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Abstract

Mobile robots have shown the potential to change the way humans work, by taking on strenuous or
repetitive tasks such as transporting heavy loads and by starting to interact with human workers.
These robotic systems require robust and precise localization. External localization is relevant
to complement self-localization and to provide valuable information when Automated Guided
Vehicles (AGVs) move in irregular terrain.

Recent developments in Red, Green and Blue, and Depth (RGB-D) sensors have made valu-
able visual information available to researchers at affordable costs prompted new research into
video tracking.

This masters thesis proposes a versatile and cost effective architecture for external 6 Degrees
of Freedom (DoF) localization. The system uses RGB-D video tracking with multiple sensors and
leverages Robot Operating System (ROS) and Point Cloud Library (PCL). The proposal includes
sensor fusion strategies to improve overall localization performance. A suggested set-up would
cost 2570C (2015 prices), using 3 Kinect for Xbox One sensors and computers . The proposed
system takes advantage of the target’s natural geometry.

Simulation analysis, on a Xubuntu 14.04 system with a 2006 Intel Pentium 4 processor and
3 GB of RAM, shows the proposed tracker, based on Iterative Closest Point (ICP) point cloud
registration, performs with maximum translation error under 5 cm in either axis and maximum
rotation error under 5°, with an update frequency above 2 Hz and is robust to noise and partial
occlusion.

In conjunction with the Cooperative Robot for Large Spaces Manufacturing (CARLoS) project,
several datasets were collect and made publicly available. These include RGB-D data from two
Kinect for Xbox 360 devices with different views of a moving AGV as well as the robot’s sensor
data and 6 DoF ground truth provided by a commercial motion capture system.
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Resumo

Os robôs móveis têm revelado o seu potencial para mudar o modo como os humanos trabalham:
assumem tarefas fisicamente exigentes e repetitivas como transportar cargas pesadas e começam
a interagir com trabalhadores humanos. Estes sistemas robóticos exigem localização robusta e
precisa. A localização externa é relevante para complementar auto-localização e para oferecer
informação valiosa quando Automated Guided Vehicles (AGVs) (Veículos Autoguiados) se deslo-
cam em terreno irregular.

Desenvolvimentos recentes em sensores Red, Green and Blue, and Depth (RGB-D) (cor e pro-
fundidade) vieram disponibilizar informação visual valiosa a investigadores a baixo custo levando
a um novo interesse em tracking por vídeo.

Esta dissertação de mestrado propõe uma arquitetura versátil e com boa relação qualidade-
preço para localização externa em 6 Degrees of Freedom (DoF) (Gruas de Liberdade). O sistema
usa tracking por vídeo RGB-D com vários sensores e tira proveito de Robot Operating System
(ROS) e Point Cloud Library (PCL). A proposta inclui estratégias de fusão de sensores para
aumentar o desempenho de localização. Uma montagem sugerida custaria 2570C (preços de
2015), usando 3 sensores Kinect for Xbox One e 3 computadores . O sistema proposto tira partido
da geometria natural do alvo.

Revela-se por análise de simulações, num sistema Xubuntu 14.04 com processador Intel Pen-
tium 4 de 2006 e 3 GB de RAM, que o tracker proposto, baseado em registo de nuvens de pontos
por Iterative Closest Point (ICP), funciona com erro máximo em translação inferior a 5 cm em
cada eixo e erro máximo em rotação inferior a 5° com uma frequência de atualização acima de
2 Hz e é robusto em relação a ruído e oclusão parcial.

Em conjunto com o projeto Cooperative Robot for Large Spaces Manufacturing (CARLoS),
foram recolhidos e disponibilizados publicamente vários conjuntos de dados. Incluem-se dados
RGB-D de dois dispositivos Kinect for Xbox 360 com vistas diferentes de um AGV em movimento
bem como dados de sensores do robô e ground truth em 6 DoF conseguida com um sistema
comercial de captura de movimento.
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“Without pain, without sacrifice we would have nothing.
Like the first monkey shot into space.”
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Chapter 1

Introduction

1.1 Context

This document is the final report for the Dissertation Thesis (Major in Automation) of the Master

in Electrical and Computers Engineering at the Faculty of Engineering of the University of Porto.

The subject of the dissertation is “External Robot Localization in 6DoF” and it is supervised

by Armando Jorge Sousa.

1.2 Defining the Problem

The current problem is tracking a rigid object in a dynamic environment, such that the object’s

poses are known for each frame of video, in 6 Degrees of Freedom (DoF). Pose in 6 DoF is

defined as translation and rotation from a reference and can be expressed by x, y and z Cartesian

coordinates and roll, pitch and yaw angles about fixed axes.

Object tracking is still a technologically complex problem in environments where service

robots, such as robotic manipulators, operate, due to the need for quality results and for safety,

as well as an interest in inexpensive systems.

In these scenarios, the need arises to use exterior localization techniques so that the real time

control loop can interact with the objects of interest, identifying and tracking them in 3D with all

available sensors.

Tracking the Cooperative Robot for Large Spaces Manufacturing (CARLoS) robot is an ex-

ample scenario.

1.3 Objectives

The objective of this project is to develop a robotic system that will accomplish the tracking of

mobile robots, mobile manipulators and other goods in semi-structured environments with real-

time restrictions, exploring the advantages of the most recent Red, Green and Blue, and Depth

(RGB-D) sensors.

1
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1.4 Performance Metrics

A tracking system is evaluated on a number of performance measures. These include measurement

error, update delay and frequency and versatility.

1.4.1 Measurement Error

Measurement error is defined as the error between a target’s actual pose and that which is reported

by the tracker. This is divided between the components of pose (translation and rotation), and

quantified in the respective units, meter and radian.

Relevant quantities are the maximum and average error for any point in the object’s trajectory

and the accumulated and Root Mean Square (RMS) error along the entire trajectory.

1.4.2 Time delay

Object tracking is intended as a real-time on-line process, but the object’s pose is calculated in

finite time, resulting in a time delay between an object being in a certain pose and that pose being

identified — lag — and a limited update frequency.

The number of arithmetic operations per iteration is another relevant way to express how

computationally expensive an algorithm is [1] that does not depend on the performance of the

machine running it.

1.4.3 Versatility

An ideal tracking system would be able to track an unlimited number of objects of any type,

but this is not possible. Knowing this, one can classify different systems on their versatility by

answering the following questions:

• How many objects can be tracked?

• What types of objects can be tracked? Are there restrictions in color, shape or size?

• Does the system tolerate occlusions?

• Can the system be easily adapted to new situations?

A system that can track more objects with fewer restrictions to their nature, handles occlusions

and can be reconfigured is superior.

1.5 Project Goals

The final result should be a tracking system for use in external robot localization with the following

characteristics:

• Capable of tracking one rigid object or the main rigid body of an articulated object, indoors;
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• Capable of tracking in full 6 DoF without assumptions on the target moving on a floor plane;

• Maximum translation error of 5 cm or 5×10−2 m in either axis;

• Maximum rotation error of 5° or 8.7×10−2 rad;

• Minimum update frequency of 2 Hz.

1.6 Structure

After the Introduction, this document consists of 6 chapters.

Chapter 2 introduces the state of the art in the field.

Chapter 3 outlines relevant tools and equipment used in development and the proposed solu-

tion.

Chapter 4 presents the proposed solution for the problem.

Chapter 5 outlines development steps and results.

Chapter 6 presents data collection efforts in a case study where the solution could to be applied,

as a basis for future development.

Finally, Chapter 7 introduces the conclusions and outlines future work.
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Chapter 2

State of the Art

2.1 Introduction

This chapter first reviews a general survey on object tracking [2], then specific algorithms of note

and finally recent work in 6 Degrees of Freedom (DoF) video object tracking.

2.2 Tracking Survey

This section is based on [2].

The first consideration in tracking is object representation. This can be shape-based (points,

geometric primitives, silhouette and contours, articulated shape models or skeletal models) or

appearance-based (probability densities of object appearance, templates, active appearance mod-

els, multiview appearance models).

The second consideration is feature selection for tracking. Distinctive features can include

color, edges, optical flow and textures.

The first step of tracking is object detection. This can be accomplished through point de-

tectors, such as the Harris detector and Scale-Invariant Feature Transform (SIFT) (discussed in

Section 2.3.5.1), through background subtraction (using frame differencing or background mod-

els), through segmentation (such as mean-shift clustering, image segmentation using graph-cuts,

active contours) and through supervised learning (for example, adaptive boosting, support vector

machines).

Tracking, generating the trajectory of an object over time, can be performed jointly with or

separately from object detection. This means the detection process can use information from

previous frames or not.

The method used greatly depends on the object representation and both depend on the appli-

cation.

5
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2.2.1 Point Tracking

When the object is represented by a point, the possible methods can be divided into deterministic

and probabilistic.

Deterministic methods apply constraints such as assuming, in frame t, an object will be close

to its position in frame t−1, assuming an upper bound on an object’s velocity or acceleration or

assuming that objects in a group (particularly when these represent a single target) will have a

similar velocity. Specifically for targets represented by several points, a common assumption is

that the object is rigid, so the distance between its points will be constant.

Probabilistic methods include Kalman filters and particle filters (discussed in Section 2.3.2

and Section 2.3.3, respectively). Other methods deal specifically with tracking several objects

simultaneously. When using the Kalman filter, the tracking problem is defined in state-space and

the target’s state is assumed to be affected by Gaussian error. If this assumption holds, the filter

is optimal. Particle filters do not make this assumption and use several particles to represent

different possibilities for the target’s state. These are weighed by a probability function, such that

the object’s pose is determined by adding each weighted particle’s contribution.

2.2.2 Kernel Tracking

Kernel tracking refers to tracking objects that are described in terms of their appearance. Kernel

tracking methods include template matching or multi-view appearance models.

Possible templates include actual image intensity and color, gradient or color histogram or

other representation that can be calculated within a region. Different characteristics can be com-

bined, for example through principal component analysis (discussed in Section 2.3.4). These are

generated on-line and, generally, used to track the object to the next frame in the vicinity of its

previous position.

Multi-view models are generated off-line and represent appearance from different perspec-

tives. Trackers based on these models are better prepared for sudden changes im perspective.

2.2.3 Silhouette Tracking

Non-rigid objects with complex shapes are represented by silhouettes and tracked either by shape

matching, the tracker searches each new frame for a shape similar to the model generated in the

previous frame and then updates it or by contour tracking, where the target’s contour evolves from

one frame to the next.

2.3 Algorithms of Note

This section describes several algorithms that are often used as part of tracking systems and in

other applications.
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2.3.1 Iterative Closest Point

Iterative Closest Point (ICP) is a method for registration - the process of finding a spatial transfor-

mation that aligns two point sets - of 3D shapes, described in [3].

The algorithm takes a model shape and a data shape and returns the transformation in 6 DoF

that minimizes the distance metric between the shapes.

The steps are finding the distance between shapes — the same as the distance between their

closest point pair —, computing the registration that matches the closest points, applying it and

calculating the new mean-square error. If the error is lower than a set limit, the process is termi-

nated, otherwise a new iteration starts, repeating these steps.

The process will continue until a local error minimum is reached. The authors point out that

this means the registration can be incorrect if there is a great difference in orientation between

model and data. To ensure the correct transformation is found, one must either start with a rea-

sonable estimate of rotation or test several possibilities, the number of which depends on object

complexity.

The estimate for translation, however, can be relaxed, as the algorithm converges correctly for

very different initial estimates.

Figure 2.1: ICP demonstration [4]

ICP is extensively used in tracking, such as in [5] with range finders and [6] with Red, Green

and Blue, and Depth (RGB-D) video and in self-localization such as in [7].

For tracking, the objective is to find the rigid transformation between the observed target and

the model. This is the same as its pose compared to the scene’s coordinate space.

In self-localization, the objective is to find the rigid transformation between the environment

model — the map — and the observed environment, which corresponds to the observer’s pose

within the environment.

2.3.2 Kalman Filter

The Kalman filter, first proposed in [8] and explained in a more approachable fashion in [9] esti-

mates the state of a linear system that is affected by process and measurement noise. It is optimal

when the noise is Gaussian.

For a linear system in state-space form, the filter calculates estimates of the state variables and

of the outputs, as well as the error covariance matrix, which describes estimate uncertainty. These
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are based on a system model, estimates of noise covariance matrices and initial estimates for the

system’s state and error covariance.

The filter algorithm has two steps: a time-update or prediction step and a measurement-update

or correction step.

The prediction step uses information up to t−1 to estimate system variables in t.

The correction step begins by calculating the Kalman gain, based on system and noise pa-

rameters and on the current error covariance. The corrected estimate for t is then calculated by

adding the prediction from t− 1 and the measurement from t, compared to the expected output,

considering the predicted state and weighed by the Kalman gain. Finally, the error covariance is

updated based on its previous prediction, system model and Kalman gain.

Due to its recursive nature, the Kalman filter algorithm only needs to store the system and

noise models, the latest predictions and corrected estimates, their respective covariances and the

latest input and output.

For nonlinear systems, Extended Kalman Filter (EKF) linearizes the system around the cur-

rent mean and covariance. This filter is no longer optimal, but is still the most used estimation

algorithm for nonlinear systems. This is noted in [10], as well as the fact that it is only effective

if the sampling and update time is small enough for the dynamics to be properly approximated by

linearization at each step.

Figure 2.2: Kalman filter example — Black: truth, green: filtered process, red: observations [11]

The Kalman filter is widely used in tracking, as noted in [2]. Using a Kalman filter to predict

the new pose of a tracked object, thereby saving time on new pose estimation, is proposed in [5].

2.3.3 Particle Filter

Sequential Monte Carlo estimation methods or particle filters, introduced in [12] (as the bootstrap

filter) and explained in [13], are based on state-space models like the Kalman filter, but do not

make assumptions on linearity.

In Baysian filters, the objective it to calculates a posterior Probability Density Function (PDF),

based on available information including most recent measurements, that contains all the statistical

information and is a complete solution to the problem.
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A recursive algorithm, such as the Kalman filter, does this in two steps: prediction, where the

prior PDF is calculated and correction, where the posterior PDF updates it with new measured

data, acquiring better information on the system’s state — based on all available information.

Analytically calculating this PDF is not possible, unless certain restrictions are considered.

In the Kalman filter, the system is restricted to being linear and this function is restricted to a

Gaussian distribution parametrized by a mean and a covariance, which are both calculated.

If the state-space is discrete and there is a finite number of states, the posterior density function

can be calculated by summing the conditional probability of each state.

Without such restrictions, the PDF cannot be calculated, but it can be approximated.

Knowing there are several particle filter algorithms, this section will continue by explaining

only the Sequential Importance Sampling (SIS) algorithm as this is sufficient for understanding

the concept of particle filtering and it is the basis for most such methods.

This algorithm calculates the PDF in a number of samples, or particles. The final estimate

results from each particle’s contribution, affected by its weight.

The weight is the result of evaluating an importance density function, the design of which is

the center of designing a particle filter for a given application.

Figure 2.3: Particle filter example — particles for a robot’s location [7]

As the algorithm is iterated, one particle tends to represent more of the PDF, while the others’

weights approach zero - the degeneracy problem. This can require a re-sampling of particles to

promote diversity.

Particle filters are widely used in localization, such as in [7] and in tracking such as in [14].

2.3.4 Principal Component Analysis

Principal Components Analysis (PCA) was first described in [15], named in [16] and explained

in [17] is a method to fit lines and planes to measured data points, thereby finding the underlying

relationships between variables, while reducing the problem’s dimensionality.
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The results of this analysis are a new orthonormal basis for the data, such that the each axis

accounts, in sequence, for most of the data’s variance. These axes constitute the principal compo-

nents. Data points can then be projected into this base.

An algorithm for applying PCA to a dataset starts by centering the data on the origin, by

subtracting its centroid, then calculates the principal components, either through eigenvalue de-

composition of the covariance matrix or through singular value decomposition (SVD) of a form

of the data matrix [17].

Figure 2.4: PCA in use (c) [18]

PCA is used in [18] to find a tracked object’s orientation and as noted in section 2.2 to combine

and compare appearance features.

2.3.5 Local Feature Descriptors

As mentioned in section 2.2, SIFT and other local feature descriptors are popular in model-based

tracking. These aim to quantify the properties of points in images, so that they can be matched

and objects can be recognized.

SIFT and Speeded Up Robust Features (SURF) also propose a key-point detector, which first

selects points of interest. ! (!) relies on an established detector.

2.3.5.1 SIFT

SIFT was introduced in [19] and patented in the United States under [20]. It produces feature

vectors from an image that are invariant to scale, translation, and rotation and nearly invariant to

illumination changes and projection.

SIFT generates in the order of 1000 keys (features) for an image and requires as little as

3 to match to identify an object, so it can tolerate significant occlusion. Furthermore, enough

translation is allowed so that 2D objects can be rotated up to 60° from the camera plane and 3D

objects can be rotated up to 220° and still be identified.

2.3.5.2 SURF

SURF, introduced in [21] aims to be faster and as robust as SIFT and other previous descriptors.

In the interest of speed, SURF is not explicitly invariant to anisotropic scaling, and perspective

effects.
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Figure 2.5: SIFT features used in image recognition [19]

In the authors’ tests, considering viewpoint changes, rotations, zooming and illumination vari-

ations, SURF outperformed SIFT in speed by 2 times and in recall for the same levels of precision.

Figure 2.6: Detected SURF features [21]

2.3.5.3 ORB

Oriented FAST Rotated BRIEF (ORB) was proposed in [22] with the intention of providing per-

formance comparable to SIFT and greater speed (claimed to be two orders of magnitude higher

than SURF).

It adapts the Features From Accelerated Segment Test (FAST) detector [23] with an added

orientation component and scale invariance and the Binary Robust Independent Elementary Fea-

tures (BRIEF) descriptor [24] with orientation invariance. Both detector and descriptor were de-

signed with efficiency and speed in mind. In particular, BRIEF descriptors are represented by
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Table 2.1: Comparison between SIFT, SURF and ORB (matches) [22]

Inliers (%) N points
Magazines data set

ORB 36.180 548.50
SURF 38.305 513.55
SIFT 34.010 584.15

Boat data set
ORB 45.8 789

SURF 25.6 795
SIFT 30.2 714

Table 2.2: Comparison between SIFT, SURF and ORB (speed) [22]

Detector ORB SURF SIFT
Time per frame (ms) 15.3 217.3 5228.7

binary strings, so calculating the difference between two features is reduced to calculating the

Hamming distance between their descriptors, a very efficient operation.

Due to its high speed it is well suited for real-time operations.

Figure 2.7: ORB features used in image matching [22]

The evaluation of ORB offers a comparison between this descriptor and SIFT and SURF.

Comparison reults for matched points for two data set are shown in Table 2.1 and average detection

times per frame from a set of 2686 are shown in Table 2.2.

2.3.6 FPFH feature descriptor and SAC-IA registration

Feature descriptors can also be determined for 3D points, such as Fast Point Feature Histograms

(FPFH), introduced in [25] (based on Point Feature Histograms (PFH) in [26, 27]).

This descriptor relates geometrical relationships between a point and its neighbors and is cal-

culated based upon point coordinates and surface normals. FPFH improves over PFH by caching

previous results and streamlining some formulations.

Six DoF registration algorithms such as ICP risk falling into local minima in the optimization

process returning incorrect results [3, 25]. Sample Consensus Initial Alignment (SAC-IA), also
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Figure 2.8: FPFH region of influence for point Pq [25]

introduced in [25], based on Random Sample Consensus (RANSAC) [28] attempts to correct this

by considering and ranking several sets of correspondences.

SAC-IA selects many samples from one point cloud, but guarantees their pairwise distances

are larger than a user-set distance. The corresponding point in the other point cloud is randomly

selected from a set of points whose feature histograms are similar. These correspondences are

used to calculate the 6 DoF transform between the point clouds and an error metric.

Repeating these steps and using an optimization algorithm on the best transform yields the

final result.

Figure 2.9: SAC-IA registration — two partial view on left; alignment result on right [25]

2.4 Recent Work in 6DoF RGBD Video Object Tracking

2.4.1 Shape and Model-Based Tracking in Stereo Video

An algorithm is proposed in [29] for shape-based and then iterative model-based 6 DoF pose

estimation of single colored objects in stereo Red, Green and Blue color (RGB) images.
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This algorithms first segments the target object, using Hue, Value, Saturation (HSV) color

segmentation, separating a single color in the image. Initial translation is estimated through cen-

troids of object in both captured images. Rotation is obtained from matching the left image with a

multi-view model. This is accurate if the object is in the same position as in training.

To correct errors resulting from a difference in translation, a corrective rotation is calculated

such that if the object were affected by this new rotation, its appearance would be the same as if it

were in fact in the training position (center of the left image).

This correction affects the translation, so that is recalculated, using simulated views from a 3D

model of the object and the process is repeated iteratively. The algorithm generally converges in

two iterations.

Final orientation error depends on the angle resolution of training images.

This method was tested in simulation.

Based on this estimate, the algorithm proposed in [14] tracks arbitrarily shaped objects using

a full 3D model in stereo video.

The algorithm consists of pose update, probability function, normalization and annealed par-

ticle filter.

The update consists in adding Gaussian noise to the current estimate, a translation vector and

a rotation vector.

To calculate the probability function for each updated pose, object views are rendered from

that pose and compared to the captured images via a bitwise AND operation on binary detected

edges on both images.

The number of matching pixels is divided by the number of pixels in the rendered view edge

image and this result is used in calculating the a-posteriori probabilities for all particles.

This technique allows for matching even with partial occlusions.

Because both normalizing over the number of edge pixels and normalizing over the total num-

ber of pixels in the image both present issues with unexpected edge filter responses and varying

distance respectively, and additional weighted normalization step is performed.

The annealed particle filter runs several filters with fewer particles in layers. This aims to

reduce the overall umber of particle evaluations.

Figure 2.10: Exemplary pose estimation [29] and tracking [14] results
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2.4.2 Pose Estimation of Rigid Objects Using RGB-D Imagery

The algorithm proposed by [18] uses 480×640 RGB-D imagery from a Kinect sensor.

The object model consists of ORB features and their associated 3D positions on the objects,

collected from different angles and distances.

ORB features in the captured image are matched with model features. A homography matrix

is iteratively computed and then used to remove outliers.

A region of interest (ROI) is determined by fitting a 3D bounding box to the matching key-

points in the captured point cloud. The oject points are segmented through clustering.

The object’s 6D pose is determined in two steps. First, translation is calculated by taking

the centroid of the object points and finding its depth in the camera space. Rotation is obtained

through a bounding box along the principal axes of the point distribution.

Object detection is subsequent frames is accelerated by considering only a quadrangular ROI

in the image space, corresponding to the previous 3D bounding box.

Objects are tacked at 15 Hz with a 92% detection rate.

Future work includes using GPU optimization and using contours to track untextured objects.

Figure 2.11: Exemplary results [18]

2.4.3 Princeton Tracking Benchmark and RGBD Tracking Algorithms

A dataset consisting of 100 RGB-D video samples and a 6 DoF tracking method are introduced in

[6]. The samples were recorded with a Kinect sensor and used to evaluate the proposed baseline

algorithms.

The authors present a set of algorithms based on the state of the art in 2D and 3D tracking.

The occlusion detection strategy is of particular note, due to its use of depth information: the

depth data within the object’s 2D bounding box is divided into an object region (depth range of

target points, which are the closest to the camera) and a background region (further away). When

other occluding objects enter the bounding box, their depth is lower.
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Figure 2.12: Occlusion handling [6]

2.5 Conclusion

This review of the state of the art in 6 DoF video tracking shows that this problem is non-trivial

and that challenges remain. There are a number of significant design decisions that impact per-

formance and accuracy, as well as the range of application of a tracker. Current efforts attempt to

leverage new technology and are often tailored to specific targets and environments.



Chapter 3

Tools and Equipment

3.1 Introduction

Tackling any programming project involves finding the appropriate libraries, frameworks and

tools. For a problem that is focused on robotics and computer vision, this means finding robotics

middleware [30] that will provide an adequate hardware abstraction and common services includ-

ing package management and communications (between a robot’s services and between different

robots), a computer vision library that provides real-time processing functions of 2D and 3D im-

ages and a complete sensor system that provides a quality imaging solution.

Finally, validation requires a solution for obtaining a Ground Truth trajectory.

3.2 ROS Robotics MiddleWare

Among current solutions for robotics middleware [30], Robot Operating System (ROS) stands out.

It was designed to be: [31]

• "Peer-to-peer"

• "Tools-based"

• "Multi-lingual"

• "Thin"

• "Free and Open-Source"

ROS allows researchers to develop robotics software from hardware drivers to high-level de-

cision making, by integrating different components by different developers.

3.2.1 Nodes and Packages

The peer-to-peer nature of ROS allows different processes to operate separately and communicate.

These can be visualized in graph form and are called "nodes."

17
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Figure 3.1: Typical ROS graph [31]

A set of nodes can be collected into a package, for example the nodes in Fig. 3.1 would

constitute a navigation package. The localization node is of particular interest as it has

the same purpose as this project: to provide other nodes with the robot’s pose, relative to the map,

using sensor information, in this case laser scans.

3.2.2 Communication

Communication between nodes uses messages — well-defined data structures. Communication

follows a publisher/subscriber pattern, where any node can publish a message, on a topic, and

any other can subscribe to this topic, at will. In the example of Fig. 3.1, node localization

publishes a pose message to which planner subscribes. At the same time a logger node can

subscribe to the same message and record the robot’s trajectory.

3.2.3 Frame Transforms

Interfacing sensors, cameras, mobile robots, manipulators and the working environment requires

a system to transform points and vectors between various frames.

ROS builds all these transforms into a transformation tree (the tf2 system).

As described in the tf2 documentation "A robotic system typically has many 3D coordinate

frames that change over time, such as a world frame, base frame, gripper frame, head frame, etc.

tf keeps track of all these frames over time." [32]

Any node can add a transformation to the tf2 tree by publish a transform message such as

geometry_msgs/TransformStamped. Nodes can then request transformations between

relevant frames.
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Returning to Fig. 3.1, mapmight publish its message referenced to frame world, but planner

could transparently access it in frame base_link (the robot’s base) because localization

publishes a transform between these frames to tf2.

3.2.4 Logging

ROS topics can be recorded for future use using the bag format. [33] This allow developers

to replay sensor data, log relevant information and simulate nodes, by publishing their expected

messages.

3.3 Point Cloud Library

The second problem can be solved with Point Cloud Library (PCL) [34]. It is a library that

"contains state-of-the art algorithms for: filtering, feature estimation, surface reconstruction, reg-

istration, model fitting and segmentation" [35] with point clouds and interfaces with ROS [36].

This library is used in ROS, for example, in [37].

The set of software libraries offered by PCL can be visualized in Fig. 3.2.

Figure 3.2: PCL libraries [34]

3.3.1 Point Cloud Data Type

PCL implements templated classes. PointCloud<PointT> is the class for storing point clouds.

A point cloud ia a set of multidimensional (typically 3D) points that can include the Red, Green

and Blue color (RGB) values for points.

3.3.2 Relevant Algorithms

PCL implements several registration algorithms including Iterative Closest Point (ICP) and Sample

Consensus Initial Alignment (SAC-IA) built upon base class Registration<PointSource,

PointTarget, Scalar>.

Filtering algorithms are based on the Filter<PointT> and include pass-through, statistical

and voxel grid filters.
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Table 3.1: Kinect for Xbox 360 characteristics [37]

Camera (RGB) 640×480 VGA, bit color to 32-RGB-@ 30 Hz)
Depth sensor Structured light (Infrared (IR)) emitter (projector) and IR

monochrome CMOS sensor (320×240 QVGA, bit to 16-levels
deep -65.536 @ 30 Hz)

Angular field of view 57° horizontal and 43° vertical

3.4 Microsoft Kinect Devices

Microsoft’s range of Kinect sensors have been extensively used in robotics, starting with the orig-

inal Kinect for Xbox 360, for example in [37], [38], [39] and [40].

The characteristics of the Kinect for Xbox 360 are listed in Table 3.1.

The Kinect for Windows has similar components, but is designed to connect directly to com-

puters running Microsoft Windows and features color images 1280× 960 pixels [41] and depth

images up to 640×480 @ 30 fps [42] with a depth range of 0.8 m to 4 m [43].

Figure 3.3: Kinect for Windows components [41]

The more recent Kinect for Xbox One can be connect to a computer with an extra adapter

(with a total estimated retail price of C200, in Portugal) [44] and has improved featuresas listed in

Table 3.2 and components in Fig. 3.4.

3.4.1 Linux/ROS Drivers

Microsoft offers an Software Development Kit (SDK) for Kinect [47] along with drivers for Mi-

crosoft windows. Research interest in this range of devices has led to the availability of several

open source drivers for different platforms, including Linux, which is of particular interest for this

project, as ROS runs on Linux operating systems.
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Table 3.2: Kinect for Xbox One characteristics [45]

RGB camera 1080p at 30 Hz (15 Hz in low light)
Depth sensor 512×424 resolution at 30 Hz
IR sensor Active sensor; 512×424 images at 30 Hz
Angular field of view 70°×60°

Figure 3.4: Kinect for Windows v2 components [46]

The drivers used in this project are part of libfreenect.[48]

3.4.2 Similar Devices

These devices are particularly interesting due to their market availability and the research in-

terest and they have received, as the first affordable off-the-shelf Red, Green and Blue, and

Depth (RGB-D) sensors.

There are other options, as this market diversifies, including:

• ASUS Xtion PRO LIVE [49] with similar specifications, compared to the Kinect for Xbox

360 and a smaller size and lower power consumption [50].

• The Structure depth sensor [51], developed for use with iOS devices, but compatible with

other platforms. [52]

3.5 Qualisys Oqus Motion Capture System

Validation of results requires a trajectory ground truth. In this case that would be some tracking

system with 6 Degrees of Freedom (DoF) capabilities, independently of the particular technology.
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One possible system is that in use in the LABIOMEP - Porto Biomechanics Laboratory [53]

that uses Qualisys Oqus [54] cameras for tracking in human biomechanics. These cameras track

4 mm or 19 mm spherical IR markers (for capturing distances of 9 m or 25 m respectively). Qual-

isys systems are often used in human tracking.[55] Six DoF tracking capability is achieved by

connecting several cameras to a PC and using several markers per target link. Measurement pre-

cision is not available, but is estimated to be within 1 mm and 0.1°.

This system was used to produce the ground truth for the data sets discussed in Chapter 6.

Multiple cameras are placed around and above the working area, as seen in Fig. 3.5.

Figure 3.5: Qualisys Oqus Motion Capture System in use at LABOMEP (Qualisys Oqus cameras
highlighted in red and Kinect for Xbox 360 devices in blue)

3.6 Conclusion

A set of relevant software and hardware has been identified, for both development and deployment

use, including a flexible robotics middleware platform and RGB-D library and devices.

The system was developed with and will use ROS and PCL. The hardware used in devel-

opment was the Microsoft Kinect for Xbox 360 sensor and Microsoft Kinect for Xbox One is

recommended for deployment.



Chapter 4

Proposed Solution

4.1 Introduction

This tracking solution aims to be scalable, versatile and economical. To that end it is based on:

• Robot Operating System (ROS) — allows the end-user to connect several senors and com-

puters;

• Microsoft Kinect for Windows — low-cost Red, Green and Blue, and Depth (RGB-D) sen-

sors.

This system tracks objects based on their natural geometry without artificial markers.

It provides external localization functionality with one or more sensors.

It was designed around the Microsoft Kinect for Windows sensor, which publishes pointcloud2

messages in ROS through the Freenect driver. It can use any sensor that can publish the same data,

including time-of-flight laser depth sensors and other RGB-D or depth sensors.

The pointcloud2 message includes, essentially, a point cloud comprised of the points vis-

ible to the sensor with their XYZ coordinates and Red, Green and Blue color (RGB) color. The

RGB data is discarded, at this point in development, in favor of an XYZ point based approach.

The ROS package six_dof_tracker includes the following nodes:

• tracking — single-sensor tracking;

• fusing — data-fusion from several single-sensor tracking nodes;

• localization — tracking based self-localization for small rotations or translation of a

sensor;

• mapping — stationary mapping for self-localization;

• testing — testing for the tracking node.

23
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4.2 Prerequisites

Some necessary information and services are assumed to be available to the tracking system. At

the same time, some decisions are left to the final user.

4.2.1 Sensor Localization

The system’s sensors’ poses must be known in reference to the global frame world, as the track-

ing target’s pose is referenced to this frame. The method by which this information is made

obtained is outside the scope of this system, but it should be made available to tf (see: Sec-

tion 3.2.3).

A mapping and a localization node are provided for testing purposes and to allow

for the correction of a sensor’s pose when moved from a known location by a small rotation or

translations (single digits in degrees of rotation or centimeters of translation).

The user can go as far as to manually publish a transformation between or can use one of many

widely available ROS mapping and self-localization packages.

4.2.2 Communication

Communication between the sensors, tracking nodes and data-fusion node is handled transpar-

ently through ROS services and may include transitions between different computers. This will

depend on a local network whose bandwidth can support the necessary messages. For reference, a

Microsoft Kinect for Windows point cloud with resolution 640×480 and color for each point en-

coded in 8 floats takes up 9.3Mb and is captured at 30 Hertz, resulting in a bandwidth of 279MB/s.

These considerations must be taken for other types of sensors.

4.2.3 Physical Setup

The advantages of having a multiple sensor tracking system are twofold: For one, occlusions

effectively disappear when different sensors have their own views of the target, so that even if the

target is occluded for one sensor it will be in full view for the global system. On the other hand,

the effective tracking area can be transparently increased by adding new sensors.

It is up to the end-user to balance these advantages. Fig. 4.1 demonstrates this duality.

4.3 Tracking

The tracking node uses Fast Point Feature Histograms (FPFH) descriptors and Sample Con-

sensus Initial Alignment (SAC-IA) registration to determine an initial pose and Iterative Closest

Point (ICP) registration to track the target. Algorithm 1 summarizes this node’s work flow.
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Figure 4.1: Proposed physical setup alternatives — Multiple views of target (left) and greater
tracking area (right)

4.3.1 Point Cloud Preprocessing

Real world sensors are subject to noise to varying degrees and return large datasets that must be

filtered to become manageable in a real-time system.

For each new point cloud, a pass-through filter removes points whose depth is beyond the

sensor’s effective working range. In the case of the Microsoft Kinect for Windows the working

range is 0.4 m to 4 m.

A statistical out-lier removal filter removes points that are further from their neighbors than a

set multiple of the standard deviation of pairwise distances.

A voxel grid filter collapses points within small voxels whose size is compatible with the

senor’s actual resolution.

Finally, the point cloud is transformed into the global frame so that further processing uses

global frame coordinates.

Examples of this preprocessing routine are shown in Chapter 5. The example of Fig. 4.2 is of

particular note, as it shows the result of filtering and under-sampling by voxel grid a noisy point

cloud.

4.3.2 Initial Pose Estimation

Upon starting or having lost track of the target, the tracking node will initiate initial pose

estimation. The objective of this process is to obtain an approximate transform for the target in the

scene that will lie within convergence range for the continuous tracking algorithm.

This step uses the whole scene point cloud, as the target’s position is completely unknown and

no assumptions are made about it, other that it should be visible at this point.

This process relies on FPFH and SAC-IA, as described in Section 2.3.6.
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Algorithm 1 Single-sensor tracker

Input: M (target model point cloud), C′ (captured point cloud), Tcw (camera to world transform),
t (maximum error threshold)

Output: T (new target pose transform), e (registration error) Cc (cropped point cloud)
1: function PROCESS(M,C′,Tcw)
2: C← PREPROCESS(C′,Tcw) . Algorithm 2
3: if trackerinitialized = false then
4: T,e← FIND(M,C) . Algorithm 3 — get initial estimate
5: else
6: T,e← TRACK(M,C,T ′) . Algorithm 4 — continuous tracking
7: end if
8: if e > t then
9: trackerinitialized← false . Lost target and should reinitialize

10: return
11: else
12: Cc← CROP(M,C,T ) . Algorithm 5
13: end if
14: return T,e,Cc

15: end function

FPFH descriptors depend on surface normals, so these are estimated for the whole scene and

for the target model (target model normals are estimated on node startup upon loading the respec-

tive point cloud).

The target model is aligned to the scene using SAC-IA which returns the approximate initial

pose and the alignment error. If the alignment error is greater than a threshold, the target has not

been found and the tracker is reinitialized.

4.3.3 Continuous Tracking

The tracker assumes proximity as a constraint on motion. This means the displacement from frame

i−1 to frame i is assumed to be smaller than a predetermined distance: |xi− xi−1|< d.

As long as this assumption holds, using the latest pose as an initial estimate for ICP registration

will yield good results in few iterations.

Algorithm 2 Preprocess point cloud

Input: C′ (unprocessed point cloud), Tcw (camera to world transform)
Output: C (preprocessed point cloud)

1: function PREPROCESS(C)
2: Ctemp← PASSTHROUGHFILTER(C′,min,max,z) . Applied over the z axis
3: Ctemp← STATISTICALOUTLIERFILTER(Ctemp,k,a) . Number of neighbors and multiple

of std
4: Ctemp← VOXELGRIDFILTER(Ctemp, lea f size)
5: C← TRANSFORM(Ctemp,Tcq) . Transforms to global frame
6: return C′

7: end function
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Figure 4.2: Captured point cloud (white) and preprocessed point cloud (blue)

This assumption has a useful corollary: points that are very far from the latest pose will not

be part of the target. With this consideration in mind, each new point cloud is cropped around the

target’s location. The crop box is translated and rotated to match the latest pose and is enlarged,

compared to the target model, to account for the object’s movement between frames. This Region

of Interest (ROI) is demonstrated in Fig. 4.3.

This cropped point cloud is used in ICP registration, instead of the full scene, to improve

performance, by reducing the number of points in the cloud. It is also published for use by a data

fusion node.

At any point during tracking, if the registration score is worse than a threshold, the target is

considered lost and a new initialization is required. This can be avoided with the use of multiple

sensors, whereupon an individual tracker will be able to use the global tracking result for the next

iteration.

Algorithm 3 Estimate initial pose

Input: M (target model point cloud), C (captured point cloud)
Output: T (target pose transform), e (registration error)

1: function FIND(M,C)
2: C← PREPROCESS(C) . Algorithm 2
3: NT ← COMPUTENORMALS(T )
4: NC← COMPUTENORMALS(C)
5: FT ← COMPUTEFPFH(T,NT )
6: FC← COMPUTEFPFH(C,NC)
7: T,e← SAC-IA(T,C,FT ,FC)
8: return T,e
9: end function
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Figure 4.3: ROI from frame t−1 (left) and target within ROI on frame t (right)

4.4 Data Fusion

The work flow of the fusing data fusion node is described in Algorithm 6. This node takes the

local results from single-sensor tracking nodes, merges their partial views and returns a higher

quality tracking result.

4.4.1 Data Flow

Taking advantage of the publisher/subscriber paradigm offered by ROS, any number of single-

sensor local trackers can broadcast their pose estimates and have access to the latest global esti-

mate.

The obvious advantage of data fusion is having a higher quality global result, as the fusion

tracker has access to more information, be that different views of the target or a wider operating

range. The less obvious, but equally important advantage is that local trackers can use the latest

global pose as an estimate for the next iteration.

Not only does this allow for faster loss recovery, as a local node will not have to reinitialize,

but will instead use global information, it also means non-deterministic tracking methods can be

used, without burdening individual single-sensor trackers. The global tracker can, for example,

use an Extended Kalman Filter (EKF) and provide the filter’s prediction as an estimate.

This multi-directional information flow is displayed by the sequence diagram in Fig. 4.4. Note

that all messages are published, but only subscribed messages are represented, for simplicity and

readability.

The first node, Tracker 1, estimates the target’s initial pose and publishes it, along with the

registration error and cropped point cloud. The global tracker subscribes to these and performs its

Algorithm 4 Track target

Input: M (target model point cloud), C (captured point cloud), T ′ (latest target pose transform)
Output: T (new target pose transform), e (registration error)

1: function TRACK(M,C,T )
2: Cc← CROP(M,C,T ) . Algorithm 5
3: T,e← ICP(M,Cc,T ′) . Uses last pose as initial estimate
4: return T,e
5: end function
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Algorithm 5 Crop point cloud

Input: M (target model point cloud), C (captured point cloud), T (target pose transform)
Output: Cc (cropped point cloud)

1: function CROP(M,C,T )
2: minpoint,maxpoint←MINMAX3D(M) . Get bounding box corners
3: Cc← CROPBOXFILTER(C,minpoint+d,maxpoint+d,T ) . Crop around target with

orientation leaving extra space
4: return Cc

5: end function

own tracking iteration, after which it publishes a global pose and error, as well the merged point

cloud, to which other ROS nodes would subscribe.

The single-sensor tracker also subscribes to the global pose and error, but these will only truly

come into play once Tracker 2 is started. Instead of initializing by estimating an initial pose,

it will subscribe to the global data and work from there. From this time, the tracking system

continuously shares its results, so that the global results are refined by having access to extra

views and quantitative data and the local trackers don’t lose the target and perform better, based

on a quality previous pose.

4.4.2 Off-line Fusion

As mentioned in Section 3.2.4, ROS offers data logging tools that can, upon playback, emulate

nodes’ communication over their published topics.

When operating independently, the output from single-sensor trackers can be recorded and

later played back for off-line data-fusion.

4.5 Output

The tracking problem’s output can be expressed in the form of a homogeneous transformation

matrix that includes information on rotation and translation:

Algorithm 6 Data fusion tracker

Input: M (target model point cloud), Cc (cropped point clouds), t (maximum error threshold), T ′

(target pose transforms), e′ (registration errors)
Output: T (new target pose transform), e (registration error) Cm (merged point cloud)

1: function PROCESS(M,Cc,T ′)
2: for n← 1, nsensors do
3: Cm←Cm +Cc [n] . Merge point clouds
4: end for
5: Tbest← T ′

[
e′best

]
6: T,e← TRACK(M,Cm,T ′

[
e′best

]
) . Algorithm 4 — continuous tracking

7: return T,e,Cm

8: end function
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Figure 4.4: Data fusion sequence diagram

Translation vector:

d =
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y

z

 . (4.1)

Rotation matrix:

R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (4.2)

Combined into the homogeneous transformation matrix:

T =

[
R d

0 1

]
(4.3)

This is the output of Point Cloud Library (PCL) registration methods.

Rotation can be represented by matrix R and by quaternion q:

q =
〈

x y z w
〉

(4.4)

ROS provides transparent conversions between R and q.

This information is transmitted in ROS encapsulated into a geometry_msgs/TransformStamped

message which includes:

• A time stamp;

• The name of the parent frame;

• The name of the child frame;
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Table 4.1: Proposed tracker cost estimate

Component Cost (C)
General purpose computer 650

Microsoft Kinect for Xbox One 200
Network switch 20

Total (2 sensors; 2 computers) 1720
Total (3 sensors; 3 computers) 2570

• The translation vector;

• The rotation quaternion.

This is particularly useful, because it includes the tracked object in the system’s tf2 transform

tree (see Section 3.2.3).

Along with this information, a confidence rating is also useful. Registration algorithms also

return this in the form of the internal error metric for the last iteration. This is transmitted along

with the target’s frame name as a float64. This should be further refined into a covariance

matrix.

4.6 Cost Analysis

The proposed tracker is financially competitive, as it uses off the shelf hardware. Commercial

RGB-D sensor solutions, such as the proposed Kinect for Xbox 360, are more and more cost

effective and have adequate characteristics. Other hardware requirements are limited to general

purpose computers and basic networking hardware.

A Microsoft Kinect for Xbox One with a PC adapter has a total estimated retail price of C200,

in Portugal (or 200 USD, in the United States) [44].

The hardware specifications for this device are: [56]

• "64-bit (x64) processor"

• "Physical dual-core 3.1 GHz (2 logical cores per physical) or faster processor"

• "USB 3.0 controller dedicated to the Kinect for Windows v2 sensor or the Kinect Adapter

for Windows for use with the Kinect for Xbox One sensor"

• "4 GB of RAM"

• "Graphics card that supports DirectX 11"

A market survey of 2015 prices leads to an estimate of C650 for a desktop computer with

these characteristics. A networking switch can cost as little as C20.

Cost estimates for different configurations are listed in Table 4.1.
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Table 4.2: Summary of tracker design considerations

Design consideration Decision
Object representation Shape-based: point cloud

Feature selection FPFH; point cloud
Object detection FPFH, SAC-IA

Joint detection and tracking Yes
Tracking method Deterministic; ICP

Tracking assumptions Maximum velocity
Loss recovery; occlusion handling Reinitialization; data fusion

For comparison, the tracking system used in data collection, discussed in Chapter 6 has an

approximate cost of 150000C. This system offers better precision than the proposed solution, but

its price is two orders of magnitude greater than what would be expected for the proposed system

and it depends on Infrared (IR) markers.

4.7 Conclusion

Revisiting the tracker design decisions outlined in Section 2.2, the proposed tracker is summarized

by Table 4.2.



Chapter 5

Development and Evaluation

5.1 Introduction

This chapter chronologically details development efforts in various areas, examining avenues of

development that were eventually not followed and providing greater insight into design decisions.

Development logs are available on the project’s website (http://paginas.fe.up.pt/

~ee10192/).

5.2 Familiarization with Kinect, PCL and ROS

The first weeks of development brought a greater practical understanding of Robot Operating Sys-

tem (ROS), Point Cloud Library (PCL) and the Microsoft Kinect for Windows sensor. There is a

great wealth of information and resources for each ranging from software and hardware documen-

tation [34, 41, 57] to research papers [37, 38, 39, 40] and hobbyist tutorials.

5.3 Mapping and Self-Localization

As stated in Section 4.2, tracking a target in the global frame requires sensors’ locations. These,

in turn, can be acquired through map-based self-localization.

Initial mapping efforts consisted of simply taking one point cloud, filtering it (as described

in Section 4.3.1) and saving it as a map. Self-localization was performed with Iterative Closest

Point (ICP) registration.

This approach is computationally inexpensive and produces good results for small translations

and rotations around the initial pose (few centimeters and degrees).

It should be noted that large translations and rotations (on the order of 0.5 m and 45°) result in

ICP registration falling into local minima and unreasonable output poses.

In an effort to improve the performance of the self-localization node, ICP was replaced by

Generalized ICP [58]. This extension to the original algorithm combines ICP with point-to-point

variants into a probabilistic framework and promises more robustness. In testing, this proved
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decidedly more robust, but much more resource intensive. The decision was made to use standard

ICP and limit the range of the localization node.

5.4 Target Detection With Background Subtraction

Initially, target detection was to be focused on background subtraction. This would build upon

mapping and self-localization.

Upon acquiring and preprocessing a point cloud, it would de added to an octree, along with

the map, and points not present in the map (outliers) would be identified as in [59].

Intermediate results for this process are show in Fig. 5.1. The box in the center, on the floor,

was correctly segmented, but many other points were incorrectly identified as outliers.

Figure 5.1: Map (left) and captured point cloud and outliers (right) in background subtraction

Foreground points were segmented into different objects through Euclidean clustering as de-

scribed in [60].

Figure 5.2: Map (left) and captured point cloud and out-lier clusters (right) in background sub-
traction

The box in green in Fig. 5.2 was correctly segmented, but, once again, large elements that are

clearly part of the map were also clustered as target candidates.
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5.5 Initial Pose Estimate With ICP

The initial approach to initial pose estimate took the previously obtained out-lier clusters and

registered each one to the target model with ICP and select the cluster with the best registration

score as the target and use its transformation matrix as the initial pose estimate.

This algorithm carries several problems. First, as already discussed, ICP has a tendency to fall

into local minima, resulting in incorrect poses - in fact, it is not at all suited for initial estimates,

but can specifically depend upon a quality estimate. Second, an arbitrary cluster could match the

target better than the correct one, due to the less than ideal segmentation results.

These issues lead to abandoning background subtraction and ICP as an initial estimate option.

5.6 Using Multiple Sensors

As suggested in Chapter 4, this tracker has the option of using more than one sensor for the same

area.

Capturing and merging data from two Kinect sensors was successful in [61], specifically

demonstrated in [62]. Proper merging of point clouds requires the relative pose of the sensors

[62], which is available if the prerequisites discussed in Section 4.2 are met.

Testing in the laboratory brought satisfactory results, as shown in Fig. 5.3. The inconsistencies

in color are a result of using software instead of hardware color registration, as color data is not

essential to the tracker, at this point, and is only displayed for human readability.

Figure 5.3: Point clouds from two Kinect sensors simultaneously pointing at chair

5.7 Tracking

Testing of continuous tracking assumed a known initial pose and used the testing node. Fig. 5.4

shows the simulated target point cloud along with the visualizations of the target (tracking

result) and actual_target (simulated) transforms.
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Figure 5.4: Tracking test — point cloud and transforms

While performing a translation at 0.01 ms−1 along the y axis, the tracking error was within

the objectives defined in Section 1.5, as demonstrated by the graphics in Fig. 5.5. The target was

stationary until t = 20 and then started its motion.

Figure 5.5: Tracking error during translation

While performing a rotation at 1.5×10−2 rads−1 over the z axis, the tracking error was within

the objectives defined in Section 1.5, as demonstrated by the graphics in Fig. 5.6.

Combining both translation and rotation, the target is quickly lost as demonstrated by the

graphics in Fig. 5.7, showing increasing error in the y axis and in yaw — the tested variables.

The target is lost, because the large difference in transformation between one frame and the

next requires more ICP iterations, slowing down the process to the point where the assumption

of proximity between tracking iterations no longer holds. Higher performing hardware and data

fusion would mitigate this issue.
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Figure 5.6: Tracking error during rotation

5.8 Tracking Simulations

5.8.1 Target

The target is a prism whose base is a right triangle that is not isosceles. The target mesh and point

clouds are represented in Fig. 5.8. This solid was selected, because it is geometrically simple and

its orientation is unambiguous to an observer.

The target’s dimensions are 0.75×0.45×0.25 m.

5.8.2 Simulation Environment

These simulations were conducted in a Xubuntu 14.04 system with a 2016 Intel Pentium 4 pro-

cessor and 3 GB of RAM.

This configuration does not take advantage of a dedicated Graphics Processing Unit (GPU).

Using a GPU would improve performance, as PCL offers GPU optimized algorithms, particularly

for NVIDIA’s CUDA Application Programming Interface (API). [63]

Figure 5.7: Tracking error during translation and rotation
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Figure 5.8: Simulation target mesh (left) and point cloud (right)

5.8.3 Simulation Procedure

Using the testing node, the target point cloud was published as a pointcloud2 message

referenced to /camera_depth_optical_frame, as would be expected from a Kinect sensor.

As suggested in Section 4.2.1, a transformation was manually published from the world frame

to the simulated camera frame, thereby providing the pose of the sensor. The target’s original pose

was provided to the initial pose estimation routine (bypassing Algorithm 3).

The error in pose is the difference between calculated and actual pose. This is obtained by

querying tf2 for the transform from target to actual_target.

For the following tests, the target was stationary, translated along the y, rotated in yaw (around

the z axis) and finally simultaneously translated and rotated.

These tests were replicated in 4 sets of increasingly more challenging circumstances:

1. No noise and no occlusions (Section 5.9);

2. Random noise and no occlusions (Section 5.10);

3. Random noise and 25% occlusion (Section 5.11);

4. Random noise and 75% occlusion (Section 5.12).

5.9 Simulation 1 — No Noise and No Occlusion

5.9.1 Stationary Target

In this simulation the target remained stationary in the initial pose that was available to the tracker.

All points of the published cropped cloud match the simulated target clod, as shown in Fig. 5.9.

The intuitive expectation would be that the error would be null, as the system starts with perfect

knowledge and is not disturbed, however, as shown in Fig. 5.10, this is not the case.

Due to the preprocessing described in Section 4.3.1, the tracked cloud is not the same as the

captured cloud: it is filtered and under-sampled to improve performance and increase robustness

to sensor noise. As a result of this, the pose error quickly stabilizes in a small value, within the

defined limits for the system.
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Figure 5.9: Simulation 1 — Simulated target (white) and cropped point cloud (blue) while station-
ary

5.9.2 Translation

For this simulation, the target moved along the y axis at a velocity of 0.01 ms−1.

By introducing motion two new sources of errors arise: lag (the target’s position is not known

at time t, but only at t+tupdate) and the possibility of the assumptions made in tracking not holding.

As introduced in Section 4.3.3, it is assumed that the displacement of the target between frames is

small. If the pose update is too long, this will no longer old.

As lag comes into play, the published cropped point cloud does not match the target’s current

position, as displayed in Fig. 5.11.

In this case, the errors stabilize at higher values, but continuous tracking is maintained and

results are satisfactory.

Figure 5.10: Simulation 1 — Tracking error with stationary target
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Figure 5.11: Simulation 1 — Simulated target (white) and cropped point cloud (blue) during
translation

5.9.3 Rotation

For this simulation, the target rotates around the z axis (yaw) at an angular velocity of 1.5×10−2 rads−1.

This scenario focuses more directly on the system’s interest in 6 Degrees of Freedom (DoF)

pose.A simulation visualization is shown on Fig. 5.13, where the published cropped cloud almost

completely matches the simulated target.

As shown in the graphs of Fig. 5.14, error on yaw is well bounded, but have a greater variance

than pitch and roll. Translation error on the z axis is small and constant, but on x and y it is

sinusoidal.

Causes of this behavior include numerical errors, incorrect interpolations in the tf2 query

and point cloud preprocessing (see Section 4.3.1). The voxel grid leaf size is 2×10−2 m.

Figure 5.12: Simulation 1 — Tracking error during translation
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Figure 5.13: Simulation 1 — Simulated target (white) and cropped point cloud (blue) during
rotation

5.9.4 Rotation With Smaller Voxel Grid

Using a voxel grid leaf size of 10−2 m as shown in Fig. 5.15 with error in the graphs of Fig. 5.16

and in Table 5.4.

This shows that the error in orientation is reduced, but the error in translation shows only a

slight reduction. This leads to the conclusion that the major causes of this error are numerical

errors and lag between tf2 data.

5.9.5 Translation and Rotation

For this simulation, the target moves along the y axis at a velocity of 0.01 ms−1 and rotates around

the z axis (yaw) at an angular velocity of 1.5×10−2 rads−1.

Figure 5.14: Simulation 1 — Tracking error during rotation
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Figure 5.15: Simulation 1 — Simulated target (white) and cropped point cloud (blue) during
rotation

In this case the difference in pose from one frame to the next is greater and requires more ICP

iterations. This lower the update rate, which can eventually result in a lost target.

While the pose in a frame is computed, the object moves away from the previous position,

causing a greater computational cost for the next frame and further lowering the update rate. As

the lag increases, the target moves out of the neighborhood of its last know position, leaving the

cropped point cloud, which results in unsuccessful registration.

This process of failure is demonstrated in Fig. 5.17, where, on the left, a significant error in

localization is visible and, on the right, the target has been lost and is leaving the area of the

cropped point cloud.

As is evident in the graphs of Fig. 5.18, the target was lost. In fact, at t = 17, the tracker is

reinitialized with the initial pose, due to a very high registration error, and there is a sharp increase

in error, as the object is no longer being tracked.
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Figure 5.16: Simulation 1 — Tracking error during rotation (with smaller voxel grid)
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Figure 5.17: Simulation 1 — Simulated target (white) and cropped point cloud (blue) during
translation and rotation

Figure 5.18: Simulation 1 — Tracking error during translation and rotation
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Table 5.1: Simulation 1 — Errors while stationary

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0050 0.0180 0.0200 0.0087 0.0020 0 0.0120
RMS 0.0049 0.0177 0.0198 0.0085 0.0011 0 0.0071

Table 5.2: Simulation 1 — Errors during translation

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0070 0.0320 0.0200 0.0121 0.0070 0.0030 0.0170
RMS 0.0059 0.0267 0.0190 0.0102 0.0048 0.0018 0.0083

Table 5.3: Simulation 1 — Errors during rotation

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0220 0.0230 0.0200 0.0381 0.0090 0.0040 0.0210
RMS 0.0140 0.0144 0.0194 0.0243 0.0046 0.0016 0.0103

Table 5.4: Simulation 1 — Errors during rotation

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0200 0.0200 0.0200 0.0346 0.0020 1.00×10−3 0.0090
RMS 0.0140 0.0143 0.0200 0.0243 4.9×10−4 1.4×10−4 0.0019

Table 5.5: Simulation 1 — Errors during translation and rotation

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0150 0.0890 0.0200 0.0260 0.0390 0.0020 0.2160
RMS 0.0101 0.0101 0.0184 0.0175 0.0202 0.0013 0.1241

5.10 Simulation 2 — Noise and No Occlusion

Identical simulations were carried out, after introducing random noise in simulated points. Each

point was affected by random noise in its x, y and z coordinates, up to 1×10−2 m. The aim of

these simulations is to evaluate the tracker’s robustness to noise levels that would be expected of

current Red, Green and Blue, and Depth (RGB-D) sensors.

5.10.1 Stationary Target

Tracking performance with a stationary target is comparable to the previous case. The visual

effect of noise is shown in Fig. 5.19 and error results are shown in the graphs of Fig. 5.20 and in
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Table 5.6.

Figure 5.19: Simulation 2 — Simulated target with noise (white) and cropped point cloud (blue)
while stationary
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Figure 5.20: Simulation 2 — Tracking error with stationary target

5.10.2 Translation

During translation the tracker lags further behind the target, as is notable in Fig. 5.21. Error values

increase, approaching the set limits, as shown in Fig. 5.22 and Table 5.7.

5.10.3 Rotation

Once again, performance in rotation is comparable to the original simulation without incorporating

noise. The results are visualized in Fig. 5.23. Error values are well within defined limits as shown

in the graphs of Fig. 5.24 and in Table 5.8.
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Figure 5.21: Simulation 2 — Simulated target with noise (white) and cropped point cloud (blue)
during translation

5.10.4 Translation and Rotation

As was the case without noise, the target is quickly lost, this time after 14 s. the phenomenon of

the target leaving the previous frame’s neighborhood is clearly visible in Fig. 5.25.

Error values in the graphs of Fig. 5.26 and Table 5.9 are larger than in the previous simulation

and show that the target was lost 3 s sooner. This is a result of compounding the increased tracking

error as seen in the translation with noise simulation with the adverse results of lag in this dynamic

situation.
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Figure 5.22: Simulation 2 — Tracking error during translation
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Figure 5.23: Simulation 2 — Simulated target with noise (white) and cropped point cloud (blue)
during rotation
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Figure 5.24: Simulation 2 — Tracking error during rotation

Figure 5.25: Simulation 2 — Simulated target with noise (white) and cropped point cloud (blue)
during translation and rotation
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Figure 5.26: Simulation 2 — Tracking error during translation and rotation
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Table 5.6: Simulation 2 — Errors while stationary (with noise)

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0020 0.0260 0.0250 0.0035 0.0030 0.0020 0.0110
RMS 9.5×10−4 0.0247 0.0237 0.0016 9.4×10−4 8.7×10−4 0.0026

Table 5.7: Simulation 2 — Errors during translation (with noise)

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0030 0.0420 0.0250 0.0052 0.0050 0.0020 0.0250
RMS 0.0017 0.0365 0.0238 0.0029 0.0027 6.7×10−4 0.0175

Table 5.8: Simulation 2 — Errors during rotation (with noise)

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0270 0.0270 0.0250 0.0468 0.0060 0.0030 0.0230
RMS 0.0178 0.0179 0.0242 0.0309 0.0020 9.1×10−4 0.0104

Table 5.9: Simulation 2 — Errors during translation and rotation (with noise)

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0100 0.0880 0.0240 0.0173 0.0300 0.0030 0.1910
RMS 0.0064 0.0602 0.0231 0.0111 0.0180 0.0011 0.1080

5.11 Simulation 3 — Noise and 25% Occlusion

To evaluate the tracker’s robustness when faced with occlusions, the simulated sensor was moved

away from the target’s initial pose so that the pass-through filter would discard a portion of its

points. The sensor was placed 3.75 m away from the target’s center, while the pass-through filter

was set to discard points further than 3.9 m. This leaves up to ¼ of the object’s volume occluded.

During these simulations, it quickly became apparent that the t (maximum error threshold)

parameter (used in Algorithm 1) would have to be increased, compared to previous simulations.

This parameter is used to internally determine whether continuous ICP tracking is successful or the

tracker has lost its target. Increasing it allows the system to maintain confidence in its performance

and continue to follow the object in this challenging situation. This comes with the trade-off of

not reinitializing, when a succession of incorrect estimations occurs.

5.11.1 Stationary Target

Tracking performance with a stationary target is comparable to the previous case, despite a greater

variance in rotation error. The visual effect of noise combined with occlusion is shown in Fig. 5.27
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and error results are shown in the graphs of Fig. 5.28 and in Table 5.10.

Figure 5.27: Simulation 3 — Simulated target with noise and occlusion (white) and cropped point
cloud (blue) while stationary
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Figure 5.28: Simulation 3 — Tracking error with stationary target

5.11.2 Translation

The effect of noise and occlusion is shown in Fig. 5.29. The error value on y increases, approaching

the set limits, as shown in Fig. 5.30 and Table 5.11. This would be expected as this is the direction

of translation of the target.

5.11.3 Rotation

Results in rotation are similar to the previous case. The simulation is visualized in Fig. 5.31. Error

values are well within defined limits as shown in the graphs of Fig. 5.32 and in Table 5.12.
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Figure 5.29: Simulation 3 — Simulated target with noise and occlusion (white) and cropped point
cloud (blue) during translation

5.11.4 Translation and Rotation

As a result of increasing the tracker’s internal confidence threshold, the target is not actually lost

as shown in Fig. 5.33.

In this case, relevant error values in the graphs of Fig. 5.34 increase over time, as the tracker

maintains confidence in its pose estimates, but does not accomplish effective tracking. This results

in the error higher values of Table 5.13.
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Figure 5.30: Simulation 3 — Tracking error during translation
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Figure 5.31: Simulation 3 — Simulated target with noise and occlusion (white) and cropped point
cloud (blue) during rotation

0 50 100 150 200 250 300 350 400 450
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time (s)

E
rr

or
 (

m
)

Error on translation over time

 

 

x
y
z

0 50 100 150 200 250 300 350 400 450
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Time (s)

E
rr

or
 (

ra
d)

Error on rotation over time

 

 

Roll
Pitch
Yaw

Figure 5.32: Simulation 3 — Tracking error during rotation

Figure 5.33: Simulation 3 — Simulated target with noise and occlusion (white) and cropped point
cloud (blue) during translation and rotation
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Figure 5.34: Simulation 3 — Tracking error during translation and rotation
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Table 5.10: Simulation 3 — Errors while stationary (with noise and occlusion)

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 1.0×10−3 0.0250 0.0250 0.0017 0.0020 0.0030 0.0060
RMS 8.6×10−4 0.0242 0.0243 0.0015 9.7×10−4 0.0015 0.0021

Table 5.11: Simulation 3 — Errors during translation (with noise and occlusion)

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0020 0.0350 0.0250 0.0035 0.0030 0.0030 0.0050
RMS 0.0017 0.0317 0.0241 0.0029 0.0013 0.0015 0.0021

Table 5.12: Simulation 3 — Errors during rotation (with noise and occlusion)

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0270 0.0260 0.0250 0.0468 0.0050 0.0030 0.0260
RMS 0.0180 0.0175 0.0244 0.0312 0.0023 0.0010 0.0113

Table 5.13: Simulation 3 — Errors during translation and rotation (with noise and occlusion)

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0380 0.0340 0.0250 0.0658 0.0090 0.0020 0.0430
RMS 0.0224 0.0273 0.0233 0.0389 0.0044 0.0012 0.023

5.12 Simulation 4 — Noise and 75% Occlusion

Further occlusion was simulated by placing the sensor 4 m away from the target’s center, while the

pass-through filter was set to discard points further than 3.9 m. This leaves up to ¾ of the object’s

volume occluded.

5.12.1 Stationary Target

Tracking performance with a stationary target is comparable to the previous case. The visual effect

of noise and greater occlusion is shown in Fig. 5.35 and error results are shown in the graphs of

Fig. 5.36 and in Table 5.14.

5.12.2 Translation

The effect of noise and occlusion is shown in Fig. 5.37. The error values are as shown in Fig. 5.38

and Table 5.11.
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Figure 5.35: Simulation 4 — Simulated target with noise and occlusion (white) and cropped point
cloud (blue) while stationary

5.12.3 Rotation

In this case, the target is lost, after 126 s. As shown in Fig. 5.39, the number of visible points is

greatly reduced during rotation, resulting in tracking failure.

ICP registration is most sensitive to incorrect initial estimates in rotation. Additionally, in this

simulation there are fewer visible points, leading to an increase in ICP internal error, calculated as

the sum of Euclidean squared errors. As this error increases beyond a set parameter, the target is

considered lost to avoid greater errors in tracked poses.

Before this failure, error values are within defined limits as shown in the graphs of Fig. 5.40

and in Table 5.16.
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Figure 5.36: Simulation 4 — Tracking error with stationary target
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Figure 5.37: Simulation 4 — Simulated target with noise and occlusion (white) and cropped point
cloud (blue) during translation

5.12.4 Translation and Rotation

Tracking performance during translation and rotation is similar to the case of rotation and fails in

the same way: too few points are visible for tracking, while the update rate is not high enough.

Results for this test are shown in Fig. 5.41.

In this case, relevant error values in the graphs of Fig. 5.42 and Fig. 5.43 increase over time, as

the tracker maintains confidence in its pose estimates, but does not accomplish effective tracking.

This results in the higher error values of Table 5.17.

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time (s)

E
rr

or
 (

m
)

Error on translation over time

 

 

x
y
z

0 20 40 60 80 100 120
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time (s)

E
rr

or
 (

ra
d)

Error on rotation over time

 

 

Roll
Pitch
Yaw

Figure 5.38: Simulation 4 — Tracking error during translation
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Figure 5.39: Simulation 4 — Simulated target with noise and occlusion (white) and cropped point
cloud (blue) during rotation
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Figure 5.40: Simulation 4 — Tracking error during rotation

Figure 5.41: Simulation 4 — Simulated target with noise and occlusion (white) and cropped point
cloud (blue) during translation and rotation
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Figure 5.42: Simulation 4 — Tracking error during translation and rotation
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Figure 5.43: Simulation 4 — Tracking error during translation and rotation (before target is lost)
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Table 5.14: Simulation 4 — Errors while stationary (with noise and occlusion)

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0020 0.0280 0.0260 0.0035 0.0040 0.0070 0.0090
RMS 0.0010 0.0258 0.0243 0.0018 0.0017 0.0029 0.0046

Table 5.15: Simulation 4 — Errors during translation (with noise and occlusion)

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0020 0.0330 0.0280 0.0035 0.0050 0.0110 0.0120
RMS 0.0014 0.0297 0.0247 0.0025 0.0019 0.0037 0.0047

Table 5.16: Simulation 4 — Errors during rotation (with noise and occlusion)

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0270 0.0260 0.0270 0.0468 0.0160 0.0080 0.0270
RMS 0.0198 0.0155 0.0240 0.0344 0.0048 0.0020 0.0080

Table 5.17: Simulation 4 — Errors during translation and rotation (with noise and occlusion)

Error Translation (m) Rotation (rad)
x y z Euclidean Roll Pitch Yaw

Max 0.0320 0.0300 0.0260 0.0554 0.0150 0.0080 0.0160
RMS 0.0223 0.0170 0.0238 0.0386 0.0049 0.0023 0.0052

Table 5.18: Average tracker update rates (Hz)

Simulation Stationary Translation Rotation Translation and Rotation
1 — No noise 3.7456 2.6143 2.7370 3.1314
1 — Smaller voxel grid — — 3.6500 —
2 — With noise 3.3353 2.6965 2.6100 2.9979
3 — Noise, 25% Occlusion 3.6977 2.7049 3.0167 2.9076
4 — Noise, 75% Occlusion 3.5073 3.0408 3.1109 2.9501

5.13 Conclusion

The project brought many challenges including familiarization with different technologies and

demanding hardware requirements that could not fully be met.

During the development of this project, several approaches were explored, bringing a better

understanding of their advantages and limitations and an appropriate path was established.

Simulation results are satisfactory with error in translation under 5 cm and rotation under 5°.

Tolerable inaccuracies originate in necessary preprocessing and finite numerical precision. This

operation adapts the system to sensor noise and increases the update rate, by reducing the number
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of points that are processed in ICP registration. The system is also shown to be robust to random

sensor noise and partial occlusion.

The perceived point of failure is a low update rate. Average rates for the different simulations

are collected in Table 5.18. These are consistently higher than 2 Hz, but should still be increased.

Further reducing the number of points in registration would have a positive impact in this, but

it would reduce accuracy. Other parameters that affect update rate are ICP internal parameters

such as the maximum number of iterations and minimum estimation error. This problem can be

better approached by using better dedicated hardware, as suggested in Section 4.6 that would take

advantage of GPU optimized algorithms in PCL.



Chapter 6

Data Collection

6.1 Introduction

The Cooperative Robot for Large Spaces Manufacturing (CARLoS) project aims to apply modern

robotics solutions to the automation of stud welding in ship structures, while cooperating with

human operators [64, 65].

Several organizations are involved in this project, including INESC TEC, making the Automated

Guided Vehicle (AGV) robot platform available for data collection for external robot localization.

Figure 6.1: CARLoS AGV [64]

6.2 Localization Requirements

As shown in Fig. 6.1, the AGV is tracked and can traverse irregular terrain, such as ramps or steps.

This possibility requires a localization system in 6 Degrees of Freedom (DoF). It is, therefore, an

example of a system that could gain from the proposed tracker.
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6.3 Collection Environment

Data was collected at LABIOMEP [53] with two Kinect for Xbox 360 devices mounted on tripods

collecting Red, Green and Blue, and Depth (RGB-D) video and a Qualisys Oqus motion capture

system tracking passive Infrared (IR) markers on the robot and on the sensors to provide their

poses.

This set-up is seen on Fig. 6.2. Note the IR markers on both the AGV and the sensors. The

robot moves in the room, including climbing a ramp.

Figure 6.2: Data collection environment at LABIOMEP

The LABIOMEP tracking set-up uses 12 Qualisys Oqus cameras and cost around 150000C.

Some of these cameras are highlighted in Fig. 3.5.

The placement of Kinect devices followed the recommendation of Fig. 4.1 for improved oc-

clusion handling and constructive data fusion.

6.4 Collected Data

The results of the session were:

• Data collected by the CARLoS robot from:

– Structure IO 3D sensor

– Hokuyo URG-04LX front Laser Range Finder

– Hokuyo URG-04LX_UG01 back Laser Range Finder

– SparkFun 9DOF MPU-915 IMU

– CH Robotics UM7 IMU

• RGB-D datasets from each Kinect for Xbox 360 device, while robot moves;

• One dataset from a hand-held Kinect for Xbox 360 for mapping;

• Ground truth using Qualisys motion tracking system with 12 Oqus cameras

– 4 high speed Oqus 310+ cameras with 640×512 resolution @ 1764fps

– 8 high resolution Oqus 400 cameras with 1696×1710 resolution @ 480fps
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6.4.1 Model Point Clouds

A point cloud can be sampled from 3D meshes of the AGV platform, to be used as a target model.

Examples are shown in Fig. 6.3. These meshes are available with the rest of the dataset.

Figure 6.3: Guardian platform mesh (left) and point cloud (right)

6.5 Conclusion

These datasets are available for the CARLoS team for further development and validation of the

self-localization and mapping systems and have been made available for future development in 6

DoF tracking at https://github.com/carlosmccosta/dynamic_robot_localization_

tests.

This dataset shows dynamic movements of a robot in irregular terrain from two different per-

spectives with RGB-D data and ground truth, as well as the sensors’ poses in the global frame,

making it very interesting for future work.

https://github.com/carlosmccosta/dynamic_robot_localization_tests
https://github.com/carlosmccosta/dynamic_robot_localization_tests
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Chapter 7

Conclusion and Future Work

Mobile robots and Automated Guided Vehicles (AGVs) operate in diverse environments and re-

quire adequate localization. The burden of this task can be taken from the robot by using video

tracking for external localization.

Six Degrees of Freedom (DoF) video tracking is a non-trivial problem. There are a number

of significant design decisions that impact performance and accuracy, as well as the range of

application of a tracker. Current efforts attempt to leverage new technology and are often tailored

to specific targets and environments.

A set of relevant software and hardware has been identified, for both development and de-

ployment use, including a flexible robotics middleware platform and Red, Green and Blue, and

Depth (RGB-D) library and devices.

The system was developed with and will use Robot Operating System (ROS) and Point Cloud

Library (PCL). The hardware used in development was the Microsoft Kinect for Xbox 360 sensor

and Microsoft Kinect for Xbox One is recommended for deployment.

The project brought many challenges including familiarization with different technologies and

demanding hardware requirements that could not fully be met.

During the development of this project, several approaches were explored, bringing a better

understanding of their advantages and limitations and an appropriate path was established.

Simulation results are satisfactory and promising for real-word application. The system is also

shown to be robust to random sensor noise and partial occlusion.

The perceived point of failure is a low update rate. This problem can be approached by using

better dedicated hardware, as suggested in Section 4.6 that would take advantage of Graphics

Processing Unit (GPU) optimized algorithms in PCL.

The collected RGB-D datasets with 6 DoF ground truth are available for the Cooperative

Robot for Large Spaces Manufacturing (CARLoS) team for further development and validation of

the self-localization and mapping systems and has been made available for future development in

6 DoF tracking.

This dataset shows dynamic movements of a robot in irregular terrain from two different per-

spectives with RGB-D data and ground truth, as well as the sensors’ poses in the global frame,
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making it very interesting for future work.

The proposed solution is very cost effective (2570C for a set-up with 3 powerful sensors and

computers at 2015 prices), when compared to other systems, as discussed in Section 4.6.

7.1 Fulfillment of Objectives

As proposed, a system was developed for external robot localization in 6 DoF via video tracking.

The system has the following characteristics demonstrated in simulation with random noise:

• Capable of tracking one rigid object or the main rigid body of an articulated object, indoors;

• Capable of tracking in full 6 DoF without assumptions on the target moving on a floor plane;

• Maximum translation error of 5 cm or 5×10−2 m in either axis;

• Maximum rotation error of 5° or 8.7×10−2 rad;

• Minimum update frequency of 2 Hz.

7.2 Contributions

This work introduces a multiple sensor 6 DoF tracking architecture, for external localization, based

on ROS framework using PCL processing and off-the-shelf inexpensive RGB-D sensors.

A 6 DoF tracking dataset with ground truth also results from this work, available at https:

//github.com/carlosmccosta/dynamic_robot_localization_tests.

7.3 Future Work

Future work should take advantage of unexplored features in ROS and PCL, as well as better

hardware.

Interesting directions for future development are:

• Using more powerful hardware including a dedicated GPU and optimized PCL features;

• Explore use of Red, Green and Blue color (RGB) data in initial pose estimation;

• Implement a ROS parameter server for dynamic reconfiguration;

• Design a Graphical User Interface (GUI) that would allow a human operator to provide an

initial pose estimate;

• Conduct real-word evaluation with collected dataset.

https://github.com/carlosmccosta/dynamic_robot_localization_tests
https://github.com/carlosmccosta/dynamic_robot_localization_tests
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