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Abstract

The knee is one of the most important and injured sites in the human body, playing an essential
role in the human musculoskeletal system. The complex dynamics of its constituents make ac-
curate diagnosis challenging. In addition to the obvious traumatic causes, progressive cartilage
degeneration, also known as osteoarthritis, is one of the most common knee joint disorders that
affects essentially elderly adults. Current evaluation of the knee joint status are based on imaging
techniques or semi-invasive procedures. Image-based techniques are either complex, expensive or
fails into detection of small and progressive changes in the knee joint until they are noticeable,
either anatomically or symptomatically while arthoscopy, which remains the gold standard tool
in the medical practice, carries risks associated with the procedure itself, such as its invasiveness,
required anaesthesia and surgically related risks. Thus, none of them are considered as a practical
diagnostic tool, revealing the need of a new and innovative approach.

Vibroarthrography appear as an innovative approach to solve this problem. Mechanical vibra-
tory signals arising from the defected knee joint can be recorded recurring to a tiny accelerometer.
Healthy cartilage is smooth and slippery, producing minimum vibration while deteriorated car-
tilage is more irregular, producing additional vibrations. Vibrations generated by the friction of
deteriorated articular surfaces are different in terms of frequency and amplitude originating distinct
and representative vibroarthrographic signals which allows the differentiation of a healthy and a
pathological knee. With the purpose of creating a knee joint vibration-based classification sys-
tem, a dataset was created, that is composed of 92 healthy and 120 pathological knee joint signals
segments collected from 19 healthy (mean: 46.6 years old) and 20 volunteers with arthritic knee
(mean: 62.5 years old) which were evaluated with several types of classifiers, respectively. The
classification process was performed using k-nearest neighbor, support vector machine and deci-
sion tree algorithms. The best classification was obtained using the k-nearest neighbor classifier
with 6 selected time-frequency features with an overall accuracy of 89.77% and with a precision,
recall and f-measure of 88.27 %, 92.44% and 90.13%, respectively.

Preliminary results showed that vibroarthrography can be a promising, non-invasive and low
cost technique that could be used for screening and maybe even for rehabilitation purposes on
the medical field. This novel technique revealed the potentiality to be suitable for an efficient
classification of the knee joint status recurring only to a miniature accelerometer during a knee
joint extension/flexion test. Despite the promising results, several upgrades as the sampling fre-
quency, segmentation process and leg swing velocity during the trials can be implemented in order
to improve the overall data gathering process and analysis.

Keywords: Knee joint sounds; Osteoarthritis; Accelerometer; Stethoscope; Vibroarthro-
graphic signals;k-NN; SVM; Decision Tree
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Resumo

A articulação do joelho é dos sítios mais importantes e mais lesados do corpo humano, desem-
penhando um papel fundamental para o sistema musculo-esquelético. A complexidade da sua
dinâmica e dos seus próprios constituintes, faz com que o seu diagnóstico seja difícil e impre-
ciso. Para além das causas de foro traumático, a degeneração progressiva da cartilagem do joelho,
denominada de osteoartrite, é umas das maiores causas de problemas articulares podendo afectar
toda a população, maioritariamente os idosos. Actualmente, os meios de diagnóstico são baseados
em imagiologia médica ou em procedimentos semi-invasivos, como a artroscopia. Os meios de
diagnóstico baseados em imagem são complexos, caros ou então falham na deteção de pequenas
mudanças estruturais que passam despercebidas até serem perceptíveis, quer a nível anatómico ou
sintomático. Por outro lado, a artroscopia, que permanece como gold standard é invasiva, requer
cuidados pré e pós operatórios, não podendo ser considerada um meio de diagnóstico prático e
simples. Assim sendo, nenhuma das técnicas actulmente usadas oferece um rápido, simples e
preciso diagnóstico, evidenciando a necessidade de um novo método de deteção.

A vibroartrografia aparece como uma inovadora abordagem e solução para este tipo de prob-
lemas. As vibrações mecânicas emitidas pelo joelho são gravadas, recorrendo ao uso de um
acelerómetro durante um teste de extensão/flexão do joelho, e posteriormente analisadas, per-
mitindo a diferenciação entre um joelho saudável e um artrítico. A cartilagem saudável é lisa
e escorregadia, produzindo mínimas vibrações, enquanto que a cartilagem lesada é mais irreg-
ular, produzindo vibrações adicionais. Estas vibrações são diferentes em termos de amplitude
e frequência, originando sinais distintos. Para criação de um sistema de classificação da artic-
ulação do joelho, baseado nas vibrações emitidas por estes, foi recolhido um dataset composto
por 92 sinais provenientes de joelhos saudáveis e 120 sinais de joelhos artríticos recolhidos de
entre 19 voluntários sem qualquer tipo de artrose (idade média: 46.6 anos) e 20 voluntários com
artrose no joelho (idade média: 46.6 anos). Estes sinais foram avaliados com vários tipos de
classificadores, nomeadamente k-nearest neighbor, support vector machines e árvores de decisão,
respectivamente. A melhor classificação foi obtida com o classificador k-nearest neighbor, us-
ando apenas 6 características baseadas numa análise tempo-frequência, com uma eficácia global
de 89.77% (precision 88.27 % , recall 92.44% e f-measure 90.13%, respectivamente).

Resultados preliminares demonstraram que a vibroartrografia pode ser uma técnica bastante
promissora, totalmente não-invasiva e de baixo custo, que poderá ser usada para o rastreio e até
no processo de reabilitação. Apesar destes resultados, várias melhorias podem ser implementadas
como aumentar a frequência de amostragem, melhorar o processo de segmentação e manter a ve-
locidade durante todos os testes constantes com vista a melhorar todo o processo de classificação.

Keywords: Vibracoes do Joelho. Osteoartrite. Vibroartrografia. k-NN; SVM; Árvores de
Decisão.
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“Do or do not. There is no try.”

Yoda, Star Wars

vii





Contents

List of Figures xiii

List of Tables xv

List of Abbreviations xix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Contextualization 3
2.1 Types of joints in the human body . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Knee Joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Articulating bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Menisci and ligaments . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Muscle and tendons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Bursae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Knee Joint Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Trauma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Rheumatoid Arthritis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Osteoarthritis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Current diagnostic tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Radiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Computerized Tomography . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.4 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.5 Arthroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Statement of the problem 17
3.1 A novel solution - Introduction to the Vibroarthrography . . . . . . . . . . . . . 17

4 Theoretical Fundaments 21
4.1 Signal Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



x CONTENTS

4.2.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Model Building and Selection . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 State of the art studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Vibroartrhographic Analysis 47
5.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Accelerometer Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 Knee Flexion/Extension Protocol . . . . . . . . . . . . . . . . . . . . . 47
5.1.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 Signal’s Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.5 Dataset construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusions and Future Work 71

Bibliography 73

Index 81

A 81
A.0.1 Collected dataset detailed description . . . . . . . . . . . . . . . . . . . 81
A.0.2 Scatter Plots - Feature combination for inter-class separability . . . . . . 81



List of Figures

2.1 Schematics of the general structure of a synovial joint [3]. . . . . . . . . . . . . 4
2.2 Representation of knee joint and its major constituents. (a)- Anterior, (b)- Poste-

rior and (c)-Sagital View [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Schematic comparison between a healthy and a RA knee joint [13]. . . . . . . . 9
2.4 Schematic comparison between a healthy and a OA knee joint [13]. . . . . . . . 9
2.5 Radiographic diagnosis of OA. Follow-up case of a patient with anterior cruciate

ligament disruption. (A) Knee joint radiography at the beginning and (B) three
years after OA diagnosis. Clinically significant anatomical differences only no-
ticeable in radiographic images after three years pasted (notice the arrow and ar-
rowheads) [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 CT scans evidencing synovial chondromatosis of the knee joint in a 50-year-old
woman. CT scan shows osteophytes and narrowing of joint spaces, consistent
with OA. Several ossified intra-articular loose bodies (arrows) can be seen in the
sagittal view (B) of the knee joint with the CT scan [22]. . . . . . . . . . . . . . 12

2.7 Longitudinal evaluation of focal cartilage lesion using MRI over a 2-year time
period visualized by intermediate-weighted MRI. At baseline (A), very discrete
surface indentation of cartilaginous surface is observed (white arrow). 2-year later
(B), a more pronounced fissure-like full thickness defect is noticeable [20]. . . . 12

2.8 Ultrasound assessment of synovial fluid in the three major recesses of the knee:
(A) sagittal plane - suprapatellar recess, (B) midpatellar tranverse plane - medial
parapatellar recess and (C) midpatellar transverse plane - lateral parapatellar recess
[23]. * - effusion; F - femur; P - patella; arrow - synovial hypertrophy; dotted line
- measurement of greatest diameter of fluid. . . . . . . . . . . . . . . . . . . . . 13

2.9 Knee Joint X-ray image with arthroscopic views of the (A) lateral femoral condyle
(LFC), (B) the lateral meniscus (LM), (C) the lateral tibial plateau (LTP), (D) the
medial femoral condyle (MFC) and (E) the medial meniscus (MM) [28]. . . . . . 15

3.1 Representation of a VAG signal of (A) healthy and (B) pathological knee joint [39]. 18

4.1 Schematics of the general functioning of an accelerometer. In the mass-spring-
damper system, the loading force drives a second order damped harmonic oscilla-
tor where the displacement of the proof mass relative to the rigid frame is consid-
ered. When acceleration is kept constant, the displacement is directly proportional
to the given acceleration [43]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Optimal sensor position for knee joint assessment [34, 35, 37, 40, 41]. . . . . . . 24
4.3 Experimental setup. VAG and angular signals simultaneously recorded during the

flexion-extension movement. [1, 54]. . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Double layer cascade moving average filter hierarchical structure [61, 66]. . . . . 28

xi



xii LIST OF FIGURES

4.5 Denoised time-frequency representation of the VAG signal obtained by the Wigner-
Ville distribution [39]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Wavelet transform decomposition scheme [72]. At the first level, the input signals
is passed to a low pass-filter resulting into two new signals described by set of
wavelet coefficients (approximation (H) and detail(G) coefficients). Moreover, for
the remaining levels, the approximation coefficients signal is recursively passed
through the low-pass filter creating once more two set of detailed and approxima-
tion coefficients, until the last level is reached. . . . . . . . . . . . . . . . . . . . 34

4.7 Wavelet packets transform decomposition scheme [72]. For the first level of de-
composition the input signal is passed to a high pass and low pass filter, respec-
tively, resulting into two new intermediate signals (the low and high pass versions
of the input signal). Moreover, until the last level of decomposition is reached,
each one of the intermediate signals are then passed to the same high pass and low
pass filters at each iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8 Paley WPT order scheme [72]. Dash-lines tree nodes are re-ordered so than can
the tree be displayed in increasing frequency order. . . . . . . . . . . . . . . . . 36

4.9 (A) Regular wavelet transform and (B) Wavelet Packets decomposition schematics
[72]. Regular WT only decomposes the low frequency intermediate components
into two new subsets of wavelet coefficients while the WPT decomposes not only
the low frequency intermediate component as well as the high frequency component. 37

4.10 General mechanism behind of a classifier system. . . . . . . . . . . . . . . . . . 38
4.11 Decision-making voting mechanism behind the k-NN classifier. The unlabelled

data (green circle) class is going to be set as a red triangle, in the case where k=3
(contiguous circle) and as a blue square in the case where k=5 (dashed circle),
respectively. Class decision is defined by the a majority vote of its neighbours
class which are defined according to k parameter. . . . . . . . . . . . . . . . . . 40

4.12 SVM hyperplane projection schematics. On the left side image, it is displayed
a hyperplane with smaller margin for class separability which was enlarged by
optimization of the classification function (by maximizing the distance between
the closest data points to the hyperplane and the points of the hyperplane) which
displayed on the right side image proving better class separability. . . . . . . . . 41

4.13 A decision tree concept applied to a binomial classification problem of "Play Ten-
nis". This tree classifies a given morning as suitable or not (yes or no) for tennis
practising. Classification label is obtained by navigating to the tree to the appro-
priate leaf node [88]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.14 k-Fold cross validation schematics. . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Classification system pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Amplitude range normalization illustration of the x, y, z and magnitude accelera-

tions signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Illustrative example of the high-pass filtering process. Raw (left side) and high-

pass filtered (right side) acceleration signals of the x, y, z and magnitude. . . . . . 52
5.4 Illustrative example of the cascade moving average filter. For input signal (blue

line), the algorithm estimates the mean component (red line) being the bottom
signal (cyan line) the final filter output given by cascade moving average filter. . . 53

5.5 Dot product schematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Reference frame composed of three directional vectors (Re fx, Re fy and Re fz) and

sensor’s three dimensional position ACCx,y,z for each time instant. . . . . . . . . . 55



LIST OF FIGURES xiii

5.7 Angular segmentation mechanism. Init_ang and Max_ang are the initial and max-
imum angles obtained in the leg swing movement being the δang the total angular
displacement. Th_ang1 and Th_ang2 are the threshold angles for the lower and
upper part segmentation, respectively. . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 Example of the automatic angular segmentation algorithm performed on a magni-
tude raw signal. Samples within the green rectangles represents the chosen accel-
erations segments correspondent to the middle phase of the leg swing movement. 56

5.9 Signals array creation schematics. A final signal’s array with a total of 16 signals
was created for further analysis. The latter one was composed of the x, y, z and
magnitude signals derived from the normalization of the raw signals, high pass
filtering, cascade moving average filtering and cascade moving average with high
pass filtering, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.10 4 Level Wavelet Packets decomposition scheme (left side) and time-frequency rep-
resentation of the signal (right side) obtained via wavelet coefficients from all the
16 frequency bands. Each frequency band have N coefficient values which char-
acterizes the behaviour of the input the signal at that specific frequency range over
the entire time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.11 Illustrative example of the wavelet-based time-frequency signal analysis for an
arthritic (left side) and healthy subject (right side). The raw magnitude signal
(blue line), ascending phase (green line) and descending phase (cyan line) of the
leg swing movement are represented along with its scalograms. Waveform, am-
plitude and frequency content changes over time of each signal are quite distinct
when comparing arthritic and healthy knee joints signals. Time-frequency ex-
tracted features are crucial for an accurate characterization and differentiation be-
tween defected and healthy knee joints. . . . . . . . . . . . . . . . . . . . . . . 63

5.12 dB 2 Wavelet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.13 Scatter plot images of the combination two features for inter-class evaluation (blue

dots - Pathological; red dots - Healthy ). Discriminative power of the selected fea-
tures with SVM classifier, can be visually inspected for different sets of two fea-
tures: (a) TF_ft6_x_cma_filt vs TF_ft4_y_cma_filt and (b) TF_ft4_y_norm_raw
vs TF_ft4_x_cma_filt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.14 Scatter plot images of the combination two features for inter-class evaluation (blue
dots - Pathological; red dots - Healthy ). Discriminative power of the selected fea-
tures with k-NN classifier, can be visually inspected for different sets of two fea-
tures: (a) TF_ft1_y_norm_raw vs TF_ft1_z_norm_raw and (b) TF_ft1_y_norm_raw
vs TF_ft6_x_filt_norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 Scatter plot images of the combination two features for inter-class evaluation (blue
dots - Pathological; red dots - Healthy ). Discriminative power of the selected
features with SVM classifier, can be visually inspected for different sets of two
features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2 Scatter plot images of the combination two features for inter-class evaluation (blue
dots - Pathological; red dots - Healthy ). Discriminative power of the selected
features with k-NN classifier, can be visually inspected for different sets of two
features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87





List of Tables

2.1 Muscles involved in the extension and flexion mechanism of the knee joint [5] . . 7
2.2 Comparison of the currently available image-based techniques - advantages and

major drawbacks [19, 20, 21, 24] . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Comparison of the characteristics of different types of accelerometers [43] . . . . 22
4.2 Acoustic vs electronic stethoscope comparison - advantages and major drawbacks

[47, 48]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Confusion matrix structure [91, 92, 93, 94]. . . . . . . . . . . . . . . . . . . . . 43
4.4 Comparison of several different knee joint vibrational based classification results

reported in the literature. ACC - accelerometer; TF - Time Frequency; TFD - Time
Frequency Distribution; PDF - Probability Density Function; AUC - Area Under
the Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Number of frequency bands obtained using 4 levels of decomposition with the
correspondent frequency interval range. . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Overall classification results for each tested classifier. . . . . . . . . . . . . . . . 69

A.1 Healthy and pathological group comparison in terms of mean and standard devia-
tion of each group ages and k-NN classifier selected features. Mean and standard
deviation values of the selected features indicate a good class separability for clas-
sification purposes using only a few and most relevant features. . . . . . . . . . . 81

xv





List of Abbreviations

2D Two Dimensional
3D Three Dimensional
ACC Accelerometer
AUC Area Under the Receiver Operating Characteristics Curve
BPNN Back-Propagation Neural Network
CH Chair Rise
CMA Cascade Moving Average
CT Computerized Tomography
dB2 Daubechies 2
DFA Detrended Fluctuation Analysis
DKB Deep Knee Bend
DTW Dynamic Time Warping
EEMD Ensemble Empirical Mode Decomposition
EMG Electromyography
EMU Environment Measurement Unit
ES Electro-Stethoscope
EP Energy Parameter
ESP Energy Spread Parameter
f Frequency
F0 Fundamental Frequency
FE Flexion-Extension
FEUP Faculdade de Engenharia da Universidade do Porto
FF Form Factor
FFT Fast Fourier Transform
FhP Fraunhofer
fn False Negatives
FP Frequency Parameter
fp False Positives
FSP Frequency Spread Parameter
FT Fourier Transform
g G-force
IMU Inertial Measurement Unit

xvii



xviii List of Abbreviations

k-NN k-Nearest Neighbors
LFC Lateral Femoral Condyle
LM Lateral Meniscus
LMS Least-Mean Square
LTP Lateral Tibial Plateau
MFC Medial Femoral Condyle
MM Medial Meniscus
MP Matching Pursuit
MRI Magnetic Resonance Imaging
OA Osteoarthritis
pc Principal Components
PCA Principal Component Analysis
PDF Probability Density Function
QMF Quadrature Miniature Filters
R Ratio Index
RA Rheumatoid Arthritis
RLS Recursive Least Square
SBS Sequential Backward Selection
SC Stair Climb
SD Stair Descent
Sd Secure Digital
SFS Sequential Forward Selection
SS Sample Statistics
std Standard Deviation
STFT Short-Time Fourier Transform
SVM Support Vector Machine
t Time
TC Turns Count
TF Time-Frequency
TFD Time-Frequency Distribution
Th Threshold
TIP Tetra-Polar Impedance Plethysmography;
tn True Negatives
tp True Positives
VAG Vibroarthrography
VMS Variance of the Mean-Squared
WPD Wavelet Packet Decomposition
WT Wavelet Transform
WVD Wigner-Ville Distribution



List of Abbreviations xix





Chapter 1

Introduction

The knee is one of the most frequent injured sites in the human body making this joint particularly

interesting for research because without its well-functioning human motion could be compromised

along with the capability to perform simple daily tasks. The knee joint is the largest and one of

the strongest joints in the human body making this one of the most important joints in the human

body. This joint is considered to be the most complex in the human body because of its remarkable

its ability to withstand all the person weight while executing a movement.

Osteoarthritis (OA) is the most common joint disease and one of the most common diseases

diagnosed in clinical practice resulting from the progressive degeneration of joint constituents in-

cluding articular cartilage and subchondral bone [1, 2]. The causes of this phenomenon can be

quite different in terms of nature however the most common ones are trauma, sports-related in-

juries and overuse. OA causes inflammation, swelling, pain and subsequently reduced motion in

joints. As a progressive disease, it gradually worsens with time being highly prevalent among

obese and elderly people substantially decreasing their quality of life. It is reported that 10% of

total world population and more than 50% of people over the age of 50, suffers from OA [1, 2].

In respect to non-traumatic causes, overuse is the major cause. Highly demanding rotation move-

ments and improper body balance usually associated with sports practice as football, gymnastics,

cycling, ballet, jogging, snowboarding, skateboarding and swimming may result in cartilage degra-

dation over time. The latter one is also known as chondromalacia patella in which the cartilage

softens, fibrillates and sheds off the undersurface of the patella. Healthy cartilage, that covers the

ends of the bones in a joint, is a natural shock absorber during movement and its degradation leads

to the bones rubbing together causing knee pain. A more accurate term for chondromalacia patella

is patellofemoral pain syndrome [1].

1.1 Motivation

In terms of diagnosis there are currently several diagnostic tools available to assess knee joint

condition. Image-based techniques as X-rays, computerized tomography (CT) and magnetic res-

onance imaging (MRI) are the most currently used non-invasive techniques while arthroscopy is
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used as semi-invasive. Nowadays, arthroscopy is considered to be the gold standard diagnostic tool

for the evaluation of cartilage condition. However such technique is not suitable for all patients

due to its invasive nature, required anaesthesia and surgery related risks. Moreover, it is not appro-

priate for long term or periodic follow-up evaluations of cartilage status. Despite the availability

of such techniques, small and progressive changes at cartilage level remains undetected until they

are noticeable, either anatomically or symptomatically [1, 2]. Therefore a novel diagnostic method

is indeed needed to fully characterize functional integrity of cartilage over time and to assess knee

joint status prematurely.

1.2 Goals

The ultimate goal of this experiment is to create a new, accurate and non-invasive knee joint

screening test in order to replace any of the current used methods and/or to provided additional

information of the knee joint status that could be used either for diagnostic or to rehabilitation

purposes.



Chapter 2

Contextualization

In order to evaluate knee joint disorders, there is a primary necessity to understand the anatomo-

physiological mechanisms behind the well functioning of this specific joint. The knee joint is

the most complex joint in the human body and it is of crucial importance knowing the general

functioning of all its constituents [3]. There are several types of joints and each one of those with

different characteristics intimately related to its function on the human body. A general back-

ground of the types of existing joints, its constituents and function are presented in this chapter.

Moreover, an overview of the most common knee joint disorders along with the explanation of

current used techniques advantages and drawbacks are also presented in this chapter.

2.1 Types of joints in the human body

Muscles, bones and movement are intimately related but movement does not actually exist without

considering the joints between the bones. By definition a joint is the place where two or more

bones come together being extremely crucial for movement articulation. Not all human joints

are movable, therefore there are several and different types of joints allowing is some cases, only

limited movement or no movement at all. The structure of a given joint is intimately related

with its degree of movement. Movable joints are placed where the motion between bones is

needed, allowing considerable movement between articulating surfaces. Joints can be defined

and classified in several ways according to its structure or degree of motion. Structurally, joints

can be classified as fibrous, cartilaginous or synovial according to the type of major connective

tissue that connects the bones together. Joints can also be classified according to their degree of

motion as synarthroses (non movable joints), amphiarthroses (allowing movement is some extent)

or diarthroses (freely movable joints) [3].

In the human body there are different types of joints being one of the most important the

synovial joints (diarthroses class joint) (see Figure 2.1). This type of joint is more complex than

fibrous and cartilaginous joints due to the existence of capsules (synovial cavities) surrounding the

articulating surfaces that contains within a lubricating and shock absorbing fluid, called synovial
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fluid [3]. Moreover, this articular capsule is constituted by two layers: the outer fibrous membrane

and the inner synovial membrane.

Figure 2.1: Schematics of the general structure of a synovial joint [3].

The outer fibrous capsule consists of dense irregular connective tissue adjacent to the fibrous

layer of the periosteum that covers bones. Existing collagen fibers can be regularly re-arranged

to form ligaments that in addition to the presence of tendons (in some cases) may contribute to

the joint strength and stability. The inner synovial membrane lines the joint cavity and is filled

with a lubricating film that is a complex mixture of cells, proteins, lipids and polysaccharides. The

presence of the latter ones, especially hyaluronic acid, is the major responsible for the slippery

consistency and lubricating characteristics that characterizes the synovial fluid.

The articular surfaces of bones present within this capsule are covered with a thin layer of

hyaline cartilage called articular cartilage providing a smooth surface where the bones meet. In

some synovial joints a flat plate or pad of fibrocartilage, called articular disk, lies between the

articular cartilages of bones providing a cushion like effect when they move.

2.2 Knee Joint

The knee joint (see Figure 2.2) is a particularly complex and important joint in human motion.

The knee joint is one of the strongest and most important joints in the human body since it allows

lower leg movement relative to the thigh while supporting the body weight [3]. Movement at the

knee joint level is crucial in simple daily tasks as walking, running, sitting or standing. Injuries or

diseases that have an effect on knee joint integrity or functionality may compromise the ability to

perform simple tasks as well as the locomotion itself. Therefore, it could result into a substantial
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decrease in terms of quality of life along with several limitations at professional, social and even

at an aesthetic level.

(a)

(b) (c)

Figure 2.2: Representation of knee joint and its major constituents. (a)- Anterior, (b)- Posterior
and (c)-Sagital View [3].

2.2.1 Articulating bodies

The knee joint is an ellipse-like joint located between the femur and the tibia constituted by two

articulations: the tibiofemoral joint that connects tibia to the femur and the patellofemoral joint

which joins the kneecap to the femur. This joint acts as a modified hinge joint (uniaxial) that

allows flexion, extension and a small amount of rotation of the leg being the largest and most

complex joint in the human body [3].

The articular bodies of this joint are the distal end of the femur (by its lateral and medial

condyles) and the proximal end of the tibia (by the pair of tibial condyles separated by the in-

tercondylar eminence). The patella connects posteriorly with the two femoral condyles of the
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anterior side of the femur. As a typical synovial joint, the articulating surfaces of the femur and

tibia are covered by a thin film of articular cartilage that provides a smooth, well lubricated surface

for knee articulation and facilitates transmissions of loads (e.g. pressure and forces arising from

the person own weight).

2.2.2 Menisci and ligaments

The knee joint is also constituted by two menisci, the medial and lateral meniscus. These C-shaped

articulated disks keep the knee steady by balancing the person weight across the knee [4]. The

functional integrity of the articular cartilage and menisci displays a major role for good articulation

and to facilitate the transmission of loads. Additionally, the knee is also constituted by a set of

ligaments that provides joint stability: two cruciate ligaments, the anterior and posterior cruciate

ligament, and the collateral ligaments. The first one prevents anterior displacement of the tibia

relative to the femur while the second one prevents posterior displacement of the tibia. Collateral

ligaments by its turn stabilize the medial and lateral sides, respectively, of the knee.

2.2.3 Muscle and tendons

In order to move the knee joint several muscles belonging to either the anterior, medial or posterior

compartment of the thigh are solicited according to the nature of the movement [3]. A list with

all the responsible muscles for the movement of the knee joint is provided in the Table 2.1. Gen-

erally, muscles related to extension movements belong to the anterior compartment while muscles

related to the flexion movements belong to the posterior compartment [5]. However there are two

exceptions: the gracilis and the sartorius which belongs to the medial and anterior compartment,

respectively.

In addition to the muscle, tendons are very important to the knee joint structure since they

are an elastic tissue, technically making part of the muscle itself, which connect the muscles to

the bones. Tendons are capable of withstanding tension and are very important for knee stabiliza-

tion. There are two major tendons in the knee: the quadriceps and the patellar tendon. The first

one establishes the connection of the quadriceps muscles (rectus femoris, vastus lateralis, vastus

medialis and vastus intermedius) of the thigh to the kneecap, holding the patella in the femur’s

patellofemoral groove providing the necessary power for straightening the knee. The patellar

tendon connects the bottom of the kneecap to the top of the shinbone (tibia) and it is actually a

ligament, since it connects to two different bones, the patella and the tibia.

2.2.4 Bursae

The knee has also a number of bursae surrounding the knee that contain synovial fluid and provide

a cushion between structures that would otherwise rub against each other. The most important

ones are the suprapatellar (the largest one), subcutaneous prepatellar and deep infrapatellar bursa.

These sacs filled with synovial fluid cushion the joint and reduce friction between bones, muscles,
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tendons and ligaments. Inflammation of these bursae, also known as bursitis, causes pain and

decrease mobility being one of the most common problems in clinical practice.

Table 2.1: Muscles involved in the extension and flexion mechanism of the knee joint [5]

Muscle Category Origin Insertion Action

Proximal
Distal end extension of Pull

Articularis genus Extensor of anterior the joint suprapatellar
femoral shaft capsule of bursa

the knee

Superior relatively Medial side Knee flexion and medial rotation:
Sartorius Extensor to the anterior superior of the upper Flexion, lateral rotation and

iliac spine tibia in the pesanserinus abduction of the thigh

Combination of Patella and Knee
Quadriceps femoris Extensor rectus femoris and Tibial extension

vastus muscles tuberosity Hip flexion

Long head: tuberosity of Head Knee flexion
Biceps femoris Flexors ischium; Short head: linea of the and lateral rotation;

aspera on the femur fibula Hip extension

Knee flexion;
Tuberosity Pes Hip extension;

Semitendinosus Flexors of the abserinus Leg medial rotation at
ischium knee level

Knee flexion;
Tuberosity Medial Hip extension;

Semimembranosus Flexors of the surface Leg medial rotation at
ischium of tibia knee level

Gastrocnemius Flexors
Medial and Minor knee

lateral condyle Calcaneus flexion; Plantar
of the femur flexion

Lateral supracondylar Tendo Knee flexion;
Plantaris Flexors ridge of the calcaneus Plantar flexion

femur

Middle of the lateral Posterior Knee flexion
Popliteus Flexors surface of the tibia and medial

lateral femoral condyle rotation

Inferior Knee flexion and
Gracilis Flexors pubic Pes medial rotation;

ramus anserinus Hip adduction;
Hip flexion
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2.3 Knee Joint Disorders

The knee is the most common injured part of the human body [6, 7]. The causes behind the

knee joint injuries can be quite different in terms of nature being predominantly divided into

three subgroups: trauma-related injuries, over time cartilage degeneration (OA) and autoimmune

diseases (rheumatoid arthritis) [8, 9].

2.3.1 Trauma

Trauma is one of the most responsible causes to knee injuries. Highly demanding physical activity

involving rotation movements and improper body balance usually associated to sports practice as

football, gymnastics, cycling, ballet, jogging, snowboarding, skateboarding or swimming are the

major responsible by the appearing of these injuries [10]. Fractures, dislocations, tendon tears,

meniscal tears and ligament injuries are the main causes for knee joint injuries [8, 10].

2.3.2 Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic, systemic inflammatory condition that causes inflammation

of the synovial membrane (synovitis) and progressive bone erosion resulting into the knee joint

destruction (see Figure 2.3). RA is the most common inflammatory arthritis [8, 11]. RA causes

pain, increase in temperature, swelling and joint tenderness due to the presence of excess synovial

fluid and the development of fibrous tissue (arthrofibrosis) [8]. This condition can be very painful

and disabilitating leading to premature mortality [9, 12]. Although its etiology remains unknown,

genetics was found to contribute in about 70% of cases to the development of this condition. Envi-

ronmental triggers such as smoking and obesity are also thought to be related to its development.

Moreover, female hormonal levels are also thought to be related to its development. Over time, the

continuous inflammatory activity leads to tendon tethering and degradation, destroying the joint

surface leading to joint deformity and movement impairment [9].

2.3.3 Osteoarthritis

OA, also known as degenerative arthritis or degenerative joint disease, is a condition character-

ized by the local and progressive loss of articular cartilage along with simultaneous changes in the

bone underneath the cartilage (see Figure 2.4). OA is the most common form of arthritis [14]. It

causes joint pain, tenderness, crepitus, movement limitation and variable degrees of local inflam-

mation [9, 14]. Due to its irreversible character, it increases indefinitely with age becoming even

more prevalent in the future. It is considered to be a chronic and disabilitating disease causing a

considerable burden in lost time at work and early retirement [14].

OA is the most common reason for total knee replacement. It is estimated to be more prevalent

among older adults despite it can affect people of all ages. Trauma and physical demanding activ-

ities like sports are thought to contribute to the development of this condition although systemic

factors like a person’s age, sex, inherited susceptibility to OA are not discarded for this matter.
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Figure 2.3: Schematic comparison between a healthy and a RA knee joint [13].

Systemic factors makes cartilage more vulnerable to daily injuries and diminish its natural ability

to repair by its own [15]. Obesity, trauma and overuse are the main causes to its development

resulting in impaired mobility and severe limitations in everyday life. Moreover, OA is no longer

thought as an exclusively degenerative joint disease but rather a result of an abnormal remodelling

of joint tissues driven by the host excessive inflammatory reaction [16, 17]. Despite the vari-

ety nature of OA, osteoarthritic joints share common features regarding the entire joint structure

resulting in pain, deformity and ultimately, loss of function [17].

Current studies are now focusing more on the tibiofemoral joint OA assessment although

patellofemoral joint OA has been proven to have bigger impact on performing daily activities

as climbing stairs, walking, standing and sitting [9, 14, 18]. Currently, no immediate cure is avail-

able, being only possible to alleviate symptoms.

Figure 2.4: Schematic comparison between a healthy and a OA knee joint [13].
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2.4 Current diagnostic tools

OA due to its tremendous complexity is not easy to assess. Structural tissue changes in OA are of

slow progression and in most of the cases, changes cannot be seen macroscopically until they are

gross resulting into an added challenge for this disease study as well as for the choice of adequate

treatment. Current diagnostics techniques are sub-divided into two major groups, classified as:

invasive and non-invasive techniques [19].

The non-invasive techniques generally are image-based techniques such as radiography, CT,

ultrasound and MRI. Additionally, biochemical biomarkers of joint metabolism are nowadays

under studies although more insight about them is needed. As for invasive techniques, arthroscopy

remains the top choice of physicians [19].

2.4.1 Radiography

Conventional radiography is the gold standard imaging technique for the evaluation of known or

suspected OA in clinical practice [19, 20]. This technique is the most simple, inexpensive, fast

and easy to obtain being the most widely know and applied technique in OA diagnosis. It enables

the detection of OA-associated bony features and estimation of the joint space width, cartilage

thickness and meniscal integrity [19, 20]. Despite this, no precise measurements can be obtained

through this method due to its lack of sensitivity and specificity regarding OA-related articular

tissue damages. Moreover, knee joint movement during image acquisition may affect quantitative

measurements and variations on knee position across follow up care may affect its feasibility

[20, 21]. Also, clinically significant changes in radiographic images (see Figure 2.5) take a large

amount of time to be noted (approximately at least 1 or even 2 years) [19].

Figure 2.5: Radiographic diagnosis of OA. Follow-up case of a patient with anterior cruciate
ligament disruption. (A) Knee joint radiography at the beginning and (B) three years after OA
diagnosis. Clinically significant anatomical differences only noticeable in radiographic images
after three years pasted (notice the arrow and arrowheads) [20].
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2.4.2 Computerized Tomography

CT is more or less equivalent to the plain radiography. Regular CT has similar limitations com-

pared to the conventional radiography but in addition, it requires a higher exposure period to

ionizing radiation. Despite this, CT provides a multiplanar three-dimensional image that enables

the evaluation of articular cartilage damage with high anatomical resolution (see Figure 2.6) since

it allows the use of contrast agents (contrast enhanced CT) for cartilage visualization in addition

to the bone [19, 20, 21].

2.4.3 Magnetic Resonance Imaging

MRI is the major imaging tool for OA evaluation, specially used for research. It provides not only

accurate quantitative measurements of articular cartilage morphology such as the volume, area and

thickness but also good indication of its integrity (see Figure 2.7) [19, 20]. Using MRI, several

limitations of radiographies can be overcome since it enables the detection of structures that do

not appear before such as articular cartilage, menisci, ligaments, synovium, capsular structures,

fluids and bone marrow lesions [20]. The joint can be evaluate as a whole organ and multiple

tissue changes can be monitored simultaneously overtime allowing a better and earlier diagnostic

[20]. However, MRI its not generally used in clinical practice for OA detection or follow up of

OA patients due to its high cost, complexity, long acquisition times (an average of 45 minutes)

and analytical time restrictions [19, 21]. Despite these current limitations, MRI assessments are

predicted to become standard in clinical practice in a near future [19].

2.4.4 Ultrasound

Ultrasound properties enable real time and multiplanar imaging of joint structures providing a

reliable source for the assessment of OA-associated features as joint inflammation and structural

abnormalities [20]. Ultrasound dismisses the use of contrast agent as well as ionizing radiation

exposure. Moreover, it allows visualization of movement. Ultrasound imaging (see Figure 2.8)

is relatively low cost and provides good soft tissue structures images such as synovial tissue in

several planes that can be fundamental for a deeper OA analysis. The limitations of this method

are intrinsically related to the physical properties of the sound that limits the deep penetration

of the signal restraining it to the more superficial structures. Also, the proper execution of this

technique is dependent on the experience and skills of the technician [19, 20, 21]. Currently,

ultrasound is majoritarily used for assessment of hand OA despite knee OA studies have also been

performed [20].

A summarized comparison of the currently image-based techniques major advantages and

limitations is provided in the Table 2.2.
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Figure 2.6: CT scans evidencing synovial chondromatosis of the knee joint in a 50-year-old
woman. CT scan shows osteophytes and narrowing of joint spaces, consistent with OA. Sev-
eral ossified intra-articular loose bodies (arrows) can be seen in the sagittal view (B) of the knee
joint with the CT scan [22].

Figure 2.7: Longitudinal evaluation of focal cartilage lesion using MRI over a 2-year time period
visualized by intermediate-weighted MRI. At baseline (A), very discrete surface indentation of
cartilaginous surface is observed (white arrow). 2-year later (B), a more pronounced fissure-like
full thickness defect is noticeable [20].
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Figure 2.8: Ultrasound assessment of synovial fluid in the three major recesses of the knee: (A)
sagittal plane - suprapatellar recess, (B) midpatellar tranverse plane - medial parapatellar recess
and (C) midpatellar transverse plane - lateral parapatellar recess [23]. * - effusion; F - femur; P -
patella; arrow - synovial hypertrophy; dotted line - measurement of greatest diameter of fluid.
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Table 2.2: Comparison of the currently available image-based techniques - advantages and major
drawbacks [19, 20, 21, 24]

Technique Primary Use Advantages Disadvantages

Inexpensive, Indirect measurements,
Radiography Cartilage Thickness Fast, Simple, 2D images,

Easy applicable Radiation exposure

Bone characteristics; Multiplanar 3-D Higher exposure
CT Articular cartilage images; Good to radiation; Contrast

assessment resolution agent maybe needed

Cheap; Real-time; User
Multiplanar imaging; Dependent;

Ultrasound Inflammation Direct measurements; Tissue depth
Enables movement visualization; dependent on sound’s

Dismiss the use of ionizing radiation physical properties

3-D joint imaging; High cost;
Articular Multiple tissues monitoring Complexity;

MRI cartilage Good tissue contrast Long acquisition
assessment Direct measurements; Dismiss times; Time-consuming

the use of ionizing radiation analysis



2.4 Current diagnostic tools 15

2.4.5 Arthroscopy

Arthroscopy is still nowadays the gold standard method for knee joint evaluation (see Figure 2.9).

It remains the reference for diagnosis of internal derangements of the knee providing to the surgeon

helpful information of the knee joint actual condition to confirm the extent of the problem or even

contradict the first clinical impression [25, 26]. Despite this, other alternative diagnostic tools have

been equationated due to the arthroscopy’s invasive character (incisions are made in the knee and

a tiny camera is inserted) and the required need of anesthesia [19, 27].

Figure 2.9: Knee Joint X-ray image with arthroscopic views of the (A) lateral femoral condyle
(LFC), (B) the lateral meniscus (LM), (C) the lateral tibial plateau (LTP), (D) the medial femoral
condyle (MFC) and (E) the medial meniscus (MM) [28].





Chapter 3

Statement of the problem

In order to overcome current limitations of the available diagnostic tools a new approach should

be developed to assess cartilage status over time at microscopic level without the need to use

invasive or highly expensive methods. Degenerated joint produces a complex set of sounds known

as crepitus resulting from cartilage friction during range of motion of the knee [1, 29]. These

knee sounds represent the acoustic and vibrational signals of articular surfaces rubbing together

and can be very useful to evaluate joint actual condition. These particular sounds can be evaluated

recurring to vibroarthrography (VAG).

VAG signals may allow the differentiation between a healthy and an injured knee recurring

only to the use of a miniature accelerometer during a knee joint extension/flexion test [1, 30].

VAG may avoid the use of exploratory surgeries, invasive diagnostic methods as the arthroscopy,

reducing diagnostic costs and may even improve the rehabilitation process by providing detailed

insight about articular structures condition.

3.1 A novel solution - Introduction to the Vibroarthrography

Ever since in the medicine field there is particular interest in understanding the sounds emerging

from the human body for diagnostic purposes. One example of this use is cardiac auscultation in

which the sound emitted by the heart valves when they are closing/opening is listened to assess

cardiac rate and rhythm [31]. Degenerated joint produces a complex set of sounds known as

crepitus.

Crepitus or crepitation is defined as the crackling or grinding sound emitted during passive

or active range of motion of the joint resulting from cartilage friction [29, 32, 33, 34]. These

generated sounds are non-stationary involving multiple components and are thought to be related

with the joint actual condition [34, 35]. Moreover, it is believed that crepitus its related to different

pathologies affecting distinct structures within the joint [31, 32, 33, 34, 35].

Mechanical vibratory signals arising from the defected joint were recorded recurring initially,

to microphones and most recently to miniature accelerometers, giving place to a new method for

joint assessment, so called vibroarthrography [36]. VAG signal is the acoustic and vibrational

17
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signal generated during a leg active flexion and extension caused by the vibration of articular sur-

faces of the defected joint. Healthy cartilage is smooth and slippery producing minimum vibration

while deteriorated cartilage is more irregular producing additional vibrations which can be audi-

ble in some cases [37]. Vibrations generated by the friction of deteriorated articular surfaces are

different in terms of frequency and amplitude compared to healthy ones, originating distinct VAG

signals (see Figure 3.1) [31, 35, 36, 38].

Figure 3.1: Representation of a VAG signal of (A) healthy and (B) pathological knee joint [39].

VAG signals analysis may allow the differentiation between a healthy and an injured knee.

Additionally, it is known that several sub-pathologies can be identified through the VAG signal

analysis as a torn meniscus, mild/severe chondromalacia patella and several types of arthritis (os-

teoarthritis, rheumatoid arthritis and spondylarthritis) [30, 34, 35, 36, 37, 38, 39, 40, 41]. Ran-

gayyan et al. reported that meniscal lesions demonstrated as sharp and short energy duration

bursts in the sound signal into the 0 to 200 Hz frequency range, while mild chondromalacia has
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exhibited long duration bursts in the frequency range of 0 to 300 Hz [35, 42]. Severe chondroma-

lacia signals reveal to be of even lower frequencies within the 0 to 100 Hz range due to greater loss

of cartilage tissue between articulating surfaces [35, 42]. Moreover, Reddy et al. demonstrated

that mean power of the acceleration signal in the range of 100 to 500 Hz was significantly different

for OA patients compared to rheumatoid arthritis patients [35, 41].

Despite the great potential of this method, several signal processing techniques must be ap-

plied to the VAG signal in order to eliminate background noise, muscular activity and knee joint

movement-related component. These undesirables components obscure the truly wanted signal

since they basically mask the low amplitude component, that corresponds to knee joint abnormal

vibrations [31]. Ideally, the whole experiment should be performed in an anechoic chamber and

without muscular activation being the recorded signal the true signal of interest [31].





Chapter 4

Theoretical Fundaments

A literature review of VAG related studies for knee OA detection is provided in this chapter. The

whole process since the signal acquisition until the final classification is described, focusing on

the current available strategies for OA signal classification, its advantages and major drawbacks.

4.1 Signal Acquisition

In order to obtain a reliable and feasible signal that describes and fully characterizes the knee joint

status several considerations must be taken into account. Among them it must be considered the

type of used sensors, its inherent limitations (e.g. sampling frequency, noise, etc.), its placing

on the knee joint, the preprocessing techniques, signal analysis methodologies and the adequate

classifiers. A carefully choice of those and good interpretation of its limitations may lead to a

successful and rewarding work.

4.1.1 Sensors

Recent developments in the electronics field are now changing completely the medical diagnosis,

rehabilitation paradigm and even the research field. Nowadays it is possible, for instance, to mon-

itor human movement for clinical purposes by comparing normal with pathological movements

classifying them accurately recurring to newly developed algorithms. Knee-joint assessment is

now possible recurring to new algorithms which use data from sensors such as accelerometers,

stethoscopes, electro-goniometers and gyroscopes, among others [43].

4.1.1.1 Accelerometer

Accelerometer is a positional type sensor device that measures acceleration along its axis relatively

to Earth’s surface. Commonly, accelerations measurements are provided in terms of g-force (g)

[43, 44]. Generally, accelerometers use a sensing method as a proof mass excited in a mass-spring

damper system as shown in Figure 4.1 [43].

21
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Figure 4.1: Schematics of the general functioning of an accelerometer. In the mass-spring-damper
system, the loading force drives a second order damped harmonic oscillator where the displace-
ment of the proof mass relative to the rigid frame is considered. When acceleration is kept constant,
the displacement is directly proportional to the given acceleration [43].

Single and multi-axis accelerometers are available to detect magnitude and direction of the

given acceleration that can be used to sense orientation, coordinate acceleration, vibration, shock

and falling in a resistive medium [29, 43, 44, 45]. There are three major types of accelerometers,

namely piezoelectric, piezoresistive and capacitive types [43]. General characteristics of each type

of accelerometer are provided in the Table 4.1.

Capacitive accelerometers have higher stability, sensitivity and resolution than the others, en-

abling the measurement of two components of acceleration: the gravitational acceleration compo-

nent and the specific acceleration component due to a given force [43]. Dual acceleration compo-

nents accelerometers are more suitable for human posture monitoring being now widely available

on market [43].

Table 4.1: Comparison of the characteristics of different types of accelerometers [43]

Parameters Piezoelectric Piezoresistive Capacitive

Gravitational component No Yes Yes
Bandwidth Wide Moderate Wide

Self-generating Yes No No
Impedance High Low Very High

Signal Level High Low Moderate
Temperature Range (oC) -55 to 100 -55 to 150 -200 to 200

Linearity Good Moderate Excellent
Static Calibration No Yes Yes

Cost High Low High
Ruggedness Good Moderate Good

Suitable for shock Yes No No



4.1 Signal Acquisition 23

4.1.1.2 Stethoscope

Stethoscope creation in 1815 by René Laennec was a landmark essentially for heart diseases di-

agnostics [46]. The need to better hear the sounds emanated from the body lead to the creation of

a device that amplifies sound’s intensity in order to obtain a more accurate diagnosis [46, 47].

The stethoscope is majorly composed of three parts: the chest piece, tubes and headset. The

chest piece usually consists of two sides: a diaphragm (plastic disc) and bell (hollow cup) [48].

When the chest piece contacts the patient, body sounds cause its vibration creating acoustic pres-

sure waves which travel through the tubes to the listener’s ears. The bell transmits low frequency

waves while the diaphragm transmits higher frequency sounds [48].

There are two types of stethoscopes: the acoustic and the electronic stethoscope. The acous-

tic stethoscope is the most well-known and the one that is most familiar devices. It is a popular

and trusted device among doctors. Acoustic stethoscope remains the most commonly used device

in clinical practice, however electronic stethoscope are gaining more popularity these days [48].

The electronic stethoscope function is similar to the acoustic stethoscopes however the sound in

the latter one is converted to an electric signal for posterior analysis. The electronic stethoscope

allow a better listening of the body sounds since the signal can be digitally amplified, filtered (for

noise reduction) and transmitted to a computer for optimal listening [47, 48]. Moreover, electronic

stethoscopes allow the data transmission in a wireless way (e.g. bluetooth) and a graphical repre-

sentation of pathological sounds for further interpretation [48]. The advantages and drawbacks of

the acoustic and electronic stethoscopes are displayed in the Table 4.2.

Table 4.2: Acoustic vs electronic stethoscope comparison - advantages and major drawbacks [47,
48].

Parameter Acoustic Stethoscope Electronic Stethoscope

Cost Low High
Signal Amplification Moderate High

Signal Enhancement (filtering) No Yes
Data Transmission No Yes

Storing Data No Yes
Graphical Displaying No Yes

Battery No Yes
Interference with environmental Minimal Moderated

In addition to more popular and recognized human body sound auscultation as the cardiac or

lung auscultation, a new method that allows joint sound detection and analysis is nowadays under

investigation. Several studies point out in the direction that the knee joint sound can be captured

and evaluated recurring to the use of electronic stethoscope along with some signal processing

algorithms [1, 31, 38, 39].
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4.1.2 Experimental Setup

4.1.2.1 Positioning of Sensors

The correct positioning of sensors is crucial for an accurate and feasible assessment of knee joint

condition. Regarding this matter, the optimal location is generally accepted to be the best contact

area for knee auscultation, as the medial compartment slightly below the midline of the patella

(medial condyle on the patella) [1, 37]. This spot (see Figure 4.2) is the closest to the area of

contact between moving knee joint surfaces, assuring greater sensitivity. Besides that, it also

offers a relatively stable position for the sensor in a way that is not greatly affected by the actual

knee joint movement as well as by the muscle contraction interference [34, 35, 37, 39, 40, 41, 49].

Additionally, Kernohan et al. [50] reported that meniscal injuries produce not only characteristic

signals but also larger signals on the affected side suggesting the placement of one or two sensors

laterally in the knee [1, 51].

Figure 4.2: Optimal sensor position for knee joint assessment [34, 35, 37, 40, 41].

4.1.2.2 Experimental Protocol

Traditionally, one of most common performed tasks for knee joint assessment is the knee motion

from flexion to full extension (see Figure 4.3) whereas in the full extension position the knee is

making an angle of 0o between the femur and the tibia while in the flexion position the knee is

making a 90o angle [1, 40]. This movement from the full flexion to full extension is defined as one

cycle (90o → 0o → 90o) [1, 39]. During the task, the subject is always seated and without their

feet touching the ground, performing the mentioned movement. Some training should be done

before the experiment onset in order to warm up the knee joint as well as for the establishment of

a constant velocity during the whole exercise (usually 2 or 4 s/cycle) [1, 39, 40, 52]. The velocity
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of the movement across trials should remain constant in order not to introduce artifacts in the VAG

signal spectral content. The VAG signal is recorded during the whole experiment simultaneously

with angular data retrieved by a electro-goniometer/gyroscope placed on the lateral aspect of the

knee with the axis of rotation at the joint line [53]. This angular data is crucial for VAG signal

segmentation since it gives precise information about the phase of the movement the VAG signal

belongs [39, 41].

Figure 4.3: Experimental setup. VAG and angular signals simultaneously recorded during the
flexion-extension movement. [1, 54].

4.2 Pre-processing

VAG acquired signal is of a very complex nature and therefore very complex to analyse since the

recorded accelerations arising from the knee joint result from the combination of several compo-

nents such as random, muscular and even knee-joint movement related noise. The true challenge

when analysing a VAG signal is to accurately unmask the truly desirable component present in the

VAG signal [31, 39, 55].

The wanted signal component of interest of a VAG signal is basically the signal’s remain-

ing low amplitude signal component after the removal of the noisy parts. Ideally, after the pre-

processing step the VAG signal has only the information corresponding to the knee joint vibrations.

In order to overcome these limitations several approaches are documented in the literature in order

to remove signal’s artifacts from different sources such as:random and background noise; baseline

wandering artifacts; muscular contraction interference; movement-related artifacts (gravitational

component included).

The more simpler and generalistic noise removal strategies rely on the minimization of the

noise/artifacts generation process during the data gathering process/ signal’s collection. Optimal

placement of the sensors and the use of conductive gels or double-sided tape between the probe

surface and the skin are the most commonly used strategies documented in the literature. By just
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optimal placing the sensor and using double-sided tape the friction between the skin and the sensor

can be greatly reduced, thus, reducing also the overall noise generation process [1, 2, 34, 35, 37,

39, 40, 41, 49, 53, 54, 56].

Also, more advanced and complex strategies are used for noise removal as signal’s normaliza-

tion, (fixed) bandpass filtering, adaptive filtering, noise identification and reduction algorithms or

even signal’s segmentation [39, 49, 53, 54, 56].

4.2.1 Normalization

In order to increase the overall robustness by taking into account the observed differences in terms

of the signal’s amplitude values range and/or the speed of the leg swing across different subjects

and trials, several normalization methods can be applied to the VAG signals [57].

4.2.1.1 Amplitude Normalization

Each collected signal has its own range of amplitude values that may or may not substantially

differ either from subject to subject or from trial to trial. Thus, with the purpose of providing a

more general comparison between signals arising from different subjects, an amplitude modulation

technique can be applied to the VAG signals [58].

Signal’s amplitude normalization can be achieved in a simple fashion way by only adjusting

the measured values on different scales to a common scale or by more advanced strategies based

on statistics, such as the probability density distribution of the signal’s amplitude values.

The simplest amplitude normalization method is based on the signal’s maximum and mini-

mum (min-max normalization). Each signal’s amplitude value can be normalized in order to have

a new amplitude within a certain and pre-defined interval of values. The minimum-maximum

normalization method can be obtained according to the following equation:

xnormalized [n] = (x[n]− xmin)∗
newmax−newmin

xmax− xmin
+newmin (4.1)

where xnormalized[n] is each one of the new normalized samples, newmin = -1 and newmax = 1 the

new normalized signal’s amplitude range (in this case [-1, 1]), xmin and xmax the original signal’s

minimum and maximum, respectively.

4.2.1.2 Velocity Normalization

Another important factor when considering this kind of signals is the differences obtained regard-

ing the knee joint movement velocity during, essentially, the extension/flexion phases. This lack

of coherence in terms of leg swing velocity may affect frequency content characteristics of the an-

alyzed signals. Therefore, some recent studies have reported the use of a time axis normalization

algorithm called dynamic time warping (DTW) [2, 39, 53].
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DTW algorithm measures similarity between two sequences which may vary in phase and

amplitude by computing a distance coefficient between them enabling the alignment of two signals

with similar patterns even if they are not on the same time axis [59].

4.2.2 Filtering

Digital filtering, if correctly applied, may allow a relatively easy and simple elimination of several

undesired signal parts. Fixed filtering and more recently adaptive filtering are the most common

used filtering strategies to solve this type of problem. While the fixed filtering is related to a

band pass or high pass filter with certain pre-defined characteristics, adaptive filtering involves

the changing of filter parameters over time adapting to the signal changing characteristics. Adap-

tive filtering is more appealing and also more complex than fixed filtering, but it provides more

satisfying results when comparing with fixed filtering [60].

4.2.2.1 Fixed Filtering

VAG signal is usually pre-filtered by a bandpass filter with a bandwidth of 10 Hz to 2 kHz in order

to remove low-frequency movement artifacts, high-frequency noise, muscle contraction interfer-

ence and to prevent aliasing effects [39, 53, 54, 56].

In spite of the usefulness of this technique, fixed filtering cannot be performed correctly when

the noise or outside interference overlaps the VAG signal spectrum requiring the need of modified,

appropriated and adaptable techniques [54].

4.2.2.2 Adaptive Filtering

Due to signals inherent non-stationary character and difficult interpretation, adaptive filtering is

needed to clean the signal. Baseline wandering and overlapping noise removal is needed in the

case were the fixed filtering does not solve the problem [49, 56].

Baseline wandering or baseline drift is a very important phenomenon that occurs in biomedical

signals making the signal to fluctuate from the straight baseline line over short periods of time

affecting essentially diagnostic decision making in the medical field [61, 62].

In some cases, baseline wandering is seen when patients with knee joint disorders tremble its

legs during the experiment procedure (e.g. during flexion or extension movement phase) causing

baseline oscillations in the raw vibration signal [61]. On the other hand, random noise is a random

fluctuation in an electric signal usually associated with the thermal effect of all circuit constituents

[49, 61].

Baseline wandering and random noise removal algorithms such as the least-mean squares

(LMS) and recursive least-squares (RLS) algorithms, were early implemented by Zhang et al.

[63] and Rangayyan et al. [64].

More recently, Lu et al [56] implemented an adaptive filter technique based on the signal

power error minimization method to successfully eliminate random noise from the VAG signal.

While, in other studies the combined use of ensemble empirical mode decomposition (EEMD)
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and detrended fluctuation analysis (DFA) methods proofed to be effective into the identification

and removing of baseline wander and random noise from the original signal [49].

Another simple and effective adaptive filtering technique that estimates and removes baseline

wandering from the VAG signals, widely documented on the literature, is a special version of a

moving average filter, namely the cascade moving average (CMA) filter [61, 65, 66]. The cascade

moving average filter is a hierarchical model that combines the used of two successive moving

average operators (see Figure 4.4).

Figure 4.4: Double layer cascade moving average filter hierarchical structure [61, 66].

The first layer of the cascade filter contains a M-order and a N-order moving average opera-

tors(see Equations 4.2 and 4.3), while the second layer of the hierarchical moving average filter is

used to smooth the piecewise linear trends obtained from the outputs of the previous two moving

average operators in the first layer [61, 66].

The K inputs in the tail end of the M-order operator are overlapping with the beginning inputs

of the N-order operator being the output of the M-order operator o1(i) and the N-order operator

o2(i) expressed by following equations:

o1(i) =
1
M

M

∑
m=1

x(i−m) (4.2)

o2(i) =
1
N

N

∑
n=1

x(i−M+K−n) (4.3)
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where N, M and K are the selected number of points/samples to use in the cascade moving

average. The final output of the cascade moving average filter y(i) is given by:

y(i) =
1

2M

M

∑
m=1

x(i−m)+
1

2N

N

∑
n=1

x(i−M+K−n) (4.4)

4.2.3 Segmentation

Another used strategy in several studies to overcome noise-related issues is to segment the VAG

signal into smaller segments according to a simultaneously recorded angular information (usu-

ally recorded with an electrogoniometer). This strategy allows the exclusively extraction of the

segments that are less affected by noise [34, 35].

In a knee extension/flexion test, one full leg swing cycle comprises an angular movement

range of approximately 90o. Having this in mind, several studies reported the exclusion of the

initial and end phase movement segments correspondent to the initial 0o to 25o angles and to the

last 75o to 90o angles in the total 90o movement range. Only the segments correspondent to the

middle phase of the movement, i.e., segments with correspondent angles between 25o and 75o,

were kept for further analysis. The exclusion is based on the fact, that anatomically, in those

phases the patella is not fully contacting the femur surface and so, it is not interesting to analyze

[7]. Additionally, a lot of ambient noise related due to the inherent acceleration/deceleration of

knee joint movement/leg movement is also more pronounced during this period [34, 35].

4.2.4 Feature Extraction

An extremely vital part for the development of an accurate, feasible and robust analysis/classifier

is the capability of each selected feature to discriminate the different classes, i.e., distinguish an

affected arthritic knee joint from a healthy one [58]. A proper selection of relevant features with

high discriminant capability is essential for a proper development of the classification system.

It is well-known that the VAG signal is a non-stationary signal and its properties may vary

according to time. So, some pathological events may only occur in certain and specific time

periods, demanding a reliable time-related/ time-localized and adaptive approach in order to obtain

a good feature extraction and consequent selection.

Feature extraction can be performed either in the time as in the frequency domain, resulting in

a different set of characteristics fully describing the signal.

4.2.4.1 Time-domain Features

Time domain features are usually more simpler to obtain and are often more used to describe

and characterize the raw content of the VAG signals. Most of these metrics are based on simple

mathematical and statistical measurements of the signals.

Several statistical parameters observed in histograms of normal and abnormal VAG signals as

skewness, kurtosis and entropy are widely used as discriminant features [1, 58].



30 Theoretical Fundaments

Skewness measures the asymmetry of the probability density function (PDF); Kurtosis mea-

sures the tendency of the PDF to have peaks, i.e., measures whether the data are peaked or flat

relative to a normal distribution; Entropy measures the inherent randomness observed in a proba-

bility distribution and it is commonly used to represent the nature and spread of a PDF [58].

Skewness, kurtosis and entropy were defined as it follows:

S =

1
n

n
∑

i=1
(xi− x)3

(

√
1
n

n
∑

i=1
(xi− x)2)4

(4.5)

K =

1
n

n
∑

i=1
(xi− x)4

(

√
1
n

n
∑

i=1
(xi− x)2)4

(4.6)

H =−
L−1

∑
L=0

px(xl)log2[px(xl)]) (4.7)

Where n is the total number of samples, xi the sample with the i index and x the mean value of

all samples. px(xl) is the probability density function of the given signal with xl , l = 0, 1, 2, ..., L -

1, representing the L bins used to represent the range of the values of the signal x.

Other features such as the mean, standard deviation (std), variance, variance of the mean-

squared (VMS) and the form factor (FF) values have been described in the literature. VMS values

describe the local spread or dispersion degree of the signal in a short time span while form factor

values measure the VAG signal shape complexity [7, 30, 40, 58]. The FF value is computed as the

ratio of mobility of the first derivative of the signal Mx′ to the mobility of the signal itself Mx [40].

Previous findings reported that Kruskal-Wallis test results regarding VMS values reached the level

of significant difference (p<0.01) when comparing normal with abnormal VAG signals [40]

VMS and FF values were defined as it follows:

σ
2
x =

L−1

∑
l=0

(xl−µx)
k px(xl) =V MS (4.8)

Mx =

[
σ2

x′

σ2
x

]0.5

=
σx′

σx
(4.9)

FF =
Mx′

Mx
=

σ
x′′

σ
x′

σ
x′

σx

(4.10)

Where σ2
x represents the variance of the signal x, µx is the mean value of the signal x and px(xl)

is the probability density function of the given signal with xl , l = 0, 1, 2, ..., L - 1, representing the

L bins used to represent the range of the values of the signal.
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The signal’s sample variability over time was also suggested as a feature which was named

as the turns count (TC) parameter. TC parameter measures the number of significant changes in

direction for a given signal [52, 66, 67]. The total number of the signal turns computed over the

time series indicates the degree of fluctuation dynamics in the presented signal. This parameter

was firstly introduced by Willison [68] for Electromyography (EMG) myopathy signal analysis.

A signal sample can be considered as a turn if it satisfies, simultaneously, the following two

conditions: 1) it represents an alteration in direction in the signal, i.e., a change in the sign of

the derivative (either positive or negative); 2) the difference (considering its absolute values) be-

tween the amplitude of the current alteration and that of the preceding alteration is greater than a

threshold.

TCcandidade[k] =
[
x[n]− x[n−1]][x[n+1]− x[n]

]
< 0,2≤ n≤ N−1 (4.11)

TC f inal = |TCcandidade[k]−TCcandidade[k−1]| ≥ T h (4.12)

where x[n] is the nth sample, with n=0,1,...,N, TCcandidade[k] the extracted sample candidates

that satisfies the first admissible condition, T h the pre-defined threshold and TC f inal as the final

TC sequence.

The threshold value can be predefined recurring to fixed or adaptive style. For fixed threshold,

it is reported by the work of Rangayyan and Wu [52] the use of a threshold value of 0.2 considering

an amplitude-normalized VAG signal bounded to the interval [-1,1].

As an adaptive approach, threshold value were selected by taking into account signals standard

deviation, usually 0.5 σ . However, due to pathological VAG signal inherent variability, such

standard deviation-based approach revealed to be non-satisfactory. VAG pathological signals have

a higher standard deviation value due to the signal’s higher degree of variability, resulting into a

greater threshold value when compared to the healthy group. Consequently, TC parameter values

from the arthritic group are smaller than the healthy controls, deviating from the true expectations.

Such adaptive and standard deviation based approach reveal not to be suitable for TC threshold

purposes.

4.2.4.2 Frequency-domain Features

Frequency domain features are of a more complex nature however being more suitable for this

kind of purposes since it can more easily provide detailed insight of the hidden signal’s patterns

[69].

Signal processing techniques such as Fourier Transform (FT), time-frequency distributions

(Wigner-Ville distribution) and Wavelet Transform (WT) are widely used to characterize VAG

signals [39, 54, 58, 70].

One of the most conservative and used approaches for frequency content information extrac-

tion is the Fast Fourier Transform. FFT (see Equation 4.13) is based in the decomposition of

the input signal x(t) into its harmonics (sinusoidal functions) of different frequencies revealing its
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frequency content. Fourier transform is independent of time, i.e., the frequency decomposition is

the averaged over the total duration of the signal by assuming that the random process behind the

signal creation is stationary and do not change with time.

F(k) =
N−1

∑
n=0

x(n).e−2πikn/N ,k ∈ Z (4.13)

Therefore, despite its simplicity, Fourier transform is not adequate for the characterization of

transient signals such as the VAG signals. Fourier-based analysis provides a poor localization

of signals in time, difficulty the capability to detect signal’s time-varying spectral characteristics.

Although this, previously findings in VAG signal analysis reveal different power spectral densities

patterns through the Fourier Transform in certain frequency intervals regarding the arthritic and

healthy groups either [1, 30, 41]. VAG signal spectral content revealed that the power spectral

density in the 0-500 Hz frequency range is significantly higher for the arthritic group compared to

healthy controls [35].

FT poor time resolution was partially surpassed with the creation of the Short Time Fourier

Transform (STFT), that can be considered more suitable for non-stationary signals analysis than

the general Fourier Transform. Although, STFT implies a fixed time-frequency resolution due to

its fixed window size. In general, STFT method is nothing more than the application of the Fourier

Transform over a window that slides over time. STFT is defined in the Equation 4.14

X(n,k) =
∞

∑
m=−∞

x(m)w(n−m).e− jkm2π/N (4.14)

where the w(n−m) is the window function. The length of the window function is intrinsi-

cally related with the bandwidth of the frequency spectrum, thus STFT cannot provided a high

resolution in both time and frequency domain.

Similarly to the STFT, other time-frequency representation of signals were used with the intro-

duction of the Wigner-Ville distribution (WVD). Basically, WVD correlates the input signal with

a time-translated and frequency-translated version if itself, i.e., the window is essentially a shifted

version of the same input signal. The WVD can be calculated as it follows:

Ws(t,w) =
∞

∑
−∞

x(t +
τ

2
)x∗(t− τ

2
)e−iwτdτ (4.15)

In the work of Kim et al. [39], four time-frequency parameters namely the energy parameter

(EP), energy spread parameter (ESP), frequency parameter (FP) and frequency spread parameter

(FSP) were obtained from a denoised time-frequency distribution (TFD) version of the VAG signal

obtained by the Wigner-Ville distribution [39, 53].

The EP is nothing more than the mean of the signal along each time slice representing energy

variation with time. The ESP measures the spreadability of energy over the frequency range across

time and is calculated as the standard deviation of the signal along each time slice. The FP stands

for the instantaneous mean frequency being computed as the first moment of the signal (t,f) along
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Figure 4.5: Denoised time-frequency representation of the VAG signal obtained by the Wigner-
Ville distribution [39].

each time slice. The FSP measures the spread of frequencies across time and is given by the second

central moment of the signal (t,f) along each time slice. Additionally, the average and standard

deviation values of each enounced parameter were also found to be meaningful features for the

classifier [39, 53].

EP, ESP, FP and FSP were defined as it follows:

EP(t) =

f m
∑

f=0
Xe(t, f )

fm
(4.16)

ESP(t) =

[ f m
∑

f=0
|Xe(t, f )−EP(t)|2

fm

]1/2

(4.17)

FP(t) =

f m
∑

f=0
f Xe(t, f )

f m
∑

f=0
Xe(t, f )

(4.18)

FSP(t) =

[ f m
∑

f=0
|Xe(t, f )−EP(t)|2

f m
∑

f=0
Xe(t, f )

]1/2

(4.19)

Where Xe(t, f ) is the value of the enhanced matrix derived from the TFD of the VAG signal at

a given t time and f frequency and fm as the maximum frequency present in the signal.

However, a well-known disadvantage of the use of WVD is that it may lead to a misguided

or difficult interpretation of the result, not being easy to fully understand its meanings majorly in

those cases where the analyzed signal is constituted by multiple components [71].



34 Theoretical Fundaments

In order to overcome this fixed time-frequency resolution issues and/or time-frequency rep-

resentation difficult understanding (e.g. WVD), the wavelet-based analysis appeared. The WT

(see Equation 4.21) has provided a more flexible time-frequency resolution by instead of breaking

down the input signal into its harmonics as the Fourier-based transforms, it seeks to break it down

into a series of local basis function called wavelets.

These family of functions are generated from a single function ψ(a,b) by the operation of

dilations and translations being the wavelet transform of a continuous signal defined as:

ψa,b(t) = |a|(1/2)
ψ(t−b)a (4.20)

X(n,k) =
1

|a|(1/2)

∞

∑
−∞

x(t)ψ∗(
t−b

a
)dt (4.21)

where * represents the complex conjugation.There are several families of wavelets, namely

the Morlet, Haar, Daubechies, Biorthogonal, Coifflets, among many others.

WT provides a multi resolution decomposition of the input signal into a set of frequency inter-

vals with the same bandwidth (in a logarithmic scale - logarithmic sampling of the frequencies).

This property enables the analysis of higher frequencies in shorter windows and lower frequencies

in longer windows in time providing a good trade-off between time and frequency resolution.

However, time-frequency resolution in the high frequency region may be compromised since

according to WT properties the discrimination between signals that have close high-frequency

component in time can be difficult (see Figure 4.6 ).

Figure 4.6: Wavelet transform decomposition scheme [72]. At the first level, the input signals is
passed to a low pass-filter resulting into two new signals described by set of wavelet coefficients
(approximation (H) and detail(G) coefficients). Moreover, for the remaining levels, the approxi-
mation coefficients signal is recursively passed through the low-pass filter creating once more two
set of detailed and approximation coefficients, until the last level is reached.
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Having this in mind, a more generalistic approach of the wavelets has arised, called wavelets

packets or wavelet packet decomposition (see Equation 4.22). These wavelet packets are formed

by taking linear combination of the common wavelets functions preserving some inherited proper-

ties such as orthonormality, smoothness and location from their corresponding mother functions.

The equation describing the discrete wavelet packets transform is defined as it follows:

W n
j,k(t) = 2 j/2W n(2 jt− k) (4.22)

where the index n is the modulation parameter. The first two wavelet packet functions are the

usual scaling and motherwavelet function, respectively.

W 0
0,0(t) = Φ(t) (4.23)

W 1
0,0(t) = ψ(t) (4.24)

The remaining wavelet packet functions for n=2,3,. . . , N are defined recursively by the fol-

lowing relationships:

W 2n
0,0(t) =

√
2∑

k
h(k)W n

1,k(2t− k) (4.25)

W 2n+1
0,0 (t) =

√
2∑

k
g(k)W n

1,k(2t− k) (4.26)

where h(k) and g(k) are the quadrature mirror filters (QMF). Specific time-frequency informa-

tion measurements of a signal can be obtained by taking the inner product of the signal and that

particular basis function resulting in a set of wavelet packets coefficients of the given function f(t)

according to the Equation 4.27:

Wj,n,k = 〈 f .W n
j,k〉=

∫
f (t)W n

j,k(t)dt (4.27)

The full wavelet packet decomposition (WPD) of a discrete-time signal is calculated by apply-

ing both low and high pass filters followed by the decimation procedure (usually downsampling

by a factor of 2) to the input signal and then recursively to each intermediate signal’s version until

the last level of decomposition is reached (see Figure 4.7).

The WPT full tree can be viewed in Figure 4.6 but a modified version with the WPT tree

displayed in increasing frequency order can be obtain by only switching the order of some tree

nodes known, also called as the Paley ordering (see Figure 4.8). This representation is easier for

data interpretation.

The major advantages of the using WPT instead the regular WT is that the latter only de-

compose the low-frequency components of the intermediate signals at each node while the WPT

decomposes not only the low but also the high-frequency components of all signals (see Figure

4.9) providing a more deep analysis of the input signal providing the extraction of features or
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Figure 4.7: Wavelet packets transform decomposition scheme [72]. For the first level of decompo-
sition the input signal is passed to a high pass and low pass filter, respectively, resulting into two
new intermediate signals (the low and high pass versions of the input signal). Moreover, until the
last level of decomposition is reached, each one of the intermediate signals are then passed to the
same high pass and low pass filters at each iteration.

Figure 4.8: Paley WPT order scheme [72]. Dash-lines tree nodes are re-ordered so than can the
tree be displayed in increasing frequency order.

even signal’s characterization for stationary and repetitive events but also for the punctual or non-

stationary events.

Equivalent approaches for time-frequency representations of a signal was also introduced by

Mallat and Zhang [73] using the so called "greedy" algorithm. This matching pursuit (MP) decom-

position algorithm is able to decompose the signal using basis functions with good time-frequency

properties, referred also as atoms [54, 70]. Gabor function, local cosines trees and even the wavelet

packets are often applied to build up dictionaries for this type of applications.

In the work of Krishnan and Rangayyan [54] the average and standard deviation values of
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Figure 4.9: (A) Regular wavelet transform and (B) Wavelet Packets decomposition schematics
[72]. Regular WT only decomposes the low frequency intermediate components into two new
subsets of wavelet coefficients while the WPT decomposes not only the low frequency intermedi-
ate component as well as the high frequency component.

the number of MP iterations using a Gaussian function was used to classify VAG signals with a

relatively good accuracy. Later on, Cai et al. [70] also used the number of atoms obtained with

MP algorithm with Daubechies 8 filter and the number of turn counts (time-domain feature) to

classify VAG signals.

4.3 Classification

Classification can be thought as the problem of assigning a given observation in a collection to

target categories or classes (labels). Classification consists of predicting a certain outcome based

on a given input or model. The goal of classification is to accurately predict new observation/data

based on its similarity to previous used examples, i.e., by extracting essential information from a

data set and transform it into an understandable structure/model for further use. Classification can

be divided into subgroups: the supervised and unsupervised classification.

In supervised classifications, as the name suggests, it is provided a set of correctly labelled

observations, also called the ground truth, that are used in the process of constructing the classifier

model. In unsupervised classification, no labels are provided, and the observations are assigned

to a certain number of classes based on their properties, by aggregating (clustering) instances that

display similar properties according to some metrics. For this work purposes (binomial classifica-

tion), only supervised classification techniques will be used.
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In order to predict the outcome, a classifier, usually, requires five major steps, which can be

more or less complex depending on the used methods [74, 75, 76]. These five steps are described

below (see Figure 4.10).

Figure 4.10: General mechanism behind of a classifier system.

4.3.1 Data Transformation

4.3.1.1 Dataset Normalization

Data collected from multiple sources (i.e. different subjects), not always display the same range

of values, units or scales for each collected parameter. Therefore, the original dataset needs to

suffer a transformation process involving smoothing, generalization and normalization of the data

[57, 77].

Data transformation, more specifically, data normalization is used to standardize all dataset

features into a specified predefined criterion (e.g. specific range of values) in order to remove

noisy or redundant objects which are not reliable neither good for increasing classification results

[57]. Several different techniques are available for data normalization. Among them, the most

commonly used are the minimum-maximum and Z-Score [57, 78]. There is not a universal crite-

rion for optimal choice of the normalization method, being the particular choice of normalization

technique responsible to the user choice [57].

The minimum-maximum normalization method involve the linear transformation of the input

data to specific interval range such as 0.0 to 1.0. This method takes into account each variable

minimum and maximum and performs a linear transformation to the desired the interval, e.g.

[0,1], based on both ends [57, 78].

The Z-Score normalization is more used when the actual minimum and maximum value of

an attribute is unknown, using instead the mean value and standard deviation of that attribute to

perform the attribute transformation [57, 78].

4.3.1.2 Feature Selection

Feature selection is one of the most important and frequently used techniques for data mining [79,

80]. Discriminant power of the available features is crucial to obtain a good overall classification

accuracy. Therefore, redundant, irrelevant features or noisy data present in the original dataset

needs to be removed in order to create a subset with only the best and highly discriminant features.

The optimal subset of features is measured by an evaluation criterion. This evaluation criteria can
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be quite different in terms of its nature but the final purpose remains always the same, i.e., to

increase predictive accuracy and result comprehensibility [80].

Several techniques are available for this purposes being the most commonly used the sequen-

tially forward selection (SFS), sequential backward selection (SBS), bidirectional search and prin-

cipal component analysis (PCA).

Sequential search methods such as the SFS, SBS or bidirectional search creates, iteratively,

a subset of features (by adding and/or removing features) that is posteriorly evaluated according

to a certain criterion, usually, predictive accuracy. The search may start with a empty set and

successively add features (e.g. SFS), or start with all available features and iteratively removing

some (e.g. SBS) or to start with a certain set of features and simultaneously add and remove

features (bidirectional search)[80].

PCA is a statistical-based procedure that uses an orthogonal transformation to convert a set of

variables into a new set of values of linearly uncorrelated variables called principal components

(pc), with less than or equal to the number of original variables [81]. PCA identify patterns in

data and express them in a way that highlights their similarities and differences. PCA is often

used not only to unmask patterns but simultaneously to reduce the number of dimensions of a high

dimensional dataset [81].

The PCA transformation of data is based on dataset attributes variance. The first principal

component has the largest possible variance seen in the data and each succeeding component has

the second, third and N-th highest variance possible under the constraint that orthogonality must

be satisfied to the preceding components. This sequence of principal components are order by its

order of significance being the first the most important one. By discarding the components of lesser

significance, dimensionality reduction is accomplished without the loss of any vital information

[82].

PCA is sensitive to feature scaling of the original variables, so feature range values must be

taken into account for a correct application of the PCA.

4.3.2 Model Building and Selection

After the data transformation step, the next step is to choose the desired model to use in the

classification. There are two general classes of distribution and density models:

• Parametric Models: this type of models assumes a particular functional form to separate

the data. Parametric models are simple, easier to implement and interpretate since makes

some assumptions about the data. Parametric classifier is based on the statistical probability

distribution of each class [83]. Although this type of models are not always advantageous

because real data may not obey the assumed functional form [84]. There are many available

parametric classifiers such as the the Bayesian, Naive-Bayes, Decision Tree and Support

Vector Machine (SVM)[83].

• Non-Parametric Models: makes relatively few assumptions about the functional form and

are more data-driven, i.e., it adapt the boundary shape that discriminate the classes to the
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data being modelled [74, 75, 76, 84, 85]. The most commonly used non parametric classi-

fiers are the k-Nearest Neighbors (k-NN) and the logistic regression. [83].

4.3.2.1 KNN

The k-NN is one of the simplest and trivial used classifiers in the data mining field [65, 86].

The k-NN is a type of instance-based learning algorithm that based its decision regarding the

classification of new unlabelled instances by their similarity with each of instances in the training

set. For each new observation the k-NN classifier computes a distance metric between the feature

vector unlabelled data and (labelled) data in the training set and then the k-th closest objects from

the training set are identified, being the assignment of the label based on the predominance of a

particular class in that specific neighbourhood [65, 86]. In this non-parametric procedure of the

k-NN classification, a new instance is classified by a majority vote of its neighbours, being the

predicted label assigned to the most represented class among the k nearest neighbours. The are

several used distance metrics as the Mahalanobis, Haming, city block, cosine or the Euclidean

distance, being the latter one the most used [65].

The k-NN classifier is one of the most easiest classifier to understand and implement because

its process is straightforward and intuitive being only needed a given integer k, training dataset

and a distance metric for decision. Despite its simplicity, it comes with several limitations as the

optimal choice of the k nearest neighbours, computational costs (computing the distance metrics

in large datasets can be expensive) and the required need of storage of the training dataset for the

classification procedure of new instances [65, 86].

Figure 4.11: Decision-making voting mechanism behind the k-NN classifier. The unlabelled data
(green circle) class is going to be set as a red triangle, in the case where k=3 (contiguous circle)
and as a blue square in the case where k=5 (dashed circle), respectively. Class decision is defined
by the a majority vote of its neighbours class which are defined according to k parameter.
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4.3.2.2 SVM

Support vector machines are considered to be a must try method for machine learning purposes

because it offers one of the most robust and accurate methods among all well-known algorithms

[86]. For instance, in a binomial classification task the SVM goal is to find the best classification

function that better separates the members of each class. This separation is obtained via geomet-

rically corresponding to hyperplanes in the feature space which separate the classes. The best

function is found by maximizing the margin between the two classes, i.e., by maximizing the

distance between the closest data points to the hyperplane and a point of the hyperplane. Once

this function is found, new data can be classified by simply testing if it belongs to the positive or

negative classes, i.e., if it belongs to one side of the hyperplane or to the other [86].

SVM allows the use of kernel functions (e.g. linear, quadratic, exponential) to defined a va-

riety of non-linear relationships between its inputs. Thus, such approach provides an accurate

generalization ability, improving the chances of correctly predicting new unseen data in the future

[86].

Figure 4.12: SVM hyperplane projection schematics. On the left side image, it is displayed a
hyperplane with smaller margin for class separability which was enlarged by optimization of the
classification function (by maximizing the distance between the closest data points to the hyper-
plane and the points of the hyperplane) which displayed on the right side image proving better
class separability.

4.3.2.3 Decision Tree

Decision Tree is a widely used and one of the most easy to understand classification algorithms

in the data mining field due to its practical and feature-guided nature. The decision tree algorithm

uses a tree-like shape model to classify the data by sorting the instances to be classified based

on their features values [87, 88]. A decision tree uses a divide and conquer strategy using nodes

and leafs to predict the classes of given set of features. Each node represents a dataset feature to

be classified and each leaf represents a set of values that the node can assume. The assignment

of a given label is achieved by going through the path from the root node to the leaf. The most

discriminant feature that best divides the training data is the root node of the tree [87].
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Figure 4.13: A decision tree concept applied to a binomial classification problem of "Play Tennis".
This tree classifies a given morning as suitable or not (yes or no) for tennis practising. Classifica-
tion label is obtained by navigating to the tree to the appropriate leaf node [88].

The in-between path since the root node and the final leaf is constituted by branches that

represents the set of features and the possible range of values used to predict the final class label.

At each node, a given feature is "tested" and each branch stands for the possible outcome being the

final leaf the predicted class label. The decision tree algorithm splits the original set of attributes

into subsets that are tested resulting into new branches, i.e., the path, this process is repeated

recursively on each derived subset until splitting no longer adds value to the final predictions.

There are many stopping criterion being the most used the information gain or the overall accuracy.

4.3.2.4 Model Estimation

In order to choose the best model that fits the data and increase overall prediction accuracy, it is

required to train and test that specific model with the available data. The model may be a simple

linear equation or complex as a neural network, mapped out by sophisticated software.

There are several methods to accomplish this purposes that basically share the same principle

that is to build a model in a subset of data, called the training set, and to test the resulting model

in unseen subset of data, called the testing set.

The input dataset may be splitted recurring to most used techniques such as split-validation

and cross-validation methods.

In the split-validation technique, the dataset is subdivided into training and testing dataset with

predefined weights. The weights of the training and testing dataset can be chosen being majorly

used 70% for training and 30% for the testing dataset. The training dataset is used to train the

classifier according to the chosen model and the testing dataset is used for performance evaluation

of that same model. The division of the input dataset into training and test is done randomly, being

possible to repeat the split process k times and then estimate the global accuracy as the averaging

of all runs [89, 90].

On the other hand, cross-validation technique revealed to be of more interest since it is identi-

cal to the split-validation technique but simultaneously ensure the universality of the data splitting
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heuristics [89, 90]. More specifically, the so called k-fold stratified cross validation splits the

data into k folds (e.g. 10 folds) with same classes ratio proportion and then uses one fold as the

validation set while the remaining nine folds are combined and used as the training set. The vali-

dation accuracy is then computed for the mentioned test dataset and afterwards the validation set

is changed to the next fold, being the remaining nine folds combined again and used as the training

set. This process is repeated for k times, by changing the validation set at each run and then the

model global prediction accuracy estimated by the averaged accuracy obtained at each run (see

Figure 4.14).

Figure 4.14: k-Fold cross validation schematics.

Generally, classification evaluation is accomplished by measuring the amount of correctly and

incorrectly predicted samples for each class, being the result displayed in a so called confusion

matrix [91, 92, 93, 94]. The confusion matrix for a binary classification problem (e.g. healthy

(positive class) vs pathological (negative class)) is represented in the Table 4.3:

Table 4.3: Confusion matrix structure [91, 92, 93, 94].

Predicted
positive negative

positive tp fn
Ground Truth

negative fp tn

The false positives (fp), false negatives (fn), true positives (tp) and true Negatives (tn) are

defined as being :

• f p: number of samples predicted as positive, which the true class is negative.

• f n: number of samples predicted as negative, which the true class is positive.

• t p: number of samples predicted as positive, which the true class is also positive.

• tn: number of samples predicted as negative, which the true class is also negative.
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The most important performance measure is the accuracy, which evaluate the effectiveness of

the classifier by its overall percentage of correct predictions (see Equation 4.28). Additionnaly,

some other metrics as recall and precision are used to measure the capability of the classifier to

effectively predict the outcome for each class in a binary problem.

Recall, known also as sensitivity is the proportion of samples belonging to the positive class

which were correctly predicted as positive (see Equation 4.29). Precision measures the propor-

tional of positive samples that were correctly predicted from the total predicted patterns in a posi-

tive class (see Equation 4.30). Specificity can also be measured and is the percentage of negative

samples that were correctly predicted as negative (see Equation 4.31).

Finally, a combined measure namely F-measure can also be determined representing the weighted

average of the precision and recall (see Equation 4.32).

Accuracy =
tp + tn

tp + fp + tn + fn
(4.28)

Recall/Sensitivity =
tp

tp + tn
(4.29)

Precision =
tp

tp + fp
(4.30)

Speci f icity =
tn

tn + fp
(4.31)

F−Measure =
2∗Precision∗Recall

Precision+Recall
(4.32)

4.4 State of the art studies

The constant pursuit for an higher degree of classification accuracy and a simultaneously lower

generalisation error is the ultimate goal of a generic classification system. Therefore, over the

years, several studies have implemented different classification methods in order to obtain the best

classifier performance.

Early studies from Krishnan and Rangayyan [95] demonstrated a global classification accu-

racy of 68.9% using a statistical pattern classifier based on stepwise logistic regression analysis

with only 6 time-frequency features; Kim et al. [96] obtained a classification accuracy of 92.3%

using the back-propagation neural network (BPNN) with 43 time-frequency extracted features

from each signal segment and later on [39], an 91.4% with the same dataset using an improved

denoised version of the TFD of the signal. Rangayyan and Wu [52] obtained 0.857 screening

efficiency, in terms of the area under the receiver operating characteristics curve (AUC), using

statistical-based features and a neural network classifier based on radial basis functions; Wu and

Krishnan [97] obtained 80.9% accuracy using statical features derived from the time-frequency

wavelet MP decomposition of the signals with a multiple classifier system based on recurrent neu-
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ral network. Another work from Rangayyan and Wu [98] demonstrated a global classification

accuracy of 77.53% using PDF-derived statistical features using a neural network classifier with

radial basis functions; Son et al [53], showed an accuracy of 91.4% using TFD extracted features

and the BPNN classifier; Filip Leszko [55] obtained a considerable high accuracy of 96.1% in its

study using several different statistical and frequency-based features with a Bayesian minimum-

error-rate classifier; in another study, Wu et al [99] showed an overall accuracy of 0.8230 in terms

of AUC using statistical features from the signals with a multiple classifier system group of com-

ponent least squares support vector machine classifiers with a linear and normalized fusion model.

More recently, Chen et al. [100] demonstrated a screening accuracy of the statistical pattern

classifier of 85.3% using time-frequency extracted features; Wu et al. [40] obtained 86.67% accu-

racy with the maximal posterior probability decision criterion classifier using only two-statistical

based features; Lin et al. [35] obtained 81.52% as the total accuracy rate evaluated by statistical

analysis and using statistical and Fourier analysis-based features; Yang et al. [101], showed an

overall classification accuracy of 88% using the fractal scaling index parameter and the averaged

envelope amplitude as features with a Bayesian decision rule classifier; Another work from Lin

et al. [65] demonstrated a global accuracy of 80% using only 2 statistical features (FF and VMS)

with the k-NN classifier.

In Table 4.4, a more detailed description of the studies done so far are presented.
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Chapter 5

Vibroartrhographic Analysis

This chapter describes the used methodology and achieved results that were obtained during the

course of this study to meet the final goal of creating a knee joint vibration-based classification

system. Signal processing and machine learning techniques were implemented for an accurate

analysis and are described in detail during this chapter.

5.1 Data Acquisition

5.1.1 Accelerometer Sensor

The Fraunhofer (FhP) Pandlets sensor was used in this study. The FhP sensor contains a Bluetooth

4.0 interface, a 16 Mhz ARM M0+ processing unit, inertial (IMU) and environmental (EMU)

measurement units. The IMU unit is composed of three inertial sensors: an accelerometer, a

gyroscope and a magnetometer. Only the accelerometer unit was used during the course of this

study for signal’s collection. The 3 axis accelerometer has 16 bits resolution, 4 kHz sampling rate

and a dynamic range of 2 to 16 g. Specifically, for this study, the FhP sensor was predefined to

record at 500 Hz sampling rate being the data stored in a secure digital (Sd) card. Due to hardware

and firmware limitation, the maximum available sampling rate for acceleration recordings was set

to 500 Hz which may be enhanced in a near future.

5.1.2 Knee Flexion/Extension Protocol

Each subject was requested to sit either on a rigid table or on the doctor’s examination table (if

applicable) in a relaxed position, with their back straight up and both feet suspended in the air

(without contacting the ground at all times). The accelerometer sensor was placed in the medial

compartment of the knee slightly below the midline of the patella (medial condyle on the patella)

recurring to double-sided tape. Thereafter, an elastic knee brace was used to fix and assure that

the sensor would not move during the whole experiment. Each subject was asked to perform a leg

swing movement that consisted in swinging the leg over an approximate angle range of 90o starting

with the knee bended (at 90o), going to full extension (0o) and backwards with an approximately

47
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period of the 4 seconds per cycle. Each trial consisted in performing 4 cycles of the mentioned

movement.

5.1.3 Dataset

In the present study a dataset was collected with 19 healthy volunteers (46.6± 13.1 years old) that

underwent medical physical examination and evidentiating no sign of having any knee joint prob-

lems and 20 arthritic volunteers (62.5± 9.1 years old) that have medical history based on physical

examination and medical x-ray. All signals were collected in hospital environment recurring to

knee flexion/extension protocol under doctors supervision and using FhP Pandlets Sensor. Any

additional information provided by the doctor’s was kept for further subject characterization. The

collected dataset resulted in a total of 30 arthritic signals and 24 healthy signals, acquired from

both knees (when applicable).

5.2 System Implementation

In order to create and implement a classification system for the assessment of the knee joint status,

an algorithm based on the vibration analysis and machine learning techniques was developed and

applied to the signals. An overview of the pipeline of the algorithm is provided in the Figure 5.1

Figure 5.1: Classification system pipeline.

5.2.1 Signal’s Acquisition

For each trial, the three acelerations components, under the form of x, y and z axis signals, were

collected for all time instants. Additionally, the magnitude signal which is a combination of the
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three components of the acceleration signal was computed according to the Equation 5.1:

Mag(t) =
√

x(t)2 + y(t)2 + z(t)2 (5.1)

where the Mag(t) is the resulting magnitude signal and the x(t), y(t) and z(t) are each one of

the recorded acceleration from the x, y and z axis, respectively.

5.2.2 Pre-processing

VAG signal pre-processing plays a major role for the achievement of an accurate and reliable

analysis. Therefore several pre-processing steps were applied to the original (raw) VAG signals.

Techniques such as amplitude range normalization and digital filtering (fixed and adaptive) were

applied to the signals.

5.2.2.1 Normalization

In order to increase algorithm robustness by taking into account the observed differences in terms

of the signal’s amplitude values range across subjects and trials, an amplitude normalization

method was applied to all the available signals. Each signal’s amplitude was normalized in or-

der to have a new range of amplitude values bounded to the interval [-1, 1]. This amplitude range

normalization method is based on the minimum and maximum amplitude values of each signal,

being each sample normalized according to the Equation 4.1. An illustrative example of this pro-

cedure is displayed in the Figure 5.2.

As we can see in the Figure 5.2, the minimum-maximum amplitude based normalization was

successfully apply to the accelerations signals by bounding their original amplitudes values to the

interval [-1,1]. This technique was able to keep the shape of the waveform (acceleration signal’s

shape) and to re-scale the amplitude values to a new predefined interval. This pre-processing step

is vital for inter-subjects comparisons since the recorded accelerations values may vary in terms

of scale from subject to subject and from trial to trial.

5.2.2.2 High-Pass Filtering

In order to eliminate the unwanted signal’s components as movement, gravitational and muscu-

lar components that mask the wanted components from the VAG signals, a high pass filter was

applied.

The applied high pass filter was a 9th order Butterworth filter with a cut off frequency of 20 Hz.

The used cut off frequency value was chosen according to the reported literature however different

cut off frequencies should be tested in future studies to evaluate the overall system performance.

An example of the filtering procedure of each one of the acceleration signals is provided in the

Figure 5.3):

By filtering the signals according to the given cut off frequency, the more simpler artifacts

arising from movement related issues, gravity or even muscular interference can be removed,
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being the "remaining" signal constituted only by specific knee joint vibrations emitted during the

knee flexion/extension test which characterizes the knee joint status.



5.2
System

Im
plem

entation
51

Figure 5.2: Amplitude range normalization illustration of the x, y, z and magnitude accelerations signals.
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Figure 5.3: Illustrative example of the high-pass filtering process. Raw (left side) and high-pass filtered (right side) acceleration signals of the x, y, z
and magnitude.
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5.2.2.3 Baseline wandering removal

Baseline wandering estimation and subsequently removal from the VAG signal was accomplished

via adaptive filtering, more specifically, by using the CMA filter algorithm. A more detailed

description of this technique was provided in the Chapter 4. An illustration of the application of

such filter is provided below:

Figure 5.4: Illustrative example of the cascade moving average filter. For input signal (blue line),
the algorithm estimates the mean component (red line) being the bottom signal (cyan line) the final
filter output given by cascade moving average filter.

As it can be seen in the Figure 5.4, the cascade moving average filter was able to estimate

and remove the mean component of the signals for all time instants recurring to the application

of a hierarchical structure consisting in two successive moving average operators resulting in a

baseline wandered free version of the input signal. The latter one is more interesting for this kind

of analysis purposes since it focuses more on the signal’s changes regarding to the mean and thus

provides a more reliable source for feature extraction.



54 Vibroartrhographic Analysis

5.2.3 Segmentation

In order to select the most meaningful and desired segments of the VAG signals a segmentation

approach was applied to all the available signals. The VAG signals were segmented according to

the angular data into segments corresponding only to a specific phase of the knee flexion/extension

movement, i.e., the middle phase of the movement.

Initial and end phase of the leg swing movement are not essential for the analysis not only

because the femur is not in fully contact with the tibia in those moments as for the inherent noise

that is present in those parts due to the test’s characteristics (self initiation and stoping of the

movement induced a lot of noise into the signals). Having this in mind, only the VAG signals

correspondent to middle phase movement was kept for further analysis.

The selection of those specific segments was obtained by keeping only the corresponding

accelerometer time series values where the calculated angle for those same instants belonged to

a predefined range of values. The latter interval was defined as being 2/4 of the total angular

displacement obtained during one leg swing corresponding to the mentioned middle phase of the

movement.

The angles during the leg swing movement for all time instants were determined by calculating

the dot product between two vectors see Equation 5.2).

A ·B = |A||B|.cos(θ) (5.2)

θ = acos(
A ·B
|A||B|

) (5.3)

By definition, the result of the dot product between two vectors (e.g. vector A and B) is a third

vector which is perpendicular to both A and B (see Figure 5.5). To find the angle between the two

vectors the dot product calculation is performed according to the equation 5.3:

Figure 5.5: Dot product schematics.

A reference frame composed of three vectors was defined as Re fx, Re fy and Re fz (see Figure

5.6). Additionally for each x, y and z acceleration values, a vector with the coordinates (x,y,z)

was created and the dot product equation applied to calculate the angle between each one of the

reference vectors (Re fx, Re fy and Re fz) and the acceleration-derived vector for all the time instants

resulting into 3 different angular signals describing the angle between the sensor and the reference

frame at each time instant.
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Figure 5.6: Reference frame composed of three directional vectors (Re fx, Re fy and Re fz) and
sensor’s three dimensional position ACCx,y,z for each time instant. The xang, xang and xang are the
resulting angle between the sensor and Re fx, Re fy and Re fz,respectively.

The predefined reference frame consisted into 3 different directional vector as it can be seen

below:

• Re fx− (1,0,0)

• Re fy− (0,1,0)

• Re fz− (0,0,1)

The resulting angular signals for all time instants described the angle between the sensor at

each time point and each one of the reference vectors. An automatic segmentation algorithm

which only selects the segments correspondent to the middle phase of the leg swing movement

was developed based on the initial and maximum angles obtained during one leg swing.

The range of angular values was determined by the total angular displacement obtained during

the experiment. The angular displacement was calculated by subtracting the initial angle (when

the knee is bended - initial position) from the maximum angle obtained in the angular signal

(correspondent to the position where the leg is fully extended). Angular displacement measures the

range of motion of the leg during each swing. By keeping the accelerations values correspondent

to the middle 2/4 of the total angular displacement, an automatic segmentation approach was

provided for the segmentation of each trial. With the value of the total angular displacement, two

thresholds are created for the segmentation, one for the lower cut off angle and another for the

higher cut off angles according to the Equation 5.4 and 5.5 , respectively. A detailed example of

the segmentation mechanism is provided below for better understanding:

T h_ang1 = Init_angle+
2
4
∗δang (5.4)

T h_ang2 = Max_angle− 2
4
∗δang (5.5)
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Figure 5.7: Angular segmentation mechanism. Init_ang and Max_ang are the initial and maxi-
mum angles obtained in the leg swing movement being the δang the total angular displacement.
Th_ang1 and Th_ang2 are the threshold angles for the lower and upper part segmentation, respec-
tively.

Figure 5.8: Example of the automatic angular segmentation algorithm performed on a magnitude
raw signal. Samples within the green rectangles represents the chosen accelerations segments
correspondent to the middle phase of the leg swing movement.
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The maximum angle is obtained when the leg is fully extended, being this angular value the

maximum angle. The angle when the knee is bended (correspondent to the initial position) is the

minimum angle. The difference between the maximum and minimum angles is the total angular

displacement. Based on this angular displacement the two threshold values are generated for the

correspondent segmentation (see Figure 5.8).

5.2.4 Feature Extraction

For the creation of an accurate and reliable classification system the provided extracted feature

from the VAG signals needs to be highly discriminant by providing a good and specific character-

ization of the knee joint status.

In this study, a set of features based on the time and frequency domains were extracted from

the VAG. Usually, time domain features are often used to characterize the shape of the raw signals

are mostly based in simple mathematical and statistical metrics extracted from each signal in order

to extracted its most basic information. Additionally, frequency-domain features are more often

related to the discovery of the signal’s hidden patterns by identifying and capturing information

from repetitive events that occurs through time. The VAG signals are of non-stationary nature,

therefore it requires an analysis which simultaneously based on time and frequency domain. In

order to pursuit this goal, the wavelet transform, more specifically the wavelet packets transform,

was used to perform an accurate time-frequency analysis of the VAG signals. As mentioned be-

fore, due to VAG signals inherent non-stationary and irregularity the wavelets transform approach

revealed to be more suitable for this kind of purposes because it would allow not only the extrac-

tion of frequency content of the signal but also its localization regarding to time.

5.2.4.1 Signal’s Array Creation

The four initial raw signals, namely x, y, z and magnitude signals, were pre-processed with am-

plitude range normalization. This new set of four signals were defined as the basic signals corre-

sponding to the raw and pure collected signals. Posteriorly for each one of these signals a high

pass filter and/or a cascade moving average filter were applied, being able to create several x, y, z

and magnitude new versions of the original signals by combining the application of only the high

pass filter, or only the cascade moving average filter or both (first the cascade moving average filter

and then the high pass filter). Several versions of the four input signals were computed according

to the possible combinations of the high pass and cascade moving average filter. An illustrative

example of the resulting array of signals is represented in the Figure 5.9.

As it can be seen in the Figure 5.9 the 4 initial normalized signals (the x, y, z and magnitude)

were pre-processed in order to obtain 12 other different versions of the same ones by: 1) high

pass filtering; 2) applying the cascade moving average filter; 3) both applying the cascade moving

average and the high pass filtering to the input normalized signals. These twelve versions of the

input signals in addition to the four original normalized signals were used together to form the final

signal array for the analysis. This strategy of combining several signals versions into a final array
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was used in order to determined which type of signals (normalized, high pass filtered, cma filtered

or both cma and high pass filtered signals) provide the most discriminant features, i.e., the optimal

separability among classes. Thus, for future studies, only the signals which provide essential and

most discriminant features will be used. This will be accomplished by applying feature selection

techniques among all available features extracted from each signal version in order to determine

which are the most important ones.

Each one of the signals in the final signal array was segmented, as mentioned before, recurring

to angular segmentation by keeping only the middle phase of the leg swing movement, i.e., the

segments corresponding to the middle ascendant and descendent phases of the leg swing move-

ment. Therefore, feature extraction was applied to these segments in order to extract meaningful

and highly discriminant metrics with a wavelet-based time-frequency analysis. For each signal a

total of 197 features were extracted from each signal’s segment.

Figure 5.9: Signals array creation schematics. A final signal’s array with a total of 16 signals was
created for further analysis. The latter one was composed of the x, y, z and magnitude signals
derived from the normalization of the raw signals, high pass filtering, cascade moving average
filtering and cascade moving average with high pass filtering, respectively.



5.2 System Implementation 59

The extracted features can be divided into 2 major groups: the sample statistics and the time-

frequency features. A detailed description of the all extracted features is provided below:

• Sample Statistics (SS)

– SS_ft1: Mean - calculates the average of a given set of numbers,i.e., calculates the

"central" value of a given set of numbers;

– SS_ft2: Standard deviation - measures the spreadability of a given set of numbers;

– SS_ft3: Variance - is also a measure of spreadability like standard deviation (by def-

inition it is equal to the squared value of standard deviation) given by the average of

the squared differences from the mean;

– SS_ft4: Skewness - measures the asymmetry of the probability distribution of a real-

valued variable about its mean;

– SS_ft5: Kurtosis - measures the tendency of a probability distribution of a real-valued

variable to have peaks. It is considered to be a descriptor of the shape of a probability

distribution.

– SS_ft6: Turn Counts - with measures the number of significant "turns" observed in the

seen with an adaptive (mean and/or std based threshold) and universal (threshold=0.2)

threshold.

• Time-Frequency (TF) Statistics

– Frequency based features

∗ TF_ft1: Mean wavelet coefficient power of each frequency band distribution over

the entire time - it measures the mean wavelet coefficient value obtained during

the entire signal’s segment length;

∗ TF_ft2:Standard deviation of wavelet coefficients distribution of each frequency

band over the entire time - measures the spreadability of the wavelet coefficients

values of a given frequency interval over time;

∗ TF_ft3: Variance of wavelet coefficients distribution of each frequency band dis-

tribution over the entire time - measures the dispersion of the wavelet coefficients

values of a given frequency interval over time;

∗ TF_ft4: Skewness of the wavelet coefficients distribution of each frequency band

distribution over the entire time - measures the asymmetry of the wavelet coeffi-

cient distribution of a given frequency interval over time;

∗ TF_ft5: Kurtosis of wavelet coefficients distribution of each frequency band dis-

tribution over time - measures the tendency of the wavelet coefficient distribution

of a given frequency interval to have peaks over the entire time;

∗ TF_ft6: Number of significant differences (above a given threshold) observed

between successive wavelet coefficients (in terms of absolute value) of each fre-

quency band distribution over the entire time - measures the number of times that
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the difference between consecutive wavelet coefficients values, in terms of abso-

lute value, was higher than a certain threshold. Two types of threshold were used:

one based on the mean and another based on the standard deviation of that wavelet

coefficient difference distribution over time.

– Instantaneous time-based features

∗ TF_ft7: Instantaneous mean wavelet coefficient value - provides the instanta-

neous mean wavelet coefficient value of all frequency bands at each time slice;

∗ TF_ft8:Instantaneous standard deviation - measures the instantaneous spreadabil-

ity of the wavelet coefficients values of all frequency bands at each time slice;

∗ TF_ft9: Instantaneous variances of frequencies - measures the instantaneous dis-

persion of the wavelet coefficients values of all frequency bands at each time slice;

∗ Instantaneous skewness - measures the instantaneous asymmetry of the wavelet

coefficient distribution of all frequency bands at each time slice;

∗ TF_ft10: Instantaneous kurtosis - measures the instantaneous tendency of the

wavelet coefficient distribution of all frequency bands to have peaks at each time

slice;

∗ TF_ft11: Mean frequency band with most power/activity - indicates the fre-

quency band which displayed greater activity during the whole experiment by

averaging the frequency band with most power at all time instants;

∗ TF_ft12: Standard deviation of the band with most power/activity - indicates

the amount of frequency changes, in terms of absolute power differences, of the

band with the most power across the entire time, i.e., measures if the power is

concentrated always in the same frequency band or if it changes drastically from

one frequency band to another as time elapses;

∗ TF_ft13: Energy parameter - mean of the signal along each time slice represent-

ing energy variation with time;

∗ TF_ft14: Energy spread parameter - measures the spreadability of energy over

the frequency range across time;

∗ TF_ft15: Frequency parameter - instantaneous mean frequency being computed

as the first moment of the signal (t,f) along each time slice;

∗ TF_ft16: Frequency spread parameter - spreadability of frequencies across time;

∗ TF_ft17: Number of times that the frequency band with most power is greater

than a given threshold - counts the number of times that the band with most power

is greater than a certain threshold. Three types of threshold were used: one based

on the mean distribution of the frequency band with most power obtained for

each time instant; another based on the standard deviation of that distribution and

finally, another based on the combination of the previous two (mean + standard

deviation).
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For the time-frequency analysis, it was used the wavelet packets transform with four levels of

decomposition and the Daubechies 2 (dB2) wavelet (see Figure 5.12) resulting into a set of sixteen

different frequency bands computed for all time instants (see Figure 5.10). All mentioned features

were extracted for all segmented signal’s corresponding to ascendant and descendent phases of

the leg swing movement. For each full leg swing cycle, i.e., for the segment correspondent to the

ascendant phase and for the segment correspondent to the descendant phase a total of 394 features

were extracted. The latter number of features were extracted for all the available versions of the

input signals that are in the final signal’s array with a total of 6304 features distributed among the

sixteen different signals in the final signal’s array.

With the collected dataset, the maximum level used for the wavelet packets decomposition was

4, producing a tree with 16 different frequency bands (see Table 5.1 for detailed description of the

frequency interval range). Due to the wavelet packets transform inherent characteristics the maxi-

mum tree depth was established to be 4 because the segmented acceleration signals have a limited

number of samples (not sufficient for an analysis with 5 or more levels) which impossibilitate the

analysis for greater decomposition levels than 4. This constraint does not allow a more detailed

analysis of the frequency content of each VAG signal, being only possible to analyze each signal

in terms of frequency using 16 equality spaced frequency intervals. This kind of limitation could

be surpassed by performing the leg swing movement more slowly or/and by increasing sensor’s

sampling frequency. Despite this, 16 different frequency bands were found to be sufficient for the

development of a relatively accurate analysis.

Table 5.1: Number of frequency bands obtained using 4 levels of decomposition with the corre-
spondent frequency interval range.

Band number Frequency interval (Hz)

Band 1 0 - 15.6
Band 2 15.6 - 31.3
Band 3 31.3 - 46.9
Band 4 46.9 - 62.5
Band 5 62.5 - 78.1
Band 6 78.1 - 93.7
Band 7 93.7 - 109.4
Band 8 109.4 - 125
Band 9 125 - 140.6
Band 10 140.6 - 156.2
Band 11 156.2 - 171.9
Band 12 171.9 - 187.5
Band 13 187.5 - 203.1
Band 14 203.1 - 218.7
Band 15 218.7 - 234.4
Band 16 234.4 - 250
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Figure 5.10: 4 Level Wavelet Packets decomposition scheme (left side) and time-frequency representation of the signal (right side) obtained via wavelet
coefficients from all the 16 frequency bands. Each frequency band have N coefficient values which characterizes the behaviour of the input the signal at
that specific frequency range over the entire time.
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Figure 5.11: Illustrative example of the wavelet-based time-frequency signal analysis for an arthritic (left side) and healthy subject (right side). The
raw magnitude signal (blue line), ascending phase (green line) and descending phase (cyan line) of the leg swing movement are represented along with
its scalograms. Waveform, amplitude and frequency content changes over time of each signal are quite distinct when comparing arthritic and healthy
knee joints signals. Time-frequency extracted features are crucial for an accurate characterization and differentiation between defected and healthy knee
joints.
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A representative example of the wavelet packet decomposition analysis is provided in the Fig-

ure 5.11 where the magnitude raw signal, the ascending and descending movement phases with

the correspondent wavelet-based time-frequency analysis from an arthritic and a healthy subject

are presented, respectively. As can be seen in the Figure 5.11, signals arising from a healthy and

from an arthritic knee are quite distinct when considering the signal’s waveform, amplitude and

frequency content. Healthy knee joints produce signals with less oscillations and with a reduced

amplitude range while arthritic knee joints produce signals that are more irregular over time and

with higher fluctuations in terms of amplitude and frequency content. Generally, the ascendant

phase of the leg swing movement produces more characteristic and distinct signals when com-

paring arthritic and healthy subjects, carrying information that is more suitable for classification

purposes with higher discriminant power, as reported in several other studies [58]. Moreover, the

ascendant and descendent phases signals scalogram are also provided. A scalogram is nothing

more that a visual method to display or inspect the wavelet transform where the x, y and z axis

represents time, frequency and wavelet coefficient values. The frequency changes over time are

displayed by varying the colour or brightness, being clearer that frequency content of the signals

changes over time being quite different when comparing healthy and arthritic signals. The already

mentioned time-frequency features were extracted from these wavelet-based scalograms.

Figure 5.12: dB 2 Wavelet.

Moreover, the dB2 wavelet (see Figure 5.12) was chosen among the all available family of

wavelets functions because it was reported in previous studies to be the best type of wavelet for

vibroarthrography analysis due its similarity with the VAG signals [66].
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5.2.5 Dataset construction

For each trial, four complete leg swing cycles (ascendant and descendant) were collected. More-

over, each trial result into four dataset new instances being each one composed of 6304 features

carrying the information from sixteen different accelerations signals. Therefore, the final dataset

was composed of 120 pathological and 92 healthy instances, derived from 30 arthritic and 24

healthy collected signals, respectively.

5.3 Feature Selection

In order to reduce the number of features, a dimensionally reduction algorithm was applied to

the collected dataset. Correlated and irrelevant features for the analysis may be removed using

this kind of approach leaving behind only the most discriminant and highly characteristic features

when considering a healthy or an arthritic knee joint. To achieve this purpose, the SFS algorithm

and principal component analysis were applied (for detailed description of the SFS and PCA see

Chapter 4).

Depending on the model/classifier used for the evaluation of accuracy of the binomial classi-

fication of the collected dataset, a different set of features were selected by the SFS method. SFS

algorithm with the SVM classifier had selected a set of 5 relevant features while with the k-NN

classifier, 6 relevant features were chosen. On the other hand, PCA had selected 11 principal

components as the optimum number of principal components for entire dataset characterization

which were subsequently evaluated in terms of performance with the SVM, k-NN and Decision

Tree classifiers, respectively .

A table with detailed description about how many features were chosen and correspondent

classifier evaluation metric is provided is provided below:

• SVM (gamma=0.004334, C=4889, kernel_type=rbf, epsilon=0.001)

– TF_ft3_x_norm_raw - standard deviation of the variance parameter obtained for each

time instant from the ascendant phase segment of the x-axis normalized signal;

– TF_ft6_y_norm_raw - number of times that the frequency band number 1 was greater

than the mean of that same distribution over the entire time, extracted from the ascen-

dant phase of the y-axis normalized signal;

– TF_ft4_y_norm_raw - skewness of the distribution over time of the frequency band

number 14, extracted from the ascendant phase of the y-axis normalized signal;

– TF_ft6_x_cma_filt - Wavelet-based feature - number of times that the frequency band

number 16 was greater than the standard deviation of that same distribution over the

entire time, extracted from the ascendant phase of the x-axis cascade moving average

filtered signal version;
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– TF_ft4_y_cma_filt - skewness of the distribution over time of the frequency band

number 11, extracted from the ascendant phase of the y-axis cascade moving average

filtered signal version;

• k-NN (k=5, distance_metric=Euclidean Distance)

– TF_ft1_x_norm_raw - average value of the frequency band number 1 coefficients

over the entire time, extracted from the ascendant phase of the x-axis normalized sig-

nal;

– TF_ft1_y_norm_raw - average value of the frequency band number 1 coefficients

over the entire time, extracted from the ascendant phase of the y-axis normalized sig-

nal;

– TF_ft1_z_norm_raw - average value of the frequency band number 1 coefficients

over the entire time, extracted from the ascendant phase of the z-axis normalized sig-

nal;

– TF_ft6_x_filt_norm - number of times that the frequency band number 16 was greater

than the standard deviation of that same distribution over the entire time, extracted

from the ascendant phase of the x-axis high pass filtered signal;

– SS_ft6_y_filt_norm - number of significant "turns" observed in the y-axis high pass

filtered signal;

– TF_ft6_z_filt_norm - number of times that the frequency band number 2 was greater

than the mean of that same distribution over the entire time, extracted from the ascen-

dant phase of the z-axis high pass filtered signal;

For illustrative purposes of the feature selection step, several different combinations of some

of the selected features are displayed in the Figure 5.14 and 5.14 (see also Appendix A). This

allows the evaluation for class separability, in a coarse and visual form, of the effect of combining

two different features.
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(a)

(b)

Figure 5.13: Scatter plot images of the combination two features for inter-class evaluation (blue
dots - Pathological; red dots - Healthy ). Discriminative power of the selected features with SVM
classifier, can be visually inspected for different sets of two features: (a) TF_ft6_x_cma_filt vs
TF_ft4_y_cma_filt and (b) TF_ft4_y_norm_raw vs TF_ft4_x_cma_filt.
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(a)

(b)

Figure 5.14: Scatter plot images of the combination two features for inter-class evaluation (blue
dots - Pathological; red dots - Healthy ). Discriminative power of the selected features with k-NN
classifier, can be visually inspected for different sets of two features: (a) TF_ft1_y_norm_raw vs
TF_ft1_z_norm_raw and (b) TF_ft1_y_norm_raw vs TF_ft6_x_filt_norm.
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5.4 Classification Results

Several classifiers were tested in order to choose the one that most fits to the data. Thus, having

this in mind, SVM, k-NN and Decision Tree classifiers were applied to a subset of equally bal-

anced instances (50:50) in terms of healthy/arthritic ratio. The evaluation of each classifier was

accomplished using the 10 fold cross validation method with stratified sampling (preserve also the

50:50 healthy/arthritic ratio at each partition/subset) and recurring to the accuracy, recall, precision

and F-measure parameters. The average classification results are presented in the Table 5.2.

Table 5.2: Overall classification results for each tested classifier.

Classifier Feature Selection Accuracy Precision Recall F-Measure

SVM none 80.41 80.16 83.89 80.67

SVM SFS (5 features) 84.3 83.19 86.89 84.54

SVM PCA (11 pc) 78.45 80.01 80.33 78.76

k-NN 5 none 77.2 78.9 78.22 77.21

k-NN 5 SFS (6 features) 89.77 88.27 92.44 90.13

k-NN 5 PCA (11 pc) 82.66 82.87 85.89 83.26

Decision Tree none 67.81 69.94 64.22 65.14

Decision Tree PCA (11 pc) 81.99 82.98 82.67 82.06

As it can be seen in the Table 5.2, all tested classifiers produced relatively good results in terms

of classifying a knee joint as healthy or arthritic. In overall, better classification performances were

obtained when a feature selection procedure was applied to the dataset, independently of being the

SFS technique or PCA, highlighting the need for dimensionality reduction step for removal of

meaningless or redundant features.

In terms of classification performance, the k-NN classifier (k=5, 6 selected features) revealed

to be best among all tested. The used k-NN algorithm was able to correctly discriminate 89%

signals with sensitivity of 92.44% and specificity of 88.27% , which is superior to the global

accuracy obtained in the work of [65] of 80% (sensitivity: 71%, specificity: 85%) using the same

type of classifier. Previous studies (see Table 4.4) have reported similar or better performances

using other types of classifiers being quite difficult to directly compare the results obtained in this

study with those studies, not only because the differences in the methodology (signal processing,

extracted features and classifier models) but also the differences in the total number of analyzed

subjects and/or differences in the type and characteristics of the sensors used in the mentioned

studies.
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Despite this, the overall classification performance obtained with this dataset, highlights once

more, the potentiality of such kind of technique for knee joint assessment. In order to obtain a

better classification performance and to overcome several limitations in the data collecting and

processing steps, several aspects needed to be improved as:

• Sensor’s sampling frequency - a higher sampling rate would allow a more detailed and

flexible signal analysis of the VAG signals.

• Angular segmentation - the use of a second sensor (electro-goniometer or a 2nd accelerom-

eter) would allow a better signal segmentation and provide essential information about the

leg swing velocity which could be used for leg swing velocity normalization.

• Leg swing velocity - by controlling and defining a constant velocity for all subjects and

trials, the variable velocity would no longer influence the analysis.



Chapter 6

Conclusions and Future Work

The development of a vibrational-based classification system for knee joint assessment was suc-

cessfully obtained during the course of this preliminary study recurring only to the use of a minia-

ture accelerometer during a knee extension/flexion test. This innovative system showed that it may

provide the differentiation between a healthy and pathological knee with relatively good accuracy,

as reported in several other studies.

Such system could be used as a reliable, accurate, cheap and non-invasive screening diagnostic

tool in the clinical practice or even at home for preliminary screening. Additionally, it would

provide detailed insight, at cartilage level, about the knee joint status and affected structures that

may not be detected with other current diagnostic tool (only gross and symptomatic changes are

detected with the current image-based techniques), possibly enabling the early detection of knee

joint disorders (e.g. OA).

Moreover, such system may also be used as potential monitoring tool in combination with

physiotherapy which would improve the overall rehabilitation process.

Despite the promising results, future work needs to be performed in the data gathering and

analysis process to increase the overall robustness of the classification system. As for future work,

it is suggested to study the biomechanical properties of the knee joint emitted vibrations under

different types of friction and/or loading conditions, increase the sensor’s sampling frequency, to

use of a second sensor (e.g. electro-goniometer or a second accelerometer), optimize the experi-

mental protocol (differences in the leg swing velocity and knee size must be considered for a better

classification) and testing several other different classifier (e.g. neural networks).
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Appendix A

A.0.1 Collected dataset detailed description

Detailed information about the collected dataset is provided in the Table A.1 where the differences

between the healthy and pathological groups are displayed in terms of mean and standard deviation

values of each group ages and k-NN selected features values.

Table A.1: Healthy and pathological group comparison in terms of mean and standard deviation
of each group ages and k-NN classifier selected features. Mean and standard deviation values of
the selected features indicate a good class separability for classification purposes using only a few
and most relevant features.

Group / Mean ± std Age TF_ft1_x_norm_raw TF_ft1_y_norm_raw TF_ft1_z_norm_raw TF_ft6_x_filt_norm TF_ft6_z_filt_norm

Healthy 46.6 ± 13.1 -0.258 ± 0.295 -0.303 ± 0.423 0.582 ± 0.156 -5.079 ± 0.280 0.043 ± 0.293

Pathological 62.5 ± 9.1 -0.430 ± 0.345 0.124 ± 0.487 0.548 ± 0.301 -4.943 ± 0.287 0.025 ± 0.203

A.0.2 Scatter Plots - Feature combination for inter-class separability

Several different combinations of some of the most discriminant features obtained with FFS algo-

rithm for visual inspection of inter-class separability are displayed in the Figure A.1 and A.2.
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Figure A.1: Scatter plot images of the combination two features for inter-class evaluation (blue
dots - Pathological; red dots - Healthy ). Discriminative power of the selected features with SVM
classifier, can be visually inspected for different sets of two features: (a) TF_ft3_x_norm_raw vs
TF_ft6_y_norm_raw and (b) TF_ft6_y_norm_raw vs TF_ft6_x_cma_filt, (c) TF_ft3_x_norm_raw
vs TF_ft6_x_cma_filt, (d) TF_ft3_x_norm_raw vs TF_ft4_y_cma_filt, (e) TF_ft3_x_norm_raw vs
TF_ft6_y_norm_raw, (f) TF_ft6_y_norm_raw vs TF_ft4_y_cma_filt, (g) TF_ft6_y_norm_raw vs
TF_ft4_y_norm_raw and (h) TF_ft4_y_norm_raw vs TF_ft4_y_cma_filt .
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(a)

(b)



(c)

(d)

Figure A.2: Scatter plot images of the combination two features for inter-class evaluation (blue
dots - Pathological; red dots - Healthy ). Discriminative power of the selected features with k-NN
classifier, can be visually inspected for different sets of two features: (a) TF_ft1_x_norm_raw vs
TF_ft6_x_filt_norm, (b) TF_ft1_x_norm_raw vs TF_ft1_y_norm_raw, (c) TF_ft1_x_norm_raw
vs TF_ft1_z_norm_raw and (d) TF_ft1_z_norm_raw vs TF_ft6_x_filt_norm.
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