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Resumo 

 A locomoção é uma tarefa de grande importância na vida das pessoas. Mesmo que todos 

os indivíduos saudáveis apresentem uma variabilidade natural nos padrões da marcha, é 

possível definir um padrão aceitável para “marcha normal”. Contudo, algumas patologias 

podem induzir padrões de marcha anormais que podem limitar a vida de uma pessoa, tornando-

a dependente de outros e, consequentemente, reduzindo a sua qualidade de vida.  

O acidente vascular encefálico (AVE) afeta 15 milhões de pessoas em cada ano, das quais 50% 

sofrem alterações da marcha não permanentes, de acordo com a Organização Mundial de 

Saúde. A marcha na sequência de um AVE é uma combinação de várias anomalias que dependem 

do indivíduo, da severidade e da localização do dano e do tempo decorrido após a ocorrência. 

A aplicação de um tratamento adequado nestes pacientes pode melhorar com o conhecimento 

de como a patologia afeta os músculos e os controlos nervosos associados a eles, permitindo 

desenhar soluções específicas e personalizadas a cada paciente. A análise experimental da 

marcha é de grande utilidade na extração de parâmetros de marcha, todavia, apresenta 

algumas fragilidades. Simulações computacionais dinâmicas, por outro lado, têm um grande 

potencial neste tipo de investigação e, combinada com dados experimentais, permitem a 

realização de estudos causa-efeito, sobre como músculos específicos afetam o movimento, por 

exemplo, em indivíduos que tenham sofrido um AVE. 

Neste trabalho, duas simulações computacionais foram desenvolvidas usando o OpenSim, a 

partir de dados cinemáticos e cinéticos obtidos em ensaios de marcha realizados num indivíduo 

saudável e outro na sequência de um AVE. Os dados experimentais foram extraídos de um 

ficheiro com a extensão *.c3d e pré-processados. Cada simulação começou com um modelo 

musculosquelético, que foi adaptado de acordo com a massa e dimensões do individuo 

posteriormente foram determinados os ângulos e momentos nas articulações por cinemática e 

dinâmica inversa; as forças e momentos residuais foram reduzidos e finalmente foi usado o 

“Computed Muscle Control” para determinar a contribuição muscular dos principais flexores 

plantares (soleus e gastrocnémio medial), flexor dorsal (tibial anterior) e um músculo da coxa 



iv 

(semimembranoso). Os ângulos e momentos nas articulações relativos ao indivíduo saudável 

revelaram-se de acordo com a referência. No entanto, os músculos analisados mostraram 

diferenças nos padrões de ativação. Na simulação envolvendo ao indivíduo pós AVE, verificou-

se alguma redução do ângulo e momento no tornozelo do membro afetado, mas a ativação e 

potência dos flexores plantares só foi reduzida no gastrocnémio medial. Por outro lado, 

verificou-se ativação prolongada do semimembranoso durante a fase de apoio do membro 

afetado. 

Os atuadores musculares não foram capazes de gerar a cinemática pretendida sem recorrer a 

forças residuais e de reserva e ainda foi verificado um erro alto no ângulo do tornozelo direito. 
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Abstract 

Locomotion is a task with great importance in the life of a person. Even though every healthy 

individual shows natural variability in gait patterns, it is possible to define an acceptable 

pattern for “normal gait”. However, some pathologies can induce abnormal gait patterns that 

can limit the life of a person, making him/her dependent of others and consequently reducing 

his/hers quality of life. Treatments involving rehabilitation or surgical procedures can revert 

or diminished the impairments in gait, showing good improvements on the people’s life. 

Stroke or cerebrovascular accident (CVA) affects 15 million people each year, from which 50% 

suffer non-permanent gait impairments, according to the World Health Organization. Gait 

after stroke is a combination of several abnormalities that depend on the individual, the 

severity and the location of the injury and the time passed after its occurrence.  

The application of an adequate treatment in these patients can be improved with the 

understanding of how the pathology affects the muscles, and the neural controls associated 

with it and allow to design specific solutions for each patient. Experimental gait analysis is 

useful in measuring important gait parameters, but it has limited capabilities. Computational 

dynamic simulations, on the other hand, have great potential in this type of investigation and, 

combined with the experimental data, allow performing cause-effect studies, about how 

specific muscles influence the movement, for example, in individuals affected in the sequence 

of a stroke. 

In the present work, two computational dynamic simulations were developed using OpenSim, 

using kinematic and kinetic data collected from a gait trail performed on a healthy and a post-

stroke individual. The experimental data was extracted from a *.c3d file and processed. Each 

simulation started from a musculoskeletal model, scaled according to the mass and dimensions 

of each individual; followed the determination of the joint angles and moments by solving an 

inverse kinematics and dynamics problem; then the residual forces were reduced and finally 

Computed Muscle Control was used to determine the muscle contributions for the gait of the 

principal plantarflexors (soleus and medial gastrocnemius) and dorsiflexors (tibialis anterior) 
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and one hamstring (semimembranosus). The joint angles and moments relative to the healthy 

individual showed to be in agreement with the reference values for normal gait. However, the 

muscles analysed showed differences in the activation patterns. In the simulation involving a 

post-stroke individual it was verified lower plantarflexor angle and moment but the activation 

and power of the plantarflexor muscles were only reduced in the medial gastrocnemius of the 

impaired limb. On the other hand it was verified early activation of the plantarflexors and 

prolonged activation of the semimembranosus from the impaired limb during its stance. 

The muscular actuators were not able to track the kinematics without the use of residual and 

reserve forces and the right ankle had a high error associated. 
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Chapter 1 

Introduction to the dissertation and its 
structure   

1.1 - Introduction 

 Locomotion is present in almost every animal and it is learned in the beginning of life. 

Terrestrial locomotion in humans, or gait, is of great importance in their daily life, since it is 

the vehicle for many other tasks. 

Biomechanical gait analysis can be based in experimental methods that allows the 

determination of important gait parameters (kinematic, kinetic and electromyographic). 

However, using uniquely this approach it is difficult to establish cause-effect relations between 

a specific muscle’s action and its contribution for the overall movement. Dynamic simulations 

are able to fill this gap since it enables the access to the inputs that generate the outputs 

assessed experimentally: the forces that originated the motions measured. This is due to the 

fact that the system (model) is known and is described mathematically. The description of the 

model is, however, complex and, as consequence, it is necessary to use computational tools to 

solve these equations. OpenSim is an example of a software designed for this purpose and 

allows performing dynamical simulations, using experimental data. 

The application of gait analysis in the clinical field, for example, in the characterizations of 

the impact of a pathology in gait or even as a diagnostic tool is possible. Subjects with stroke 

present several gait impairments that are dependent of numerous factors: brain area affected, 

time after the injury, physical characteristics of the patient, etc. The study of the muscle 

forces in these individuals permits the identification of the source of the damages and allows 

the creation of suitable therapeutic and/or surgical solution for each patient. Moreover, taking 

into account studies performed in healthy individuals, it contributes to the increase of the 

knowledge about the outcomes of this pathology. 
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1.2 - Objectives 

The main objectives of this monograph were the following: 

1. Explore the fundamentals of the human gait, taking into account: 

a. The musculoskeletal system of the lower limb involved in the process: 

anatomical constitution (bones, joints and muscles) and function; 

b. Understand the process of gait as a coordinated movement as result of a 

complex system of neuromuscular control and study the gait cycle, by 

decomposing it in the respective phases and subphases in order to understand 

the sequence of events. 

c. Explore the concepts of gait abnormality and pathological gait and determine 

the consequences of a stroke in the task of walking, considering previous 

studies.  

2. Elaborate a literature review addressing the following issues: 

a. Methodologies used currently in experimental gait analysis; 

b. Mathematical and mechanical models able to simulate the musculoskeletal 

system, the muscles and muscular control, developed to be used in 

computational simulations of gait;  

3. Developed dynamic simulations of healthy and pathological gait in OpenSim, taking the 

following steps:  

a. Extract and process experimental data from a gait trial of a post stroke 

individual and prepare it to use as input in OpenSim; 

b. Execute the OpenSim workflow (choice of a musculoskeletal model, scaling, 

inverse kinematics, inverse dynamics, reduction of residuals and computed 

muscle control); 

4. Compare the results obtained from the healthy and post stroke simulation and with the 

literature. 

 

1.3 - Organizational Structure 

 This dissertation is divided in six chapters, each one containing the respective 

introduction and summary. Next, is presented a brief description of each remainder 

chapter. 

 Chapter 2 – Fundaments of Human Gait 

In this chapter the anatomical structures composing the lower limb and the pelvis (bones, 

joints and muscles) are described with interest in understanding their role in the walking 

task. In a second part, it is described normal gait and from the neuromuscular control 

involved, following by the characteristic gait cycle and the respective phases and subphases.  
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Finally, are introduced the concepts of gait abnormality and pathological gait. A specific type 

of pathological gait, post-stroke gait, is explored. Considering experimental studies done with 

post-stroke individuals, the characteristics of this type of gait are enumerated and grouped 

according to their spacio-temporal, kinematic, kinetic and EMG nature. 

 

 

 Chapter 3 – Literature review 

The state of art comprises the experimental and computational approaches of current gait 

analysis. In the first topic, the assessment of important gait parameters by visual gait analysis 

and the use of technological tools to extract kinematic and kinetic data, and the electrical 

activity of the muscles (EMG) is explained. 

In the second topic, regarding the computational analysis of gait, the models designed to 

simulate mathematically and mechanically the musculoskeletal system, the muscle tension 

paths, the operation of the muscles and tendons as an actuator, the muscular activation and 

the neuromuscular control are described.  

 

 Chapter 4 – Methodology 

In the first part of this chapter, the method used for extracting the kinetic and kinematic data 

from a *.c3d and the respective processing is presented. In the second part, the computational 

environment, OpenSim, and its capabilities are introduced. Then, each step of the 

implemented workflow is described: the choice of the musculoskeletal model, the scaling 

process, the inverse kinematics and dynamics step, the reduction of the residuals and, finally 

the computed muscle control. 

 

 Chapter 5 – Results and discussion 

In this chapter, the experimental data extracted from the *.c3d file and processed is analysed 

and discussed, as well as the methods used. Following the errors and the results obtained from 

each step of the workflow are presented and discussed, comparing the simulations developed 

for the healthy and the post-stroke individual with the literature. 

 

 Chapter 6 - Final conclusions and future developments 

Being this the final chapter, it presents the general conclusions of the present study, as well 

as the limitations of this study and possible future developments. 
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Annex 

In the annex, the data that complement the understanding of the study is presented: 

a. Annex 1 list of body markers used in the LABIOMEP and in OpenSim; 

b. Annex 2: plots of the ground reaction moments filtered using different cut-off 

frequencies; 

c. Annex 3: weights used for each marker in the scaling process; 

d. Annex 4: weights attributed to each marker in the inverse kinematics process. 

1.4 - Main Contributions 

The present work increases the knowledge about the sequence of procedures necessary to 

model gait, using OpenSim, starting with the generation of the input files in the appropriate 

format from a *.c3d file, which is a standard format among the biomechanical community, until 

the study of the muscular behaviour. It also explores the influences in considering the 

horizontal moments as part of the external forces and moments in the simulations of gait, that 

usually are not taken into account in some gait studies. 
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Chapter 2 

Fundaments of Human Gait 

2.1 - Introduction 

The understanding of anatomical organization of the lower limb and pelvis is fundamental in 

gait studies.  

The bones are rigid structures able to support the body and move. The movement is only 

ensured because of the existence of joints connecting the bones. Each joint allows one or more 

degrees of freedom, depending on its conformation. The muscles involve the skeletal system, 

being linked to the bones in insertion points through tendons. Due to this configuration, 

muscular contraction is capable of generate movement of bones around the joints. When 

several muscles are contracting, coordinated by the neural controls, complex movements can 

be made, for example, walking. 

Normal gait is difficult to define since there is some variability between healthy subjects, 

depending on the on the person sex, age, body geometry. Thus, the term “normal” has several 

definitions, according to the characteristics of the individual under study [1].  

Gait is a complex task that involves nervous control to activate muscles and create a 

coordinated movement. The muscles are activated by electric impulses arriving through the 

neurons and sent from the mechanism controls.  

The high controls of locomotion are located in the brain, consisting in the brain cortex, basal 

ganglia and the cerebellum, and are responsible for planned actions by the person. The spinal 

cord is also important and it is there were the rhythmic and “automatic” movements of walking 

are generated. Another important aspect is that the control of gait counts with feedback 

mechanisms that help modulating the muscle excitations, such as muscle spindles, Golgi organs 

and mechanoreceptors in the skin. 

In order to study the gait cycle, it is necessary to focus our attention in one leg, since gait is 

symmetrical, and follows its movements through the cycle. Then it is possible to divide it in a 
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stance phase (when the foot contacts with the floor), a swing phase and the correspondent 

subphases. 

Since human gait results from the action of the muscular system in conjunction with the neural 

controls, damages in one of these systems can lead to gait abnormalities that can reduce 

substantially the quality of life of the individual, once he may need a surgical intervention to 

correct the problem or to use of walking aids, and, in a worst case, he can become disable to 

walk (for example in a case of paraplegia). 

Gait abnormalities can result from specific pathologies, for example, stroke. In this case, 

although the impairments vary from person to person and with the time after the accident, 

they frequently include weakness of the muscles of one side (hemiparesis) that can cause 

asymmetry in gait. Usually, the affected individuals walk slower and sometimes reveal 

spasticity.  

In this chapter, an anatomical perspective with interest in studies of gait of the constitution of 

the lower limb and pelvis is provided. Firstly, the bones are presented, followed by the joints 

and ligaments and finally, by the most important muscles. Following that, an overview about 

the neuromuscular control involved in gait and a description considering its phases and 

subphases and the nomenclature associated is given. Also, the concepts of gait abnormality 

and pathological gait are analysed, as well as the most common gait impairments following 

stroke are discussed and studied in terms of spacio-temporal, kinematic (movement of the 

limbs) and EMG/kinetic (muscle actuation and resultant forces and moments) characteristics. 

 

2.2 - Lower limb and pelvis anatomy 

2.2.2 - Lower limb bones 

It is considered that all the bones of the body take part in walking; however, in order to simplify 

the analysis, only the bones constituting the lower limb and the pelvic girdle can be taken into 

account. In terms of architecture, the lower limb (Figure 2.1) is very similar to the upper limb; 

nevertheless, the bones are generally more robust and longer in order to allow the support and 

motion of the body [1].  
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Figure 2.1. Anterior view of the lower limb bone constitution [2]. 

 

The pelvis is constituted by the pelvic girdle and the coccyx. The pelvic girdle includes the 

right and left coxal bones, articulating anteriorly with each other and posteriorly with the 

sacrum, which is the result of the union of five sacral vertebrae [2]. The coccyx is a vestigial 

tail, resultant from the fusion of three to five rudimentary vertebrae [1].  

The femur is the longest bone in the human body and articulates with the pelvic girdle through 

the femoral head in the acetabulum, which is a surface located in the lateral part of each 

femur bone. In its proximal part, besides the head, it exhibits two projections situated laterally 

and inferiorly to the head and neck: the greater trochanter and the lesser trochanter, 

respectively, which are important sites for muscle attachment [2]. Downwards to the shaft of 

the femur, in its distal part, there are the medial e lateral condyles, which are smooth and 

rounded surfaces where the tibia articulates with the femur. Between them exists a groove 

that allows the articulation with the patella [2].  

The patella (also known as kneecap) is a sesamoid bone embedded in the tendon which 

connects the quadriceps femoris muscle to the tibia (quadriceps tendon and patellar tendon to 

the portion between the patella and the tibia) [1]. It has an important mechanical function in 

reducing the muscle contraction necessary to move the tibia, by altering the angle between 

the quadriceps femoris muscle and the tibia [1, 2]. 

The leg is the term used to define the portion of the lower limb from the knee to the ankle and 

comprises the tibia and the fibula [2]. Between them, the tibia is the largest. In the proximal 

part, it has lateral and medial condyles that articulate with the femur and the tibial tuberosity 
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for the insertion of the patellar tendon anteriorly. The distal part present the medial malleolus, 

which participates in the upper and medial part of the ankle joint [2]. The fibula is located 

laterally to the tibia, and these two bones articulate between them in both extremities, 

forming tibiofibular joints. During their extension, there is a layer of fibrous tissue, the 

interosseous membrane. For these reasons, the relative movement between these two bones 

is very small and can be neglected in further studies [1]. 

The foot is a complex structure that is divided into three parts: hindfoot, midfoot and forefoot 

[1].  

The hind foot is the most proximal part and is composed by the talus, the calcaneus, and the 

navicular: the talus articulates with the tibia, the fibula and the other bones of the hind foot; 

the calcaneus is placed inferiorly to the talus, and it has a protuberance covered with a thick 

layer of fat and fibrous skin (heelpad) that transmits the body weight to the ground [1, 2].  

The midfoot includes three bones: the navicular, cuboid and cuneiform bones. The navicular is 

a boat-shaped bone located between the calcaneus and the cuneiform bones in the medial 

section of the foot. The cuboid has the shape of a cube and is placed laterally, articulating 

with the metatarsal bones and the calcaneus. The cuneiform bones are three: medial, 

intermediate and lateral, forming a row [2]. 

The forefoot is composed by the five metatarsal bones and the phalanges, the bones of the 

toes. There are two in the big toe and three in the other four toes [1] 

 

 

2.2.3 - Lower limb joints and ligaments 

Joints are regions of contact of two bones [1, 2]. They can be classified as fibrous, cartilaginous 

or synovial, based on the type o tissue that involves it and the presence or absence of synovial 

liquid. Our interest will be focused in the synovial joints since they are associated with larger 

movements [1].  

Synovial joints are surrounded by a synovial capsule, where a lubricant synovial fluid is secreted 

and bone extremities are covered by a cartilaginous tissue. They can be classified as: plane, 

saddle, hinge, pivot, ball-and-socket and ellipsoid [1]. 

The hip joint is a true ball-and-socket joint, where the ball is the head of the femur and the 

socket is the acetabulum. The joint is protected by strong capsule surrounding it and reinforced 

by five ligaments, one of which connects to the centre of the acetabulum to the centre of the 

femoral head (ligamentum teres) [1, 2]. These factors allow the hip joint to be one of the most 

movable joints of the body, permitting movements of flexion, extension, abduction, adduction, 

internal and external rotations [1, 2].  

The knee joint is an example of a hinge joint, where the medial and lateral condyles of the 

femur articulate with the corresponding condyles of the tibia, resulting in two separate joints, 

in each side. Since the femoral condyles are round shaped and the tibial ones are nearly flat, 
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it results in a gap around the contact points, which is filled by two menisci (articular disks of 

fibrocartilage), which helps to distribute the load [1, 2].  

The main ligaments to achieve stability of the joint are the medial and posterior collateral 

ligaments and the anterior and posterior cruciate ligaments [1]. Other important features are 

the popliteal ligaments and tendons of the thigh muscles that spread around the knee, which 

contribute for the strength of the joint [2] and the synovial bursae (at least twelve) that help 

to reduce the friction between tendons and bones during the movements [3].  

 As a hinge joint, it allows movements of flexion and extension, but also these are combined 

with gliding and rolling and rotation around the vertical axis [3]. 

The patellofemoral joint happens between the posterior surface of the patella, where exists a 

superficial V-shaped ridge and the condyles of the femur in its anterior surface. The principal 

movement consists in the sliding of the patella up and down, during extension and flexion of 

the knee, respectively, and a slight medial-lateral movement [1]. 

The ankle joint or talocrural joint involves three bones: the tibia, the fibula and the talus and 

has three surfaces: upper, medial and lateral and it is classified as a modified hinge joint [2]. 

The medial and the lateral malleoli of the tibia and fibula form with the talus the medial and 

the lateral articular surfaces of this joint, while the upper surface is formed above by the tibia 

and bellow by the talus [1, 2]. 

Surrounding the ankle joint, there is a fibrous capsule that gets thicker in the medial and lateral 

parts, forming the collateral ligaments, keeping the contact between the bones [1, 2]. Also 

there are several ligaments between the tibia and the fibula, important to prevent the 

separation between these bones [1].  

The movements associated with the ankle joint in a normal healthy individual are dorsiflexion, 

plantar flexion, limited hindfoot adduction and abduction and a slight rotation around the 

longitudinal axis of the leg [1, 2]. 

The joints existent in the foot include: 

Subtalar or talocalcaneal joint: between the talus and the calcaneus. It allows the same 

movements of the ankle resulting in some difficulty in gait analysis when determining the origin 

of these movements [1]; 

Midtarsal joints: between the tarsal bones. The presence of ligaments does not allow large 

movements, but allow a flexible connection between the hindfoof and the forefoot [1]; 

Tarsometatalsal joints: flat joints between the cuboid and the cuneiform bones and the 

adjacent metatarsal bones, allowing small sliding movements [1]; 

Metatalsophalageal joints: between the metatarsal bones and the proximal phalanges, 

resulting in movements of flexion, extension, abduction and adduction [1]; 
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Interphalangeal joints: between two phalanges and allowing movements of flexion and 

extension, being the maximum flexion angle greater [1]. 

The disposition of the bones, muscles and ligaments in the foot makes this structure to be 

flexible, but with restricted movements and to have three arches: the medial and longitudinal 

arches and the transverse arch, which have an important role in the distribution of the pressure 

(Figure 2.2). During standing and walking the body weight is transferred from the tibia and the 

fibula to the talus and then to the calcaneus. The system of arches allows the transmitting of 

the body weight through the lateral side to the ball of the foot (the head of the metatarsal 

bones) [2].  

 

 
Figure 2.2. Medial inferior view of the foot with the representation of the medial and lateral longitudinal 

and transverse foot arches [2]. 

 

2.2.4 - Lower limb muscle 

Muscles are positioned strategically in order to produce movements in the joints, being their 

extremities attached to bones and crossing one or more joints, which they will influence [1]. 

One extremity is the origin of the muscle, and the other is the insertion that narrows in the 

end, turning into a tendon [1]. 

The muscles of the lower limb (Figure 2.3) can be studied into three groups, regarding the 

articulation where they act: hip and thigh muscles, leg muscles and ankle, foot and toe muscles 

[2].  

The muscles acting in hip and thigh can be divided as anterior, posterolateral and deep, 

according to their location [2]. The anterior muscles are the iliacus and the psoas, commonly 

mentioned together as iliopsoas, once their insertion tendons fuse together in the lesser 

trochanter of the femur. They are responsible for hip flexion [1, 2]. 

The posterior lateral group include the three gluteus (maximus, medius and minimus) with 

origin in the pelvis and insertion in the femur, being the first responsible for hip extension and 
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lateral rotation of the thigh and the latter two for hip abduction and medial rotation of the 

thigh [1, 2]. There is also the tensor fasciae latae that abducts the hip and also the knee [1]. 

The group of deep muscles is covered by part of the gluteus maximus and is composed by 

smaller muscles: piriformis, obturator internus and externus, superior and inferior gemelli and 

quadratus femoris. Their function is the lateral rotation of the thigh and also the stabilization 

of the hip joint, with the contribution of the ligaments [3]. 

 

 

Figure 2.3.  Anterior and posterior view of the lower limb muscle constitution [1]. 

 

The muscles of the leg have been organized in compartments: the anterior compartment, 

responsible for hip flexion and/or knee extension; the medial compartment that mainly adducts 

the thigh and the posterior compartment that extends the hip and/or flexes the knee, in 

opposition to the anterior one [2]. 
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The anterior compartment is formed by the quadriceps femoris group of muscles that have 

insertion in the patellar tendon: rectus femoris, vastus lateralis, medialis and intermedius. The 

sartorius, the longest muscle of the body is also part of this compartment [2]. 

The medial compartment is formed by the adductor muscles (brevis, longus and magnus), the 

gracilis and the pectineus, while the posterior, also called hamstring muscles include the biceps 

femoris, the semimembranosus and the semitendinosus [2]. 

Lastly, the muscles located in the leg, responsible for the movements of the ankle, foot and 

toes are classified in extrinsic and intrinsic. The extrinsic are also divided into three groups 

[2], based on their location: 

Anterior compartment: includes the extensor digitorum longus and hallucis longus, tibialis 

anterior and fibularis tertius and is responsible for dorsiflexion and eversion or inversion of the 

foot and extension of the toes; 

Lateral compartment: formed by the fibularis brevis and longus and involved in eversion of the 

foot and also plantar flexion; 

Posterior compartment: has superficial muscles, the gastrocnemius and soleus, which join the 

plantaris and form the calcaneal tendon (commonly known as Achilles tendon) and that are 

involved in plantar flexion of the foot. The deep muscles (flexor digitorum longus and hallucis 

longus, popliteus and tibialis posterior) act in flexion and inversion the toes. 

The intrinsic muscles of the foot are located inside the foot, in a similar structure of the hand 

and are responsible for toe flexion, extension, adduction and abduction [2].  

 

 

2.3 - Normal Gait 

2.3.1 - Neuromuscular control 

Skeletal muscles are well-organized complex structures, composed by hundreds of fascicles, 

which consist in hundreds of muscle fibbers [1]. These are, in turn, an arrangement of filaments 

actin and myosin, which cause muscular contraction when they slide relatively to each other 

[1].  

A motor unit is considered to be the combination of a neuron, and the muscle fibbers enervated 

by it and its branches [1, 4]. The neuron transmits electrical signals (activation potential) to 

each muscle fibber, causing the release of calcium ions, which will trigger the muscle 

contraction and generate movement, with consumption of metabolic energy [1, 4]. Muscular 

contraction can be isometric, if the muscle generates tension, but does not change its length; 

isotonic if the length changes, but the tension generated does not; concentric if the contraction 

causes muscle shortening; and eccentric if it causes lengthening [1].  
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The walking movement was described as a complex interaction between supraspinal, spinal 

and afferent feedback mechanisms [5]. The supraspinal mechanisms are associated with the 

“fine control” of walking [6] and include [1, 7]: 

Motor cortex, which generates voluntary movement; 

Basal ganglia, responsible for planning and controlling parallel sequences of movements to 

produce complex movements; 

Cerebellum, responsible for the timing of muscular activities, namely in the smooth and rapid 

transition from one movement to another, thus being involved in the equilibrium of the body. 

Also helps in the control of intensity of muscular contraction. 

The spinal cord is responsible for the creation of reflexes that are fast reactions to a stimulus, 

detected by the afferent feedback mechanisms [1, 6]. The afferent feedback mechanisms 

include: muscle spindles, sensorial receptors located in the muscles responsible for muscle 

length and velocity feedback; Golgi organs, in charge for force feedback; and 

mechanoreceptors in the joints and skin, which give cutaneous feedback [5]. These mechanisms 

allow the adaptation of gait to the environment stimuli [8]. 

In the spinal cord, there are also Central Pattern Generators (CPG), which consist in networks 

of nervous cells [1, 8, 9]. Associated with the afferent feedback mechanism, the CPG produce 

rhythmic movements like walking, without conscious effort [6]. Even though the existence of 

these in quadruped animals was already proved, the evidence of those in human stills indirect 

[6, 10].  

 

2.3.2 - Gait Cycle 

Gait cycle is defined as the interval between two successive occurrences in the process of 

walking. For example, if it is considered the contact of the right foot with the ground (“initial 

contact”) as the beginning of the cycle, then the cycle ends in the next contact between the 

right foot and the ground [1, 11]. This period is characterized by a stance phase, during which 

the foot is in contact with the ground, and a swing phase, where the limb swings in the air [1, 

11]. When one leg is the stance phase, the opposite is in swing phase, excluding the moment 

of double contact, in which both are in stance phase (Figure 2.4). 
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Figure 2.4. Diagram of the gait phases for left and right legs [1]. 

 

The stance phase lasts approximately 60% of the gait cycle [11] and begins with the initial 

contact and ends with the toe off of the same leg. It comprises four subphases (Figure 2.5) [1, 

11]: 

1. Initial contact: the initial stage of the loading response, when the heel of the right foot 

contacts with the ground. It is characterized by hip flexion, knee extension and neutral 

dorsiflexion of the ankle. The ground reaction force has upwards direction; 

2. Loading response: occurs after the initial contact and before opposite toe-off, when 

both feet are in contact with the ground and the weight of the body is transferred from 

the left leg to the right one. In this phase the ankle presents plantarflexion and the 

ground reaction force increases its magnitude and direction from upwards to upwards 

and backwards; 

3. Mid-stance: occurs after the opposite toe-off and before the heel rise. It corresponds 

to the moment when the left leg is in the swing phase and passes the right one. The hip 

increases the extension, which is achieved mainly because of the inertia and gravity, 

while the knee is reaches the highest flexion point of the stance phase before it starts 

to extend. The ankle, which was in plantarflexion changes to dorsiflexion. The ground 

reaction force moves forward along the foot, from the moment when the foot is in full 

contact with the ground [1]; 

4. Terminal stance: corresponds to the moment when the heel of right foot starts to leave 

the ground, before the left foot toe contacts with it [11]. The heel rise is characterized 

by peaks of hip and knee extension and ankle dorsiflexion. In opposite initial contact, 

the hip reaches the highest extension angle, while the knee starts flexing and the ankle 

moves into plantarflexion. During this phase, the ground reaction force moves forward 

[1]; 
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5. Pre-swing: is characterized by double support, since the left foot contacts with the 

walking surface and the body weight is shared between the two legs and it lasts until 

the toe off moment, which separates the stance phase from the swing phase [1, 11]. 

The remaining 40% of the cycle consists in the swing phase (Figure 2.4), which is sub-

divided in: 

1. Initial swing: occurs when the right foot leaves the ground. The hip is flexed as well as 

the knee, and the ankle reaches the peak of plantarflexion immediately after the toe-

off. The ground reaction force is positioned behind the knee and becomes zero when 

the foot leaves ground [1]; 

2. Mid-swing: starts with the feet adjacent, when the right and left legs are side by side 

and ends with the tibia vertical. In the first step, the hip continues to flex and the knee 

is also flexed, mostly as consequence of the hip flexion. The ankle moves to an attitude 

considered neutral or dorsiflexed. The ground reaction force is null, since the right foot 

is in the air [1]; 

3. Terminal swing: begins with tibia vertical, consisting on the tibia of the right leg being 

in a vertical position. The flexion of the hip ends, the knee is passively extended, and 

the ankle is between slight plantarflexion and dorsiflexion. This phase ends with the 

initial contact, which marks the beginning of a new cycle [1]. 

 

 

 

Figure 2.5. Stance and swing phases diagram and the respective subphases [1].
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2.4 - Gait Disturbance 

2.4.1 - Abnormal and pathological gait 

Some gait characteristics vary from person to person; however, it is possible to quantify some 

variables that allow to define or acceptable range of values that characterize a normal gait 

pattern [1].  

Gait is generally accomplished by four main tasks [1, 12]:   

- Maintenance of the balance of the trunk, arms and head either statically or 

dynamically; 

- The stance leg must be able to support the body weight; 

- The swinging leg must advance to a position in order to accept the body weight 

transference;  

- The energy supply must be enough to allow the forward movements. 

 

It is considered that if at least one of these requirements is not fulfilled or the individual can 

perform all the tasks, but with extra energy consumption or with the need of walking aids (for 

example, canes), has a gait abnormality [1]. 

It is important to distinguish the term gait abnormality from pathological gait. Gait abnormality 

is the description of some gait characteristics that can be visually identified or by using 

experimental gait analysis methods (discussed in the chapter 3) and can include, for example: 

trunk bending, circumduction, hip hiking, vaulting, abnormal hip rotation, excessive knee 

extension/flexion, inadequate dorsiflexion control, abnormal foot contact, insufficient push-

off, abnormal walking base, rhythmic disturbances, etc. [1] Pathological gait is related with a 

pathology, such as cerebral palsy, myelomeningocele, Parkinson’s disease, stroke, etc. [1]. The 

gait patterns associated can include a single abnormality or a combination of several, which 

can interact between them and may change with time and therapy and vary from person to 

person [1, 13]. 

In pathological gait, an abnormality may result directly from any muscular or neural impairment 

such as muscle weakness, some deformity or spasticity, or be the consequence of a 

compensation of an impairment, being named in this case as adaptation [1, 12]. 

 

2.4.2 - Post-stroke gait 

Cerebrovascular accident (CVA), commonly referred as stroke, is the death of brain tissue as 

consequence of a disturbance of the arterial blood supply [2, 12]. There are two types of stroke: 

haemorrhagic stroke that results from artery bleeding inside the brain and ischemic stroke that 

is consequence of the blockage of brain arteries by a thrombus, a blood clot, a fat globule or 

a gas bubble [2]. The outcomes of a stroke are dependent on the area of the brain which suffers 
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the temporary privation of blood and can include loss of communication and vision capabilities 

and abnormalities in the motor system. The most frequent case is the one in which one of the 

sides of the territory irrigated by the middle cerebral artery is affected and some motor 

functions are damaged, causing motor control disorders in the opposite side of the body [14]. 

In addition, motor function can also be impaired if the midbrain is injured because this can 

block nerve conduction the pathways between the brain and spinal cord, affecting the sensorial 

and motor systems and, consequently, abnormal gait [7]. 

Post-stroke patients suffer neurological and motor sequels, but more than 85% of stroke 

survivors are able to walk with or without assistance [15]. There is some variability of gait 

abnormalities between individuals following stroke, and they depend on the time after the 

injury, as well if the patient received rehabilitation therapy [12, 13].  

Hemiparesis, one of the most common impairments [16], is the affection of one side of the 

body due to defective muscle activation [17]. In several studies, muscle activity was measured 

by electromyography (EMG), showing alterations in the magnitude and phase of the muscular 

activity patterns, comparing to health individuals and abnormalities on both the contralesional 

(CONTRA) and ipsilesional (IPSI) sides, leading to bilateral differences [18, 19].  

Pronounced asymmetry in gait pattern, due to hemiparesis, may change some temporal, 

spacial, kinetic and kinematic gait variables [16]. Table 2.1 is presents a list of gait common 

impairments associated to post-stroke gait. 
 

Table 2. 1. Common spacio-temporal, kinematic and kinetic/EMG abnormalities in gait of post-stroke 

patients. 

 Gait modifications 

Spacio-

temporal  

[12, 13] 

- Reduced walking velocity; 

- Shorter stride length; 

- Longer gait cycle duration; 

- Longer proportion of double-support phase and 

stance/swing phases of both legs. 

 

Kinematics  

[19] 

- General decrease of joint peak displacements at the hip, 

knee and ankle. 

Sagittal plane 

- Decreased hip extension during stance and decreased hip 

flexion during swing; 

- Higher ankle plantarflexion at initial contact [13]; 

- Knee hyperextension during weight acceptance; 
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- Decrease of knee flexion and absence of dorsiflexion at 

swing phase. 

 

Horizontal plane 

- Larger external rotation of the paretic hip and knee; 

 

Frontal plane 

- Larger abduction of the hip and large inversion of the ankle 

in the paretic side; 

- Larger pelvic hiking and lateral displacement. 

 

 

EMG/Kinetics 

 

 

 

 

- Weakness of the paretic muscles, suggested by the overall 

decrease of EMG levels in the paretic side [12, 19]; 

- Reduction of the plantarflexion moment in both sides in the 

correspondent late stance phases [17]: 

- Paretic side: attributed to the early and reduced EMG 

activity of the paretic plantarflexors (namely medial 

gastrocnemius); 

- Ipsilesional side: related with excessive antagonist co-

activation as an adaptation for postural instability 

caused by impaired gait; 

- Prolonged stance co-activation of hamstrings and the 

quadriceps muscles in both sides (acting as compensatory 

mechanism for the weakness of the plantarflexors, which have 

been found to have the largest contribution to support during the 

single leg stance phase [16, 20, 21] ; 

- Hyperactive stretch reflexes that may cause knee 

hyperextension and hinder dorsiflexion in late stance phase, 

interfering with push-off [17]. Besides, plantarflexors generate 

large part of the energy to move the limbs forward during the 

push-off phase. This group of muscles, specifically the soleus and 

the gastrocnemius, showed insufficient power generation in the 

contralesional side [22]; 

- Reduction of the dorsiflexion moment in the swing phase, in 

the contralesional side caused by weakness of ankle dorsiflexors, 

namely tibilalis anterior, combined with increased plantarflexor 

passive stiffness [15, 17]; 
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- Dynamic spasticity of the plantarflexors and weakness of the 

dorsiflexors during loading response are responsible for the 

increasing of the step length [15, 17, 23]. 

 

- Concerning the power it is verified differences between slow 

and fast walkers[17]: 

 

- Slow walkers: Lower late stance ankle pull-off (A2: second 

ankle power burst) and early swing hip pull-off (H3: third 

hip power burst) propulsive power bursts on both sides; 

- Fast walkers: Larger positive work by both hip extensors 

in early stance (H1: first hip power burst) and, in the 

contralesional side, by the H3 propulsive power burst. 

 

 

Spasticity is verified in 20-30% of the post-stroke patients [5, 12]. It is defined as a “motor 

disorder by velocity-dependent increase in tonic stretch reflexes (muscle tone) with 

exaggerated tendon jerks, resulting from hyper excitability of the tendon reflex” [5].  However, 

there is controversy between the authors about the contribution of the spasticity in post-stroke 

gait impairments [15, 21]. 

These impairments lead to a higher energetic cost, at the biological (metabolic) and mechanic 

levels [12, 13, 16]. The metabolic cost in hemiplegic gait was found to be 50% to 97% higher 

than in healthy subjects [18]. Lamontagne et al. [17] reported that this general higher 

energetic cost may be related to the excessive co-activation of antagonistic muscles. 

 

2.5 - Summary 

The lower limb is composed by several bones, joint and muscles, organized similarly to the 

upper limb in some aspects.  

The localization of the muscles as well as their insertion in the bones is directly linked with the 

movement they generate. Considering their action, muscles can also be grouped, for example, 

the group of the hip flexors, which are involved in flexion of the hip. 

The fact that the joints in lower limb (and also the upper limb) system are synovial is important 

considering that the relative movement of the limbs and the simultaneous task of supporting 
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the body weight lead to a high friction between the bones that could increase the wear if the 

joint was not equipped with cartilage, synovial lubricant and other mechanisms.  

The hip, knee and ankle joints and associated bones and muscles must receive special attention 

since considerable amount of movement are generated there. On the other hand, the joints in 

the pelvis and in the foot are very restrictive of the motion, when compared to these joints. 

Human gait involves control by supraspinal and spinal mechanisms that transmit electric signals 

to the muscles in order to generate the desired movement. In the particular case of locomotion, 

there are indirect evidences of a control center in the spinal cord, responsible for the 

generation of unconscious stepping. The gait cycle is divided in the stance and swing phases, 

which in turn are divided into five and three subphases, respectively. This method allows the 

study of the sequential events in terms of moments of the segments, ground reaction forces 

and muscles involved to achieve the task of locomotion. 

Gait abnormalities following stroke are mostly the consequence of the weakness of the muscles 

of one side of the body. Spasticity, however, has a neural origin, but there is still disagreement 

between the studies performed, about the influence of it in post-stroke gait. 

In the sequence of these disabilities, the affected individual develops mechanisms of 

compensation, with the objective of allowing his locomotion. Nevertheless, these are also 

classified as gait abnormalities. 

In the sequence of a stroke, patients must receive rehabilitation therapy in order to minimize 

or eliminate its outcomes and improve their quality of life. 
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Chapter 3 

Related Work 

3.1 - Introduction 

Human gait can be studied using an experimental approach by measuring several parameters 

that characterize gait, with the aid of the latest technologies available for this purpose. Many 

research laboratories and specialized clinics can perform this studies for purposes of research 

or to help in the process of rehabilitation. 

With the development of new complex models simulating the human body and the development 

of the computers, it became possible to combine the data collected experimentally with 

computational models and make dynamic simulations, able to estimate, for example, the 

individual muscle contributions for the movement. Studies aiming to test hypothesis (“what if” 

studies), such as see what happens when a muscular excitation pattern is modified [24] are 

also possible using computational simulations, which is hard to implement experimentally. 

In this chapter, the experimental methodologies to assess kinematic, kinetic measurements 

and muscle activity are reviewed. Afterwards, the mathematical models currently used with 

the aim to represent the biological structures (muscles, bones, ligaments) and the respective 

control are analysed. Finally, an overview of OpenSim, the software to be used, is given. 

3.2 - Experimental methods for gait analysis 

Gait analysis is defined as “the systematic measurement, description, and assessment of those 

quantities though to characterize human locomotion” [25]. The study of human locomotion has 

been increasingly used in the last decades in the fields of sports, rehabilitation [26] and in 

research [17].  

Roy B. et al [25], in 1991, defined clinical gait analysis as the use of gait analysis in which the 

clinician quantitatively examines the outcomes of a certain disease or injury suffered for the 
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patient. However, in 1981, Brand et al. [27] had already enumerated four reasons that extend 

the applications of clinical gait analysis: 

1. Diagnosis: identification of the disease; 

2. Assessment of the state of the disease or injury and its severity; 

3. Monitoring the progress of a patient in cases with and without intervention; 

4. Prediction of the effects of the intervention or the absence of it. 

Experimental gait analysis is performed by using technological tools to extract information from 

gait. Centres executing this type of analysis could beneficiate from the latest technological 

development to obtain more accurate data with more sophisticated techniques. Experimental 

gait analysis aims the obtaining information as the general parameters of gait, kinematic and 

kinetic data and muscle activity. In some cases, data related to the metabolic activity, for 

example, oxygen consumption and heart rate during gait is also assessed [14]. The main 

components of experimental gait analysis currently used are presented in the next sections. 

 

3.2.1 - Visual gait analysis 

The visual gait analysis consists on the unaided observation of the patient walking on a pre-

determined path by one or more specialists. This approach is considered as semi-subjective, 

since it is highly dependent on the evaluation of the specialists [27].  

The visual assessment of walking is frequently recorded from both sides and from the front and 

the back of the patient, so the clinicians can reproduce the visualization and analysing it using 

slow motion, freeze-frame and other tools [28].  

This method allows the identification of some gait abnormalities, for example: abnormal 

rotation, extension and flexion in the joints, trunk bending, circumduction, hip hiking, 

problems in foot contact and rotation, insufficient push-off, etc. [1]. 

 

3.2.2 - General gait parameters 

The general gait parameters, also called temporal and spatial parameters, are: cadence (the 

number of steps in each time unit) or the cycle time (the time that the patient takes in one 

step), stride length and the speed [1, 28].  

These parameters usually are modified in most locomotor disabilities; however, they are not 

able to provide specific information about them, making necessary the assessment of other 

gait variables.  

The cadence and time cycle can be assessed by counting the number of steps in 10 or 15 seconds 

and extrapolating the value for one minute; speed is calculated dividing the distance walked 

by the time the individual took; and the step length can be determined by direct measurement, 

by using methods to mark the places where the feet touch the ground, or indirect 

measurement, by using the cadence or de cycle of time [1]: 
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Stride length (m) = speed (m) x cycle time (s); 

Stride length (m) = speed (m/s) x 2 x 60/cadence (steps/minute). 

 

3.2.3 - Kinematics 

Kinematic data include the position and orientation of the body segments, the angles of the 

joints and the corresponding velocities and accelerations (linear and angular) [1]. The 

collection of this type of data improved considerably because of the latest technological 

advances [29].  

The basic principles rely on the use of a system of two or more high-speed cameras, placed in 

different viewpoints, in order to obtain a three-dimensional analysis. The individual under 

study wears clothes that expose the major part of the lower limbs and reflexive makers are 

placed in his/her skin, in specific points, which will allow to track the limb segments, the pelvis 

and the trunk as well as their orientation [1, 28].Near to the lens of the camera, there is a 

source of light directed to the individual, either visible or infrared, so that the markers become 

bright and therefore, easy to track in the recording. Usually, the cameras are connected to a 

computer that stores each frame as a two-dimensional image. These images are processed in 

a suitable software in order to determine the centroid of each marker and after to extract the 

kinematic data [1]. Currently, it is common to have clinical systems using 8, 10 or more 

cameras, operating at a frequency of over 100 Hz, able to detect many tens of markers having 

9 to 25 mm diameter [29]. 

In order to obtain more accurate measurements, a previous calibration of the system is 

necessary. This is accomplished by using the cameras to view a calibration object that contain 

markers placed in known positions and processing the data acquired in the computer, to relate 

the images from the cameras with the real position of the markers [1, 25, 28, 29]. 

Another option consists in the use of active markers, namely LED (light-emitting diodes), and 

an optoelectronic camera able to determine the position of each marker by analysing the light 

that comes from it. Each LED is set to emit light in a way that there is no more than one active 

marker at the same time. That way each one can be easily identified and followed [1]. 

The current available systems are considered accurate in measuring marker positions and 

consequently, the limb positions and orientations [1, 29]; however, is necessary to 

mathematically differentiate the position data to obtain the linear and angular velocity and 

differentiate it two times to obtain the acceleration, leading to a significant amplification of 

measurement errors [1]. The use of inertial sensors, such as accelerometers and gyroscopes 

can solve this problem. Accelerometers are devices able to measure the linear acceleration, 

while gyroscopes measure the orientation, angular velocity and acceleration [1, 27]. The 
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miniaturization of these devices allowed its integration in IMUs (Inertial Measurement Units), 

currently one of the most used types of sensors in gait analysis [27]. They can be integrated on 

instrumented insoles for gait analysis, for example, the case of Veristride instrumented insoles 

developed by Bamberg et al. [30], which include an inertial sensor, a Bluetooth communication 

module and a pressure sensor, and the power is generated by an inductive charging system 

[27]. An image of this insole is shown in Figure 3.1.  

 

 

 

Figure 3.1. Veristride instrumented insole: a - inertial sensor, Bluetooth, microcontroller and battery 

module; b - coil allowing inductive recharging, and c - pressure sensors [31]. 

 

Other devices widely used are electrogoniometers, which are devices used to determine the 

angles in the joints, allowing the obtaining of plots of angle vs. time or angle vs. angle, when 

the measurements are made in two joints [1, 27]. According to their principle, they can be 

rotary potentiometers or flexible strain gauges. In rotary potentiometers, the rotation of the 

central spindle causes an alteration in the electrical resistance, which can give the information 

about the angle. In order to obtain the angles in three dimensions, it must be placed three 

goniometers in each joint, connected by wires to the computer. However, these devices are 

considered not very accurate, and they are more used in the clinical context more than in 

research centres [1]. Flexible strain gauges consist in flexible metal strains, placed along the 

joint to be studied, with each end in a different segment that constitutes the joint [1]. The 

material of the strain increases its resistance to conduct current when it is flexed, 

proportionally to the flexion angle. They can be used to determine the angles in the ankles, 

knees, hips and metatarsals, being frequently used in instrumented insoles [27]. 

 

c 

a 
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3.2.4 - Kinetics 

Kinetic data consists in information about the joint forces, moments and powers, which are 

defined as the measure of the rate of work generated by a muscle or group of muscles [1]. 

Knowledge about the power generation in joints is very useful, since it gives information if the 

muscles are contracting concentrically (power generation) or eccentrically (power absorption) 

[1, 28]. 

The Ground Reaction Force (GRF) is the force that opposes the one applied by the foot on the 

floor, having the same magnitude and opposite direction (3rd Newton’s Law). The determination 

of it can be done by using sensor placed in the floor, like force platforms (or forceplates) or 

wearable sensor placed beneath the shoe [1, 27]. 

Force platforms are rectangular plates having an upper rigid surface made of a metal or of a 

lightweight honeycomb arrangement. Inside there are transducers that measure the small 

displacements of the upper surface, in the three axis, caused by the patient’s foot while he 

walks. The electrical signal is sent to a computer, usually through an analog-to-digital converter 

[1].  

Data obtained from the force platform are usually displayed as: individual components of the 

force vs. time; “butterfly diagram”, which represent the vector of the GRF in sequential 

intervals of time; and diagrams displaying the location of the centre of pressure (the point 

where the force resultant acts) in each foot [1]. 

The wearable sensors are often used in instrumented shoes, for example, the one presented in 

Figure 3.1 [27]. There are three varieties of sensors used for this purpose: resistive, 

piezoelectric and capacitive. Howell et al. performed a study using insoles having 12 capacitive 

sensors and the results showed high correlation with the ones obtained in a laboratory, 

performing the same experiment [32].   

The data obtained by measuring the GRF is more useful when combined with the kinematic 

data and the knowledge of the body mass, moment of inertia of each body segment and the 

location of the centre of gravity, in order to determine the joint forces, moments and powers, 

by inverse dynamics [28]. 

 

 

3.2.5 - Electromyography 

The electromyography (EMG) is the measurement of the electrical activity of the muscles and 

is usually performed while the kinematic and kinetic parameters are obtained, so that the data 

can be complemented [1, 27, 28]. Indeed, electromyographic data do not allow to identify the 
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type of contraction of the muscle (concentric, eccentric or isometric) nor it can assess the 

force generated [28]. 

The acquisition of the EMG signal is obtained by using surface electrodes (non-invasive method) 

or by inserting fine wire electrodes into specific muscles, using a hypodermic needle (invasive 

method) [1, 28].  

In the first case, only the activity of surface muscles can be measured. Two electrodes are 

placed in the skin, over the muscle or group of muscles and the voltage difference between 

them is measured. The resultant signal is very small and suffers the interference of adjacent 

muscles, which makes necessary the amplification and conditioning prior to the analysis [1, 

27].  

The use of fine wire electromyography tends to be very painful to the patient, so this type of 

analysis is only performed in some cases, when there is the need to study a particular muscle 

[1, 28]. Besides that, the signal obtained tends to have higher amplitude than the one obtained 

with surface electrodes, and the interference is lower [1]. 

 

3.3 - Computational modelling and simulation of the human gait 

Experimental techniques for the quantitative assessment of gait are very useful to give 

information about the kinematic and kinetic characteristics of gait and the muscle activity, but 

alone they cannot provide information about how muscles act to originate the movement 

measured. In the last years, biomechanical computer simulations, were favored by the 

technological development of the computers, able to perform complex mathematically 

complex simulations and increasingly faster.  

Human body is a complex structure, with several components from bones, tendons, ligaments 

to muscles activated by complexly generated neural signals. Therefore, simulation of a specific 

motor task can be accomplished with the creation of a simplistic model, modeled by 

mathematical equations. 

The first models created for this purpose consist on mathematical/mechanical models 

composed by a multi-segment body and without muscle modeling [33]. The inverted pendulum 

model is the simplest behavioral model of walking [34]. The leg is modeled as a rigid beam 

connected, in the top, to a point having a mass equal to the body mass, and in the bottom is 

fixed. During the stance phase of gait, the mass point moves as the rigid beam rotated around 

the fixed point and reaches the highest point a mid-stance [34]. As in a normal pendulum, 

potential energy is 180º out of phase with the kinetic energy. The model is, therefore, suitable 

for studies about the transference of potential and kinetic energies [35]. Other simplistic 

models are the “ballistic walking”, which is a mathematical model developed by Mochon and 

McMahon in 1980 [36]. It represents the swing phase leg by two segments and the stance phase 

leg by one segment, and the muscles are admitted to act only in the beginning of the swing 
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phase to establish the initial configuration of the position and velocity of the limbs [36]. 

“Passive walking” model was introduced by McGeer [37] and is based in the idea that periodic 

stable walking can be reached without any muscular force when descending a slight slope, 

because the loss of kinetic energy during heel-strike is compensated by gravity force [33, 37]. 

The models mentioned above, although are useful to provide the basic understanding of 

walking, namely relations between mass, anthropometrics of the body, velocity and general 

mechanical energetics, do not allow studies concerning muscle coordination and sometimes 

can lead to erroneous conclusions [33]. 

Complex dynamical multi-segmented models have been developed and include the 

musculoskeletal geometry, a model of the muscle-tendon actuators and the motor control, 

including the excitation contraction dynamics [33]. 

 

3.3.1 - Musculoskeletal model 

The musculoskeletal system is usually modeled as two or three dimensional composition of 

articulated (joints) rigid-body segments (bones) [35, 38]. The system is governed by the 

mechanical equations o the movement. For each segment, the acceleration �̈� can be written, 

according to: 

 

𝐼(𝑞)�̈� = 𝑀𝑗𝑜𝑖𝑛𝑡 + 𝐺(𝑞)𝑔 + 𝑉(𝑞, �̇�) + 𝐹𝑒𝑥𝑡(𝑞, �̇�)      (3.1) 

 

where 𝑞, �̇� 𝑎𝑛𝑑 �̈� are the vectors of the generalized coordinates, velocities and accelerations, 

respectively; 𝐼(𝑞) is the system mass matrix; 𝑀𝑗𝑜𝑖𝑛𝑡 is the vector of joint moments, given by 

𝑀𝑗𝑜𝑖𝑛𝑡 = 𝑅(𝑞) 𝐹𝑚𝑢𝑠, 𝑅(𝑞) representing the moment arm matrix and 𝐹𝑚𝑢𝑠 the muscle forces; 

𝐺(𝑞)𝑔, 𝑉(𝑞, �̇�), 𝐹𝑛𝑜𝑛(𝑞, �̇�) are the moments associated with the Gravity force, centripetal and 

Coriolis forces and external forces, respectively. 

 

If the degrees of freedom of the musculoskeletal model are greater than four, it is necessary 

to use a computer to solve the equation above [35]. There are currently available some 

commercial packages designed for this purpose, for example: SD/FAST by Symbolic Dynamics 

Inc., DADS by CADSI, ADAMS by Mechanical Dynamics Inc., AUTOLEV by On-Line Dynamics Inc. 

and OpenSim by Stanford University, which will be used in this work [35, 38, 39]. 
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3.3.2 - Muscle paths 

The muscles and tendons are assumed to be inserted in a single point in the bones and muscles 

which insert in the bone through a large area are modeled using more than one portion with 

only two insertion extremities [35]. 

The forces generated by each muscle are applied to the segments through a tensile path [39]. 

This path can be considered as a simple straight line, though this method can lead to errors 

when the muscle wraps around another component like a bone or another muscle [35]. Another 

possibility is to represent the muscle’s path through its cross-sectional centroids. However, this 

method presents several problems because it is hard to determine these points for every joint 

configuration [40]. An alternative method consists in establishing specific points along the 

cross-sectional centroid’s path, which are fixed in the structures where the muscle wraps and 

are linked by straight lines or curved segments [35] (Figure 3.2).  

 

 

Figure 3.2. Three dimensional representation of the shank, foot and toes and the tensile path of the 

soleus muscle (single straight line) and of the peroneus longus, with a series of line segments and 

constrained “via points” [41].  

 

Another option is the obstacle-set approach that allows does not constraint the muscle path in 

the contact with the other segments (bones and/or muscles), allowing it to move freely over 

the neighboring structures [40]. 

 

3.3.3 - Muscle-tendon actuator model 

The Hill-type muscle-tendon actuator model was widely adopted in computational dynamical 

simulations since it is considered efficient and usable in several movements and has 

computational reduced cost [4, 20, 22, 38]. Originally, the model was developed by A. V. Hill 

and it was only composed by two elements [4], but since then it was improved and the version 

currently used is composed by a muscle with three elements and a tendon, as shown in Figure 
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3.3. The CE is a contractile element, where the force is generated and able to model the force-

length-velocity property, and the SEE and the PEE are elastic elements (springs) positioned, 

respectively, in series and in parallel [38]. The first one is responsible for modelling the muscle 

active stiffness and the latter one models muscle passive stiffness [35]. In this model, the 

tendon is assumed to be an elastic element. However, it is known that the force associated 

varies non-linearly as the length of the tendon changes and that this simplification does not 

affect significantly the overall behavior [35]. 

 

 

 

Figure 3.3. Hill-type muscle-tendon actuator, composed by a tendon in series with the muscle. The 

muscle is modeled by a contractile element (CE) in series with an elastic element (SEE) and in parallel 

with another elastic element (PEE) [38]. 

 

The muscle-tendon dynamic behavior is governed by a single non-linear differential equation 

[38]: 

 

�̇�𝑀𝑇 = 𝑓(𝐹𝑀𝑇 , 𝑙𝑀𝑇 , 𝑣𝑀𝑇 , 𝑎𝑚), 0 ≤  𝑎𝑚 ≤ 1        (3.2) 

 

where: 𝐹𝑀𝑇 is musculo-tendon force; �̇�𝑀𝑇 is the rate of change of the muscle-tendon force;  

  𝑙𝑀𝑇 is the musculo-tendon length; 𝑣𝑀𝑇is the musculo-tendon shortening velocity and  𝑎𝑚 is the 

muscle activation. 
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3.3.4 - Muscle activation model  

The excitation-contraction coupling has two steps (Figure 3.4): activation dynamics, consisting 

in the transduction of the neural stimulus into activation of the contractile element, and 

contraction dynamics, the transformation of activation into muscle contraction [39].  

 

 

Figure 3.4. Musculo-tendon actuator dynamics [38]. 

 

There is a delay in time between the neural signal (excitation) and the consequent muscle 

activation (activation), due to the kinetics of chemical processes involving the calcium 

molecules [35, 39]. Consequently, several studies concerning gait analysis take in consideration 

this process [39], which is modeled by first-order differential equation: 

 

�̇�𝑚 = (
1

𝜏𝑟𝑖𝑠𝑒
) (𝑢2 − 𝑢𝑎𝑚) + (

1

𝜏𝑓𝑎𝑙𝑙
) (𝑢 − 𝑎𝑚); 𝑢 = 𝑢(𝑡);  𝑎𝑚 = 𝑎𝑚(𝑡)       (3.3) 

 

where: 𝑎𝑚 and  �̇�𝑚  are the muscular activation and the rate of muscular activation, 

respectively; 𝑢 is the muscle excitation; 𝜏𝑟𝑖𝑠𝑒 and 𝜏𝑓𝑎𝑙𝑙 are the time constants for rise and fall, 

respectively.  

 

3.3.5 - Neuromuscular control model 

Having a musculoskeletal model built, it is necessary to define the control of the muscle 

excitation, so that realistic movements are produced  [38]. There are admitted two basic 

approaches to do this: a dynamic optimization and a tracking solution problem [33, 35, 38]. 

Using dynamic optimization, it is necessary to define clearly an objective task/function in order 

to find the muscle controls that permit to achieve that objective [33, 38]. In the sports field, 

this method could be applied in studies where the objective task was, for example, the 

maximum height jumping [42], maximum speed pedaling [43] and maximum distance throwing 

[44].  

In walking, Anderson and Pandy assumed that the objective function is the minimization of the 

metabolic energy consumed per distance unit, and the results of their study showed that the 

muscle function can be well described by assuming this objective function [45]. However, when 

we are dealing with the human gait, the objective task can be ambiguous in some cases [35]. 

An alternative method consists in solving the optimal tracking problem, by guiding the muscular 

controls in order to obtain the minimal difference between the simulation data and the 
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experimental data, by means of a least-squares approach [33, 38]. This solution is considered 

to be the suitable in simulations concerning subject-specific gait and pathological gait and to 

quantify the muscle contributions, identify joint loading and injuries [33, 38]. 

 

3.3.6 - Assessment of the muscle forces 

The determination of muscle forces and the understanding of how a muscle affects the 

movement of the joints, and the segments can be done by using a musculoskeletal model as 

described in Figure 3.5, applying a forward or inverse dynamics strategy [35, 38].  

 

 
Figure 3.5. Diagram of the forward dynamics (top) and the inverse dynamics (bottom) methods [46]. 

 

Inverse dynamics (Figure 3.5) uses as input the body motions, which are differentiated and 

used to compute the muscle forces, by using the ground reaction forces and the joint moments 

in the classical Newton-Euler equations of motion [47]: 

 

�⃗� = 𝑚�⃗�           (3.4) 

�⃗⃗⃗� = 𝐼�⃗�           (3.5) 

 

where �⃗� is the force; �⃗� is the acceleration; �⃗⃗⃗� is the moment and is the angular acceleration. 

 

The other approach is forward dynamics, in which the inputs of the system are the muscle 

excitations and when applied in the muscle-tendon model (taking into account the coupling 
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excitation-activation) it is possible to obtain the muscle forces (Figure 3.5). Using these forces 

and the other elements (musculoskeletal model and skeletal dynamics) it is possible to obtain 

the movements generated by the input excitations [35]. 

The number of muscles acting in one joint is greater than its number of DOF, consequently an 

optimization strategy is usually used when considering these two approaches. Using inverse 

dynamics, the muscle forces are determined using static optimization, which solves a different 

optimization problem at each instant of the movement, to determine the muscle forces from 

the joint kinematics. On the other hand, in the case of forward dynamics, if a goal or motor 

task is defined, it is possible to use dynamic optimization, in which a single optimization 

problem is solved for the complete cycle of the movement, being this approach more expensive 

computationally [35]. Therefore, dynamic optimization is used, for example, in studies related 

to sport performance, in which the objective or task desired is defined and the muscle 

activations are known [35].  

 

3.4 - Summary 

Experimental gait analysis techniques give useful information about the quantifiable 

characteristics of gait, but the use of this data in computational simulations is showing good 

results in assessing quantities not measurable experimentally. These simulations use 

mathematical/mechanical models, described by complex equations, which need to be treated 

and analyzed using computers. 
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Chapter 4 

Methodology 

4.1 - Introduction 

Biomechanical laboratories around the world use different 3-D motion capture systems and 

software to collect their data, making more complicated sharing the data between users due 

to problems of software compatibility [48]. The situation has changed with the introduction of 

the *.c3d file format, that began in 1987 and since then it has been gradually adopted by the 

community, becoming a standard. *.c3d is a public domain type of binary file format to record 

and store synchronized 3D, analog and EMG raw data, processed data (for example gait events) 

and general information about the trial (instrumentation and software used and characteristics 

of the subject) [48].  

Computational simulations are useful to study human motion, which involves complex 

mechanisms of control and actuation and frequently start from experimental data. OpenSim is 

a relatively new software that can be used to perform this type of simulations since it permits 

the understanding of how muscle actuates to reproduce a specific movement [39, 49, 50]. 

Thanks to its versatility (it allows to create and change the models and add components), has 

been used not only to study healthy movements of the human body, but as well pathological 

motion [51, 52]. Typically, a simulation starts from choosing a model and the data, 

conveniently treated and stored in the appropriate file format, serves as input. An OpenSim 

simulation consists in a sequence of steps, where the outputs from the previous step are used 

as inputs in the following, making necessary to reduce the errors as possible to avoid its 

accumulation. 

OpenSim requires, however, that the experimental data used as input to be in a specific format:  

for the kinematic data uses the format *.trc (Track Row Column), created by Motion Analysis 

Corporation and for the kinetic data the format *.mot (Motion), created by the developers of 

SIMM (Software for Interactive Musculoskeletal Modelling) [50]. If the experimental data is  

stored in a *.c3d file, is possible to extract it using, for example, the Biomechanical Toolkit 
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(BTK), which is an open-source and cross-platform library of functions to read, write and modify 

acquisition files. These operations can be performed in Matlab, by using the Matlab wrapper 

[53] and writing the files in the adequate format to use as input.  

The experimental data relative to a post-stroke individual was collected in the LABIOMEP and 

saved in *.c3d format. Matlab was used to extract and process the data and to extract the gait 

events, necessary to obtain one gait cycle to perform the biomechanical simulation that will 

be described in the Chapter 4. 

In the second part of this chapter, it will be described the each step of the workflow of 

biomechanical simulation using OpenSim. A model of the head, torso and lower limbs was used 

to reproduce the data recorded from a post-stroke patient and a healthy individual. The 

kinematics and joint moments were determined, as well as the muscular activations and 

powers. 

4.2 - Experimental data treatment and analysis 

4.2.1 - Kinematic and kinetic data 

The kinematic and kinetic data relative to a post-stroke subject was previously collected in the 

LABIOMEP, performing a gait trail with a male subject of 55 years old, 1,75 m height and 96Kg. 

The patient has suffered a CVA and he was mainly affected in the upper limbs. Consequently, 

the lower limb performance in gait was not substantially impaired. The patient pathology 

historical was not detailed known, the only information available was that his treatment 

included the application of botulin toxin only in the upper limbs.  

The kinematic data was acquired using a motion capture system 3D Qualisys™ Oqus Camera 

Series system, operating at 200 Hz with 12 cameras retroreflectors of infrared light and 32 

reflector (passive) body markers.  The marker data was acquired using the native software, 

Qualisys Track Manager. The configuration of the markers of the torso and lower limbs is shown 

in the Figure 4.1. 
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Figure 4.1. Location of the markers used in the gait trial performed in the LABIOMEP in a post-stroke 
patient: RAC – right acromion; LAC – left acromion; C7 – vertebra C7; STERN – sternum; RASIS – right 
superior iliac spine; LASIS – left superior iliac spine; RPSIS – right posterior superior iliac spine; LPSIS – left 
posterior iliac spine; RMK – right medial knee; LMK – left medial knee; RLK – right lateral knee; LLK – left 
lateral knee; RMA – right medial ankle; LMA – left lateral ankle; RLA – right lateral ankle; LLA – left medial 
ankle; RFOOT1 – right foot proximal phalange 5; LFOOT1 – left foot proximal phalange 5; RFOOT4 – right 
foot proximal phalange 5; LFOOT4 – left foot proximal phalange 5; RBACKFOOT – right back foot; 
LBACKFOOT – left back foot. (Only the markers of the torso and lower limbs, used in this study, are 
represented. The 10 markers used in the lower limbs are not shown). 

 

During the trial, the subject walked over a set of six force platforms disposed as shown in the 

Figure 4.2, allowing the temporal synchronization between the kinematic and kinetic data.  

The platforms 1, 2 and 6 (Bertec FP4060) and 3, 4 (Bertec FP6090) were type 2 extensiometric. 

The platform 5 was piezoelectric, type 3 (Kistler 9281E).  The subject stepped in the platforms 

2, 3, 4 and 6 and the data was collected with a sampling frequency of 2000 Hz.  
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Figure 4.2. Force platform disposition in the floor during the gait trial in the LABIOMEP. The force 
platforms in which the subject stepped are shown in orange (2, 3, 4 and 6). Image obtained using the 
software Mokka. 

 

4.2.2 -  Data extracting and pre-processing 

The data resulting from the trial described above was stored in *.c3d format and, posteriorly, 

it was extracted and processed using Matlab ®. 

There are already available functions developed by the OpenSim community, developed for 

this purpose [54]. In this work, the toolbox “c3d2OpenSim” developed by James Dunne in 2015 

was used and adapted to the data. This toolbox uses as basis the functions of the Biomechanical 

ToolKit (BTK). 

In the Figure 0.3 is shown the sequence of actions performed prepare to use as input in 

OpenSim. 
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Figure 4.3.Sequence of steps taken to obtain the OpenSim input files containing the kinematic and kinetic 
data (*.trc and *.mot files, respectively) relative to the post-stroke individual. 

 

The information contained in the *.c3d file was extracted and stored inside a Matlab struct 

using a sequence of functions from the BTK. The function btkGetMarkers extracts the positions 

of the makers, defined in the laboratory coordinate system. Then, this values were converted 

to the OpenSim coordinate system and finally, a *.trc file was printed with this information. 

Regarding the force platform data, there are two methods for extracting the data: the function 
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btkGetForcePlatformWrenches extracts the values of the forces, the location of the origin of 

the force platform and the moments acting on it, while the function 

btkGetGroundReactionWrenches extracts the forces, the PWA (Point of Wrench Application) 

location and the moments on the PWA. In gait analysis, even in pathological gait analysis is 

commonly used the COP, defined as the point where the vertical component of the force 

intersects the surface and where the moments in the horizontal plane are zero [55]. The PWA 

is considered the point where the wrench vector intersects the surface of contact between the 

foot and the ground (Figure 4.4) [55]. The two methods were used, however, when using 

btkGetForcePlatformWrenches it was necessary to determine the location of the COP and, 

additionally, to compute the free moment (the vertical moment) acting on it, as described in 

the equations 4.3 and 4.6, respectively. The values of the COP and PWA and the moments 

defined in the respective points were assumed as zero for the instants were the vertical force 

was zero. 

 

 
Figure 4. 4. Difference between the COP and the PWA. 𝑭𝑾 and 𝑴𝑾 represent the resultant force and 
moment of the wrench;  𝑭𝒁 and 𝑴𝒁 are the vertical components of the resultant force and moment and  
𝑭𝒉𝒐𝒓 and 𝑴𝒉𝒐𝒓 are the corresponding the horizontal components. 𝒓𝑪𝑶𝑷 and 𝒓𝑷𝑾𝑨 represent the position 
vector of the COP and the PWA  [55]. 

 

The horizontal moment in the origin �⃗⃗⃗�ℎ𝑜𝑟
0  is caused by the vertical force acting in the COP 

𝐹𝑍
⃗⃗⃗⃗⃗[55]: 

 

�⃗⃗⃗�ℎ𝑜𝑟
0 = �⃗⃗⃗�ℎ𝑜𝑟

𝐶𝑂𝑃 + (𝑟𝐶𝑂𝑃 − 𝑟0) × 𝐹𝑍
⃗⃗⃗⃗⃗        (4.1) 
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𝑀𝑥

0

𝑀𝑦
0

0

] = [
0
0
0
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𝑟𝑥
𝐶𝑂𝑃 − 𝑟𝑥

0

𝑟𝑦
𝐶𝑂𝑃 − 𝑟𝑦

0

𝑟𝑧
𝐶𝑂𝑃 − 𝑟𝑧

0

] × [
0
0
𝐹𝑧

]        (4.2) 

 

{
𝑟𝑥
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−𝑀𝑦
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𝑀𝑥
0+𝑟𝑦

0𝐹𝑧

𝐹𝑧

         (4.3) 
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Having the forces and the three dimensional location of the COP it is possible to determine the 

free-moment (𝑇𝑧), knowing that 𝑇𝑧 = 𝑀𝑧
𝐶𝑂𝑃 : 

 

�⃗⃗⃗�0 = �⃗⃗⃗�𝐶𝑂𝑃 + (𝑟𝐶𝑂𝑃 − 𝑟0) × �⃗�        (4.4) 

 

[

𝑀𝑥
0

𝑀𝑦
0

𝑀𝑧
0

] = [
0
0

𝑀𝑧
𝐶𝑂𝑃

] + [

𝑟𝑥
𝐶𝑂𝑃 − 𝑟𝑥

0

𝑟𝑦
𝐶𝑂𝑃 − 𝑟𝑦

0

𝑟𝑧
𝐶𝑂𝑃 − 𝑟𝑧

0

] × [

𝐹𝑥

𝐹𝑦

𝐹𝑧

]       (4.5) 

 

𝑀𝑧
𝐶𝑂𝑃 = 𝑀𝑧

0 − (𝑟𝑥
𝐶𝑂𝑃 − 𝑟𝑥

0)𝐹𝑦 + (𝑟𝑦
𝐶𝑂𝑃 − 𝑟𝑦

0)𝐹𝑥      (4.6) 

 

The force and moment data was low-pass filtered using a fourth-order Butterworth filter with 

zero-lag. The cut-off frequency was 8Hz, similarly to the study [14]. A higher cut-off frequency 

of 20Hz, used in other works [22, 56] was tested and a lower value of 6 Hz as well. It was 

verified that using high frequencies (20Hz), the moment data shows noise and high peaks at 

the end of the beginning of the stance phase, while using the low frequency (6Hz) some features 

of the signal are changed (see annex 2). The data relative to the location of the COP and PWA 

showed high peaks in the beginning and end of the contact phase that were eliminated using a 

median filter followed by a low pass-filter (4th Butterworth zero-lag with cut-off frequency of 

20Hz).  

After this, the data was defined in the OpenSim coordinate system and it was made the 

correspondence between the force platform data to the foot stepping in it. Only the data of 

force platforms 2, 3 and 4 were used, since the subject did not step into force platforms 1 and 

5 and the data from 6 was not consistent. Finally the information was exported into to a *.mot 

file. 

The *.c3d file of the trial did not include the location in time of the events necessary to divide 

the gait cycle, so, it was created a Matlab routine cable of making that division by identify the 

basic phases of the cycle: single and double contact phases, and initial contact and toe-off for 

each leg. The contact frames/time for the right and left leg were considered the ones where 

the vertical ground reaction force (Fy) was higher than 1% of the subject’s body weight and the 

double contact as the intersection of the two cases. However, since for the right leg it was 

only available the force data corresponding to one stance phase, to extract one complete gait 

cycle, it was necessary to determine the first left toe-off. The procedure to determine the 

point of the first left toe-off consisted in obtaining the value of the vertical force component 

of the right leg (Right Fy) while the second left toe-off was happening. Then it was searched 

one frame where the Right Fy took a similar value, located during the first right leg stance 
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phase, before the first Fy peak, as described in the Figure 0.5.This frame was assumed as the 

left toe-off. 

 

 
Figure 4.5. Plot of the three components of the GRF acting in the right and left leg of the post-stroke 
individual. It was calculated the value of right Fy during the second left toe-off in the second right stance 
phase and it was used to determine the occurrence of the first left toe-off, by locating a close value in 
right Fy, during the first right leg stance phase. R_IC and L_IC are the events for right and left initial 
contact; and R_TO and L_TO are the events for right and left toe-off. 

 

The final gait cycle was then obtained and it is shown in the Figure 4.6. It consists in a sequence 

of a complete swing and stance phases for the left leg, while for the right leg the stance phase 

is divided.  
 

 
 

Figure 4.6. Gait cycle of the post-stroke individual, starting with the toe-off of the left leg (1,6195 s) 
and ending with the consecutive toe-off of the same leg, at 2,8835 s. 

 

 

-200

0

200

400

600

800

1000

1200

1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

Fo
rc

e 
(N

)

Time (s)

Events Right Fx Right Fy Right FZ Left Fx Left Fy Left Fz



 

Computational Simulation 

 41  

41 

 

4.3 - Computational Simulation 

4.3.1 - Software: OpenSim 

OpenSim is an open-source software system developed by NCSRR (National Center for 

Simulation in Rehabilitation Research), Stanford University, USA, that allows modeling, 

simulating and analysing the neuromusculoskeletal system [49]. The first version of OpenSim 

was released in 2007 and in 2014 OpenSim 3.2, the 15th version was available [50]. 

OpenSim was developed aiming to encourage the sharing of the advances in dynamic 

simulations, since it is free, the source code is obtainable and the users can create models and 

share them online with the other members of the community. As a result, there is available 

online a library of musculoskeletal models of the whole bone or isolated parts and analysis, 

which the users can obtain, adapt and improve [57]. 

The capabilities of this software include [39]:  

- Scaling of the models to match with subject specific anthropometry; 

- Inverse kinematics, to associate the experimental maker positions to the correspondent 

in the model; 

- Inverse dynamics, to define the forces resultant from known accelerations; 

- Static optimization and computed muscle control, to determine the individual muscle 

force from net generalized forces; 

- Forward dynamics, to calculate the trajectories resultant from the input controls and 

external forces; 

OpenSim models include bones (rigid bodies); joints (mobilizers, constrains and forces), 

contact elements (rigid constrains and compliant forces), ligaments and muscles (modeled as 

Hill-type actuators) and control algorithms [39, 57]. 

 

Using OpenSim, two independent simulations were performed, as described below: 

Study 1) Healthy gait: kinematic and kinetic data available in the online OpenSim community 

[57]. The experimental data was collected as part of the study [58] and corresponds to a healthy 

subject with 72,6 Kg. This trial was performed at self-selected velocity; 

Study 2) Pathological gait: kinematic and kinetic data from the gait evaluation performed in 

the LABIOMEP with a post-stroke subject (96 Kg body mass), affected in the left side of the 

body. The trial was also performed at self-selected velocity. 

 



 

Methodology 

42 

The design of each study followed the typical OpenSim workflow, as described in the Figure 

4.7. The first step consisted in choosing a model, adapting it to the dimensions and weight of 

the subject, by scaling with the Scale Tool, then determine the joint angles, using the Inverse 

Kinematics Tool, following by the process of reducing the residual forces (RRA Tool) and finally, 

computing the muscle forces, excitations and activations (CMC Tool). Each step will be 

described in the following points. 

 

 
 

Figure 4.7. OpenSim workflow [50]. 

 

4.3.2 - Musculoskeletal model 

The OpenSim musculoskeletal model “Gait2392”, downloadable in the library of models 

available online [57], was used in both simulations. This model is composed by the head, torso 

and lower limbs, having 92 musculotendon actuators and 23-degrees-of-freedom (DOFs) (Figure 

4.8). The DOFs included in the model consist in: pelvis position (3 DOFs), pelvis orientation (3 

degrees of DOFs), lumbar joint (3 DOFs), and for each leg, hip flexion–extension, abduction–

adduction, and internal–external rotation, knee flexion–extension, ankle plantarflexion–

dorsiflexion, inversion-eversion and toes flexion-extension [50]. 
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Figure 4. 8. Model “Gait2392” used in the simulations. 

 

4.3.3 - Scaling of the model 

With the purpose of making the model match the subject’s anthropometry and weight, the 

model was scaled using the OpenSim Scaling Tool.  

The scaling tool allows to change manually the dimensions of each body. However, the scaling 

based in the measurements was used. Using this option, the distance (m1) between each pair 

of virtual markers (the markers placed in the model Gait_2392) and the corresponding marker 

pair used in the experimental trial (e1) is calculated. Considering this two distances, it is 

determined a scale factor (s1 = e1/m1) which is used to change the dimensions of the body 

associated with the markers pair.  

Regarding the Study 2, in which the data collected in the LABIOMEP was used, the marker 

configuration used was different from the default used in OpenSim. Hence, some model 

markers were excluded and others were created or had their designation changed, using the 

Marker Editor. The marker lists of the Study 2 and Study 1 is shown in the annex 1. 

With the aim of calculating the distance between the pairs, the Scale Tool usually uses a static 

trial, in which the marker data is recorded while the subject stands still in a neutral position 

for a few seconds. Since the experimental data for the Study 2 did not include a static trial, 

the dynamic trial was used and it was only considered a time instant of the trial (4,5 s), which 

corresponds to a double support phase. This position was chosen because is the one most similar 

to the neutral position, during the gait cycle. 
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It was necessary to associate to each body one or more maker pair, so that the corresponding 

scale factor was applied to that body. In the case of using more than one marker pair, the scale 

factor is computed as the average between the factors computed for each one. In the Figure 

4.9 it is shown the Marker Set of the Scaling Tool for the Study 2, showing each body and the 

corresponding marker pairs associated. 

 

 

Figure 4.9. Display of the Measurement Set of the Scaling Tool (Study 2). At the left is presented a list of 
the measurements, associated with the scale factors are computed using the marker pairs shown at the 
right. 

 

The torso and the pelvis are recommended to be scaled non-uniformly [50], this is, with 

different scale factors in the three directions. For that reason, x and z direction of the torso 

was associated with the marker pairs RAC/LAC and RASIS/LASIS and for the y direction (vertical) 

with C7/RPSIS and C7/LPSIS (Figure 4.10). Although the markers chosen to scale the vertical 

direction are not aligned in the vertical direction, they are better indicators of the torso’s 

vertical length. A sacral marker would be more suitable for this purpose. 
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Figure 4.10. Markers used to calculate the vertical scale factor of the torso. The dashed line represents 
the distances between the pairs C7/LPSIS and C7/RPSIS. 

 

Concerning the weight, the Scaling Tool offers has two possible approaches: preserve the total 

mass of the subject of the experiment, maintaining the relative masses of the bodies in the 

model, or scaling each segment mass taking into account only the scale factors computed 

before. In the last approach the total mass might not match the subject's real mass. The first 

alternative was chosen, since mass modifications could lead to errors in the next steps, when 

the ground reaction forces measured are considered. It important to note that the Scaling tool 

adapts the mass distribution (inertia matrix) of each body, when changing its mass and 

dimensions and, using his option, the scale factors computed using the measurement set (Figure 

4.9) are not used for the mass scaling [50]. 

It is also necessary to weight each marker relatively to the others. Larger weights mean that 

the marker is tracked more tightly and the tracking errors are more penalized. For this reason 

the markers representing bone landmarks and functional joint centres should have larger 

weights [50], which is the case of the markers at the hip, knee and ankle joint .The coordinates 

representing the subtalar and metatarsophalangeal joints were locked in the neutral position 

(angle set to zero) and weighted heavily, so that they remain in that position during the 

simulations. In the OpenSim guide this step is recommended [50] and the reason why this 

recommended is because the model does not possess enough muscles to control these joints.  

 

In the case of the Study 1, there was no need to change the default marker configuration of 

the OpenSim. It was used a static trial file for scaling and the Measurement Set was already 
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defined in a file that came with the data. The weighting process was done by attributing larger 

weights the markers located in functional joint centres and bone landmarks, similarly to the 

Study 2. The relative weights used in both studies can be found in annex. 

 

After defining the parameters described above in both studies, the position of the experimental 

markers was manually adjusted to match the virtual markers, making several iterations until 

the RMS and the maximum error were minimized. 

 

4.3.4 - Inverse kinematic (IK) 

The Inverse Kinematics Tool allows to determine the joint angles and translations that best 

reproduce the experimental position of the markers. For each frame, it is solved a least-squares 

problem, in order to minimize the weighted error for each coordinate [49]: 

 

𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  ∑ 𝑤𝑖(�⃗�𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡

− �⃗�𝑖
𝑚𝑜𝑑𝑒𝑙)

2
𝑚𝑎𝑟𝑘𝑒𝑟𝑠
𝑖=1 + ∑ 𝑤𝑗(�⃗�𝑗

𝑠𝑢𝑏𝑗𝑒𝑐𝑡
− �⃗�𝑗

𝑚𝑜𝑑𝑒𝑙)
2𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒

𝑗=1   (4.6) 

 

Where �⃗�𝑖
𝑠𝑢𝑏𝑗𝑒𝑐𝑡

  and �⃗�𝑖
𝑚𝑜𝑑𝑒𝑙 are the three-dimensional positions of the ith marker, for the subject 

and the model; �⃗�𝑗
𝑠𝑢𝑏𝑗𝑒𝑐𝑡

 and �⃗�𝑗
𝑚𝑜𝑑𝑒𝑙 are the angles of the jth joint, for the subject and the model; 

and 𝑤𝑖 and 𝑤𝑗 are the corresponding weights of the markers and the joints. 

This tool uses as input the makers positions stored in the *.trc file. The weighting of the markers 

was done by attributing larger weights to markers less susceptible to movements due to skin 

and soft tissue during gait [50]. The weights used in both simulations can be consulted in the 

annex 3. 

 

4.3.5 - Inverse dynamics (ID) 

The Inverse Dynamics Tool calculates the joint moments necessary to make the model perform 

the desired kinematics, according to the basic equations of motion (Equations 3.4 and 3.5). 

Although, the following steps are not dependent on the ID results, this step was done to analyse 

the joint moments and the forces acting in the pelvis, before the reduction of the residuals.  

The output *.mot file of the Inverse Kinematics step was used as input, as well as the *.mot file 

containing the ground reaction forces, moments and the PWA/COP. The Inverse Dynamics Tool 

allows the possibility to consider the interaction with the ground as a body force, which acts 

in the centre of mass of a body or as a point force that acts in the PWA/COP and produces a 

torque. The second option was used in both simulations. During this and the following steps, 

the subtalar and the metatarsophalangeal joint were locked in the Coordinates Editor, so that 

the model was consistent with the kinematics obtained through the Inverse Kinematics step 
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4.3.6 - Residual reduction algorithm (RRA) 

With the purpose of reducing the residual forces and moments acting in the model, which are 

assumed to solve the dynamic inconsistency between the experimental data and the model, 

the Residual Reduction Algorithm Tool was used. The residual forces are determined as 

described in the Equation 4.7, and the errors associated are obtained by the Equation 4.8. 

 

�⃗�𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = ∑ 𝑚𝑖�⃗�𝑖 − �⃗�𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
𝑖=1         (4.7) 

 

Where �⃗�𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 is the external force acting on the model; 𝑚𝑖 and �⃗�𝑖 are the masse and 

acceleration of the ith segment and �⃗�𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is the residual force. 

 

𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =  ∑ Ω𝑖(�̈�𝑗
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − �̈�𝑗

𝑚𝑜𝑑𝑒𝑙)
2𝑗𝑜𝑖𝑛𝑡𝑠

𝑗=1       (4.8) 

 

Where �̈�𝑗
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 and �̈�𝑗

𝑚𝑜𝑑𝑒𝑙 are, respectively, the desired and the effective acceleration of the 

jth joint and Ω𝑖 is the weight associated to that joint. 

 

This algorithm replaces the muscles of the model by ideal actuators acting in each coordinate, 

and each one has an optimal force and an excitation control associated. The force produced 

by the ideal actuator is then given by the Equation 4.9. 

 

𝐹𝑜𝑟𝑐𝑒𝑖𝑑𝑒𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 = 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐹𝑜𝑟𝑐𝑒 × 𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛       (4.9) 

 

The tool uses as inputs the files containing the kinematics and the ground reaction forces and 

two XML files: 

- Actuators file, where are described the ideal actuators and their properties: optimal force, 

point of application (for point actuators), bodies (in the case of torque actuators) and the 

minimum and maximum excitation; 

- Tasks file, which specifies the relative weight attributed to each joint. 

Initially it was done an initial pass to verify if the model was strong enough to reproduce the 

kinematics. Actuators that require lower controls to generate force are less expensive for the 

algorithm and, consequently, it relies in these actuators. Thus, in the initial pass, high optimal 

forces were attributed to residual point actuators (Fx, Fy and Fz) and to residual torque 

actuators (Mx, My and Mz) and the weights were the same to each actuator. The results were 

analysed and the optimal forces of residual actuators were decreased to force the algorithm 

to use the coordinate actuators (joint actuators) instead of the residual ones. For each iteration 
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the error associated to each coordinate was verified and the weights of the coordinates with 

high error were increased to improve their tracking. This was done until an optimal solution 

was found, in which the RMS and the maximum values of the residuals and the errors were 

considered acceptable, according to [50]. It is important to refer that, since the subtalar and 

the metatarsophalangeal joints were kept locked, there were not include in the tasks file, 

because they were not tracked. And the actuators acting in these joints were removed.   

At the end of the process, OpenSim automatically adjusts the COM (Centre of Mass) of the torso 

and suggests mass adjustments to each one of the bodies, in order to reduce the residual forces, 

which were applied to the model before the next step. 

 

4.3.7 - Computed muscle control (CMC) 

Computed Muscle Control Tool was used to determine how the muscles of the model actuates 

to produce the movement. This algorithm uses a combination of a proportional-derivative (PD) 

control and static optimization, as shown in the scheme of the Figure 4.11. 

 

 
 

Figure 4. 11. Scheme of the CMC algorithm used in gait [59]. 

 

Static optimization distributes the load to the muscles, which are synergistic actuators, for 

each time instant. This process uses a performance criterion that is intended to be minimized, 

with two possible formulations: slow and fast target (Equation 4.10). The fast target approach, 

generally recommended by producing better tracking [50], was used in both simulations. 

 

𝐽 = ∑ 𝑥𝑖
2𝑛𝑥

𝑖=1 ; 𝐶𝑗 = �̈�𝑗
∗ − �̈�𝑗∀𝑗         (4.10) 

 

Where 𝐽 is the performance criterion; 𝑥𝑖  is the excitation of the ith actuator; �̈�𝑗
∗ and �̈�𝑗 are the 

desired and the obtained accelerations of the jth joint; and 𝐶𝑗 is the equality constraint (C=0), 

that requires the difference between the desired and obtained acceleration to be within the 

tolerance value, in this case was used 0,00001.
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The file inputs of CMC are: 

- *.mot file describing the kinematics, obtained with the RRA; 

- *.mot file with ground reaction forces (the same used in ID); 

- *.xml files containing: 

- model actuators: muscles, the reserve and residual actuators and their properties. 

The reserve actuators are ideal actuators that  

- control constraints, where are specified the maximum and minimum excitation for 

the actuators described in the model actuators file; 

- tasks which contains the relative weights for each coordinate, similarly to the tasks 

file from RRA. 

Similarly to the RRA step, it was made an initial pass with large optimal forces for residual and 

reserve actuators and the same weights for each coordinate. In the following iterations the 

optimal forces for reserves and residuals were reduced and the controls constrains increased, 

so that the controller choose to rely on muscles instead of residual and reserve forces. The 

iterations were stopped when the residuals, reserves and errors associated were reduced 

enough to acceptable values.  

4.4 - Summary 

The data from a gait trial performed with post-stroke individual was extracted from a *.c3d file 

and processed using the BTK in Matlab and a *.trc and a *.mot file were obtained. The first one 

stores the marker trajectory data (kinematic) and the second one stores the ground reaction 

force data (kinetic). These two files were used as inputs in the OpenSim simulation described 

in the next chapter. 

Two gait simulations were performed using OpenSim, one with a subject considered healthy 

and the other with a post-stroke individual. From the correspondent experimental data, it was 

determined the joint angles and torques, using inverse kinematics and inverse dynamics, 

respectively, the residual forces and moments acting in the model were reduced (through RRA) 

and finally, the muscular behaviour was determined using CMC. 
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Chapter 5   

Results and discussion 

5.1 -  Introduction 

In this chapter the results are presented and discussed. In the first part, the results from the 

extraction from a *.c3d file and the processing of the experimental data used in the Study 2 

are presented. Secondly, the results obtained in each step of the workflow of the OpenSim are 

shown and analysed. In the case of the Study 1, since it consists in a simulation of a healthy 

individual, the values of the joint angles and moments and the muscle activations and powers 

were compared with the available reference values in the literature. For the Study 2, these 

parameters were also compared with the literature about post-stroke gait.  

In both cases, an analysis of the muscular activation and powers of the principal plantarflexor 

muscles (soleus and medial gastrocnemius), the main dorsiflexor (tibialis anterior) and one 

hamstring (semimembranosus) was done and analysed together with the results of the 

kinematics. 

5.2 - Experimental data 

The data representing the 3D position of the markers was not subjected to processing, since it 

was not corrupted with noise. The software used in the data collection (Qualisys Track Manager) 

includes post-processing of the marker data, eliminating the need of filtering to remove the 

noise [60]. Using the software MLSViewer, a Motion Lab Systems Software © to display the 
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contents stored in a *.c3d file [61], it is possible to visualize the recorded trajectory of the 

markers. In the Figure 5.1 it is shown the trajectory of the marker placed in the heel of left 

foot (LBACKFOOT) in the three directions (x, y and z of the laboratory coordinate system), 

using MLSViewer, where is possible to see that the data is clean. Besides, this data was 

automatically filtered in OpenSim when using the IK, ID and RRA Tools, as recommended in the 

OpenSim guide [50]. 

 

 

 

Figure 5.1. Visualization of the position, in the three directions x, y and z (laboratory coordinate system) 
of the marker RBACKFOOT of the post-stroke individual, in MLSViewer. 

 

The force platforms used in the experimental trial and considered in this study were of type 2, 

meaning that each one has six output channels for analog data of the three components of the 

force and of the moments acting in the origin of the force platform [48]. This data was stored 

in a *.c3d, which contained also the scale factors and the calibration matrixes necessary to 

convert the raw data (electric output) into force data. This operation has been done by using 

the BTK, which has two distinct functions, both used in this work. Since the code of the 

functions is not available, it is not possible to analyse the each step of the operations 

performed. The output of the function btkGetForcePlatformWrenches is the value of the forces 

and moments in the origin of the force platform, consequently this function only needs to 

transform the electrical signal of the force plate, using the scale and calibration information, 

into force and moment data. On the other hand, according to the informative webpage of the 

BTK [62], the function btkGetGroundReactionWrenches, which gives the forces, location of the 

PWA and the moments defined in that point, in addition to this transformation, determines the 

PWA and the moments on it, by using the formula developed by Shimba [63] which also was 

described in Zatsiorsky [55].  
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Regarding the location of the COP and the PWA, all three components of the position did not 

show considerable differences, suggesting that the distance between this two points is not 

relevant.  

It was verified that the values of the forces obtained with the two functions were the same, as 

expected. The vertical moments showed small dissimilarities which mean once more that the 

location of the PWA and the COP is very small. In fact, these difference of positions is explained 

by the horizontal moments about the PWA that, in this case, are very small (Figure 5.2). 

 

 

 

Figure 5.2. Ground reaction moment in the vertical direction (My, considering the OpenSim coordinate 
system) in the PWA, obtained using the function btkGetGroundReactionWrenches (PWA Right My and PWA 
Left My) and the free-moment acting in the COP, for the right and left legs of the post-stroke individual.  

 

Regarding the horizontal moments in the PWA (Figure 5.3), it were verified abnormal peaks in 

the beginning and the end of the contact phases. By analysing directly the data of the horizontal 

moments obtained with the function btkGetGroundReactionWrenches, it was noticed that the 

time of the beginning and of the end of the contact, assumed to be where the vertical force is 

higher than zero, it does not coincide with the delimitation of the contact in the horizontal 

moments. 

The found peaks could be smoothed by interpolating the data at the initial and final moments 

of contact. However, it is important to notice that the value of the horizontal moments is very 
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small, comparatively to the vertical moment and, consequently, the most part of the studies 

concerning gait analysis, including pathological gait analysis [1, 55], do not take into account 

this moments. Indeed, the studies of gait generally use only the ground reaction forces and 

neglect the moments [16, 22, 56, 64]. 

 

 
 

 

 

 

 

 

Figure 5.3. Horizontal ground reaction moments acting on the right and left side (Mx and Mz, considering 
the OpenSim coordinate system) of the post-stroke individual. 
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5.2.1- General spacio-temporal gait parameters 

 

Table 5.1. General gait parameters obtained for the Study 2 and Study 1. 

 Study 1 Study 2 

Velocity (m/s) 1.30 0.92 

Cadence (steps/min) 97.6 95.2 

Left step length (m) 0.563 0.588 

Right step length (m) 0.552 0.593 

Gait cycle time (s) 1.23 1.26 

Double support (%) 33.3 26.0 

Right stance (%) 67 65 

Left stance (%) 66 60 

 

General spacio-temporal gait parameters (Table 5.1) were determined because they help 

characterizing gait and detecting abnormalities, like asymmetry.  Since in both gait trials the 

subject walked with self-selected speed, it is possible to analyse this parameter. Gait velocity 

was higher in the Study 1 (1.30 m/s) comparing to Study 2 (0.92 m/s). However, the velocity 

obtained for the post-stroke individual was not inside the range reported in [13] for post-stroke 

individuals, from 0.10 m/s to 0.76 m/s. The time of duration of one gait cycle was higher in 

the Study 2 (1.26 s), and consequently, the cadence was lower (95.2 steps/minute), comparing 

to the Study 1 (1.23 s of gait cycle time and 97.6 steps/minute). The literature reports these 

characteristics for post-stroke individuals with slow gait slow gait [12, 19]. These studies also 

refer that the stride length is shorter in post-stroke gait, but this was not verified. Comparing 

the step length between the two limbs, in both Study 1 and Study 2 the right and left legs 

showed similar step length. However, according to the studies, it is common that the stride 

length verified in the CONTRA limb is higher, even though it exists considerable variability 

between the individuals [13, 19].  

Also post-stroke gait is associated with higher double support percentage in the gait cycle [65], 

which was not verified in the Study 2 (26.0%), comparing to a healthy individual (33.3%). In a 

typical gait cycle, the double support phase occupies about 20% in one complete gait cycle[1]. 

Relatively to the single limb stance, in the Study 2 it was verified higher time percentage of 

stance for the IPSI limb, which is in accordance with the study [19]. However it was predicted 

that the single stance for a post-stroke individual was higher, comparing to a healthy one, 

which was not verified and for the Study 1 this percentage was even higher than the reference 

value for healthy people (60%) [1]. 
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5.3 - OpenSim Simulation 

5.3.1- Scaling of the model 

According to the OpenSim guide [50], the RMS value and the maximum marker error should be 

inferior to 1 cm and 2 cm, respectively. In both studies the recommended error limits were not 

achieved and the Study 1 showed higher RMS and maximum marker error (Table 5.2). Similar 

values of these errors were obtained in [66], where the model Gait2354 (musculoskeletal model 

with 23 DOFs and 54 musculotendon actuators) and the same static trial data was used: 3,4 cm 

(RMS) and 6 cm (max error). The maximum marker error in the scaling of the Study 1 is relative 

to the marker Top.Head, which did not correspond to a functional joint centre or a bony 

landmark, while in the scaling of the Study 2 the maximum error was associated with a marker 

that represented a bony landmark, but not a functional joint centre. 

 

 
Table 5. 2 Marker error (RMS) and maximum error associated with the scaling process for the models 

in the Study 2 and Study 1 and the respective limit values recommended in [50]. 

 Study 2 Study 1 Recommended limits 

Marker error: RMS (cm) 1.49 3.02 < 1 

Max error (cm) 2.05 (LPSIS) 6.14 (Top.Head) < 2 

 

The errors associated with scaling could be decreased if during the collection of the 

experimental data it were taken pictures of the individuals with the markers placed, in order 

to analyse the exact position of them. Also recording the trial would be valued since it would 

allow to associate the visual evaluation of gait with the results, to identify less reliable markers 

(not viable for inverse kinematics) and to verify if the assumption that the subtalar and 

metatarsophalangeal joints remain in the supposed neutral position (0º) was consistent. To 

verify if the locking of subtalar and metatarsophalangeal joints in the neutral position could 

influence the errors, scaling was done with this joints unlocked and the resulting errors did not 

vary. So, since in the next steps they were locked, it was more coherent to lock them in scaling. 

Additional measurements of the length of the body segments and its mass distribution (using a 

DXA - Dual-energy X-ray absorptiometry) would contribute for a scaling more accurate [50]. In 

the case of the Study 2, a static trial could also be performed, since it is the most 

recommended for scaling. 

Since the process was done choosing the option to preserve the total mass of the subject, when 

scaling each segment it was used a constant scale factor, independent from the computed with 
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the marker measurements, so that the mass distribution of each one was the same as the 

model. However, is important to notice that the mass distribution varies considerably from on 

individual to other, especially in the torso. However this option was chosen so that the final 

total mass matched the measured mass of each individual and it wouldn’t affect the simulation 

when the ground reaction data was taken into account. 

The total mass of the subjects include the mass of the arms and since the model does not 

possess the superior limbs, their mass was distributed for the other segments. This could 

influence the scaling process, since the process maintains the mass distribution of each 

segment, when scaling is done, and a higher mass could lead to augmented volume of the 

segments, interfering with the marker placement. Also, it might increase the magnitude of the 

moments, once the segments will have higher mass then the real. 

 

5.3.2- Inverse kinematics 

Solving an inverse kinematics problem, it was possible to obtain the joint angles and compare 

them with the literature. In the Figure 5.5  the plots of hip, knee and ankle angles obtained 

for the Study 1 and Study 2 are presented and the Figure 5.4 shows the curves of reference 

[1] for these joints, considering a healthy gait cycle. It is important to take into account that 

in the curves obtained in simulation the gait cycle starts with the left toe-off (L_TO), while the 

reference curves only show the gait cycle for one leg and it starts with the respective initial 

contact (L_IC). 

Analysing the hip angles, the results from Study 1 (healthy subject) show similar curves in both 

sides and, comparing with the reference curve, shows lower maximum hip flexion angle (22º in 

the left leg and 24º in the right leg), which is approximately 30º in the reference.  

The knee angle curve of the healthy subject appears to match the reference, having a maximum 

flexion of 70º, that is inside the expected (60º to 70º[1]).   

Relatively to the ankle angle, the results from the simulation of the healthy individual show 

some differences from the reference, which might be related to the characteristic gait pattern 

of the individual that is being studied. The maximum plantarflexion of the ankle that happens 

during toe-off registered a lower value (approximately -8º) in both sides and in the reference 

the corresponding value is approximately -25º. Also the maximum dorsiflexion value in both 

legs, before the respective toe-off, was 15º in the Study 1 while the reference value is near to 

5º.  

In post-stroke gait, the authors frequently report decrease of hip extension during stance and 

increase hip extension during swing in the CONTRA limb [19]. In the results of the inverse 

kinematics from the Study 2 only the first characteristic was observed in the CONTRA limb (left 
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limb, in the Study 2) and during swing it was verified a decrease of hip extension prior toe-off, 

comparing to the IPSI limb (right limb, in the Study 2).  

Also the results for the knee angle are not in agreement with the characteristic post-stroke 

gait, reported in [19]. It was expected an increase of knee extension during initial contact in 

the CONTRA limb, but it was verified lower knee extension during the left toe-off (-11º), in 

comparison with the IPSI limb (-4.5º). 

The CONTRA limb, presents also some differences in relation to the IPSI in the ankle angle: 

higher dorsiflexion in the swing phase and prior to the respective toe-off and decrease 

maximum plantarflexion in the left toe-off (-3.6º), comparing to the IPSI limb (-8.6º). The 

decrease of plantarflexion is a common in post-stroke gait, usually as consequence of 

plantarflexors weakness [12, 13, 19], however, this type of gait is also characterized by 

decrease of dorsiflexion during swing and, in this case, the results of the inverse kinematics 

show the contrary.  

 

 

 

Figure 5.4. Reference hip, knee and ankle joint angles for healthy gait [1]. The gait events are 
represented as: IC – initial contact; OT – opposite toe-off; HR – heel rise; OI – opposite initial contact; TO 
– toe-off; FA – feet-adjacent; TV – tibia vertical. 
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Figure 5. 5. Hip, knee and ankle kinematics obtained with inverse kinematics, for the Study 1 (first row) and the Study 2 (second row). The blue line refers to the right 

limb (IPSI limb in the Study 2) and the red line to the left limb (CONTRA limb in the Study 2).
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The errors associated with the tracking of the markers during the inverse kinematics process 

were satisfactory for the Study 2, but exceeded the recommended limits in the Study 1 (Table 

5.3). The maximum error registered in this study is associated with the marker R.Acromium, 

which had associated a lower tracking weight.  

The IK process is very dependent of the scaling process [50] and consequently, the high errors 

registered in the IK for the Study 1 might be related with the errors obtained in the 

corresponding scaling process. 
 

Table 5. 3 Marker error (RMS) and maximum error associated with the scaling process for the models 

in the Study 2 and Study 1 and the respective limit values recommended in [50]. 

 Study 1 Study 2 Recommended limits 

Marker error: RMS (cm) 2.25 1.19 < 2 

Max error (cm) 8.56 (R.Acromium) 3.98 (RMK) < 2-4 

 

5.3.3- Inverse dynamics 

Using inverse dynamics, the model tried to reproduce the movement determined by inverse 

kinematics in the previous step while subjected to the external forces and moments contained 

in the *.mot files created.  

Making a first analysis of the force that acts in the pelvis, higher peaks in the vertical force 

(Fy) are observed in the instants of initial contact of the two limbs (Figure 5.6). If the vertical 

ground reaction forces are plotted in the same graph as the forces acting in the pelvis, from 

ID, (Figure 5.7) there is a coincidence with decrease of the peaks and the beginning of the 

contact. Indeed, the vertical force acting in the pelvis appears to be compensating the 

inexistence of a force in the instants before Fy becomes different from zero. This force is the 

major force component and accounts for the vertical acceleration of the centre of mass and 

the characteristic curve of this force includes a quick increase after heel strike [67]. However 

the vertical force obtained has an abrupt increase, verified in these instants, which rise from 

zero to 130 N (in the left initial contact) and 125 N (right initial contact) in a small interval of 

time. To minimize the errors originated from this, smoothing the data could be done in the 

processing step. 
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Figure 5. 6. Forces acting in the pelvis, obtained using ID, before reducing the residuals. The blue line 
represent the vertical residual force, the red and the green represent the horizontal residual forces (Fx 
and Fy). 

 

 
Figure 5. 7. Plot of the vertical GRF acting on the left (red) and right (blue) legs and the force acting in 
the pelvis (green). 

 

Considering the differences between individuals in the size and weight of the segments, in 

order to compare the joint moments with the literature is necessary to scale these values in 

newton-meters per kilogram body mass. 
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Figure 5. 8. Reference internal joint moments for the hip, knee and ankle according to [1], in N.m/Kg, 
for one gait cycle. The gait events are represented as: IC – initial contact; OT – opposite toe-off; HR – 
heel rise; OI – opposite initial contact; TO – toe-off; FA – feet-adjacent; TV – tibia vertical 

 

Comparing the results of hip joint moments obtained in the healthy subject from the Study 1 

(Figure 5.9) with the values found in the literature (Figure 5.8), the moment curve has a similar 

shape, however, the two legs show different range values: -0.8/ 0.5 N.m/Kg for the right leg 

and -0.6/0.6 N.m/Kg for the left leg. Also the knee moment obtained in this simulation is in 

agreement with the reference, though there were found differences between the two legs in 

the maximum hip flexion, at initial contact: the right leg reached a moment of -0.7 N.m/Kg 

and the left -0.6 N.m/Kg.  

Relatively to the ankle, the maximum plantarflexor moment it was higher than the reference 

values (approximately -1 N.m/Kg) in both limbs and the right leg registered a higher value (-

1.77 N.m/Kg) than the left (1.50 N.m/Kg). 

Normal gait is assumed to be symmetric, even though it is accepted a small degree of 

asymmetry, which is negligible in healthy subjects [68]. The results do not show considerable 

differences between both sides. 

Relatively to the Study 2, ID was performed using the external force data considering the COP 

and the PWA. Analysing the results obtained, there was not found considerable differences 

between them. The curves show the similar shape and maximum and minimum moment values.  

In the Figure 5.9 the joint moments obtained using the PWA are shown. The maximum hip 

flexion moment was higher for the IPSI limb (0.52 N.m/Kg) comparing to the CONTRA limb (0.45 
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N.m/Kg), while the maximum hip extension moment for the IPSI limb was -0.80 N.m/Kg and 

for the CONTRA limb -0.70 N.m/Kg.  

Regarding the knee moment, it was found a lower knee flexor moment in the CONTRA limb (-

0.16 N.m/Kg) before the initial contact, comparing to the IPSI limb in the correspondent initial 

contact (-0.32 N.m/Kg). However, it is observed high abnormal peaks happening during the 

initial contact, in both sides, that also occur in the hip moment data, higher than the ones that 

appear in the inverse dynamics results from the Study 1.  

The ankle plantarflexor maximum moment differ slightly from one limb to the other (-1.47 

N.m/Kg in the IPSI limb and -1.40 N.m/Kg in the CONTRA limb). In both limbs it was not found 

the dorsiflexor moment after initial contact as expected, by looking at the curve found in the 

literature. An abnormal peak appeared in the IPSI limb during its initial contact. 
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Figure 5. 9.  Hip, knee and ankle joint moments obtained with inverse kinematics, for the Study 1 (first row) and the Study 2 (second row). The blue line refers to the right 

limb (IPSI limb in the Study 2) and the red line to the left limb (CONTRA limb in the Study 2).
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5.3.4- Residual reduction algorithm 

The reduction of the residuals was successfully accomplished in both studies 1 and 2, according 

to the recommended in the OpenSim guide [50], as it is possible to verify by analysing the Table 

5.4 . The best results were obtained for the Study 1, in which the values of maximum and RMS 

residuals and errors were inside the optimal limit. In the Study 2, th e residuals overpassed the 

optimal threshold, however, decreasing residuals would increase the errors associated with the 

kinematics beyond the acceptable values. Analysing the plot of the residual forces in the Study 

2 (considering the PWA), it is possible to see peaks in the vertical force (Fy), in the point of 

the right and left initial contact, also verified in the internal moments from ID. However, it is 

verified a decrease of the magnitude of these peaks, after the reduction of the residuals (Figure 

5.10). 

 

 

 
Figure 5. 10. Residuals forces obtained in RRA for the Study 1, using PWA. The blue line represent the 
vertical residual force, the red and the green represent the horizontal residual forces (Fx and Fy).  

 

In ID, the action of external forces (GRF) is balanced only with the body forces, while in RRA 

the residuals that are the forces and moments acting in the pelvis are reduced and, 

consequently, this reduction is compensated by changes in the actuation of the other joint 

actuators.  

There are no reference values to evaluate the dimension of the total mass adjustment 

recommended by after the RRA step. In both cases it was less than 1%, being lower for the 

healthy model (Study 1). This might not be related with the pathology, but with the 

experimental data itself, since the RRA intends to compensate for dynamic inconsistencies.  
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Table 5. 4 Maximum and RMS values of the residual forces and moments and rotational errors obtained 
for the RRA of the Study 2 and Study 1 and the recommended [50] optimal and maximum thresholds. 

 

Relatively to the Study 2, the RRA was also performed having the GRF considering the COP and 

the PWA, to verify the influence mainly the influence of the horizontal moments in the 

simulation. In both cases it was used the same settings for the actuators and tasks. Small 

differences were detected in what concerns to the internal joint moments an the residuals 

obtained. The highest difference verified between the two analysis was found in the maximum 

rotational error associated with the right ankle, which was 1,57º when the PWA is considered 

and -3,00º for the analysis using the COP. The weight associated with the right ankle was 

increased to attempt to diminish the error in tracking this joint, however, the error was not 

diminished. This means that the model cannot track the motion completely without the action 

 Study 1 

Study 2 Absolute 

optimal 

threshold 

Absolute max 

threshold COP PWA 

Max Residual 

Forces (N) 

-7,21 

(Fx) 
-19,00 (Fz) -17,27 (Fz) < 10 < 25 

RMS Residual 

Forces (N) 
3,26 6,98 7,10 < 5 < 10 

Max Residual 

moments (Nm) 

-22,80 

(Mz) 

-62,13 

(Mx) 

-58,66 

(Mx) 
< 50 < 75 

RMS Residual 

Moments (Nm) 
9,08 15,17 16,32 < 30 < 50 

Max translational 

error (cm) 

-1,09 

(Pelvis 

x) 

-2,89 

(Pelvis z) 

-2,83 

(Pelvis z) 
< 2 < 5 

RMS translational 

error (cm) 
0,61 1,31 1,35 < 2 < 4 

Max rotational 

error (deg) 

-0,40 

(Right 

hip 

flexion) 

-3,00 

(Right 

ankle 

angle) 

-1,57 

(Right 

ankle 

angle) 

< 2 < 5 

RMS rotational 

error (deg) 
0,16 0,64 0.58 < 2 < 5 

Total mass 

adjustment (Kg) 
-0,05 -0,43 -0,56 - - 

Total mass 

adjustment (%) 
-0,07% -0,45% -0,58% - - 
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of the residual forces and its decrease, particularly in the instants were the peaks exist, caused 

errors in tracking the kinematics. 

In the next step (CMC) it was used the PWA approach for the external forces, since the 

maximum error associated was lower and it will decrease the accumulation of errors in 

kinematics in the final result. 

 

5.3.5- Computer muscle control 

The results of the kinematics computed in the previous step were used as the motion to track 

during CMC. For both studies it was performed several iterations in order to try to find the 

optimal solution, in which the residuals, reserves and errors were inside the optimal, or at 

least, the acceptable limits. In the Table 5.5  are shown the results for these parameters. The 

results relative to the Study 1 are satisfactory since all the parameters are inside the optimal 

threshold. In the case of the Study 2, the maximum values of residual moments, rotational 

error and reserve force surpassed this optimal limit, but still acceptable.  However, it was 

obtained a peak of 130,60N of residual vertical force (Fz) in the simulation using the PWA, in 

the right initial contact (Figure5.11).  

 
 

Table 5. 5 Maximum and RMS values of the residual forces and moments, reserve forces and translational 
and rotational errors obtained for the CMC of the Study 2 and Study 1 and the recommended [50] optimal 
and maximum thresholds. 

 Study 1 Study 2 (PWA) 
Optimal 

threshold 

Max 

threshold 

Max Residual Forces (N) -8,83 (Fx) 130,66 (Fz) < 10 < 25 

RMS Residual Forces (N) 3,37 12,85 < 10 < 25 

Max Residual moments 

(Nm) 
-22,39 (Mz) 59,31 (Mx) < 50 < 75 

RMS Residual Moments 

(Nm) 
9,43 15,76 < 30 < 50 

Max translational error 

(cm) 
-0,01 (Pelvis z) 0,10 (Pelvis z) < 1 < 2 

RMS translational error 

(cm) 
5,31E-3 0,02 < 1 < 2 

Max rotational error 

(deg) 

-0,38 

(Left knee 

angle) 

-6,54 

(Right ankle angle) 
< 2 < 5 
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RMS rotational error 

(deg) 
0,09 0,46 < 2 < 5 

Max Reserve (N.m) 

3.12 

(Left ankle 

angle) 

-64,61 

(Right knee angle 

reserve) 

< 25 < 50 

RMS Reserve (N.m) 0,12 2,96 < 10 < 25 

 

 

 
Figure 5. 11. Graph showing the value of the residual forces Fx (red), Fy (blue) and Fz (green) acting in 
the pelvis, resulting from CMC. 

 

The right ankle had the highest tracking error associated (-6,54º). Looking at the curve of the 

right ankle kinematics after RRA and after CMC (Figure5.12, it is possible to see that the error 

starts from the right initial contact, the instant where the large residuals were obtained, 

suggesting a relation between this occurrences. Similarly, in the previous step (RRA) the largest 

tracking error was associated with the right ankle angle, even though was inside the acceptable 

limits. Also in the instant of right initial contact it were verified high reserve moments in the 

right side: the right knee reserve actuator reached the maximum reserve value (-64,61 N.m) 

and also the right ankle registered 50,20 N.m. Decreasing the optimal force of this reserve 

actuators, so that the model would not use them, leads to interruption of CMC process, meaning 

that the model needs the action of these actuators to follow the kinematics. 

 It could be hypothesized that the locking of the subtalar and metatarsophalangeal joints could 

influence the errors in tracking the ankle movement, but it was not verified the same problem 

in the left ankle, which was satisfactorily tracked in the CMC (0.69º), making this hypothesis 

less plausible. 
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Figure 5. 12. Right ankle angle error. The red line corresponds to the right ankle angle obtained after 
RRA and the blue line represents the right ankle angle after CMC. 

 

5.3.6- Muscle action 

The output files of the CMC include: 

- Joint kinematics (position and angular velocity and acceleration) and in the case 

of the pelvis also the linear velocity and acceleration; 

- Tracking errors of the kinematics; 

- Actuator (muscle and reserves) forces and powers; 

- Actuator (muscle and reserves) powers; 

- Controls: excitation patterns of each actuator; 

- States: muscle activation and fibber length. 

The activation pattern of each reserve and residual actuator is directly linked to the respective 

excitation, since the activation is the result of the product of the excitation by the optimal 

force [50]. In the case of the muscles, the activation is obtained through the excitation-

activation dynamics (Figure 3.4), described by the differential equation 3.3, resulting in some 

time delay between excitation and activation. 

The analysis of the muscle force through time is not enough to a better understanding of the 

behaviour of the muscles. Since a muscle can produce force isometrically (no fibber length 

changing), concentrically (produces force by contracting in the same direction of the 

movement) and eccentrically produces force by lengthening in the direction of the movement) 

and also can change its length and not exert force [1, 4].  Consequently, to do a more complete 

analysis is necessary to study the muscle activation together with the kinematics in the 

respective time, to verify the activation and the direction of the movement. When a muscle 

contracts concentrically, it produces energy, meaning that it generates positive power, while 

eccentric contraction leads to energy absorbing and, consequently negative power [1]. Since 

power is the variation of energy (joule) with time, its units are joule per second (J/s) watt (W). 
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Studies about the muscle impairments in post-stroke gait often report weakness of 

plantarflexors and also the dorsiflexors of the contralesional limb (CONTRA) and changes in the 

activation of the hamstring and quadriceps as a compensatory mechanism [16, 17, 19] in both 

limbs. The analysis of the muscle action will be focused in these group of muscles. The soleus 

(SOL) and medial gastrocnemius (MEDGAS) are the plantarflexors most studied in post stroke 

gait [69, 70]. For that reason these two muscles were chosen for analysis. The 

semimembranosus (SMEMB), from the hamstring group, was also analysed. This muscle was 

chosen because in the model it has higher maximum isometric force and, consequently, will be 

preferably used by the model to generate the necessary force, since it is considered a 

“cheaper” actuator, comparing to the others muscles in the same group with lower maximum 

isometric force and the same constrains in activation. 

 

 
Figure 5. 13. Activation of the main muscle groups during the gait cycle [1]. 

 

Study 1 – healthy gait 

According to the bibliography (Figure 5.13), the activation of the triceps surae muscles, which 

include SOL and MEDGAS, begins at opposite toe-off and lasts until the middle of terminal 

swing, reaching the maximum at terminal stance phase. The contraction of this muscles is 

concentric since while active the ankle moves to plantarflexion. Since concentric contraction 

is associated with energy generation, that results in positive power.  During this phase it is 

verified the largest amount of power generated during the gait cycle, essential to accelerate 

the limb before its toe-off [1]. Looking at the graphs showing the powers of the SOL, MEDGAS 
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(Figure 5.14) it can be seen a large amount of positive power in this phase, even though in the 

case of the gastrocnemius muscles it is verified some oscillations. There were verified 

differences in the activation of the plantarflexor muscles comparing the two sides, not evident 

when looking at the maximum activation reached, but in the duration. The healthy right SOL 

and also the MEDGAS show longer activation before the maximum is reached.  

After toe-off, the contraction of the triceps surae ceases and the dorsiflexors of the ankle are 

activated, namely the tibialis anterior (TA)[1]. In both sides, there is an increase of activity of 

TA after the respective toe-off, as expected. At this point the power of TA is positive in both 

sides (Figure 5.14). This muscle usually stays active until the next mid-stance, after the 

opposite toe-off happens [1]. The left TA presents an unusual high activation at the opposite 

initial contact (at 90% of the considered gait cycle). The right leg also shows unpredicted 

activation of the TA during the right stance and low activation after initial contact.  

Relatively to the power associated, both right and left TA showed negative power before the 

respective toe-off, where they contract eccentrically and a positive power after toe-off, 

indicating concentric contraction. Both legs showed power oscillations during the cycle. 

Since in the simulation referent to the healthy subject the kinematics of the hip did not show 

considerable asymmetries, it was expected that the muscular activation between the right and 

left legs would be also symmetric, which was verified. In the case of the healthy SMEMB, the 

pattern of activation did not match the reference. The hamstring muscles, which contribute 

for hip extension and knee flexion, are usually activated during terminal swing, before initial 

contact until opposite toe-off. In the results obtained, both right and left SMEMB are activated 

in during these part of the gait cycle, with negative power before initial contact, since the hip 

is moving to flexion, and positive work after initial contact because the hip starts to extend. 

However, both muscles are active after the initial contact of the opposite limb with positive 

power associated. Since the hamstrings also are responsible for knee flexion, this non expected 

activation might be related with the high knee flexion that happens in these instants (Figure 

5.5).  
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Figure 5. 14. Activation and power associated with the muscles SOL, MEDGAS, TA, SMEMB, obtained in CMC (Study 1). The red line refers to the CONTRA limb and the 
blue line refers to the IPSI limb. 
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Study 2 – Post-stroke gait 

Usually stroke is associated with weakness of the CONTRA plantarflexors, specially the SOL and 

GAS [12, 13, 19], this means that lower activations of these muscles should be expected. 

Moreover, these studies reported early activation of these muscles before the instant when it 

reaches its maximum. The SOL of the CONTRA limb (left) (Figure 5.15) shows higher maximum 

activation before toe-off, comparing to the SOL of the IPSI limb. On the other hand, its 

activation starts earlier. The powers associated show coherence with the activation since both 

SOL have positive work prior to the respective toe-off and the CONTRA SOL have some 

oscillations (negative and positive values) of power before the full activation is reached. The 

MEDGAS, in contrast, registered less activation levels on the CONTRA limb and also earlier 

activation and the work associated follows a similar pattern as the SOL. There is, however, a 

peak at IPSI initial contact, which might be associated with the high values of residual forces 

verified in this instant. Both plantarflexors show activation on the corresponding initial contact, 

while the plantarflexors from the opposite side is active. According to the reference this does 

not happen in a healthy individual and also is not a characteristic of post-stroke gait. Looking 

at the activation of the MEDGAS of the Study 1, the curve also shows the same behaviour, but 

this activation is relatively small. Since high magnitude residuals were obtained in the initial 

contact in both studies and in both sides, it is possible that this activation could be linked to 

inconsistencies in those instants. 

The TA activation on the IPSI limb had a behaviour similar to the reference, having high 

activation during the toe-off, with negative work, and prior to the opposite toe-off, with 

positive work. The CONTRA limb shows activation during the respective stance, which results 

in oscillations in power. The plantarflexor and dorsiflexor muscles from the IPSI limb appeared 

to be affected for the inconsistencies observed especially during the right initial contact 

(2.73s), where the ankle angle had registered a high error.  

Regarding the muscles from the hip, in post-stroke gait is often reported co-activation of the 

muscles in both sides, as a compensation mechanism [16, 19, 20]. The hip extensor SMEMB from 

the CONTRA limb showed prolonged activation during the stance phase of the corresponding 

limb, associated with positive power. This might be associated with the gradual decrease of 

the hip flexion and of knee extension (Figure 5.5) verified in phase, after the maximum was 

reached at approximately 30% of the cycle.   
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Figure 5. 15. Activation and power associated with the muscles SOL, MEDGAS, TA, SMEMB, obtained in CMC (Study 2). The red line refers to the CONTRA limb and the blue 
line refers to the IPSI limb.
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5.4 - Summary  

Two simulations of gait were developed, one using normal gait and other using post-stroke gait.  

The experimental data used to simulate post-stroke gait was extracted from a *.cd3 file and 

the respective force platform data was used to compute the   forces and moments that act in 

the PWA and in the COP. The results showed not relevant differences between the location of 

these points and the moments in the horizontal plane were small comparing to the vertical 

moment.  

The kinematics and joint moments obtained for the healthy model revealed to be in accordance 

with the reference. However, the muscular activations showed some asymmetry and, in the 

case of the TA and the SMEMB, these muscles were activated in instants of the cycle where it 

doesn’t happen in the reference.   

The kinematics of the post-stroke model, however, showed only low plantarflexion as the main 

impairment and the results from CMC for the plantarflexor muscles showed early activation, 

but not diminished in the paretic side. These muscles appeared to be able to generate the 

necessary power before propulsion. The hamstring muscle (SMEMB) from the CONTRA limb, 

showed prolonged activation during stance phase, which it is usually reported in the literature 

as a compensatory mechanism for plantarflexor weakness. 

This model had associated high tracking error for the right ankle and high magnitude residuals 

and reserves at the instant of right initial contact, suggesting that it was not able to reproduce 

its kinematics relying mainly in the muscular actuators. 
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Chapter 6 

Final conclusions and future 
developments 

6.1- Final conclusions 

The aim of this dissertation consisted in simulate healthy and a pathological gait, specifically 

post-stroke gait, using computational methods, starting from experimental data. 

Firstly, the fundamentals of human gait were explored, regarding the anatomy and the 

neuromuscular controls involved. After that, gait impairments in the sequence of a stroke were 

studied and described. The experimental methodologies used to collect kinetic and kinematic 

data and the mathematical models that serve as fundamentals of the computational tools for 

biomechanical modelling were reviewed and described. 

The procedure for obtain the experimental kinematic and kinetic data from a *.c3d file was 

described, as well as its processing and conversion into *.trc and *.mot files to use as input in 

OpenSim. Following, the implementation of the OpenSim workflow described for each step of 

both simulations.  

The results obtained for the model of the healthy individual were in accordance with the 

literature, when the joint angles and moments were compared, despite small asymmetries, 

accepted in healthy subjects. The muscular actuators were activated according to the 

reference, however the TA and SMEMB actuators were also activated in other unpredicted 

instants.  

Regarding the post-stroke model, the kinematics associated revealed low plantarflexion in the 

CONTRA limb, characteristic from the post-stroke gait. The hamstring muscle SMEMB also 
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showed prolonged activation during CONTRA limb stance, which might be associated with the 

gradual decrease of hip flexion. However, the muscle activations of the plantarflexors only 

showed diminished activation in the medial gastrocnemius and in both plantarflexors, SOL and 

MEDGAS, showed early activation, as it is described in post-stroke gait literature. It is important 

to consider that the model was not able to completely reproduce the kinematics and even 

though tracking errors were expected, the right ankle angle had associated an error that 

overpassed the acceptable limits. Indeed, it was verified that the model had to use the residual 

and reserve actuators, even though these actuators were more expensive for the controller. 

 

6.1- Limitations  

The limitations of the present work are mainly related with the experimental data used. Less 

was known about the individuals and the conditions of collection of experimental data. 

Concerning the post-stroke patient, important information about the pathology historical was 

unknown: severity and affected brain area, time past after the accident and if he had received 

physiotherapy. Also the post-stroke individual used in the present work did not show 

accentuated impairments in gait, since he was mainly affected in the upper limbs.  

 

6.2- Future work 

As future work it is proposed to perform gait evaluations of a healthy and a post-stroke 

individuals with similar age, body height and weight, in the same conditions (use of the same 

number of markers, perform a static trial for scaling, making measurements of body segments 

and total height and body mass) and use EMG to assess the muscular activation experimentally. 

Taking pictures of the individual and record in video the gait trial would help to find subject-

specific characteristics and to identify sources of error related to it. 

Using the two models could be performed an Induced Acceleration Analysis (IAA) in OpenSim, 

with the purpose of obtaining the muscle contributions for the acceleration of the centre of 

mass. An additional study could be done, by starting from a healthy model and diminishing the 

activation of specific muscles (for example the plantarflexors and the dorsiflexors) and analyse 

the muscle compensations used by the model to reproduce the healthy gait. 
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Annex 

Annex 1 - Experimental body markers 

Table 6.1 Correspondence between the marker set used in the gait trial performed in the LABIOMEP and 
the default marker set used in OpenSim. The X indicates that a marker is not included in the respective 
configuration. 

RIGHT BODY LEFT BODY HEAD AND TORSO 

LABIOMEP OPENSIM LABIOMEP OPENSIM LABIOMEP OPENSIM 

RAC R.Acromium LAC L.Acromium X Top.Head 

RASIS R.ASIS LASIS  C7 X 

RPSIS X LPSIS X STERN Sternum 

X R.Thigh.Upper X L.Thigh.Upper X V.Sacral 

X R. Thigh.Front X L. Thigh.Front   

X R. Thigh.Rear X L. Thigh.Rear   

RLK R.Knee.Lat LLK L.Knee.Lat   

RMK R.Knee.Med LMK L.Knee.Med   

X R.Shank.Upper X L.Shank.Upper   

X R.Shank.Front X L.Shank.Front   

X R.Shank.Rear X L.Shank.Rear   

RLA R.Ankle.Lat LLA L.Ankle.Lat   

RMA R.Ankle.Med LMA L.Ankle.Med   

RFOOT1 X LFOOT1 X   

RFOOT4 X LFOOT4 X   

X R.Midfoot.Sup X L.Midfoot.Sup   

X R.Midfoot.Lat X L.Midfoot.Lat   

X R.Toe.Lat X L.Toe.Lat   

X R.Toe.Med X L.Toe.Med   

X R.Toe.Tip X L.Toe.Tip   

RBACKFOOT R.Heel LBACKFOOT L.Heel   
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Annex 2 - Ground reaction moments 
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Figure 6. 1 Ground reaction moments acting on the left leg, after filtering using a 4th order 
low-pass Butterworth filter zero-lag, with cut-off frequencies of 6Hz, 8Hz and 20 Hz. 
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Annex 3 - Marker weights used in the scaling of 

musculoskeletal model 

 

 
 

Figure 6.2 Scale Tool window showing the weights and the values attributed to each marker for the 
scaling step of the Study 2. In the lower part it is shown an example of the locked joints (value = 0) and 
the respective weight. 
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Figure 6.3 Scale Tool window showing the weights and the values attributed to each marker for the 
scaling step of the Study 1. In the lower part it is shown an example of the locked joints (value = 0) and 
the respective weight. 
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Annex 4 - Marker weights used in the IK 

 
 

Figure 6.4 Inverse kinematics Tool window showing the weights and the values attributed to each marker 
for the inverse kinematics step of the Study 2. In the lower part it is shown an example of the locked 
joints (value = 0) and the respective weight. 
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Figure 6.5. Inverse kinematics Tool window showing the weights and the values attributed to each 

marker for the inverse kinematics step of the Study 1. In the lower part it is shown an example of the 
locked joints (value = 0) and the respective weight. 


