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Abstract

Private car commuting is heavily dependent on the subsidisation that exists in the form

of available free parking. However, the public funding policy of such free parking has

been changing over the last years, with a substantial increase of meter-charged parking

areas in many cities. To help to increase the sustainability of car transportation,

a novel concept of a self-automated parking lot has been recently proposed, which

leverages on a collaborative mobility of parked cars to achieve the goal of parking

twice as many cars in the same area, as compared to a conventional parking lot.

This concept, known as self-automated parking lots, can be improved if a reasonable

prediction of the exit time of each car that enters the parking lot is used to try to

optimize its initial placement, in order to reduce the mobility necessary to extract

blocked cars.

By using Machine Learning techniques a vehicle’s exit time can be predicted by using

historical data from its previous visits to the parking lot, creating a profile. Vehicles

with similar profiles can be grouped together to create more accurate predictions.

Given the stochasticity of parking time habits, an interval estimation of the vehicle’s

exit time is then used to determine which should be the initial placement that reduces

the collaborative mobility necessary to create an exit path to the vehicle. Two case

studies, of two faculties of the University of Porto in Portugal are used to validate this

works methodology.

In this dissertation we show that the exit time prediction can be done with a relatively

small error, and that this prediction can be used to reduce the collaborative mobility

in a self-automated parking lot.

Keywords: intelligent transportation systems, intelligent parking lots, electric

vehicles, vehicular communication, machine learning
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Resumo

Viagens diárias em carros privados estão profundamente dependentes da subsidiação

que existe em forma de estacionamento grátis dispońıvel. No entanto, as poĺıticas

de financiamento público de tal estacionamento grátis tem vindo a mudar ao longo

dos anos, com um aumento substancial de áreas de estacionamento com parqúımetros

em muitas cidades. Para ajudar o aumento da sustentabilidade da transportação

por carro, um conceito inovador de um parque de estacionamento autónomo foi re-

centemente proposto, que toma proveito de uma mobilidade colaborativa dos carros

estacionados para atingir o objetivo de estacionar o dobro dos carros na mesma área,

comparado com um parque de estacionamento convencional. Este conceito, conhecido

como parques de estacionamento autónomos, pode ser melhorado se uma previsão

razoável do tempo de sáıda de cada carro que entra o parque de estacionamento for

usada para tentar otimizar a sua posição inicial, reduzindo a mobilidade necessária

para extrair carros bloqueados.

Usando técnicas de Machine Learning o tempo de sáıda de um véıculo pode ser

previsto através do uso de dados históricos das suas visitas anteriores ao parque

de estacionamento, criando um perfil. Véıculos com perfis semelhantes podem ser

agrupados para criar previsões mais precisas. Dada a estocasticidade dos hábitos de

tempo de estacionamento, uma estimação de um intervalo de tempo de sáıda de um

véıculo é então usada para determinar qual será a posição inicial que reduz a mobilidade

colaborativa necessária para criar um caminho de sáıda para o véıculo. Dois casos de

estudo, de duas faculdades da Universidade do Porto em Portugal foram usados para

validar a metodologia neste trabalho.

Nesta dissertação mostramos que a previsão do tempo de sáıda pode ser feita com

um erro relativamente pequeno, e que esta previsão pode ser utilizada para reduzir a

mobilidade colaborativa num parque de estacionamento autónomo.

Palavras-chave: sistemas de transporte inteligentes, parques de estacionamento

inteligentes, véıculos elétricos, comunicação veicular, machine learning
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Introduction 1
Nowadays, urban planning is facing major challenges due to the overwhelming amount

of population living in cities. World population has grown by 4 thousand million since

1960, and is currently growing at a rate of around 1.14% per year [wor]. In addition

54% of the world’s population are concentrated in urban areas and it is expected to be

66% in 2050 [unu]. Consequently, mobility is evolving from a need to a daily struggle.

Today, the car transportation still represents a significant role on it. However, the

number of cars in many cities has reached a level where the road infrastructure is

unable to avoid systematic traffic congestions. In addition, the high cost of fossil fuels

and pollutant emission levels are creating significant challenges for the sustainability

of private car commuting in major cities [GW97]. Tolls and prohibition of circulation

in one or two week days for a given vehicle are already in place in some of our cities

[AG07]. Technology is trying to mitigate these issues by 1) zero-emissions electric

propulsion [Cha07] and 2) connected navigation [tom] are two examples of technologies

that can help making car transportation more sustainable by 1) reducing emissions

and 2) spending less time in the road, avoiding traffic congestion.

Parking is a major problem of car transportation, with important implications in

traffic congestion and urban landscape. It has been shown that parking represents

75% of the variable costs of automobile commuting [SA+05], supported by a major

public subsidisation of the space devoted to car parking, where the user does not pay

in more than 95% of the occasions [Sho06]. Such free parking has high costs to the

municipalities, not only for the area occupied by the vehicle and on the pollution

generated through the route it adopted to get there, but also by the surrounding area,

which allows passengers to get in and out of the car or even other vehicles to get in

and out of the park [Fea14].
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Self-automated parking lots represent a promising approach to solve the issue of car

parking. In this approach vehicles are parked in a very compact way, without space

devoted to access ways or even inter-vehicle space that allows opening doors. When a

vehicle that is blocked by others wants to leave the parking lot, the other vehicles are

moved in order to create an exit path. An example of a conventional parking lot and

a self-automated one can be seen in Figures 1.1 and 1.2, respectively. The compact

way the vehicles are parked in Figure 1.2 permits a much larger number of cars to be

parked simultaneously. When the vehicle in red wishes to exit the park all vehicles

behind it must be moved in order to create an exit path.

Hereby, the main idea consists on developing a method able to produce exit time

predictions for each vehicle in real time based on historical data on their entries/exits

in the parking lot. Based on such prediction, the vehicles can be placed using an order

that reflects their expected exit times. Such approach aims to minimize the number

of vehicles blocked by other ones who will leave the parking lot at a later time.

Formally, it is possible to represent the Self-Automated Parking Lot as a set of N

independent First In First Out (FIFO) queues Q = {q1, ..., qN}, where each queue

contains an ordered subset of the set of C parked cars P = {p1, ..., pC}. Given the

arrival of a new car pC+1, we need to 1) approximate the parking time function f(p, t)

- where p stands for a given vehicle and t for the time - using its historical values.

Secondly, we use such approximation - pr = f̂(p, t) as parameter of the function col -

which returns the number of unnecessary car movements1. Consequently, it is possible

to define the following

argminqcol(q, pr,Q,Q
′) (1.1)

where q stands for the queue selected for the newly arrived vehicle pC+1.

1.2 Motivation & Goals

In this dissertation we propose to explore both historical and real data on parking lot

entries to build a prediction on the parking time of each vehicle. Using this information

to improve the original placement of the car in order to reduce manoeuvring mobility.

Our goal is not to obtain a precise exit time for each vehicle, but rather a interval-based

estimation on the parking time that can be used in conjunction with the parking lot

1movements required to let cars located in further queue positions exit the park
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1.2. MOTIVATION & GOALS

Figure 1.1: Conventional parking lot with access ways and inter-vehicle space.
Adapted from [Fea14].

Figure 1.2: Self-automated parking lot in which the vehicles are parked in a very
compact way. If the vehicle in red wants to exit the park, all vehicles behind it must
be moved in order to create an exit path. Adapted from [Fea14].

layout (e.g. number of lanes) to reduce the likelihood of having to move parked vehicles

to create exit paths for blocked vehicles. This methodology should be applicable to

any real world park that keeps records on its vehicles. By doing so, we expect to

increase the parking lot capacities in the mid-future. Such increase will provoke an

improvement on the parking lot capacity and on its profits (in case of its entrance be

paid). As more and more data is collected from a variety of sources the effectiveness of

Machine Learning (ML) techniques grows and with the increasing use of sensors and

other information gathering systems being used in Intelligent Transportation Systems

(ITS), the use of these techniques are trending in ITS [ZWW+11]. We propose then

the following research goals, to 1) build a predictive model on the parking time using

real parking data, able to return an interval-based estimation on its future value using

ML techniques, and to 2) develop a function able to use the abovementioned intervals

to select the most convenient lane to park a vehicle.

17



CHAPTER 1. INTRODUCTION

1.3 Dissertation Structure

This dissertation is divided as follows: First, an overview of the problem is given

in Chapter 2, describing how the Automated Parking Lots works, as well as some

issues concerning the Parking Lot Design and some research works related wit this

topic. Next, a summary of the foundational concepts of ML is presented in Chapter

3. The state of the art of important methodologies later employed such as Super-

vised/Unsupervised Learning, Feature Selection and Incremental Learning are briefly

revised. Chapter 4 explains the methodology used in this work in its four steps: Profile

Generation, Parking Time Prediction, Incremental Interval Generation and Parking

Lane Selection. The performed experiments are detailed in Chapter 5, including a

detailed description of the Case Study, then the Experimental the setup used to

conduct our experiments and the methods used to validate them. To conclude Chapter

5, the Results of the experiments are shown and discussed. Lastly, in Chapter 6 the

conclusions are presented.

18



Problem Overview 2
2.1 Automated Parking Lots

Technology has been focusing in moving cars, disregarding the parked period of these

cars, which represents 95% of the vehicle existence. Recently, a simple proposal that

leverages on technology such as electric propulsion or wireless vehicular connectivity

has addressed the issue of car parking, arguing that through a collaborative approach to

the parking of cars, the area per car could be reduced to nearly half, when compared to

the area per car in a conventional parking lot. This approach, known as self-automated

parking lots [Fea14], works as follows. An electric vehicle (EV) is left at the entrance of

a parking lot by its driver. This EV is equipped with vehicular communications that

establish a protocol with a Parking Lot Controller (PLC). The EV is also based on

Drive-by-Wire (DbW) technology, where in-vehicle Electronic Control Units (ECUs)

manage signals sent by the acceleration and braking pedal, and steering wheel. The

Vehicle-to-Infrastructure (V2I) communication protocol allows the PLC to control

the mobility of the EV in the parking lot. The PLC remotely drives the EV to its

parking space, using in-vehicle positioning sensors (e.g. rotation per wheel), magnet-

based positioning, or some other type of positioning system (e.g. camera-based).

Alternatively to a fully-automated system, a scenario of human-based tele-operated

driving could also be used [SGL14]. In this concept of self-automated parking lots

the cars are parked in a very compact way, without space devoted to access ways

or even inter-vehicle space that allows opening doors. As a new vehicle enters the

parking lot, the PLC sends wireless messages to move the vehicles in the parking lot

to create space to accommodate the entering vehicle. If a blocked car wants to leave

the parking lot, the PLC also sends messages to move the other vehicles, in order to

create an exit path. In [Fea14] it was shown that this concept could reduce the area

per vehicle to nearly half, as well as reduce the overall mobility of cars in the parking

lot, when compared to a conventional parking lot. However, in the original paper, a

first-fit strategy was used to initially park each vehicle. Clearly, the initial placement

can be improved if some knowledge about the expected exit time of each car is used.

19



CHAPTER 2. PROBLEM OVERVIEW

The basic idea is that a car should not be blocked by another car that will leave the

parking lot later. If the cars in the parking lot are placed using an order that reflects

their expected exit times, then the overall mobility in the parking lot to create exit

paths can be reduced.

2.2 Parking Lot Design

The geometric design of the parking lot is an important issue in a self-automated

parking lot. In conventional parking lots there are a number of considerations that

have to be taken into account when designing them. For instance, width of parking

spaces and access ways, one-way or two-way use of the access ways, entry angle in the

parking bays (90◦, 60◦, 45◦), pedestrian paths, visibility to find an available parking

space, etc. In a self-automated parking lot, many of these considerations do not apply.

Manoeuvring is done autonomously by the car following the instructions of the PLC,

pedestrian access is not allowed, and the assigned parking space is determined by

the PLC. The main design issue is defining a geometric layout that maximises parking

space, leveraging on minimal buffer areas to make the necessary manoeuvres that allow

the exit from any parking space under all occupancy configurations. This geometric

design is ultimately determined by the shape of the space of the parking lot. The

parking lot architecture also defines the trajectories and associated manoeuvres to

enter and exit each parking space.

The parking lot has a V2I communication device which allows the communication

between the vehicles and the PLC. In theory, this infrastructure equipment could be

replaced by a vehicle in the parking lot, which could assume the function of PLC

while parked there, handing over this function to another car upon exit, similarly to

the envisioned functioning of a V2V Virtual Traffic Light protocol [FFC+10]. Note,

however, that the existence of the actual infrastructure, which could be complemented

with a video-camera offering an aerial perspective of the parking lot to improve the

controller perception of the location and orientation of vehicles, could simplify the

protocol and improve reliability.

Reducing and simplifying such trajectories and manoeuvres is also an important design

issue, as they affect the reliability of the system and allow faster storage and retrieval

of cars. Note also that the parking lot architecture can take advantage of the fact

that the passenger does not enter the parking lot, and thus the inter-vehicle distances

do not need to allow for space to open doors. To optimise and simplify manoeuvres,

these self-automated parking lots will require specific minimum turning radius values

20



2.3. RELATED WORK

for vehicles. Only vehicles that meet the turning radius specified by each parking lot

will be allowed to enter it.

The geometric layout of the parking lot and its buffer areas can assume very different

configurations for the self-automated functioning. One possibility is to have parallel

lanes with minimal space between them, as illustrated in Fig. 2.1. In this type of

layout, the PLC starts by assigning a lane to a vehicle. This initial decision is critical,

as it should minimise the need to move a vehicle from one lane to another. Note that

if the red vehicle in Fig. 2.1 needs to leave under the current configuration, then the

vehicle behind it needs to be moved to another lane. If we could predict that the exit

of the red vehicle would happen before the exit of the vehicle behind it, then this last

vehicle would be better placed in a different lane. Our goal in this work is exactly

to be able to predict an exit-interval for each vehicle, and design a lane selection

methodology that reduces the mobility needed to create exit paths.

Note that parking lots will not be able to be completely full, as buffer space needs to

exist to allow the exit of each vehicle under all possible configurations. The minimum

number of empty spaces, configuring buffer areas, depends on the parking lot layout.

In the layout presented in Fig. 2.1, with a lane depth of 7, we need a buffer area with

a minimum of 6 empty spaces.

2.3 Related Work

Intelligent Transportation Systems use advanced communication and technology to

solve various transportation problems, such as traffic congestion, transport efficiency,

parking space management and driver assistance. One component of ITS are intelligent

vehicles (IV), these systems through the sensing of vehicle’s surrounding environment

can provide its user with detailed information or even, partially or totally, control the

vehicle.

The applications of IV can be divided in the following categories [Bis00], 1) collision

warning systems, 2) systems that take partial control of the vehicle, either for driving

assistance or collision avoidance and 3) systems that take total control of the vehicle

(vehicle automation).

Collision warning systems are ones that advise or warn the driver of potential collisions

through visual ou audible indications, either by the use of sensors or dedicated short-

range communications [JD08] (DSRC), either vehicle-to-vehicle (V2V) or vehicle-to-

infrastructure (V2I). The example of forward collisions can be solved by a vision based
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CHAPTER 2. PROBLEM OVERVIEW

Figure 2.1: An example layout for a self-automated parking lot. The parking lot can
never be completely full, as buffer areas are necessary to be able to allow the exit of
each vehicle under all possible configurations. In this example, a minimum of 6 empty
spar are necessary.

approach through the use of a camera, calculating the time to contact and the possible

collision course through the size and position of the vehicles obtained in the camera

image [DMSS04]. Sensors can be used for blind spot detection [MP87], dual sensors

are commonly used in order to ensure accuracy, one first sensor initially detects the

vehicle which triggers a second one to confirm the vehicle’s presence. Another situation

handled by collision warning systems is the lane-departure, which is when a vehicle

unintentionally deviates from the center of its lane. This situation usually arises due

to temporary or permanent loss of vision of the driver. One solution for the lane-

departure is to employ machine vision, measuring the orientation of the lane marks

[Lee02]. A final example is the rear-end impact occurs when another vehicle approaches

the driver’s vehicle from behind, whether it is in the same lane or an adjacent one. A

radar is positioned on the vehicles blind spot, it sends two waves and then compares

the phase of the two reflected signals to determine the distance [FH72].

A particular case are systems that monitor the drivers in order to detect dangerous

levels of drowsiness or other conditions that can impair it’s ability to handle the

vehicle [IMK+02]. When such situations arise the collision avoidance system takes

control of the vehicle or parts of it. An example of such technology is drive-by-wire

(DbW) [ISS02] where the mechanical systems are replaced by electronic ones improving
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2.3. RELATED WORK

response times and allowing computer controlled intervention. Replaced systems

can be the steering column (steer-by-wire [DAL+01]), the throttle (throttle-by-wire)

and the breaks (break-by-wire). Another example is adaptive cruise control (ACC)

[CJL95], which automatically limits the speed of the vehicle in order to maintain a

safety range from nearby vehicles by the use of a sensor.

Systems that take full vehicle control are denominated by vehicle automation. These

systems accomplish the same functions as traditional cars but without the driver’s

actions. It does so by sensing the surrounding environment with technologies such

as radars [CDW98], GPS [SNDW99] and computer vision [DZ88]. Advantages of

such level of automation are the higher safety, more efficient traffic flow and higher

convenience to the drivers.

Intelligent parking lots are a solution for the parking space management problem in

ITS. Intelligent parking systems take advantage of advanced technology and commu-

nication systems in ITS to provide drivers with parking information and assistance.

Intelligent parking reservation systems allow drivers to remotely reserve a parking

space in a desired parking lot removing the search for a free space. In such systems,

parking spaces can be reserved through a variety of ways, such as internet [ISN+01]

and SMS [HBD10]. In order to determine which parking spaces are free, technologies

such as image processing and sensors are used. Image processing techniques use a

camera as a sensor, capturing the image and processing it to determine if a figure

drawn at each parking lot is visible or hidden by a parked vehicle [YNB12]. A typical

sensor-based space detection system consists of wireless sensors placed in the parking

space that detect its occupancy state [BDFT09], alternatively ultrasonic sensors can be

used [LYG08]. Revenue management systems are an extension to reservation systems

by considering the parking price as a new variable. A parking space is reserved with a

variable tariff (price paid per hour) and accepting or rejecting new reservations by the

ratio between the park capacity and the total number of drivers that desire to park

[TL06]. Sensor-based solutions can be expensive and sensors can have a small life

time, becoming inaccurate or stop functioning over time. Vehicle Ad Hoc Networks

(VANETs) can also be used to track parking space occupancy and for driver guidance

[LLZS09].

Automatic parking uses either autonomous vehicles that calculate and perform the

precise manoeuvres needed to park or a set of lifts that automatically parks the

vehicles. Free space detection can again be used to first detect the available space

as well as detecting obstacles through the use of image processing, then a path to
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the parking space is planned and executed [XCX00]. Valet parking systems are an

automatic parking system in which the vehicle autonomously looks for a free parking

space before parking it, whether it is on-road or off-road. These systems continuously

drive around a pre-determined area until finding a free space [CKGC+07]. Another

solution are the robotic parking systems, in which the driver leaves the vehicle at the

entrance of the park where computerized machinery and lifts pick up the vehicle and

place it in a shelving-like parking system. This method not only automatically parks

the vehicle but also occupies less space than a conventional parking lot [rob].

The work in this dissertation follows a novel approach, proposed in [Fea14], and

explained in section 2.1 that differs from all other approaches in the literature. It

consists in a intelligent parking lot of self-driven electric vehicles (EV) equipped with

vehicular communications with the addition of a valet parking system. These EV

communicate are controlled by a Parking Lot Controller that manages the parking

lot. The vehicles are parked in a manner that maximises space usage. Due to the

lower complexity of this approach compared with robotic parking, the costs of this

solution can result in much lower costs for the end user. In addition, the existence

of a valet parking system and the fact that the parking is achieved without moving

platforms are strong points for this approach.
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Machine learning is a branch of Artificial Intelligence that deals with systems that can

learn from data. It focuses on prediction based on known variables from the dataset

available to the system, this data is known as training data. One of the main properties

of such systems is the ability to perform with accuracy on new instances after having

learned from a dataset.

ML scenarios differ by type, order and method of the training data, and the dataset

used to evaluate the algorithm, known as testing data [MRT12]. Examples of both

the training and testing data can be seen in Tables 3.1 and 3.2 respectively. A good

example of a state of art ML algorithm could be the k-nearest neighbours. It starts by

calculating the distance (with an user defined metric) between the instance to predict

in testing data and all the instances in the training data. The k training instances with

smaller distance to the testing one, are selected as neighbours. Then a majority vote

is made to choose the predicted class (see section 3.1.6 for more detailed information

on this algorithm).

Such systems have a variety of applications for instance enhanced medical diagnosis,

prediction of the incoming number of calls in a call centre, weather prediction and

recommendation systems. An example can be seen on Tables 3.1 and 3.2 from the Iris

dataset [BL13]. Binary classification can be applied on the variable Species with the

remaining columns as features. The prediction model would learn from the training

data on Table 3.1 and test its accuracy with the data on Table 3.2. Table 3.3 shows

an example of the k-nearest neighbours algorithm for k = 3, the Euclidean distance

(Equation 3.9) is calculated between each training instance and the selected testing

instance, the k training instances most similar instances are selected as neighbours.

The concept of similarity is given by an user defined distance metric (see section

3.1.6 to see more on this). In Table 3.3 the neighbours are displayed in blue. From

the k chosen instances a majority vote chooses the predicted class from the chosen

instance’s classes, since the 3 neighbours in the example are of the class setosa, the

testing instance’s class is predicted as setosa.
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Table 3.1: Example of training data using the Iris dataset [BL13].

Sepal.L Sepal.W Petal.L Petal.W Species
5.7 2.6 3.5 1.0 versicolor
4.9 3.1 1.5 0.1 setosa
4.7 3.2 1.6 0.2 setosa
5.0 3.3 1.4 0.2 setosa
5.2 2.7 3.9 1.4 versicolor
5.1 3.8 1.5 0.3 setosa
5.6 2.5 3.9 1.1 versicolor
5.5 2.5 4.0 1.3 versicolor
5.1 3.4 1.5 0.2 setosa
5.7 2.8 4.1 1.3 versicolor

Table 3.2: Example of testing data using the Iris dataset [BL13]. The purpose is to
predict the class with the samples on Table 3.1.

Sepal.L Sepal.W Petal.L Petal.W Predicted Real
4.7 3.2 1.3 0.2 ? setosa
5.2 3.4 1.4 0.2 ? setosa
5.5 2.4 3.8 1.1 ? versicolor
5.8 2.6 4.0 1.2 ? versicolor

Table 3.3: Example of the k-nearest neighbours with the training data of Table 3.1
with the first test instance from Table 3.2 for k=3. In blue, the neighbours of the test
instance.

Sepal.L Sepal.W Petal.L Petal.W Species Euclidean Dist.
4.9 3.1 1.5 0.1 setosa 0.32
5.1 3.8 1.5 0.3 setosa 0.75
4.7 3.2 1.6 0.2 setosa 0.3
5.1 3.4 1.5 0.2 setosa 0.49
5.0 3.3 1.4 0.2 setosa 0.33
5.2 2.7 3.9 1.4 versicolor 2.95
5.6 2.5 3.9 1.1 versicolor 2.98
5.7 2.6 3.5 1.0 versicolor 2.62
5.5 2.5 4.0 1.3 versicolor 3.10
5.7 2.8 4.1 1.3 versicolor 3.20
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This chapter intends to be an easy-following introduction to ML by revising its more

basic concepts with a brief overview on 1) Supervised and 2) Unsupervised Learning

methods. Then, some related research fields such as 3) Feature Selection and 4)

Incremental Learning are also approached. This review follows closely the chapters 6

and 7 in [WF05].

3.1 Supervised Learning

In supervised learning the system receives a labelled dataset, the training data, and

makes predictions for incoming new data points. The task is to deduce a function

y = f(x, β) + ε. (3.1)

from the training data D = {(x1, y1), ..., (xn, yn)} that represents the hidden pat-

tern in the data. The input variables x are commonly d dimensional vectors xi =

[xi,1, ..., xi,d] ∈ Rd, β are the unknown regression parameters to be estimated and ε an

associated random error. If y is numeric, y ∈ R, it is named as a regression problem

and if y is categorical it is named as a classification problem [Fig03].

Supervised learning methods can be defined as regression or classification. In this

dissertation, we focused more on the regression task due to the nature of our target

variable (i.e. parking time). Throughout this section, different types of supervised

learning algorithms are revised.

3.1.1 Decision trees

Decision trees [Qui86] are tree-like graphs of decisions and their respective conse-

quences. At first the whole training dataset is placed at the root, then the data is split

accordingly to a splitting criterion, dividing the data in many branches (subsets). This

process is done recursively for each branch, until each one has only members of the

same class or is sufficiently small. The tree is then pruned to prevent overfitting and

to enhance the tree’s performance. The splitting criterion is determined by choosing

the attribute that best divides the data in a branch into individual classes. The chosen

attribute then becomes the decision attribute in that node [Bad07].

3.1.2 Model trees

The M5 model tree [Q+92] are decision trees where the leaves from the grown tree

are linear regression models. This model is built using standard regression techniques,
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however it uses only the attributes used in tests or other linear models in its subtree.

The tree is then pruned, selecting for a given node the model that has the lower

estimated error, either the model above them or the model subtree. Finally, when a

value is predicted by a model tree, the value given by a leaf is adjusted by the predicted

values of the nodes in the path from the root to that leaf.

3.1.3 Linear regression

This method is applicable when both the target variable and the attributes are nu-

meric. It expresses the model as a linear combination of the attributes with weights

calculated from the training data,

y = xβ + ε (3.2)

where x is a vector of training observations, β are the unknown regression parameters

and ε an associated random error. We can further represent this as

y = w0 + w1x1 + w2x2 + ...+ xkxk + ε (3.3)

where y is the target variable, x1, x2, ..., xk are the attribute values and w0, w1, ..., wk

are the calculated weights. Let y(1) be the class of the first instance and x
(1)
1 , x

(1)
2 , ..., x

(1)
k

be the values of the attributes for the same instance. The predicted value for the first

instance class can be expressed as

w0 + w1x
(1)
1 + w2x

(1)
2 + ...+ wkx

(1)
k =

k∑
j=0

wjx
(1)
j (3.4)

Linear regression intends to choose the weights w0, w1, ..., wk, to minimize the sum of

the squares of the differences between the real and the predicted values. The sum of

the squares of the differences is written as

n∑
i=1

(y(i) −
k∑
j=0

wjx
(i)
j )2 (3.5)

where the expression inside the parenthesis is the difference between the ith instance’s

real and predicted value. This method is better used for functions with linear de-

pendencies because it finds the best-fitting straight line. In the case of a non-linear

dependency, this method is not likely the best solution for the data. Linear regression

can also be used for classification by using a numeric domain for each class.
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Figure 3.1: A maximum margin hyperplane.

Another family of linear regression methods are the additive models. These are non-

parametric methods that are based on p-dimensional local averages. Additive models

create an estimation of the regression surface by a combination of one-dimensional

functions, avoiding the sparsity of high dimensional datasets (curse of dimensionality).

Project pursuit regression [FS81] adapts additive models by first projecting the data

matrix of the independent variables in the optimal direction before applying the

smoothing functions.

3.1.4 Support vector machines

Support vector machines [CV95] are extended linear models. This method finds a

maximum margin hyperplane or a set of them. A hyperplane is a linear model that

better separates the classes. The instances closer to the maximum margin hyperplane

are the support vectors. The support vectors define the hyperplane, given the two

classes and their respective support vectors their maximum margin hyperplane can be

constructed with the rest of the points of the class being irrelevant. An example

is shown in Figure 3.1, with the two classes represented by open and full circles

respectively.

Kernel functions can be used to extend support vector machines to non-linearly
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Figure 3.2: In (a) no hyperplane can separate the two classes. In (b) a non-linear
mapping is used.

Table 3.4: Examples of kernel functions of the support vector machines.

kernel formula parameters

linear uTv (none)
polynomial γ(uTv + c0)

d γ, d, c0
radial exp-γ|u-v|2 γ

sigmoid tanhγuTv + c0 γ, c0

separable cases. A way to define a non-linear boundary is to use a non-linear mapping

φ from the input space X to a higher-dimensional space, where linear separation is

possible. The solution is to use a kernel function K that for two points x, y ∈ X ,

K(x, y) = 〈φ(x), φ(y)〉 (3.6)

where φ : X → H is a mapping function to a higher-dimensional space H. K is used

as a similarity between elements of the input space X . The kernel function is cheaper

to calculate than φ and an inner product in H [MRT12]. In Figure 3.2 an example

of a non-linearly separable case is shown, where the two classes are represented by

squares and circles respectively. In (a) no hyperplane can separate the two classes,

so a non-linear mapping is used instead, separating the two classes (b). Examples of

some kernel functions are shown in Table 3.4.

3.1.5 Naive Bayes

Naive Bayes is a method based on Bayes’s rule of conditional probability, using all

attributes and naively assuming that they are independent and equally important.

Even though this is not true in real life data, it shows surprisingly good results. The

application of the Bayes theorem is as follows, let P (Ci|E) be the probability that the

30



3.1. SUPERVISED LEARNING

instance E is of class Ci, then according to Bayes theorem,

P (Ci|E) =
P (Ci)P (E|Ci)

P (E)
(3.7)

since P (E) is the same for all classes, it can be ignored since it does not change the

value of their probabilities. Considering the attributes independent given the class,

P (Ci|E) can be translated into,

P (Ci|E) = P (Ci)
a∏
j=1

P (Aj = vjk|Ci). (3.8)

where vjk is the value of the attribute Aj in the instance [DP97].

3.1.6 Instance-based learning

This method compares the training instances with the test ones, by the means of a

distance function, to determine which members of the training data are closer to the

test instance. Most instance-based learners use Euclidean distance, which is defined

as √
(a11 − a21)2 + (a12 − a22)2 + ...+ (a1k − a2k)2 (3.9)

where a11, a
1
2, ..., a

1
k are the values of the k attributes of an instance and a21, a

2
2, ..., a

2
k of

another instance. Because different attributes have different scales, the attribute values

are normalized, so that some attributes are not considered less important just because

of a smaller scale. The nearest neighbour is found by calculating the distance from

the test instance to every member of the training set and selecting the smallest. Such

calculations are usually slow since the time to make a single prediction is proportional

to the number of training instances. This calculations can be optimized by the use of

a binary tree, called kD-tree. This tree divides the input space recursively. The tree

stores a set of points in k-dimensional space, k being the number of attributes. This

strategy is called k-nearest-neighbours [Alt92]. To locate the nearest neighbour of a

given instance in the tree, it follows the tree down to find the region containing the

instance. This method is often much faster than comparing the test instance to every

training instance, having a complexity, given by the number of nodes, of log2n.

3.1.7 Ensemble learning

Ensemble learning consists on a combination of multiple individual predictive models

in order to improve performance [MMSJS12]. Some well known examples of ensemble

learning are described in this section.
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One example of this techniques is boosting [Sch90], which consists in training weak

learners and converting them into strong learners. A weak learner is one that only

lightly improves a random guess, like a one level decision tree, while a strong learner

is ideally one that approximates perfect performance. A set of week learners is trained

sequentially and combined, where later trained learners focus more on the previously

trained learners mistakes [Zho12]. An example of boosting is the cubist R package,

that creates M5 models trees iteratively, creating new trees with adjusted versions of

the training set outcome. The number of iterations is controlled by the committees

parameter.

Bagging [Bre96] is a method to generate multiple models and aggregating them into

one. In case of a regression problem is an average of all the versions and in case of clas-

sification it is made a plurality vote. Given a training data D = {(x1, y1), ..., (xn, yn)}
of size n, where x are the input variables and y are either the class labels or the

numerical value, a predictor φ(x,D) can be created through some process. Bagging,

through a sequence of training sets Dk of size n, creates a new predictor from the set

{φ(x,Dk)}. If y is numerical, an average of {φ(x,Dk)} over k is made,

φA(x) = EDφ(x,D) (3.10)

where ED is the expectation over D and the subscript A in φA means aggregation.

If the goal is to predict a class, then the aggregation can be made by voting, let

Nj = nr{k;φ(x,Dk) = j} then

φA(x) = argmaxjNj (3.11)

where j is the index where N is maximum.

However, usually there is only one available training set, instead of multiple ones. In

this case, repeated bootstrap [ET94] samples {D(B)}, drawn with random but with

replacement are taken from D. This way the set {φ(x,D(B))} is obtained, enabling

the process described above.

Random forests [Bre01] are an ensemble of decision trees constructed at training time.

In random forests, bagging is used with random attribute selection. Whenever a there

is a split in one of the decision trees a random sample of m attributes are selected

from the full set of p attributes, and then one of the m attributes is chosen to split

the tree. A new sample m is taken whenever there is a split. Usually it is considered

m ≈ √p, which means that the number of randomly chosen attributes is the squared

root of the total number of attributes. The trees then vote for the most popular class,

which will finally be attributed to the tested instance [Zho12].
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Figure 3.3: Summary of a number of supervised learning algorithms. Based on Table
10.1 in [HTF+09]

Figure 3.3 shows a summary of a number of supervised learning algorithms described

above. The next section describes unsupervised learning and some well known algo-

rithms in this category, focusing especially on clustering techniques.

3.2 Unsupervised Learning

Unsupervised learning is the task of finding significant hidden patterns in unlabelled

data. Unsupervised learning differs from supervised learning in that, since there are

no labels associated with the data, there is no relative error to evaluate the solution.

Examples of such techniques are association rules [AIS93], which is a method to

discover relationships between variables in databases using various interestingness

measures [GH06], sequential pattern mining [AS95], which is analogous to association

rules but considering the order of the data items, hidden Markov models [RJ86], in

these models it is assumed that the system is a Markov process [Dyn] with hidden

states, and finally clustering techniques which are described in more detail along the

next section.

3.2.1 Clustering

Clustering is the task of dividing a dataset into groups, called clusters. These clusters

should show the hidden patterns in the data, since elements in the same clusters should

reflect a strong similarity between each other and differ from elements in other clusters.
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Figure 3.4: Example of the standard k-means algorithm for k=3. Data points are
represented by squares while the centres of the clusters are the circles.

Depending on the clustering techniques, elements can be in more than one group or be

exclusive to one. Groups can be probabilistic where each element belongs to one with

a certain probability or even hierarchical, where there is a division of the elements by a

hierarchy of groups. To decide which instances to agglomerate in a cluster a metric of

dissimilarity between the clusters is used, an example of such metric is the Euclidean

distance (Equation 3.9).

The most common clustering technique is called k-means [M+67]. The method works

by first choosing k random points as cluster centres, all instances of the data are then

assigned to their closest centre, according to the Euclidean distance (see Equation 3.9).

For each cluster, the centroids (a centroid is the arithmetic mean of all points in a

designated region) are calculated and taken as the new cluster centres. The assignment

process is repeated until the same instances are assigned to each cluster in consecutive

cycles. The number of clusters k is a user selected parameter. An example of the

standard k-means algorithm is shown in Figure 3.4, in (a), k = 3 random centres are

selected, in (b) k clusters result from associating the data points to the closest centre.

The centroid of each cluster becomes the new centre (c). In (d) the steps (b) and (c)

are repeated until the clusters stabilize.

Another clustering technique is the expectation-maximization (EM) algorithm [DLR77].

This algorithm differs with k-means in that EM finds clusters by the use of a mixture

of Gaussians fitting the dataset. First the expectation step is performed, which is

responsible to estimate the probability of each element belonging to each cluster,

and then the maximization step, which is the calculation of the parameters of the

probability distribution function of each class. The iteration ends with the algorithm

performing a convergence test, which verifies if the difference between the averages

of the class distribution of the current iteration and the previous is smaller than

a defined threshold. In the case of being bigger than the threshold, the algorithm
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Figure 3.5: Example of the Expectation-Maximization Algorithm [B+06].

continues iterating, otherwise it stops. Figure 3.5 shows an example of the algorithm.

In (a) the data points are in green and the initial centres (the circles represent the

standard deviation of the Gaussian components) in green and blue. After an initial

expectation step (b) each data point is associated with each centre by the probability

of belonging to them, red and blue for each centre and purple for belonging to either.

Plot (c) shows the state after the first maximization step, the mean of both clusters

moved to the mean of the dataset (centre of mass). (d), (e) and (f) show the results

after 2, 5 and 20 cycles (L). In (f) the algorithm is close to finish [B+06].

Hierarchical clustering [Joh67] is a method that builds a hierarchy of clusters. Hierar-

chical methods can be classified as agglomerative, where each observation starts in its

own cluster and the clusters are merged (moving up in hierarchy), or divisive where

all observations initially form one cluster and are recursively divided (moving down

in the hierarchy). This method differs with the previously mentioned ones in that it

determines the number of clusters k automatically.

There are many techniques to determine the number of clusters k, in which the

data is grouped. In the next subsection such techniques are described, as silhouette,

information theory or bayesian models.

35



CHAPTER 3. FOUNDATIONAL CONCEPTS

3.2.1.1 Determining the number of clusters

Silhouette [Rou87] is a graphical method to represent and validate clusters. Each

silhouette represents a cluster and its tightness and separation. The average silhouette

is used to choose the most suited number of clusters to the designated problem. Let

k ≥ 2 be the number of clusters obtained by any clustering technique, let i be an

object in the data and A be the cluster in which i is comprised, i ∈ A. If the number

of elements in A is larger than 1, then we can compute a(i) as the average dissimilarity

between the i and all other objects in A. This dissimilarity can be interpreted as how

well does the object i fit in its current cluster A. Let C be another cluster, with

C 6= A, and d(i, C) be the dissimilarity of i to all objects in C. For all clusters C 6= A,

d(i, C) is calculated. After that, b(i) = minimum{d(i, C)} is selected. The selected

cluster B, is called the neighbour of i. The silhouette, s(i), is calculated as,
1− a(i)

b(i)
if a(i) < b(i)

0 if a(i) = b(i)
b(i)
a(i)
− 1 if a(i) > b(i)

(3.12)

This equation can also be written as,

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3.13)

When a cluster A contains only one object, s(i) = 0. If s(i) is close to 1 then a(i) is

much smaller than b(i), which means that the object is well placed in its cluster, since

the dissimilarity from the members in its own cluster is small and the dissimilarity

to the members of the nearest group is large. When s(i) is close to 0, then a(i) and

b(i) are approximately equal, being not clear whether the object i should have been

assigned to A or B. If s(i) is close to −1 then a(i) is much larger than b(i), therefore

i must have been misplaced in cluster A.

The Akaike information criterion (AIC) is a information based method to measure

the information lost by using a certain model in a given a dataset. For any model,

AIC is expressed as,

AIC = 2p− 2ln(L) (3.14)

where p is the number of parameters and L is the maximum-likelihood of the model.

Given a set of models for the data, the model with the minimum value of AIC is the

model closest to the process representing the data. Let g1 and g2 be two candidate

models to represent the process f , the information loss from using g1 to represent

f would be DKL(f ||g1) using the Kullback-Leibler divergence (Equation 3.17), same
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calculations are made for g2. The candidate model that minimizes the information loss

would be chosen. But since f is not known, an estimation of the information lost must

be made through AIC. Let M be the set of AIC = {AIC1, AIC2, ..., AICR} values of

the R candidate models and AICmin the minimum value in M . Then e
AICmin−AICj

2 is

the relative probability that the jth model minimizes the estimated information loss

[BA02]. AICc [HT89] adds a correction for finite sample sizes to AIC, decreasing the

probability of overfitting (selecting models that have too many parameters) [CH08].

AICc can be defined as:

AICc = AIC +
2p(p+ 1)

n− p− 1
(3.15)

When all the models have the same p, then AICc and AIC give identical results.

The Bayesian information criterion (BIC) [S+78] is defined, for large n, as,

BIC = −2ln(L) + p · log(n) (3.16)

where L is the maximum value of the likelihood function of the model, p is the number

of parameters and n is the size of the dataset. BIC tries to find the true model among

its candidates, a lower BIC means that a certain model is the more likely to be the true

model. The penalization of parameters in BIC is stronger than in AIC, decreasing

the probability of overfitting but increasing the underfitting one.

3.3 Feature Selection

Feature selection is a process to eliminate redundant or irrelevant attributes, due

to the negative effect that these attributes can cause in the model. Reducing the

dimensionality of the data makes the interpretation of the target variable easier and

can improve the performance of the algorithms. These techniques can be used in

combination with both supervised and unsupervised learning methods in order to

enhance their performance. In this section it is described three methods of feature

selection, principal component analysis, factor analysis and information gain.

Principal component analysis (PCA) [Jol05] is a feature generation method that uses a

different orthogonal coordinate system to represent the data, influenced by the points

of each specific dataset. The first axis is placed in the direction of the greatest variance

of points, the second axis is perpendicular to it. In two dimensions, there is only one

way for the second axis to be placed, but in three dimensions the axis should be

in the direction that maximizes the variance. The axis are continuously placed in

the direction of the maximum remaining variance. Each axis is called component,

all components can be used for the computing or just the first components that
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Table 3.5: Loadings for the principal component analysis of Table 3.1.

Comp.1 Comp.2 Comp.3 Comp.4
Sepal.L 0.205 -0.489 0.823 0.204
Sepal.W -0.266 -0.847 -0.370 -0.272
Petal.L 0.866 -0.133 -0.479
Petal.W 0.371 -0.198 -0.411 0.809

represent the highest variance, these are called the principal components. The results

of PCA are evaluated with respect to the scores (the values of a transformed variable

related to a certain instance) and the loadings (the value each original feature must

be multiplied to obtain the component score). Table 3.5 shows the loadings of the

principal component analysis of Table 3.1. The attribute with lowest impact is the

Sepal.L as shown by the first component (its absolute value is the lowest).

Factor analysis [Har60] is a method closely related to principal component analysis

but not identical. This method considers a hypothesis in which is not the attribute X

causing Y or Y causing X, but a common causal model. Factor analysis searches

variance in correlated variables to reduce data dimensionality. The variables are

modelled as linear combinations of the potential factors plus error terms derived from

regression techniques.

Information gain (or Kullback–Leibler divergence [KL51]) is a measure of the informa-

tion lost between two probability functions f and g. This approach can be modelled

as follows,

I(f, g) =

∫
f(x)log(

f(x)

g(x|θ)
)dx (3.17)

where I(f, g) is the information lost when the function g is used to approximate f

[BA02].

3.4 Incremental learning

At times the constraints of a problem require a change of approach to the data, it

is necessary to move away from finite training sets and static models to a dataset

with unlimited data streams that add new elements over time. This new approach

reveals newly added complexity to the previous mentioned ML techniques, since the

irregularities of the data may now evolve over time and no longer being considered

independent and identically distributed [GRSdC10].

38



3.4. INCREMENTAL LEARNING

One example of an algorithm that allows for such constraints is the perceptron. This

algorithm is a linear classifier that allows for online learning by processing one training

instance at a time. Given a training instance Dk = (xk, yk), let w = (w1, w2, ..., wn) be

the current values of the weights and ϕ a threshold. For xk we calculate a potential

neuron:

εk =
n∑
i=1

wixik + ϕ (3.18)

The output of such neuron is given by

ŷk =

{
1 (ifε ≥ 0)

0 (otherwise)

The weights and threshold are then updated with the given instance,

wnew = wold = +λ(yk − ŷk)xk

ϕnew = ϕold + λ(yk − ŷk)

where λ is a parameter called the learning rate. The process is repeated for all

instances of the training dataset [Ros58]. Multilayer perceptron is an extension of the

linear perceptron to be able to distinguish data that is not linearly separable, this is

done through backpropagation [RHW88] or the use of the delta rule. The delta rule

is one of the most commonly used learning rules, this method works by comparing

the output of a prediction model with the real answer, if the difference is null then no

learning resulted, otherwise the weights are adjusted in order to reduce the difference.

This difference is minimized through gradient descent by moving the weight vector

through the weight space (consisting of all possible values of all the neuron’s weights)

by the gradient of the error function with respect to each weight.

Some of the methods described along this chapter were used to solve the problem in this

dissertation. This methodology is described on the next chapter. First, a general look

at the methodology is given, next the generation of profiles is explained, followed by

the parking time prediction and the incremental interval generation methods. Finally

we take a look at the parking lane selection strategy.
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Methodology 4
Our methodology consists on the following four steps: it starts by (A) dividing the

original dataset in k smaller ones, containing users with similar parking habits between

each other in each of the k datasets; then, (B) data driven regression is performed over

the newly created sub-datasets. Thirdly, a parking time interval is generated (C) based

on such predictions and on the residuals of previous predictions (difference between

a predicted value (ŷ) and its real one, y). Finally the selected lane (D) will be the

one which minimizes the likelihood of performing unnecessary vehicle movements 1.

This methodology is summarized in Fig. 4.1 and explained in detail throughout this

chapter.

4.1 Profile Generation

Let X = {X1, X2, ..., Xn} be n timestamped data records on the parking lot entries

describing the entry/exit behaviours of ρ distinct users. Let Ui ⊆ X denote the records

of an individual user i (i.e. Uρ
i=1 ≡ X) and Ψi describe the sample-based probability

density function (p.d.f.) of its parking time habits. An example of the p.d.f. of a

given user can be seen in Figure 4.2, the axis represents the parking time in seconds,

this p.d.f shows a bimodal distribution, with the two highest probabilities falling on

the 14000 seconds (≈ 4 hours) and 32000 seconds (≈ 9 hours). A clustering process is

firstly made on X based on the extracted Ψi. The resulting k clusters can be defined

as Π = {π1, π2, ..., πk}. They will comprise sub-datasets containing data records on

users having similar profiles (i.e. parking time-habits). Consequently, X ≡
⋃k
i=1 πi.

1Whenever a given vehicle c exits, all its lane’s vehicles standing between c and the parking lot
exit, have to be moved to a buffer zone. Such movements could be avoided by an exit-oriented sorting
of each lane’s vehicles.
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Figure 4.1: An illustration on the different steps of the proposed methodology.
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Figure 4.2: Example of the probability density function of a given user. The axis
represents the parking time in seconds.

4.2 Parking Time Prediction

To perform the parking time prediction, we propose to use data driven regression.

In regression, the goal is to determine a function f(Z, θ), given the input independent

variables, Z, and the real values of the dependent variables, θ. The output of the

model is not necessarily equal to the real value, due to noise in the data and/or

limited number of entries. Consequently, a regression model commonly comprises an
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4.3. INCREMENTAL INTERVAL GENERATION

error e. The function f can be expressed as follows:

Y ≈ f(Z, θ) + e (4.1)

Let M = {Mπ1 ,Mπ2 , ...,Mπk} be the set of k regression models and pj,πi denote the

parking time prediction for a given timestamped user entrance with the profile πi. M
results of applying an induction method of interest to the datasets in Π. By doing

so, the authors expect to approximate the real vehicles parking time given a set of

describing variables (i.e.: Z). Alternatively, regression was applied to the ρ users (an

individual approach), creating ρ distinct regression models. The predictions produced

by M revealed better results, since within a group with more than one user, regression

can be enhanced by having available data of all users within said group, instead of

only one in an individual approach.

4.3 Incremental Interval Generation

Given a prediction for the parking time of an user timestamped entrance (i.e. pj,πi),

it is possible to estimate an interval for this value based on the residuals produced

by its regression model. Both the individual and the group residuals eπi were initially

considered, but the interval generation through the use of the group residuals outper-

formed the one using the individual ones. Additionally, we propose to do the interval

estimation by employing the group residuals’ quantiles. A quantile is a point taken

from a cumulative distribution function of a variable. The first quantile represents the

point that is greater than 25% of the data, while the third quantile the point that is

greater than 75%. Through the use of the quantiles, residuals’ outliers are removed,

which showed to allow for a more reliable interval estimation compared to the non-

reduced residuals. Let e1,i and e3,i denote the first and third quantiles of the regression

residuals produced by a given model Mπi on the previously tested data records in πi.

Our baseline interval I is given by the following equation:

Ij,πi = [pj,πi − e1,πi , pj,πi + e3,πi ] (4.2)

Let a hit occur every time the real parking time is contained within the interval

estimated. Otherwise, we consider the occurrence of a miss. Our goal is to produce

intervals in order to maximize the number of hits and, at the same time, to minimize

its width. To do so, we propose to extend the baseline described in eq. (4.2) by

employing a self-adaptive strategy. Such strategy consists on multiplying the quantile-

based interval width by a 0 ≤ β ≤ 2 (starting on β = 1). This value is incrementally

updated whenever an user of πi leaves the parking lot (i.e. each time a newly real
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parking time is known on πi). Let απi denote the number of consecutive misses/hits

of our interval prediction method in πi. Whenever απi > αth, the value of β is

incremented/decremented by τ . αth and τ are two user-defined parameters setting

how reactive the interval prediction model should be. Consequently, it is possible to

re-write the Eq. (4.2) into the following one:

Ij,πi = [pj,πi −∆, pj,πi + ∆],∆ = (e3,πi − e1,πi)× β (4.3)

Every time that a sequence miss/hit or hit/miss occurs, the respective α value is set

to 0. The β ends up by controlling the interval width: the described algorithm aims

to adapt itself to the current scenario by narrowing the intervals width whenever it

is getting multiple hits or by stretching itself on the opposite scenario. In comparison

with the baseline (see Equation 4.2), the adaptive method shows higher hit percentage

and smaller intervals.

4.4 Parking Lane Selection

In this work, the parking lot is assumed to follow a rectangular layout where the

entrance and the exit are the same. It is possible to represent it as a l × r matrix,

where l, r sets the number of lanes and the maximum number of vehicles in each

lane, respectively. When a vehicle enters the parking lot,it is necessary to select a lane

κ to park it in. Such selection should minimize the number of unnecessary vehicle

movements (i.e. ϑκ). Consequently, each lane has an associated score Wκ. It can be

faced as a likelihood of that selection force unnecessary movements given the i) current

interval prediction for the newly arrived user (Ij,πi) and ii) the vehicles already parked

in κ. The lane with lowest score is predicted to be the one that minimizes ϑκ.

Empty lanes have a predefined score of W = 1 while a full one has W =∞. Let h be

the last vehicle in κ (i.e. the vehicle most recently parked in κ), IUj,πi be the upper limit

and ILh,πb be the lower limit of the estimated interval (note that the vehicle’s j profile,

πi, may be (or not) the same of the vehicle h, πb). If IUh,πb < ILj,πi , it is expected that

the vehicle j of profile πi exits the parking lot first than h (e.g.: Fig. 4.3-c). In this

case, Wκ =∞. If IUj,πi < ILh,πb , then it is expected that j and h can leave the parking

lot provoking no unnecessary movements (i.e.: ϑκ = 0; e.g.: Fig. 4.3-a). Consequently,

the score is then Wκ = 0 on this case. Otherwise, Wκ can be computed as follows

Wκ =
IUj,πi − I

L
h,πb

IUh,πi − I
L
h,πb

+
(Nκ − 1)4

r
(4.4)
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Figure 4.3: In a), the upper limit of Ih is lower than the lower limit of Ij, so h is
expected to leave the parking lot first than j. In b) there is an overlap between the
two intervals. Its width is used to compute the lane’s score. Finally, c) is the opposite
scenario of a).

where Nκ stands for the number of vehicles currently in κ. This approach is inspired

on the typical p-value statistical test considering a null hypothesis by setting the

extreme data point as IUj,πi and Ih,πi as a rough approximation on the parking time

distribution function for the parked vehicle h. The second term of eq. (4.4) is an

exponential weight which aims to express the possible cost of having unnecessary

vehicle movements caused by assigning the newly arrived vehicle j to the lane κ.

The weight Wκ can then be summarized in the equation,

Wκ =


0 if κ is empty

∞ if IUh,πb < ILj,πi
0 if IUj,πi < ILh,πb
IUj,πi

−ILh,πb
IUh,πi

−ILh,πb
+ (Nκ−1)4

r
otherwise

The next chapter shows the performed experiments with the described methodology

along this chapter. First presents the two case studies used for the experiments, next

the experimental setup is described, followed by an explanation of how the evaluation

of the experiments was made. Then, the results of the performed experiments and

finally a discussion of the results.
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Experiments 5
In this chapter we present the performed experiments. Firstly, the real world case study

used to test our methodology is presented, then the experimental setup is described

which is followed by the evaluation methods used to validate our results. To conclude

the chapter, the results of the experiments are shown followed by a discussion of this

results.

5.1 Case Study

The case study used on this work consists on two parking lots, one from the Faculty

of Science of University of Porto, Portugal (case study A) and other from the Faculty

of Engineering of University of Porto, Portugal (case study B).

Each data record has the following features: (i) an user ID, (ii, iii) two timestamps

for the parking entry/exit, (iv) type of day (e.g.: Monday), (v) holiday/not-holiday

boolean and, finally, the (vi) department, (vii) sex and (viii) job role (e.g. Full

Professor).

For the case study A, the data of 309 users during the year of 2013 was used to validate

our methodology, while in case study B the data of 323 users. The parking lot, for

case study A, has the capacity to hold up to 100 vehicles. Since 96.4% of the data

entries are in week days, only the workdays are considered in this study.

Ideally all data entries would have their entry and exit times properly labelled. How-

ever, it does not happen in this case because the parking entries/exits are not fully

monitored. Consequently, there are entries without exits and vice-versa. To tackle

such issue, a preprocessing task to pair the entries with the exits was performed. All

the resulting data records with parking time smaller than 10 minutes or higher than

16 hours were removed. For the same reasons, we have also filtered the parking lot

users by using the data records of the top-75%, regarding their number of parking

entries.
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Figure 5.1: Case study B: barplot chart representing histograms for the Entry/Exit
times between 7am and 10pm.
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Figure 5.2: Case study B: barplot chart representing histograms for the Entry/Exit
times between 7am and 7pm.

In the resulting dataset, for case study A, the average parking time is 5 hours and 25

minutes and with a standard deviation of 3 hours and 8 minutes, while for case study

B, the average parking time is of 5 hours and the standard deviation of 2 hours and

30 minutes. Fig. 5.1 exhibits two histograms representing the hourly frequencies on

the entry and exit times of case study A and Fig. 5.2 of case study B. It is possible to

observe that the main entry times are between 8am and 10am and the main exit times

between 5pm and 8pm. The vehicle’s exits from the parking lot follows a bimodal

distribution, with the modes at lunch time (between 12am and 2pm) and at late

afternoon (between 5pm and 7pm).

5.2 Experimental Setup

The initial dataset was divided in a training set (January to October) and a test

set (November). All experiments were conducted using R Software [Tea12]. The
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algorithms used were the k-Nearest Neighbours (kNN) [Alt92], the Random Forests

(RF) [Bre01], the Projection Pursuit Regression (PPR) [FS81], the Support Vector

Machines (SVM) [CV95] and the Cubist [KWKC12] from the R packages [kknn],

[randomForests], [stats], [e1071] and [Cubist].

Regarding the feature selection, a well-known state-of-the-art technique was used:

Principal Component Analysis (PCA) [Jol05]. The tested features were type of day,

holiday/not-holiday boolean variable and the user’s department, sex and job role.

For clustering we used the Expectation-Maximization algorithm with the R package

[MClust]. This algorithm was chosen due to being able to determine the optimal number

of clusters automatically based on Bayesian Information Criterion [DLR77].

The last 2 weeks of the training set were used for model selection. In this stage,

the following parameters were tested for each algorithm: for kNN, distance = [1..5],

kMax = [2..15] and the kernels: rectangular, triangular, epanechnikov, gaussian,

rank and optimal, for RF mtry = {3, 4, 5} and ntrees = {500, 750, 1000}, for PPR

nterms = {2, 3, 4} and max.terms = {5, 6, 7, 8} and for SVM the kernels: linear,

radial, polynomial and sigmoid. The best pair (algorithm,parameter setting) was

selected to perform the numerical prediction in the test set.

Finally, the reactiveness parameters on the interval estimation model (τ, αth) were set

for the values 0.1 and 3, respectively.

To evaluate our method performance, we considered a baseline naive strategy. It

consists on directing the newly arrived vehicle to the leftmost lane κ with an empty

space. A series of simulations were conducted to compare the parking lot behaviour

using the aforementioned lane selection strategies (i.e. naive and smart). Multiple

parking layouts were considered on this series of simulations. It aimed to demonstrate

that the strategies behaviour is independent on the parking layout. The averaged

maximum number of parked cars on a daily basis on the considered dataset is 50

for case study A and 210 for case study B. Consequently, every parked layouts with

a capacity between 50 and 80 vehicles (i.e.: the 1st quantile) containing, at least, 8

lanes, were considered on our experiences in case study A and capacity between 196

and 256 while containing at least 13 lanes for case study B.
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5.3 Evaluation

The root-mean-squared-error (RMSE) and the mean absolute error (MAE) were the

metrics used to evaluate the predictions. They can be defined as follows:

RMSE =

√∑g
t=1(ŷt − yt)2

g
(5.1)

MAE =

∑g
t=1 |ŷt − yt|

g
(5.2)

where ŷ is the predicted value, y the real one and g is the number of samples.

The parking time estimation interval is evaluated in two forms, a percentage of hits

and a ratio between the hits and its width. If for a sample s there is a hit, then

hits = 1, otherwise hits = 0. The ratio can be defined as:

ratio =
∑g

s=1
hits ×

1

δI × g
(5.3)

where δI is the width of the estimation interval and g is the number of considered

samples.

The evaluation criteria employed in the simulation was the total number of unnecessary

vehicle movements forced by a given strategy (i.e., UM). Let us consider a exiting

vehicle c, parked in a lane κ with g vehicles, in position i. The unnecessary number

of movements UM caused for c to exit the parking lot can be computed as:

UM =
∑g−i

j=1
j (5.4)

Let us consider a lane with g = 5 vehicles where the vehicle on the position i = 2 is

requested to exit as an exemplification for the calculus of MU . In this case, MU =

3 + 2 + 1 = 6.

5.4 Results

The obtained results are three fold: (1) the PCA results has recommended to remove

the user’s sex and the holiday feature from the original set in both case studies. Table

5.1 and 5.2 show the loadings for the PCA of both the case study A and B, respectively.

In Fig. 5.3 and 5.4 it can be seen the plot of the PCA for both case studies. (2) Table

5.3 exhibits the results of the numerical prediction using the remaining feature set

for each profile πi, by pointing the number of users contained in each group and the

(RMSE,MAE) obtained in each one of them. (3) Table 5.5 shows the results from
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Table 5.1: Loadings for the principal component analysis for the case study A.

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
Holiday 1.0

DayType -0.99
Department 0.16 0.98

Sex -1.0
Job Role 0.98 -0.17

Figure 5.3: Plot of the principal component analysis for the case study A.

Table 5.2: Loadings for the principal component analysis for the case study B.

Comp.1 Comp.2 Comp.3 Comp.4
Holiday 1.0

DayType -1.0
Sex -1.0

Job Role -1.0

the parking simulation in every tested configurations, with the number of unnecessary

vehicle movements, µ for both strategies. The intervals generated had 65% hits and

an average interval width of ≈ 11000 seconds. The smart strategy overcomes the

naive one in all the considered configurations.

5.5 Discussion

Both Table 5.3 and Table 5.4 exhibit a large variation on RMSE/MAE produced by the

models of the different groups. The groups size is also different from group to group.
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Figure 5.4: Plot of the principal component analysis for the case study B.

Table 5.3: Results from the numeric prediction for case study A.

Group # of Individuals RMSE MAE Hit % Interval

1 11 5124 3320 63 8942
2 9 4804 3255 66 3862
3 3 7047 5235 68 9584
4 6 4644 4047 78 9764
5 1 7716 5458 82 3482
6 1 376 340 72 3504
7 5 3968 3317 68 9196
8 7 7618 6101 58 11738
9 11 9106 7628 53 11900

10 6 8244 7403 55 12560
11 4 2609 2058 72 5255
12 10 7871 5436 67 9583
13 6 8901 5789 72 9558
14 7 8595 6883 54 11228
15 4 5981 4804 50 6258
16 10 6682 5356 70 10293
17 1 361 298 50 3158

W.Average 6601 5076 65 11188

These groups can be faced as profiles which describe the typical parking behavior

of the users within. It is possible to observe that some groups contain only one user

(i.e. 5,6,17 in case study A and 8,14 in case study B) which indicates that they have

a completely different profile than the remaining ones. So far, such profiles are only

based on each user’s parking time (namely, by using the Euclidean Distance over their

p.d.f.). However, some users can experience large variations on their parking time
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Table 5.4: Results from the numeric prediction for case study B.

Group # of Individuals RMSE MAE Hit % Interval

1 9 3266 1884 65 1481
2 20 2880 1924 63 3257
3 4 2854 2088 62 4379
4 3 1823 1300 63 2448
5 15 2902 1983 68 2751
6 2 1687 1092 65 2103
7 2 628 503 60 1151
8 1 1031 688 61 1488
9 7 1984 1229 64 1836

10 24 5370 3670 64 5951
11 5 4753 3012 63 4701
12 61 7683 6371 65 14170
13 3 2471 1346 71 1633
14 1 278 244 50 566
15 7 2985 2134 69 4393
16 13 3349 2230 66 3953
17 25 5705 4284 69 9364
18 5 2346 1529 61 2070
19 21 5956 4289 66 7613
20 8 4871 3874 68 9199
21 46 6801 5382 63 12082
22 3 3287 2289 75 5942
23 15 4166 2637 67 3677
24 14 5776 3931 66 5389
25 10 3324 1972 67 3178
26 2 608 257 95 2062
27 11 2512 1554 69 3037
28 38 7014 5018 64 8630

W.Average 5263 3903 65 7635

depending on some subsets of feature values (i.e. to enter the parking lot at morning

or at afternoon). This fact can partially explain the above mentioned RMSE/MAE

variability.

The averaged hits percentage (65% in both case studies) and its large width uncover

the stochasticity of the parking time variable given the current feature set. In fact,

it is reasonable to admit that we may need other features to improve our prediction

model such as weather or event-based ones (e.g. a sunny day or a special soccer match

may reduce/increase the parking time). However, we cannot sustain these insights on
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Table 5.5: Simulation results with the number of unnecessary vehicle movements for
both strategies for case study A.

Config. Naive Smart Config. Naive Smart

10x05 1665 1379 05x10 7799 7540
11x05 1482 1205 05x11 7817 7615
12x05 1255 1074 05x12 7817 7633
13x05 1074 914 05x13 7817 7633
14x05 937 813 05x14 7817 7633
15x05 811 771 05x15 7817 7633
09x06 2234 2032 06x09 5596 5423
10x06 1819 1583 06x10 5596 5444
11x06 1510 1282 06x11 5596 5453
12x06 1255 1139 06x12 5596 5453
13x06 1074 930 06x13 5596 5453
08x07 2808 2520 07x08 3818 3545
09x07 2248 2116 07x09 3818 3545
10x07 1819 1616 07x10 3818 3551
11x07 1510 1303 07x11 3818 3551
07x08 3818 3545 08x07 2808 2520
09x08 2248 2116 08x09 2808 2535
10x08 1819 1617 08x10 2808 2535
08x08 2808 2535

Table 5.6: Simulation results with the number of unnecessary vehicle movements for
both strategies for case study B.

Config. Naive Smart Config. Naive Smart

14x13 36552 35413 13x14 42052 40719
15x13 32394 31426 13x15 42305 41044
16x13 28539 27750 13x16 42305 41106
15x14 32394 31511 14x15 36890 36004
16x14 28539 27760 14x16 36890 36005
16x15 28539 27760 15x16 32394 31521
13x13 39653 38607 14x14 36890 35928
15x15 32394 31521 16x16 28539 27760

the present results.

The naive strategy is clearly benefited by configurations with more lanes, where the

UM can be naturally minimized by underusing the total lane’s capacity by filling

first the empty ones. In fact, this strategy is already focused on minimizing UM by

maintaining the maximum number of vehicles parked on a lane as low as possible.
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Such behaviour can explain some of the lower gain margins presented by the smart

strategy on some configurations (check Table 5.5 and 5.6). In fact, as shown in Table

5.6, case study B presents a much lower gain margin, in percentage, than case study

A even though it presents better results in terms or RMSE, MAE and interval width

as seen in Table 5.4. It is possible this lower margins are caused by the high number

of lanes used in the case study B, due to the high number of vehicles in this parking

lot. These results can probably denote that our parking lane selection strategy over-

penalizes the number of existing cars in a lane, therefore negatively affecting bigger

configurations like the ones used in case study B. Obviously, the UM could also be

minimized by moving vehicles from one lane to another. However, the discussions

about the optimal parking layout for each case study and on the parked vehicle’s

self-arrangements are out of this work’s scope.

Even considering the abovementioned drawbacks, it should be highlighted that the

proposed methodology overcomes the naive strategy for all the presented

parking layouts in both case studies. The aim with this work is to demonstrate

that is possible to mine both the historical and the real-time data of a parking lot

entrances/exits to improve the lane selection on a self-automated parking lot. This

stepwise framework takes advantage of off-the-shelf ML algorithms to do so. In our

opinion, this proof of concept represents a consistent breakthrough on this relevant

topic by opening promising research lines to be explored by other researchers.
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Conclusions 6
Throughout this dissertation, a ML framework to predict the exit times on a self-

automated parking lot is proposed. It consists on using historical data on the en-

tries/exits of the parking lot to uncover user’s profiles able to explain their parking

habits. Users are then grouped according to their profiles, with users with similar

profiles being aggregated into the same group. Then the vehicle’s exit time is predicted

and used to estimate an exit time interval based on its residuals. Lastly, this interval

estimation is used to choose a lane from the parking lot in which to park the user’s

vehicle.

Our final goal is to optimize the vehicle’s initial placement by improving the lane

selection using the exit time predictions. The experiments demonstrated that our

method can overcome a naive strategy by reducing the collaborative mobility

needs on roughly 10% in case study A and 3% in case study B. As discussed

in Section 5.5 the parking lane selection strategy used in this work may over-penalize

bigger configurations, since case study B presents considerably better results in RMSE,

MAE and interval width. This can mean that the strategy may have to be optimized

for each case study. From such conclusions, we hope to open new research lines on

this topic.

As future work, we propose to first optimize the parking lane selection strategy to

be equally effective in both smaller and bigger configurations, next to explore the

inter-lane vehicle movements to re-arrange their placements. Such movements aim to

react to the parking current status by a) updating the exit time predictions while the

vehicles are still parked or by b) moving the blocking vehicles to their neighbour lanes

instead of using the buffer. The validity of such hypothesis comprise open research

questions.

A paper based on this dissertation was published in a leading conference on intelligent

transportation systems [NMMF14].
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Implementation Code A
r e g r e s s i o n . grouped<−function ( )

{
l i b r a r i e s 2 ( )

l ibrary ( Cubist )

l ibrary (gbm)

vars<−c ( ”ID” , ”Gender” , ”Funcao” , ”Date” , ”DayType” ,

”Hour” , ”Minute” , ”Second” , ”Metodo” , ”Real

ParkingTime” , ” Pred ic ted ParkingTime” )

methods<−c ( ”REG.gbm” , ”REG. svm” , ”REG. c u b i s t ” , ”REG.PPR” )

load ( ”dados o r i g i n a l . RData” )

dados<−dados o r i g i n a l

dados$ID<−as . character ( dados$ID)

data<−dados

data<−data [ which(data$Date<”2013/11/01” ) , ]

i d s<−unique (data$ID)

dat<−c l u s t e r i n g . mclust (data )

cent<−dat$G

c l u s t<−dat$ c l a s s i f i c a t i o n

f i l w<−s p r i n t f ( ” c l u s t . csv ” , cent )

write . csv2 ( g e tS ta t s . mclust ( dat ) , f i lw , row .names=FALSE)

id s1<−which( c l u s t ==1)

id s2<−which( c l u s t ==2)

id s3<−which( c l u s t ==3)

id s4<−which( c l u s t ==4)

id s5<−which( c l u s t ==5)
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i d s6<−which( c l u s t ==6)

id s7<−which( c l u s t ==7)

id s8<−which( c l u s t ==8)

id s9<−which( c l u s t ==9)

ids10<−which( c l u s t ==10)

ids11<−which( c l u s t ==11)

ids12<−which( c l u s t ==12)

ids13<−which( c l u s t ==13)

ids14<−which( c l u s t ==14)

ids15<−which( c l u s t ==15)

ids16<−which( c l u s t ==16)

ids17<−which( c l u s t ==17)

ids18<−which( c l u s t ==18)

ids19<−which( c l u s t ==19)

ids20<−which( c l u s t ==20)

ids21<−which( c l u s t ==21)

ids22<−which( c l u s t ==22)

ids23<−which( c l u s t ==23)

ids24<−which( c l u s t ==24)

ids25<−which( c l u s t ==25)

ids26<−which( c l u s t ==26)

ids27<−which( c l u s t ==27)

ids28<−which( c l u s t ==28)

ids29<−which( c l u s t ==29)

ids30<−which( c l u s t ==30)

group1<−i d s [ i d s1 ]

group2<−i d s [ i d s2 ]

group3<−i d s [ i d s3 ]

group4<−i d s [ i d s4 ]

group5<−i d s [ i d s5 ]

group6<−i d s [ i d s6 ]

group7<−i d s [ i d s7 ]

group8<−i d s [ i d s8 ]

group9<−i d s [ i d s9 ]

group10<−i d s [ id s10 ]

group11<−i d s [ id s11 ]
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group12<−i d s [ id s12 ]

group13<−i d s [ id s13 ]

group14<−i d s [ id s14 ]

group15<−i d s [ id s15 ]

group16<−i d s [ id s16 ]

group17<−i d s [ id s17 ]

group18<−i d s [ id s18 ]

group19<−i d s [ id s19 ]

group20<−i d s [ id s20 ]

group21<−i d s [ id s21 ]

group22<−i d s [ id s22 ]

group23<−i d s [ id s23 ]

group24<−i d s [ id s24 ]

group25<−i d s [ id s25 ]

group26<−i d s [ id s26 ]

group27<−i d s [ id s27 ]

group28<−i d s [ id s28 ]

group29<−i d s [ id s29 ]

group30<−i d s [ id s30 ]

data<−dados

data<−data [ which(data$Date>=”2013/10/01” ) , ]

vars1<−length (data$ID [ which(data$ID%in%group1 ) ] )

vars2<−length (data$ID [ which(data$ID%in%group2 ) ] )

vars3<−length (data$ID [ which(data$ID%in%group3 ) ] )

vars4<−length (data$ID [ which(data$ID%in%group4 ) ] )

vars5<−length (data$ID [ which(data$ID%in%group5 ) ] )

vars6<−length (data$ID [ which(data$ID%in%group6 ) ] )

vars7<−length (data$ID [ which(data$ID%in%group7 ) ] )

vars8<−length (data$ID [ which(data$ID%in%group8 ) ] )

vars9<−length (data$ID [ which(data$ID%in%group9 ) ] )

vars10<−length (data$ID [ which(data$ID%in%group10 ) ] )

vars11<−length (data$ID [ which(data$ID%in%group11 ) ] )

vars12<−length (data$ID [ which(data$ID%in%group12 ) ] )

vars13<−length (data$ID [ which(data$ID%in%group13 ) ] )

vars14<−length (data$ID [ which(data$ID%in%group14 ) ] )
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vars15<−length (data$ID [ which(data$ID%in%group15 ) ] )

vars16<−length (data$ID [ which(data$ID%in%group16 ) ] )

vars17<−length (data$ID [ which(data$ID%in%group17 ) ] )

vars18<−length (data$ID [ which(data$ID%in%group18 ) ] )

vars19<−length (data$ID [ which(data$ID%in%group19 ) ] )

vars20<−length (data$ID [ which(data$ID%in%group20 ) ] )

vars21<−length (data$ID [ which(data$ID%in%group21 ) ] )

vars22<−length (data$ID [ which(data$ID%in%group22 ) ] )

vars23<−length (data$ID [ which(data$ID%in%group23 ) ] )

vars24<−length (data$ID [ which(data$ID%in%group24 ) ] )

vars25<−length (data$ID [ which(data$ID%in%group25 ) ] )

vars26<−length (data$ID [ which(data$ID%in%group26 ) ] )

vars27<−length (data$ID [ which(data$ID%in%group27 ) ] )

vars28<−length (data$ID [ which(data$ID%in%group28 ) ] )

vars29<−length (data$ID [ which(data$ID%in%group29 ) ] )

vars30<−length (data$ID [ which(data$ID%in%group30 ) ] )

m<−matrix ( 0 , 30 , 1 )

m[ 1 , ]<−vars1

m[ 2 , ]<−vars2

m[ 3 , ]<−vars3

m[ 4 , ]<−vars4

m[ 5 , ]<−vars5

m[ 6 , ]<−vars6

m[ 7 , ]<−vars7

m[ 8 , ]<−vars8

m[ 9 , ]<−vars9

m[ 1 0 , ]<−vars10

m[ 1 1 , ]<−vars11

m[ 1 2 , ]<−vars12

m[ 1 3 , ]<−vars13

m[ 1 4 , ]<−vars14

m[ 1 5 , ]<−vars15

m[ 1 6 , ]<−vars16

m[ 1 7 , ]<−vars17

m[ 1 8 , ]<−vars18

m[ 1 9 , ]<−vars19
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m[ 2 0 , ]<−vars20

m[ 2 1 , ]<−vars21

m[ 2 2 , ]<−vars22

m[ 2 3 , ]<−vars23

m[ 2 4 , ]<−vars24

m[ 2 5 , ]<−vars25

m[ 2 6 , ]<−vars26

m[ 2 7 , ]<−vars27

m[ 2 8 , ]<−vars28

m[ 2 9 , ]<−vars29

m[ 3 0 , ]<−vars30

dfxa<−as . data . frame (m)

avg<−s p r i n t f ( ” a v g e n t r i e s . csv ” , cent )

write . csv ( dfxa , avg )

grupos<−l i s t ( group1 , group2 , group3 , group4 , group5 , group6 ,

group7 , group8 , group9 , group10 ,

group11 , group12 , group13 , group14 , group15 ,

group16 , group17 , group18 , group19 , group20 ,

group21 , group22 , group23 , group24 , group25 ,

group26 , group27 , group28 , group29 , group30 )

for ( i in 7 : 30 ) {
m<−matrix (0 , 50∗length (methods)∗500 , length ( vars ) )

data . reg<−data [ which(data$ID%in%grupos [ [ i ] ] ) , ]

data . reg$ID<−as . factor (data . reg$ID)

m<−doRegress ion (data . reg , m, methods)

df<−as . data . frame (m)

names( df )<−vars

idc<−which( as . character ( df$ID)==”0” )

df<−df [− idc , ]

f i l w<−s p r i n t f ( ” p r e d i c t i o n s reg groups%d . csv ” , i )

write . csv2 ( df , f i lw , row .names=FALSE)

}
}

doRegress ion<−function (data , m, methods)
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{
idx<−1

for ( method in methods){
low . sp l i t . day<−”2013/10/01”

sp l i t . day<−”2013/11/03”

while ( sp l i t . day<=”2013/11/29” ){
data . reg<−data

new . sp l i t . day<−incrementa data ( sp l i t . day )

id . t r a i n<−which(data . reg$Date<=sp l i t . day & data . reg$Date

>=low . sp l i t . day )

id . t e s t<−which(data . reg$Date==new . sp l i t . day )

data . reg<−data . reg [−4]

data . reg<−data . reg [−7]

data . t r a i n<−data . reg [ id . t ra in , ]

data . t e s t<−data . reg [ id . t e s t , ]

i f ( method==”REG.PPR” && length (data . t r a i n $HORA)>6)

{
nts<−2 :3

mts<−4 :5

for ( nt in nts ){
for (mt in mts ){

i f ( length ( levels (data . t r a i n $ID) )==1){
model<−ppr ( Parking Time ˜ . , data=data . t r a i n

[−1] , nterms=nt , max. terms=mt) #

r e s<−round( predict (model , data . t e s t [−1]) )

}
else {

tryCatch ({
model<−ppr ( Parking Time ˜ . , data=data . t ra in ,

nterms=nt , max. terms=mt) #

r e s<−round( predict (model , data . t e s t ) )

} , warning = function (w) {
print (w)
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} , e r r o r = function ( e ) {
print ( e )

r e s<−c ( )

} , f i n a l l y = {
print ( ” f ” )

})

}
method2 = paste ( ”REG.PPR” , ”nt” , sep=”” )

method2 = paste ( method2 , nt , sep=”” )

method2 = paste ( method2 , ”mt” , sep=”” )

method2 = paste ( method2 , mt , sep=”” )

l en<−length ( r e s )

i f ( len >0){
for ( i in c ( 1 : l en ) ){

id<−as . character (data . t e s t $ID [ i ] )

gender<−as . character (data . t e s t $SEXO[ i ] )

funcao<−as . character (data . t e s t $CICLO INI [ i ] )

hora<−f loor (data . t e s t $HORA[ i ] /3600)

minuto<−f loor ( ( data . t e s t $HORA[ i ]−hora∗3600)/

60)

segundo<−data . t e s t $HORA[ i ]−hora∗3600−minuto∗60

va lues<−c ( id , gender , funcao , new . sp l i t . day ,

DAY OF WEEK(new . sp l i t . day ) , hora , minuto ,

segundo , method2 , data . t e s t $Parking Time [ i

] , r e s [ i ] )

m[ idx , ]<−va lues

idx<−idx+1

}
}

}
}

}
i f ( method==”REG. svm” && length (data . t r a i n $HORA)>6)

{
ke rne l<−c ( ” l i n e a r ” , ” r a d i a l ” ) #

for ( k in ke rne l ){
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i f ( length ( levels (data . t r a i n $ID) )==1){
model<−svm( Parking Time ˜ . , data=data . t r a i n [−1] ,

k e rne l=k )

r e s<−round( predict (model , data . t e s t [−1] , i n t e r v a l=”

p r e d i c t i o n ” ) )

}
else {

tryCatch ({
model<−svm( Parking Time ˜ . , data=data . t ra in ,

k e rne l=k )

r e s<−predict (model , data . t e s t )

} , warning = function (w) {
print (w)

} , e r r o r = function ( e ) {
print ( e )

r e s<−c ( )

} , f i n a l l y = {
print ( ” f ” )

})

}
l en<−length ( r e s )

i f ( len >0){
for ( i in c ( 1 : l en ) ){

id<−as . character (data . t e s t $ID [ i ] )

gender<−as . character (data . t e s t $SEXO[ i ] )

funcao<−as . character (data . t e s t $CICLO INI [ i ] )

hora<−f loor (data . t e s t $HORA[ i ] /3600)

minuto<−f loor ( ( data . t e s t $HORA[ i ]−hora∗3600)/60)

segundo<−data . t e s t $HORA[ i ]−hora∗3600−minuto∗60

va lues<−c ( id , gender , funcao , new . sp l i t . day , DAY

OF WEEK(new . sp l i t . day ) , hora , minuto ,

segundo , paste ( ”SVM” , k , sep=”” ) , data . t e s t $

Parking Time [ i ] , r e s [ i ] )

m[ idx , ]<−va lues

idx<−idx+1

}
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}
}

}
i f ( method==”REG. c u b i s t ” && length (data . t e s t $HORA)>0)

{
committees<−1 :10

for (com in committees ){
i f ( length ( levels (data . t r a i n $ID) )==1){

data . t r a i n . x<−data . t r a i n [−1]

model<−c u b i s t ( x=data . t r a i n . x [−5] , y=data . t r a i n . x$

Parking Time , committees=com)

r e s<−predict (model , data . t e s t [−1])

}
else {

model<−c u b i s t ( x=data . t r a i n [−6] , y=data . t r a i n $

Parking Time , committees=com)

r e s<−predict (model , data . t e s t )

}
l en<−length ( r e s )

i f ( len >0){
for ( i in c ( 1 : l en ) ){

id<−as . character (data . t e s t $ID [ i ] )

gender<−as . character (data . t e s t $SEXO[ i ] )

funcao<−as . character (data . t e s t $CICLO INI [ i ] )

hora<−f loor (data . t e s t $HORA[ i ] /3600)

minuto<−f loor ( ( data . t e s t $HORA[ i ]−hora∗3600)/60)

segundo<−data . t e s t $HORA[ i ]−hora∗3600−minuto∗60

va lues<−c ( id , gender , funcao , new . sp l i t . day , DAY

OF WEEK(new . sp l i t . day ) , hora , minuto ,

segundo , paste ( ” c u b i s t ” , com , sep=”” ) , data .

t e s t $Parking Time [ i ] , r e s [ i ] )

m[ idx , ]<−va lues

idx<−idx+1

}
}

}
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}
i f ( method==”REG.gbm” && length (data . t r a i n $HORA)>100)

{
i f ( length ( levels (data . t r a i n $ID) )==1){

data . t r a i n<−data . t r a i n [−1]

model<−gbm( Parking Time ˜ . , data=data . t r a i n [−1] ,

d i s t r i b u t i o n=” gauss ian ” , n . t r e e s =1000)

r e s<−predict (model , data . t e s t [−1] , n . t r e e s =1000)

}
else {

model<−gbm( Parking Time ˜ . , data=data . t ra in ,

d i s t r i b u t i o n=” gauss ian ” , n . t r e e s =1000)

r e s<−predict (model , data . t e s t , n . t r e e s =1000)

}
l en<−length ( r e s )

i f ( len >0){
for ( i in c ( 1 : l en ) ){

id<−as . character (data . t e s t $ID [ i ] )

gender<−as . character (data . t e s t $SEXO[ i ] )

funcao<−as . character (data . t e s t $CICLO INI [ i ] )

hora<−f loor (data . t e s t $HORA[ i ] /3600)

minuto<−f loor ( ( data . t e s t $HORA[ i ]−hora∗3600)/60)

segundo<−data . t e s t $HORA[ i ]−hora∗3600−minuto∗60

va lue s<−c ( id , gender , funcao , new . sp l i t . day , DAY

OF WEEK(new . sp l i t . day ) , hora , minuto , segundo ,

”gbm” , data . t e s t $Parking Time [ i ] , r e s [ i ] )

m[ idx , ]<−va lue s

idx<−idx+1

}
}

}
i f ( method==”REG.RF” )

{
i f ( length (data . t r a i n $Second )>0){

mts<−3 :5

nts<−c (500 ,750 ,1000)
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for (mt in mts ){
for ( nt in nts ){

i f ( length ( levels (data . reg$ID) )==1){
model<−randomForest ( Parking Time ˜ . , data=

data . t r a i n [−1]) #, mtry=mt , n t r e e s=nt

r e s<−round( predict (model , data . t e s t [−1]) )

}
else {

model<−randomForest ( Parking Time ˜ . , data=

data . t r a i n ) #, mtry=mt , n t r e e s=nt

r e s<−round( predict (model , data . t e s t ) )

}
#method2=”REG.RF”

method2 = paste ( ”REG.RF” , ”nt” , sep=”” )

method2 = paste ( method2 , nt , sep=”” )

method2 = paste ( method2 , ”mt” , sep=”” )

method2 = paste ( method2 , mt , sep=”” )

l en<−length ( r e s )

i f ( len >0){
for ( i in c ( 1 : l en ) ){

id<−as . character (data . t e s t $ID [ i ] )

acronym<−i n f o $ s i g l a [ which( i n f o $ id==id ) ]

gender<−i n f o $ sexo [ which( i n f o $ id==id ) ]

department<−i n f o $departamento [ which( i n f o $ id

==id ) ]

funcao<−i n f o $ funcao [ which( i n f o $ id==id ) ]

hora<−f loor (data . t e s t $Second [ i ] /3600)

minuto<−f loor ( ( data . t e s t $Second [ i ]−hora∗
3600)/60)

segundo<−data . t e s t $Second [ i ]−hora∗3600−
minuto∗60

va lue s<−c ( id , acronym , gender , department ,

funcao , new . sp l i t . day , i s . ho l iday (new .

sp l i t . day ) , DAY OF WEEK(new . sp l i t . day ) ,

hora , minuto , segundo , method2 , data . t e s t
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$Parking Time [ i ] , r e s [ i ] )

m[ idx , ]<−va lue s

idx<−idx+1

}
}

}
}

}
}
sp l i t . day<−incrementa data ( sp l i t . day )

low . sp l i t . day<−incrementa data ( low . sp l i t . day )

}
}
return (m)

}

c l u s t e r i n g . mclust<−function (data )

{
i d s<−unique (data$ID)

m<−matrix (0 , length (unique ( as . character (data$ID) ) ) , 402)

i n d i c e<−1

for ( id in i d s ){
data . reg<−data [ which(data$ID==id ) , ]

x <− data . reg$Parking Time

e s t <− bkde ( x )

va l<−c ( id , e s t $y )

m[ ind i c e , ]<−va l

i n d i c e<−i n d i c e+1

}
df<−as . data . frame (m)

for ( i in 2 : 402 )

{
df [ , i ]<−as . character ( df [ , i ] )

df [ , i ]<−as . numeric ( df [ , i ] )

}
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dat<−Mclust ( as . matrix ( df ) , G=2:30)

return ( dat )

}

rmse . per . group<−function ( j )

{
options (OutDec= ” , ” )

f i l ename<−s p r i n t f ( ” p r e d i c t i o n s reg groups%d . csv ” , j )

data<−read . csv2 ( f i l ename , sep=” ; ” )

vars<−c ( ” id ” , ” n e n t r i e s ” , ”method” , ”rmse” , ”mad” )

data$ID<−as . character (data$ID)

data$Metodo<−as . character (data$Metodo )

i d s<−unique (data$ID)

metodos<−unique (data$Metodo )

m<−matrix (0 , length ( i d s )∗length ( metodos ) , length ( vars ) )

data$Pred icted ParkingTime<−as . numeric (gsub ( ” , ” , ” . ” , as .

character (data$Pred icted ParkingTime ) ) )

idx<−1

for ( id in i d s ){
for ( metodo in metodos ){

p r e v i s t o <− data$Pred icted ParkingTime [ which(data$ID==id

& data$Metodo==metodo ) ]

real <− data$Real ParkingTime [ which(data$ID==id & data$

Metodo==metodo ) ]

n e n t r i e s<−length ( p r e v i s t o )

rmse <− sqrt ( (sum( ( real − p r e v i s t o )∗∗2) )/length ( p r e v i s t o

) )

mad<−mean(abs ( real − p r e v i s t o ) )

m[ idx , ]<−c ( id , nen t r i e s , metodo , rmse , mad)

idx<−idx+1

}
}
df<−as . data . frame (m)
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names( df )<−vars

df<−df [ order ( df$rmse ) , ]

f i lenamew<−s p r i n t f ( ”rmse group%d . csv ” , j )

write . table ( df , f i lenamew , sep=” ; ” , dec=” , ” , row .names=FALSE)

}

average . rmse . groups<−function (n){
f i l ename<−s p r i n t f ( ”rmse group%d . csv ” , n)

data<−read . csv2 ( f i l ename , sep=” ; ” )

data$method<−as . character (data$method )

m<−matrix (0 , length (unique (data$method ) ) ,3 )

idx<−1

for (met in unique (data$method ) ){
media rmse<−0

media mad<−0

t o t a l e n t r i e s<−0

for ( id in unique (data$ id ) ){
data . reg<−data [ which(data$method==met & data$ id==id ) , ]

media rmse<−media rmse+data . reg$ n e n t r i e s [ 1 ] ∗data . reg$

rmse

media mad<−media mad+data . reg$ n e n t r i e s [ 1 ] ∗data . reg$mad

t o t a l e n t r i e s<−t o t a l e n t r i e s+data . reg$ n e n t r i e s [ 1 ]

}
media rmse<−media rmse/ t o t a l e n t r i e s

media mad<−media mad/ t o t a l e n t r i e s

m[ idx , ]<−c (met , media rmse , media mad)

idx<−idx+1

}
df<−as . data . frame (m)

names( df )<−c ( ”Metodo” , ”rmse” , ”mad” )

f i l w<−s p r i n t f ( ” average rmse %d . csv ” , n)

write . table ( df , f i lw , sep=” ; ” , dec=” , ” , row .names=FALSE)

}

a l l . group . rmse<−function ( )

{
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for ( i in 1 : 28 ) {
rmse . per . group ( i )

average . rmse . groups ( i )

rmse . d e t a i l e d ( i )

}
}

ge tResu l t s . r e g r e s s i o n . groups<−function ( )

{
options (OutDec= ” , ” )

vars<−c ( ”K” , ”Grupo” , ”Metodo” , ”rmse” , ”mad” )

m<−matrix (0 , length ( 8 : 3 0 )∗4 , length ( vars ) )

idx<−1

for ( i in 28){
grp<−s p r i n t f ( ” c l u s t . csv ” , i )

data2<−read . csv2 ( grp , sep=” ; ” )

avgFi l e<−s p r i n t f ( ” a v g e n t r i e s . csv ” , i )

avgE<−read . csv ( avgF i l e )

t e s t e s<−1 : i

for ( j in t e s t e s ){
f i l w<−s p r i n t f ( ” average rmse %d . csv ” , j )

data<−read . csv2 ( f i lw , sep=” ; ” )

data<−data [ order (data$rmse ) , ]

data$Metodo<−as . character (data$Metodo )

rmse 1<−data$rmse [ 1 ]

mad 1<−data$mad [ 1 ]

va l<−c ( i , j , data$Metodo [ 1 ] , rmse 1 , mad 1)

m[ idx , ]<−va l

idx<−idx+1

}
}
df<−as . data . frame (m)

names( df )<−vars

write . table ( df , ” r e s u l t a d o s . csv ” , sep=” ; ” , dec=” . ” , row .names=
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FALSE)

}

i n t e r v a l o . grupo . s l i d i n g . adapt . qt<−function ( )

{
options (OutDec= ” , ” )

a lpha i p<−0

a lpha i n<−0

be ta i<−1 .0

d e l t a i<−0 .1

vars<−c ( ”metodo” , ”grupo1” , ” , grupo2” , ” id ” , ” date ” , ” va l o r

r e a l ” ,

” va l o r p r e v i s t o ” , ”mad” , ” h i t ” , ” i n t e r v a l o ” )

idx<−1

rmse f i l e<−s p r i n t f ( ” r e s u l t a d o s . csv ” , i )

rmse<−read . csv2 ( rmse f i l e , sep=” ; ” )

rmse$Metodo<−as . character ( rmse$Metodo )

load ( ”dados o r i g i n a l . RData” )

dados<−dados o r i g i n a l

data<−dados

data<−data [ which(data$Date<”2013/11/01” ) , ]

i d s<−unique (data$ID)

dat<−c l u s t e r i n g . mclust (data )

cent<−dat$G

c l u s t<−dat$ c l a s s i f i c a t i o n

id s1<−which( c l u s t ==1)

id s2<−which( c l u s t ==2)

id s3<−which( c l u s t ==3)

id s4<−which( c l u s t ==4)

id s5<−which( c l u s t ==5)
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i d s6<−which( c l u s t ==6)

id s7<−which( c l u s t ==7)

id s8<−which( c l u s t ==8)

id s9<−which( c l u s t ==9)

ids10<−which( c l u s t ==10)

ids11<−which( c l u s t ==11)

ids12<−which( c l u s t ==12)

ids13<−which( c l u s t ==13)

ids14<−which( c l u s t ==14)

ids15<−which( c l u s t ==15)

ids16<−which( c l u s t ==16)

ids17<−which( c l u s t ==17)

ids18<−which( c l u s t ==18)

ids19<−which( c l u s t ==19)

ids20<−which( c l u s t ==20)

ids21<−which( c l u s t ==21)

ids22<−which( c l u s t ==22)

ids23<−which( c l u s t ==23)

ids24<−which( c l u s t ==24)

ids25<−which( c l u s t ==25)

ids26<−which( c l u s t ==26)

ids27<−which( c l u s t ==27)

ids28<−which( c l u s t ==28)

ids29<−which( c l u s t ==29)

ids30<−which( c l u s t ==30)

group1<−i d s [ i d s1 ]

group2<−i d s [ i d s2 ]

group3<−i d s [ i d s3 ]

group4<−i d s [ i d s4 ]

group5<−i d s [ i d s5 ]

group6<−i d s [ i d s6 ]

group7<−i d s [ i d s7 ]

group8<−i d s [ i d s8 ]

group9<−i d s [ i d s9 ]

group10<−i d s [ id s10 ]

group11<−i d s [ id s11 ]
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group12<−i d s [ id s12 ]

group13<−i d s [ id s13 ]

group14<−i d s [ id s14 ]

group15<−i d s [ id s15 ]

group16<−i d s [ id s16 ]

group17<−i d s [ id s17 ]

group18<−i d s [ id s18 ]

group19<−i d s [ id s19 ]

group20<−i d s [ id s20 ]

group21<−i d s [ id s21 ]

group22<−i d s [ id s22 ]

group23<−i d s [ id s23 ]

group24<−i d s [ id s24 ]

group25<−i d s [ id s25 ]

group26<−i d s [ id s26 ]

group27<−i d s [ id s27 ]

group28<−i d s [ id s28 ]

group29<−i d s [ id s29 ]

group30<−i d s [ id s30 ]

m<−matrix (0 , 50000 , length ( vars ) )

for ( i in 1 : cent ){
pred f i l e<−s p r i n t f ( ” p r e d i c t i o n s reg groups%d . csv ” , i )

pred<−read . csv2 ( pred f i l e , sep=” ; ” )

pred$ID<−as . character ( pred$ID)

pred$Date<−as . character ( pred$Date )

pred$Metodo<−as . character ( pred$Metodo )

pred$Pred icted ParkingTime<−as . numeric (gsub ( ” , ” , ” . ” , as .

character ( pred$Pred icted ParkingTime ) ) )

rmse id f i l e<−s p r i n t f ( ”rmse group%d . csv ” , i )

rmse id<−read . csv2 ( rmse id f i l e , sep=” ; ” )

rmse id$ id<−as . character ( rmse id$ id )

met<−rmse$Metodo [ which( rmse$Grupo==i ) ]

for ( id in unique ( rmse id$ id ) ){
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alpha p<−a lpha i p

alpha n<−a lpha i n

beta<−be ta i

d e l t a<−d e l t a i

i f ( id %in% group1 ){
grupo<−1

}
else i f ( id %in% group2 ){

grupo<−2

}
else i f ( id %in% group3 ){

grupo<−3

}
else i f ( id %in% group4 ){

grupo<−4

}
else i f ( id %in% group5 ){

grupo<−5

}
else i f ( id %in% group6 ){

grupo<−6

}
else i f ( id %in% group7 ){

grupo<−7

}
else i f ( id %in% group8 ){

grupo<−8

}
else i f ( id %in% group9 ){

grupo<−9

}
else i f ( id %in% group10 ){

grupo<−10

}
else i f ( id %in% group11 ){
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grupo<−11

}
else i f ( id %in% group12 ){

grupo<−12

}
else i f ( id %in% group13 ){

grupo<−13

}
else i f ( id %in% group14 ){

grupo<−14

}
else i f ( id %in% group15 ){

grupo<−15

}
else i f ( id %in% group16 ){

grupo<−16

}
else i f ( id %in% group17 ){

grupo<−17

}
else i f ( id %in% group18 ){

grupo<−18

}
else i f ( id %in% group19 ){

grupo<−19

}
else i f ( id %in% group20 ){

grupo<−20

}
else i f ( id %in% group21 ){

grupo<−21

}
else i f ( id %in% group22 ){

grupo<−22

}
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rmse d e t a i l f i l e<−s p r i n t f ( ”rmse d e t a i l e d%d . csv ” , grupo )

rmse . reg<−read . csv2 ( rmse d e t a i l f i l e , sep=” ; ” )

rmse . reg$Metodo<−as . character ( rmse . reg$Metodo )

rmse . reg$Date<−as . character ( rmse . reg$Date )

rmse . reg<−rmse . reg [ which( rmse . reg$Metodo==met ) , ]

pred . reg<−pred [ which( pred$ID==id & pred$Metodo==met ) , ]

i f ( length ( pred . reg$ID)>0){
tempo i n i c i a l<−pred . reg$Hour∗3600+pred . reg$Minute∗60+

pred . reg$Second

va lo r real<−tempo i n i c i a l+pred . reg$Real ParkingTime

for ( j in 1 : length ( va l o r real ) ){
novo mad<−0

i f ( j==1){
qt<−quantile ( rmse . reg$mad)

i n t e r v a l o baixo<−round( c ( ( tempo i n i c i a l+pred . reg$

Pred icted ParkingTime )−qt [ 2 ] ) )

i n t e r v a l o cima<−round( c ( ( tempo i n i c i a l+pred . reg$

Pred icted ParkingTime )+qt [ 4 ] ) )

d i s t a<−( i n t e r v a l o cima−i n t e r v a l o baixo )∗beta

d i s t a<−d i s t a /2

i n t e r v a l o baixo<−round( c ( ( tempo i n i c i a l+pred . reg$

Pred icted ParkingTime )−d i s t a ) )

i n t e r v a l o cima<−round( c ( ( tempo i n i c i a l+pred . reg$

Pred icted ParkingTime )+d i s t a ) )

}
else {

rmse . reg . tmp<−rmse . reg [ which( rmse . reg$Date>=

decrementa data 2week ( pred . reg$Date [ j ] ) ) , ]

pred . rmse<−pred [ which( pred$Date>=decrementa data 2

week ( pred . reg$Date [ j ] ) & pred$Date<pred . reg$

Date [ j ] & pred$Metodo==met ) , ]
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novo mad<−abs ( pred . rmse$Pred icted ParkingTime−pred

. rmse$Real ParkingTime )

mades<−c ( rmse . reg . tmp$mad, novo mad)

qt<−quantile ( mades )

i n t e r v a l o baixo<−round( c ( ( tempo i n i c i a l+pred . reg$

Pred icted ParkingTime )−qt [ 2 ] ) )#∗be ta

i n t e r v a l o cima<−round( c ( ( tempo i n i c i a l+pred . reg$

Pred icted ParkingTime )+qt [ 4 ] ) )#∗be ta

d i s t a<−( i n t e r v a l o cima−i n t e r v a l o baixo )∗beta

d i s t a<−d i s t a /2

i n t e r v a l o baixo<−round( c ( ( tempo i n i c i a l+pred . reg$

Pred icted ParkingTime )−d i s t a ) )

i n t e r v a l o cima<−round( c ( ( tempo i n i c i a l+pred . reg$

Pred icted ParkingTime )+d i s t a ) )

}
ida<−which( i n t e r v a l o baixo<=(10∗60) )

i n t e r v a l o baixo [ ida ]=10∗60

i f ( va l o r real [ j ]<= i n t e r v a l o cima [ j ] && va lo r real [ j

]>= i n t e r v a l o baixo [ j ] ) {
h i t<−1

alpha n<−0

alpha p<−alpha p+1

}
else {

h i t<−0

alpha p<−0

alpha n<−alpha n−1

}
m[ idx , ]<−c (met , i , grupo , pred . reg$ID [ j ] , pred . reg$

Date [ j ] , va l o r real [ j ] , tempo i n i c i a l [ j ]+ pred . reg

$Pred icted ParkingTime [ j ] , d i s t a [ j ]∗2 , h i t ,

i n t e r v a l o cima [ j ]− i n t e r v a l o baixo [ j ] )
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idx<−idx+1

i f ( alpha p>=3){
beta<−beta−de l t a

i f (beta<1){
beta<−1

}
}
else i f ( alpha n<=−1){

beta<−beta+de l t a

i f (beta>2){
beta<−2

}
}

}
}

}
}
df<−as . data . frame (m)

for ( i in 1 : 4 ) {
df [ , i ]<−as . character ( df [ , i ] )

}
idx<−which( df$V1==”0” )

df<−df [− idx , ]

names( df )<−vars

write . table ( df , ’ id i n t e r v a l o grupo s l i d i n g adapt qt . csv ’ , sep

=” ; ” , dec=” , ” , row .names=FALSE)

df$va lo r real<−as . numeric ( df$va lo r real )

df$va lo r p r e v i s t o<−as . numeric ( as . character (gsub ( ” , ” , ” . ” , df$

va lo r p r e v i s t o ) ) )

df$mad<−as . numeric ( as . character (gsub ( ” , ” , ” . ” , df$mad) ) )

df$ h i t<−as . numeric ( as . character ( df$ h i t ) )

df$ i n t e r v a l o<−as . numeric ( as . character (gsub ( ” , ” , ” . ” , df$

i n t e r v a l o ) ) )

vars<−c ( ” i n t e r v a l o ” )
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m<−matrix (0 , 1 , length ( vars ) )

idx<−1

media<−mean( df$ i n t e r v a l o )

m[ idx , ]<−c ( media )

idx<−idx+1

df<−as . data . frame (m)

names( df )<−vars

write . table ( df , ’ i n t e r v a l o grupo s l i d i n g adapt qt . csv ’ , sep=” ;

” , dec=” , ” , row .names=FALSE)

}

rmse . d e t a i l e d<−function ( j )

{
options (OutDec= ” , ” )

f i l ename<−s p r i n t f ( ” p r e d i c t i o n s reg groups%d . csv ” , j )

data<−read . csv2 ( f i l ename , sep=” ; ” )

i f ( length (data$Real ParkingTime )>0){
data$ID<−as . character (data$ID)

data$Metodo<−as . character (data$Metodo )

n e n t r i e s<−c ( )

for ( i in 1 : length (data$ID) ){
n e n t r i e s<−c ( nen t r i e s , ( length (data$ID [ which(data$ID==

data$ID [ i ] ) ] ) /length (unique (data$Metodo ) ) ) )

}
data$Pred icted ParkingTime<−as . numeric (gsub ( ” , ” , ” . ” , as .

character (data$Pred icted ParkingTime ) ) )

mad<−abs (data$Real ParkingTime − data$Pred icted

ParkingTime )

data<−cbind (data , n e n t r i e s =( n e n t r i e s ) )

data<−cbind (data , mad=(mad) )

data<−data [−2:−3]

data<−data [−3:−6]

f i lenamew<−s p r i n t f ( ”rmse d e t a i l e d%d . csv ” , j )

write . table (data , f i lenamew , sep=” ; ” , dec=” , ” , row .names=

FALSE)

}
}

90



i n t e r v a l . s t a t s<−function ( )

{
vars<−c ( ”metodo” , ” h i t s ” , ” t o t a l ” , ” percent ” , ” Hit VI” )

m<−matrix (0 , 1000 , length ( vars ) )

idx<−1

##########

data<−read . csv2 ( ” id i n t e r v a l o grupo s l i d i n g adapt qt . csv ” ,

sep=” ; ” )

data$metodo<−as . character (data$metodo )

data$ i n t e r v a l o<−as . numeric ( as . character (gsub ( ” , ” , ” . ” ,data$

i n t e r v a l o ) ) )

h i t<−length (data$ h i t [ which(data$ h i t==1) ] )

t o t a l<−length (data$ h i t )

percent<−( h i t∗100)/ t o t a l

va l o r<−h i t /mean(data$ i n t e r v a l o )

m[ idx , ]<−c ( ”Grupo S l i d i n g Adapt Qt” , h i t , t o ta l , percent ,

va l o r )

idx<−idx+1

df<−as . data . frame (m)

names( df )<−vars

df$percent<−as . numeric ( as . character (gsub ( ” , ” , ” . ” , df$percent

) ) )

df$Hit VI<−as . numeric ( as . character (gsub ( ” , ” , ” . ” , df$Hit VI ) )

)

df$metodo<−as . character ( df$metodo )

ida<−which( df$metodo==”0” )

df<−df [− ida , ]

write . table ( df , ’ h i t s . csv ’ , sep=” ; ” , dec=” , ” , row .names=FALSE)

}

data . p r e p ro c e s s i n g . feup<−function ( )

{
r e s u l t a d o s<−read . csv2 ( ” r e s u l t a d o s . csv ” )

r e s u l t a d o s $Metodo<−as . character ( r e s u l t a d o s $Metodo )

vars<−c ( ”ID” , ”Gender” , ”Funcao” , ”Date” , ”DayType” , ”Hour” ,
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”Minute” , ”Second” , ”Metodo” , ”Real ParkingTime” , ”

Pred ic ted ParkingTime” )

m<−matrix (0 , 70000 , length ( vars ) )

idx<−1

for ( i in 1 : 22 ) {
best . method<−r e s u l t a d o s $Metodo [ which( r e s u l t a d o s $Grupo==i ) ]

f i l ename<−s p r i n t f ( ” p r e d i c t i o n s reg groups%d . csv ” , i )

data<−read . csv2 ( f i l ename , sep=” ; ” )

data$Metodo<−as . character (data$Metodo )

data<−data [ which(data$Metodo==best . method ) , ]

data$Pred icted ParkingTime<−as . numeric (gsub ( ” , ” , ” . ” , as .

character (data$Pred icted ParkingTime ) ) )

i f ( length (data$ID)>0){
for ( j in 1 : length (data$ID) ){

l i nha<−c (data [ j , 1 ] , data [ j , 2 ] , data [ j , 3 ] , as . character

(data [ j , 4 ] ) , as . character (data [ j , 5 ] ) , as . character (

data [ j , 6 ] ) , as . character (data [ j , 7 ] ) , as . character (

data [ j , 8 ] ) , data [ j , 9 ] , data [ j , 1 0 ] , data [ j , 1 1 ] )

m[ idx , ]<−l i nha

idx<−idx+1

}
}

}
data<−as . data . frame (m)

names(data )<−vars

data<−data[−which( as . character (data$ID)==”0” ) , ]

data$ID<−as . numeric ( as . character (data$ID) )

data$Date<−as . character (data$Date )

data$DayType<−as . character (data$DayType)

data<−data [−2:−3]

data$Hour<−as . numeric ( as . character (data$Hour ) )

data$Minute<−as . numeric ( as . character (data$Minute ) )

data$Second<−as . numeric ( as . character (data$Second ) )

data$Second<−data$Hour∗3600+data$Minute∗60+data$Second

data<−data [−4:−5]

names(data ) [ 4 ]<−”Hora entrada ”

data<−data [−5]
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data$Real ParkingTime<−as . numeric (gsub ( ” , ” , ” . ” , as . character

(data$Real ParkingTime ) ) )

data$Pred icted ParkingTime<−as . numeric (gsub ( ” , ” , ” . ” , as .

character (data$Pred icted ParkingTime ) ) )

data$Real ParkingTime<−data$Real ParkingTime+data$Hora

entrada

data$Pred icted ParkingTime<−data$Pred icted ParkingTime+data$

Hora entrada

rmse<−read . csv2 ( ” id i n t e r v a l o grupo s l i d i n g adapt qt . csv ” ,

sep=” ; ” )

i d s rmse<−unique ( rmse$ id )

for ( id in unique (data$ID) ){
i f ( ! ( id %in% i d s rmse ) ){

idx . id<−which(data$ID==id )

data<−data[− idx . id , ]

}
}
return (data )

}

park . ca r s . smart . 2<−function ( rows , columns )

{
dados<−data . p r e p ro c e s s i n g ( )

vars<−c ( ” dia ” , ”tamanho” , ” misses ” )

r e s u l t a d o s<−matrix (0 , length (unique ( dados$Date ) ) , length (

vars ) )

idx<−1

for ( d ia in unique ( dados$Date ) ){
m<−matrix (0 , rows , columns )

m rea l t ime<−matrix (0 , rows , columns )

m parkingt ime<−matrix (0 , rows , columns )

dados . reg<−dados [ which( dados$Date==dia ) , ]

dados . entrada<−dados . reg [ order ( dados . reg$Hora entrada ) , ]

dados . sa ida<−dados . reg [ order ( dados . reg$Real ParkingTime ) ,

]
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misses<−0

while ( length ( dados . entrada$ID)>0){
i f ( i s F u l l (m) ){

dados . entrada<−dados . entrada [−1 , ]

index<−match( dados . entrada$ID [ 1 ] , dados . sa ida$ID)

dados . sa ida<−dados . sa ida [−index , ]

}
else {

best . f i l a<−bestStack . 2 (m, dados . entrada [ 1 , ] , m

rea l t ime , m parkingt ime )

l i nha<−nextFreeSpot . Stack (m, best . f i l a , rows )

m[ l inha , bes t . f i l a ]<−dados . entrada$ID [ 1 ]

m rea l t ime [ l inha , bes t . f i l a ]<−dados . entrada$Real

ParkingTime [ 1 ]

m parkingt ime [ l inha , bes t . f i l a ]<−dados . entrada$

Pred icted ParkingTime [ 1 ]

}
dados . entrada<−dados . entrada [−1 , ]

while ( nextEvent ( dados . entrada , dados . sa ida )==” sa ida ” ){
sa ida . id<−dados . sa ida$ID [ 1 ]

pos<−find . car (m, sa ida . id )

m[ pos [ [ 1 ] ] , pos [ [ 2 ] ] ]<−0

m rea l t ime [ pos [ [ 1 ] ] , pos [ [ 2 ] ] ]<−0

m parkingt ime [ pos [ [ 1 ] ] , pos [ [ 2 ] ] ]<−0

dados . sa ida<−dados . sa ida [−1 , ]

i f ( length (pos )>0){
nmoves<−check . movement (m, pos [ [ 1 ] ] , pos [ [ 2 ] ] )

mis ses<−misses+nmoves

m<−r ea r range (m, pos [ [ 1 ] ] , pos [ [ 2 ] ] )

m rea l t ime<−r ea r range (m rea l t ime , pos [ [ 1 ] ] , pos [ [ 2 ] ] )

m parkingt ime<−r ea r range (m parkingtime , pos [ [ 1 ] ] , pos

[ [ 2 ] ] )

}
}

}
while ( length ( dados . sa ida$ID)>0){
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sa ida . id<−dados . sa ida$ID [ 1 ]

pos<−find . car (m, sa ida . id )

m[ pos [ [ 1 ] ] , pos [ [ 2 ] ] ]<−0

m rea l t ime [ pos [ [ 1 ] ] , pos [ [ 2 ] ] ]<−0

m parkingt ime [ pos [ [ 1 ] ] , pos [ [ 2 ] ] ]<−0

dados . sa ida<−dados . sa ida [−1 , ]

i f ( length (pos )>0){
nmoves<−check . movement (m, pos [ [ 1 ] ] , pos [ [ 2 ] ] )

mis ses<−misses+nmoves

i f ( nmoves>0){
m<−r ea r range (m, pos [ [ 1 ] ] , pos [ [ 2 ] ] )

m rea l t ime<−r ea r range (m rea l t ime , pos [ [ 1 ] ] , pos [ [ 2 ] ] )

m parkingt ime<−r ea r range (m parkingtime , pos [ [ 1 ] ] , pos

[ [ 2 ] ] )

}
mask . id<−match( sa ida . id , mascaras id )

mask . print<−mascaras [ mask . id ]

}
}
r e s u l t a d o s [ idx , ]<−c ( dia , paste ( rows , columns , sep=”x” ) ,

mis ses )

idx<−idx+1

}
df<−as . data . frame ( r e s u l t a d o s )

names( df )<−vars

f i l e w<−s p r i n t f ( ” mis se s metodo adv %dx%d . csv ” , rows , columns )

write . table ( df , f i l ew , sep=” ; ” , dec=” , ” , row .names=FALSE)

}

bestStack . 2<−function (m, l i nha id novo , m rea l t ime , m

parkingt ime ) #recebo o id do novo carro

{
nrows<−length (m[ , 1 ] )

ncolumns<−length (m[ 1 , ] )

melhor . co luna<−0

melhor . ncar ro s<−0

melhor . custo<−100000
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novo prev i s ao<−0

novo i n t e r v a l o baixo<−0

novo i n t e r v a l o cima<−0

l i nha prev i s ao<−c ( )

l i nha i n t e r v a l o baixo<−c ( )

l i nha i n t e r v a l o cima<−c ( )

l i nha s co r e<−c ( )

for ( i in 1 : ncolumns ){
l i nha<−nextFreeSpot . Stack (m, i , nrows )

i f ( l i nha !=−1 && l i nha != 1){
id ult imo<−m[ l inha −1, i ]

l i s t a<−c a l c . Weight . 2 ( id ultimo , l i nha id novo , m, m

rea l t ime , m parkingtime , ncolumns , ( l inha −1) ) ##mudar

aqui depo i s

novo prev i s ao<− l i s t a [ [ 1 ] ]

novo i n t e r v a l o baixo<− l i s t a [ [ 2 ] ]

novo i n t e r v a l o cima<− l i s t a [ [ 3 ] ]

l i nha prev i s ao<−c ( l i nha prev i sao , l i s t a [ [ 4 ] ] )

l i nha i n t e r v a l o baixo<−c ( l i nha i n t e r v a l o baixo , l i s t a

[ [ 5 ] ] )

l i nha i n t e r v a l o cima<−c ( l i nha i n t e r v a l o cima , l i s t a

[ [ 6 ] ] )

l i nha s co r e<−c ( l i nha score , l i s t a [ [ 7 ] ] )

peso<− l i s t a [ [ 7 ] ]

i f ( peso<melhor . custo ){
melhor . co luna<−i

melhor . ncar ro s<−l inha−1

melhor . custo<−peso

}
else i f ( peso==melhor . custo ){

i f ( melhor . ncarros >( l inha −1) ){
melhor . co luna<−i

melhor . ncar ro s<−l inha−1
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melhor . custo<−peso

}
}

}
else i f ( l i nha==1){

peso<−1

i f ( peso<melhor . custo ){
melhor . co luna<−i

melhor . ncar ro s<−0

melhor . custo<−peso

}
l i nha prev i s ao<−c ( l i nha prev i sao , l i nha prev i s ao [ length (

l i nha prev i s ao ) −1])

l i nha i n t e r v a l o baixo<−c ( l i nha i n t e r v a l o baixo , l i nha

i n t e r v a l o baixo [ length ( l i nha i n t e r v a l o baixo ) −1])

l i nha i n t e r v a l o cima<−c ( l i nha i n t e r v a l o cima , l i nha

i n t e r v a l o cima [ length ( l i nha i n t e r v a l o cima ) −1])

l i nha s co r e<−c ( l i nha score , peso )

}
else {

l i nha prev i s ao<−c ( l i nha prev i sao , ”−” )

l i nha i n t e r v a l o baixo<−c ( l i nha i n t e r v a l o baixo , ”−” )

l i nha i n t e r v a l o cima<−c ( l i nha i n t e r v a l o cima , ”−” )

l i nha s co r e<−c ( l i nha score , ”−” )

}
}
return ( melhor . coluna )

}

c a l c . Weight . 2<−function ( id , l i nha id novo , m, m rea l t ime , m

parkingtime , n f i l a s , ncar ro s )

{
rmse<−read . csv2 ( ” id i n t e r v a l o grupo s l i d i n g adapt qt . csv ” ,

sep=” ; ” )

rmse$mad<−as . numeric ( as . character (gsub ( ” , ” , ” . ” , rmse$mad) ) )

rmse$metodo<−as . character ( rmse$metodo )

rmse$date<−as . character ( rmse$date )
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rmse ult imo<−rmse [ which( rmse$ id==id ) , ]

rmse novo<−rmse [ which( rmse$ id==l inha id novo$ID) , ]

pos<−find . car (m, id )

l i n e ult imo real<−m rea l t ime [ pos [ [ 1 ] ] , pos [ [ 2 ] ] ]

l i n e ult imo pred i c t ed<−m parkingt ime [ pos [ [ 1 ] ] , pos [ [ 2 ] ] ]

l i n e novo<−l i nha id novo

rmse ult imo<−rmse ult imo [ which(round( rmse ult imo$va lo r real )

==round( l i n e ult imo real ) & round( rmse ult imo$va lo r

p r e v i s t o )==round( l i n e ult imo pred i c t ed ) ) , ]

rmse novo<−rmse novo [ which(round( rmse novo$va lo r real )==

round( l i n e novo$Real ParkingTime ) & round( rmse novo$va lo r

p r e v i s t o )==round( l i n e novo$Pred icted ParkingTime ) & rmse

novo$date==l i n e novo$Date ) , ]

rmse novo<−rmse novo [ 1 , ]

rmse ult imo<−rmse ult imo [ 1 , ]

i n t e r v a l o ult imo baixo<−l i n e ult imo pred ic ted −(rmse ult imo$

i n t e r v a l o /2)

i n t e r v a l o ult imo cima<−l i n e ult imo pred i c t ed +(rmse ult imo$

i n t e r v a l o /2)

i n t e r v a l o novo baixo<−l i n e novo$Pred icted ParkingTime−(rmse

novo$ i n t e r v a l o /2)

i n t e r v a l o novo cima<−l i n e novo$Pred icted ParkingTime+(rmse

novo$ i n t e r v a l o /2)

i f ( i n t e r v a l o ult imo cima<i n t e r v a l o novo baixo ){
custo<−20

}
else i f ( i n t e r v a l o novo baixo<i n t e r v a l o ult imo baixo &&

i n t e r v a l o novo cima>i n t e r v a l o ult imo cima ){
sob r epo s i cao<−1

custo<−( s ob r epos i cao ) +((( ncarros −1) ˆ(4) )/ n f i l a s )

}
else i f ( i n t e r v a l o ult imo baixo>i n t e r v a l o novo cima ){
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custo<−0

}
else i f ( i n t e r v a l o novo baixo<=i n t e r v a l o ult imo baixo &&

i n t e r v a l o novo cima<i n t e r v a l o ult imo cima ){
sob r epo s i cao<−( i n t e r v a l o novo cima−i n t e r v a l o ult imo baixo )

/ ( i n t e r v a l o ult imo cima−i n t e r v a l o ult imo baixo )

custo<−( s ob r epos i cao ) +((( ncarros −1) ˆ(4) )/ n f i l a s )

}
else i f ( i n t e r v a l o novo cima>=i n t e r v a l o ult imo cima ){

sob r epo s i cao<−( i n t e r v a l o ult imo cima−i n t e r v a l o novo baixo )

/ ( i n t e r v a l o ult imo cima−i n t e r v a l o ult imo baixo )

custo<−( s ob r epos i cao ) +((( ncarros −1) ˆ(4) )/ n f i l a s )

}
else {

sob r epo s i cao<−( i n t e r v a l o novo cima−i n t e r v a l o novo baixo )/ (

i n t e r v a l o ult imo cima−i n t e r v a l o ult imo baixo )

custo<−( s ob r epos i cao ) +((( ncarros −1) ˆ(4) )/ n f i l a s )

}

return ( l i s t ( l i n e novo$Pred icted ParkingTime , i n t e r v a l o novo

baixo , i n t e r v a l o novo cima ,

l i n e ult imo pred ic ted , i n t e r v a l o ult imo baixo ,

i n t e r v a l o ult imo cima , custo ) )

}

print . parking<−function (m)

{
row . s i z e<−length (m[ , 1 ] )

column . s i z e<−length (m[ 1 , ] )

m<−change . matrix (m)

for ( i in 1 :row . s i z e ){
l i nha<−””

for ( j in 1 : column . s i z e ){
i f (m[ i , j ] !=0){

l i nha<−paste ( l inha , ” [ x ] ” , sep=”” )

}
else {
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l i nha<−paste ( l inha , ” [ ] ” , sep=”” )

}
}

}
}

change . matrix<−function (m)

{
nrows<−length (m[ , 1 ] )

ncolumns<−length (m[ 1 , ] )

new m<−matrix (0 , nrows , ncolumns )

for ( i in 1 : ncolumns ){
ncars<−( nextFreeSpot . Stack (m, i , nrows )−1)

i f ( ncars==−2){
new m[ , i ]<−rep (1 , nrows )

}
else i f ( ncars >0){

for ( j in nrows : ( nrows−ncars +1) ){
new m[ j , i ]<−1

}
}

}
return (new m)

}

nextEvent<−function ( dados . entrada , dados . sa ida )

{
i f ( length ( dados . entrada$ID)>0){

i f ( dados . entrada$Hora entrada [1]> dados . sa ida$Real

ParkingTime [ 1 ] ) {
return ( ” sa ida ” )

}
}
return ( ” entrada ” )

}

i s F u l l<−function (m)
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{
nrows<−length (m[ , 1 ] )

ncolumns<−length (m[ 1 , ] )

for ( i in 1 : ncolumns ){
i f (m[ nrows , i ]==0){

return (FALSE)

}
}
return (TRUE)

}

nextFreeSpot . Stack<−function (m, column , nrows )

{
for ( i in 1 : nrows ){

i f (m[ i , column]==0){
return ( i )

}
}
return(−1)

}

the re . i s . FreeSpace<−function (m)

{
for ( i in 1 : length (m[ 1 , ] ) ){

i f (m[ 1 , i ]==0){
return ( i )

}
}
return (0 )

}

find . car<−function (m, id )

{
nrows<−length (m[ , 1 ] )

ncolumns<−length (m[ 1 , ] )

for ( i in 1 : nrows ){
for ( j in 1 : ncolumns ){
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i f (m[ i , j ]==id ){
return ( l i s t ( i , j ) )

}
}

}
return (NULL)

}

check . movement<−function (m, nr , nc )

{
nrows<−length (m[ , 1 ] )

nmoves<−0

i f ( nr !=nrows ){
while (m[ nr+1,nc ] !=0 && ( nr+1) !=nrows ){

nmoves<−nmoves+1

nr<−nr+1

}
i f ( ( nr+1)==8)

nmoves<−nmoves+1

}
i f ( nmoves>0){

return (sum( 1 : nmoves ) )

}
else {

return (0 )

}
}

r ea r range<−function (m, nr , nc )

{
nrows<−length (m[ , 1 ] )

while ( nr !=nrows ){
m[ nr , nc ]<−m[ nr+1,nc ]

nr<−nr+1

}
m[ nrows , nc ]<−0

return (m)
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}

bestStack . na ive<−function (m, id novo , data . reg )

{
nrows<−length (m[ , 1 ] )

ncolumns<−length (m[ 1 , ] )

melhor . co luna<−0

melhor . ncar ro s<−100000

for ( i in 1 : ncolumns ){
l i nha<−nextFreeSpot . Stack (m, i , nrows )

i f ( l i nha !=0){
i f ( l inha<melhor . ncar ro s ){

melhor . co luna<−i

melhor . ncar ro s<−l i nha

}
}

}
return ( melhor . coluna )

}

park . ca r s . na ive<−function ( rows , columns )

{
dados<−data . p r e p ro c e s s i n g ( )

vars<−c ( ” dia ” , ”tamanho” , ” misses ” )

r e s u l t a d o s<−matrix (0 , length (unique ( dados$Date ) ) , length (

vars ) )

idx<−1

for ( d ia in unique ( dados$Date ) ){
m<−matrix (0 , rows , columns )

dados . reg<−dados [ which( dados$Date==dia ) , ]

dados . entrada<−dados . reg [ order ( dados . reg$Hora entrada ) , ]

dados . sa ida<−dados . reg [ order ( dados . reg$Real ParkingTime ) ,

]

mi s ses<−0
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while ( length ( dados . entrada$ID)>0){
f r e eSpace<−the re . i s . FreeSpace (m)

i f ( f r e eSpace !=0){
m[ 1 , f r e eSpace ]<−dados . entrada$ID [ 1 ]

}
else i f ( i s F u l l (m) ){

dados . entrada<−dados . entrada [−1 , ]

index<−match( dados . entrada$ID [ 1 ] , dados . sa ida$ID)

dados . sa ida<−dados . sa ida [−index , ]

}
else {

best . f i l a<−bestStack . na ive (m, dados . entrada$ID [ 1 ] ,

dados . entrada )

l i nha<−nextFreeSpot . Stack (m, best . f i l a , rows )

m[ l inha , bes t . f i l a ]<−dados . entrada$ID [ 1 ]

}
dados . entrada<−dados . entrada [−1 , ]

while ( nextEvent ( dados . entrada , dados . sa ida )==” sa ida ” ){
sa ida . id<−dados . sa ida$ID [ 1 ]

pos<−find . car (m, sa ida . id )

i f ( length (pos )>0){
m[ pos [ [ 1 ] ] , pos [ [ 2 ] ] ]<−0

nmoves<−check . movement (m, pos [ [ 1 ] ] , pos [ [ 2 ] ] )

mis ses<−misses+nmoves

i f ( nmoves>0){
m<−r ea r range (m, pos [ [ 1 ] ] , pos [ [ 2 ] ] )

}
}
dados . sa ida<−dados . sa ida [−1 , ]

}
}
while ( length ( dados . sa ida$ID)>0){

sa ida . id<−dados . sa ida$ID [ 1 ]

pos<−find . car (m, sa ida . id )

i f ( length (pos ) ){
m[ pos [ [ 1 ] ] , pos [ [ 2 ] ] ]<−0

nmoves<−check . movement (m, pos [ [ 1 ] ] , pos [ [ 2 ] ] )
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misses<−misses+nmoves

i f ( nmoves>0){
m<−r ea r range (m, pos [ [ 1 ] ] , pos [ [ 2 ] ] )

}
}
dados . sa ida<−dados . sa ida [−1 , ]

}
r e s u l t a d o s [ idx , ]<−c ( dia , paste ( rows , columns , sep=”x” ) ,

mis ses )

idx<−idx+1

}
df<−as . data . frame ( r e s u l t a d o s )

names( df )<−vars

f i l e w<−s p r i n t f ( ” mis se s metodo naive %dx%d . csv ” , rows ,

columns )

write . table ( df , f i l ew , sep=” ; ” , dec=” , ” , row .names=FALSE)

}
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Using Exit Time Predictions to Optimize
Self Automated Parking Lots

Rafael Nunes, Luis Moreira-Matias and Michel Ferreira

Abstract— Private car commuting is heavily dependent on the
subsidisation that exists in the form of available free parking.
However, the public funding policy of such free parking has
been changing over the last years, with a substantial increase of
meter-charged parking areas in many cities. To help to increase
the sustainability of car transportation, a novel concept of a
self-automated parking lot has been recently proposed, which
leverages on a collaborative mobility of parked cars to achieve
the goal of parking twice as many cars in the same area, as
compared to a conventional parking lot. This concept, known
as self-automated parking lots, can be improved if a reasonable
prediction of the exit time of each car that enters the parking
lot is used to try to optimize its initial placement, in order to
reduce the mobility necessary to extract blocked cars. In this
paper we show that the exit time prediction can be done with
a relatively small error, and that this prediction can be used to
reduce the collaborative mobility in a self-automated parking
lot.

I. INTRODUCTION

Parking is a major problem of car transportation, with
important implications in traffic congestion and urban land-
scape. It has been shown that parking represents 75% of
the variable costs of automobile commuting [1], supported
by a major public subsidisation of the space devoted to car
parking, where the user does not pay in more than 95% of
the occasions [2].

The sustainability of car transportation is nowadays facing
several challenges. The number of cars in many cities has
reached a level where the road infrastructure is unable to
avoid systematic traffic congestions. In addition, the high
cost of fossil fuels and pollutant emission levels are creating
significant challenges for the sustainability of private car
commuting in major cities. Tolls and prohibition of circu-
lation in one or two week days for a given vehicle are
already in place in some of our cities. Technology is trying to
mitigate these challenges faced by car transportation. Zero-
emissions electric propulsion and connected navigation are
two examples of technologies that can help making car
transportation more sustainable.

Technology has been focusing however in moving cars,
disregarding the parked period of these cars, which represents
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95% of the vehicle existence. Recently, a simple proposal
that leverages on technology such as electric propulsion or
wireless vehicular connectivity has addressed the issue of car
parking, arguing that through a collaborative approach to the
parking of cars, the area per car could be reduced to nearly
half, when compared to the area per car in a conventional
parking lot. This approach, known as self-automated parking
lots [3], works as follows. An electric vehicle (EV) is left
at the entrance of a parking lot by its driver. This EV is
equipped with vehicular communications that establish a
protocol with a Parking Lot Controller (PLC). The EV is
also based on Drive-by-Wire (DbW) technology, where in-
vehicle Electronic Control Units (ECUs) manage signals sent
by the acceleration and braking pedal, and steering wheel.
The Vehicle-to-Infrastructure (V2I) communication protocol
allows the PLC to control the mobility of the EV in the
parking lot. The PLC remotely drives the EV to its parking
space, using in-vehicle positioning sensors (e.g. rotation per
wheel), magnet-based positioning, or some other type of
positioning system (e.g. camera-based). Alternatively to a
fully-automated system, a scenario of human-based tele-
operated driving could also be used [4]. In this concept
of self-automated parking lots the cars are parked in a
very compact way, without space devoted to access ways
or even inter-vehicle space that allows opening doors. As a
new vehicle enters the parking lot, the PLC sends wireless
messages to move the vehicles in the parking lot to create
space to accommodate the entering vehicle. If a blocked car
wants to leave the parking lot, the PLC also sends messages
to move the other vehicles, in order to create an exit path. In
[3] it was shown that this concept could reduce the area per
vehicle to nearly half, as well as reduce the overall mobility
of cars in the parking lot, when compared to a conventional
parking lot. However, in the original paper, a first-fit strategy
was used to initially park each vehicle. Clearly, the initial
placement can be improved if some knowledge about the
expected exit time of each car is used. The basic idea is that
a car should not be blocked by another car that will leave
the parking lot later. If the cars in the parking lot are placed
using an order that reflects their expected exit times, then the
overall mobility in the parking lot to create exit paths can
be reduced.

In this paper we use an entire year of entries and exits in a
parking lot, where each vehicle uses a unique identifier, to be
able to derive its expected exit time, using this information to
improve the original placement of the car in order to reduce
manoeuvring mobility. Our goal is not to obtain a precise exit
time for each vehicle, but rather a time-interval that can be



used in conjunction with the parking lot layout (e.g. number
of lanes) to reduce the probability of having to move parked
vehicles to created exit paths for blocked vehicles.

The remainder of this paper is organised as follows: in
the next section we present some considerations regarding
parking lot design, and further describe our optimisation goal
based on a typical layout for a self-automated parking lot.
We then present our methodology to predict an exit time
interval for each vehicle, and how this interval is used to
select the original lane to park each vehicle. We then present
our dataset set used as case study and present experimental
results in the next section, including a discussion of these
results. Finally, we end with some conclusions.

II. PARKING LOT DESIGN

The geometric design of the parking lot is an important
issue in a self-automated parking lot. In conventional parking
lots there are a number of considerations that have to
be taken into account when designing them. For instance,
width of parking spaces and access ways, one-way or two-
way use of the access ways, entry angle in the parking
bays (90◦, 60◦, 45◦), pedestrian paths, visibility to find an
available parking space, etc. In a self-automated parking lot,
many of these considerations do not apply. Manoeuvring is
done autonomously by the car following the instructions of
the PLC, pedestrian access is not allowed, and the assigned
parking space is determined by the PLC. The main design
issue is defining a geometric layout that maximises parking
space, leveraging on minimal buffer areas to make the
necessary manoeuvres that allow the exit from any parking
space under all occupancy configurations. This geometric
design is ultimately determined by the shape of the space
of the parking lot. The parking lot architecture also defines
the trajectories and associated manoeuvres to enter and exit
each parking space.

The parking lot has a V2I communication device which
allows the communication between the vehicles and the PLC.
In theory, this infrastructure equipment could be replaced by
a vehicle in the parking lot, which could assume the function
of PLC while parked there, handing over this function to
another car upon exit, similarly to the envisioned functioning
of a V2V Virtual Traffic Light protocol [5]. Note, however,
that the existence of the actual infrastructure, which could
be complemented with a video-camera offering an aerial
perspective of the parking lot to improve the controller
perception of the location and orientation of vehicles, could
simplify the protocol and improve reliability.

Reducing and simplifying such trajectories and manoeu-
vres is also an important design issue, as they affect the
reliability of the system and allow faster storage and retrieval
of cars. Note also that the parking lot architecture can take
advantage of the fact that the passenger does not enter
the parking lot, and thus the inter-vehicle distances do not
need to allow for space to open doors. To optimise and
simplify manoeuvres, these self-automated parking lots will
require specific minimum turning radius values for vehicles.

Fig. 1. An example layout for a self-automated parking lot. The parking
lot can never be completely full, as buffer areas are necessary to be able
to allow the exit of each vehicle under all possible configurations. In this
example, a minimum of 6 empty spar are necessary.

Only vehicles that meet the turning radius specified by each
parking lot will be allowed to enter it.

The geometric layout of the parking lot and its buffer
areas can assume very different configurations for the self-
automated functioning. One possibility is to have parallel
lanes with minimal space between them, as illustrated in
Fig. 1. In this type of layout, the PLC starts by assigning
a lane to a vehicle. This initial decision is critical, as it
should minimise the need to move a vehicle from one lane to
another. Note that if the red vehicle in Fig. 1 needs to leave
under the current configuration, then the vehicle behind it
needs to be moved to another lane. If we could predict that
the exit of the red vehicle would happen before the exit of the
vehicle behind it, then this last vehicle would be better placed
in a different lane. Our goal in this paper is exactly to be
able to predict an exit-interval for each vehicle, and design a
lane selection methodology that reduces the mobility needed
to create exit paths.

Note that parking lots will not be able to be completely
full, as buffer space needs to exist to allow the exit of
each vehicle under all possible configurations. The minimum
number of empty spaces, configuring buffer areas, depends
on the parking lot layout. In the layout presented in Fig. 1,
with a lane depth of 7, we need a buffer area with a minimum
of 6 empty spaces.

III. METHODOLOGY

Our methodology consists on the following four steps: it
starts by (A) dividing the original dataset in k smaller ones,
containing users with similar parking habits; then, (B) data
driven regression is performed over the newly created sub-
datasets. Thirdly, a parking time interval is generated (C)
based on such predictions and on their previous residuals
(difference between a predicted value (ŷ) and its real one, y).
Finally the selected lane (D) will be the one which minimizes
the likelihood of performing unnecessary vehicle movements



1. This methodology is summarized in Fig. 2 and explained
in detail throughout this section.

A. Profile Generation

Let X = {X1, X2, ..., Xn} be n timestamped data records
on the parking lot entries describing the entry/exit behaviours
of ρ distinct users. Let Ui ⊆ X denote the records of and
individual user i (i.e. Uρi=1 ≡ X) and Ψi describe the sample-
based probability density function (p.d.f.) of its parking time
habits. A clustering process is firstly made on X based on
the extracted Ψi. The resulting k clusters can be defined
as Π = {π1, π2, ..., πk}. They will comprise sub-datasets
containing data records on users having similar profiles (i.e.
parking time-habits). Consequently, X ≡

⋃k
i=1 πi.

B. Parking Time Prediction

To perform the parking time prediction, we propose to
use data driven regression. In regression, the goal is to
determine a function f(Z, θ), given the input independent
variables, Z, and the real values of the dependent variables,
θ. The output of the model is not necessarily equal to the
real value, due to noise in the data and/or limited number
of entries. Consequently, a regression model commonly
comprises an error e. The function f can be expressed as
follows:

Y ≈ f(Z, θ) + e (1)

Let M = {Mπ1
,Mπ2

, ...,Mπk
} be the set of k regression

models and pj,πi
denote the parking time prediction for

a given timestamped user entrance with the profile πi. M
results of applying an induction method of interest to the
datasets in Π. By doing so, the authors expect to approximate
the real vehicles parking time given a set of describing
variables (i.e.: Z).

C. Incremental Interval Generation

Given a prediction for the parking time of an user times-
tamped entrance (i.e. pj,πi

), it is possible to estimate an
interval for this value based on the residuals produced by its
regression model. Hereby, we propose to do so by employing
the residuals’ quantiles. A quantile is a point taken from
a cumulative distribution function of a variable. The first

1Whenever a given vehicle c exits, all its lane’s vehicles standing between
c and the parking lot exit, have to be moved to a buffer zone. Such
movements could be avoided by an exit-oriented sorting of each lane’s
vehicles.
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Fig. 2. An illustration on the different steps of the proposed methodology.

quantile represents the point that is greater than 25% of the
data, while the third quantile the point that is greater than
75%. Let e1,i and e3,i denote the first and third quantiles of
the regression residuals produced by a given model Mπi

on
the previously tested data records in πi. Our baseline interval
I is given by the following equation:

Ij,πi
= [pj,πi

− e1,πi
, pj,πi

+ e3,πi
] (2)

Let a hit occur every time the real parking time is contained
within the interval estimated. Otherwise, we consider the
occurrence of a miss. Our goal is to produce intervals in
order to maximize the number of hits and, at the same time,
to minimize its width. To do so, we propose to extend the
baseline described in eq. (2) by employing a self-adaptive
strategy. Such strategy consists on multiplying the quantile-
based interval width by a 0 ≤ β ≤ 2 (starting on β = 1). This
value is incrementally updated whenever an user of πi leaves
the parking lot (i.e. each time a newly real parking time is
known on πi). Let απi denote the number of consecutive
misses/hits of our interval prediction method in πi. Whenever
απi

> αth, the value of β is incremented/decremented by τ .
αth and τ are two user-defined parameters setting how reac-
tive the interval prediction model should be. Consequently,
it is possible to re-write the eq. (2) into the following one:

Ij,πi = [pj,πi −∆, pj,πi + ∆],∆ = (e3,πi − e1,πi)× β (3)

Everytime that a sequence miss/hit or hit/miss occurs, the
respective α value is set to 0. The β ends up by controlling
the interval width: the described algorithm aims to adapt
itself to the current scenario by narrowing the intervals width
whenever it is getting multiple hits or by stretching itself on
the opposite scenario.

D. Parking Lane Selection

In this paper, the parking lot is assumed to follow a
rectangular layout where the entrance and the exit are the
same. It is possible to represent it as a l × r matrix, where
l, r sets the number of lanes and the maximum number of
vehicles in each lane, respectively. When a vehicle enters
the parking lot,it is necessary to select a lane κ to park it in.
Such selection should minimize the number of unnecessary
vehicle movements (i.e. ϑκ). Consequently, each lane has an
associated score Wκ. It can be faced as a likelihood of that
selection force unnecessary movements given the i) current
interval prediction for the newly arrived user (Ij,πi ) and ii)
the vehicles already parked in κ. The lane with lowest score
is predicted to be the one that minimizes ϑκ.

Empty lanes have a predefined score of W = 1 while a
full one have W = ∞. Let h be the last vehicle in κ (i.e.
the vehicle most recently parked), IUj,πi

be the upper limit
and ILh,πb

be the lower limit of the estimated interval (note
that the vehicle’s j profile, πi, may be (or not) the same
of the vehicle h, πb). If IUh,πb

< ILj,πi
, it is expected that

the vehicle j of profile πi exits the parking lot first than h
(e.g.: Fig. 3-c). In this case, Wκ = ∞. If IUj,πi

< ILh,πb
,

then it is expected that j and h can leave the parking lot
provoking no unnecessary movements (i.e.: ϑκ = 0; e.g.:



Fig. 3. In a), the upper limit of Ih is lower than the lower limit of Ij , so
h is expected to leave the parking lot first than j. In b) there is an overlap
between the two intervals. Its width is used to compute the lane’s score.
Finally, c) is the opposite scenario of a).

Fig. 3-a). Consequently, the score is then Wκ = 0 on this
case. Otherwise, Wκ can be computed as follows

Wκ =
IUj,πi

− ILh,πb

IUh,πi
− ILh,πb

+
(Nκ − 1)4

r
(4)

where Nκ stands for the number of vehicles currently in
κ. This approach is inspired on the typical p-value statistical
test considering a null hypothesis by setting the extreme data
point as IUj,πi

and Ih,πi
as a rough approximation on the

parking time distribution function for the parked vehicle h.
The second term of eq. (4) is an exponential weight which
aims to express the possible cost of having unnecessary
vehicle movements caused by assigning the newly arrived
vehicle j to the lane κ.

IV. CASE STUDY

This case study consists on the parking lot of the Faculty
of Science of University of Porto, Portugal. The data of
309 users during the year of 2013 was used to validate our
methodology. This parking lot has the capacity to hold up
to 100 vehicles. Since 96.4% of the data entries are in week
days, only the workdays are considered in this study.

Each data record has the following features: (i) an user
ID, (ii, iii) two timestamps for the parking entry/exit, (iv)
type of day (e.g.: Monday), (v) holiday/not-holiday boolean
and, finally, the (vi) department, (vii) sex and (viii) job role
(e.g. Full Professor).

Ideally all data entries would have their entry and exit
times properly labelled. However, it does not happen in this
case because the parking entries/exits are not fully monitored.
Consequently, there are entries without exits and vice-versa.
To tackle such issue, a preprocessing task to pair the entries
with the exits was performed. All the resulting data records
with parking time smaller than 10 minutes or higher than
16 hours were removed. For the same reasons, we have also
filtered the parking lot users by using the data records of the
top-75%, regarding their number of parking entries.

In the resulting dataset, the average parking time is 5 hours
and 25 minutes and with a standard deviation of 3 hours
and 8 minutes. Fig. IV exhibits two histograms representing
the hourly frequencies on the entry and exit times. It is
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Fig. 4. Barplot chart representing histograms for the Entry/Exit times
between 7am and 10pm.

possible to observe that the main entry times are between
8am and 10am and the main exit times between 5pm and
8pm. The vehicle’s exits from the parking lot follows a
bimodal distribution, with the modes at lunch time (between
12am and 2pm) and at late afternoon (between 5pm and
7pm).

V. EXPERIMENTAL RESULTS

In this section, we start by describing the experimental
setup used in our experiments and the evaluation metrics
used to validate our methodology. Then, we present some
experimental results and a brief discussion on their insights.

A. Experimental Setup

The initial dataset was divided in a training set (January
to October) and a test set (November). All experiments were
conducted using R Software [6]. The algorithms used were
the k-Nearest Neighbours (kNN) [7], the Random Forests
(RF) [8], the Projection Pursuit Regression (PPR) [9] and the
Support Vector Machines (SVM) [10] from the R packages
[kknn], [randomForests], [stats] and [e1071].

Regarding the feature selection, a well-known state-of-
the-art technique was used: Principal Component Analy-
sis (PCA) [11]. The tested features were type of day,
holiday/not-holiday boolean variable and the user’s de-
partment, sex and job role. For clustering we used the
Expectation-Maximization algorithm with the R package
[MClust]. This algorithm was chosen due to being able to
determine the optimal number of clusters automatically based
on Bayesian Information Criterion [12].

The last 2 weeks of the training set was used for model
selection. In this stage, the following parameters were tested
for each algorithm: for kNN, distance = [1..5], kMax =
[2..15] and the kernels: rectangular, triangular, epanechnikov,
gaussian, rank and optimal, for RF mtry = {3, 4, 5} and
ntrees = {500, 750, 1000}, for PPR nterms = {2, 3, 4}
and max.terms = {5, 6, 7, 8} and for SVM the kernels:
linear, radial, polynomial and sigmoid. The best pair (algo-
rithm,parameter setting) was selected to perform the numer-
ical prediction in the test set.



Finally, the reactiveness parameters on the interval esti-
mation model (τ, αth) were set for the values 0.1 and 3,
respectively.

To evaluate our method performance, we considered a
baseline naive strategy. It consists on directing the newly
arrived vehicle to the leftmost lane κ with an empty space.
A series of simulations were conducted to compare the
parking lot behavior using the aforementioned lane selection
strategies (i.e. naive and smart). Multiple parking layouts
were considered on this series of simulations. It aimed
to demonstrate that the strategies behavior is independent
on the parking layout. The averaged maximum number of
parked cars on a daily basis on the considered dataset is 50.
Consequently, every parked layouts with a capacity between
50 and 80 vehicles (i.e.: the 1st quantile) containing, at least,
8 lanes, were considered on our experiences.

B. Evaluation

The root-mean-squared-error (RMSE) and the mean ab-
solute error (MAE) were the metrics used to evaluate the
predictions. They can be defined as follows:

RMSE =

√∑g
t=1(ŷt − yt)2

g
,MAE =

∑g
t=1 |ŷt − yt|

g
(5)

where ŷ is the predicted value, y the real one and g is the
number of samples.

The parking time estimation interval is evaluated in two
forms, a percentage of hits and a ratio between the hits and
its width. If for a sample s there is a hit, then hits = 1,
otherwise hits = 0. The ratio can be defined as:

ratio =
∑g

s=1
hits ×

1

δI × g
(6)

where δI is the width of the estimation interval and g is the
number of considered samples.

The evaluation criteria employed in the simulation was the
total number of unnecessary vehicle movements forced by a
given strategy (i.e., UM ). Let us consider a exiting vehicle
c, parked in a lane κ with g vehicles, in position i. The
unnecessary number of movements UM caused for c to exit
the parking lot can be computed as:

UM =
∑g−i

j=1
j (7)

Let us consider a lane with g = 5 vehicles where the
vehicle on the position i = 2 is requested to exit as an
exemplification for the calculus of MU . In this case, MU =
3 + 2 + 1 = 6.

C. Results

The obtained results are three fold: (1) the PCA results
have recommended to remove the user’s sex and the holiday
feature from the original set. (2) Table I exhibits the results
of the numerical prediction using the remaining feature set
for each profile πi, by pointing the number of users contained
in each group and the (RMSE,MAE) obtained in each one
of them. (3) Table II shows the results from the parking

TABLE I
RESULTS FROM THE NUMERIC PREDICTION.

Group # of Individuals RMSE MAE Hit % Interval
1 11 5124 3320 63 8942
2 9 4804 3255 66 3862
3 3 7047 5235 68 9584
4 6 4644 4047 78 9764
5 1 7716 5458 82 3482
6 1 376 340 72 3504
7 5 3968 3317 68 9196
8 7 7618 6101 58 11738
9 11 9106 7628 53 11900

10 6 8244 7403 55 12560
11 4 2609 2058 72 5255
12 10 7871 5436 67 9583
13 6 8901 5789 72 9558
14 7 8595 6883 54 11228
15 4 5981 4804 50 6258
16 10 6682 5356 70 10293
17 1 361 298 50 3158

W.Average 6601 5076 65 11188

TABLE II
SIMULATION RESULTS WITH THE NUMBER OF UNNECESSARY VEHICLE

MOVEMENTS FOR BOTH STRATEGIES.

Config. Naive Smart Config. Naive Smart
10x05 1665 1379 05x10 7799 7540
11x05 1482 1205 05x11 7817 7615
12x05 1255 1074 05x12 7817 7633
13x05 1074 914 05x13 7817 7633
14x05 937 813 05x14 7817 7633
15x05 811 771 05x15 7817 7633
09x06 2234 2032 06x09 5596 5423
10x06 1819 1583 06x10 5596 5444
11x06 1510 1282 06x11 5596 5453
12x06 1255 1139 06x12 5596 5453
13x06 1074 930 06x13 5596 5453
08x07 2808 2520 07x08 3818 3545
09x07 2248 2116 07x09 3818 3545
10x07 1819 1616 07x10 3818 3551
11x07 1510 1303 07x11 3818 3551
07x08 3818 3545 08x07 2808 2520
09x08 2248 2116 08x09 2808 2535
10x08 1819 1617 08x10 2808 2535
08x08 2808 2535

simulation in every tested configurations, with the number of
unnecessary vehicle movements, µ for both strategies. The
intervals generated had 65% hits and an average interval
width of ≈ 11000 seconds. The smart strategy overcomes
the naive one in all the considered configurations.

D. Discussion

Table I exhibits a large variation on RMSE/MAE produced
by the models of the different groups. The groups size is
also different from group to group. These groups can be
faced as profiles which describe the typical parking behavior
of the users within. It is possible to observe that some
groups contain only one user (i.e. 5,6,17) which indicates that
they have a completely different profile than the remaining
ones. So far, such profiles are only based on each user’s
parking time (namely, by using the Euclidean Distance
over their p.d.f.). However, some users can experience large



variations on their parking time depending on some subsets
of feature values (i.e. to enter the parking lot at morning
or at afternoon). This fact can partially explain the above
mentioned RMSE/MAE variability.

The averaged hits percentage (65%) and its large width
uncover the stochasticity of the parking time variable given
the current feature set. In fact, it is reasonable to admit that
we may need other features to improve our prediction model
such as weather or event-based ones (e.g. a sunny day or a
special soccer match may reduce/increase the parking time).
However, we cannot sustain these insights on the present
results.

The naive strategy is clearly benefited by configurations
with more lanes, where the UM can be naturally minimized
by underusing the total lane’s capacity by filling first the
empty ones. In fact, this strategy is already focused on
minimizing UM by maintaining the maximum number of
vehicles parked on a lane as low as possible. Such behaviour
can explain some of the lower gain margins presented by
the smart strategy on some configurations (check Table II).
Obviously, the UM could also be minimized by moving
vehicles from one lane to another. However, the discussions
about the optimal parking layout for each case study and on
the parked vehicle’s self-arrangements are out of this paper’s
scope.

Even considering the abovementioned drawbacks, the au-
thors want to highlight that the proposed methodology
overcomes the naive strategy for all the presented parking
layouts. The aim with this work is to demonstrate that is pos-
sible to mine both the historical and the real-time data on the
parking lot entrances/exits to improve the lane selection on
a self-automated parking lot. This stepwise framework takes
advantage of off-the-shelf Machine Learning algorithms to
do it so. In our opinion, this proof of concept represents a
consistent breakthrough on this relevant topic by opening
promising research lines to be explored by other researchers.

VI. FINAL REMARKS

Throughout this paper, a Machine Learning framework
to predict the exit times on a self-automated parking lot
is proposed. It consists on using historical data on the
entries/exits on the parking lot to uncover user’s profiles able
to explain their parking habits. Our goal is to optimize the
vehicle’s initial placement by improving the lane selection
using such predictions. The experiments demonstrated that
our method can overcome a naive strategy by reducing the
collaborative mobility needs on roughly 10%. By doing
so, we hope to open new research lines on this topic.

As future work, we propose to explore the inter-lane
vehicle movements to re-arrange their placements. Such
movements aim to react to the parking current status by
a) updating the exit time predictions while the vehicles are
still parked or by b) moving the blocking vehicles to their
neighbour lanes instead of using the buffer. The validity of
such hypothesis comprise open research questions.
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