies suggesting its primary character. 

The generation of N2-CH4-rich fluids with very low water content could be the vapor 

phase resulted from an immiscibility process in the H2O-CH4-N2 system at low pressure 

(Alvarenga et al., 1990), producing N2-CH4 and H2O-bearing fluid inclusions both 

trapped in clusters and in parallel intragranular trails. In the studied samples there are 

monophasic inclusions associated with aqueous inclusions, indicating an immiscibility 

process during the entrapment, both, with N2-CH4 and CO2-N2 inclusions types as well.  

The source for the N2 observed in the fluid inclusions could be the micas and feldspars 

since these type of minerals may contain a significant amount of nitrogen in their 

structure in the form of NH4
+ ions, which are released when these minerals breakdown 

(Andersen et al., 2001). It was also observed that most N2 in high metamorphic grade 

rocks is found at the stage where these minerals become unstable and such a link 

cannot be accidental (Cesare, 2007).  

A genetic relationship between biotite melting and CO2 content in the rock fluids is 

suggested by several authors in support of the model of CO2 formation by oxidation of 

graphite during melting of Fe3+ bearing biotite. Graphite could be a stable phase at high 

temperatures, and probably participate in melting reactions (Giorgetti, 1996). Thus, 

Fe3+ reduction during biotite dehydration-melting could cause graphite oxidation, 

producing CO2 and globally rising the ƒO2 (Hollister, 1988; Georgetti et al., 1996 

Cesare et al. 2005, Ferrero et al., 2011). This explains the presence of CO2-N2 

inclusions in two-mica granites and in leucosomes and its absence in leucogranites. In 

fact, as referred before, it is likely that a fluid-present melting pulse takes place in MMC 

involving essentially quartz and plagioclase and produced most of the leucogranites, 

through the reaction:  

 

Qtz + Pl + H2O = Melt   (1) 
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This reaction implies the released of melt without the break-down of biotite and occurs 

at lower temperatures than the biotite breakdown reactions, which favor CH4 as the 

carbon-bearing gas species with respect to CO2 (French, 1966). 

The anatexis process continues by fluid-absent biotite breakdown reactions (e.g. 

Brown, 2008; White, 2008):   

Bt + Pl1 + Sil + Qtz = Crd + Pl2 (± Kfs) + Melt (2) 

Bt + Sil + Qtz = Crd + Kfs + Melt (3) 

These reactions could be the main producers of fluids containing CO2 if considering the 

model first proposed by Hollister (1988).  

In migmatites (leucosomes) both processes were present. A first wet-melting producing 

N2-CH4 inclusions and, in continuum, the biotite breakdown produced the mixed N2- 

CH4 -CO2 fluid inclusions, containing high N2 and low CO2. This suggests that the N2- 

CH4 -CO2 inclusions resulted from a mixing process.  

In two-mica granites the muscovite and biotite breakdown must be the most important 

reactions occurred during anatexis. Thus, it is expected that CO2 bearing fluids were 

released. The absence of CH4 in two-mica granites is indicative of higher fO2 conditions 

than for leucosomes and leucogranite where CH4 is always abundant.  

The monophasic inclusions isochores of all the samples intersect the stability fields of 

the mineral paragenesis of metatexites, confirming its contemporaneity with the 

crystallization of leucosomes, leucogranites and two-mica granites, respectively. The 

intersection with the isochores permits a more accurate definition of the PT condition 

prevailing during the anatexis. For leucosomes the P values are between 400 to 500 

MPa and T between 720 to 840 ºC, at H2O percentage < 5%.  For leucogranites the 

temperature is considered proximal to the wet granite melting (~680 ºC) and the 

pressures values are between 430 and 550 MPa. For two-mica granites the pressure 

values range from 330 - 520 MPa with temperature between 680 – 780 ºC, and H2O 

percentage > 5% (Figs. VII.18, VII.19 and VII.20).   

The stability field of the two-mica granites paragenesis could be more extensive, 

especially relatively to pressure. Field relations indicate that granites are intrusive in the 

metatexites what suggest ascend of granitic magma and consequently a deeper 

melting level and higher P values. However, the crystallization process were at the 

same structural level, so the PT conditions constrain by the isochores represent the 

quartz crystallization PT conditions, and not the melting conditions.  
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Bulk rock composition, AFM diagrams and pseudosection of mineral assemblages 

(Spear, 1995; Bucher & Grapes, 2011) were used to constrain the PT paths in the 

staurolite-zone (sub-chapter 4.2.5). A first metamorphic event (M1), attaining condition 

of P > 490 MPa and 560 < T > 600 ºC, reflects burial and heating. These conditions 

were followed by decompression and temperature increase leading to andalusite and 

cordierite development during a later metamorphic event (M2). The sillimanite-zone 

and migmatization are the result of the last metamorphic event.  

Figure VII.21 represents possible metamorphic P–T paths followed by the studied 

rocks, based on the mineral paragenesis and reaction textures, the blastese / 

deformation relationships (Fig. IV.2.30) and the isochores intersection with the 

pseudosection for the mineral paragenesis.  

 

 

Fig. VII. 21 - Metamorphic P–T paths and relation with the major Variscan deformation phases (D1, D2 and D3) for 

pelitic sequences and MMC metatexites. Phase diagram for Al2SiO5 polymorphs (Holdaway & Mukhopadhyay, 1993), 

the wet granite minimum melt (Thompson and Tracy, 1979) and a Barrovian type geotherm (Bucher& Grapes, 2011) 

 

None of the aqueous fluid inclusions isochores intersect the P-T conditions of peak 

metamorphism, suggesting their later origin or re-equilibration processes. Four 

populations of aqueous fluid inclusions (H2O-NaCl) with different salinities occur in the 

studied samples (Fig. VII.17): i) the higher saline (> 6 wt.% eq. NaCl) only occur in 

leucosomes and two-mica granites. They are healing intragranular poorly defined trails 

or clusters. These aqueous inclusions often seem to be mixed with trails of primary 
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monophasic inclusions, indicating an immiscibility process of entrapment. However, the 

isochores show lower PT conditions. This probably results from late and intense 

reopening/rehealing process affecting a part of the earlier microstructures that lead to 

re-equilibration of the fluids, generally showing salt enrichment by water loss 

(Alvarenga et al., 1990). In general, the aqueous component of peak metamorphic 

fluids in pelitic schists and gneisses is fairly dilute, generally < 5 wt% (Crawford, 1981; 

Crawford and Hollister, 1986). Re-equilibration experiments (Crawford, 1979; Hall & 

Sterner, 1993) on saline synthetic fluid inclusions trapped in quartz showed that 

isothermal decompression with internal overpressures of 2 kbar provoke salinity 

increasing. Hall & Sterner (1993) attributed the increased salinities to preferential 

diffusional loss of H2O during re-equilibration, whereas Crawford et al. (1979) 

suggested that retrograde hydration reactions concentrated the salts in the fluids. Thus, 

the higher salinities measured in the bulk of the aqueous fluid inclusions associated 

with the monophasic inclusions may be due to multiple processes operating during re-

equilibration. The monophasic inclusions containing N2 and CO2 or CH4 are less 

affected by re-equilibrium processes than aqueous fluid inclusions (Hall & Sterner, 

1993).  

Inclusion showing salinity between 4 and 6 wt.% eq. NaCl occur mainly in the 

tourmaline leucogranites (leucosome and two-mica granite samples show a single 

inclusion of this type) (Fig. VII.17). It is likely that these fluids are associated with the 

leucogranites tourmalinization process, which affected more intensely this type of 

rocks.  

Lower saline inclusions showing salinity below 4 wt.% eq. NaCl occur in the three 

analysed lithologies, generally in well-defined alignments cutting the previous 

described fluid inclusions trails and clusters, therefore considered as representing the 

last fluid entrapment occurred in MMC and probably affected all the present lithologies 

and giving rise to muscovitization and chloritization processes.   
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“Look deep into nature, and then you will 

understand everything better.” 

                                  Albert Einstein 

8.1. Introduction 

The absolute dating of rocks and minerals is based on the laws of radioactive decay 

established by Rutherford & Soddy in 1902, according to which the rate of decay of an 

unstable atom is proportional to the number of residual atoms at any time t. It is known 

that each element tends to disintegrate at a certain velocity (λ) in a unit time (t), 

according to the fundamental equation of Geochronology: 

 

R = R0 + RP / F (e
λt - 1)             (1) 

 

Where R0 is the initial ratio and RP/F ratio is the parent/stable ratio at time t. The decay 

constant (λ) is the probability of isotopic decaying in the time unit and is characteristic 

of each isotope. Solving this equation as a function of t yields the equation of a line 

whose slope depends only on time, called “isochron” (Faure & Mensing, 2005).  

The choice of isotopic pairs for use in geochronology depends on its concentration in 

measurable levels and the compatibility between its half-life time and the period of the 

geological process under study (e.g. Geraldes, 2010). 

There are two important assumptions or conditions on the use of radioactive isotopes 

in geochronological study of rocks and minerals: 1) the radiogenic isotope has its origin 

exclusively by decay of the radioactive isotope and 2) the system as a whole, or each 

of its parts, remained closed between t0 and t (usually the present time) (e.g. Dickin, 

2005). 

In general, the measured date refers to the last time the system was open to full 

exchange of parent / child elements between the various analyzed subsystems, i.e. the 

last point in time when the system had an uniform and homogeneous value of R. This 

is usually a thermal event. Thus, an isotopic age is fundamentally a thermal dating and 

reflects the time since a sample became cool enough for the products of a given 



FCUP 

Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 
 

 

 

278 

 

radioactive decay process to be retained (effective isotopic closure) (Sardarov, 1957; 

Hurley et al., 1962; Dodson, 1973). 

8.2. U-Pb system 

The principle of the method U-Th-Pb is based on the decay of U and Th to isotopes of 

Pb. Uranium occurs in three natural isotopes, all of them radioactive: 238U, 235U and 

234U.  

Thus, it is possible to obtain three ages, based on three different equations: 

206Pb = 206Pbi + 238U (eλt -1) showing λ = 1,55125 x 10-10 

207Pb = 207Pbi + 237U (eλt -1) showing λ = 9,8485 x 10-10 

208Pb = 208Pbi + 238Th (eλt -1) showing λ = 4,9475 x 10-11 

These three equations are solved with reference to the stable isotope 204Pb.  

Although it is a decay series, if a mineral or rock behaves as a closed system, the rate 

of production of the stable isotope at the end of each series is equal to the decay rate 

of the initial radioactive isotope (Dickin, 2005; Geraldes, 2010). 

The ages obtained have geological significance only when certain requirements have 

been met: 

 The system remained closed to U, Th and Pb, as well as all intermediate isotopes 

of the decay series; 

 Adjustments were based on values of initial Pb isotopes, which are subtracted 

from the isotopic values obtained analytically. The common Pb can be measured 

by the analysis of the whole-rock or in the case of zircons with low contents of Pb, 

it is an estimate from a model of terrestrial evolution of Pb (e.g. Stacey and 

Kramers, 1975); 

 The isotopic composition of U has not undergone modification by isotopic 

fractionation or by 235U fission. 

The great advantage of  the U-Pb system compared to others isotopic 

geochronological systems is that it is based on more than one dating and therefore 

allows that the ages measured could be corrected in function of the loss of the 

radiogenic isotope, i.e., it  allows internal self-calibration of the method. 

In an ideal situation, in which the U-Pb system remained closed, the three ages are 

coincident and the corresponding projection of the isotopic ratios of analyzed points 
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occur in  a 206Pb/238U versus 207Pb/235U curve diagram, defined by Wetherill (1956 ) and 

Ahrens (1955), and is called concordant. However, these authors found a discrepancy 

in the ages obtained in the same rock or mineral, related to the loss of Pb. Indeed, the 

U-Pb system rarely remains closed in silicate rocks because these elements are mobile 

in conditions of low-grade metamorphism and weathering. In this case, the points 

plotted in the diagram do not coincide, although presenting a linear relationship in the 

concordia diagram. The line defined by these points is called discordia being the age of 

crystallization of minerals given by one of the two intersections of discordia with the 

concordia line (Wetherill 1956, Dickin, 2005; Faure & Mensing, 2005). 

The obtained ages are considered to be concordant if there is. <5% of discordance, 

which is given by the equation (Biao et al., 1996): 

 

{1 – (206Pb/238U age)/(207Pb/206Pb age)} × 100  

 

Zircon is the most common mineral use in the U-Pb dating method, due to its wide 

distribution in various types of rocks and high resistance to weathering, high closure 

temperature of the U-Pb system, its relatively high levels of uranium (which replaces 

Zr) and the absence of common lead in the structure. Various studies (e.g. Watson, 

1996; Lee et al., 1997; Moller et al. 2002) demonstrate the preservation of age 

information and trace element zoning patterns in zircons with multiple magmatic and 

metamorphic overgrowths, despite ultra-high temperature metamorphism and partial 

melting.  

Nevertheless, zircon can experience partial recrystallization under regional 

metamorphism in crustal conditions (Ashwal et al. 1992; Pidgeon, 1992; Hoskin & 

Black, 2000; Moller et al,. 2002). The mechanism of solid state recrystallization is 

believed to be related to the fact that trace element-rich oscillatory-zoned zircons are 

relatively unstable due to lattice strain (Koppel & Sommerauer, 1974). Hoskin & black 

(2000) suggest that recrystallization is initiated in points of high-lattice strain in the 

crystals and the recrystallization front migrates from that point throughout the crystals. 
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8.2.1. Morphology of zircons  

Clearly, for the purpose of correct petrogenetic and tectonic interpretation it is essential 

to know the type of zircon under study. Electron backscatter imagery, 

cathodoluminescence spectroscopy and electron-microprobe trace element analysis 

has revealed that zircon could display complex growth and overgrowth features of both 

magmatic and metamorphic origin (e.g. Hoskin & Black, 2000; Moller et al. 2002). 

Thus, careful textural observation and chemical analysis is necessary to recognize the 

event that is being dated. 

 

8.2.1.1. Magmatic zircons 

Zircon is tetragonal and usually develops prismatic crystals with length-width ratios of 

1:5. Typical magmatic zircons are between 20 and 250 micra in the longest side and 

show euhedral to subhedral shapes. The development of predominant prismatic or 

pyramidal structures is related to the chemical characteristics of the rock (e.g. Pupin 

1980, Vavra, 1994, Corfu et al. 2003; Martins et al., 2014). One of the typical 

characteristics of magmatic zircons is the presence of a well-marked oscillatory zoning, 

generally showing bimodal succession of bands rich and poor in trace elements with 

virtually no intermediate composition (Fig. VIII.1). In other cases the differences are 

almost imperceptible, showing only a thin and light zoning. Locally, in some rocks, can 

be observed not zoned euhedral prisms (Paterson et al., 1992; Hanchar & Miller, 1993; 

Vavra, 1994) (Fig. VII.1). For some rocks, such as S-type granites, it is common to see 

multiple dissolution structures preserved within the zircon crystal, indicating zirconium 

sub-saturation periods followed by zirconium saturation periods in the melt (e.g., Vavra 

1994, de la Rosa et al. 2002) 

      

Fig. VIII. 1 – Backscattered images of magmatic zircons showing euhedral shape (prismatic) and marked oscillatory 

zoning (from Lavadores and Castelo do Queijo granites, NW Portugal; Abreu, (2012)). 
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8.2.1.2. Zircon xenocrysts 

It is common the occurrence of zircon xenocrysts in many igneous rocks. When 

magma is supersaturated in zirconium, it does not dissolve the restitic zircons that 

usually become the basis of magmatic zircon regrowth. Thus, the appearance of zircon 

xenocrysts may vary from highly polished, without any overgrowth, to rounded grains 

mantled by new zircon, being usually composed of an inherited core from which 

develops a magmatic border. They can also occur simply as sub-rounded zircons.  

The contact between the rim and the core is generally marked by an irregular 

discontinuity which truncates the internal zoning. In the case of a core affected by 

metamorphism it can show rounded or chaotic morphology and lacks zonation.  

 

8.2.1.3. Metamorphic zircons 

Metamorphic events can cause various types of changes in the shape and size of the 

zircon crystals. Thus, metamorphic zircons are characterized by a number of features 

that differ from that of igneous zircons (Hoskins & Schaltegger, 2003). The zircons from 

low- to high-grade metamorphic rocks are usually inherited from the protolith and may 

show signs of resorption or metamorphic overgrowth. The high-grade metamorphic 

rocks may contain zircon that grew during metamorphism, especially in rich fluid 

systems or in migmatites which can develop zircon in contact with a melt (Fraser et al, 

1997; Roberts and Finger, 1997). 

The external morphology of metamorphic zircons is generally characterized by rounded 

crystal terminations and is often reported to have ovoid morphologies (Watson & Liang, 

1995). Generally they do not display oscillatory zoning but may be sector-zoned and 

usually shows sequential internal structures. These textures could be followed by 

external oscillatory zoning if new magmatic grouth occurs (Vavra et al. 1996, 1999; 

Schaltegger et al. 1999) (Fig.VIII.2). 
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Metamorphic zircons can be produced by internal recycling of previous igneous, detrital 

or metamorphic zircons. Recycling processes include solid recrystallization or 

dissolution-re-precipitation. These processes are negligible at low metamorphic grade, 

whereas in high-grade metamorphic rocks these processes create a variety of internal 

structures characterized by (Pidgeon, 1998; Schaltegger et al. 1999; Hoskin & Black, 

2000; Moller et al., 2002): 

 Faded (blurred) oscillatory zoning - The primary oscillatory zoning can be faded as 

the first indicator of disturbance of the structure;  

 Convoluted zoning - The outer part of the metamorphic zircons may present a 

winding aspect and become discontinuous or truncated; 

 Transgressive recrystallization – Local zircon recrystallization under metamorphic 

conditions which cuts the primary crystal textures often show lobed or sinuous 

aspect. Despite transgressive recrystallization, primary oscillatory zoning may be 

partially preserved. It is considered that zircon crystals without any internal 

structure result from total recrystallization that can occur under conditions of 

granulite facies or during anatexis.  

The ages obtained from zircons in the granulite facies rocks are often interpreted as 

the age of peak metamorphic conditions (Pidgeon, 1992; Vavra et al. 1996; Pan, 1997; 

Hoskin & Black, 2000; Moller et al., 2002; Rubatto, 2002; Tomaschek et al, 2003). 

However, processes that can produce metamorphic zircons may occur at different 

times and over different durations. For example, zircon formed by net-transfer 

reactions may record a time on the prograde P–T path prior to peak metamorphic 

conditions (Fraser et al., 1997), and zircon formed from anatectic melts may record an 

age later than peak conditions (Roberts & Finger, 1997). 

Fig. VIII. 2 _ A) Forms of recrystallization in zircon: 1 - 

inherited core, 2 - convoluted zone with partial 

recycling of U-Pb age, 3 - border with further 

development; B) Metamorphic zircon illustrative of 

sequential growth structures: 1) low-luminance core; 

2)  sector zoning domain; 3) outer zone with 

oscillatory zoning (Schaltegger et al. 1999). 
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Figures VIII.3 show cathodoluminescence images and schematic representation of the 

most relevant features that characterize a metamorphic zircon or/and zircon modified 

by metamorphic processes.  

 

 

Fig. VIII. 3 – Cathodoluminescence  images (left-side) and corresponding schematic diagrams (right-side) of CL-

revealed internal structures for metamorphic zircons. Black: transgressive recrystallization; grey - recrystallization front; 

P-protolith igneous zircon, sometimes modified; C1, C2, inherited core (From Hoskin & Black, 2000). 

 

 

8.2.2. Methodology 

For U-Pb isotopic analyses one sample of diatexite (VC60) was selected.This sample 

was collected at the Metatexite Zone near Vila Chã and is part of a small body of 

diatexite that intruded the metatexites.  It shows the typical mesoscopic aspect of the 

diatexites, namely mesocratic color and abundant dark schlieren consisting of biotite, 

sillimanite and rare garnet that are interpreted as remnants of restitic melanosomes. A 
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total of 64 targets were analyzed, in 36 zircon crystals. The spots for analyses were 

chosen in accordance with the internal structures exhibited by the zircons.  

The separation and selection of zircons was carried out in the laboratories of 

Departmento de Geociências, Ambiente e Planeamento do Território of FCUP. Using a 

50-250 µm size fraction of rock the separation of heavy minerals was made using 

dense liquids (bromoform + methylene iodide). The concentrates obtained were then 

processed in the electromagnetic separator initially using a weak intensity (0.5A) to 

eliminate heavy paramagnetic minerals. The non-magnetic fraction of zircon 

concentrate was obtained by repeating the process several times and varying the 

electromagnetic separator conditions. Finally the selection of zircons was done under 

the binocular microscope (picking), taking into account the size, shape and purity of the 

crystals, avoidingthe zircons with evidence of metamictization, fractured or containing 

inclusions.  

U-Th-Pb Geochronological SHRIMP (Sensitive High Resolution Ion Microprobe) 

analytical procedure was performed in SHRIMP IIe/mc instrument of IBERSIMS lab 

(UGR). Hand-picked zircons from the studied sample, several grains of the TEMORA 

and one grain of the SL13 zircons standards, plus a few grain of the GAL zircon are 

cast on a 3.5 cm diameter epoxy mount (megamount), polished and documented using 

optical (reflected and transmitted light) and scanning electron microscopy (secondary 

electrons and cathodoluminescence). After extensive cleaning, mounts are coated with 

gold (80 micra thickness) and inserted into the SHRIMP for analysis. Each selected 

spot is rastered with the primary beam during 120 s prior to the analysis, and then 

analyzed during 6 scans following the isotope peak sequence 196Zr2O, 204Pb, 

204.1background, 206Pb, 207Pb, 208Pb, 238U, 248ThO, 254UO. Every peak of every scan is 

measured sequentially 10 times with the following total counting times per scan: 2 s for 

mass 196; 5 s for masses 238, 248, and 254; 15 s for masses 204, 206, and 208; and 

20 s for mass 207. The primary beam, composed of 16O16O2+, is set to an intensity of 4 

to 5 pA, with a Kohler aperture of 120 micra, which generates 17 x 20 micra elliptical 

spots on the target. The secondary beam exit slit is fixed at 80 micra, achieving a 

resolution of about 5000 at 1% peak height. All calibration procedures are done on the 

standards included on the same mount. Mass calibration is done on the GAL zircon 

(c.a 480 Ma, very high U, Th and common lead content, Montero et al., 2008). 

Analytical sessions start measuring the SL13 zircon (Claoué-Long et al., 1995), which 
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is used as a concentration standard (238 ppm U). The TEMORA zircon (417 Ma, Black 

et al., 2003), used as isotope ratios standard, is then measured every 4 unknowns.  

Data reduction is done with the SHRIMPTOOLS software specifically developed for 

IBERSIMS by F. Bea. This software is written in the programming language of the 

STATA commercial package which implements powerful algorithms for robust 

regression, outlier detection and time-series analysis. The software calculates the 

intensity of each measured isotope in two steps. First, it uses the STATA letter-value 

display algorithm to find outliers in the ten replicates measured in each peak during 

each scan, discarding them and averaging the rest once normalized to the SBM 

measurements. Then, for each isotope, it makes a robust regression of each scan 

average versus the time if was measured. The final result for each isotope is calculated 

as the value at the mid-time of the analysis resulting from the robust regression line. 

Errors (95% confidence level) calculated as the standard error of the linear prediction 

at the mid-point of the analysis. 206Pb/238U is calculated from the measured 

206Pb+/238U+ and UO+/U+ following the method described by Williams (1998). For high-

U zircons (U > 2500 ppm) 206Pb/238U is further corrected using the algorithm of Williams 

& Hergt (2000). Though seldom necessary, the software also allows correction for 

instrumental drift with time using the sequence of replicate measurements of the 

TEMORA zircon. These were also used for calculating the point-to-point error for the 

analytical session, to which the error for the final age calculations must be expanded. 

Corrected and uncorrected common Pb measurements were made and the main 

population age is the same within the error margin, thus uncorrected common Pb ages 

were considered (Fig. VIII.4). 

The U-Pb isotope data are listed in the appendix E, table E.2.  

 

 

 

Fig. VIII. 4 – Measured main population ages for corrected and uncorrected common lead.  
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8.2.3. Results  

Figures VIII. 5, 6, 7 and 8 show the natural and cathodoluminescent images of each 

zircon crystal, the location of the analyzed points and the ages obtained, followed by a 

brief description of the zircon morphology and internal structure.  

 

Fig. VIII. 5– Cathodoluminescence images of zircons 1 to 7 with location and obtained ages (Ma) for each analysed 

point.  U–Pb results are indicated as 
206

Pb ⁄ 238
U dates with 1errors. Concordant ages in red and discordant ages in 

orange. 

 

Fig. VIII. 6 - Cathodoluminescence images of zircons 8 to13 and 27 with location and measured ages (Ma) for each 

target point.  U–Pb results are indicated as 
206

Pb ⁄ 238
U dates with 1 errors. Concordant ages in red and discordant 

ages in orange. 
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Fig. VIII. 7 - Cathodoluminescence images of zircons 14 to18 and 28 to 33 with location and measured ages (Ma) for 

each target point.  U–Pb results are indicated as 
206

Pb ⁄ 
238

U dates with 1 errors. Concordant ages in red and 

discordant ages in orange. 

 

Fig. VIII. 8 - Cathodoluminescence images of zircons 20 to 26 and 34 to 36 with location and measured ages (Ma) for 

each target point.  U–Pb results are indicated as 
206

Pb ⁄ 
238

U dates with 1 errors. Concordant ages in red and 

discordant ages in orange. 
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Zircon 1 - Originally euhedral zircon mechanically fractured and damaged in one of the pyramids by 

etching or corrosion. It shows a nucleus that could be divided into three parts: a nebulitic core, followed by 

an intermediate portion showing faded fine oscillatory zoning, ending with large zoning that is disturbed by 

lobate transgressive overgrowth. The measured ages are the same in all the areas within the margin of 

error corresponding to the Ediacaran period. 

Zircon 2 – Zircon with a core showing fine oscillatory zoning later changed to marked sectorial zoning. 

External darker zone showing pyramids development and unclear oscillatory zoning. The measured ages 

in different parts of the oscillatory zoning are different, varying from 568 ±6 to 593 ±3 but belonging to the 

Ediacaran period.  The external zone shows Carboniferous (Variscan) ages.  

Zircon 3 - Multifaceted zircon showing sectorial zoning and transgressive recrystallization. The measured 

ages in different parts of the sectorial zoning are the same under the error margin, corresponding to 

Ediacaran period. A Carboniferous (early Variscan) age was obtained in the transgressive recrystallization 

sector.   

Zircon 4 - Prismatic zircon showing brown tonality and poorly defined large oscillatory zoning. It was 

mechanically fractured and presents partial transgressive recrystallization truncating the earlier zoning. 

The age measured is Ordovician.  

Zircon 5 - Zircon composed of an inherited core showing large oscillatory zoning and a dark rim, especially 

in the pyramidal faces. The age measured in the inherited core is Ediacaran.   

Zircon 6- Multifaceted zircon showing sectorial zoning transposing a diffuse oscillatory zoning. 

Transgressive recrystallization front and convolute zoning appear at the bottom of the crystal. Ediacaran 

age measured.  

Zircon 7 – Zircon showing complete transgressive recrystallization and a thin overgrowth rim. Ediacaran 

age measured.  

Zircon 8 – Zircon showing a prismatic core truncated by transgressive recrystallization. Lower region 

shows diffuse oscillatory zoning and a pyramidal overgrowth rim.  Concordant ages measured in the core 

show large variation: In the center showing light color and distrurbance, the age is Ediacaran (575) and in 

the border showing oscillatory zoning the age is Cryogenian (670 Ma). The pyramidal overgrowth rim 

shows a concordant Carboniferous (Variscan age; 319 ±11 Ma). 

Zircon 9 - Prismatic zircon showing diffuse oscillatory zoning and a ligther rounded nucleus.  Concordant 

age measured in the clearer core is younger than the concordant age measured in the rim. However the 

core shows lighter color around inclusions indicative of later distrubance.  

10 Zircon - Zircon showing diffuse oscillatory zoning and a pyramidal overgrowth rim. It shows a small 

recrystallization front which has developed before the rim growth since the last is not affected. Concordant 

measured Ediacaran age in the core and discordant Carboniferous (late-Variscan) age for the rim.  

Zircon 11 - Rounded zircon showing nebulitic core and very thin oscillatory zoning edge.  There is a small 

recrystallization front transposing the oscillatory edge. Concordant measured age is Ediacaran.  

Zircon 12- Zircon with at least 3 stages of development: 1
st
 - Small inherited magmatic core showing 

diffuse oscillatory zoning; 2
nd

 - transgressive metamorphic recrystallization; 3
rd

 – Fine rim with incipient 
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oscillatory zoning and development of small pyramid.  Concordant age measured in the transgressive 

recrystallization front is Carboniferous (earlier Variscan; 342 ±11 Ma).   

 Zircon 13 – Ovoid zircon showing nebulitic core and diffuse oscillatory zoned edge.  

Zircon 14 - Prismatic zircon showing a dark core (probably metamorphic) and an oscillatory zoned border. 

There is also a small rim overgrowth in the pyramids. Concordant Cambrian age measured for the dark 

core and discordant Ediacaran age for the rim.  

Zircon 15 – Zircon mechanically fractured in one edge and showing diffuse oscillatory zoning. The 

oscillatory zoning is perturbed and convoluted specially in the top.  Concordant age measured is 

Ediacaran.  

Zircon 16 – Ovoid zircon showing very diffuse oscillatory zoning in the core and development of light 

colour recrystallization front around inclusion. There is a metamorphic low luminescent edge surrounding 

the core and showing concordant Ediacaran age.  

Zircon 17 - Zircon which preserves a nebulitic core and oscillatory zoning. There is a development of a 

high luminescent edge transgressing into the interior (convoluted zoning). Concordant measured age in 

the core is Cryogenian (763 ±2 Ma) 

Zircon 18 – “Soccer-boll” zircon with faceted faces showing concordant Ediacarian age. Darker small 

recrystallization front showing concordant Silurian age. There is also a very thin low luminescent rim. 

Zircon 20 – Prismatic zircon showing oscillatory zoning followed by a featureless darker zone.  Especially 

in the pyramids an overgrowth rim develops. The oscillatory zoning is perturbed by transgressive 

recrystallization. Mesoproterozoic concordant age measured in the core and Carboniferous (Variscan) age 

measured in the pyramidal overgrowth.   

Zircon 21 – Irregular metamorphic zircon showing perturbed sectorial zoning and transgressive 

recrystallization that truncates the sectorial zoning. Concordant Ediacaran age measured in the zircon 

core.  

Zircon 22 – Ovoid metamorphic zircon showing diffuse oscillatory zoning superimposed by sectorial 

zoning. Partial transgressive recrystallization truncates the sectorial zoning.  Concordant ages measured 

in the sectorial zoning are Ediacaran and the concordant age measured in the disturbed zone is 

Ordovician (465 ±0.5 Ma).  

Zircon 23 – Ovoid zircon showing a featureless core surrounded by oscillatory zoned border. The zircon 

was mechanically fractured in one edge and then acquired rounded corners. Concordant Ediacaran ages 

obtained in the core and in the edge of the zircon are the same within the error margin. 

Zircon 24 - Prismatic zircon showing oscillatory zoning and a thin edge with high luminescence that 

truncates the oscillatory zoning. Concordant Ediacaran age measured in oscillatory zoning.   

Zircon 25 – Prismatic zircon with brown tonality showing sector zoning in the core and a thin overgrowth 

darker rim with incipient oscillatory zoning that develops especially in the pyramids. Discordant Cambrian 

age measured in the core and discordant Carboniferous (Variscan) age measured in the overgrowth rim.  

Zircon 26 – Zircon showing a featureless core truncated by a perturbed edge that shows penetrative 

transgressive recrystallized darker areas.  Concordant Ediacaran age measured in the core.  
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Zircon 27 – Zircon showing irregular morphology and a pink tonality. Diffuse oscillatory zoning and a bright 

fine rim. Concordant ages measured are Ediacaran and the same in two zircon spots under the error 

margin.  

Zircon 28 – Ovoid zircon showing perturbed oscillatory zoning. Concordant Ediacaran measured ages are 

the same in the zircon core and edge within the error margin.  

Zircon 29 – Prismatic zircon with a highly luminescent core showing Cryogenian discordant age and an 

oscillatory zoning edge showing concordant younger age in the top of Cryogenian. 

Zircon 30 – “Soccer boll” zircon showing sectorial zoning and concordant Ediacaran age.  

Zircon 31 – Prismatic zircon showing a nebulitic core followed by diffuse perturbed oscillatory zoning. A 

thin darker recrystallization front truncating the oscillatory zoning is more pronounced in the top pyramid. A 

highly luminescent overgrowth rim also truncates the oscillatory zoning in the other pyramid. Although both 

are Ediacaran, the age measured in the nebulitic core (610 ±6 Ma) is older than the mode and the age 

measured in the oscillatory zone (543 ±6 Ma) is younger than the mode.  

Zircon 32 – “Soccer-boll” zircon showing perturbed sectorial zoning. There is a thin highly luminescent rim 

whish transgresses into the area with sectorial zoning. Ediacaran ages measured in the core and in the rim 

of the sectorial zoning are the same within the error margin.  

Zircon 34 – Prismatic zircon showing perturbed and diffused oscillatory zoning. Upper Ediacaran 

concordant age measured in the zircon rim.  

Zircon 35 – Ovoid zircon showing a perturbed core truncated by diffuse oscillatory zoning and superposed 

sectorial zoning. Ediacaran age measured in the oscillatory zoning and middle Ordovician age measured 

in the edge. 

Zircon 36 – Ovoid zircon showing high luminescent core with sector zoning. Concordant Ediacaran age 

was obtained in the high luminescent zone.  

 

8.2.3.1. Summary of the results 

The zircon population of diatexite sample VC60 is dominated by medium-sized grains 

(90–150 µm) but also includes larger grains (~200 µm). Most zircons are translucent 

and pinkish and a few are brown. Some grains have mineral inclusions, generally 

showing lighter disturbed zone around them. The zircons show a wide variety of forms 

ranging from subhedral grains with pyramidal terminations to strongly rounded crystals 

with no visible crystalline faces. The internal structure and external morphology of the 

zircons is characteristic of xenocrysts, showing in cathodoluminescent images the 

existence of three components in most of the zircons: i) an inherited core showing 

magmatic or metamorphic textures and ovoid external morphology, ii) a transitional 
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zone showing corrosion and lobate transgressive recrystallization fronts and iii) a dark 

rim overgrowth developing mostly in the pyramidal extremities.  

 

 

8.2.3.1.1. Inherited cores  

The cores show several internal structures that indicate the outcome of total or partial 

solid state recrystallization superimposed in magmatic textures, including diffuse 

nebulitic and oscillatory zoning; “soccer ball” structure resulted from sector zoning, 

convolute zoning, transgressive recrystallization fronts, lobate boundaries, etc.  

56 cores were analyzed being 51 concordant (91%). The measured ages show the 

following distribution (Fig. VIII.9 and VIII.10): 

 One measured age is Mesoproterozoic (1121 Ma) representing inherited zircon 

that preserved in the core the magmatic oscillatory zoning and shows a dark 

variscan rim.    

 Four measured ages are Cryogenian two being around 660 Ma and two around 

790 Ma (one is discordant); they were measured in the cores of zircon showing 

oscillatory zoning. Some of them show younger age to the borders (e.g. zircon 29 

and zircon 31)  

 Most of the measured ages are Ediacaran (75%) ranging from 630 to 530 Ma, 

showing a concentration peak around 590 Ma.  The Ediacaran ages were obtained 

in cores showing either diffuse oscillatory zoning and/or sectorial zoning and/or in 

zircons without any internal structure.  

 Four measured ages are Ordovician around 460 Ma and two are early 

Carboniferous (343 and 334 Ma). All this ages were obtained in zircons showing 

dark transgressive recrystallization fronts particularly in the transition between the 

cores and the rims.  

The Th/U ratio shows large variation (between 0.02 and 0.73) and in general is higher 

than typical for metamorphic zircon (<0.1) and lower than typical for igneous zircons (> 

0.5 ppm) (e.g. Schaltegger et al., 1999; Hoskin & Black, 2000; Rubatto et al., 2002; 

Hoskin & Schaltegger, 2003). Only 8% of the zircons cores show Th/U < 0.1 and 17% 

show Th/U > 0.5. The older zircons (Mesoproterozoic and Cryogenian) show Th/U 

ratios > 0.6 compatible with the considered to igneous zircons (Fig. VIII. 10). The 
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values found in the diatexite zircon cores, mostly situated between the typical for 

metamorphic and igneous zircons, could be the result of partial metamorphic 

recrystallization, indicating that the Ediacaran measured ages are mostly metamorphic 

whereas the older measured ages reflect the igneous not disturbed inherited cores.    

There is positive correlation between Th and U suggesting a coupled exchange 

relationship. Exception for measurements in zircons showing intense high 

luminescence that show enrichment in U relatively to Th (Fig. VIII.11).  

In all the zircons showing marked sectorial zoning the Th and U contents are higher in 

the darker parts than in the lighter parts of the zoning, what could indicate transference 

of elements during the metamorphic process that originate the sector zoning. Although 

in most of these zircons the ages measured in the different parts of the sector zoning 

are only slightly different (the same within the margin error), there is one zircon where 

the ages measured in the clear and darker zones are different (593 ±6 and 568 ±6 Ma 

respectively; zircon 2). 

 

8.2.3.1.2. Rims  

The rims are usually very narrow (maximum 50 µm but the majority is about 15 µm), 

some show incipient magmatic oscillatory zoning and growth preferentially over the 

pyramids sites, giving a pyramidal aspect to the zircon crystal. All possible rims were 

analyzed but most of them are thinner than the diameter of the SHRIMP beam. From 6 

analyzed rims, two are concordant and four are discordant.  The ages measured are 

Carboniferous, ranging from 324 to 298 Ma. The concordant ages are 319 ±11 and 309 

±3 Ma.  All the rim measurements show very low Th/U ratio (< 0.02), especially due to 

the relatively high U content (av. 1775 ppm) and the low Th content (< 46 ppm).  Some 

authors consider that a low Th/U ratio (<0.1 ppm) is synonymous for metamorphic 

zircons.  (e.g. Schaltegger et al., 1999; Hoskin & Black, 2000; Rubatto et al., 2002) 

while for others this division is not effective and  low Th/U ratio is not always diagnostic 

of metamorphic processes (e.g. Moller et al., 2003; Kelly & Harley, 2005; Harley et al., 

2007). In the Gyeonggi migmatitic massif, Horie et al. 2009 found the same 

characteristic for migmatitic zircons, showing an inherited core and a low Th/U rim. The 

authors consider that the rim is attributing to “anatectic metamorphism”.  
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Fig. VIII. 9 – Wetherill Concordia diagram for common Pb uncorrected data of the MMC diatexite zircons considering 

only the concordant zircons.  

 

 

Fig. VIII. 10 - Histogram for the 
206

Pb ⁄  
238

U ages measured in the diatexite sample (VC60) from MMC (64 

measurements). The line represents the concordant ages (56 measurements).  
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Fig. VIII. 11 – Th/U vs. ages and Th vs. U diagrams for cores and rims of MMC diatexite zircons. The “perturbed 

zircons” are those whish show intense high luminescence around inclusions or in the borders. 

 

 

8.2.4. Interpretation and discussion of the results 

Although the analyzed sample belong to a rock showing mostly magmatic petrological 

textures with variable amount of schlieren it is notorious the detrital provenance/aspect 

of the zircons cores. Moreover, these zircons were affected by partial or total 

recrystallization processes that are reflected in its external ovoid morphology and round 

crystal terminations, diffuse oscillatory zoning, sectorial zoning, convoluted borders, 

lobate reentrances and transgressive recrystallization fronts. Thus, the ages recorded 

in zircon grains from the diatexite sample could be significant in characterizing the 

sources of the sedimentary protolith and in estimating its depositional age (Castineiras 

et al. 2008). The rim overgrowths with Variscan ages reflect a later event.  

Inherited zircons in the MMC diatexite define an age range displaying predominant 

Neoproterozoic populations. This group of zircons is the most abundant and fits well 

with materials derived from the Cadomian orogeny. In general, the probability density 

curve of the MMC diatexite inherited zircons shows a broad overlap with the zircon U–

Pb age distribution previously reported for the Schist-Greywacke Complex ages 

(Gutiérrez-Alonso et al., 2003; Teixeira, 2008; Teixeira et al., 2011; Pereira, 2011, 

2012; Talavera et al., 2012;) This similarity points to the Schist-Greywacke Complex as 

the most probable protolith of the MMC metatexites and granitic rocks. 

Beiras-Group and Douro-Group detrital zircons belonging to low metamorphic grade 

metagreywackes were recently dated (Teixeira et al. 2011, 2013; Pereira et al., 2012).   
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Besides Archean, Paleoproterozoic and Mesoproterozoic ages, over 75% of the 

Beiras-Group and Douro-Group greywackes zircon ages are late Neoproterozoic. 

Cryogenian ages are those most represented (c. 833–631) followed by Ediacaran and 

Tonian ages.  

When comparing our data with data from Pereira et al. (2012) and Teixeira (2008) we 

find a number of similarities and differences. The Neoproterozoic ages are prevalent in 

the MMC studied sample as well in Douro-Group and Beiras-Group. However, as 

mentioned before, in MMC there is a noticeable greater frequency of Ediacaran ages 

relatively to the Cryogenian ages and the older Cryogenian ages are significantly 

under-represented while in the Beiras-Group and Douro-Group the Cryogenian ages 

dominate and there is a significant contribution of Tonian ages. The Paleoproterozoic 

and Archean ages are absent in MMC studied sample while in the metasedimentary 

sequences are well represented.    

Also the absence of younger than Ediacaran ages in Beiras and Douro-Group is a 

noticeable feature that distinguishes the MMC studied sample from the low grade 

metasedimentary sequences.   

Thus, unlike Beiras-Group the MMC studied sample shows mainly latter Cadomian 

ages. The question is to understand if the ages measured are the result of exclusively 

magmatic events or also have the contribution of metamorphic events within the 

measured age’s interval. Considering: i) the continuous existence of zircons ages from 

610 Ma to 520 Ma and the peak concentration around 590 Ma in zircons showing 

marked metamorphic internal structures, ii) the low Th/U content and iii) the correlation 

between Th and U (coupled exchange), it is suggested that most of the inherited 

zircons could result mostly from partial recrystallization processes or from total 

recrystallization processes that completely erased the previous zoning (featureless 

zircons). These recrystallization events could represent recrystallization during the 

main Cadomian metamorphic event whose age of 590 Ma coincide with the age 

concentration peak in the MMC diatexite inherited zircons. Moreover, the 

Mesoproterozoic and Cryogenian aged zircons and the zircons aged older than 590 Ma 

have probable magmatic origin, which is suggested by their higher Th/U ratios and 

internal structure.  

The two Ordovician ages measured in the cores showing disturbed structures and 

abnormal U content most likely are mixed ages, probably represent sites of incomplete 
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homogenization during metamorphism rather than meaningful periods of growth (e.g. 

Hoskin & Black, 2000;). 

The early Carboniferous ages (343 and 334 Ma) measured in the disturbed transition 

between cores and rims could be the result of the early Variscan metamorphic events 

that disturbed the borders of the Ediacaran cores, before the pyramidal overgrowths. 

The rims, aged 319 to 309 Ma, are interpreted as late-Variscan magmatic 

developments. These late variscan magmatic overgrows are probably related to the 

MMC migmatization and anatexis, that should have occurred during the Variscan 

Orogeny between 330 to 310 Ma and  falls within the range of ages defined by many 

authors for the emplacement of syn-D3 granitic rocks in Iberian Central Zone (e.g. 

Ferreira et al. 1987; Dias et al.,1998;  Fernandez Suarez et al., 2000, Almeida et al., 

2001, 2014, Valle Aguado et al., 2005; Teixeira, 2008, Teixeira et al., 2011).    

MMC diatexite zircons show Neoproterozoic inherited ages and Variscan overgrowth 

ages coeval with the ages found to other anatectic complexes in the Central Spain. 

Like MMC studied sample also the zircon ages of the Sotosalbos, Toledo and Peña 

Negra anatectic complexes show an important Neoproterozoic age (Castiñeiras, 2008) 

and a younger zircon populations dated ~330 Ma in the Sotosalbos region, 317 Ma in 

the Toledo complex (Castiñeiras et al. 2008) and 315 Ma in Peña Negra (Zeck et al. 

2004). Montero et al. (2004) stated that anatexis in the Central Spain region occurred 

for a long period, from 352 to 297 Ma, with a maximum at 335-305 Ma, suggesting a 

coeval emplacement of massif-type granites.  

In general the measured anatexis ages are younger than the age of the main 

Hercynian metamorphic events indicating that migmatization occurred late in the 

metamorphic cycle, after peak conditions were attained (Castiñeiras, 2008). This is in 

agreement with the petrologic evidence suggesting that anatexis took place late in the 

Hercynian cycle during the exhumation of metamorphic core complexes (Barbero 

1995) and coincide with the ages stablished to the 3rd Variscan deformation phase 

(Noronha, 1979; Acciaioli et al., 2003; 2005; Valle Aguado et al., 2005). This late origin 

with respect to the thermal peak for the studied migmatite terranes in the Central 

Iberian Zone is also comparable with other European Hercynian terranes, where ages 

for intermediate P and high T granulites vary from 345 to 323 Ma (Kroner et al. 1998; 

Chen et al. 2003; Gordon et al. 2005, Be Mezeme et al. 2006).  

The good preservation of pre-Hercynian zircons in the diatexite is remarkable even 

though the original metamorphic fabric of these rocks has been mostly obliterated 
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during the anatectic event.  The preservation of inherited ages in the pelite-derived 

MMC diatexite also suggests that the anatexis occurred at low temperature and/or the 

duration of the magmatic event is short (Watson, 1996). It is possible that the zircons 

incorporated in the biotitic schlieren are probably the ones without any rim overgrowth 

and the zircons with marked rims probably are in contact with the magmatic portion of 

the diatexites. 

 

8.3. Rb-Sr and Sm-Nd systems 

8.3.1. Principles of Rb-Sr method 

The Rb-Sr system is based on the decay of the radioactive isotope 87Rb to the 

radiogenic isotope 87Sr. The amount of 87Sr in a mineral or rock containing Rb 

increases continuously as a function of time, allowing its use for age determinations. 

Furthermore, the isotope 87Sr can be used as a tracer in certain geological processes. 

The total number of atoms of 87Sr existing in any geological material at age (t) is given 

by the fundamental equation of Geochronology (eq. 1).  

An isochron is obtained by a diagram in which the X axis represents the 87Rb/86Sr ratio 

and the Y axis represents the 87Sr/86Sr ratio. The slope of the line that best fits the 

obtained ratios corresponds to the age of crystallization or metamorphism. 

When the degree of scattering of the points that define the line calculated by linear 

regression is above a certain amount this is called an “errorchron” and should be 

treated with caution (Brooks et al., 1972). The dates and initial ratio derived from 

errorchron may, nevertheless, convey geologically useful information, especially in 

cases where additional facts or judgments support them (Faure, 2000). The MSWD 

parameter (Mean Square of Weighted Deviation) established by McIntyre et al. (1966) 

defines the degree of scattering of the experimental points from the best line and 

therefore the consistency of the isochrons. If the reason for the analytical uncertainties 

is only associated with scattering, the MSWD tends to be close to one. Much higher 

values generally indicate either or overestimated analytical errors or other source of 

scattering is present, often called "geologic scattering". Snelling (1976) proposed 

maximum values of MSWD for a line to be considered an isochron, relative to the 

number of analyzed points. These values are shown in table VIII.1.  
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Table VIII.1 - Maximum values of MSWD for an isochron (Snelling, 1976) 

Nº points 3 4 5 6 7 8 9 10 

MSWDmax 3,92 3,07 2,68 2,45 2,29 2,18 2,09 2,02 

 

During magmatic differentiation or during sedimentation the behavior of the Rb and Sr 

ions is different. Rb is an alkali metal with a low ionic radius which allows its integration 

in the mineral crystal lattice replacing K. Sr is an alkaline earth metal and tends to 

replace Ca. The different behavior of the pair Rb-Sr and its geochemical mobility allows 

the easy opening of the system, which requires special attention in the interpretation of 

the age data (Geraldes, 2010). 

With regard to the petrogenesis of igneous rock, Rb/Sr isotopic method allows 

distinguishing magma originated exclusively in the upper mantle or derived wholly or 

partly from crustal rocks. Indeed, the Earth magmatic differentiation processes lead to 

the formation of a continental crust more rubidium enriched than the mantle and thus in 

87Rb. This composition is reflected on the isotopic 87Sr/86Sr isotopic ratio, which is 

higher the greater the contribution of crustal material. Thus, ratios (87Sr/86Sr)i > 0.710 

indicate  a source from crustal materials, meaning that strontium comes mainly from 

crustal rocks enriched in radiogenic 87Sr. On the other hand, ratios (87Sr/86Sr)i < 0.704 

imply a mantle juvenile crustal origin without contribution of older crustal materials. For 

intermediate values of (87Sr/86Sr)i the source of the magma will be more difficult to 

interpret, supposing mixing models involving crustal and mantle contributions (e.g. 

Raymond, 1995; Faure & Mensing, 2005). 

The metamorphic processes cause changes in the isotopic ratios of the pair Rb-Sr 

even for modest increases in temperature and therefore can be applied to the study of 

metamorphic events. If the system remained closed during metamorphism, the whole-

rock isochron shall indicate the period of formation of the rock. However, if the system 

was open, both whole-rock and mineral isochronous indicate the metamorphism age 

(Jager et al.1967; Geraldes, 2010) 

 

8.3.2. Principles of the Sm-Nd method  

The Sm-Nd geochronological method is based on the radioactive decay of the 147Sm 

radioactive isotope to the 143Nd radiogenic isotope. The principles applied in this 

system are the same as for the Rb-Sr system, so it can be apply the isochron method 
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using the Fundamental Equation of Geochronology and the144Nd stable isotope as a 

reference:  

 

143Nd = (143Nd)i + 147Sm (eλt -1) 

 

However, the small variations of the ratio 147Sm/144Nd make difficult or impossible the 

measurement of crystallization ages, especially when using only whole-rock samples. 

The ideal is combine analyses of whole-rock with analyses of mineral phases (Dickin, 

2005). 

The Sm and Nd belong to the rare-earth elements group and have similar 

characteristics. For this reason, these two elements have a similar behaviour in most 

geological processes. The immobile character of these elements during most 

geological processes, particularly during metamorphic episodes, hydrothermal 

alteration and weathering allows the system to be closed. Therefore their systematic 

study has been used as a geochemical indicator of the nature and composition of the 

protolith (DePaolo, 1988; McLennan et al., 1990; Faure & Mensing, 2005;), although 

slight changes may occur during the sedimentary cycle (Awwiller & Mack, 1991, Zhao 

et al., 1992).  

The parameters of the Sm-Nd system are distinctive of mantle vs. crustal origin of the 

rocks.  Relatively low 143Nd/144Nd ratios indicate crustal sources, while high 143Nd/144Nd 

ratios suggest the input of mantle-derived juvenile material. Positive or near-zero εNd 

values near the crystallization age of an igneous suite, correspond to juvenile, mantle-

derived components (DePaolo, 1988). 

 

8.3.3. Methodology 

Twenty-nine samples from MMC and the SGC were selected for Rb-Sr and Sm-Nd 

whole-rock isotope studies. They correspond to: four pelitic samples from Schist-

Greywacke Complex (three from Fânzeres and one from Aguçadoura); three 

metagreywacke samples, three calc-silicate samples, two patch-metatexite samples; 

five banded-metatexites samples, one diatexite sample; two leucosome samples, two 

leucogranite samples; five two-mica granite samples and two aplite-pegmatite samples.  

The Rb-Sr and Sm-Nd isotope data are listed in the appendix E.  
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The analyses were performed at the Laboratório de Geologia Isotópica da 

Universidade de Aveiro, Portugal. The selected powdered samples were dissolved with 

HF/HNO3 solution in Teflon Parr acid digestion bombs at 200ºC for 3 days. After 

evaporation of the final solution, the samples were dissolved with HCl (6N) and dried. 

The target elements were purified using conventional ion chromatography technique in 

two stages: (i) separation of Sr and REE elements in ion exchange column with AG8 

50W Bio-Rad cation exchange resin; (ii) purification of Nd from other lanthanides 

elements in columns with Ln Resin (ElChrom Technologies) cation exchange resin. All 

reagents used in the preparation of the samples were sub-boiling distilled and the 

water produced by a Milli-Q Element (Millipore) apparatus. Sr was loaded on a single 

Ta filament with H3PO4, whereas Nd was loaded on a Ta outer side filament with HCl in 

a triple filament arrangement. 87Sr/86Sr and 143Nd/144Nd isotopic ratios were determined 

using a Multi-Collector Thermal Ionization Mass Spectrometer (TIMS) VG Sector 54. 

Data were acquired in dynamic mode with peak measurements at 1-2V for 88Sr and 

0.8-1.5V for 144Nd. Sr and Nd isotopic ratios were corrected for mass fractionation 

relative to 88Sr/86Sr=0.1194 and 146Nd/144Nd=0.7219. During this study, the SRM-987 

standard gave an average value of 87Sr/86Sr= 0.710256(16) (conf. lim=95%) and 

143Nd/144Nd=0.5121057(61) (conf. lim=95%) to JNdi-1 standard (143Nd/144Nd data are 

normalized to La Jolla standard). The concentrations of Rb, Sr, Sm and Nd in two 

whole-rock samples were determined by isotope dilution mass spectrometry method 

(IDMS), using a 87Rb/84Sr and 150Nd/149Sm double spike.  

 

8.3.4. Results 

8.3.4.1. Isochrons / Errorchrons 

The isochrons/errorchrons presented in this study were calculated with ISOPLOT® 

software (version 3.7) developed by Ludwig (2003), with regression lines calculated by 

the least squares method and its adjustment assessed by the MSWD parameter. For 

errorchrons the model 3 of McIntyre (1966) is used where the excess scattering is 

absorbed by the expansion of initial proportions. 

The ages obtained are significant but their precision is limited and the error margins are 

large due to Rb/Sr values dispersion and the small number of samples of each 

lithology. Being aware of these limitations, the results provide relevant information that 
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is discussed below. The whole-rock Rb-Sr isotope systematics provided the following 

ages: 

 For SGC metasediments it was not possible obtain a significant isochron due to 

intense dispersion of the Rb/Sr values that are not collinear, giving a MSWD = 210. 

 For metagreywacke resisters (Fig.VIII.12), based on 6 samples, an errorchron of 

650 ± 60 Ma (MSWD = 26) was obtained. If considering only the metagreywacke 

resisters without the calc-silicate rocks (only three samples), an isochrone of 608 

±53 Ma (MSWD = 1.3) was obtained. 

 For banded-metatexites and leucosomes (Fig.VIII.13A), based on seven samples, 

an errorchron of 329 ± 16 Ma (MSWD = 10.3) was obtained. Excluding the 

migmatitic greywacke samples (VC22 and VC16c) it is possible to obtain an 

isochron of 328 ±18 Ma, the same age as the errorchron (Fig. VIII.13B).  

 For two-mica granites (Fig. VIII.14A), based on five samples, an errorchron of 324 

±38 Ma (MSWD = 5.8) was obtained. 

 For aplite-pegmatites (Fig. VIII.14B) an age of 325 ±27 Ma, although only with two 

samples, was obtained. 

Due to the nature of the studied rocks, a moderate to high dispersion in the Rb-Sr 

system is expected. These are high-grade metamorphic rocks and granitic rocks with 

high interaction fluid/rock and restitic component, which may produce changes in the 

Rb/Sr ratio that are reflected in the isotope ratio. The isotopic homogenization depends 

on various factors, like the nature of minerals involved, the existence of restitic phases 

that could both keep their isotopic signatures or reequilibrate with the melt (depending 

on the mineral composition, grain size and closing temperature and the extent of the 

thermal peak) (Dickin, 2005; Faure & Menssing, 2005) 

In the case of whole-rock analyses, the question arises whether the system remained 

closed and what really reflect the measured ages. 

The most relevant feature of the obtained results is the fact that the metagreywacke 

and calc-silicate resisters show an isochron of Ediacaran age, comprised in the same 

age range measured in the inherited cores of the diatexite by the U/Pb method. On the 

other hand, the MMC metatexites and granitic rocks show isochrons of Variscan age, 

of ~329 Ma. It is also remarkable that the errorchron ages obtained with larger number 

of samples coincide with the isochron ages obtained with a lesser number of samples, 

even though the lack of reliability of the 3-point or 2-points isochrons. 
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The studied rocks have different mineralogy and thus may have a different isotopic 

behavior during metamorphism. Metagreywacke and calc-silicate resisters, consisting 

mainly of quartz and Ca-plagioclase and rare biotite, thus containing minerals poor in 

Rb, could have remained as a closed system (for whole-rock), providing isotopic older 

age, coincident with the age of the protolith. In fact, it was found (Dickin, 2005 and 

referenced therein) that the 87Sr generated by radioactive decay of unstable Rb 

occupies instable positions in the crystal lattice of minerals rich in Rb and tends to 

migrate from crystals if subjected to a heat pulse. However, if the fluids in the rock 

remain static, the Sr released from minerals such as feldspars and micas tend to be 

attached by Sr absorbing mineral as plagioclase, apatite and sphene, abundant in the 

metagreywacke and calc-silicate resisters. Thus, it is possible that the whole-rock 

system remains closed, even if the mineral system was open.  

On the other hand, the migmatites are richer in K, both incorporated in the biotite and in 

K-feldspar, and therefore it is likely that the Rb-Sr system was been fully re-equilibrated 

when the migmatization occurred. Thus, it is expected that the isochron age of these 

rocks represent the Variscan thermal pulse that resulted in the anatectic process.  

Despite some dispersion of values, the study of Rb/Sr isochrons reinforces the 

hypothesis of Ediacaran age for the sediments that originated the MMC lithologies and 

the Variscan age for migmatization and anatexis. The ages suggested for 

migmatization are coincident with the ages found by Acciaioli et al. (2005) in biotites 

contemporaneous of an early stage of D3 deformation phase that yielded an age of 

333.5±4.4 Ma.    
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Fig. VIII. 12 - Nicolaysen diagrams for: A) Metagreywacke and calc-silicate resisters (errorchron); B) Metagreywacke 

resisters (isochron). Both show Ediacaran ages.  

 

 

Fig. VIII. 13 – Nicolaysen diagrams for: A) Five banded-metatexites and two leucosomes samples; B) the same as in A) 

without two samples of migmatized metagreywackes.  All the obtained ages are Variscan.   
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Fig. VIII. 14 - Nicolaysen diagrams for: A) Two-mica granites; B) Aplite-pegmatites.   

 

8.3.4.2. Isotopic signature 

The Sm-Nd isotopic results obtained in selected samples of SGC and MMC are 

presented in appendix E. For initial ratio calculations a representative Variscan age of 

330 Ma is assumed since it is the age used by several authors considering the 

emplacement age of most syn-tectonic variscan granites (Beetsma, 1995; Teixeira, 

2008), and corresponds to the isochron age obtained to the MMC metatexites.  

Fig VIII.16 represents the εSr330 versus εNd330 diagram for selected MMC rocks 

superimposed on the fields established for other CIZ granitic and metasedimentary 

rocks. 

Rb-Sr and Sm-Nd isotopic signatures reveal that the analysed samples have a 

substantial crustal component, showing εSr330 values ranging from +46 to +257 and 

εNd330 values ranging from -2.1 to -9.3.  
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The SGC metasediments show relatively wide ranges of initial 87Sr/86Sr(330) (0.7139 to 

0.7222) and some of them yield unrealistically low isotopic Sr ratios at the Ediacaran 

age (590 Ma), below BABI values. This is a geochemical feature of a significant part of 

the CIZ Neoproterozoic metasediments, as reported by other authors (Ugidos, et al., 

2003; Beetsma, 1995; Villaseca et al., 2014). These values clearly indicate disturbance 

of the Rb-Sr system during metamorphism. The Rb-Sr system may be disturbed by 

source-rock weathering, K-metasomatism and Rb mobility during diagenesis and 

metamorphism (McLennan et al., 1993). Thus, the 87Sr/86Sr ratio does not indicate the 

provenance of the rock but the conditions associated to the metamorphic processes.  

The MMC lithologies (migmatites and granites) show much shorter range of initial 

87Sr/86Sr330 (0.7113 to 0.7153) which suggests that the Rb-Sr resetting was complete, 

undertaking a Sr “isotopic uniformization process” (Cordani et al., 2004), during the 

migmatization and anatectic process.  

The aplite-pegmatite samples show lower values with 87Sr/86Sr330 < 0.7080.  

The range of 147Sm/144Nd values for all the analysed samples are within the limits 

established by Zhao et al. (1992) for undisturbed clastic sediments (from 0.100 to 

0.130). The εNd results allows the division of the analysed lithologies into the following 

groups:  

 Group I comprises the pelitic SGC metasediments, the patch-metatexites, the 

pelitic banded-metatexites and all the MMC granitic rocks, showing εNd330 values 

between -2.1 and -5.9;  

 Group II comprises migmatized metagreywackes, metagreywacke resisters and 

calc-silicate resisters showing εNd330 values between -7.3 and -9.3.  

 

The Nd isotopic composition of the MMC samples, compared with the values obtained 

by other authors for the granitic and metasedimentary rocks of the CIZ (Fig. VIII.15) 

(recalculated to the same age – 330 Ma), shows that the Group I coincide with the εNd 

values found in the Beiras-Group (Beetsma, 1995; Tassinari, 1995) and other 

Neoproterozoic metasediments (Ugidos et al., 1997, 2003;  López-Guijarro  et al., 

2008; Villaseca et al., 2014).  On the contrary, the isotopic signature found in the 

Douro-Group metasediments (Teixeira, 2008), to the lower-crust granulites (Villaseca 

et al. 1999) and to Paleozoic metasediments (Beetsma, 1995) show different Nd 
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isotopic ratios, generally with lower εNd than the MMC rocks and SGC metasediments 

(Fig. VIII.15).  

The εNd0 values for the SGC metasediments and for MMC rocks (including group I and 

Group II) overlap the values found by Dabard et. al. (1996) to Brioverian sediments 

from the Armorican Massif.  

Relatively to the syn-tectonic two-mica granites studied by Beetsma (1995) and 

Teixeira (2008), the MMC granitic rocks show lower Nd isotopic dispersion and slightly 

higher εSr330 values. The MMC rocks, including two-mica granites, show εSr values 

between the syn-tectonic granites and the SGC metasediments. Also the comparison 

of the MMC granitic rocks with the values found by Almeida (2014) to the Porto granite 

show that the MMC lithologies have slightly higher εSr and lower εNd values for the 

same inferred age (313 Ma). The Porto granite samples plot in the field defined by the 

other CIZ two-mica granites (Beetsma, 1995).  

The mixture of components with distinct elemental and isotopic composition generates 

a hyperbolic curve on a 87Sr/86Sr versus Sr diagram (e.g. Faure, 1986), 

correspondingto a straight line in 86Sr/87Sr versus 1/Sr diagrams. These diagrams are 

used to better understand the genetic relationship between the MMC different 

lithologies. The SGC samples collected at Aguçadoura, the migmatites (metatexites 

and diatexites), the leucogranites and the two-mica granites plot along a hyperbolic 

curve in the 87Sr/86Sr versus Sr diagram and show a collinear relation (r2 = 0.93) on the 

86Sr/87Sr versus 1/Sr diagram. The SGC samples collected at Fânzeres and the aplite-

pegmatites plot outside this collinear group (Fig. VIII.16).  
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Fig. VIII. 15 – Initial Sr-Nd composition of the MMC rocks and SGC metasediments and comparison with other Central 

Iberian Zone granitic and metasedimentary rocks.  Abbreviations: SGC.bg - field defined for Beiras-Group and other 

Neoproterozoic metasediments (Beetsma (1995) and  Tassinary et al. (1995)  (Beiras-Group) ; Ugidos et al. (1997, 

2003);  Villaseca et al. (2008, 2014)  and Rodríguez-Alonso et al. (2004) (Neoproterozoic)); SGC.DG - Field defined for 

Douro-Group metasediments (Teixeira, 2008); Syn-tect 2m.Gnt – Field defined by syn-tectonic granites (Beetsma, 

1995; Teixeira, 2008); Olho Sapo – Field defined for Olho de Sapo Orthogneiss (Beetsama, 1995); PLZ – field defined 

for Paleozoic metasediments (Beetsma, 1995); Pelitic granulites – field defined for lower crust pelitic granulites 

(Villaseca, 1999).  Legend Key: SGC = Schist-Greywacke Complex; PMM = patch-metatexites, BMM = banded-

metatexites; LCS = leucosomes; DTX = diatexites; 2m.Gnt = two-mica granites; APG – aplite-pegmatites; GWK = 

metagreywackes resisters; 

 

 

Fig. VIII. 16 – A) 
87

Sr/
86

Sr vs Sr diagram and B) 
87

Sr/
86

Sr vs 1/Sr diagram for MMC rocks and SGC pelitic rocks. Legend 

Key: SGC = Schist-Greywacke Complex pelitic samples; PMM = patch-metatexites, BMM = banded-metatexites; LCS = 

leucosomes; DTX = diatexites; 2m.Gnt = two-mica granites; APG – aplite-pegmatites; GWK = metagreywacke resister; 

CSR - calc-silicate resisters.  
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8.3.5. Interpretation and discussion of the results 

It is generally recognized that the radiogenic parent/daughter elemental ratios are often 

changed on a regional scale during high-grade metamorphism. As a result, isotopic 

systems are strongly disturbed, and the pre-metamorphic history of high-grade terrains 

may be poorly constrained. In addition, the majority of anatectic granites generated 

during crustal melting events will be isotopically heterogeneous (Chemiak & Ryerson, 

1993; Barbero et al. 1995; Faure & Mensing, 2005; Zeng et al., 2005). There are 

several anatectic complexes that lack isotopic homogeneity as is the case of the 

Manaslu anatectic Complex (Deniel et al., 1987) and the Toledo Anatectic Complex 

(Barbero et al. 1995) that exhibit large isotopic variation. Other anatectic complexes 

show isotopic homogeneity, as is the case of the Trois Seigneurs massif (Bickle et al., 

1988) and St. Malo massif (Peucat, 1986). 

 

In MMC, it was possible to observe that the initial isotopic heterogeneity shown by the 

two considered groups is mostly a replication of the protoliths heterogeneity: the pelite 

lithologies show isotopic signature different from the isotopic signature of the 

metagreywackes. This suggests that the Nd isotopic signatures are inherited from 

different levels of the sedimentary pile present in the MMC. The Nd isotope 

composition of terrigenous sediments is controlled by two processes: (i) mixing of 

detrital components derived from different source rocks in the provenance area and (ii) 

mechanical sorting and quartz dilution effects during erosion, transport and deposition 

resulting in unmixing of provenance components  (McLennan, 1989). The bimodal Nd 

isotope variability between Group I and Group II is probably related with different type 

of terrigenous metasediments in these two groups – Group I comprise pelitic 

metasediments that resulted mainly from authigenic deposition of clays and Group II 

comprise metagreywackes composed mostly by allogenic material transported from 

elsewhere.  

 

The relative homogeneity of the isotopic signature of the MMC granitic and metatexitic 

rocks is a remarkable feature despite their lithological and chemical heterogeneities 

and the notorious variations in the restite entrainment in the melts. The homogenization 

of the isotopic signature suggests that all MMC granitic rocks have a close relationship 

with the metatexites, probably having a cogenetic origin. Moreover, the relative isotopic 
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similarity among the MMC lithologies and the SGC metasediments suggests a direct 

genetic relationship between them and point to SGC as the protolith of the MMC 

lithologies. This is also suggested to other granitic anatectic complexes in Central 

Iberia (Beetsama, 1995; Pereira et al., 2008; Chicharro et al., 2014) 

The almost coincident isotopic signature of calc-silicate and metagreywacke resisters 

suggests that these two apparent different rock types have the same origin and result 

from the same sedimentary process. This confirms the calc-silicate nodules diagenetic 

origin by cementation of the greywackes, as proposed before, based in petrological 

and chemical characteristics.  

The aplite-pegmatite samples seems to be related to the syn-tectonic two-mica 

granites emplacement, since they plot outside the MMC groups within the field of syn-

tectonic granites defined by Beetsma (1995). 
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I think and think for months and years. Ninety-nine 

times, the conclusion is false. The hundredth time I 

am right. 

Albert Einstein 

 

I have come to the conclusion, after many years of 

sometimes sad experience that you cannot come 

to any conclusion at all. 

Vita Sackville-West 

9.1 Synthesis general  

At the beginning of this thesis it was mentioned that we would like to answer a series of 

questions about the lithologies outcropping in the coastal zone between Leça da 

Palmeira and Póvoa do Varzim, NW of Portugal. A group of intricate metasedimentary, 

migmatitic and granitic lithologies occurs in this area which we call “Mindelo Migmatitic 

Complex”.  

In this chapter we will try to answer to those question based on the results and 

hypotheses suggested in the previous chapters. 

 

Did partial melting produce the migmatites?  

The textural and compositional evidence suggest that the dominant process for 

generating the MMC migmatites was partial-melting. Injection is not a major contributor 

since there are no traceable field relations between the leucosomes in the analyzed 

outcrops and the granitic intrusions (except for leucogranites). In addition, the diverse 

compositions exhibited by the leucosomes over short distances, as well as the diversity 

of granitic rocks spatially associated with the metatexites, argue against a common 

intrusive source,. Textural evidences of partial melting processes are widespread both 

in metatexites and in granitic rocks. Moreover, the abundance of peritectic cordierite 

and relicts of sillimanite + biotite in leucosomes support an anatectic origin through an 

incongruent melting reaction involving biotite and sillimanite as the reactants and 

cordierite plus K-feldspar as incongruent products. 

http://quotes.yourdictionary.com/author/albert-einstein/
http://quotes.yourdictionary.com/author/vita-sackville-west/
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What is the relationship between the migmatites and the surrounding lower grade 

metasediments? What was the protolith of these migmatites?  

Field relationships, whole-rock chemistry and U-Pb, Rb-Sr and Sm-Nd isotopic 

signatures suggest that Schist-Greywacke Complex was the protolith that originated 

the MMC lithologies, considering that:  

The SGC metasediments are spatially related to the migmatites and granitic lithologies 

that make up the MMC. Moreover, the lithologies present in the Metatexite Zone, i.e. 

pelitic rock interspersed with metagreywackes and calc-silicate rocks are similar to 

those that characterize the Schist-Greywacke Complex.  

The chemical composition of the pelitic metatexites is almost coincident with the 

chemical composition of the pelitic metasediments from SGC, both in major and in 

trace elements, including Rare Earths.  

The age of inherited zircons from a diatexite sample coincide with the age found to low 

grade SGC metasediments belonging to Beiras-Group and Douro-Group (Ediacaran) 

(Teixeira, 2011; Pereira, 2012). 

The Rb-Sr and Sm-Nd isotopic signatures of the MMC lithologies coincide with the 

isotopic signatures of Beiras-Group samples (from this study and from other studies, 

see sub-chapter 7.3.4.2) and is different from the Sm-Nd signature obtained for other 

lithologies from ZCI, namely Paleozoic metasediments (Beetsma, 1995), Douro-Group 

metasediments (Teixeira, 2008) and lower-crust granulites (Villaseca et al. 1999). The 

εNd0 values of the SGC metasediments and MMC rocks (including Group I and Group 

II) overlap the values found by Dabard et. al. (1996) to the Brioverian sediments from 

the Armorican Massif. 

 

What is the metamorphic zoning and field gradient in the area? 

In the studied area the metamorphic conditions show a gradual evolution from the 

chlorite-zone in the East, through the biotite-zone, the staurolite-zone, the sillimanite-

zone and finally, near the coast, the sillimanite-K-feldspar-zone (Metatexite Zone) and 

anatexis. 

The metamorphic sequence, the mineralogical associations and the geometric relations 

Si / Se suggest that the process that originated the metamorphic zones has a regional 
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character, reached moderate pressure and temperature conditions and is related with 

D1 deformation phase. During D3 an increase in temperature and decompression 

process occurred, conditioned by the granitization and emplacement of the two-mica 

syn-tectonic granites. The first metamorphic event (M1), attaining condition of P > 490 

Pa and 560 < T< 600 ºC, reflects burial and heating. These conditions were followed by 

decompression and temperature increase leading to andalusite and cordierite 

development during the later metamorphic event (M2). The sillimanite-zone and 

migmatization are the result of the last metamorphic event. 

 

Is there a relationship between the migmatites and the granitic rocks from MMC? 

The MMC granitic rocks and the metatexites show an intimate spatial relationship.  The 

transition from metatexites to leucogranites is gradual while the contacts between the 

diatexites and the two-mica granites with the metatexites are abrupt. The Sm-Nd 

isotopic signatures and the Rb-Sr ages of metatexites and granitic rocks are almost 

coincident.  Moreover, the correlation between 86Sr/87Sr and 1/Sr suggests a co-genetic 

relation between the MMC rocks (except metagreywackes and aplite-pegmatites). The 

chemical and mineralogical dissimilarity between them result from their derivation from 

different crustal levels and different melting reactions rather than of a marked 

difference in the source lithologies involved. 

 

What was the cause of the lithological diversity and heterogeneity in the MMC?  

The lithological, petrographic, geochemical and isotopic signatures of the MMC rocks 

suggest that the lithological heterogeneity is related to the anatexis processes. 

Different melting processes, diverse melting rates and the distinct structural level in 

which the melting occurred led to the diversity of lithologies found in this area. 

The following anatexis / crystallization events are suggested:  

i) From a protolith consisting of Schist-Greywacke Complex metasediments a 

first fluid-presence melting, mainly of plagioclase and quartz, produced 

some leucosomes and mostly leucogranites. These melts were formed 

under stress which led to the migration of melts and subsequent 

crystallization in dilatant sites. After the water available has been consumed, 

fluid-absent biotite breakdown reactions produce peritectic cordierite and 

leucosomes composed of plagioclase + quartz with minor amounts of K-
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feldspar. These processes occurred in relatively shallow levels at P < 3.5 

KPa. 

ii)  At deeper levels (still below 4 Kbar) and slightly high temperature, melt rate 

was grater and produced diatexites that intruded metatexites. 

iii)  Above 4 Kbar large amounts of melt were produced by breakdown of 

muscovite plus biotite-bearing metasediments. The resultant melts are less 

dense than the host rocks, which promotes its ascent and emplacement at 

shallow levels, generating two-mica granites that incorporate migmatite 

xenoliths and intrusive dikes.  

Also the influence of later fluids, probably of pneumatolytic and hydrothermal 

provenance, contributed to the lithological diversity in the MMC. These fluids seem to 

be structurally controlled and thus changed selectively the mineralogy of the MMC 

rocks.  

 

What types of fluids were present during the anatectic process?  

Fluid inclusions in leucosomes, tourmaline-bearing leucogranites and two-mica 

granites reveal the presence of monophasic inclusions in all the studied samples, 

although showing different composition.  Leucosomes are characterized by N2-CH4 and 

N2-CO2-CH4 fluids showing high N2 content; leucogranites show N2-CH4 fluids with high 

N2 content as well; two-mica granites only show CO2-N2 fluids being CO2 the dominant 

species in the volatile phase. All these fluid types occur in fluid inclusions trapped in 

intragranular trails or in clusters and transect the metamorphic conditions of the 

respective lithologies, suggesting its primary character.  

It seems that multiple fluid pulses affected the MMC in subsolidus conditions: a first 

pulse with K-bearing fluids, a second pulse with boron-bearing fluids and a third pulse 

containing silica-bearing aqueous fluids.  

The K-bearing fluids affected all the MMC lithologies and caused structurally controlled 

sub-solidus K-metasomatism, revealed by: i) the filling of miarolitic cavities and micro-

fractures; ii) alteration processes in the metagreywacke and calc-silicate nodules; iii) 

replacement of plagioclase crystals in leucosomes, leucogranites and two-mica 

granites; iv) wide variation in the K content, especially in leucosomes and leucogranites 

(unrelated to the content of silica), and the inverse correlation between the K and the 

Na2O+CaO content in this lithologies.  
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The occurrence of leucogranites and two-mica granites showing localized replacement 

of biotite by tourmaline, the presence of post-kinematic tourmaline in the SGC 

metasediments and of tourmalinites associated with fractures, as well as the 

occurrence of aplite-pegmatite veins showing abundant tourmaline suggest that latte 

boron-rich fluids also affected the MMC and surrounding metasedimentary sequence. 

The isotopic signature of aplite-pegmatites coincides with the isotopic signature of syn-

tectonic granites defined by Beetsma (1995) and Teixeira (2008), which can suggest a 

relationship between these fluids and the emplacement of the sin-D3 anatectic 

granites. In the tourmaline-bearing leucogranite, a group of fluid inclusions absent both 

in leucosomes and in two-mica granites was found, suggesting that this type of fluids 

could be related to the tourmalinization process.  

A later extensive hydrothermal fluid flow is inferred from: i) the muscovitization of 

tourmaline, biotite and plagioclase all over the MMC; ii) presence of quartz-veins 

cutting all the lithologies; iii) large quartz-crystals bands in some calc-silicate rocks that 

include all the minerals of the rock; iv) retrograde alteration of staurolite, garnet, 

andalusite and biotite in the metasedimentary sequence.  

The presence of different latter aqueous fluids inclusions in quartz from the 

leucosomes, leucogranites and two-mica granites could be related to this multiple fluid 

pulses that affected the MMC. 

 

Is it possible to date the anatexis event? 

U-Pb geochronological SHRIMP analytical techniques were performed in zircons from 

a diatexite sample. The zircon population shows in cathodoluminescent images the 

existence of three components in most of the zircons: i) an inherited core showing 

magmatic or metamorphic textures and ovoid external morphology, ii) a transitional 

zone showing corrosion and lobate transgressive recrystallization fronts and iii) a dark 

rim overgrowth, developing mostly in the pyramidal extremities. The ages measured in 

the inhered cores are Ediacaran (75%) ranging from 630 to 530 Ma, with a 

concentration peak around 590 Ma. The overgrowth rims show Variscan ages 

(Carboniferous) between 319 ±11 and 309 ±3 Ma and are suggested to reflect the age 

of the anatectic process.  

The Rb-Sr isochrons, although showing some scattering, confirm the Ediacaran and 

the Carboniferous ages for the MMC lithologies. The Ediacaran age is preserved in the 

metagreywacke resisters and the Carboniferous/Variscan age is patent in metatexites 
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and two-mica granites (328 ±18 Ma to metatexites and 324 ±38 Ma to two-mica 

granites).  

Mindelo Migmatite Complex represents an example of migmatites formed in low 

pressure conditions and illustrates some of the reactions involving melting in high 

grade pelitic rocks and subsequent mineral alterations due to infiltration of late different 

fluids.  

The purpose behind the realization of this thesis was to better characterize the geology 

of the Mindelo Migmatite Complex and try understanding the processes involved in its 

petrogenesis. The various methodologies used led to a better understanding of the 

area in question and allowed to put forward some suggestions about its origin and 

evolution.  
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Table A1 – Coordinates of the points mentioned in the figures captions (WGS84). 

Point n
er

 Longitude  Latitude  
 

Point n
er

 Longitude  Latitude  

 434 -8.736232 41.29495 
 

482 -8.740601 41.31063 

 435 -8.736185 41.29487 
 

484 -8.740506 41.31061 

 436 -8.736149 41.29483 
 

485 -8.740589 41.31061 

 437 -8.735912 41.29442 
 

486 -8.740709 41.31059 

 438 -8.7359 41.29436 
 

487 -8.740721 41.31055 

 439 -8.735936 41.29434 
 

488 -8.740864 41.31053 

 440 -8.735781 41.29416 
 

489 -8.741832 41.31055 

 441 -8.735579 41.29394 
 

490 -8.741007 41.31076 

 442 -8.735568 41.29373 
 

492 -8.738187 41.30195 

 443 -8.735438 41.29354 
 

493 -8.738164 41.30175 

 444 -8.735188 41.29315 
 

494 -8.737937 41.30175 

 445 -8.730746 41.28126 
 

495 -8.737723 41.29849 

 446 -8.730866 41.28124 
 

496 -8.737234 41.2982 

 447 -8.730414 41.28073 
 

497 -8.737198 41.29824 

 448 -8.730522 41.28065 
 

498 -8.737068 41.298 

 449 -8.729745 41.28081 
 

499 -8.737128 41.29787 

 450 -8.730936 41.28172 
 

502 -8.737152 41.29785 

 451 -8.736232 41.29494 
 

503 -8.737391 41.29792 

 452 -8.736197 41.29486 
 

504 -8.73732 41.2977 

 453 -8.7352 41.29319 
 

505 -8.737428 41.29743 

 454 -8.521666 41.09665 
 

506 -8.737991 41.29713 

 456 -8.521799 41.09627 
 

507 -8.73719 41.29739 

 457 -8.52096 41.09544 
 

508 -8.73731 41.29728 

 458 -8.514568 41.09672 
 

509 -8.737202 41.29719 

 459 -8.514327 41.09719 
 

510 -8.736988 41.29697 

 460 -8.512616 41.10302 
 

511 -8.736917 41.29695 

 461 -8.519425 41.08718 
 

512 -8.736809 41.29691 

 462 -8.735082 41.29285 
 

513 -8.736858 41.29674 

 463 -8.735272 41.29319 
 

514 -8.736834 41.29667 

 464 -8.722641 41.31732 
 

515 -8.736752 41.29631 

 465 -8.74188 41.31043 
 

517 -8.736896 41.2962 

 466 -8.741508 41.30493 
 

518 -8.736944 41.296 

 467 -8.741821 41.31023 
 

519 -8.736932 41.29605 

 468 -8.741773 41.31019 
 

520 -8.736981 41.29591 

 469 -8.743328 41.30976 
 

521 -8.736933 41.29588 

 470 -8.741809 41.31016 
 

522 -8.737064 41.29595 

 472 -8.741738 41.31009 
 

523 -8.736707 41.29563 

 473 -8.741106 41.30986 
 

524 -8.736398 41.29527 

 474 -8.740868 41.30966 
 

525 -8.73628 41.29501 

 475 -8.740785 41.30953 
 

526 -8.736137 41.29484 

 476 -8.740452 41.30891 
 

528 -8.736221 41.29476 

 477 -8.740393 41.30882 
 

529 -8.736138 41.29457 

 478 -8.740692 41.30869 
 

530 -8.736043 41.29455 

 479 -8.740669 41.3085 
 

531 -8.735972 41.29433 

 480 -8.740681 41.30856 
 

532 -8.73602 41.2943 

 481 -8.740644 41.30876 
 

533 -8.735639 41.29393 
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Point n
er

 Longitude  Latitude  
 

Point n
er

 Longitude  Latitude  

 534 -8.735604 41.29378 
 

580 -8.754705 41.34372 

 535 -8.735557 41.29347 
 

581 -8.752706 41.34137 

 536 -8.735486 41.29344 
 

582 -8.739423 41.33033 

 537 -8.735022 41.29286 
 

583 -8.728801 41.27526 

 538 -8.734999 41.29278 
 

584 -8.728729 41.27527 

 539 -8.731306 41.28178 
 

585 -8.729018 41.27775 

 540 -8.730818 41.2813 
 

586 -8.729191 41.27925 

 541 -8.73045 41.28075 
 

587 -8.730013 41.27964 

 542 -8.730344 41.28032 
 

588 -8.729119 41.27621 

 543 -8.729104 41.27984 
 

589 -8.70234 41.28622 

 544 -8.731838 41.28301 
 

590 -8.732168 41.28706 

 545 -8.733416 41.29122 
 

591 -8.723625 41.27672 

 546 -8.733691 41.29139 
 

592 -8.728973 41.277 

 547 -8.733527 41.29048 
 

593 -8.728669 41.27256 

 548 -8.56108 40.98919 
 

594 -8.728776 41.27265 

 549 -8.537425 41.21444 
 

595 -8.729014 41.27282 

 550 -8.537689 41.21433 
 

596 -8.728953 41.27322 

 551 -8.48257 41.16986 
 

597 -8.72861 41.27246 

 552 -8.483597 41.15592 
 

598 -8.728492 41.27195 

 553 -8.482828 41.15067 
 

599 -8.728292 41.2713 

 554 -8.490975 41.10803 
 

600 -8.728104 41.27066 

 555 -8.517626 41.13933 
 

601 -8.721416 41.27117 

 556 -8.544651 41.40373 
 

602 -8.720928 41.27072 

 557 -8.546351 41.39674 
 

603 -8.728002 41.26647 

 558 -8.548898 41.39856 
 

604 -8.72816 41.26582 

 559 -8.548783 41.40137 
 

605 -8.728461 41.26501 

 560 -8.548027 41.39652 
 

606 -8.728844 41.27642 

 561 -8.54715 41.39878 
 

607 -8.728929 41.27598 

 562 -8.546951 41.39309 
 

608 -8.728787 41.27565 

 563 -8.556667 41.39073 
 

609 -8.728978 41.27566 

 564 -8.563917 41.38873 
 

610 -8.728979 41.2756 

 565 -8.572474 41.38617 
 

611 -8.729182 41.27554 

 566 -8.572243 41.38129 
 

612 -8.729003 41.27554 

 567 -8.578844 41.37772 
 

613 -8.729388 41.27478 

 568 -8.582947 41.37935 
 

614 -8.728958 41.27472 

 569 -8.580142 41.3767 
 

615 -8.728909 41.27793 

 570 -8.62361 41.36227 
 

616 -8.728831 41.27947 

 571 -8.623502 41.3624 
 

617 -8.72895 41.27956 

 572 -8.675541 41.36339 
 

618 -8.728963 41.27936 

 573 -8.684518 41.36629 
 

619 -8.729749 41.27994 

 574 -8.718378 41.36949 
 

620 -8.730346 41.27981 

 575 -8.754243 41.34916 
 

621 -8.730059 41.27996 

 576 -8.756111 41.35778 
 

622 -8.725221 41.26063 

 577 -8.756659 41.35828 
 

623 -8.725648 41.26122 

 578 -8.756801 41.35856 
 

624 -8.726361 41.26187 

 579 -8.754372 41.34323 
 

625 -8.726491 41.26238 
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Point n
er

 Longitude  Latitude  
 

Point n
er

 Longitude  Latitude  

 626 -8.591559 41.3102 
 

672 -8.732228 41.2869 

 627 -8.59474 41.31353   673 -8.727984 41.27083 

 628 -8.597011 41.31733 
 

674 -8.737793 41.30174 

 629 -8.597403 41.32157 
 

675 -8.700183 41.37375 

 630 -8.596668 41.32446 
 

676 -8.683564 41.36593 

 631 -8.596578 41.32737 
 

677 -8.682281 41.35434 

 632 -8.617906 41.33594 
 

678 -8.656921 41.37116 

 633 -8.619025 41.33459 
 

679 -8.687615 41.38895 

 634 -8.618914 41.33313 
 

680 -8.73702 41.29806 

 635 -8.62945 41.32337 
 

681 -8.73224 41.28693 

 636 -8.631275 41.3218 
 

682 -8.665236 41.40061 

 637 -8.636307 41.31937 
 

685 -8.737949 41.30174 

 638 -8.631631 41.31384 
 

686 -8.73702 41.298 

 639 -8.630568 41.31375 
 

687 -8.734248 41.29227 

 640 -8.626326 41.31182 
 

688 -8.66806 41.40977 

 641 -8.626814 41.31 
 

689 -8.667944 41.40904 

 642 -8.611195 41.30483 
 

690 -8.668096 41.40981 

 643 -8.605013 41.29202 
 

691 -8.6743 41.41326 

 644 -8.606317 41.29359 
 

692 -8.674644 41.41385 

 645 -8.610281 41.30194 
 

693 -8.674524 41.41399 

 646 -8.598464 41.31415 
 

694 -8.67444 41.41654 

 647 -8.59844 41.31421 
 

695 -8.678275 41.41757 

 648 -8.602034 41.30853 
 

696 -8.732124 41.33278 

 649 -8.602047 41.30848 
 

697 -8.670985 41.30429 

 650 -8.602661 41.31559 
 

698 -8.668802 41.30356 

 651 -8.629082 41.33784 
 

699 -8.673215 41.2979 

 652 -8.668449 41.33318 
 

700 -8.677257 41.29684 

 653 -8.72676 41.34385 
 

701 -8.680866 41.29644 

 654 -8.727572 41.33831 
 

702 -8.687971 41.29438 

 655 -8.725085 41.23595 
 

703 -8.686599 41.29157 

 656 -8.728602 41.24265 
 

704 -8.643835 41.23797 

 657 -8.726594 41.24058 
 

705 -8.733535 41.29154 

 658 -8.725894 41.23943 
 

706 -8.732807 41.29129 

 659 -8.725876 41.24955 
 

707 -8.735377 41.29367 

 660 -8.721478 41.22827 
 

708 -8.736504 41.29556 

 661 -8.720493 41.22716 
 

709 -8.736774 41.29691 

 662 -8.719815 41.22671 
 

710 -8.737152 41.29782 

 663 -8.716382 41.22321 
 

711 -8.735163 41.29355 

 664 -8.715686 41.22136 
 

712 -8.629597 41.33749 

 665 -8.714956 41.20258 
 

713 -8.616875 41.33449 

 666 -8.564421 41.40816 
 

714 -8.587894 41.41983 

 667 -8.56065 41.41028 
 

715 -8.588516 41.41977 

 668 -8.588195 41.39861 
 

716 -8.587517 41.41689 

 669 -8.623466 41.36248 
 

717 -8.586948 41.41609 

 670 -8.678133 41.38087 
 

718 -8.586479 41.41838 

 671 -8.733594 41.29169 
 

719 -8.589901 41.42023 
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Point n
er

 Longitude  Latitude  
 

Point n
er

 Longitude  Latitude  

 720 -8.596146 41.41862 
 

766 -8.545823 41.37289 

 721 -8.629912 41.42118 
 

767 -8.545403 41.37313 

 722 -8.629936 41.42119 
 

768 -8.547544 41.3713 

 723 -8.637846 41.4169 
 

769 -8.548315 41.36705 

 724 -8.664525 41.42019 
 

770 -8.738199 41.3019 

 725 -8.698653 41.428 
 

771 -8.737925 41.30174 

 726 -8.709375 41.43109 
 

772 -8.737887 41.29911 

 727 -8.709265 41.43165 
 

773 -8.737352 41.29852 

 728 -8.709324 41.43177 
 

774 -8.737139 41.29821 

 729 -8.713123 41.44965 
 

775 -8.736953 41.29682 

 730 -8.712119 41.44918 
 

776 -8.736695 41.29867 

 731 -8.697043 41.48859 
 

777 -8.728836 41.27269 

 732 -8.699263 41.48525 
 

778 -8.726862 41.2707 

 733 -8.701241 41.47958 
 

779  -8.526011 41.173519 

 734 -8.706586 41.47623 
  

    

 735 -8.72627 41.42931 
     736 -8.779153 41.39547 
     737 -8.674453 41.4163 
     738 -8.676871 41.42091 
     739 -8.705043 41.44158 
     740 -8.788288 41.41503 
     741 -8.787374 41.41281 
     742 -8.783604 41.40943 
     743 -8.783071 41.40777 
     744 -8.781604 41.40637 
     745 -8.781544 41.40631 
     746 -8.785345 41.41105 
     747 -8.785671 41.42114 
     748 -7.421852 41.21836 
     749 -7.421845 41.21835 
     750 -7.423213 41.22656 
     751 -7.42321 41.22656 
     752 -7.430873 41.21235 
     753 -7.430853 41.21238 
     754 -7.430883 41.21229 
     755 -8.521613 41.09649 
     756 -8.741757 41.31009 
     757 -8.74053 41.31061 
     758 -8.739525 41.31513 
     759 -8.737085 41.29784 
     760 -8.737088 41.29785 
     761 -8.736913 41.29621 
     762 -8.736113 41.29483 
     763 -8.73678 41.3019 
     764 -8.736787 41.30189 
     765 -8.545343 41.37321 
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Annex B – Mineral chemistry formulas 
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Table B. 1 - Chemical analysis (wt.%) and structural formulas of pyroxenes* from MMC calc-silicate nodules. 

Sample n
er

 GD2 GD2 GD2 VC48 VC48 VC48 VC48 VC48 VC48 VC48 VC48 

Analyse n
er

 3.00 2.00 1.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 

SiO2 49.58 50.16 50.48 50.43 52.16 51.85 51.55 51.84 52.10 50.54 51.67 

TiO2 0.02 0.00 0.05 0.15 0.12 0.24 0.28 0.40 0.06 0.13 0.12 

Al2O3 0.53 0.22 0.29 1.00 1.51 0.74 0.71 1.01 1.41 1.03 1.67 

Cr2O3 0.00 0.00 0.00 0.00 0.07 0.12 0.12 0.00 0.00 0.00 0.00 

FeO 15.58 14.49 10.03 13.84 14.05 15.97 16.32 13.85 10.71 14.95 9.91 

MnO 0.93 0.57 0.86 1.08 1.45 1.47 1.53 1.49 1.26 1.76 0.83 

MgO 8.11 9.65 11.89 9.34 9.54 8.57 8.96 10.46 10.61 8.59 11.71 

CaO 24.05 24.81 24.90 23.34 20.89 20.65 20.09 20.59 23.96 23.59 23.79 

Na2O 0.03 0.02 0.08 0.11 0.10 0.28 0.24 0.23 0.09 0.07 0.17 

K2O 0.00 0.00 0.00 0.00 0.11 0.11 0.18 0.14 0.00 0.00 0.00 

Total 98.83 99.92 98.57 99.29 100.00 100.00 99.98 100.01 100.20 100.66 99.87 

Si 1.95 1.93 1.93 1.95 2.01 2.01 2.00 1.99 1.98 1.94 1.95 

Ti 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 

Al 0.02 0.01 0.01 0.05 0.07 0.03 0.03 0.05 0.06 0.05 0.07 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe3+ 0.09 0.13 0.13 0.05 -0.08 -0.05 -0.02 -0.02 -0.01 0.07 0.03 

Fe2+ 0.42 0.33 0.19 0.40 0.53 0.56 0.55 0.46 0.35 0.41 0.28 

Mn 0.03 0.02 0.03 0.04 0.05 0.05 0.05 0.05 0.04 0.06 0.03 

Mg 0.47 0.55 0.68 0.54 0.55 0.50 0.52 0.60 0.60 0.49 0.66 

Ca 1.01 1.02 1.02 0.97 0.86 0.86 0.83 0.84 0.97 0.97 0.96 

Na 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 

K 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

Total 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 

Mg/(Mg+Fe
2
) 0.53 0.63 0.78 0.58 0.51 0.47 0.48 0.57 0.63 0.54 0.70 

            

            Sample n
er

 FM1 FM1 FM1 FM1 VC28e VC28e FM21 

    Analyse n
er

 1.00 2.00 3.00 4.00 1.00 2.00 1.00 

    SiO2 52.80 52.12 51.67 51.69 50.16 52.03 52.55 
    TiO2 0.02 0.00 0.00 0.00 0.38 0.34 0.34 
    Al2O3 0.58 0.61 0.62 0.53 0.69 0.70 0.89 
    Cr2O3 0.00 0.00 0.00 0.00 0.09 0.24 0.00 
    FeO 10.90 11.51 11.72 11.10 19.50 16.63 12.52 
    MnO 1.49 1.83 1.41 1.11 1.51 1.24 1.52 
    MgO 10.49 10.10 10.07 10.64 5.83 6.98 11.55 
    CaO 24.42 24.22 23.96 24.44 21.45 21.56 20.20 
    Na2O 0.05 0.06 0.10 0.10 0.16 0.20 0.33 
    K2O 0.00 0.00 0.00 0.00 0.24 0.09 0.10 
    Total 100.75 100.45 99.55 99.60 100.01 100.01 100.00 
    Si 2.00 1.98 1.98 1.97 1.98 2.04 2.00 
    Ti 0.00 0.00 0.00 0.00 0.01 0.01 0.01 
    Al 0.03 0.03 0.03 0.02 0.03 0.03 0.04 
    Cr 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
    Fe3+ -0.02 0.01 0.02 0.04 0.00 -0.11 -0.02 
    Fe2+ 0.36 0.35 0.36 0.32 0.64 0.65 0.42 
    Mn 0.05 0.06 0.05 0.04 0.05 0.04 0.05 
    Mg 0.59 0.57 0.58 0.61 0.34 0.41 0.65 
    Ca 0.99 0.99 0.98 1.00 0.91 0.90 0.82 
    Na 0.00 0.00 0.01 0.01 0.01 0.02 0.02 
    K 0.00 0.00 0.00 0.00 0.01 0.00 0.00 
    Total 4.00 4.00 4.00 4.00 4.00 4.00 4.00 
    Mg/(Mg+Fe

2
) 0.62 0.62 0.62 0.66 0.35 0.38 0.61 

    OBS: *based on 6 oxygen atoms and the formula M2M1T2O6. 
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Table B. 2 - Chemical analysis (wt.%) and structural formulas* of amphiboles from MMC calc-silicate nodules. 

Sample n
er

 FM25 VC48 VC48 VC48 VC48 VC48 GC2 GC2 GC2 FM21 VC28e VC28e FM1 FM1 

Analyse n
er

 1 1 2 3 4 5 1 2 3 1 1 2 1 2 

SiO2 48.21 51.86 50.08 50.55 51.67 50.94 52.33 50.88 51.10 51.26 51.51 52.17 47.52 49.97 

TiO2 0.43 0.38 0.61 0.59 0.43 0.71 0.07 0.44 0.44 0.29 0.52 0.27 1.23 0.40 

Al2O3 9.09 2.39 5.36 6.03 5.08 5.08 1.96 4.61 5.29 3.53 2.13 2.30 8.60 6.42 

Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe2O3 7.26 6.64 5.77 7.19 5.89 11.02 5.96 3.97 9.97 8.52 5.02 5.45 7.19 11.51 

FeO 9.73 8.95 9.84 9.29 9.83 5.33 9.14 7.64 2.18 8.94 19.12 17.34 5.43 5.11 

MnO 0.36 1.17 1.16 1.13 0.95 1.06 0.63 0.53 0.73 1.03 0.87 1.14 1.14 0.80 

MgO 10.98 14.11 12.69 12.78 13.18 13.74 15.05 15.75 16.68 13.34 8.03 9.31 13.61 13.43 

NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ZnO 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaO 10.86 11.50 11.41 11.57 11.67 10.25 12.28 12.46 11.45 11.33 10.84 11.19 10.88 10.30 

Na2O 0.61 0.29 0.54 0.52 0.34 0.70 0.14 0.38 0.49 0.43 0.00 0.30 0.90 0.71 

K2O 0.16 0.26 0.16 0.11 0.05 0.28 0.00 0.10 0.10 0.20 0.28 0.07 0.50 0.40 

BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 

SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PbO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.07 0.17 0.00 0.00 0.00 0.00 0.00 

Cl 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

H2O* 2.06 2.06 2.06 2.11 2.10 2.11 2.06 2.04 2.05 2.08 2.00 2.04 2.07 2.11 

O=F,Cl 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.07 0.00 0.00 0.00 0.00 0.00 

Total 99.9 99.6 99.7 101.9 101.2 101.2 99.6 98.8 100.7 100.9 100.3 101.6 99.1 101.2 

Si 6.99 7.54 7.29 7.20 7.37 7.23 7.58 7.35 7.18 7.38 7.71 7.66 6.88 7.10 

Al iv 1.01 0.41 0.71 0.80 0.63 0.77 0.33 0.65 0.82 0.60 0.29 0.34 1.12 0.90 

Al vi 0.55 0.00 0.21 0.21 0.23 0.08 0.00 0.14 0.06 0.00 0.08 0.06 0.35 0.18 

Ti 0.05 0.04 0.07 0.06 0.05 0.08 0.01 0.05 0.05 0.03 0.06 0.03 0.13 0.04 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe3+ 0.79 0.73 0.63 0.77 0.63 1.18 0.65 0.43 1.06 0.92 0.57 0.60 0.78 1.23 

Fe2+ 1.18 1.09 1.20 1.11 1.17 0.63 1.11 0.92 0.26 1.08 2.39 2.13 0.66 0.61 

Mn 0.04 0.14 0.14 0.14 0.11 0.13 0.08 0.07 0.09 0.13 0.11 0.14 0.14 0.10 

Mg 2.37 3.06 2.75 2.71 2.80 2.91 3.25 3.39 3.50 2.86 1.79 2.04 2.94 2.85 

Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zn 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ca 1.69 1.79 1.78 1.77 1.78 1.56 1.90 1.93 1.72 1.75 1.74 1.76 1.69 1.57 

Na 0.17 0.08 0.15 0.14 0.09 0.19 0.04 0.11 0.13 0.12 0.00 0.09 0.25 0.20 

K 0.03 0.05 0.03 0.02 0.01 0.05 0.00 0.02 0.02 0.04 0.05 0.01 0.09 0.07 

Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.08 0.00 0.00 0.00 0.00 0.00 

Cl 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

OH* 1.99 2.00 2.00 2.00 2.00 2.00 1.99 1.97 1.92 2.00 2.00 2.00 2.00 2.00 

Total 16.89 16.92 16.96 16.93 16.89 16.80 16.94 17.05 16.88 16.90 16.79 16.86 17.03 16.84 

OBS: *based on 23 O and the formula A0-1B2C5T8O22 (OH,F)2. 
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Table B. 3 - Chemical analysis (wt.%) and structural formulas* of epidote group minerals  from MMC calc-silicate 

nodules 

Sample n
er

 FM1 FM1 FM1 FM1 GC2 GC2 GC2 VC28e VC28e 

Analyse n
er

 1 2 3 4 1 2 3 1 2 

K2O 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.07 

Na2O 0.00 0.12 0.00 0.03 0.00 0.09 0.00 0.10 0.12 

FeO 5.03 0.84 2.77 2.25 5.40 1.43 4.16 0.41 0.56 

SiO2 40.04 41.18 39.86 40.08 38.63 38.83 41.74 41.24 40.56 

P2O5 0.02 0.07 0.06 0.07 0.01 0.00 0.03 0.00 0.00 

CaO 23.46 24.01 23.75 23.22 23.18 24.59 23.09 21.97 22.37 

MgO 0.01 0.04 0.00 0.00 0.02 0.02 1.51 0.26 0.32 

MnO 0.53 0.36 0.23 1.18 0.84 0.11 0.07 0.37 0.34 

Al2O3 29.99 33.80 31.70 31.53 31.18 34.05 24.88 34.77 35.18 

TiO2 0.03 0.00 0.05 0.00 0.02 0.00 0.00 0.33 0.20 

SrO 0.14 0.02 0.14 0.09 0.09 0.07 0.00 0.14 0.09 

Total 99.14 100.42 98.43 98.36 99.27 99.12 95.48 99.71 99.72 

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 

Na 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.02 

Fe 0.32 0.05 0.18 0.14 0.35 0.09 0.28 0.03 0.03 

Si 3.07 3.05 3.04 3.06 2.97 2.93 3.30 3.04 3.00 

Ca 1.93 1.90 1.94 1.90 1.91 1.99 1.96 1.74 1.77 

Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.03 0.04 

Mn 0.03 0.02 0.01 0.08 0.05 0.01 0.00 0.02 0.02 

Al 2.71 2.95 2.85 2.84 2.83 3.03 2.32 3.02 3.07 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 

Sr 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 
OBS: *based on 12,5 oxygen atoms and the formula X2Y3Z3(O,OH,F)13. 
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Table B. 4 – Chemical analysis (wt.%) and structural formulas* of garnets from staurolite schists and MMC metatexites. 

Type St.Sch St.Sch St.Sch St.Sch St.Sch St.Sch St.Sch PMM 

Sample no FM14 FM14 FM14 VC65 VC65 VC65 VC65 VC28b 

Analyze no 1-b 2- c 3 -b 1 2 3 4 1 

SiO2 38.06 38.08 38.38 37.43 37.26 37.87 37.65 36.87 

TiO2 0.00 0.00 0.01 0.00 0.00 0.04 0.02 0.30 

Al2O3 21.26 21.20 21.03 21.03 20.91 20.99 21.05 21.12 

FeO 33.56 33.92 34.37 32.40 31.94 31.81 34.82 32.69 

MnO 2.12 1.51 1.70 4.15 4.89 4.61 1.91 3.32 

MgO 3.19 3.32 3.32 2.48 2.36 2.41 3.27 3.97 

CaO 2.35 2.47 2.54 2.32 2.31 2.41 1.08 1.20 

F 0.09 0.12 0.15 0.09 0.11 0.16 0.20 0.65 

Cr2O3 0.00 0.00 0.03 0.09 0.11 0.08 0.08 0.08 

Total 100.63 100.64 101.53 99.99 99.87 100.39 100.08 100.20 

Si 3.02 3.02 3.03 3.01 3.01 3.03 3.02 2.97 

Al iv 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 

Al vi 1.99 1.99 1.96 2.00 1.99 1.98 1.99 1.97 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

Cr 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 

Fe3+ 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Fe2+ 2.25 2.27 2.27 2.20 2.17 2.15 2.36 2.20 

Mn 0.14 0.10 0.11 0.28 0.33 0.31 0.13 0.23 

Mg 0.38 0.39 0.39 0.30 0.28 0.29 0.39 0.48 

Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ca 0.20 0.21 0.22 0.20 0.20 0.21 0.09 0.10 

Almandine 76 76 76 74 73 73 79 73 

Andradite 0 0 0 0 0 0 0 0 

Grossular 7 7 7 6 6 7 3 3 

Pyrope 13 13 13 10 10 10 13 16 

Spessartine 5 3 4 9 11 11 4 8 

         Type PMM PMM PMM PMM PMM PMM PMM BMM 

Sample n
er

 VC28a VC28a VC28a VC28a VC28a VC28a VC28a FM3 

Analyze n
er

 1 2 3 4 5 6 7 1 

SiO2 37.87 37.56 37.82 37.24 37.48 37.91 37.54 37.54 

TiO2 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.12 

Al2O3 21.88 21.85 21.80 21.86 21.65 21.61 21.69 20.78 

FeO 32.40 32.41 32.70 32.95 32.81 32.40 32.63 29.65 

MnO 3.63 3.65 3.67 3.71 3.65 3.66 3.49 6.49 

MgO 3.25 3.35 3.15 3.12 3.11 3.15 3.36 2.93 

CaO 1.19 1.19 1.19 1.18 1.19 1.18 1.20 0.96 

F 0.55 0.85 0.95 1.15 0.95 0.74 0.55 0.95 

Cr2O3 0.07 0.11 0.13 0.07 0.08 0.08 0.08 0.07 

Total 100.85 100.98 101.42 101.29 100.93 100.74 100.54 99.49 

Si 3.00 2.98 2.99 3.01 2.99 3.01 2.99 3.03 

Al iv 0.00 0.02 0.01 0.00 0.01 0.00 0.01 0.00 

Al vi 2.05 2.04 2.04 2.04 2.03 2.03 2.03 1.98 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Cr 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 

Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe2+ 2.21 2.21 2.23 2.23 2.24 2.22 2.22 2.03 

Mn 0.24 0.25 0.25 0.25 0.25 0.25 0.24 0.44 

Mg 0.38 0.40 0.37 0.37 0.37 0.37 0.40 0.35 

Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 

Ca 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.08 

Almandine 75 75 76 76 76 75 75 70 

Andradite 0 0 0 0 0 0 0 0 

Grossular 3 3 3 3 3 3 3 3 

Pyrope 13 13 13 12 13 13 13 12 

Spessartine 8 8 8 8 8 8 8 15 

OBS: Abbreviations: St.Sch – staurolite schist; PMM – patch metatexites; BMM – Banded metatexites. *Based on 24 

oxygen atoms and the formula A3O2T3O12; OBS: b – border; c – core. 
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Table B. 5 - Chemical analysis (wt.%) and structural formulas* of garnets from MMC granitic rocks. 

Type DTX DTX DTX DTX DTX DTX TL.Gnt TL.Gnt TL.Gnt TL.Gnt 

Sample ner VC59 VC59 VC59 VC59 VC59 VC59 VC62  VC62  VC62  VC62  

Analyze ner 1a 1 2 3 4 5 1 2 3 4 

SiO2 37.38 37.05 37.43 37.16 37.26 37.23 37.40 37.15 37.40 37.03 

TiO2 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.02 

Al2O3 20.46 20.86 21.06 21.02 20.94 20.93 20.96 20.97 20.95 20.88 

FeO 33.37 30.78 33.40 32.81 33.06 30.18 32.74 33.10 33.07 32.60 

MnO 4.03 8.36 4.40 4.93 5.28 9.00 4.94 5.35 5.56 6.25 

MgO 2.76 2.05 3.05 2.94 2.69 2.10 3.07 2.81 2.72 2.31 

CaO 0.57 0.68 0.64 0.64 0.64 0.65 0.64 0.36 0.35 0.31 

F 1.91 0.58 0.66 0.95 0.75 0.83 0.58 0.72 0.95 0.66 

Cr2O3 0.09 0.12 0.09 0.07 0.04 0.05 0.07 0.08 0.06 0.05 

Total 100.63 100.50 100.72 100.50 100.66 100.97 100.39 100.54 101.07 100.11 

Si 3.04 3.01 3.01 3.00 3.01 3.01 3.01 3.00 3.01 3.01 

Al iv 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Al vi 1.97 2.00 2.00 2.01 2.00 2.00 1.99 2.00 1.99 2.00 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cr 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe2+ 2.30 2.10 2.26 2.24 2.24 2.06 2.22 2.25 2.24 2.24 

Mn 0.28 0.57 0.30 0.34 0.36 0.62 0.34 0.37 0.38 0.43 

Mg 0.34 0.25 0.37 0.35 0.32 0.25 0.37 0.34 0.33 0.28 

Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ca 0.05 0.06 0.05 0.05 0.05 0.06 0.05 0.03 0.03 0.03 

Almandine 78 70 76 75 75 69 74 75 75 75 

Andradite 0 0 0 0 0 0 0 0 0 0 

Grossular 1 2 2 2 2 2 2 1 1 1 

Pyrope 11 8 12 12 11 8 12 11 11 9 

Spessartine 9 19 10 11 12 21 11 12 13 14 

           Type TL.Gnt TL.Gnt TL.Gnt APG APG APG 
    Sample ner VC62  VC62  VC62  VC58 VC58 VC58 
    Analyze ner 5 6 7 1 2 3 
    SiO2 37.01 36.98 37.62 35.33 35.67 35.23 

    TiO2 0.01 0.00 0.01 0.35 0.33 0.35 
    Al2O3 20.86 20.96 20.51 19.78 19.96 19.70 
    FeO 32.76 32.83 28.55 23.87 24.05 23.80 
    MnO 6.00 5.60 11.58 15.37 14.53 15.95 
    MgO 2.62 2.86 1.64 0.39 0.22 0.41 
    CaO 0.35 0.40 0.41 0.27 0.24 0.26 
    F 0.83 0.66 0.75 5.09 5.66 5.00 
    Cr2O3 0.07 0.08 0.09 0.12 0.09 0.07 
    Total 100.50 100.36 101.17 100.57 100.75 100.77 
    Si 3.00 3.00 3.04 3.01 3.03 3.01 
    Al iv 0.00 0.00 0.00 0.00 0.00 0.00 
    Al vi 2.00 2.00 1.96 2.00 2.01 1.99 
    Ti 0.00 0.00 0.00 0.02 0.02 0.02 
    Cr 0.00 0.00 0.01 0.01 0.01 0.00 
    Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 
    Fe2+ 2.23 2.23 1.94 1.75 1.80 1.73 
    Mn 0.41 0.38 0.79 1.11 1.05 1.15 
    Mg 0.32 0.35 0.20 0.05 0.03 0.05 
    Ni 0.00 0.00 0.00 0.00 0.00 0.00 
    Zn 0.00 0.00 0.00 0.00 0.00 0.00 
    Ca 0.03 0.04 0.04 0.02 0.02 0.02 
    Almandine 75 74 65 60 62 58 
    Andradite 0 0 0 0 0 0 
    Grossular 1 1 1 0 0 1 
    Pyrope 11 12 7 2 1 2 
    Spessartine 14 13 27 38 36 39 
    OBS: Abbreviations: DTX - diatexite; TL.Gnt – Tourmaline bearing leucogranite; APG – Aplite-pegmatite. *Based on 24 oxygen atoms 

and the formula A3O2T3O12; 
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Table B. 6 - Chemical analysis (wt.%) and structural formulas* of plagioclases  from MMC metagreywackes. 

Sample n
er

 FM25 FM1  FM1  FM1  FM1 VC48  VC48  VC48  VC48  GC2 FM21 FM21 FM21 

Analyse n
er

 1 1 2 3 4 1 2 3 4 1 1a 1b 2b 
Type LG CZ CZ CZ OZ CZ CZ CZ OZ OZ CZ GWK GWK 

SiO2 45.41 43.99 42.97 43.78 46.92 44.64 43.09 44.08 44.86 46.10 44.20 58.39 56.88 

TiO2 0.00 0.00 0.00 0.04 0.00 0.01 0.28 0.00 0.09 0.00 0.12 0.00 0.02 

Al2O3 35.69 35.63 35.80 35.87 33.23 35.80 36.89 37.22 36.59 35.13 36.88 25.91 27.05 

FeO 0.30 0.04 0.22 0.02 0.08 0.16 0.62 0.29 0.29 0.00 0.37 0.04 0.11 

MnO 0.11 0.01 0.00 0.09 0.04 0.04 0.33 0.18 0.27 0.04 0.28 0.00 0.04 

MgO 0.17 0.00 0.00 0.00 0.00 0.01 0.24 0.06 0.22 0.01 0.26 0.00 0.00 

CaO 16.84 19.84 19.49 19.38 16.68 19.39 17.36 17.51 16.40 18.05 16.70 7.47 9.01 

Na2O 0.87 0.30 0.35 0.30 2.01 0.80 0.45 0.59 1.08 1.44 0.78 7.12 6.39 

K2O 0.08 0.01 0.01 0.03 0.07 0.03 0.30 0.00 0.12 0.02 0.18 0.21 0.21 

BaO 0.00 0.15 0.04 0.00 0.06 0.05 0.00 0.00 0.00 0.13 0.00 0.05 0.00 

P2O5 0.36 0.01 0.00 0.00 0.04 0.00 0.44 0.08 0.09 0.00 0.22 0.03 0.00 
TOTAL 99.8 100.0 99.0 99.6 99.1 100.9 100.0 100.0 100.0 101.1 100.0 99.3 99.7 

Si 2.09 2.04 2.01 2.03 2.17 2.05 1.99 2.03 2.06 2.10 2.03 2.63 2.56 

Al 1.93 1.95 1.98 1.96 1.81 1.94 2.01 2.02 1.98 1.89 2.00 1.37 1.44 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 0.01 0.00 0.01 0.00 0.00 0.01 0.02 0.01 0.01 0.00 0.01 0.00 0.00 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 

Mg 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.00 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ca 0.83 0.98 0.98 0.96 0.83 0.95 0.86 0.86 0.81 0.88 0.82 0.36 0.43 

Na 0.08 0.03 0.03 0.03 0.18 0.07 0.04 0.05 0.10 0.13 0.07 0.62 0.56 

K 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.01 0.01 

P 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 

Or 1 0 0 0 0 0 2 0 1 0 1 1 1 

Ab 9 3 3 3 18 7 4 6 11 13 8 63 56 
An 91 97 97 97 82 93 94 94 89 87 91 36 43 

              Sample n
er

 FM21  FM21 FM21 FP21c  FP21c  FP21c  FP21c  FP21c  FP21c  FP21c  FP21c  FP21c  
 Analyse n

er
 3b 4b 5b 1a 2a 3a 4a 5a 6a 1b 2b 3b 

 Type GWK GWK.m GWK.m GWK.m GWK.m GWK.m GWK.m GWK.m GWK.m GWK.m GWK.m GWK.m 

 SiO2 58.07 63.43 63.09 64.87 65.48 64.85 64.91 68.97 65.12 65.04 64.80 65.47 
 TiO2 0.00 0.00 0.15 0.01 0.01 0.02 0.02 0.00 0.00 0.02 0.00 0.00 
 Al2O3 27.25 23.34 22.57 22.52 22.56 22.22 22.31 20.20 22.16 22.40 22.66 22.42 
 FeO 0.00 0.15 0.45 0.02 0.00 0.00 0.01 0.00 0.01 0.07 0.01 0.03 
 MnO 0.00 0.00 0.28 0.27 0.04 0.28 0.00 0.04 0.00 0.00 0.28 0.33 
 MgO 0.04 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
 CaO 7.41 3.32 2.85 3.28 3.58 3.34 3.36 0.82 3.15 3.29 3.76 3.40 
 Na2O 7.12 9.30 9.86 10.10 9.86 9.88 9.78 11.57 10.05 10.02 9.77 9.91 
 K2O 0.11 0.27 0.42 0.17 0.08 0.23 0.22 0.02 0.13 0.11 0.13 0.17 
 BaO 0.00 0.05 0.03 0.01 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 
 P2O5 0.00 0.18 0.24 0.09 0.00 0.22 0.03 0.00 0.00 0.18 0.24 0.08 
 TOTAL 100.0 100.0 100.0 101.3 101.6 101.0 100.6 101.7 100.6 101.1 101.6 101.8 
 Si 2.59 2.80 2.80 2.84 2.84 2.85 2.85 2.97 2.85 2.84 2.83 2.85 
 Al 1.43 1.21 1.18 1.16 1.15 1.15 1.15 1.03 1.14 1.15 1.17 1.15 
 Ti 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Fe 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Mn 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Mg 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Ca 0.35 0.16 0.14 0.15 0.17 0.16 0.16 0.04 0.15 0.15 0.18 0.16 
 Na 0.62 0.80 0.85 0.86 0.83 0.84 0.83 0.97 0.85 0.85 0.83 0.84 
 K 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 
 P 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Or 0.64 1.57 2.36 0.92 0.46 1.25 1.24 0.10 0.74 0.58 0.69 0.94 
 Ab 63.08 82.21 84.19 83.98 82.90 83.21 82.98 96.12 84.58 84.14 81.89 83.28 
 An 36.28 16.22 13.45 15.09 16.64 15.53 15.78 3.78 14.67 15.28 17.42 15.78 
 OBS: Abbreviations: LG – staurolite zone calc-silicate rocks; CZ – Core zone of Calc-silicate nodules; OZ – outer zone 

of calc-silicate nodules; GWK – metagreywacke resister; GWK.m – Metagreywacke partially migmatized; *based on 8 

oxygen atoms and the formula (Ca, Na, K) Al (Al, Si) Si2O8. 
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Table B. 7 - Chemical analysis (wt.%) and structural formulas* of plagioclases  from metasediments and metatexites  

Sample n
er

 FM38 VC65 VC65 VC65 VC28a VC28 VC28 VC28 VC28 VC52 

Analyse n
er

 1 1 2 3 1 2 3 4 5 1 
Type Bt.Sch St.Sch St.Sch St.Sch PMM PMM PMM PMM PMM PMM 

SiO2 66.40 67.36 67.16 67.20 59.39 62.14 64.11 63.69 60.82 61.05 

TiO2 0.08 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.33 0.21 

Al2O3 19.02 21.01 21.04 20.88 24.24 24.13 23.49 23.23 24.42 23.66 

FeO 0.31 0.02 0.02 0.02 0.03 0.00 0.00 0.02 0.46 0.35 

MnO 0.22 0,3 0.09 0.12 0.06 0.08 0.12 0.11 0.26 0.25 

MgO 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.22 

CaO 0.51 1.67 1.59 1.56 5.48 5.12 4.42 4.27 4.21 3.97 

Na2O 10.59 10.42 10.86 10.77 8.44 8.31 9.03 9.24 8.93 9.31 

K2O 0.06 0.14 0.13 0.14 0.19 0.24 0.11 0.11 0.29 0.31 

BaO 0.00 0.00 0.00 0.06 0.03 0.07 0.00 0.07 0.00 0.00 

P2O5 0.20 0.22 0.14 0.16 0.12 0.14 0.25 0.30 0.12 0.67 

TOTAL 98.1 100.6 100.8 100.6 98.1 100.3 101.2 100.6 100.0 100.0 

Si 2.97 2.93 2.92 2.93 2.70 2.75 2.80 2.80 2.71 2.71 

Al 1.00 1.08 1.08 1.07 1.30 1.26 1.21 1.20 1.28 1.24 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

Fe 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 

Mn 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

Mg 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

Zn 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ca 0.02 0.08 0.07 0.07 0.27 0.24 0.21 0.20 0.20 0.19 

Na 0.92 0.88 0.92 0.91 0.74 0.71 0.76 0.79 0.77 0.80 

K 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 

P 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 

Or 0 1 1 1 1 1 1 1 2 2 

Ab 97 91 92 92 73 74 78 79 78 80 

An 3 8 7 7 26 25 21 20 20 19 

Sample n
er

 FM16 FM16 FM16  FM16 FM3  FM4  FM4 VC15  VC15 VC15 

Analyse n
er

 1 2 3 4 1 1 2 1 2 3 

Type BMM BMM BMM BMM BMM BMM BMM BMM BMM BMM 

SiO2 64.43 61.13 62.61 68.39 62.19 59.88 64.72 61.45 63.26 60.67 

TiO2 0.00 0.00 0.03 0.03 0.08 0.20 0.25 0.13 0.00 0.00 

Al2O3 21.43 23.78 23.37 19.79 23.74 25.03 21.25 23.82 23.76 23.97 

FeO 0.00 0.00 0.00 0.00 0.00 0.35 0.46 0.35 0.03 0.00 

MnO 0.01 0.01 0.02 0.01 0.00 0.16 0.22 0.30 0.00 0.10 

MgO 0.00 0.00 0.00 0.00 0.07 0.35 0.14 0.21 0.00 0.00 

CaO 2.68 5.08 4.44 0.19 4.97 4.67 1.57 3.82 4.57 4.73 

Na2O 10.44 8.72 9.16 11.88 8.04 9.03 11.08 9.45 8.94 8.65 

K2O 0.16 0.24 0.32 0.16 0.26 0.34 0.20 0.31 0.25 0.35 

BaO 0.09 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.04 0.06 

P2O5 0.25 0.16 0.20 0.18 0.00 0.00 0.09 0.17 0.13 0.06 
TOTAL 99.7 99.2 100.2 100.7 99.4 100.0 100.0 100.0 101.0 98.6 

Si 2.85 2.74 2.77 2.97 2.77 2.67 2.86 2.73 2.77 2.73 

Al 1.12 1.25 1.22 1.01 1.24 1.32 1.11 1.25 1.23 1.27 
Ti 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 

Fe 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.00 

Mn 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 

Mg 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.00 

Zn 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ca 0.13 0.24 0.21 0.01 0.24 0.22 0.07 0.18 0.21 0.23 

Na 0.90 0.76 0.79 1.00 0.69 0.78 0.95 0.81 0.76 0.76 
K 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 
P 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 

Or 1 1 2 1 2 2 1 2 1 2 

Ab 87 75 77 98 73 76 92 80 77 75 
An 12 24 21 1 25 22 7 18 22 23 

OBS: Abbreviations: St.Sch – staurolite schist; PMM – patch metatexites; BMM – Banded metatexites; *based on 8 

oxygen atoms and the formula (Ca, Na, K) Al (Al, Si) Si2O8. 
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Table B. 8 - Chemical analysis (wt.%) and structural formulas* of plagioclases  from diatexites and leucogranites.  

Sample n
er

 VC60 VC60 VC60 VC60 VC60 VC60 VC60 VC60 FM6 FM6 FM6 FM6 VC59 VC3 
Anal. n

er
 1 2 3c 3b 4c 4b 5c 5b 1c 1b 2c 2b 1 1 

Type DTX DTX DTX DTX DTX DTX DTX DTX DTX DTX DTX DTX DTX L.Gnt 

SiO2 61.27 68.68 61.47 65.77 60.60 65.72 63.78 63.12 62.11 64.63 63.44 67.74 65.96 61.76 

TiO2 0.07 0.02 0.00 0.26 0.22 0.23 0.00 0.00 0.22 0.13 0.21 0.12 0.00 0.21 

Al2O3 24.16 19.99 24.06 20.22 24.22 20.45 23.44 23.60 22.95 21.34 22.31 19.41 19.88 21.42 

FeO 0.24 0.01 0.25 0.38 0.45 0.58 0.00 0.01 0.24 0.65 0.45 0.23 0.15 0.37 

MnO 0.23 0.00 0.12 0.19 0.30 0.34 0.00 0.00 0.22 0.16 0.07 0.09 0.18 0.25 

MgO 0.18 0.00 0.00 0.14 0.20 0.16 0.00 0.00 0.04 0.21 0.21 0.06 0.09 0.15 

CaO 3.97 0.43 3.94 0.37 4.09 0.42 4.33 4.60 4.20 1.23 3.24 0.75 0.64 2.83 

Na2O 9.16 11.67 9.26 11.92 9.15 11.58 9.18 9.10 8.21 9.33 8.87 10.18 10.70 9.09 

K2O 0.36 0.11 0.44 0.20 0.31 0.17 0.22 0.15 0.45 0.73 0.25 0.09 0.25 0.37 

BaO 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.02 0.01 

P2O5 0.36 0.27 0.18 0.55 0.46 0.35 0.56 0.36 0.00 0.00 0.00 0.00 0.33 0.30 

TOTAL 100.0 100.9 99.7 100.0 100.0 100.0 100.9 100.6 99.2 99.3 99.3 99.3 98.3 97.4 

Si 2.72 2.98 2.74 2.90 2.70 2.90 2.79 2.78 2.78 2.88 2.82 2.98 2.92 2.81 

Al 1.26 1.02 1.26 1.05 1.27 1.06 1.21 1.22 1.21 1.12 1.17 1.01 1.04 1.15 

Ti 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 

Fe 0.01 0.00 0.01 0.01 0.02 0.02 0.00 0.00 0.01 0.02 0.02 0.01 0.01 0.01 

Mn 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 

Mg 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.01 0.02 0.00 0.02 

Ca 0.19 0.02 0.19 0.02 0.20 0.02 0.20 0.22 0.20 0.06 0.15 0.04 0.03 0.14 

Na 0.79 0.98 0.80 1.02 0.79 0.99 0.78 0.78 0.71 0.81 0.77 0.87 0.92 0.80 

K 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.03 0.04 0.01 0.01 0.01 0.02 

P 0.01 0.00 0.01 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Or 2 1 2 1 2 1 1 1 3 5 2 1 1 2 

Ab 79 97 79 97 79 97 78 78 76 89 82 96 95 83 

An 19 2 19 2 19 2 20 22 21 6 17 4 3 14 

Sample n
er

 VC3 VC3 VC3 VC62 VC62 VC62 VC52 VC52 VC52 VC52 VC52 VC52 VC52 VC52 
Anal. n

er
 2 3c 3b 1a 2a 3a 1a 2a 3a 4a 5a 1b 2b 3 

Type L.Gnt L.Gnt L.Gnt L.Gnt L.Gnt L.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt 

SiO2 65.14 65.09 67.66 68.89 68.55 69.71 67.67 66.45 65.17 66.56 67.98 69.03 68.11 66.46 

TiO2 0.09 0.13 0.00 0.02 0.01 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 

Al2O3 20.10 20.54 18.76 19.52 19.67 19.48 21.48 21.81 22.42 21.50 20.95 19.67 20.59 21.94 

FeO 0.16 0.17 0.15 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.01 0.01 0.02 0.01 

MnO 0.11 0.00 0.12 
          

  

MgO 0.22 0.15 0.16 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 

CaO 1.30 2.18 0.13 0.19 0.38 0.27 1.81 2.55 3.44 2.25 1.19 0.44 1.17 2.40 

Na2O 9.99 9.96 11.12 11.61 11.44 11.49 10.86 10.15 9.68 10.46 11.17 11.47 11.26 10.52 

K2O 0.15 0.20 0.07 0.09 0.12 0.12 0.10 0.23 0.10 0.21 0.15 0.05 0.06 0.14 

BaO 0.03 0.01 0.08 0.00 0.05 0.01 0.01 0.01 0.03 0.01 0.08 0.00 0.02 0.00 

P2O5 0.56 0.00 0.34 0.60 0.30 0.00 0.60 0.30 0.56 0.00 0.34 0.60 0.30 0.32 

TOTAL 98.9 98.4 99.4 100.3 100.2 101.1 101.9 101.2 100.9 101.0 101.5 100.7 101.2 101.5 

Si 2.90 2.91 2.99 3.00 2.99 3.01 2.91 2.89 2.85 2.90 2.94 2.99 2.95 2.88 

Al 1.06 1.08 0.98 1.00 1.01 0.99 1.09 1.12 1.15 1.10 1.07 1.01 1.05 1.12 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zn 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ca 0.06 0.10 0.01 0.01 0.02 0.01 0.08 0.12 0.16 0.10 0.06 0.02 0.05 0.11 

Na 0.86 0.86 0.95 0.98 0.97 0.96 0.91 0.85 0.82 0.88 0.94 0.96 0.94 0.88 

K 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 
P 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Or 1 1 0 1 1 1 1 1 1 1 1 0 0 1 

Ab 92 88 99 99 98 98 91 87 83 88 94 98 94 88 
An 7 11 1 1 2 1 8 12 16 10 6 2 5 11 

OBS: DTX - diatexite; L.Gnt – leucogranite; TL.Gnt – lourmaline bearing leucogranite; *based on 8 oxygen atoms and 

the formula (Ca, Na, K) Al (Al, Si) Si2O8 
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Table B. 9 - Chemical analysis (wt.%) and structural formulas* of plagioclases  from two-mica granites. 

Sample n
er

 FP21b FP21b VC22 VC22a VC22a VC22a VC22a VC22a VC22a VC22a VC39 VC39 VC39 

Anal. n
er

 1 2 1 1a 2a 3a 4a 5a 6a 7a 1 2 3 

Type 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 

SiO2 63.22 64.71 67.98 68.11 66.86 68.07 69.79 66.17 68.84 68.88 66.62 64.89 64.38 

TiO2 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.28 0.00 

Al2O3 21.47 19.91 20.49 19.63 21.14 19.64 19.31 21.44 19.73 19.97 20.64 20.77 19.54 

FeO 0.38 0.34 0.00 0.01 0.01 0.01 0.01 0.00 0.02 0.00 0.15 0.29 0.28 

MnO 0.24 0.12 
        

0.00 0.34 0.22 

MgO 0.21 0.06 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.10 0.26 0.14 

CaO 2.95 1.35 1.43 0.83 2.14 0.57 0.13 2.07 0.61 0.70 1.30 1.81 1.23 

Na2O 8.99 10.25 11.08 11.37 10.56 11.48 11.80 10.42 11.58 11.38 10.01 9.56 10.26 

K2O 0.31 0.30 0.10 0.10 0.22 0.11 0.05 0.59 0.09 0.12 0.24 0.25 0.20 

BaO 0.02 0.03 0.01 0.00 0.02 0.03 0.00 0.00 0.00 0.01 0.05 0.01 0.01 

P2O5 0.43 0.07 0.36 0.18 0.46 0.55 0.35 0.00 0.60 0.30 0.00 0.00 0.60 

TOTAL 98.73 98.37 101.09 100.06 100.94 99.91 101.09 100.70 100.87 101.07 99.55 99.06 97.62 

Si 2.83 2.91 2.95 2.98 2.91 2.98 3.01 2.89 2.98 2.98 2.93 2.89 2.91 

Al 1.13 1.06 1.05 1.01 1.08 1.01 0.98 1.10 1.01 1.02 1.07 1.09 1.04 

Ti 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

Fe 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 

Mn 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

Mg 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 

Zn 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.03 

Ca 0.14 0.07 0.07 0.04 0.10 0.03 0.01 0.10 0.03 0.03 0.06 0.09 0.06 

Na 0.78 0.89 0.93 0.96 0.89 0.97 0.99 0.88 0.97 0.95 0.85 0.83 0.90 

K 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.03 0.01 0.01 0.01 0.01 0.01 

Or 2 2 1 1 1 1 0 3 1 1 1 2 1 

Ab 83 92 93 96 89 97 99 87 97 96 92 89 93 

An 15 7 7 4 10 3 1 10 3 3 7 9 6 

Sample n
er

 VC58 VC58 VC58 VC58 VC58 VC58 VC58 VC58 VC58 VC64 VC64 
  Anal. n

er
 1a 1b 2b 1c 2c 3c 4c 5c 1.00 2.00 3.00 

  Type APG APG APG APG APG APG APG APG APG APG APG 
  Localiz. Aplite Int. Int. Int Bord Bord. Bord. Bord. Bord. Bord. Pertite 
  SiO2 65.63 65.20 66.66 65.38 65.45 64.71 65.17 66.58 64.69 64.84 66.35 
  TiO2 0.13 0.24 0.24 0.16 0.09 0.14 0.00 0.23 0.16 0.30 0.00 
  Al2O3 20.92 20.70 20.02 21.00 20.47 21.01 21.11 20.10 21.25 20.94 20.34 
  FeO 0.00 0.33 0.00 0.26 0.00 0.60 0.00 0.16 0.26 0.15 0.00 
  MnO 0.00 0.22 0.14 0.13 0.17 0.16 0.10 0.21 0.16 0.13 0.26 
  MgO 0.11 0.20 0.18 0.13 0.09 0.22 0.11 0.07 0.32 0.05 0.22 
  CaO 0.61 0.78 0.19 0.84 0.93 0.86 0.64 0.24 1.00 0.99 0.17 
  Na2O 11.46 11.21 11.91 11.28 11.77 11.37 11.74 11.84 11.16 11.46 11.75 
  K2O 0.21 0.29 0.27 0.27 0.19 0.30 0.19 0.19 0.37 0.29 0.17 
  P2O5 0.84 0.51 0.09 0.00 0.08 0.46 0.77 0.00 0.20 0.33 0.47 
  TOTAL 99.91 99.68 99.70 99.45 99.24 99.83 99.83 99.62 99.57 99.48 99.73 
  

Si 2.88 2.88 2.94 2.90 2.91 2.86 2.87 2.94 2.87 2.87 2.92 
  Al 1.08 1.08 1.04 1.10 1.07 1.10 1.10 1.05 1.11 1.09 1.05 
  Ti 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 
  Fe 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.00 
  Mn 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 
  Mg 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.02 0.00 0.01 
  Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
  Ca 0.03 0.04 0.01 0.04 0.04 0.04 0.03 0.01 0.05 0.05 0.01 
  Na 0.98 0.96 1.02 0.97 1.01 0.98 1.00 1.01 0.96 0.98 1.00 
  K 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.02 0.01 
  Or 1 2 1 1 1 2 1 1 2 2 1 
  Ab 96 95 98 95 95 94 96 98 93 94 98 
  An 3 4 1 4 4 4 3 1 5 4 1 
  OBS: Abbreviations: 2m.gnt – two-mica granite; APG – aplite-pegmatite. Int: intermedian zone; bord – Comb-structure 

plagioclase in the border zone; *based on 8 oxygen atoms and the formula (Ca, Na, K) Al (Al, Si) Si2O8 



FCUP 

Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 
 

 

381 

 

Table B. 10 - Chemical analysis (wt.%) and structural formulas* of K-feldspars  from Calc-silicate nodules, banded 

metatexites and diatexites. 

Sample n
er

 GC2  GC2  FM16 FM15 FM15 VC52a VC60 VC60 

Anal. n
er

 1a 2a 1 2 3 4 1 2 

Type CSN CSN BMM BMM BMM BMM DTX DTX 

SiO2 65.74 64.28 62.54 64.65 65.85 63.75 64.09 63.90 

TiO2 0.02 0.02 0.01 0.23 0.00 0.94 0.27 0.38 

Al2O3 19.02 19.30 18.70 19.60 19.08 19.41 19.31 19.74 

FeO 0.10 0.00 0.04 0.42 0.00 0.60 0.08 0.08 

MnO 0.17 0.04 0.00 0.17 0.05 0.28 0.27 0.29 

MgO 0.00 0.01 0.00 0.00 0.01 0.07 0.28 0.10 

CaO 0.04 0.06 0.01 0.13 0.00 0.21 0.18 0.30 

Na2O 0.41 0.43 2.01 1.42 1.54 1.44 2.43 2.15 

K2O 14.75 15.01 14.26 13.07 14.03 12.94 12.69 12.50 

BaO 0.68 0.40 0.28 0.44 0.45 0.00 0.33 0.26 

Rb2O 0.09 0.02 0.00 0.01 0.00 0.00 0.00 0.00 

Cs2O 0.02 0.02 0.02 0.03 0.00 0.00 0.00 0.00 

P2O5 0.00 0.00 0.17 0.30 0.14 0.36 0.11 0.25 

TOTAL 101.0 99.6 98.0 100.5 101.2 100.0 100.0 99.9 

Si 3.00 2.97 2.95 2.95 2.99 2.92 2.94 2.93 

Al 1.02 1.05 1.04 1.05 1.02 1.05 1.04 1.07 

Ti 0.00 0.00 0.00 0.01 0.00 0.03 0.01 0.01 

Fe 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 

Mn 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.01 

Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ca 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 

Na 0.04 0.04 0.18 0.13 0.14 0.13 0.22 0.19 

K 0.86 0.89 0.86 0.76 0.81 0.76 0.74 0.73 

Ba 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 

Rb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Or 95.73 95.55 82.33 85.21 85.70 84.55 76.75 78.03 

Ab 4.03 4.11 17.64 14.07 14.30 14.30 22.34 20.40 

An 0.24 0.33 0.03 0.71 0.00 1.15 0.91 1.57 

Sample n
er

 VC60 VC60 VC60 VC60 VC60 VC60 VC60 

 Anal. n
er

 3 4 5 1a 2a 3a 4a 

 Type DTX DTX DTX DTX DTX DTX DTX 

 SiO2 64.02 65.50 65.71 65.46 65.28 65.88 65.33 

 TiO2 0.24 0.03 0.05 0.03 0.02 0.02 0.00 

 Al2O3 20.00 19.01 18.95 19.06 18.78 18.80 18.65 

 FeO 0.08 0.02 0.03 0.09 0.00 0.01 0.04 

 MnO 0.12 0.00 0.00 0.00 0.00 0.00 0.00 

 MgO 0.21 0.00 0.01 0.01 0.01 0.01 0.00 

 CaO 0.30 0.06 0.07 0.08 0.03 0.04 0.06 

 Na2O 2.30 2.03 2.02 2.21 1.37 1.43 0.95 

 K2O 12.32 13.81 14.00 13.13 14.93 13.94 15.20 

 BaO 0.29 0.30 0.31 0.39 0.22 0.15 0.20 

 Rb2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Cs2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 P2O5 0.13 0.11 0.11 0.11 0.11 0.15 0.11 

 TOTAL 100.0 100.9 101.3 100.6 100.8 100.4 100.5 

 Si 2.93 2.98 2.98 2.98 2.98 3.00 2.99 

 Al 1.08 1.02 1.01 1.02 1.01 1.01 1.01 

 Ti 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

 Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Mg 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

 Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Ca 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

 Na 0.20 0.18 0.18 0.19 0.12 0.13 0.08 

 K 0.72 0.80 0.81 0.76 0.87 0.81 0.89 

 Ba 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

 Rb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Cs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Or 76.67 81.47 81.72 79.33 87.59 86.33 91.09 

 Ab 21.76 18.24 17.96 20.28 12.24 13.46 8.62 

 An 1.57 0.30 0.32 0.39 0.17 0.21 0.29 

 OBS: Abbreviations: CSN – calc-silicate nodule; BMM – banded metatexites; DTX – diatexite; *based on 8 oxygen 

atoms and the formula (Ca, Na, K) Al (Al, Si) Si2O8.  
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Table B. 11 - Chemical analysis (wt.%) and structural formulas* of K-feldspars from Leucogranites and two-mica 

granites.. 

Sample n
er

 VC52 VC52 VC62 VC62 VC62 VC62 VC62 VC22 VC22 

Anal. n
er

 1 2 1a 2a 3a 4a 2 1 2 

Type L.Gnt L.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt 2m.Gnt 2m.Gnt 

SiO2 65.86 65.84 65.08 65.37 65.07 65.10 64.99 65.56 65.75 

TiO2 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 

Al2O3 18.47 18.67 18.80 18.71 18.79 18.58 18.71 18.65 18.23 

FeO 0.00 0.03 0.00 0.03 0.02 0.02 0.00 0.07 0.03 

MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaO 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.03 0.02 

Na2O 0.78 0.79 1.38 1.28 1.21 0.52 1.05 0.79 0.67 

K2O 15.71 15.69 14.87 14.73 14.94 15.83 15.11 15.69 15.77 

BaO 0.06 0.00 0.22 0.11 0.12 0.13 0.08 0.33 0.29 

Rb2O 0.00 0.00 0.00 0.00 0.09 0.02 0.01 0.01 0.09 

Cs2O 0.02 0.00 0.00 0.00 0.02 0.02 0.03 0.01 0.02 

P2O5 0.14 0.17 0.36 0.11 0.25 0.11 0.11 0.13 0.13 

TOTAL 100.9 101.0 100.4 100.3 100.2 100.2 100.0 101.1 100.8 

Si 3.01 3.00 2.99 3.00 2.99 3.00 2.99 3.00 3.01 

Al 0.99 1.00 1.02 1.01 1.02 1.01 1.01 1.00 0.98 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.07 0.07 0.12 0.11 0.11 0.05 0.09 0.07 0.06 

K 0.91 0.91 0.87 0.86 0.88 0.93 0.89 0.91 0.92 

Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

Rb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Or 92.93 92.81 87.56 88.22 88.93 95.12 90.39 92.78 93.87 

Ab 6.97 7.09 12.31 11.66 10.96 4.78 9.50 7.09 6.05 

An 0.10 0.10 0.13 0.12 0.12 0.11 0.11 0.13 0.08 

Sample n
er

 VC22 VC39 VC39 VC39 VC39 VC39 VC64 VC64 VC64 

Anal. n
er

 3 1a 2a 3a 1 2 1 2 3 

Type 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt APG APG APG 

SiO2 65.30 63.95 64.96 63.04 65.04 62.64 64.54 64.32 63.70 

TiO2 0.00 0.27 0.00 0.21 0.21 0.18 0.00 0.11 0.25 

Al2O3 18.70 18.57 18.57 18.63 18.63 18.09 19.83 19.42 19.39 

FeO 0.03 0.04 0.02 0.05 0.02 0.04 0.02 0.01 0.02 

MnO 0.00 0.27 0.12 0.29 0.19 0.13 0.20 0.13 0.38 

MgO 0.00 0.11 0.12 0.24 0.24 0.10 0.00 0.13 0.13 

CaO 0.02 0.14 0.13 0.12 0.12 0.09 0.00 0.00 0.00 

Na2O 1.31 1.25 0.41 0.90 0.90 0.25 0.91 0.74 0.93 

K2O 14.84 14.21 14.99 14.50 14.50 14.61 14.06 14.51 14.03 

BaO 0.24 0.27 0.31 0.29 0.20 0.30 0.10 0.08 0.08 

Rb2O 0.04 0.02 0.05 0.00 0.09 0.02 0.01 0.04 0.01 

Cs2O 0.04 0.02 0.03 0.00 0.02 0.02 0.03 0.00 0.01 

P2O5 0.11 0.17 0.14 0.13 0.00 0.32 0.00 0.50 0.38 

TOTAL 100.5 99.3 99.8 98.4 100.0 96.7 99.7 100.0 99.3 

Si 2.99 2.97 2.99 2.96 2.99 2.98 2.96 2.95 2.94 

Al 1.01 1.02 1.01 1.03 1.01 1.01 1.07 1.05 1.06 

Ti 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01 

Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 

Mg 0.00 0.01 0.01 0.02 0.02 0.01 0.00 0.01 0.01 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ca 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 

Na 0.12 0.11 0.04 0.08 0.08 0.02 0.08 0.07 0.08 

K 0.87 0.84 0.88 0.87 0.85 0.89 0.82 0.85 0.83 

Ba 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 

Rb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Or 88.05 87.57 95.34 90.80 90.80 96.98 91.04 92.81 90.85 
Ab 11.83 11.71 3.96 8.57 8.57 2.52 8.96 7.19 9.15 

An 0.11 0.72 0.69 0.63 0.63 0.50 0.00 0.00 0.00 

OBS: Abbreviations: L.Gnt – leucogranite; TL.Gnt – Tourmaline bearing leucogranite; 2m.Gnt – two-mica granite; APG – 

aplite-pegmatite. *Based on 8 oxygen atoms and the formula (Ca, Na, K) Al (Al, Si) Si2O8. 
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Table B. 12 - Chemical analysis (wt.%) and structural formulas* of biotites  from calc-silicate nodules and 

metagreywackes.  

Sample 
n

er
 FM1 FM1 FM21 FM21 

FM2
1 FP21c FP21c FP21c FP21c FP21c FP21c FP21c 

Anal. n
er

 1 2 1 2 3 1-r 2-r 3-r 4-r 5-m 6-m 7-m 

Type 
CSR CSR GWK GWK GWK 

GWK.
m  

GWK.
m 

GWK.
m 

GWK.
m 

GWK.
m 

GWK.
m 

GWK.
m 

SiO2 36.09 36.78 36.23 36.36 36.30 35.62 35.78 35.27 35.47 35.50 35.92 35.76 

TiO2 3.31 3.37 3.05 3.43 3.33 3.07 3.02 2.95 3.31 2.99 3.03 3.13 

Al2O3 17.31 17.62 17.54 18.84 18.00 19.28 19.62 19.57 19.18 19.49 19.65 19.45 

FeO 17.66 14.59 18.24 18.89 18.90 18.84 18.47 18.81 18.69 18.75 18.57 18.65 

MnO 0.30 0.25 0.27 0.26 0.17 0.23 0.27 0.26 0.17 0.23 0.20 0.25 

MgO 13.33 12.54 11.11 10.96 10.07 8.93 8.64 8.89 9.08 8.78 8.65 8.63 

CaO 0.16 0.01 0.01 0.00 0.05 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Na2O 0.00 0.15 0.10 0.32 0.09 0.15 0.11 0.21 0.20 0.16 0.15 0.15 

K2O 8.55 9.37 8.79 8.83 8.90 9.65 9.72 9.61 9.63 9.69 9.74 9.69 

BaO 0.16 0.15 0.08 0.06 0.13 0.08 0.09 0.02 0.13 0.09 0.06 0.00 

F 0.30 0.44 0.15 0.12 0.11 0.15 0.16 0.18 0.11 0.14 0.12 0.12 

Cl 0.00 0.00 0.02 0.02 0.01 0.02 0.03 0.02 0.01 0.01 0.02 0.03 

Cr2O3 0.00 0.00 0.12 0.10 0.15 0.12 0.11 0.08 0.15 0.12 0.10 0.11 

Li2O* 0.07 0.07 0.10 0.10 0.11 0.14 0.15 0.14 0.13 0.14 0.15 0.15 

H2O* 2.50 4.40 4.20 2.70 3.00 3.93 4.06 4.20 3.92 4.12 3.85 4.05 

Subtotal  99.73 99.75 
100.0

0 
100.9

9 99.34 100.20 100.22 100.22 100.18 100.20 100.20 100.20 

O=F,Cl 0.13 0.19 0.07 0.06 0.05 0.07 0.07 0.08 0.05 0.06 0.06 0.06 

Total 99.61 99.57 99.93 
100.9

4 99.29 100.14 100.14 100.14 100.13 100.14 100.14 100.15 

Si 5.35 5.50 5.45 5.34 5.44 5.37 5.39 5.33 5.35 5.36 5.39 5.39 

Al iv 2.65 2.50 2.55 2.66 2.56 2.63 2.61 2.67 2.65 2.64 2.61 2.61 

Al vi 0.37 0.60 0.56 0.60 0.63 0.79 0.87 0.82 0.75 0.83 0.87 0.84 

Ti 0.37 0.38 0.35 0.38 0.38 0.35 0.34 0.33 0.38 0.34 0.34 0.35 

Cr 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 

Fe 2.19 1.82 2.30 2.32 2.37 2.38 2.33 2.38 2.36 2.37 2.33 2.35 

Mn 0.04 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.03 

Mg 2.94 2.79 2.49 2.40 2.25 2.01 1.94 2.00 2.04 1.98 1.94 1.94 

Li* 0.04 0.04 0.06 0.06 0.07 0.08 0.09 0.08 0.08 0.09 0.09 0.09 

Ca 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.00 0.04 0.03 0.09 0.03 0.04 0.03 0.06 0.06 0.05 0.04 0.04 

K 1.62 1.79 1.69 1.65 1.70 1.86 1.87 1.85 1.85 1.87 1.86 1.86 

Ba 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 

OH* 3.86 3.79 3.93 3.94 3.95 3.93 3.92 3.91 3.95 3.93 3.94 3.94 

F 0.14 0.21 0.07 0.06 0.05 0.07 0.08 0.09 0.05 0.06 0.06 0.06 

Cl 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 

OBS: Abbreviations: CSN – Calc-silicate nodules; GWK – Metagreywackes; GWK.m – Metagreywacke partially 

migmatized; r – biotite from the non-migmatized zone; m – biotite from the migmatized zone; *based on 24 oxygen 

atoms and the formula X2Y4-6Z8O20 (OH,F)4; Li2O = [2.1/(0.356 + MgO)] – 0.088 ( Tischendorf et al., 1999). 
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Table B. 13 - Chemical analysis (wt.%) and structural formulas* of biotites  from SGC metasediments. 

Sample n
er

 FM38 FM38 FM38 FM38 FM38 FM38 VC65 VC65 VC65 
Anal. n

er
 1 2 3 4 5 6 1 2 3 

Type Bt.sch Bt.sch Bt.sch Bt.sch Bt.sch Bt.sch St.sch St.sch St.sch 

SiO2 35.81 36.15 36.70 36.58 36.15 36.15 35.54 35.35 35.72 

TiO2 1.85 1.80 1.90 1.82 1.86 1.96 2.48 2.11 2.31 

Al2O3 20.38 19.80 19.42 19.25 19.05 19.46 19.66 19.89 20.21 

FeO 20.62 20.73 20.96 20.61 21.09 20.98 19.62 19.56 18.78 

MnO 0.01 0.07 0.10 0.07 0.04 0.07 0.13 0.14 0.13 

MgO 8.03 7.46 7.75 7.84 7.33 6.79 8.39 8.75 9.12 

CaO 0.13 0.13 0.44 0.14 0.16 0.14 0.06 0.02 0.02 

Na2O 0.09 0.09 0.19 0.15 0.13 0.15 0.23 0.12 0.33 

K2O 5.21 5.26 5.88 6.04 5.55 5.18 8.42 8.89 8.47 

BaO 0.05 0.05 0.00 0.00 0.06 0.06 0.12 0.10 0.09 

F 0.07 0.04 0.75 0.07 0.04 0.04 0.06 0.06 0.06 

Cr2O3 0.12 0.11 0.00 0.11 0.09 0.09 0.11 0.12 0.08 

Li2O* 0.16 0.18 0.17 0.17 0.19 0.21 0.15 0.14 0.13 

H2O* 7.66 8.29 6.90 7.26 8.48 8.87 5.21 4.92 4.69 

Subtotal  100.20 100.20 101.26 100.11 100.21 100.17 100.18 100.17 100.16 

O=F,Cl 0.03 0.02 0.34 0.03 0.02 0.02 0.03 0.03 0.02 

Total 100.17 100.18 100.92 100.08 100.19 100.15 100.15 100.14 100.13 

Si 5.48 5.57 5.59 5.61 5.61 5.62 5.40 5.37 5.37 

Al iv 2.52 2.43 2.41 2.39 2.39 2.38 2.60 2.63 2.63 

Al vi 1.16 1.17 1.07 1.09 1.10 1.18 0.92 0.93 0.96 

Ti 0.21 0.21 0.22 0.21 0.22 0.23 0.28 0.24 0.26 

Fe 2.64 2.67 2.67 2.64 2.74 2.73 2.49 2.49 2.36 

Mn 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 

Mg 1.83 1.71 1.76 1.79 1.70 1.57 1.90 1.98 2.04 

Li* 0.10 0.11 0.10 0.10 0.12 0.13 0.09 0.09 0.08 

Ca 0.02 0.02 0.07 0.02 0.03 0.02 0.01 0.00 0.00 

Na 0.03 0.03 0.06 0.04 0.04 0.05 0.07 0.03 0.10 

K 1.02 1.04 1.14 1.18 1.10 1.03 1.63 1.72 1.63 

Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 

OH* 3.97 3.98 3.61 3.96 3.98 3.98 3.97 3.97 3.97 
F 0.03 0.02 0.36 0.03 0.02 0.02 0.03 0.03 0.03 

Sample n
er

 FM14 FM14 FM14 FM14 FM14 FM14 FM11 FM11 FM11 
Anal. n

er
 1 2 3 1g 1g 1s 1 2 3 

Type St.sch St.sch St.sch St.sch St.sch St.sch St.sch St.sch St.sch 

SiO2 32.72 36.44 37.21 36.18 36.36 36.47 36.52 36.21 36.45 

TiO2 1.26 1.84 1.84 1.38 1.42 1.42 1.69 1.68 2.29 

Al2O3 22.10 19.66 19.33 20.02 20.28 20.75 19.81 20.00 19.62 

FeO 20.05 18.80 18.97 18.60 18.20 17.34 19.48 19.48 19.43 

MnO 0.08 0.06 0.10 0.10 0.00 0.04 0.09 0.07 0.10 

MgO 9.78 10.02 10.26 10.96 10.83 9.39 10.22 10.31 9.62 

CaO 0.04 0.03 0.06 0.02 0.01 0.02 0.04 0.04 0.02 

Na2O 0.20 0.32 0.34 0.46 0.44 0.32 0.35 0.32 0.39 

K2O 7.31 8.72 8.58 8.24 8.42 8.35 8.01 8.01 8.18 

BaO 0.68 0.10 0.11 0.06 0.16 0.11 0.06 0.11 0.11 

F 0.05 0.17 0.16 0.07 0.04 0.09 0.03 0.28 0.20 

Cr2O3 0.09 0.08 0.06 0.08 0.06 0.09 0.06 0.09 0.10 

Li2O* 0.12 0.11 0.11 0.10 0.10 0.13 0.11 0.11 0.12 

H2O* 6.20 4.10 3.99 4.10 3.99 5.20 3.66 3.49 3.59 

O=F,Cl 0.02 0.07 0.07 0.11 0.10 0.08 0.01 0.12 0.08 

Total 100.73 100.48 101.18 101.40 101.38 99.55 100.11 100.11 100.12 

Si 5.02 5.44 5.50 5.38 5.40 5.48 5.43 5.39 5.43 

Al iv 2.98 2.56 2.50 2.62 2.60 2.52 2.57 2.61 2.57 

Al vi 1.02 0.89 0.86 0.89 0.95 1.16 0.90 0.89 0.87 

Ti 0.15 0.21 0.20 0.15 0.16 0.16 0.19 0.19 0.26 

Fe 2.57 2.35 2.34 2.31 2.26 2.18 2.42 2.42 2.42 

Mn 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 

Mg 2.24 2.23 2.26 2.43 2.40 2.10 2.26 2.29 2.14 

Li* 0.07 0.07 0.07 0.06 0.06 0.08 0.07 0.07 0.07 

Ca 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 

Na 0.06 0.09 0.10 0.13 0.13 0.09 0.10 0.09 0.11 

K 1.43 1.66 1.62 1.56 1.59 1.60 1.52 1.52 1.55 

Ba 0.04 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 

OH* 3.98 3.92 3.92 3.97 3.98 3.96 3.99 3.87 3.91 
F 0.02 0.08 0.08 0.03 0.02 0.04 0.01 0.13 0.09 

OBS: Abbreviations: Bt.Sch – biotite schist; St.sch – staurolite schist; g – biotite inside garnet; s – biotite inside 

staurolite; *based on 24 oxygen atoms and the formula X2Y4-6Z8O20 (OH,F)4; Li2O = [2.1/(0.356 + MgO)] – 0.088 de 

(Tischendorf et al. , 1999). 
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Table B. 14 - Chemical analysis (wt.%) and structural formulas* of biotites  from patch-and banded metatexites.  

Sample n
er

 VC28 VC28 VC28 VC28 VC28 VC28 VC28 VC28 VC28 FM16 

Anal. n
er

 1 2 3 4 5 6 7 8 9 1 

Type PMM.l PMM.l PMM.l PMM.m PMM.m PMM.m PMM.m PMM.m PMM.m BMM.m 

SiO2 35.16 35.31 34.89 35.33 35.64 35.47 35.16 34.78 36.43 35.53 

TiO2 3.74 3.68 3.32 2.64 3.33 3.42 3.03 3.79 3.20 3.73 

Al2O3 19.92 19.86 20.30 20.06 19.97 20.04 20.29 19.74 20.33 19.72 

FeO 18.57 18.56 18.72 18.41 18.58 18.53 19.15 19.00 18.22 18.95 

MnO 0.25 0.29 0.23 0.18 0.31 0.23 0.18 0.23 0.30 0.20 

MgO 9.07 9.14 9.04 9.61 9.55 9.60 8.41 8.00 9.20 7.66 

CaO 0.01 0.02 0.03 0.03 0.03 0.02 0.02 0.00 0.02 0.00 

Na2O 0.19 0.23 0.26 0.18 0.22 0.25 0.25 0.17 0.27 0.12 

K2O 9.56 9.59 9.62 9.10 9.63 9.56 9.04 9.10 8.90 9.87 

BaO 0.04 0.10 0.10 0.08 0.09 0.13 0.10 0.06 0.08 0.16 

F 0.15 0.12 0.11 0.19 0.15 0.16 0.18 0.15 0.14 0.20 

Cr2O3 0.07 0.13 0.11 0.06 0.14 0.12 0.07 0.07 0.08 0.00 

Li2O* 0.13 0.13 0.14 0.12 0.12 0.12 0.15 0.16 0.13 0.17 

H2O* 3.38 3.05 3.37 3.99 2.48 2.64 4.01 4.95 3.07 4.04 

Subtotal  100.26 100.22 100.24 99.98 100.26 100.27 100.09 100.23 100.38 100.41 

O=F,Cl 0.06 0.05 0.05 0.08 0.06 0.07 0.08 0.06 0.06 0.09 

Total 100.20 100.17 100.19 99.90 100.20 100.20 100.01 100.17 100.33 100.32 

Si 5.26 5.27 5.23 5.31 5.28 5.26 5.30 5.29 5.37 5.36 

Al iv 2.74 2.73 2.77 2.69 2.72 2.74 2.70 2.71 2.63 2.64 

Al vi 0.77 0.76 0.81 0.87 0.77 0.76 0.91 0.83 0.91 0.87 

Ti 0.42 0.41 0.37 0.30 0.37 0.38 0.34 0.43 0.35 0.42 

Fe 2.32 2.32 2.35 2.31 2.30 2.30 2.41 2.42 2.25 2.39 

Mn 0.03 0.04 0.03 0.02 0.04 0.03 0.02 0.03 0.04 0.03 

Mg 2.02 2.03 2.02 2.15 2.11 2.12 1.89 1.81 2.02 1.72 

Li* 0.08 0.08 0.08 0.07 0.07 0.07 0.09 0.10 0.08 0.11 

Ca 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.06 0.07 0.08 0.05 0.06 0.07 0.07 0.05 0.08 0.03 

K 1.82 1.82 1.84 1.75 1.82 1.81 1.74 1.77 1.67 1.90 

Ba 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01 

OH* 3.93 3.94 3.94 3.91 3.93 3.93 3.91 3.93 3.93 3.90 

F 0.07 0.06 0.05 0.09 0.07 0.07 0.09 0.07 0.06 0.10 

Sample n
er

 FM16 VC15  VC15  VC15  VC15  VC15  VC15  

   Anal. n
er

 2 1 2 3 4 5 6 

   Type BMM.l BMM.m BMM.m BMM.l BMM.l BMM.l BMM.l 

   SiO2 34.82 36.04 36.45 35.70 35.69 36.35 35.99 

   TiO2 3.67 4.05 4.36 4.15 4.40 2.58 3.12 

   Al2O3 19.17 20.23 20.19 20.07 20.01 20.79 20.51 

   FeO 19.22 19.14 19.40 19.67 20.38 18.64 18.83 

   MnO 0.13 0.28 0.25 0.12 0.31 0.20 0.19 

   MgO 8.02 7.82 7.89 7.69 7.92 9.17 9.05 

   CaO 0.00 0.00 0.00 0.00 0.20 0.00 0.00 

   Na2O 0.17 0.14 0.18 0.14 0.28 0.22 0.20 

   K2O 9.66 9.10 9.16 9.22 8.89 9.05 9.14 

   BaO 0.08 0.09 0.07 0.07 0.04 0.07 0.08 

   F 0.23 0.21 0.16 0.18 0.19 0.09 0.11 

   Cr2O3 0.00 0.06 0.07 0.08 0.03 0.02 0.09 

   Li2O* 0.16 0.17 0.17 0.17 0.17 0.13 0.14 

   H2O* 5.05 3.80 2.05 3.00 3.00 3.00 3.00 

   O=F,Cl 0.10 0.09 0.07 0.08 0.08 0.04 0.05 

   Total 100.30 101.04 100.35 100.22 101.43 100.30 100.40 

   Si 5.32 5.35 5.35 5.32 5.27 5.36 5.32 

   Al iv 2.68 2.65 2.65 2.68 2.73 2.64 2.68 

   Al vi 0.78 0.89 0.85 0.84 0.75 0.98 0.90 

   Ti 0.42 0.45 0.48 0.47 0.49 0.29 0.35 

   Fe 2.46 2.38 2.38 2.45 2.52 2.30 2.33 

   Mn 0.02 0.04 0.03 0.01 0.04 0.02 0.02 

   Mg 1.83 1.73 1.73 1.71 1.74 2.02 2.00 

   Li* 0.10 0.10 0.10 0.10 0.10 0.08 0.08 

   Ca 0.00 0.00 0.00 0.00 0.03 0.00 0.00 

   Na 0.05 0.04 0.05 0.04 0.08 0.06 0.06 

   K 1.88 1.72 1.72 1.75 1.67 1.70 1.72 

   Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

   OH* 3.89 3.90 3.93 3.91 3.91 3.95 3.95 

   F 0.11 0.10 0.07 0.09 0.09 0.04 0.05 

   OBS: Abbreviations: PPM.l – patch metatexite leucosome; PPM.m – patch-metatexite melanosome; BMM.l – banded 

metatexite leucosome; BMM.m – banded metatexite melanosome; *based on 24 oxygen atoms and the formula X2Y4-

6Z8O20 (OH,F)4; Li2O = [2.1/(0.356 + MgO)] – 0.088  (Tischendorf et al. , 1999). 
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Table B. 15 - Chemical analysis (wt.%) and structural formulas* of biotites  from granitic rocks. 

Sample n
er

 VC60 VC60 VC60 VC60 VC60 VC60 VC52 VC62 VC62 VC62 

Anal. n
er

 1c 1b 2c 2b 3c 3b 1 1c 1b 2 

Type DTX DTX DTX DTX DTX DTX TL.Gnt TL.Gnt TL.Gnt TL.Gnt 

SiO2 35.29 35.59 35.14 35.56 35.27 35.17 34.01 35.82 35.02 35.40 

TiO2 2.26 2.38 2.83 2.62 2.95 2.01 2.01 2.25 3.55 2.64 

Al2O3 20.44 20.01 20.53 20.58 19.83 20.40 20.28 19.75 19.28 19.84 

FeO 18.47 18.07 17.68 17.39 18.52 18.30 23.71 20.49 20.86 20.78 

MnO 0.19 0.19 0.23 0.20 0.17 0.18 1.82 0.89 0.85 0.88 

MgO 9.27 9.54 8.93 8.90 9.30 9.64 3.45 6.26 5.76 5.77 

CaO 0.03 0.02 0.02 0.02 0.01 0.01 0.05 0.03 0.02 0.01 

Na2O 0.13 0.12 0.11 0.19 0.23 0.20 0.18 0.06 0.07 0.06 

K2O 9.52 9.59 9.64 9.58 9.50 9.57 9.19 9.47 9.41 9.49 

BaO 0.06 0.00 0.08 0.00 0.11 0.08 0.02 0.09 0.00 0.09 

F 0.02 0.02 0.00 0.00 0.00 0.02 0.15 0.21 0.20 0.25 

Cr2O3 0.03 0.09 0.08 0.02 0.08 0.06 0.08 0.02 0.07 0.07 

Li2O* 0.13 0.12 0.14 0.14 0.13 0.12 0.46 0.23 0.26 0.25 

H2O* 4.29 4.39 4.72 4.92 4.02 4.36 5.09 4.70 5.00 4.84 

Subtotal  100.14 100.13 100.14 100.14 100.13 100.13 100.53 100.32 100.34 100.36 

O=F,Cl 0.01 0.01 0.00 0.00 0.00 0.01 0.06 0.09 0.08 0.10 

Total 100.13 100.12 100.14 100.14 100.13 100.12 100.47 100.23 100.25 100.25 

Si 5.31 5.35 5.30 5.36 5.31 5.30 5.32 5.48 5.39 5.43 

Al iv 2.69 2.65 2.70 2.64 2.69 2.70 2.68 2.52 2.61 2.57 

Al vi 0.94 0.90 0.95 1.01 0.82 0.93 1.07 1.04 0.89 1.02 

Ti 0.26 0.27 0.32 0.30 0.33 0.23 0.24 0.26 0.41 0.30 

Fe 2.33 2.27 2.23 2.19 2.33 2.31 3.10 2.62 2.69 2.67 

Mn 0.02 0.02 0.03 0.03 0.02 0.02 0.24 0.12 0.11 0.11 

Mg 2.08 2.14 2.01 2.00 2.08 2.17 0.80 1.43 1.32 1.32 

Li* 0.08 0.08 0.08 0.08 0.08 0.07 0.29 0.14 0.16 0.16 

Ca 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Na 0.04 0.04 0.03 0.06 0.07 0.06 0.05 0.02 0.02 0.02 

K 1.83 1.84 1.85 1.84 1.82 1.84 1.84 1.85 1.85 1.86 

Ba 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 

OH* 3.99 3.99 4.00 4.00 4.00 3.99 3.92 3.90 3.90 3.88 

F 0.01 0.01 0.00 0.00 0.00 0.01 0.07 0.10 0.10 0.12 

Sample n
er

 FP21 z3 FP21 z6 VC22 VC22 VC22 VC22 VC22 VC22 VC39  VC39  

Anal. n
er

 1 2 1 2 3c 3b 4c 4b 5c 5b 

Type 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 

SiO2 35.52 36.09 35.68 35.79 35.75 35.52 35.94 35.44 35.26 36.23 

TiO2 2.70 3.11 2.85 2.77 3.01 2.61 2.81 2.87 2.65 2.79 

Al2O3 18.80 18.53 19.31 19.29 18.96 18.93 19.08 19.39 18.69 19.94 

FeO 20.27 22.16 18.64 18.81 18.80 18.98 18.61 18.55 21.70 21.04 

MnO 0.36 0.27 0.25 0.26 0.21 0.19 0.26 0.27 0.32 0.34 

MgO 7.72 8.09 8.62 8.71 8.76 8.68 8.59 8.62 6.68 6.80 

CaO 0.10 0.00 0.02 0.00 0.01 0.02 0.03 0.02 0.00 0.05 

Na2O 0.00 0.24 0.15 0.18 0.14 0.13 0.16 0.16 0.09 0.27 

K2O 8.62 8.74 9.69 9.71 9.66 9.75 9.72 9.66 8.46 9.24 

BaO 0.02 0.02 0.00 0.00 0.11 0.02 0.00 0.08 0.08 0.07 

F 0.18 0.19 0.14 0.11 0.14 0.14 0.11 0.13 0.17 0.19 

Cr2O3 0.00 0.00 0.08 0.13 0.14 0.09 0.08 0.12 0.09 0.09 

Li2O* 0.17 0.16 0.15 0.14 0.14 0.14 0.15 0.15 0.21 0.21 

H2O* 4.93 3.30 4.61 4.27 4.36 5.00 4.59 4.76 4.10 3.00 

O=F,Cl 0.09 0.08 0.06 0.05 0.06 0.06 0.05 0.06 0.07 0.08 

Total 99.35 100.82 100.14 100.15 100.14 100.15 100.15 100.14 98.43 100.19 

Si 5.46 5.42 5.41 5.41 5.41 5.42 5.44 5.38 5.46 5.43 

Al iv 2.54 2.58 2.59 2.59 2.59 2.58 2.56 2.62 2.54 2.57 

Al vi 0.87 0.69 0.86 0.84 0.80 0.82 0.85 0.85 0.88 0.96 

Ti 0.31 0.35 0.32 0.31 0.34 0.30 0.32 0.33 0.31 0.31 

Fe 2.61 2.78 2.36 2.38 2.38 2.42 2.36 2.36 2.81 2.64 

Mn 0.05 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.04 0.04 

Mg 1.77 1.81 1.95 1.96 1.98 1.97 1.94 1.95 1.54 1.52 

Li* 0.11 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.13 0.12 

Ca 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

Na 0.00 0.07 0.04 0.05 0.04 0.04 0.05 0.05 0.03 0.08 

K 1.69 1.67 1.87 1.87 1.86 1.90 1.88 1.87 1.67 1.77 

Ba 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 
OH* 3.90 3.91 3.93 3.95 3.93 3.93 3.94 3.94 3.91 3.90 

F 0.09 0.09 0.07 0.05 0.07 0.07 0.05 0.06 0.08 0.09 

OBS: Abbreviations: DTX – diatexites; TL.Gnt – tourmaline bearing leucogranite; 2m.Gnt – two-mica granite. C – core; b 

– border; *Based on 24 oxygen atoms and the formula X2Y4-6Z8O20 (OH,F)4;; Li2O = [2.1/(0.356 + MgO)] – 0.088 

(Tischendorf et al., 1999). 
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Table B. 16 - Chemical analysis (wt.%) and structural formulas* of muscovites from MMC calc-silicate nodule, SGC 

metasediments and MMC metatexites. 

Sample n
er

 VC28e VC28e FP26  FM38 VC65 VC65 FM11 FM11 FM11 FM11 FM11 
Anal. n

er
 1 2 1 1 1 2 1 2 3 4 5 

Type CSN CSN Chl.Sch Bt.Sch St.Sch St.Sch St.Sch St.Sch St.Sch St.Sch St.Sch 

SiO2 45.97 46.25 46.09 46.92 45.84 45.44 45.56 45.98 46.46 46.33 45.88 
TiO2 0.17 0.33 0.29 0.42 0.85 0.93 0.12 0.42 0.65 0.47 0.20 
Al2O3 37.89 36.64 36.41 36.83 36.75 36.59 37.47 37.05 36.17 36.35 36.96 
FeO 0.73 0.74 1.72 0.79 1.03 0.78 0.54 0.70 0.65 0.63 0.69 
MnO 0.24 0.46 0.10 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 
MgO 0.28 0.45 0.98 0.63 0.55 0.48 0.42 0.39 0.43 0.56 0.45 
CaO 0.34 0.12 0.12 0.09 0.03 0.04 0.03 0.00 0.02 0.00 0.02 
Na2O 0.08 0.16 0.81 1.92 0.76 0.98 1.47 1.36 1.33 1.47 1.60 
K2O 10.21 10.62 8.40 7.92 8.83 9.56 9.09 9.09 9.24 8.72 8.88 
BaO 0.13 0.28 0.17 0.22 0.30 0.27 0.06 0.13 0.28 0.17 0.22 
F 0.05 0.04 0.66 0.00 0.05 0.03 0.01 0.00 0.01 0.06 0.09 
Li2O* 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
H2O* 4.54 4.52 4.24 4.59 4.94 4.83 5.15 4.81 4.68 5.14 4.94 
O=F,Cl 0.02 0.02 0.28 0.00 0.02 0.01 0.00 0.00 0.00 0.03 0.04 
Total 100.60 100.60 100.40 100.66 100.02 100.00 100.01 100.00 100.00 100.03 100.00 

Si 6.04 6.11 6.07 6.13 6.07 6.04 6.04 6.08 6.14 6.13 6.08 
Al iv 1.96 1.89 1.93 1.87 1.93 1.96 1.96 1.92 1.86 1.87 1.92 
Al vi 3.91 3.81 3.73 3.79 3.80 3.76 3.89 3.85 3.78 3.80 3.85 
Al VI - 2 1.91 1.81 1.73 1.79 1.80 1.76 1.89 1.85 1.78 1.80 1.85 
Ti 0.02 0.03 0.03 0.04 0.08 0.09 0.01 0.04 0.07 0.05 0.02 
Fe 0.08 0.08 0.19 0.09 0.11 0.09 0.06 0.08 0.07 0.07 0.08 
Mn 0.03 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Mg 0.05 0.09 0.19 0.12 0.11 0.10 0.08 0.08 0.08 0.11 0.09 
Li* 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Ca 0.05 0.02 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 
Na 0.02 0.04 0.21 0.49 0.20 0.25 0.38 0.35 0.34 0.38 0.41 
K 1.71 1.79 1.41 1.32 1.49 1.62 1.54 1.53 1.56 1.47 1.50 
Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Ba 0.01 0.01 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.01 
OH* 3.98 3.98 3.73 4.00 3.98 3.99 4.00 4.00 4.00 3.97 3.96 
F 0.02 0.02 0.27 0.00 0.02 0.01 0.00 0.00 0.00 0.02 0.04 

            Sample n
er

 VC52 VC28A FM16 FM16 FM16 FM16 

     Anal. n
er

 1 1 1 2 3 4 

     Type MTX MTX MTX MTX MTX MTX 

     SiO2 48.32 47.14 45.25 46.56 46.77 47.40 

     TiO2 0.82 0.42 1.51 0.02 0.02 0.08 

     Al2O3 36.71 38.88 35.44 36.69 33.94 34.56 

     FeO 1.61 1.22 0.80 0.50 1.78 1.44 

     MnO 0.39 0.19 0.00 0.06 0.00 0.00 

     MgO 1.15 0.92 0.49 0.02 0.79 0.88 

     CaO 0.26 0.11 0.05 0.00 0.15 0.02 

     Na2O 0.80 0.73 0.57 0.13 0.20 0.24 

     K2O 9.60 10.20 10.60 11.22 11.23 11.19 

     BaO 0.16 0.11 0.21 0.12 0.13 0.15 

     F 0.11 0.09 0.41 0.08 0.07 0.05 

     Li2O* 0.00 0.00 0.05 0.00 0.00 0.00 

     H2O* 0.00 0.00 4.29 4.48 4.43 4.50 

     O=F,Cl 0.05 0.04 0.17 0.03 0.03 0.02 

     Total 99.88 99.97 99.50 99.85 99.49 100.50 

     Si 6.13 5.97 6.06 6.18 6.28 6.28 

     Al iv 1.87 2.03 1.94 1.82 1.72 1.72 

     Al vi 3.62 3.78 3.65 3.91 3.65 3.68 

     Al VI - 2 1.62 1.78 1.65 1.91 1.65 1.68 

     Ti 0.08 0.04 0.15 0.00 0.00 0.01 

     Fe 0.17 0.13 0.09 0.06 0.20 0.16 

     Mn 0.04 0.02 0.00 0.01 0.00 0.00 

     Mg 0.22 0.17 0.10 0.00 0.16 0.17 

     Li* 0.00 0.00 0.03 0.00 0.00 0.00 

     Ca 0.04 0.01 0.01 0.00 0.02 0.00 

     Na 0.20 0.18 0.15 0.03 0.05 0.06 

     K 1.55 1.65 1.81 1.90 1.92 1.89 

     Sr 0.00 0.00 0.00 0.00 0.00 0.00 

     Ba 0.01 0.01 0.01 0.01 0.01 0.01 

     OH* 3.96 3.96 3.83 3.97 3.97 3.98 

     F 0.04 0.04 0.17 0.03 0.03 0.02 

     OBS: Abbreviations: CSN – calc-silicate nodule; Chl.Sch – chlorite schist; Bt.Sch – biotite-schist; St.Sch – staurolite 

schist; MTX – metatexites;  *based on 24 oxygen atoms and the formula X2Y4-6Z8O20 (OH,F)4; Li2O was calculated from 

the  equation:  Li2O = 0.3935.F
1.326 

de TISCHENDORF et al . (1997). 
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Table B. 17 - Chemical analysis (wt.%) and structural formula*  of muscovites from MMC granitic rocks. 

Sample n
er

 FM6 VC56 VC60 VC60 VC60 VC59 VC52 VC52 VC52 VC52 VC62 VC62 
Anal. n

er
 1 1 1 2 3 1 1 2 3 4 1 2 

Type DTX DTX DTX DTX DTX DTX TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt 

SiO2 46.08 46.58 46.52 46.35 45.71 46.23 45.91 45.81 46.00 45.91 45.46 45.09 
TiO2 1.10 1.06 0.63 0.33 0.59 0.13 1.28 0.39 0.68 0.22 0.03 0.09 
Al2O3 36.18 35.52 36.51 36.69 36.25 36.86 35.05 35.29 34.59 35.12 35.89 35.20 
FeO 1.22 1.25 0.87 1.25 0.86 1.16 1.68 1.56 1.72 1.58 0.97 1.36 
MnO 0.00 0.00 0.00 0.24 0.01 0.10 0.07 0.10 0.12 0.09 0.08 0.06 
MgO 0.95 0.92 0.53 0.79 0.49 0.74 0.54 0.48 0.60 0.46 0.38 0.72 
CaO 0.00 0.00 0.03 0.06 0.02 0.08 0.04 0.06 0.02 0.03 0.01 0.03 
Na2O 0.79 0.70 0.44 0.74 0.59 0.61 0.52 0.52 0.65 0.66 0.61 0.42 
K2O 9.65 9.98 9.53 9.54 10.13 9.90 9.69 10.65 10.40 10.64 10.57 10.57 
BaO 0.12 0.21 0.16 0.12 0.12 0.13 0.03 0.03 0.03 0.06 0.05 0.16 
F 0.06 0.41 0.11 .09 0.08 0.12 0.09 0.05 0.07 0.07 0.04 0.08 
Li2O* 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
H2O* 4.53 4.37 4.73 4.56 5.30 4.50 5.04 5.05 5.06 5.12 5.86 6.16 
O=F,Cl 0.02 0.17 0.05 0.00 0.03 0.05 0.04 0.02 0.03 0.03 0.02 0.04 
Total 100.7 101.1 100.1 100.6 100.2 100.9 100.0 100.0 100.0 100.0 100.0 100.0 

Si 6.06 6.12 6.14 6.09 6.09 6.08 6.13 6.14 6.17 6.16 6.12 6.12 
Al iv 1.94 1.88 1.86 1.91 1.91 1.92 1.87 1.86 1.83 1.84 1.88 1.88 
Al vi 3.68 3.63 3.81 3.78 3.79 3.79 3.64 3.72 3.64 3.72 3.82 3.75 
Al VI - 2 1.68 1.63 1.81 1.78 1.79 1.79 1.64 1.72 1.64 1.72 1.82 1.75 
Ti 0.11 0.10 0.06 0.03 0.06 0.01 0.13 0.04 0.07 0.02 0.00 0.01 
Cr 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 
Fe 0.13 0.14 0.10 0.14 0.10 0.13 0.19 0.17 0.19 0.18 0.11 0.15 
Mn 0.00 0.00 0.00 0.03 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Mg 0.19 0.18 0.10 0.15 0.10 0.15 0.11 0.10 0.12 0.09 0.08 0.15 
Li* 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Ca 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 
Na 0.20 0.18 0.11 0.19 0.15 0.16 0.13 0.13 0.17 0.17 0.16 0.11 
K 1.62 1.67 1.60 1.60 1.72 1.66 1.65 1.82 1.78 1.82 1.82 1.83 
Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Ba 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 
OH* 3.98 3.83 3.95 4.00 3.97 3.95 3.96 3.98 3.97 3.97 3.98 3.96 
F 0.02 0.17 0.05 0.00 0.03 0.05 0.04 0.02 0.03 0.03 0.02 0.04 
Sample n

er
 VC62 VC22 VC22 VC22 VC22 VC58 VC58 VC58 VC58 VC58 VC58 VC64 

Anal. n
er

 3 1c 1b 2c 2b 1 2-agl 3 4 5 6 7 
Type TL.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt APG APG APG APG APG APG APG 

SiO2 46.08 46.97 46.30 45.65 45.89 46.08 46.73 46.54 46.09 47.52 47.62 45.61 
TiO2 0.32 1.07 0.95 1.31 0.92 0.48 0.12 0.09 0.00 0.12 0.13 0.41 
Al2O3 35.08 34.89 34.28 34.31 34.81 35.76 35.97 37.03 36.26 36.57 37.21 37.64 
FeO 1.10 0.97 1.04 1.06 1.01 1.86 0.98 1.14 1.67 0.90 1.03 2.03 
MnO 0.04 0.05 0.00 0.00 0.00 0.38 0.00 0.12 0.23 0.00 0.35 0.19 
MgO 0.62 0.89 0.78 0.87 0.83 0.49 0.71 0.21 0.43 0.38 0.17 0.52 
CaO 0.02 0.01 0.01 0.03 0.02 0.23 0.07 0.08 0.07 0.19 0.16 0.16 
Na2O 0.77 0.57 0.66 0.71 0.72 0.96 0.79 1.08 0.91 0.88 0.37 1.05 
K2O 10.27 9.83 10.61 10.24 10.16 9.76 9.83 9.70 9.85 9.17 8.78 9.75 
BaO 0.05 0.01 0.00 0.04 0.00 0.03 0.05 0.06 0.12 0.14 0.06 0.04 
F 0.05 0.05 0.04 0.07 0.07 0.80 0.44 0.66 0.32 0.44 0.56 0.73 
Li2O* 0.00 0.00 0.00 0.00 0.00 0.17 0.06 0.13 0.02 0.06 0.10 0.15 
H2O* 5.54 4.61 5.23 5.68 5.49 4.16 4.33 4.26 4.37 4.38 4.34 4.25 
O=F,Cl 0.02 0.02 0.02 0.03 0.03 0.34 0.19 0.28 0.13 0.19 0.24 0.31 
Total 100.0 100.0 100.0 100.0 100.0 100.8 99.9 100.8 100.2 100.6 100.6 102.2 

Si 6.18 6.21 6.20 6.14 6.15 6.09 6.18 6.11 6.11 6.21 6.20 5.95 
Al iv 1.82 1.79 1.80 1.86 1.85 1.91 1.82 1.89 1.89 1.79 1.80 2.05 
Al vi 3.73 3.65 3.62 3.59 3.65 3.66 3.79 3.83 3.78 3.85 3.91 3.73 
Al VI - 2 1.73 1.65 1.62 1.59 1.65 1.66 1.79 1.83 1.78 1.85 1.91 1.73 
Ti 0.03 0.11 0.10 0.13 0.09 0.05 0.01 0.01 0.00 0.01 0.01 0.04 
Cr 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Fe 0.12 0.11 0.12 0.12 0.11 0.21 0.11 0.13 0.19 0.10 0.11 0.22 
Mn 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.01 0.03 0.00 0.04 0.02 
Mg 0.12 0.18 0.16 0.17 0.17 0.10 0.14 0.04 0.09 0.07 0.03 0.10 
Li* 0.00 0.00 0.00 0.00 0.00 0.09 0.03 0.07 0.01 0.03 0.05 0.08 
Ca 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.01 0.01 0.03 0.02 0.02 
Na 0.20 0.15 0.17 0.19 0.19 0.25 0.20 0.27 0.23 0.22 0.09 0.27 
K 1.76 1.66 1.81 1.76 1.74 1.65 1.66 1.62 1.67 1.53 1.46 1.62 
Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 
OH* 3.98 3.98 3.98 3.97 3.97 3.67 3.82 3.73 3.87 3.82 3.77 3.70 
F 0.02 0.02 0.02 0.03 0.03 0.33 0.18 0.27 0.13 0.18 0.23 0.30 

OBS: Abbreviations: DTX – diatexite; TL.Gnt – tourmaline bearing leucogranite; 2m.Gnt – two-mica granites; *Based on 

24 oxygen atoms and the formula X2Y4-6Z8O20 (OH,F)4; Li2O = 0.3935.F
1.326 

( TISCHENDORF et al ., 1997). 
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Table B. 18 - Chemical analysis (wt.%) and structural formulas* of staurolites from SGC staurolite-schists. 

Sample n
er

 FM11 FM11 FM11 FM11 FM11 FM11 FM11 FM11 FM11 FM11 FM11 FM11 FM11 FM11 

Anal. n
er

 a b c d e 1 3 3 4. 5 6 7 8 9 

SiO2 27.39 27.68 27.48 28.10 27.76 27.32 27.63 27.53 27.76 27.88 27.77 28.26 27.79 28.67 

TiO2 0.49 0.47 0.56 0.57 0.59 0.59 0.61 0.56 0.63 0.60 0.67 0.64 0.64 0.66 

Al2O3 54.39 54.53 54.39 54.30 54.47 54.31 54.60 54.21 54.45 54.09 54.74 54.59 54.31 53.53 

Cr2O3 0.10 0.07 0.07 0.08 0.09 0.05 0.08 0.13 0.09 0.12 0.13 0.14 0.17 0.12 

FeO 12.90 13.01 12.90 12.87 12.48 12.97 12.65 13.16 12.52 12.86 12.50 12.37 12.79 11.82 

MnO 0.33 0.28 0.27 0.26 0.26 0.25 0.25 0.26 0.25 0.23 0.29 0.22 0.22 0.22 

MgO 1.66 1.68 1.66 1.96 1.65 0.78 1.61 1.70 1.81 1.81 1.54 1.54 1.90 1.63 

ZnO 0.35 0.27 0.36 0.29 0.33 0.36 0.28 0.30 0.27 0.25 0.23 0.24 0.32 0.23 

H2O 2.32 1.98 2.31 1.57 2.35 2.37 2.28 2.15 2.22 2.18 2.14 2.01 1.86 3.18 

Total 99.9 100.0 100.0 100.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7 

Si 3.80 3.83 3.81 3.86 3.84 3.83 3.82 3.82 3.84 3.86 3.83 3.89 3.83 3.99 

Ti 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.07 0.07 0.07 

Al 8.90 8.88 8.89 8.80 8.88 8.97 8.90 8.86 8.87 8.82 8.90 8.85 8.83 8.77 

Cr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 

Fe++ 1.50 1.50 1.50 1.48 1.44 1.52 1.46 1.53 1.45 1.49 1.44 1.42 1.48 1.37 

Mn 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 

Mg 0.34 0.35 0.34 0.40 0.34 0.16 0.33 0.35 0.37 0.37 0.32 0.32 0.39 0.34 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zn 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.03 0.00 

               Sample n
er

 FM11 FM11 FM11 FM11 FM11 FM11 FM11 FM14 FM14 FM14 FM14 FM14 FM14 
 Anal. n

er
 10 11 12 13 14 15 16 1 2 3 4 5 6 

 SiO2 27.79 27.39 26.91 27.77 27.27 27.92 27.47 27.43 27.77 28.14 28.08 27.58 28.34 
 TiO2 0.61 0.57 0.63 0.64 0.70 0.63 0.71 0.58 0.71 0.55 0.54 0.62 0.57 
 Al2O3 53.86 53.91 54.13 53.68 53.56 53.81 54.08 53.91 53.61 53.59 53.49 53.72 54.05 
 Cr2O3 0.08 0.10 0.07 0.10 0.14 0.10 0.10 0.11 0.17 0.07 0.06 0.10 0.07 
 FeO 12.47 12.71 12.78 12.93 12.88 12.09 12.41 12.78 13.12 12.67 13.25 13.10 12.25 
 MnO 0.26 0.24 0.27 0.28 0.26 0.24 0.25 0.35 0.21 0.19 0.20 0.18 0.19 
 MgO 1.60 1.82 1.80 1.82 1.84 1.73 1.61 1.56 1.92 1.93 1.95 1.91 1.81 
 ZnO 0.30 0.29 0.25 0.23 0.27 0.31 0.34 0.27 0.23 0.21 0.16 0.17 0.14 
 H2O 3.04 2.98 3.16 2.55 3.08 3.19 3.04 3.02 2.27 2.64 2.27 2.63 2.58 
 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
 Si 3.87 3.82 3.77 3.86 3.82 3.89 3.83 3.83 3.85 3.91 3.89 3.84 3.92 
 Ti 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.06 0.07 0.06 0.06 0.07 0.06 
 Al 8.84 8.87 8.93 8.79 8.83 8.83 8.89 8.87 8.77 8.77 8.74 8.81 8.81 
 Cr 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 
 Fe++ 1.45 1.48 1.50 1.50 1.51 1.41 1.45 1.49 1.52 1.47 1.54 1.52 1.42 
 Mn 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.02 0.02 0.02 0.02 
 Mg 0.33 0.38 0.38 0.38 0.38 0.36 0.33 0.33 0.40 0.40 0.40 0.40 0.37 
 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Zn 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 
 OBS: *based on 23 Oxygen atoms and the formula (Fe,Mg,Zn,Li)2Al9Si4O22(OH 
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Table B. 19 - Chemical analysis (wt.%) and structural formulas* of tourmalines  from SGC  

 

OBS: Abbreviations: APG – aplitopegmatite; TL.Gnt – tourmaline bearing leucogranite.  

Sample n
er

 VC58 VC58 VC58 VC64 VC64 VC62b1 VC62 VC62 VC62 VC62 VC62 VC62 VC62 VC62 VC52 VC52 

Anal. n
er

 1.00 2.00 3.00 1.00 2.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 1c 2b 

Type APG APG APG APG APG TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt TL.Gnt 

SiO2 36.09 36.63 36.08 36.09 36.16 36.54 36.40 36.06 36.22 36.15 36.38 36.33 36.44 36.40 35.71 36.36 

TiO2 0.35 0.70 0.88 0.54 0.48 0.22 0.20 0.22 0.19 0.12 0.22 0.31 0.36 0.72 0.56 0.46 

Al2O3 32.49 31.58 31.39 31.56 33.28 32.95 33.70 33.52 33.40 34.07 33.72 33.42 33.07 32.13 33.81 33.30 

Cr2O3 n.d n.d n.d n.d n.d 0.07 0.05 0.07 0.07 0.04 0.06 0.10 0.04 0.07 0.03 0.06 

FeO 12.62 11.74 13.27 12.55 11.56 9.09 9.78 10.05 9.55 10.19 9.71 9.90 9.91 9.57 9.19 9.41 

MgO 1.63 2.74 1.55 2.27 2.01 3.95 2.72 3.09 3.37 2.47 3.14 2.81 3.14 4.01 3.53 3.63 

CaO 0.20 0.32 0.15 0.23 0.24 0.06 0.03 0.06 0.06 0.04 0.06 0.05 0.05 0.09 0.07 0.08 

MnO 0.36 0.59 0.71 0.50 0.22 0.10 0.18 0.17 0.21 0.19 0.18 0.22 0.12 0.16 0.13 0.18 

ZnO n.d. n.d. n.d. n.d. n.d. 0.08 0.11 0.05 0.12 0.09 0.11 0.08 0.07 0.01 0.05 0.06 

Na2O 1.96 2.39 2.37 2.53 1.63 2.24 2.16 2.24 2.20 1.85 2.18 2.14 2.14 2.33 2.21 2.19 

K2O 0.14 0.05 0.15 0.22 0.25 0.03 0.03 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.02 

 F 0.00 0.26 0.34 0.00 0.00 0.00 0.26 0.34 0.11 0.14 0.21 0.11 0.11 0.14 0.21 0.11 

 H2O 3.56 3.48 3.40 3.57 3.59 4.17 4.16 3.95 4.09 4.27 3.71 4.12 4.13 3.98 4.18 3.75 

 B2O3 10.33 10.44 10.32 10.35 10.41 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 

 O=F 0.00 0.11 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total 99.74 100.82 100.47 100.41 99.83 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Si   6.07 6.10 6.07 6.06 6.04 6.00 5.99 5.96 5.97 5.95 6.01 5.99 6.00 6.01 5.87 6.00 

Al    0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.03 0.05 0.00 0.01 0.00 0.00 0.13 0.00 

B 3.00 3.00 3.00 3.00 3.00 2.98 2.98 3.00 2.99 2.98 3.00 2.99 2.99 2.99 2.98 2.99 

Al 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 

Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Al 0.44 0.19 0.23 0.24 0.55 0.38 0.52 0.49 0.45 0.55 0.57 0.48 0.42 0.25 0.42 0.48 

Ti 0.04 0.09 0.11 0.07 0.06 0.03 0.02 0.03 0.02 0.02 0.03 0.04 0.04 0.09 0.07 0.06 

Mg 0.41 0.68 0.39 0.57 0.50 0.97 0.67 0.76 0.83 0.61 0.77 0.69 0.77 0.99 0.86 0.89 

Mn 0.05 0.08 0.10 0.07 0.03 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 

Fe2+ 1.78 1.63 1.87 1.76 1.61 1.25 1.35 1.39 1.32 1.40 1.34 1.36 1.37 1.32 1.26 1.30 

Zn 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 

Li* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

?Y 2.72 2.68 2.70 2.71 2.76 2.66 2.61 2.70 2.67 2.62 2.76 2.62 2.64 2.68 2.65 2.77 

Ca 0.04 0.06 0.03 0.04 0.04 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 

 Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Na 0.64 0.77 0.77 0.82 0.53 0.71 0.69 0.72 0.70 0.59 0.70 0.68 0.68 0.75 0.70 0.70 

 K 0.03 0.01 0.03 0.05 0.05 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 

 Rb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 r 0.29 0.16 0.17 0.09 0.38 0.27 0.30 0.26 0.28 0.40 0.29 0.30 0.30 0.23 0.28 0.28 

OH 4.00 3.86 3.82 4.00 4.00 4.57 4.57 4.35 4.49 4.68 4.09 4.53 4.54 4.38 4.58 4.13 

F 0.00 0.14 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mineral  Sch.l Sch.l Sch.l Sch.l Sch.l Sch.l Sch.l Sch.l Sch.l Sch.l Sch.l Sch.l Sch.l Sch.l Sch.l Sch.l 
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Annex C – Geochemical data 
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Table C. 1 - Chemical composition of samples from Sector 1 – Metagreywackes and CSR 

 

 

 

Sample VC50c FM21b FM16b  VC47 VC48 FM16a FM21a GC2 VC50 VC50a  GC2a VC50b GC2b

Type GWK GWK GWK GWK CSR CSR CSR CSR CSR CSN-CZ CSN-OZ CSN-CZ CSN-OZ
SiO2 75.9 74.2 73.0 73.6 59.7 57.5 67.2 63.1 67.9 63.96 66.80 71.83 59.47

Al2O3 11.6 12.2 12.0 11.8 19.2 15.2 14.4 12.9 12.3 12 10.79 12.54 15.04

Fe2O3t 3.6 3.5 4.1 3.8 4.2 4.9 4.1 6.2 4.1 4.98 5.92 3.22 6.51

MnO 0.1 0.1 0.1 0.1 0.3 0.3 0.2 0.4 0.4 0.613 0.47 0.158 0.35

MgO 1.2 1.3 1.6 1.3 1.7 1.7 1.4 1.2 1.1 1 0.42 1.24 1.88

CaO 2.0 2.9 3.0 2.0 13.1 12.9 8.9 12.7 9.4 12.88 13.76 6 11.61

Na2O 2.8 2.6 2.4 2.6 0.5 0.4 0.6 0.5 0.5 0.5 0.28 0.53 0.67

K2O 1.4 1.4 1.5 1.6 0.3 1.1 0.7 0.8 0.9 0.73 0.23 1.16 1.40

TiO2 0.5 0.5 0.6 0.5 0.6 0.6 0.7 0.6 0.5 0.492 0.52 0.561 0.71

P2O5 0.1 0.1 0.1 0.1 0.3 0.4 0.3 0.1 0.2 0.17 0.09 0.25 0.19

LOI 0.7 0.4 0.5 1.1 1.0 3.8 0.7 2.7 2.6 3.5 2.26 1.66 3.10

Tota l 99.7 99.2 98.7 98.6 100.7 98.8 99.0 100.9 100.0 100.8 100.80 99.14 100.90

Sc 9.0 8.0 9.0 9.0 9.0 11.0 11.0 9.5 8.0 8.00 7.00 8.00 12.00

Be 2.0 2.0 2.0 2.0 4.0 3.0 3.0 4.0 3.0 2.00 4.00 4.00 4.00

V 58.0 56.0 64.0 61.0 83.0 78.0 72.0 75.5 56.5 60 65.00 53 86.00

Ba 101.0 189.0 206.0 156.0 16.0 66.0 75.0 18.5 139.0 156 6.00 122 31.00

Sr 203.0 274.0 260.0 185.0 199.0 181.0 213.0 149.5 213.0 139 61.00 287 238.00

Y 18.0 20.0 16.0 18.0 34.0 53.0 40.0 43.0 35.0 40 49.00 30 37.00

Zr 256.0 197.0 181.0 237.0 137.0 180.0 273.0 250.5 230.5 213 263.00 248 238.00

Cr 80.0 120.0 120.0 50.0 300.0 320.0 290.0 185.0 150.0 140 120.00 160 250.00

Co 8.0 9.0 10.0 8.0 10.0 10.0 11.0 6.0 8.0 7 4.00 9 8.00

Ni 20.0 30.0 30.0 20.0 20.0 60.0 60.0 45.0 35.0 30 30.00 40 60.00

Cu 10.0 10.0 10.0 10.0 70.0 10.0 30.0 15.0 15.0 10 10.00 20 20.00

Zn 80.0 60.0 70.0 60.0 40.0 6.0 50.0 60.0 50.0 50 50.00 50 70.00

Ga 15.0 15.0 14.0 15.0 40.0 26.0 22.0 19.5 18.0 19 17.00 17 22.00

Ge 2.0 2.0 2.0 2.0 4.0 3.0 2.0 4.0 2.5 3 5.00 2 3.00

As 5.0 5.0 5.0 5.0 19.0 13.0 5.0 5.0 5.0 5 5.00 5 5.00

Rb 79.0 76.0 83.0 77.0 6.0 43.0 30.0 19.5 26.5 18 7.00 35 32.00

Mo 2.0 2.0 2.0 2.0 2.0 3.0 3.0 4.0 2.0 2 3.00 2 5.00

Ag 0.5 0.7 0.7 1.3 0.7 0.7 1.0 1.6 0.5 0.5 1.60 0.5 1.60

In 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Sn 3.0 2.0 2.0 21.0 7.0 9.0 4.0 11.5 7.0 10 13.00 4 10.00

Sb 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 1.1 0.5 0.5 1.7 0.5

Cs 5.5 4.1 4.3 5.4 0.8 1.5 2.8 1.3 2.1 1.5 0.5 2.6 2.00

La 31.4 30.8 25.2 34.4 31.3 49.2 43.1 33.1 37.5 43.7 39.70 31.3 26.40

Ce 63.1 62.1 53.0 67.9 65.2 92.2 84.9 64.5 67.0 67.2 71.40 66.8 57.50

Pr 6.9 7.1 6.3 7.7 6.9 10.2 9.5 7.5 8.2 9.1 8.31 7.39 6.75

Nd 26.3 26.0 23.6 27.2 27.0 39.1 34.7 30.0 30.8 34.3 33.10 27.3 26.90

Sm 5.2 5.0 4.6 5.2 5.5 8.8 7.4 6.9 6.2 6.8 7.30 5.5 6.40

Eu 1.1 1.2 1.0 1.1 1.3 1.9 1.7 1.6 1.2 1.51 1.87 0.93 1.36

Gd 4.2 4.1 3.8 4.3 5.6 8.8 7.0 7.3 5.5 6.7 7.90 4.3 6.60

Tb 0.6 0.7 0.6 0.7 0.9 1.6 1.2 1.3 1.0 1.1 1.40 0.8 1.10

Dy 3.4 3.8 3.5 3.4 5.4 9.3 7.3 7.3 5.8 6.2 8.00 5.3 6.60

Ho 0.6 0.8 0.7 0.7 1.1 2.0 1.5 1.5 1.2 1.2 1.70 1.1 1.30

Er 1.7 2.2 2.0 1.9 3.1 5.6 4.3 4.3 3.3 3.5 4.80 3.1 3.80

Tm 0.3 0.4 0.3 0.3 0.5 0.9 0.7 0.6 0.5 0.57 0.67 0.45 0.60

Yb 1.8 2.2 2.1 1.9 3.3 5.7 4.4 4.1 3.4 3.7 4.20 3 4.00

Lu 0.3 0.4 0.3 0.3 0.6 0.9 0.7 0.6 0.5 0.58 0.62 0.46 0.61

Hf 5.8 5.3 5.2 6.0 3.6 5.3 7.8 6.5 5.7 5.2 6.80 6.2 6.10

Ta 0.9 0.9 0.9 3.7 0.8 1.0 1.2 0.7 0.7 0.6 0.50 0.8 0.80

Nb 10.0 12.0 10.0 16.0 20.0 15.0 17.0 10.0 11.0 11 6.00 11 14.00

W 1.0 3.0 3.0 1.0 4.0 10.0 7.0 6.5 40.5 73 5.00 8 8.00

Tl 0.5 0.5 0.6 0.6 0.1 0.3 0.2 0.1 0.3 0.3 0.1 0.3 0.10

Pb 13.0 15.0 12.0 173.0 5.0 5.0 5.0 5.0 5.0 5 5.00 5 5.00

Bi 0.4 0.4 0.4 2.9 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Th 11.6 11.2 9.5 11.0 8.0 10.8 14.6 9.6 11.6 10.1 10.30 13.1 8.80

U 3.0 2.8 2.4 2.9 2.7 3.8 4.0 3.3 2.9 2.6 3.50 3.2 3.10
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Table C. 2 - Chemical composition of samples from Sector 1 - Metatexites 

 

Sample VC37d VC28 FM23 FM4a VC6a VC27b FM18 FP46a FP46c FM16c FP21c FM22

Type PMM PMM BMM BMM BMM BMM BMM BMM BMM BMM BMM BMM
SiO2 57.4 61.0 55.4 59.2 63.8 67.7 71.9 64.3 65.9 68.4 65.1 68.4

Al2O3 18.1 19.3 21.0 17.7 16.2 14.7 13.6 14.7 14.3 15.4 15.2 15.0

Fe2O3t 7.9 8.5 8.8 8.2 7.5 5.9 3.9 6.5 5.4 4.3 6.3 4.3

MnO 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0

MgO 3.0 2.9 3.4 3.2 2.9 2.0 1.5 2.5 2.0 1.7 2.6 1.6

CaO 2.5 0.5 0.4 1.1 0.7 0.4 1.3 1.3 2.2 1.6 1.9 1.3

Na2O 3.4 1.0 1.4 2.1 1.7 1.4 2.7 2.5 3.1 2.6 3.2 2.3

K2O 3.5 3.7 6.1 3.4 3.6 3.5 2.5 2.8 2.1 3.1 2.7 4.0

TiO2 1.1 1.1 1.1 1.0 0.9 0.8 0.6 0.9 0.9 0.5 0.8 0.6

P2O5 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.4

LOI 2.0 1.5 1.6 2.5 2.4 2.4 0.7 2.5 2.2 0.9 1.2 0.8

Tota l 99.1 99.4 99.3 98.6 99.9 98.8 98.8 98.4 98.3 98.7 99.4 98.7

Sc 21.0 21.0 24.0 20.0 17.0 17.0 10.0 17.0 16.0 9.0 15.0 12.0

Be 1.0 2.0 2.0 2.0 3.0 1.0 2.0 3.0 3.0 8.0 3.0 2.0

V 150.0 156.0 150.0 167.0 131.0 112.0 55.0 127.0 106.0 66.0 112.0 72.0

Ba 612.0 794.0 1006.0 380.0 584.0 571.0 289.0 365.0 394.0 445.0 498.0 600.0

Sr 298.0 119.0 90.0 144.0 126.0 93.0 180.0 143.0 165.0 190.0 243.0 201.0

Y 36.0 39.0 27.0 26.0 26.0 29.0 17.0 23.0 26.0 19.0 33.0 30.0

Zr 281.0 279.0 173.0 288.0 215.0 224.0 236.0 203.0 195.0 215.0 196.0 216.0

Cr 290.0 190.0 170.0 140.0 130.0 370.0 140.0 120.0 100.0 190.0 90.0 140.0

Co 18.0 22.0 24.0 18.0 24.0 8.0 10.0 9.0 5.0 9.0 14.0 11.0

Ni 20.0 60.0 60.0 60.0 70.0 20.0 40.0 20.0 < 20 40.0 40.0 30.0

Cu 10.0 30.0 20.0 30.0 20.0 20.0 10.0 30.0 20.0 10.0 10.0 10.0

Zn 160.0 300.0 230.0 160.0 170.0 110.0 90.0 150.0 100.0 90.0 140.0 80.0

Ga 25.0 27.0 40.0 25.0 21.0 19.0 20.0 22.0 18.0 20.0 22.0 24.0

Ge 2.0 2.0 2.0 2.0 2.0 3.0 2.0 3.0 2.0 2.0 2.0 1.0

As 5.0 5.0 5.0 5.0 5.0 6.0 5.0 5.0 < 5 5.0 20.0 5.0

Rb 153.0 148.0 237.0 164.0 169.0 205.0 107.0 177.0 118.0 110.0 225.0 127.0

Mo 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 < 2 2.0 2.0 2.0

Ag 2.1 0.5 0.6 1.9 1.3 0.5 0.9 0.5 < 0.5 0.8 1.3 0.7

In 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 < 0.2 0.2 0.2 0.2

Sn 6.0 3.0 7.0 4.0 4.0 8.0 3.0 4.0 3.0 4.0 6.0 4.0

Sb 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 < 0.5 0.5  0.5 0.5

Cs 7.2 7.5 11.9 10.4 11.6 85.7 6.9 10.2 7.9 7.4 14.6 5.2

La 35.0 41.4 49.3 54.4 38.0 37.7 33.3 29.6 24.1 31.6 34.0 35.1

Ce 76.6 85.5 98.9 109.0 79.3 76.4 67.2 62.5 53.7 63.8 73.3 71.6

Pr 8.5 10.1 11.6 12.5 8.8 8.5 7.7 7.6 6.2 7.5 8.2 8.4

Nd 34.6 40.9 42.7 47.9 34.2 32.2 28.5 28.8 24.3 27.8 32.8 31.6

Sm 7.0 9.0 8.2 9.5 7.0 6.6 5.6 6.1 5.2 5.9 7.0 6.8

Eu 1.8 1.2 1.3 1.4 1.5 1.3 1.2 1.4 1.5 1.3 1.4 1.4

Gd 6.5 6.9 6.5 7.6 5.9 5.1 4.4 5.1 4.6 5.1 6.5 6.1

Tb 1.1 1.2 1.0 1.1 0.9 0.8 0.7 0.8 0.8 0.8 1.1 1.1

Dy 6.5 7.2 5.4 6.0 5.3 5.0 3.8 4.5 4.6 4.6 6.5 6.3

Ho 1.3 1.5 1.1 1.1 1.1 1.1 0.7 0.8 0.9 0.8 1.3 1.2

Er 3.9 4.4 3.1 3.2 3.1 3.3 1.9 2.4 2.7 2.0 3.7 3.0

Tm 0.6 0.7 0.5 0.5 0.5 0.6 0.3 0.4 0.4 0.3 0.5 0.5

Yb 4.1 4.4 3.0 3.2 3.0 3.7 1.7 2.7 3.1 1.5 3.5 2.6

Lu 0.7 0.7 0.5 0.5 0.5 0.6 0.3 0.5 0.5 0.2 0.6 0.4

Hf 7.8 7.1 5.0 7.5 5.6 5.3 6.4 5.1 4.4 6.2 5.2 5.9

Ta 1.1 0.9 2.3 1.2 0.9 1.0 0.8 1.0 0.8 0.8 1.0 1.1

Nb 16.0 14.0 29.0 16.0 13.0 11.0 12.0 12.0 10.0 11.0 13.0 14.0

W 2.0 3.0 6.0 2.0 2.0 3.0 3.0 2.0 2.0 5.0 3.0 4.0

Tl 0.9 1.2 1.4 1.0 1.1 1.7 0.7 1.4 1.0 0.7 1.8 0.8

Pb 28.0 31.0 21.0 18.0 19.0 24.0 24.0 20.0 22.0 32.0 17.0 29.0

Bi 0.4 0.4 0.4 0.4 0.4 0.6 0.4 0.5 0.8 0.4 < 0.4 0.4

Th 13.4 13.3 16.7 16.8 11.1 11.0 12.2 8.4 7.0 10.8 9.2 12.1

U 3.7 3.8 5.3 4.8 3.0 3.5 4.2 2.8 2.6 4.4 3.5 4.3
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Table C. 3 – Chemical composition of samples from Sector 1 – Diatexites (DTX) and leucogranites (L.Gnt) 

 

Sample FM6a VC60 VC59 FP37 FP46b VC8 FM19 VC43a VC3 VC52 VC68 FP44b VC2a VC55

Type DTX DTX DTX DTX DTX LCS LCS TL.Gnt TL.Gnt TL.Gnt L.Gnt L.Gnt L.Gnt L.Gnt

SiO2 72.9 74.1 72.8 70.6 74.0 72.2 71.2 74.9 73.3 73.3 74.1 78.2 74.0 74.0

Al2O3 13.5 13.3 14.4 14.9 13.8 14.5 15.5 13.0 15.1 14.4 16.0 12.1 14.5 13.4

Fe2O3t 2.9 1.8 1.6 2.2 1.8 1.2 2.0 1.0 1.3 1.3 0.4 0.7 0.5 0.3

MnO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MgO 1.1 0.7 0.6 0.7 0.6 0.5 0.7 0.2 0.4 0.1 0.1 0.2 0.2 0.1

CaO 1.1 1.0 0.9 0.8 0.6 0.6 0.6 0.4 0.7 0.5 0.4 0.1 0.5 0.2

Na2O 2.4 2.3 1.9 2.7 2.1 2.4 2.1 3.4 3.3 4.5 5.8 2.3 3.6 2.1

K2O 4.7 4.8 4.6 4.9 3.5 6.6 6.8 4.5 4.1 3.0 1.4 3.3 5.5 7.4

TiO2 0.4 0.3 0.2 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.1 0.1 0.0

P2O5 0.3 0.3 0.3 0.1 0.1 0.4 0.1 0.3 0.1 0.2 0.1 0.1 0.3 0.2

LOI 0.8 1.3 1.1 1.4 1.6 1.1 1.1 0.6 1.0 1.1 1.3 1.6 0.8 0.7

Tota l 100.1 100.0 98.4 98.6 98.3 99.6 100.3 98.2 99.5 98.3 99.7 98.7 99.9 98.3

Sc 7.0 4.0 4.0 7.0 4.0 3.0 4.0 2.0 4.0 2.0 1.0 3.0 2.0 1.0

Be 2.0 9.0 3.0 2.0 2.0 5.0 2.0 5.0 12.0 13.0 11.0 2.0 2.0 10.0

V 52.0 22.0 24.0 36.0 29.0 17.0 13.0 9.0 14.0 6.0 8.0 9.0 9.0 5.0

Ba 736.0 702.0 842.0 730.0 618.0 913.0 1258.0 117.0 359.0 89.0 329.0 912.0 420.0 624.0

Sr 215.0 201.0 199.0 175.0 122.0 190.0 252.0 69.0 212.0 58.0 341.0 77.0 94.0 123.0

Y 18.0 18.0 30.0 10.0 7.0 18.0 8.0 3.0 10.0 5.0 2.0 4.0 16.0 2.0

Zr 158.0 91.0 135.0 102.0 110.0 34.0 6.0 30.0 41.0 29.0 4.0 23.0 60.0 18.0

Cr 80.0 80.0 90.0 60.0 50.0 90.0 270.0 330.0 20.0 580.0 50.0 280.0 60.0 20.0

Co 6.0 3.0 2.0 4.0 2.0 2.0 3.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0

Ni 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 < 20 20.0 20.0

Cu 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 < 10 10.0 10.0

Zn 60.0 50.0 40.0 50.0 40.0 30.0 30.0 40.0 30.0 40.0 30.0 < 30 30.0 30.0

Ga 17.0 14.0 16.0 17.0 18.0 12.0 14.0 17.0 21.0 16.0 12.0 12.0 12.0 13.0

Ge 1.0 1.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 4.0 2.0 2.0 2.0 1.0

As 5.0 5.0 5.0 < 5 5.0 5.0 5.0 5.0 9.0 7.0 5.0 < 5 5.0 5.0

Rb 134.0 113.0 113.0 122.0 94.0 129.0 133.0 230.0 154.0 215.0 36.0 115.0 139.0 255.0

Mo 2.0 2.0 2.0 < 2 2.0 2.0 2.0 2.0 2.0 3.0 2.0 < 2 2.0 2.0

Ag 1.1 0.8 1.1 < 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 < 0.5 0.5 0.5

In 0.2 0.2 0.2 < 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 < 0.2 0.2 0.2

Sn 6.0 3.0 4.0 8.0 3.0 7.0 5.0 6.0 23.0 51.0 16.0 9.0 8.0 8.0

Sb 0.5 0.5 0.5 < 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.3 0.5 0.5

Cs 5.8 3.3 5.1 6.6 2.9 4.3 4.3 9.9 15.5 37.6 2.9 5.3 6.2 7.7

La 25.0 14.8 16.6 21.0 23.5 12.9 3.9 5.5 9.5 5.0 1.4 7.3 7.8 1.7

Ce 51.8 30.9 34.1 43.5 46.9 27.8 7.6 11.3 19.2 9.4 2.3 12.7 16.2 3.1

Pr 5.8 3.7 4.1 4.8 5.3 3.2 0.8 1.3 2.2 1.1 0.2 1.7 1.8 0.3

Nd 22.5 13.7 16.0 18.0 20.4 12.8 3.0 4.5 7.9 4.1 0.7 5.8 7.0 1.2

Sm 4.6 3.4 4.2 3.8 4.2 3.3 0.7 1.0 2.0 1.1 0.2 1.3 1.8 0.3

Eu 1.4 1.2 1.2 1.2 0.9 1.3 1.4 0.4 1.0 0.3 0.1 0.5 0.7 0.4

Gd 4.2 3.4 4.3 3.0 2.9 3.4 0.8 0.8 2.0 0.9 0.1 0.9 2.0 0.3

Tb 0.7 0.6 0.8 0.4 0.4 0.7 0.2 0.1 0.4 0.2 0.1 0.1 0.5 0.0

Dy 3.9 3.4 5.4 2.1 1.8 4.0 1.3 0.5 2.2 0.9 0.1 0.8 2.9 0.2

Ho 0.7 0.6 1.1 0.4 0.3 0.7 0.3 0.1 0.4 0.2 0.1 0.2 0.6 0.1

Er 1.8 1.7 3.2 1.0 0.7 1.8 1.0 0.3 1.0 0.4 0.1 0.5 1.6 0.1

Tm 0.2 0.2 0.5 0.2 0.1 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.3 0.1

Yb 1.4 1.3 3.1 1.0 0.6 1.4 1.1 0.3 0.9 0.5 0.1 0.6 1.7 0.1

Lu 0.2 0.2 0.5 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.0 0.1 0.3 0.0

Hf 4.2 2.2 3.9 2.6 2.6 1.0 0.2 1.0 1.4 0.9 0.2 0.7 1.9 0.9

Ta 0.7 0.3 0.4 0.8 0.2 0.4 0.3 1.1 1.4 4.0 0.4 0.6 0.4 0.1

Nb 9.0 4.0 3.0 6.0 4.0 3.0 4.0 2.0 8.0 6.0 2.0 3.0 2.0 1.0

W 3.0 1.0 1.0 2.0 1.0 3.0 3.0 3.0 2.0 5.0 2.0 2.0 3.0 1.0

Tl 0.8 0.7 0.7 1.0 0.8 0.7 0.8 1.4 0.8 1.8 0.3 1.1 0.9 1.6

Pb 41.0 46.0 44.0 47.0 29.0 54.0 61.0 31.0 103.0 36.0 49.0 29.0 50.0 44.0

Bi 0.4 0.4 0.4 0.6 0.4  0.4 0.4 1.8 3.2 0.9 14.2 5.4 0.4 10.1

Th 8.5 4.2 4.9 7.1 10.0 3.6 1.2 2.3 2.9 2.3 0.4 2.2 2.2 0.5

U 3.4 2.2 3.8 3.0 3.7 2.6 1.0 4.6 4.0 3.5 0.3 1.5 2.8 1.6
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Table C. 4 - Chemical composition of samples from Sector 1 – Two-mica granites (2m.Gnt), fine-grained granites 

(F.Gnt), porphyritic granites (P.Gnt) and aplite-pegmatites (APG).  

 

Sample VC39 VC22 VC34a VC45 FP21B FP21A FP30a FP49 FP59 VC32 VC16 A12 A13 A21 VC64 VC58

Type 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt 2m.Gnt F.Gnt F.Gnt P.Gnt P.Gnt P.Gnt APG APG

SiO2 74.4 71.7 70.4 72.3 72.6 74.3 73.5 72.8 71.9 72.5 74.1 73.3 71.2 71.9 73.9 74.3

Al2O3 14.2 15.2 15.0 15.3 15.0 14.7 13.9 14.4 14.4 14.2 13.9 14.9 15.7 14.8 14.6 14.6

Fe2O3t 1.3 2.0 1.7 1.6 1.6 1.2 1.1 1.6 1.5 1.4 1.5 0.3 0.9 1.6 0.8 0.9

MnO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1

MgO 0.3 0.7 0.4 0.4 0.4 0.3 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.1 0.2

CaO 0.6 0.6 0.5 0.6 0.9 0.3 0.2 0.4 0.2 0.7 0.5 0.3 0.4 0.7 0.3 0.4

Na2O 2.9 3.0 2.5 3.4 3.2 2.7 2.2 2.7 2.3 2.7 2.9 3.1 2.8 3.5 4.5 4.3

K2O 5.5 4.6 6.0 5.1 5.5 5.2 5.1 4.9 5.2 5.6 4.8 4.9 5.2 4.7 3.4 2.5

TiO2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.0 0.0

P2O5 0.4 0.3 0.4 0.4 0.3 0.3 0.3 0.4 0.3 0.4 0.3 0.5 0.5 0.5 0.3 0.3

LOI 1.1 1.5 1.3 1.3 1.2 1.8 2.5 1.8 2.0 1.1 1.9 ** ** ** 1.0 1.0

Tota l 100.9 99.9 98.3 100.8 100.8 100.9 99.2 99.4 98.3 99.3 100.3 97.8 97.0 98.2 99.1 98.6

Sc 3.0 5.0 3.0 2.0 2.0 2.0 3.0 3.0 2.0 2.0 4.0 2.0 2.0 2.0 2.0 3.0

Be 3.0 6.0 5.0 7.0 2.0 7.0 7.0 1.0 4.0 2.0 5.0 8.0 8.0 7.0 34.0 9.0

V 13.0 36.0 18.0 15.0 15.0 12.0 11.0 14.0 12.0 11.0 8.0 11.0 10.0 11.0 5.0 6.0

Ba 289.0 402.0 394.0 270.0 329.0 256.0 235.0 243.0 265.0 306.0 256.0 246.0 243.0 240.0 38.0 23.0

Sr 89.0 69.0 68.0 49.0 90.0 67.0 58.0 57.0 51.0 72.0 58.0 50.0 50.0 50.5 32.0 37.0

Y 12.0 9.0 8.0 9.0 6.0 5.0 3.0 5.0 4.0 8.0 12.0 5.0 7.0 7.0 4.0 4.0

Zr 93.0 112.0 83.0 117.0 72.0 72.0 74.0 90.0 72.0 93.0 58.0 83.0 90.0 72.2 21.0 37.0

Cr 80.0 30.0 390.0 40.0 410.0 60.0 50.0 260.0 330.0 220.0 20.0 80.0 20.0 40.0 30.0 70.0

Co 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 2.0 2.0 1.0 2.0 1.0 2.1 1.0 1.0

Ni 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0

Cu 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Zn 50.0 60.0 60.0 60.0 50.0 30.0 40.0 50.0 40.0 60.0 60.0 30.0 60.0 30.0 50.0 40.0

Ga 22.0 22.0 21.0 24.0 20.0 21.0 21.0 21.0 21.0 19.0 18.0 24.0 24.0 20.0 21.0 19.0

Ge 2.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 1.0 3.0 ** ** ** 4.0 3.0

As 5.0 5.0 5.0 5.0 5.0 5.0 13.0 5.0 12.0 5.0 5.0 ** ** ** 23.0 5.0

Rb 229.0 208.0 284.0 330.0 191.0 254.0 307.0 286.0 287.0 222.0 214.0 302.0 361.0 284.7 277.0 188.0

Mo 2.0 2.0 2.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Ag 0.5 0.7 0.5 0.5  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

In 0.2  0.2 0.2 0.2  0.2 0.2 0.2 0.2 0.2 0.2 0.2 2.0 2.0 2.0 0.2 0.2

Sn 7.0 12.0 12.0 14.0 9.0 25.0 20.0 16.0 14.0 5.0 21.0 8.0 10.0 15.0 27.0 26.0

Sb 0.5  0.5 0.5 0.5  0.5 1.5 4.9 5.6 3.3 0.5 0.5 3.4 4.6 xxx 0.5 0.5

Cs 5.5 11.9 38.4 32.3 5.0 22.3 18.8 25.2 19.8 4.6 15.1 22.7 20.9 24.5 24.7 19.9

La 16.0 26.4 16.6 22.3 15.3 14.9 15.5 17.3 13.9 14.7 7.6 11.7 12.4 10.9 1.8 2.7

Ce 38.1 60.6 37.9 54.6 34.7 32.5 30.6 34.8 28.9 32.9 14.6 28.2 27.6 25.4 3.5 5.4

Pr 4.7 7.5 4.8 6.8 4.2 4.2 3.9 4.1 3.8 4.0 1.9 3.2 3.1 3.2 0.4 0.7

Nd 18.8 30.3 20.0 27.4 16.8 17.3 14.3 15.1 14.0 16.3 6.8 14.4 13.8 12.6 1.4 2.1

Sm 4.8 6.3 4.3 6.1 4.3 4.5 3.3 3.2 3.9 4.6 1.9 3.8 3.7 3.1 0.5 0.6

Eu 0.6 0.7 0.5 0.5 0.6 0.7 0.4 0.5 0.5 0.7 0.4 0.5 0.5 0.4 0.1 0.1

Gd 4.2 4.1 2.8 4.1 3.4 4.0 2.1 2.5 2.6 4.1 2.1 2.9 3.0 2.8 0.5 0.5

Tb 0.6 0.5 0.4 0.5 0.5 0.6 0.2 0.3 0.4 0.6 0.4 0.3 0.4 0.4 0.1 0.1

Dy 2.6 2.3 2.1 1.9 2.0 2.3 1.0 1.3 1.4 2.0 2.3 1.3 1.6 1.8 0.7 0.8

Ho 0.4 0.4 0.3 0.3 0.3 0.3 0.1 0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.1 0.2

Er 0.8 1.1 0.7 0.6 0.6 0.6 0.3 0.4 0.4 0.5 0.9 0.4 0.5 0.5 0.4 0.5

Tm 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Yb 0.6 1.0 0.6 0.5 0.5 0.4 0.3 0.3 0.3 0.4 0.7 0.3 0.3 0.4 0.5 0.7

Lu 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.1

Hf 2.3 3.1 2.2 3.1 2.0 2.1 1.9 2.3 2.1 2.5 1.9 2.2 2.6 2.7 0.9 1.4

Ta 0.6 1.1 0.8 1.0 0.4 1.2 1.1 1.2 1.0 0.1 1.7 1.0 1.2 1.0 3.3 1.3

Nb 7.0 7.0 5.0 7.0 4.0 8.0 7.0 8.0 7.0 3.0 11.0 6.0 6.0 7.5 9.0 6.0

W 3.0 2.0 4.0 2.0 4.0 4.0 4.0 4.0 5.0 1.0 3.0 3.0 4.0 6.1 2.0 3.0

Tl 1.3 1.2 2.3 2.1 1.2 1.7 2.4 2.3 2.5 1.2 1.3 1.6 2.7 1.6 1.7 1.1

Pb 46.0 50.0 37.0 36.0 37.0 28.0 35.0 30.0 22.0 43.0 44.0 18.0 26.0 20.0 38.0 23.0

Bi 1.4 0.6 0.4 1.1 0.4 0.7 1.0 1.7 1.3 0.4 3.3 1.3 1.1 1.0 1.4 0.5

Th 9.9 18.6 12.6 17.6 6.4 5.9 6.8 8.6 5.9 5.7 2.6 6.1 6.1 5.3 0.7 0.8

U 6.8 6.5 4.9 7.2 4.0 8.4 8.1 7.6 7.9 6.6 6.8 8.5 8.1 9.6 4.3 4.1
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Table C. 5 – Chemical composition of samples from Sector 2: Staurolite-litharenites (St. Lith); Quartzites (Quartz.); 

Biotite-schists (B.Sch) and Staurolite schists (St.Sch). 

 

 

Sample FM15a FM15b FM38b FM38c FM31a FM40b FM14 VC65 FM25

Type St. Lith St.Lith. Quartz. Bt.Scg St. Sch St. Sch St. Sch St. Sch CSR
SiO2 84.4 83.3 91.0 65.1 58.7 56.8 64.5 59.7 74.1

Al2O3 7.0 6.7 2.6 17.0 21.4 23.8 16.8 20.2 9.8

Fe2O3t 2.6 3.2 2.5 7.0 7.2 6.5 7.2 7.5 5.0

MnO 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1

MgO 1.1 1.0 0.7 2.2 1.9 1.8 2.4 2.3 2.1

CaO 0.4 0.4 0.0 0.1 0.1 0.0 0.4 0.6 5.1

Na2O 1.2 1.0 0.1 1.2 0.6 0.5 0.9 2.0 0.3

K2O 1.3 1.2 0.1 2.7 4.0 4.0 2.8 3.2 0.5

TiO2 0.4 0.4 0.2 0.9 0.8 0.9 0.9 0.8 0.8

P2O5 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.4 0.2

LOI 1.4 1.2 1.4 4.3 5.9 5.3 2.5 3.6 1.3

Tota l 99.8 98.5 98.7 100.6 100.8 99.7 98.4 100.2 99.4

Sc 6.0 6.0 3.0 18.0 21.0 22.0 16.0 18.0 10.0

Be 1.0 1.0 1.0 2.0 4.0 3.0 2.0 4.0 2.0

V 54.0 54.0 20.0 150.0 182.0 191.0 135.0 151.0 83.0

Ba 234.0 207.0 17.0 528.0 741.0 864.0 573.0 742.0 158.0

Sr 75.0 66.0 4.0 49.0 57.0 36.0 70.0 84.0 192.0

Y 11.0 16.0 4.0 26.0 24.0 28.0 26.0 36.0 26.0

Zr 159.0 180.0 54.0 211.0 163.0 178.0 205.0 215.0 259.0

Cr 90.0 80.0 100.0 100.0 160.0 140.0 160.0 150.0 310.0

Co 3.0 3.0 2.0 12.0 17.0 8.0 16.0 9.0 12.0

Ni 20.0 20.0 20.0 50.0 80.0 40.0 40.0 40.0 70.0

Cu 10.0 10.0 40.0 20.0 20.0 40.0 30.0 40.0 20.0

Zn 30.0 50.0 30.0 120.0 130.0 130.0 210.0 190.0 50.0

Ga 7.0 8.0 3.0 22.0 27.0 30.0 27.0 28.0 11.0

Ge 2.0 2.0 1.0 2.0 2.0 2.0 3.0 3.0 2.0

As 19.0 27.0 5.0 5.0 5.0 5.0 5.0 14.0 5.0

Rb 59.0 55.0 7.0 78.0 191.0 115.0 105.0 161.0 15.0

Mo 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 4.0

Ag 0.5 0.5 0.5 1.3 1.0 1.1 0.8 2.1 1.2

In 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Sn 2.0 2.0 1.0 4.0 6.0 6.0 4.0 5.0 5.0

Sb 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.1 0.5

Cs 6.3 7.0 0.5 3.4 77.5 7.7 7.0 46.6 2.0

La 17.4 14.4 9.0 35.4 37.1 36.8 33.3 34.3 25.4

Ce 35.9 29.8 20.9 73.8 75.8 74.2 67.5 69.4 52.9

Pr 4.3 3.5 2.3 8.6 9.1 8.8 8.4 8.4 6.5

Nd 15.6 14.4 9.2 33.8 35.6 34.8 32.4 31.9 24.8

Sm 3.3 3.4 1.9 6.9 7.3 7.0 6.8 6.9 5.4

Eu 0.8 0.8 0.4 1.4 1.5 1.3 1.2 1.6 1.5

Gd 3.0 3.0 1.4 6.2 6.3 5.7 6.0 6.8 5.0

Tb 0.5 0.5 0.2 1.0 1.0 0.9 1.0 1.1 0.9

Dy 2.5 3.1 1.0 5.4 5.4 5.6 5.5 6.6 5.3

Ho 0.4 0.6 0.2 1.1 1.0 1.1 1.1 1.3 1.1

Er 1.2 1.7 0.5 3.1 3.1 3.5 3.1 3.8 3.0

Tm 0.2 0.3 0.1 0.5 0.5 0.5 0.5 0.6 0.5

Yb 1.1 1.8 0.5 3.1 3.0 3.5 3.1 3.6 3.1

Lu 0.2 0.3 0.1 0.5 0.5 0.6 0.5 0.6 0.5

Hf 3.9 3.9 1.1 5.6 4.4 4.8 5.5 5.5 7.1

Ta 0.4 0.4 0.2 0.9 0.9 0.9 0.9 0.8 0.7

Nb 6.0 5.0 2.0 12.0 12.0 12.0 13.0 10.0 10.0

W 2.0 1.0 3.0 2.0 7.0 3.0 3.0 2.0 8.0

Tl 0.2 0.5 0.1 0.4 1.0 0.5 0.6 1.1 0.8

Pb 17.0 14.0 5.0 18.0 20.0 19.0 14.0 23.0 5.0

Bi 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5

Th 4.4 4.4 2.0 9.9 11.1 10.8 10.4 9.3 9.7

U 1.5 1.6 0.8 3.4 3.2 4.0 3.5 3.5 3.0
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Annex D – Fluid inclusions data 
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Table D.  1 – Microthermometric data and Composition (mol%) of monophasic fluid inclusions from sample FM19. 

Composition obtained by Raman microspectroscopy.  

 

 

Table D.  2 - Microthermometric data and Composition (mol%) of monophasic fluid inclusions from sample VC52. 

Composition obtained by Raman microspectroscopy. 

 

FM19
Monophasic Microthermometry Composition

IF Size(mm) TmCO2 Th(partial) Mode CO2 CH4 N2

11 13.0 n.o. -133.2 L 17.71 15.9 66.39

2 17.5 -78.6 -135.8 L 29.14 15.27 55.59

6 8.5 n.o -135.4 L 25.46 16.55 57.99

7 12.3 n.o -133.7 L n.o n.o n.o

9 10.7 n.o -134.0 n.o n.o n.o n.o

10 17.7 n.o -132.9 n.o n.o n.o n.o

3 11.5 -75.1 -132.7 V 25.44 14.42 60.14

5 10.7 n.o -132.9 V 15.09 12.64 72.27

12 13.0 n.o -132.4 V 14.61 14.18 71.21

8 13.0 n.o -132.9 V 22.43 14.39 63.18

15 12.0 n.o -135.2 V n.o n.o n.o

16 13.0 -64.9 -135.8 V 29 14 57

17 11.0 -65.6 -134.5 V 30 13 57

18 12.0 n.o -136.0 V n.o n.o n.o

1 17.7 n.o -131.6 V n.d. 11.25 88.75

13 14.6 n.o -132.9 V n.d. 19.69 80.31

14 13.0 n.o -134.4 V n.d. 17.62 82.38

4 10.0 n.o -134.1 V n.d. 31.17 68.83

VC52
Monophasic Microthermometry Composition

IF Size(mm) Th(partial) Mode CO2 CH4 N2

1 13.0 -140.1 V n.d. 11.98 88.02

2 12.5 -139.7 V n.o. n.o. n.o. 

3 10.0 -140.1 L n.d. 8.24 91.76

4 14.0 -140.1 L n.d. 12.62 87.38

5 13.0 -140.1 L n.o. n.o. n.o. 

6 15.8 -140.6 L n.o. n.o. n.o. 

7 15.0 -140.3 L n.d. 8.86 91.14

10 24.6 -137.7 V n.d. 9.03 90.97

11 10.0 -139.0 V n.d. 9.20 90.80

12 10.8 -139.1 V n.d. 8.86 91.14

13 11.0 -139.2 V n.d. 10.13 89.87

14 11.5 -138.1 V n.d. 13.91 86.09

15 13.0 -139.0 V n.d. 10.43 89.57
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Table D.  3 - Microthermometric data and Composition (mol%) of monophasic fluid inclusions from sample FM19. 

Composition obtained by Raman microspectroscopy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VC21
Monophasic Microthermometry Composition

IF Size(mm) TmCO2 Th(partial) Mode CO2 CH4 N2

1 11.5 -60.3 -39.0 V 65.94 n.d. 34.06

2 15.0 -60.3 -35.0 V 63.81 n.d. 36.19

3 37.5 -60.1 -32.2 V 63.03 n.d. 36.97

4 7.7 -61.6 -38.5 V 65.46 n.d. 34.54

5 19.0 -60.7 n.o. V 61.53 n.d. 38.47

6 10.8 -60.3 n.o. V 60.96 n.d. 39.04

7 10.0 -60.3 n.o. n.o. n.o. n.o. n.o.

8 11.0 -61.6 -19.0 V n.o. n.o. n.o.

9 9.0 -61.6 -20.0 V n.o. n.o. n.o.

10 23.0 -61.2 -24.5 V 79.30 n.d. 20.70

11 15.0 -61.3 n.o. V 82.19 n.d. 17.81

12 23.0 -60.5 -14.4 V 82.19 n.d. 17.81

13 17.0 -61.5 -20.2 V 92.19 n.d. 7.81

14 16.8 -60.2 n.o. n.o. n.o. n.o. n.o.
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Table D.  4 - Microthermometric data two-phase fluid inclusions from sample VC52. 

 

FM19 FM19

Two-phase Two-phase 

FI Size(mm) Type Flw TmIce wt%NaCl Th(total) FI Size(mm) Type Flw TmIce wt%NaCl Th(total)

1 7.0 Lw 0.90 -5.1 8.00 210 35 30.0 Lw 0.90 -0.4 0.71 168

2 8.0 Lw 0.90 -5.1 8.00 223 36 9.0 Lw 0.95 -0.4 0.71 161

3 10.0 Lw 0.90 -5.0 7.86 218 37 6.0 Lw 0.95 -2.1 3.55 170

4 7.0 Lw 0.70 -5.1 8.00 n.o. 38 7.7 Lw 0.95 -2.2 3.71 164

5 11.0 Lw 0.90 -5.2 8.14 210 39 8.5 Lw 0.90 -2.2 3.71 192

6 7.7 Lw 0.90 -4.9 7.73 216 40 11.5 Lw 0.80 -2.0 3.39 192

7 8.0 Lw 0.80 -5.3 8.28 n.o. 41 5.4 Lw 0.90 -2.2 3.71 208

8 10.0 Lw 0.80 -4.9 7.73 211 42 10.0 Lw 0.80 -1.8 3.06 n.o.

9 11.5 Lw 0.75 -4.9 7.73 246 43 9.0 Lw 0.90 -1.8 3.06 n.o.

10 10.7 Lw 0.80 -5.6 8.68 257 44 10.0 Lw 0.80 -2.2 3.71 n.o.

11 8.5 Lw 0.80 -5.0 7.86 231 45 27.0 Lw 0.90 -2.1 3.55 n.o.

12 7.7 Lw 0.90 -5.0 7.86 209 46 7.7 Lw 0.95 -1.9 3.23 191

13 5.3 Lw 0.95 -4.9 7.73 179

14 8.0 Lw 0.80 -5.0 7.86 180

15 5.3 Lw 0.95 -5.1 8.00 159

16 7.0 Lw 0.90 -4.9 7.73 167

17 7.0 Lw 0.90 -5.0 7.86 165

18 7.6 Lw 0.90 -3.4 5.56 n.o.

19 12.3 Lw 0.95 -4.7 7.45 144

20 7.7 Lw 0.95 -5.0 7.86 n.o.

22 9.0 Lw 0.95 -5.0 7.86 n.o.

23 10.0 Lw 0.85 -5.0 7.86 220

24 8.0 Lw 0.90 -4.8 7.59 n.o.

25 8.0 Lw 0.90 -5.5 8.55 n.o.

26 10.0 Lw 0.90 -4.8 7.59 n.o.

27 7.7 Lw 0.80 -5.1 8.00 216

28 6.0 Lw 0.90 -4.9 7.73 207

29 7.5 Lw 0.80 -5.0 7.86 211

30 6.0 Lw 0.90 -5.2 8.14 214

21 8.4 Lw 0.80 -0.7 1.23 208

21 8.4 Lw 0.90 -0.7 1.23 n.o.

22 11.5 Lw 0.80 -0.6 1.05 293

23 16.0 Lw 0.90 -0.4 0.71 282

24 6.0 Lw 0.80 -0.7 1.23 224

25 7.7 Lw 0.90 -0.4 0.71 233

26 11.0 Lw 0.80 -0.4 0.71 175

27 23.0 Lw 0.80 -0.7 1.23 236

28 6.0 Lw 0.90 -0.7 1.23 221

29 10.0 Lw 0.95 -0.6 1.05 176

30 9.0 Lw 0.80 -0.7 1.23 254

31 6.0 Lw 0.90 -0.6 1.05 225

32 6.9 Lw 0.80 -0.5 0.88 n.o.

33 13.0 Lw 0.90 -0.4 0.71 312

34 13.0 Lw 0.80 -0.1 0.18 199
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Table D.  5 - Microthermometric data two-phase fluid inclusions from sample VC52.  

 

 

 

 

VC52 VC52

Two-phase Two-phase 

FI Size(mm) Type Flw TmIce wt%NaCl Th(tota l ) FI Size(mm) Type Flw TmIce wt%NaCl Th(tota l )

39 11.5 Lw 0.80 -3.2 5.26 292 82 7.7 Lw 0.70 -3.6 5.86 n.o.

40 14.0 Lw 0.80 -3.2 5.26 293 83 8.5 Lw 0.70 -2.9 4.80 318

41 12.5 Lw 0.80 -3.2 5.26 315 84 5.4 Lw 0.70 -2.8 4.65 295

42 11.0 Lw 0.75 -3.4 5.56 leak 86 11.5 Lw 0.70 -3.2 5.26 331

43 13.0 Lw 0.80 -3.5 5.71 leak 87 11.5 Lw 0.70 n.o. n.o. 367

44 12.0 Lw 0.70 -3.3 5.41 365 58 7.5 Lw 0.90 -2.4 4.03 decr

45 12.5 Lw 0.80 -3.1 5.11 366 29 10.0 Lw 0.70 -2.6 4.34 n.o.

46 12.0 Lw 0.85 -3.4 5.56 n.o 30 12.5 Lw 0.70 -2.5 4.18 n.o.

47 10.0 Lw 0.85 -3.0 4.96 n.o 89 9.0 Lw 0.70 -2.9 4.80 n.o.

48 9.0 Lw 0.75 -3.0 4.96 decr 15 11.0 Lw 0.6 -1.7 2.90 n.o.

49 11.5 Lw 0.80 -3.3 5.41 decr 16 10.8 Lw 0.75 -1.6 2.74 n.o.

50 11.0 Lw 0.80 n.o. n.o. 332 72 15.3 Lw 0.70 -1.4 2.41 359

51 12.0 Lw 0.75 n.o. n.o. 319 18 11.0 Lw 0.7 -1.8 3.06 n.o.

52 10.8 Lw 0.70 -3.1 5.11 350 31 14.2 Lw 0.6 -1.7 2.90 n.o.

53 27.5 Lw 0.75 -2.9 4.80 decr 36 8.3 Lw 0.7 -2.1 3.55 n.o.

54 13.0 Lw 0.70 -2.8 4.65 347 37 10.8 Lw 0.7 -2.1 3.55 n.o.

55 15.0 Lw 0.70 -3.1 5.11 371 38 13.3 Lw 0.7 -1.9 3.23 n.o.

56 10.0 Lw 0.75 -2.9 4.80 351 19 9.0 Lw 0.70 -0.9 1.57 n.o.

57 12.5 Lw 0.70 -3.3 5.41 decr 20 22.5 Lw 0.70 -0.6 1.05 n.o.

59 10.0 Lw 0.75 n.o. n.o. 330 21 20.8 Lw 0.70 -0.8 1.40 n.o.

60 12.5 Lw 0.70 n.o. n.o. 336 22 14.0 Lw 0.70 -0.9 1.57 n.o.

61 10.0 Lw 0.70 -3.1 5.11 354 23 9.1 Lw 0.70 -0.4 0.71 n.o.

62 10.0 Lw 0.80 -3.4 5.56 352 24 7.5 Lw 0.70 -0.6 1.05 n.o.

63 15.0 Lw 0.70 -3.4 5.56 382 25 18.3 Lw 0.70 -0.4 0.71 n.o.

64 11.5 Lw 0.70 -3.4 5.56 370 26 9.1 Lw 0.70 -0.5 0.88 n.o.

65 15.4 Lw 0.75 -3.1 5.11 354 27 8.3 Lw 0.70 -0.5 0.88 n.o.

66 15.3 Lw 0.75 n.o. n.o. 358 28 12.5 Lw 0.70 -0.4 0.71 n.o.

67 10.8 Lw 0.70 -3.1 5.11 357 32 5.0 Lw 0.70 -0.4 0.71 n.o.

68 12.3 Lw 0.75 -3.3 5.41 370 33 6.6 Lw 0.70 -0.4 0.71 n.o.

70 10.0 Lw 0.70 -3.2 5.26 366 34 7.2 Lw 0.70 -0.5 0.88 n.o.

71 8.5 Lw 0.70 -3.1 5.11 354 35 16.6 Lw 0.70 -0.6 1.05 n.o.

73 10.0 Lw 0.70 -3.0 4.96 366 78 7.0 Lw 0.70 -0.6 1.05 335

74 7.7 Lw 0.9 -2.4 4.03 215 85 13.0 Lw 0.70 -0.7 1.23 348

75 8.5 Lw 0.75 -3.2 5.26 366 92 12 Lw 0.70 -0.6 1.05 n.o.

76 5.4 Lw 0.75 n.o. n.o 365 93 11 Lw 0.70 -0.7 1.23 n.o.

77 11.5 Lw 0.70 -3.2 5.26 362 94 15 Lw 0.70 -0.7 1.23 n.o.

79 11.5 Lw 0.70 -3.4 5.56 366 95 12 Lw 0.70 -0.8 1.40 n.o.

80 6.0 Lw 0.75 -3.1 5.11 n.o. 96 10.0 Lw 0.70 -0.9 1.57 n.o.

81 6.0 Lw 0.70 -3.1 5.11 330
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Table D.  6- Microthermometric data two-phase fluid inclusions from sample FP21. 

 

 

 

 

 

 

 

 

 

 

 

 

FP21

Two-phase 

FI Size(mm) Type Flw TmIce wt%NaCl Th(total)

1 6.6 Lw 0.90 -4.1 6.59 n.o.

2 6.0 Lw 0.95 -3.4 5.56 n.o.

3 6.6 Lw 0.85 -4.1 6.59 n.o.

4 10.0 Lw 0.90 -4.0 6.45 n.o.

5 6.6 Lw 0.90 -3.3 5.41 n.o.

6 5.0 Lw 0.85 -4.1 6.59 n.o.

7 6.0 Lw 0.90 -4.2 6.74 n.o.

8 7.0 Lw 0.90 -4.0 6.45 n.o.

9 8.0 Lw 0.90 -4.0 6.45 n.o.

10 7.7 Lw 0.85 -4.4 7.02 n.o.

11 10.0 Lw 0.90 -3.9 6.30 n.o.

12 5.4 Lw 0.90 -4.0 6.45 n.o.

13 6.6 Lw 0.85 -4.0 6.45 n.o.

14 7.0 Lw 0.90 -4.0 6.45 n.o.

15 7.0 Lw 0.90 -4.4 7.02 n.o.

16 8.0 Lw 0.90 -4.0 6.45 n.o.

17 37.5 Lw 0.85 -0.9 1.57 n.o.

18 12.5 Lw 0.90 -1.0 1.74 n.o.

19 12.5 Lw 0.90 -0.7 1.23 n.o.

20 12.5 Lw 0.85 -0.7 1.23 n.o.

21 10.0 Lw 0.80 -0.8 1.40 n.o.

23 8.0 Lw 0.90 -0.9 1.57 n.o.

24 9.0 Lw 0.95 -0.9 1.57 n.o.

25 17.0 Lw 0.90 -0.8 1.47 n.o.

26 16.0 Lw 0.95 -1.5 2.57 n.o.
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Annex E – Isotopic data 
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Table E. 1 – Rb-Sr and Sm-Nd data for MMC rocks.  

 

OBS:  SGC – Schist-greywacke Complex samples; PMM – patch-metatexite; BMM – banded-Metatexite; DTX – diatexites; LCS – leucosomes; L.Gnt – leucogranites; TL.Gnt – tourmaline-

bearing leucogranites; 2m.Gnt – two-mica granites; CSR – calc-silicate rocks; GWK – metagreywackes; APG – aplite-pegmatites. 

Sample Type Sr  Rb
87Rb/86Sr 2σ

87Sr/86Sr 2σ Nd Sm
147Sm/144Nd 2σ

143Nd/144Nd 2σ εSr0 εSr330 eNd0 eNd330

FM14 SGC 70 105 4.351 0.123 0.734 2.1E-05 32.4 6.8 0.12695 4.E-03 0.51231 2.E-05 424 140 -6.4 -3.5

FM15 SGC 75 59 2.281 0.065 0.728 1.9E-05 15.6 3.3 0.12796 4.E-03 0.51229 2.E-05 330 184 -6.8 -3.9

FM38a SGC 49 78 4.622 0.131 0.743 2.4E-05 33.8 6.9 0.12349 7.E-03 0.51224 2.E-05 550 248 -7.8 -4.7

VC65 SGC 84 161 5.567 0.157 0.748 2.4E-05 31.9 6.9 0.13084 7.E-03 0.51232 2.E-05 622 257 -6.3 -3.5

VC37 PMM 298 153 1.487 0.042 0.719 1.9E-05 34.6 7 0.12238 7.E-03 0.51237 2.E-05 207 113 -5.2 -2.1

VC28 PMM 119 148 3.606 0.102 0.729 2.5E-05 40.9 9 0.13100 7.E-03 0.51236 2.E-05 348 114 -5.4 -2.7

FM4a BMM 144 164 3.302 0.093 0.730 1.5E-05 47.9 9.5 0.11997 3.E-03 0.51217 2.E-05 360 146 -9.2 -5.9

VC 27b BMM 93 205 6.401 0.181 0.745 1.8E-05 32.2 6.6 0.12399 7.E-03 0.51224 2.E-05 568 147 -7.7 -4.6

FM 16 BMM 190 110 1.677 0.047 0.722 1.6E-05 27.8 5.9 0.12838 4.E-03 0.51208 1.E-05 659 155 -10.8 -7.4

FM23 BMM 90 237 7.651 0.216 0.751 2.4E-05 42.7 8.2 0.11616 3.E-03 0.51208 2.E-05 250 144 -10.8 -8.0

FM 22 BMM 201 127 1.831 0.052 0.724 1.9E-05 31.6 6.8 0.13017 4.E-03 0.51212 2.E-05 275 159 -10.1 -7.3

VC 60 DTX 215 134 1.806 0.051 0.721 2.5E-05 22.5 4.6 0.12367 7.E-03 0.51236 2.E-05 233 118 -5.4 -2.3

VC8 LCS 190 129 1.968 0.056 0.724 2.2E-05 12.8 3.3 0.15595 4.E-03 0.51233 1.E-05 281 155 -6.0 -4.3

FM19 LCS 252 133 1.529 0.043 0.722 1.7E-05 3.0 0.7 0.14114 4.E-03 0.51224 2.E-05 246 150 -7.7 -5.4

VC2a L.Gnt 94 139 4.293 0.121 0.742 1.8E-05 7.0 1.8 0.15555 8.E-03 0.51237 1.E-05 846 133 -6.4 -5.0

VC 52 TL.Gnt 58 215 10.784 0.305 0.764 1.8E-05 4.1 1.1 0.16229 1.E-02 0.51231 2.E-05 527 247 -5.1 -3.4

FP21a 2m.Gnt 67 254 11.032 0.312 0.767 2.9E-05 17.3 4.5 0.15734 4.E-03 0.51235 1.E-05 881 151 -5.7 -4.0

FP21b 2m.Gnt 90 191 6.160 0.174 0.741 1.9E-05 16.8 4.3 0.15483 4.E-03 0.51229 1.E-05 520 115 -6.8 -5.1

VC22 2m.Gnt 69 208 8.763 0.248 0.756 2.3E-05 30.3 6.3 0.12577 4.E-03 0.51228 2.E-05 729 150 -7.1 -4.1

VC 39 2m.Gnt 89 229 7.474 0.211 0.748 2.4E-05 18.8 4.8 0.15444 8.E-03 0.51232 1.E-05 615 123 -6.2 -4.4

VC 45 2m.Gnt 49 330 19.668 0.556 0.804 1.9E-05 27.4 6.1 0.13467 7.E-03 0.51230 1.E-05 1408 102 -6.7 -4.1

FM21a CSR 213 30 0.408 0.012 0.713 2.6E-05 34.7 7.4 0.12900 4.E-03 0.51207 1.E-05 125 103 -11.2 -8.3

VC50a CSR 139 18 0.375 0.011 0.714 1.4E-05 34.3 6.8 0.11992 6.E-03 0.51203 2.E-05 129 110 -11.9 -8.7

VC50b CSR 287 35 0.353 0.010 0.713 2.4E-05 27.3 5.5 0.12187 7.E-03 0.51200 1.E-05 124 106 -12.4 -9.2

FM21b GWK 274 76 0.803 0.023 0.716 2E-05 26.0 5 0.11633 3.E-03 0.51205 2.E-05 170 122 -11.5 -8.1

VC50c GWK 203 79 1.127 0.032 0.719 1.4E-05 26.3 5.2 0.11960 6.E-03 0.51200 2.E-05 211 142 -12.5 -9.3

VC 47 GWK 185 77 1.206 0.034 0.720 1.7E-05 27.2 5.2 0.11564 6.E-03 0.51201 2.E-05 218 143 -12.3 -8.9

VC58 APG 35.71 181.87 14.836 0.420 0.778 2.2E-05 2.1 0.6 0.17283 2.E-02 0.51226 2.E-05 1039 55 -7.4 -6.4

VC64 APG 31.76 264.39 24.355 0.689 0.822 3.9E-05 1.4 0.5 0.21604 2.E-02 0.51238 2.E-05 1665 46 -5.0 -5.8
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Table E. 2 - U-Pb isotopic data for MMC diatexite sample (VC60) 

 

 

 

 

 

Ratios Ages

 id U (ppm) Th (ppm) Th/U 206Pb 206Pb/204Pb 207Pb/235U ±err 206Pb/238U ±err 207Pb/235U ±err Disc. (%)
1.1 174.3 65.7 0.39 14.5 0.0689 0.798 0.015 591.8 6.5 595.5 8.4 0.6
1.2 155.3 55.7 0.37 12.4 0.0809 0.758 0.055 567.3 28.4 572.8 32.5 1.0
1.3 235.2 76.7 0.33 19.5 0.0514 0.765 0.011 588.7 4.1 576.8 6.3 -2.0
1.4 183.3 45.5 0.25 15.2 0.0660 0.903 0.015 588.4 6.4 653.2 8.0 10.0
2.1 2613.0 46.4 0.02 109.5 0.0091 0.548 0.005 304.2 2.5 443.8 3.6 31.4
2.2 784.7 2.4 0.00 33.3 0.0300 0.360 0.007 308.9 3.1 312.0 5.2 1.0
2.2 192.1 27.7 0.15 12.4 0.0804 0.582 0.007 465.1 0.5 465.8 4.2 0.2
2.3 163.0 81.6 0.51 13.0 0.0770 0.753 0.013 567.7 6.0 569.9 7.7 0.4
2.4 123.7 43.3 0.36 10.3 0.0970 0.789 0.013 592.8 2.6 590.5 7.5 -0.4
3.1 241.7 130.6 0.55 19.5 0.0514 0.742 0.012 573.6 7.6 563.5 6.9 -1.8
3.2 153.1 67.3 0.45 12.6 0.0792 0.767 0.015 587.0 9.6 578.1 8.9 -1.6
3.3 363.7 2.2 0.01 16.7 0.0597 0.402 0.007 334.1 3.4 343.0 5.3 2.6
3.4 102.2 35.8 0.36 8.5 0.1175 0.815 0.035 591.8 17.9 605.3 19.9 2.2
4.1 433.5 192.3 0.45 27.1 0.0370 0.578 0.020 448.8 12.3 463.3 12.9 3.2
5.2 363.7 158.6 0.45 28.3 0.0353 0.732 0.013 554.8 8.1 557.5 7.5 0.4
6.1 231.5 81.0 0.36 19.1 0.0524 0.769 0.013 586.4 4.7 579.1 7.7 -1.2
7.1 223.0 118.9 0.55 17.9 0.0559 0.759 0.008 571.0 3.9 573.2 4.4 0.4
8.1 1929.2 16.3 0.01 84.6 0.0118 0.374 0.016 318.5 11.4 322.4 11.7 1.2
8.2 641.1 225.4 0.36 60.8 0.0165 0.938 0.014 669.8 8.3 672.1 7.5 0.4
8.3 633.0 168.1 0.27 51.1 0.0196 0.764 0.018 574.7 10.5 576.4 10.2 0.2
9.1 1130.6 47.0 0.04 94.0 0.0106 0.774 0.004 591.4 1.4 582.1 2.1 -1.6
9.2 612.6 14.5 0.02 48.8 0.0205 0.924 0.040 567.8 12.9 664.3 21.3 14.6

10.1 1795.7 9.0 0.01 73.5 0.0136 0.512 0.006 297.8 1.1 419.6 3.8 29.0
10.2 425.5 175.8 0.42 33.0 0.0303 0.730 0.007 553.2 3.3 556.4 4.2 0.6
11.1 504.5 245.0 0.50 38.7 0.0258 0.708 0.010 547.4 0.7 543.7 6.1 -0.6
12.1 1369.0 19.5 0.01 64.7 0.0155 0.413 0.007 342.5 4.0 351.1 4.8 2.4
13.1 308.7 102.8 0.34 25.1 0.0399 0.763 0.008 578.6 5.1 575.7 4.7 -0.6
13.2 462.6 217.9 0.48 37.4 0.0268 0.766 0.005 575.3 2.7 577.3 2.9 0.4
14.1 332.0 85.5 0.26 25.6 0.0390 0.788 0.010 550.7 3.5 590.0 5.5 6.6
14.2 933.4 415.0 0.46 67.9 0.0147 0.691 0.035 520.6 20.2 533.6 21.3 2.4
15.1 302.9 82.0 0.28 24.6 0.0406 0.790 0.006 578.8 3.8 591.3 3.6 2.2
16.1 565.7 245.6 0.45 45.9 0.0218 0.759 0.005 577.2 1.0 573.2 3.1 -0.6
17.1 273.4 183.4 0.69 29.7 0.0337 1.113 0.012 762.6 6.4 759.4 5.6 -0.4
18.1 207.4 80.7 0.40 17.0 0.0589 0.771 0.014 582.3 6.0 580.3 8.2 -0.4
18.2 364.4 31.2 0.09 21.9 0.0458 0.534 0.010 431.8 5.6 434.2 6.6 0.6
20.1 1722.4 12.4 0.01 75.8 0.0132 0.422 0.004 319.6 2.3 357.2 3.0 10.6
20.2 227.7 140.3 0.63 37.5 0.0267 1.982 0.017 1122.1 6.0 1109.4 5.6 -1.2
21.1 276.9 161.4 0.60 22.5 0.0444 0.768 0.007 579.5 3.3 578.7 4.0 -0.2
22.1 224.6 94.0 0.43 18.3 0.0548 0.733 0.016 578.8 4.4 558.1 9.2 -3.8
22.3 371.4 132.2 0.37 30.4 0.0329 0.778 0.007 583.1 3.7 584.6 4.1 0.2
23.1 258.8 124.4 0.49 21.5 0.0466 0.767 0.017 590.3 10.9 577.9 9.6 -2.2
23.2 163.2 56.8 0.36 13.7 0.0728 0.791 0.009 598.3 5.1 591.9 5.0 -1.0
23.3 221.3 64.4 0.30 17.7 0.0564 0.747 0.016 570.4 10.4 566.2 9.5 -0.8
24.1 310.5 131.9 0.44 24.9 0.0402 0.760 0.008 571.2 5.2 574.0 4.7 0.4
25.1 1804.1 6.0 0.00 80.5 0.0124 0.411 0.002 323.9 1.0 349.9 1.5 7.4
25.2 159.2 51.4 0.33 11.8 0.0846 0.807 0.017 530.4 4.5 600.8 9.4 11.8
26.1 246.3 140.4 0.58 19.6 0.0510 0.763 0.015 567.6 4.3 576.0 8.7 1.4
27.1 757.8 313.5 0.42 60.7 0.0165 0.757 0.010 570.6 6.6 572.4 5.8 0.4
27.2 843.4 402.2 0.49 69.5 0.0144 0.789 0.012 586.1 7.6 590.6 6.7 0.8
28.1 337.7 123.1 0.37 26.2 0.0381 0.741 0.009 554.4 4.2 563.1 5.3 1.6
28.2 630.0 201.6 0.33 48.7 0.0205 0.726 0.012 551.1 6.9 554.0 7.0 0.6
29.1 517.9 66.3 0.13 46.3 0.0216 0.911 0.011 633.9 6.1 657.6 5.8 3.6
29.2 102.6 73.3 0.73 11.6 0.0864 1.292 0.057 789.9 27.0 842.2 25.6 6.2
30.1 211.9 60.6 0.29 17.6 0.0569 0.781 0.012 590.2 0.4 586.2 7.1 -0.6
31.1 986.7 209.0 0.22 75.1 0.0133 0.759 0.015 543.4 9.4 573.6 8.4 5.2
31.2 375.9 193.7 0.53 32.3 0.0310 0.834 0.017 610.1 6.2 616.0 9.5 1.0
32.1 1094.9 171.9 0.16 90.3 0.0111 0.777 0.012 586.6 7.8 583.6 6.9 -0.6
32.2 207.1 65.8 0.33 17.2 0.0581 0.788 0.019 591.3 10.0 590.1 10.9 -0.2
33.1 363.5 112.0 0.32 29.9 0.0334 0.779 0.006 585.6 2.8 584.7 3.2 -0.2
33.2 649.1 213.6 0.34 52.6 0.0190 0.770 0.076 576.8 48.2 579.8 44.7 0.6
34.1 1051.3 341.3 0.33 82.4 0.0121 0.756 0.010 558.9 5.9 571.4 6.0 2.2
35.1 1119.4 255.9 0.23 72.3 0.0138 0.602 0.012 463.8 8.5 478.2 7.8 3.0
35.2 273.4 57.8 0.22 22.2 0.0450 0.771 0.012 578.0 3.1 580.6 6.7 0.4
36.1 103.9 31.9 0.32 8.4 0.1189 0.781 0.009 576.3 5.3 585.8 5.0 1.6
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Fig.II. 1 - Outcrops of the Variscan basement in the Iberian Peninsula and subdivision 

of the Iberian Massif after (Martinez Catalánr et al., 2014). Signed the location of the 

Mindelo Migmatite Complex (black arrow). Shear Zones:  BCSZ, Badajoz-Cordoba; 

DBSZ,Douro-Beira; JPSZ, Juzbado-Penalva; PTSZ, Porto-Tomar; SISZ, Southern 

Iberian. ....................................................................................................................... 11 

Fig.II. 2 - Major stratigraphic domains in the Central Iberian Zone with location of the 

study area. (After Soares de Andrade, Lições de Geologia de Portugal, not published)

 ................................................................................................................................... 13 

Fig.II. 3 - Time scheme of the main deformation events that affected the northern 

sector of the Iberian Massif during Variscan Orogeny (Dias & Ribeiro, 1995). ............ 16 

Fig.II. 4 – Distribution of metamorphic zones and variscan granitic rocks in the NW of 

Iberian Peninsula (after Martinez et al., 1988 and Castro et al, 2002). ........................ 18 

Fig.II. 5 - Distribution of variscan granitoids in central and northern Portugal with 

location of the study area (Modified from Ferreira et al., 1987). ................................... 20 

Fig.II. 6 - Simplified geological map of the study area with the major megastructures 

and location of the studied area (based on Ferreira et al., 1987 and Oliveira & Pereira, 

1992). ......................................................................................................................... 24 

 

 

 

Fig. III. 1 – Geological sketch of Sector 1 based on field observations and geological 

map. Also signalled the location and lithological type of sampling. The migmatite zone 
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Fig. IV.2. 11 - Photomicrograph showing textural aspects of garnet in staurolite-schists. 

A) Garnet in micaceous domain (PPL); B) Poikilitic garnet in quartz-feldspathic domain. 
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Fig. IV.2. 18 - Sketches showing progressive growth stages of an hypothetical 
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alignment; C) Chlorite replacing transverse biotite and muscovite replacing aligned 

biotite. D) Chlorite + muscovite+ quartz replacing garnet. ......................................... 120 

Fig. IV.2. 24 - Photomicrograph showing textural aspects of calc-silicate rocks in the 
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Staurolite partially replaced by andalusite and containing aluminosilicate vermicular 

inclusions. B) Staurolite replaced by andalusite associated with quartz and kyanite; C) 
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Fig. IV.2. 28  - Arrangement of assemblages displayed as a sequence of schematic 

AFM diagrams in the KFMASH system (AFM-diagrams) along Barrovian type geotherm 

(after Bucher & Grapes, 2011). The bulk rock composition of sector 2 pelitic rocks is 
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Fig. IV.2. 29 - Stable assemblages in metapelitic rocks that originally contained Chl–

Ms–Qtz (model system KFMASH). Note that this type of rock will not develop 

sillimanite in a Barrovian type geotherm and does not contain Ky at any P and T. The 

fields that contain Kfs do not carry Ms (high T low P). The central amphibolite facies 

assemblage is Grt–Bt–St (shaded in green). Delimited the stability field of the 

staurolite-schists paragenesis at a first metamorphic event (M1) and during a second 

metamorphic event were andalusite replaces and coexists with staurolite. ............... 127 

Fig. IV.2. 30 - Blastese/deformation connections based on the mineral assemblages 
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(Legend key: CZ – calc-silicate nodule core-zone; OZ – calc-silicate nodule outer-zone; 

GWK – metagreywacke resister; LG– Staurolite-zone calc-silicate rock). ................. 139 
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grade calc-silicate rock;  GWK – metagreywacke resisters; GWK.m – metagreywacke 
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al., (1991) and Winter (2001). Legend Key: CSN – Calc-silicate nodules showing type II 
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patch-metatexites; BMM – Banded-metatexites; Bt.Sch – biotite schists; St. Sch – 
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Fig. VI. 10 - Diagrams relating ∑REE with Zr, Th and Y and the relationship of these 

elements with the ferromagnesian elements for Metatexites and SGC lithologies. 
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Fig. VI. 17 – Projection of MMC granitic rocks in the Debon & Le Fort (1988) diagram 
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granites) and FG (fractionated felsic granites). Legend key: DTX – diatexites; LCS – 
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Chã (VC52) and Lavra (VC43a). C) Two-mica granites from Lavra (VC39), Leça 

(VC45), S. Paio (VC22 and VC34); Vila do Conde (FP21a and FP21b), Junqueira 

(VC49 and VC50) and Fornelo (FP30a). D) Fine-grained granite dikes from Vila Chã 

(VC16 and VC32) and porphyritic granites dikes from Fornelo, and D) Aplite-pegmatite 

from S. Paio (VC64) and Vila Chã (VC58). ............................................................... 219 

Fig. VI. 31 – Rare Earth Elements pattern diagrams normalized to Chondrite (Boynton, 

1984). A) Diatexites from Vila Chã (FM6, VC59 and VC60), Malta (VC46b) and Fornelo 

(VC37) and   B) Leucosome in situ (VC8) and leucosome vein in Metatexite zone 

(FM19). ..................................................................................................................... 221 

Fig. VI. 32 - Rare Earth Elements pattern diagrams normalized to Chondrite (Boynton, 

1984) to A) Leucogranites from Mindelo (VC2), Malta (FP44b), Vila do Conde (VC55) 

and Aguçadoura (VC68);  B) tourmaline-bearing leucogranites from Mindelo (VC3), Vila 

Chã (VC52) and Lavra (VC43a). ............................................................................... 222 

Fig. VI. 33 - Rare Earth Elements pattern diagrams normalized to Chondrite (Boynton, 

1984) to: A) Two-mica granites from Lavra (VC39), Leça (VC45), S. Paio (VC22 and 

VC34); Vila do Conde (FP21a and FP21b), Junqueira (VC49 and VC50) and Fornelo 

(FP30a). B) Fine granites from Vila Chã (VC16 and VC32) and porphyritic granites 

from Fornelo (porphyritic granites data from Ferreira, 2011). .................................... 222 

Fig. VI. 34 - Rare Earth Elements pattern diagrams normalized to Chondrite (Boynton, 

1984) to aplite-pegmatite from S. Paio (VC64) and Vila Chã (VC58). ....................... 223 

Fig. VI. 35 – Binary diagrams showing the relation between total REE content and  

elements associated with acessorry minerals (Zr, Hf, Th and Y) in granitic rocks from 

MMC. Legend key: DTX – diatexites; L.Gnt – leucosomes, leucogranites and 

tourmaline-bearing leucogranites; Gnt – two-mica granites s.l.. ................................ 223 

Fig. VI. 36 – Projection of MMC granitic rocks in Nd vs.Th and Ho vs. Y diagrams 

showing the relation between the LREE and Th content and HREE and Y content, 

respectively. Legend key: LCS – leucosomes; DTX – diatexites; L.Gnt – leucogranites; 

2m.Gnt – two-mica granites. ..................................................................................... 224 

Fig. VI. 37 - Binary diagrams showing the relation between Eu anomaly and the content 

in elements associated with accessory minerals (Zr, Hf, Th ) and plagioclase 

fractionation (relation between Na2O/CaO) in MMC granitic rocks. Legend key: DTX – 

diatexites; L.Gnt – leucosomes, leucogranites and tourmaline-bearing leucogranites; 

Gnt – two-mica granites s.l........................................................................................ 224 

Fig. VI. 38 – Projection of MMC granitic rocks in K2O vs Na2O and in CaO Vs. Fe2O3t 

diagrams. Also represented the field corresponding to S and I-type granites from 

Lachlan Fold Belt (Chappell and White 2001) and leucogranites from European 

Variscan and Himalayas belts. Abbreviations: S – S-type granites; I – I-type granites; H 



FCUP 

Petrogenesis of a variscan migmatite complex (NW Portugal): petrography, geochemistry and fluids 
 

 

432 
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