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Machado-Joseph disease: understanding the concepts behind the new 

therapeutic strategies  
* Ema Ferreira Leal  

 
Abstract  

 
Machado-Joseph disease, also known as spinocerebellar ataxia type 3, is one of the most common 

spinocerebellar ataxias worldwide and the second most common polyglutamine disease next to 

Huntington’s disease. Similarly to most polyglutamine diseases, Machado-Joseph disease is an 

autosomal dominant neurodegenerative disorder caused by the over-repetition of a CAG triplet 

within the coding region of MJD1 gene. This gene encodes ataxin-3 protein, which is ubiquitously 

expressed in cells and tissues and, among other functions, thought to participate in cellular protein 

quality control pathways as deubiquitinating enzyme. The CAG repeat expansion results in an 

abnormally long polyglutamine tract within the ataxin-3 protein promoting an altered conformation 

of the protein, leading it to misfold and aggregate as well as conferring it a neurotoxic gain of 

function through several mechanisms, still not fully understood.   

The aim of this review is to bring together updated knowledge on Machado-Joseph disease, to expose 

some of the cellular pathways so far enlighten through which the mutant ataxin-3 interacts and 

promotes neurodegeneration and finally to display some of the emerging therapeutic strategies that 

are being conceived in order to slow down disease progression, to mitigate associated phenotype and 

even block the expression of the mutant protein.  
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Resumo  

 

A doença de Machado-Joseph, também conhecida por ataxia espinocerebelosa do tipo 3, é uma das 

ataxias espinocerebelosas mais frequente mundialmente e a segunda mais prevalente do grupo das 

doenças de poliglutamina, a seguir à doença de Huntington. Como a maioria das doenças de 

poliglutamina, a doença de Machado-Joseph é um distúrbio neurodegenerativo de transmissão 

autossómica dominante que resulta da expansão de um tripleto CAG de uma das sequências 

codificantes do gene MJD1. Este gene codifica a proteína ataxina-3, uma proteína ubíqua em células e 

tecidos que, entre outras funções, pensa-se participar nas vias celulares de controlo de qualidade 

proteica como uma enzima de ubiquitinação. 

A expansão da repetição do tripleto CAG resulta num trato anormalmente longo de poliglutamina 

dentro da ataxina-3, promovendo uma alteração na conformação da proteína levando-a a um 

enovelamento incorreto que propícia a sua agregação e lhe confere um ganho de função neurotóxico 

através de vários mecanismos, ainda não totalmente compreendidos.  

O objectivo desta revisão é reunir o conhecimento atual sobre a doença de Machado-Joseph, expor o 

estado atual do conhecimento sobre algumas das vias celulares através das quais a ataxina-3 mutante 

atua e promove a degeneração neuronal e por último, revelar algumas das estratégias terapêuticas 

emergentes que estão a ser concebidas com o objectivo de lentificar a progressão da doença, atenuar o 

fenótipo associado e mesmo bloquear a expressão da proteína mutante. 
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Introduction  

 

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an autosomal 

dominant inherited neurodegenerative disorder. Although it was first described amongst individuals 

of Azorean descent, and later on thought to be geographically related to the Portuguese discoveries, 

currently it’s known to exist worldwide and to be present in many ethnic backgrounds (1-3). It 

represents the most common form of spinocerebellar ataxias (1) and is comprised in a class of diseases 

collectively known as polyglutamine (polyQ) diseases, which is a group of fatal neurodegenerative 

disorders caused by a trinucleotide (CAG) repeat expansion that is translated to an abnormally 

elongated glutamine tract within the corresponding mutant protein (1,4).  There are at least nine 

known members in this group of diseases and all are inherited in an autosomal dominant manner, 

except one, the spinal-bulbar muscular atrophy (SBMA), which is X-linked (4). This group of polyQ 

diseases, in spite of being an heterogeneous group and differing in the regions of the brain affected, 

they appear to share neurodegenerative pathways and they typically have a late on-set and a 

progressive clinical evolution profile (1, 4).  

MJD presents a strong phenotypic variability, which prompt the organization of patients into three 

main subtypes, with a common base of cerebellar ataxia and external progressive ophthalmoplegia 

(EPO), but considerable clinical variability regarding the age of on-set, the neurological features and 

the degree of disability it entails (1,2,5): Type 1, is characterized by a premature manifestation of the 

disease (mean age 24,3 years), a more rapid progression of symptoms and presenting marked 

extrapyramidal features (bradykinesia and dystonia) and pyramidal signs (rigidity and spasticity); 

type 2, presents a more intermediate expression regarding the age of on-set ( mean 40,5 years) and the 

progression of symptoms. The extrapyramidal and peripheral signs, when present, are mild. Patients 

with type 2 features may maintain these for long periods of time (5 to 10 years) and eventually 

preserve this phenotype or evolve, differentiating with time into type 1 or 3, by displaying 

extrapyramidal or peripheral signs, respectively. Type 3, on the other hand, presents a late on-set 

(mean 46,8 years) and in addition to the cerebellar ataxia and EPO, it’s characterized by important 

manifestations of peripheral signs, with slight or even none, extrapyramidal and pyramidal signs 

(1,3,5).   

Despite these clinical variabilities, the clinical pattern found constitutes the phenotypic expression of 

only one mutant gene, the ATXN3/MJD1 gene, located at the chromosome 14q32.1 (1,5). This gene 

encodes a protein called ataxin-3, mainly a cytosolic protein, ubiquitously expressed and thought, 

amongst other functions, to be involved in transcriptional regulation and in cellular protein quality 

control pathways, as a polyubiquitin binding protein with ubiquitin protease activity (1, 6). Despite 

being ubiquitously expressed, the mutant ataxin-3 causes selective neuronal degeneration in specific 

brain regions (1, 6). It has been establish in MJD patients an inverse correlation between the size of 

CAG repeats and the age at onset as well as disease severity - the longer the repeat expansion the 

earlier the age of onset (2, 4).  
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The goal of this review is to expose the cellular mechanism considered to be important pathways in 

the pathology of MJD and the therapeutic strategies currently emerging that have as target this same 

cellular pathways: proteolytic processing, aggregation, nuclear shuttling, clearance mechanisms and 

the mitochondrial dysfunction (4).  
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Proteolytic processing 

 

A common neuropathological feature of polyQ diseases is the accumulation of insoluble 

intraneuronal protein deposits (inclusions), in specific subset of neurons (7,8). The composition of 

these inclusions is mainly of the pathological polyQ protein, but also of other components such as 

molecular chaperones, transcriptions factors, ubiquitin, non-pathogenic polyQ proteins and 

components of proteasome machinery (7-9).  It has been proposed that proteolytic cleavage, as the 

source of breakdown products, is the initial step in the molecular disease development. This 

mechanistic concept is known as the toxic fragment hypothesis, which predicts that proteolytic 

production of polyQ–containing fragments from the full-length polyQ expanded disease protein 

initiates the aggregation process associated with inclusion formation and cellular dysfunction 

(4,7,8,10).   

Taking in consideration the role of proteolytic processing, and that the cleavage of disease proteins by 

proteases is presumably an important step in the pathogenesis of neurodegenerative diseases, 

multiple publications are focusing on displaying how modulating the activity of cleavage-responsible 

proteases or decreasing the levels of toxic fragments could represent a promising therapeutic 

approach (4,7). There are several classes of endogenous proteases currently linked to the proteolysis 

of polyQ proteins, including the groups of caspases and calpains (4, 8,11).   

Caspases are cysteine proteases mainly associated with apoptotic pathways and inflammation (4,12).  

These proteases cleave proteins at specific aspartate residues and cleavage is influenced by protein-

protein interactions and cell type (11).  It has been detected an increase activation of caspases in the 

course of polyQ diseases, as first evidenced by a report in Huntington’s disease (HD) (4,13). Ataxin-3 

protein has also been shown to be a target for caspase-mediated cleavage in cell culture and in vivo 

(11,14).  Endogenous ataxin-3, as a polyubiquitin binding protein with ubiquitin protease activity, 

presumably engages in a diversity of protein-protein interactions that may modulate its susceptibility 

to caspases (4,11).  In some reports, which studied the proteolysis of normal and pathogenic ataxin-3 

and the role of caspase-mediated cleavage, cells that were undergoing an induced apoptosis, 

generally treated with staurosporine (ST), led to the appearance of proteolytic fragments of different 

size, depending on the length of the polyQ repeat (11,14). The cleavage in these situations was 

increasingly suppressed by zVAD-fmk, a broad-spectrum caspase-inhibitor, and fragment production 

was reduced as well as the increased aggregation seen in cells with expanded ataxin-3 constructs and 

treated with ST (11,14). Additionally, reports suggest that caspase-1 is a primary mediator of 

cleavage, given that in an effort to determine which caspase-mediated ataxin-3 cleavage, caspase-1 

inhibitor was the most effective at inhibiting ataxin-3 proteolysis and fragment production (4,11).  

Furthermore, results in a Drosophila model expressing a sextuplet caspase recognition site mutation in 

Ataxin-3 revealed dramatically reduced amounts of cleavage products, strongly suppressing caspase-

cleavage of the protein in vivo and strikingly mitigating neural degeneration, despite the fact that 

nuclear inclusion formation remained unaffected (4,14).  
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Moreover, a recent publication presented cyclin-dependent Kinase-5 (CDK5) as a potent 

neuroprotector, shielding Ataxin-3 from caspase cleavage and attenuating caspase-mediated 

aggregate formation as well as reducing neuronal cell death (15).  

The second group of proteolytic enzymes implicated with cleavage of polyQ-expanded proteins is 

called calpains. These enzymes are a class of calcium-dependent cytoplasmic cysteine proteases, 

ubiquitously expressed and involved in a multitude of regulatory cellular functions, specializing in 

modulating structure, localization and activity of their substrates (4, 10).  The role of Calpain in the 

pathogenesis of SCA3 has been investigated in a variety of studies. Even though, initial reports stated 

that an involvement of calpains in SCA3 was not detectable (11,14) and cleavage by caspases and 

calpain is still controversially discussed (16), calpain-mediated proteolysis triggered by calcium has 

been reported both in vitro and in vivo in ataxin-3, as in HD (8,16). It has been shown that inhibition of 

calpains reduces cleavage of the mutant ataxin-3, mediates its translocation to the nucleus, the 

aggregation in intranuclear inclusions, neuronal dysfunction and neurodegeneration (10).  The 

Calpain system is centrally comprised in three distinct important proteins in neurons (16). The two 

best characterized members of this family are calpain-1 and calpain-2, which are activated by a 

distinct range of calcium concentration. As the activation of calpains is an irreversible process, it must 

be strictly controlled (16). Calpastatin is a known endogenous inhibitor of these calpains that binds to 

the inhibitory domain on both sides of the active site cleft of ataxin-3 in a reversible manner (16). This 

inhibitor was used in a number of studies to demonstrate how ataxin-3 is a sensitive calpain substrate 

and how its mediated inhibition of calpains reduces cleavage, nuclear translocation and aggregates 

formation, preventing cell injury and providing neuroprotection (8,10,16). It has been also determined 

that ataxin-3 is cleaved more rapidly and efficiently by calpain-2 than by calpain-1 (16). The sequence 

within ataxin-3 recognized by calpain-2 was identified by microsequencing to be around amino acid 

residue 260 in Ataxin-3, which seems to be of particular interest since cleavage of polyQ expanded 

Ataxin-3 in this region is known to produce highly aggregation prone fragments, that can initiate the 

aggregation process and the recruitment of full-length ataxin-3 into co-aggregates (8).  The role of 

calcium seems to be of particular importance in this calpain-mediated cleavage and evidence of 

dysregulation of cellular calcium homeostasis in polyQ diseases have been described (8,17,18). Even 

more, there seems to be an association between expanded ataxin-3 oligomers and glutamatergic 

receptors, specially AMPA-R (17,18), with data suggesting that depolarization-induced Ca2+ influx, 

via voltage-gated Ca2+ channels, and the subsequence neuron-specific cascade of events were 

implicated in protease activation and ataxin-3 cleavage, assumebly being essential for phenotypic 

manifestations (18).  

 

Agreggation and Fibrillogenesis 

 

Information about the relationship between aggregate-neurotoxicity is quite complex and currently 

only partially understood (17).  The aggregation of ataxin-3 was shown to undergo a two-stage 
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pathway, where the first stage of the aggregation is independent of the poly-Q domain and produces 

soluble aggregates, whereas the second stage is a poly-Q length dependent process and is 

accompanied by a dramatic loss of solubility of the aggregates, an alteration in their stability, 

producing highly stable aggregates, and morphology of the end-stage fibrils (4, 19). 

Ataxin-3 is a 42-kDA protein containing a structured globular N-terminal Josephin domain, with 

deubiquitinating activity, followed by two or three ubiquitin-interacting motifs (UIM), depending on 

the protein isoform, and an unstructured and flexible C-terminal region containing a polyQ tract, 

whose expanded pathological variants are responsible for the disease (7, 17).  The repeat threshold of 

the polyQ stretch is generally accepted to be above ~ 52 repeats to result in disease, leading to a toxic 

gain of function of the protein, misfolding and aggregation of ataxin-3 (6, 15). Ataxin-3 is ubiquitously 

expressed in cells and tissues and displays a subcellular distribution involving both the nucleus and 

the cytoplasm (20, 21), depending on the cell type, which in unaffected brain and normal neurons, 

appears to be predominantly cytoplasmic (2). It has been suggested that non-expanded ataxin-3 has 

an intrinsic propensity to aggregate and that the region responsible for this inherent ability to form 

aggregates involves the N-terminal Josephin domain (19). This propensity of non-expanded ataxin-3 

seems to only extend to the first-stage of the aggregation pathway, whereas the second stage of this 

pathway is an additional step introduced and reliant on the presence of polyQ pathological length 

(19).  As reports suggest that the N-terminal sequence prevents aggregation of the polyQ-expanded 

protein into SDS-insoluble aggregates (7), which seem to be formed through the summation of 

smaller aggregates (19), it does not seem to protect non-expanded ataxin-3 from sequestration into 

these aggregates (7).  The presence of normal non-expanded ataxin-3 in nuclear inclusions (NI) in 

other polyQ and neurodegenerative diseases raised the question if it contributes to the pathology or 

reflects cellular attempts at repair or protection (6). The activities associated with the N-terminal 

domain of ataxin-3 were suggested to be of great importance in suppressing the degeneration 

induced by pathogenic proteins by reducing accumulation and delaying NI formation (6).  The role of 

the UIM motifs and the ubiquitin protease domain, which are integrated in the N-terminal region, 

were found to contribute to ataxin-3 suppression of polyQ toxicity and results indicated that the 

ubiquitin-related activities of ataxin-3, specially the ubiquitin protease activity, mitigates 

neurodegeneration, including the toxicity of the pathogenic ataxin-3 itself (6). However these 

activities and results seem to be dependent upon proteasome activity, which is required to be normal 

for the protective activity mediated by ataxin-3 to be present (6).  

 

Nucleocytoplasmic shuttling 

 

As previously mentioned, one of the histopathological hallmarks of SCA3 and other polyQ diseases is 

the formation of neuronal inclusions, essentially in the nucleus, which appears to be an important site 

of pathology in SCA3 and other polyQ diseases (20, 22).  Nuclear localization of Ataxin-3 was found 

to be required for the manifestation of symptoms in SCA3 (22,23), where it may contribute to its 
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pathogenesis by impacting gene expression or by disrupting nuclear organization and function (21).  

Ataxin-3 is a protein with the ability to shuttle in and out of the nucleus, a competence that is being 

characterized in several studies and which specificities remain elusive.  Depending on their size, 

molecules can travel through the nuclear pore complex (NPC) by one of two mechanism: small 

molecules can diffuse passively across the nuclear envelope through open aqueous channels in the 

pore, whereas the translocation of macromolecules larger than 40-60 kDa is an active process, energy-

dependent, which relies on the presence of specific sequence motifs that are identified and selectively 

transported in a specific direction by carrier proteins of Karyopherin-β family, mainly (12).These 

specific motifs are called nuclear localization signals (NLS) and nuclear export signals (NES), which 

in Ataxin-3 were mapped in the C-terminal region and the N-terminal region, respectively (12, 21, 24). 

As nuclear-associated mechanisms are being implicated in the neuropathogenesis of polyQ diseases, 

it has been suggested that defects on the nucleocytoplasmic shuttling activity of expanded proteins 

are implicated in disease development and that modulating global nuclear transport, preventing the 

accumulation in this subcellular compartment, might be a possible therapeutic strategy to help delay 

or even reverse neurodegeneration (24). It has been demonstrated in transgenic mouse models that 

adding an exogenous NLS to an expanded Ataxin-3 with 148 glutamines (Atx3Q148) accelerated the 

formation of polyQ aggregates and intensified the severity of the phenotype, inducing a premature 

death. On the other hand, when an exogenous NES was added to Atx3Q148, the expanded protein 

was driven out of the nucleus and the manifestation of a phenotype was remarkably reduced and 

delayed (22). Accordingly, in a study made in yeast - where the nuclear import apparatus is highly 

conserved - and further confirmed in mammalian cells, the absence of a functional NLS disrupted the 

import ability of ataxin-3 (21). Data also indicates that nuclear export of ataxin-3 is partially mediated 

by a nuclear export receptor, CRM1, and additionally, that an independent CRM1 nuclear export 

pathway of ataxin-3 seems to be mediated by the N-terminal region of ataxin-3 (Josephin 

domain+UIMs) (21). This independent pathway requires the context of the Josephin domain and the 

UIMs, appearing to be critically dependent on the three-dimensional motif, whose integrity becomes 

compromised when Josephin domain is physically separated from the UIMs (21).   

Other studies show that nuclear localization can be modulated by other mechanisms (20, 23). In one 

of the publications, a regulatory role of nuclear abundance was attributed to casein kinase 2 (CK2), a 

nuclear protein kinase that is active in the nucleus, and engages in many cellular processes including 

replication, transcription, translation and signal transduction (23). Phosphorylation of ataxin-3 

mediated by CK-2 at serine residues S340/S352 and S236, within the third and first UIM, respectively, 

was shown to increase nuclear levels of ataxin-3, nuclear inclusions formation and to stabilize ataxin-

3 promoting a slower turn-over of the phosphorylated protein (23). However, the impact on nuclear 

inclusion formation was shown to be contingent since inhibition of CK2 phosphorylation of ataxin-3, 

by two selective CK2 inhibitors (DMAT and TBB), did not abolish the occurrence of inclusions (23). 

This led to the hypothesis that CK2 effect was due to the impact on the half-life of phosphorylated 

ataxin-3 and its enhanced nuclear presence (23). It was also demonstrated that CK-2 phosphorylation 
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strengthen the transcriptional activities of ataxin-3, possibly contributing to an increase in the 

aberrant transcriptional effects of expanded ataxin-3 (23).  

Intranuclear localization of ataxin-3 has also been demonstrated to be regulated by specific cellular 

conditions, in particular, two proteotoxic stressors: heat-shock and oxidative stress, the latter being 

considered a stress that intensifies during aging and has been linked to many neurodegenerative 

diseases, including polyQ diseases (20).  Such proteotoxic stressors were shown to induce nuclear 

localization of ataxin-3, leading the protein to accumulate in the nucleus. It was also found that in face 

of these specific proteotoxic stressors there is an increase of damaged and misfolded proteins, which 

activates a set of response pathways, such as the heat shock response, in an effort to reduce the 

number of aberrant proteins (20). Although it remains elusive, results suggested that the regular and 

basal mechanism described earlier modulating the nuclear localization of ataxin-3, in response to 

heat-shock were not required and did not regulate the heat-shock induced nuclear localization (20).  

Accordingly, mutating the UIMs, the ataxin-3 DUB active site and the predicted site of NLS did not 

alter ataxin-3 nuclear localization following heat-shock conditions (20). The same results were 

observed when CK2 phosphorylation was inhibited with DMAT (20), contradicting an observation 

made by another report, which suggested that thermal stress increased nuclear presence of ataxin-3 in 

a CK2-dependent manner (23). It is currently uncertain whether CK-2 phosphorylation contributes to 

nuclear translocation of ataxin-3 under these stress conditions (25).   

In a study conducted with HEK293T cells under heat-shock conditions, phosphorylation of serine-111 

in the JD was observed to be required, though not sufficient by itself, for nuclear localization of 

ataxin-3, even though, under basal conditions (37ºC) it seemed to have no effect on its localization 

(20).  Serine-111 was targeted for resembling the “preferred” sequence of Polo-like Kinase-1 (PLK) 

phosphrylation site. This enzyme is involved in the phosphorylation and subsequent nuclear 

translocation of Hsf1, which is a key regulator of the heat shock response that seems to be partially 

involved in the heat-shock-induced nuclear localization of ataxin-3 (20).  However, Plk-1 is not 

present in the brain, only Plk2 and Plk3 were identified in neurons and represent more optimal 

candidates for phosphorylation of ataxin-3.   

In addition, data also indicated that under different proteotoxic stresses the interactions of ataxin-3 

with valosin-containing protein (VCP) and hHR23B, which are two protein quality control effectors, 

were modulated differentially (20).   

In summary, the intracellular localization of ataxin-3 is highly regulated, relying on interactions 

between internal localization signals combined with protein-protein interactions, specific cellular 

conditions and posttranslational modifications, still poorly understood (25). Having a clearer 

understanding of these events can help elucidate the disease’s pathogenesis and determine possible 

targets to therapeutic intervention (4, 25). 
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Clearance mechanisms- Protein quality control systems 

 

In cells there are distinct protein quality control systems to clear misfolded or faulty proteins and 

preserve cellular homeostasis.  In the refolding and clearance of pathogenic ataxin-3 have been 

implicated molecular chaperones, the ubiquitin proteasome system (UPS) and autophagy (25).  

Along with degradation by the UPS, autophagy constitutes the major pathway of organelle and 

protein turnover (26, 27). 

Data has shown that autophagy plays an important role in CNS clearance of misfolded proteins, 

particularly in diseases characterized by the accumulation of insoluble and aggregation-prone 

proteins, as it happens in polyQ diseases, Alzheimer’s disease and Parkinson’s disease (PD)(26).  

Furthermore, reports have provided evidence that autophagy induction reduces the levels of 

pathogenic ataxin-3 and its toxicity, altering the progression of the disease (26-28). It has been 

suggested that autophagy is functional in early stages of disease and that impairments in this 

pathway are apparent at late stages of disease. In view of this premise, it has been proposed that 

ubiquitinated ataxin-3 inclusions are targeted to the autophagic machinery by p62, a cytoplasmic 

autophagic receptor that functions as a cargo-recognizing molecule, and that possibly due to 

saturation in the clearance capacity of the autophagic machinery to degrade mutant proteins, 

impairments in this pathway are apparent in late stages of disease (27).  Autophagy can be 

upregulated by inhibiting the mammalian target of rapamycin (mTOR) and by mTOR independent 

pathways (28). 

Neuronal activation of autophagy can be induced by rapamycin, an inhibitior of mTOR, or be directly 

activated by beclin-1, a haploinsufficient tumor suppressor gene in mice (sharing 98%identity with 

human beclin-1) and whose activity is inhibited by bcl-2 homologs binding to its BH3 domain (26, 29).   

Temsirolimus, is a rapamycin ester that is able to up-regulate autophagy by inhibiting the kinase 

mTOR pathway (28). Ataxin-3 transgenic mice treated with temsirolimus presented reduced levels of 

mutant ataxin-3, which seemed to be associated with the observed improvement in motor 

coordination performance. It was also observed a significantly reduced aggregate number in 

transgenic mice treated with temsirolimus in comparison with placebo treated mice (28). It has been 

hypothesis that transcriptional dysregulation plays a role in SCA3 pathogenesis and in fact, it has 

been demonstrated in ataxin-3 transgenic mice that there is a mild disruption in transcription, which 

was partially relieved by treatment with temsirolimus (28). 

It has been shown that beclin-1, a key protein in autophagy clearance pathway and that seems to be 

essential for cell survival, is decreased in a number of neurodegenerative diseases (26, 27). In fact, it 

was found that alongside the accumulation of proteins related with the autophagy pathway and 

autophagossomes in brains of patients with MJD, beclin-1 levels were reduced in fibroblasts of MJD 

patients and rodent models (27).  In a lentiviral-based MJD rat, beclin-1 was found trapped in nuclear 

ataxin-3 inclusions and it was suggested that this entrapment throughout the course of the disease, 

might be the cause for the reduced levels of beclin-1 found in the previously mention tissues and 
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models (27).  Studies have shown that overexpression of beclin-1 activates autophagy, stimulating 

autophagosomal flux, promoting the autophagic clearance of misfolded proteins and that this 

increase seems selectively more efficient for the mutant ataxin-3 when compared to the wild-type 

ataxin-3 (26,27). Furthermore, overexpression of beclin-1 has been shown to promote neuroprotection 

by shielding neurons from accumulation of misfolded proteins (26) improving clearance of 

aggregated, oligomeric and soluble mutant proteins, ultimately reducing neuronal dysfunction (27). 

Indeed, beclin-1 overexpression in a lentiviral rat model and severely affected transgenic mice was 

shown to be able to prevent and partially rescue from the motor deterioration characteristic of MJD 

(26). In this particular study, beclin-1 effects on motor behavior were found to be dependent on the 

timing of intervention and disease status. It was found that an early beclin-1 overexpression, before 

the onset of the disease, was able to rescue from the development of balance skills and motor 

coordination impairment that feature MJD ataxic phenotype, hampering the development of 

neuropathology. This rescue was evaluated by a robust clearance of mutant ataxin-3 aggregates, the 

preservation of Purkinje cell dendritic arborizations and of the width of the molecular layer of the 

cerebellar cortex (26). In contrast, beclin-1 overexpression in transgenic mice mimicking a late stage of 

disease led to a partial rescue of the ataxic phenotype, regarding balance, gait and motor coordination 

and was able to ameliorate the neuropathology, slowing down the progression, though it could not 

completely prevent the cell damage (26).  Thus, up-regulation of beclin-1, genetically or 

pharmacologically, has been found to represent a promising therapeutic approach for polyQ diseases 

and other neurodegenerative diseases (26).  

As mentioned previously, UPS is one of the major pathways of selective protein degradation. This 

system targets cytosolic and nuclear proteins for proteolysis using ubiquitin (Ub) as a marker. 

Ubiquitination of proteins is a multistep process that involves firstly, the activation of Ub by its 

attachment to ubiquitin-activating enzyme, E1. Secondly, the transfer of Ub to a second enzyme called 

ubiquitin-conjugating enzyme, E2, that in turn mediates ubiquitin transfer to a third enzyme called 

ubiquitin ligase or E3 (12). There are several E3 enzymes in the cell that are responsible for the 

selective recognition of different substrate proteins (12). These E3-Ub ligases mediate the covalent 

attachment of Ub into lysine residues within target proteins (30). Several E3s regulate their own 

stability and ability by ubiquitinating themselves, generally targeting themselves for proteasome 

degradation. However, this destruction can be delayed or even prevented by the action of one or 

more deubiquitinating enzymes (DUBs) removal of the Ub conjugates (30).  Ataxin-3, as a DUB and 

participant in protein quality control pathways, interacts with several E3 ligases and proteasome 

shuttle proteins. Some of these E3/shuttle components have been reported to be involved in ataxin-3 

polyubiquitination and shuttling to the proteasome degradation, such as E4B/VCP, CHIP/Hsp70 

AND E6-AP/Hsp70 (25).   

The C-terminus of Hsc70 interacting protein (CHIP) is an Hsp70 cochaperone as well as a known 

ataxin-3 interacting E3 ubiquitin ligase that has been implicated in several neurodegenerative 

diseases (4, 25). CHIP and ataxin-3 appear to interact and regulate the activity of each other. Evidence 
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seems to support the notion that deubiquitination of CHIP by ataxin-3 is coupled to its E3 ligase 

activity and not only contributes to regulate it within the protein quality control pathway, 

inactivating CHIP via deubiquitination, but also acts as an editor, editing the Ub conjugates that it 

forms, ensuring that they’re the appropriate length to be efficiently targeted to proteasome 

degradation (30).  In the brains of MJD transgenic mice models, levels of CHIP were found 

significantly reduced and it seemed that the expansion of the polyQ tract increased the binding 

between CHIP and mutant ataxin-3 and led to a reduction in CHIP levels (30). Although it remains 

unclear, it was raised the possibility that this enhanced affinity between CHIP and mutant ataxin-3 

altered their functional relationship and inadvertilly caused CHIP to be directed to degradation (30). 

Alternatively, by interacting with the polyQ expanded fragments present in inclusions and directing 

them to degradation, CHIP was dragged along, ultimately being cleared alongside the aggregates 

(30). In another report, it was observed that suppression of CHIP, by genetic reduction or elimination, 

markedly increasing the level of ataxin-3 microaggregates and accelerated the phenotype of the 

disease in transgenic mice models of MJD (31). Futhermore, it was suggested that CHIP regulates the 

level of expanded ataxin-3 in neuronal cells and its solubility in the brain (31). The results have been 

equivocal and it’s still unclear why CHIP is degraded and it’s levels found reduced in MJD models.  

Another E3-Ub ligase whose activity was demonstrated to be regulated by ataxin-3 is called parkin 

(30). This E3-Ub ligase is enconded by Parkin gene, the mutated gene most commonly known to 

result in familial Parkinson’s disease (32). As observed with CHIP, levels of parkin were found 

significantly reduced in transgenic mice models of MJD (30). It was demonstrated that non-

pathogenic ataxin-3 interferes with the ability of parkin to ubiquitinate itself and, based on in vitro 

observations, it was proposed that ataxin-3 interacts directly with parkin, hindering the latter activity 

for self-ubiquitination by binding itself to parkin and blocking the E2 from transferring the Ub onto 

parkin (30). Instead, ataxin-3 promotes E2 to transfer the Ub onto itself and away from parkin (30).  

On the other hand, it appears that ataxin-3 only regulates parkin activity, having no effect on the 

levels of parkin, since the presence or absence of wild-type ataxin-3 was indifferent to the overall 

parkin levels (30).  Yet in the presence of a mutant ataxin-3, the scenario seems to be distinct, with the 

expanded ataxin-3 promoting the clearance of parkin possibly through the autophagy pathway (30). 

However, a recent report suggested that parkin appears to be capable of preserving proteasome 

activity and protect it from inhibition by targeting and promoting the ubiquitination and degradation 

of misfolded polyQ proteins in multiple cellular compartments (32). Parkin seems to be capable of 

recognizing misfolded polyQ proteins by its interaction with Hsp70, a Hsp molecular chaperone that 

is important in the recognition and unfolding of misfolding proteins and that appears to mediate the 

degradation of such proteins (32). It has been suggested that Parkin may play an important role in 

stress response pathways by promoting the degradation of misfolded proteins, preventing their 

accumulation and thus preserving proteasome function (32).   

It has been demonstrated that proteasome dysfunction can arise from the accumulation of misfolded 

cytosolic proteins such as expanded polyQ proteins and that this impairment can lead to failure of 

10 



endoplasmic reticulum-associated degradation (ERAD) and consequently ER stress, which in turn 

activates apoptosis pathways (32). By blocking these pathways for ER stress-mediated apoptosis, 

Parkin is able to improve cell viability (32). Thus, alongside the proteasomal degradation, ataxin-3 

seems to also be involved in the regulation of misfolded ER protein degradation. In fact, Ataxin-3 has 

been found to bind to valosin-containg protein(VCP) forming a VCP/ataxin-3 complex that seems to 

also be involved in regulating ERAD and assisting in targeting proteins to the proteasome (25,33). 

This VCP/ataxin-3 complex, e.g., possibly associated with E3 ligase E4B, appears to regulate the 

ubiquitination status and subsequent degradation of insulin/insulin-like growth factor 1 (IGF1) 

signaling pathway elements, a pathway that has been implicated in lifespan regulation (25).  

 

Mytochondrial dysfunction and impaired energy metabolism 

 

Neurodegeneration has been correlated with mitochondrial dysfunction and impaired energy 

metabolism (34). In fact, several lines of evidence have implicated mitochondrial dysfunction as a 

mechanism of neurodegeneration in polyQ diseases as in several other neurodegenerative diseases, 

such as Alzheimer’s disease, PD and amyotrophic lateral sclerosis (ALS) (34). 

Several reports have demonstrated that expanded polyQ proteins accumulate not only in the nucleus 

but in the mitochondria as well, leading to mitochondrial dysfunction and subsequent cell death (34-

38).  Mitochondria is well known to play a crucial role in several cellular events such as ATP synthesis 

by oxidative phosphorylation, Iron and lipid metabolism, calcium buffering and cell death (34).  

A mitochondrial ubiquitin ligase, MITOL, localized in the mitochondrial outer membrane, has caught 

the attention of scientists for its apparent protective role in controlling mitochondrial polyQ 

aggregates formation and toxicity (34). Results indicate that MITOL directly ubiquitinates and 

promotes degradation of mitochondrial, but not cytosolic, pathogenic ataxin-3 via UPS, attenuating 

its toxicity (34). Thereby, because of its demonstrated protective role against polyQ toxicity, MITOL 

has been found to be a potential new therapeutic target in polyQ diseases (34).  

As mentioned previously, oxidative stress was found to contribute to MJD pathogenesis as well as to 

other late-onset neurodegenerative disorders. The brain has one of the highest oxygen consumption 

metabolic rates of the body and oxidative stress can be expected to have deleterious effects on 

neuronal function (35).  Oxidative stress, induced by reactive oxygen species (ROS) or free radicals, 

increases with age and it has been suggested that cells throughout the time decrease on their capacity 

to protect against oxidative stress accumulated with time. This seems to happen through a decline on 

their antioxidant defenses, resulting in an imbalanced oxidant/antioxidant ratio (36). Non-enzymatic 

and enzymatic components play critical roles in the cellular defense system against oxidative stress in 

the brain (36). The antioxidant enzymes known to be included in this system are catalase (CAT), 

glutathione disulfide reductase (GSSG-R), superoxide dismutase (SOD) and glutathione peroxidase 

(GSH-px) and the non-enzymatic components that seem to play central roles in removing the excess 

of H2O2 in the brain are glutathione (GSH) and ascorbate (36). In a study conducted with SK-N-SH 
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and COS-7 cell lines overexpressing either normal and expanded ataxin-3 (Q78), results suggested 

that in cells harboring the expanded ataxin-3, the activities of GSSG-R, CAT and SOD were 

significantly reduced, whereas the GSH-px enzyme activity did not change significantly compared to 

control cells (36). This decrease on enzymatic activity is probably responsible for the decrease amount 

of GSH and total glutathione content and consequently low level of GSH/GSSG ratio found in 

mutant MJD cells. Thus, a lowered enzymatic components activity in the presence of expanded 

ataxin-3 possibly leads to a decrease on the antioxidant defense effectiveness in cells expressing the 

mutant protein (36). Furthermore, mitochondrial DNA (mtDNA) under oxidative stress is known to 

be susceptible to damage, as it was demonstrated in mutant cells and SCA3 patient blood samples, 

the mitochondrial DNA copy numbers were reduced when compared to normal controls. One crucial 

factor that mediates neurons survival is the maintenance of mtDNA copy number hence its decrease 

possibly contributes to the progression of neurodegenerative disease (36). 

A major independent risk factor for progressive neurodegenerative disorders is ageing and 

mitochondrial dysfunction has also been implicated in ageing, as it plays key roles in regulating 

cellular survival and apoptotic death (36). In a study conducted in CNS neurons expressing polyQ 

expanded ataxin-3 (Q79) with the aid of recombinant adenoviruses, results provided evidence that 

mutant ataxin-3 induces apoptotic cell death by promoting mitochondrial release of apoptogenic 

proteins, cytochrome c and second mitochondria-derived activator of caspase (Smac) (37).  This 

release is preceded by the upregulation of Bax protein, a proapoptotic protein, and downregulation of 

Bcl-xL expression, an anti-apoptotic protein (37). Bcl-2 family of proteins is a group of key regulators 

of the mitochondrial apoptotic pathway. This family of proteins includes antiapoptotic Bcl-2 and Bcl-

xL and proapoptotic Bak and Bax (37). As mentioned before, mutant polyQ proteins induce 

transcriptional dysregulation, a step that seems to be critical in the pathogenesis of polyQ diseases. 

Therefore, the upregulation of Bax and downregulation of Bcl-xL protein seems to likely result from 

the alteration of the respective mRNA expression (37). Accordingly, Bax mRNA levels were found 

significantly increased in cultural neurons expressing mutant ataxin-3 (Q79), in opposition to the 

levels of Bcl-xL mRNA, which were found downregulated (37). Thus, mutant ataxin-3 (Q79) induced 

an increased on Bax/Bcl-xL ratio protein expression, likely promoting further activation of Bax and 

Bak, which in turn induced permeabilization of mitochondrial outer membrane, promoting the efflux 

of cytochrome c and Smac to the cytosol (37). As a result, this redistribution of cytochrome c and 

Smac to the cytosol was demonstrated to lead to the activation of caspase-9 and caspase-3, the latter 

via caspase-9-mediated mitochondrial apoptotic pathway (37). As previously mentioned, caspases are 

cysteine proteases associated with apoptotic pathways and their activation can follow two pathways: 

one where the cytochrome c and Smac release from the mitochondria to cytosol induces caspase 

activation, the first by forming a complex with Apaf-1 and inducing cleavage and activation of 

procaspase-9, the second (Smac) by suppressing the effect of IAP family of proteins that inhibit 

caspase activity; the other pathway results from the activation of membrane death receptors that 

induce autocatalytic activation of procaspase-8 by recruiting an adaptor protein called FADD. Once 
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the respective caspases are activated they initiate the apoptotic process by activating downstream 

effector caspases (37).   

In addition, mitochondrial complex II was found decreased in MJD transgenic mouse models and 

lymphoblast cell lines derived from MJD patients (38). Mitochondrial complex II is the only 

mitochondrial complex of the respiratory chain that is exclusively nuclear-encoded and impairment 

of this complex might be essential to some of the biochemical changes elicited by various polyQ 

expanded proteins, leading to a further increase oxidative stress in the cell (38). 

 

Emerging therapeutic Strategies 

 

Understanding the mechanisms and the key molecular players involved in neurodegenerative 

diseases is central for the development of effective therapeutic approaches and major research 

advances have been made in this area (1,21). Even though new therapeutic strategies are being 

devised, only symptomatic treatment is available for polyQ diseases. For instance, for MJD, the 

pharmacological therapies available seek to reduce symptomatic features such as depression, 

Parkinsonian signs, spasticity, restless leg syndrome and the aberrant sleep patterns experienced by 

many MJD patients (1,21,33). In addition, physiotherapy and regular speech therapy can assist 

patients to cope with disease-associated disability mainly regarding gait symptoms, dysarthria and 

dysphagia, respectively (1). 

As mentioned previously regarding proteolytic processing, inhibition of caspases and calpains have 

been shown to be capable of slowing disease progression and reducing the toxicity of the mutant 

protein (8, 10, 13). However, caspase functions in the brain are complex and mediate important 

functions for the normal brain, such as apoptosis, dendritic development, synaptic plasticity, hence 

the use of caspase inhibitors appears to be improbable as a therapeutic strategy. Regarding calpains, 

there are several types of calpain inhibitors available, but the lack of specificity amongst calpain 

isoforms and other proteolytic enzymes discourages its use as a therapeutic tool (33). 

Reducing the aggregation and toxicity of expanded polyQ proteins has been considered a therapeutic 

approach, however no promising candidates for application in the clinic have yet been identified (33). 

Some studies have suggested that increasing chaperone activity (e.g. Hsp 40 and Hsp70) may prove 

beneficial in polyQ diseases, since overexpression of selective Hsp chaperones were found to reduce 

polyQ proteins aggregation and toxicity by aiding in protein refolding and degradation (39). 

However, pharmacological induction of molecular chaperone (e.g. geldanamycin and geranylgeranyl 

acetone) or designed chemical chaperones (trimethylamine N-oxide, glycerol, dimethyl sulfoxide) 

were found to be limiting for clinical use given the side effects and cytotoxicity at concentrations 

required for the expected outcome (9, 33). 

As for modulating calcium homeostasis that, as mentioned before, has been described to be 

dysregulated in polyQ diseases, Dantrolene was found to inhibit excessive calcium release in 
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transgenic MJD mice, improving motor performance and preventing neuronal loss with no reported 

adverse events (33). 

Transcriptional dysregulation is thought to play a role in the pathogenesis of polyQ diseases. Mutant 

ataxin-3 appears to disrupt the activity of key factors in transcription, some of which retain 

acetyltransferase activity (9, 40). Sodium butyrate (SB), a histone deacetylase (HDAC) inhibitor, was 

shown to reverse the mutant ataxin-3 hypoacetylation and transcriptional repressor activity, 

ameliorating the motor impairment seen in SCA3 transgenic mice (9, 33). However, these beneficial 

neuroprotective effects were yielded within a narrow therapeutic window (40). Valproic acid (VPA) is 

another HDAC inhibitor that has been established as clinically safe and tolerable (40). VPA has been 

demonstrated to induce apoptosis-inhibiting gene bcl-2 thereby mediating neuronal protection and in 

MJD Drosophila model it was found to alleviate polyQ-induced phenotypic abnormalities (40). Results 

suggest that HDAC inhibitors are potential therapeutic agents for MJD and other polyQ diseases (40). 

As previously mentioned, upregulation of autophagy and clearance mechanism through the UPS is 

an appealing strategy to alter the progression of MJD. Overexpression of beclin-1 was found to be 

able to rescue or slow down the progression of MJD ataxic phenotype, depending on the stage of 

disease at the time of intervention (26,27). Upregulation of autophagy by rapamycins and 

temsirolimus, a rapamycin ester, was also found to reduce toxicity of aggregate-prone proteins by 

mechanisms described earlier (28). In addition, lithium, which is commonly used to treat bipolar 

disorders, was also shown to be able to upregulate autophagy in an mTOR independent manner, 

having beneficial effects in polyQ diseases, including MJD, HD as well as in ALS patients and mouse 

models, where it was shown to delay disease progression by facilitating superoxide dismutase 1 

clearance (28, 33). 

As oxidative stress has been found to contribute to MJD pathogenesis, antioxidant-based therapies, 

although scarcely researched, could be able to provide some neuroprotective effects. Coenzyme Q10 

possesses antioxidant potential when reduced to ubiquinol and it has been found to have some 

beneficial effects in HD, currently being tested in clinical trials of HD (33).  

A promising therapeutic approach in monogenetic disorders such as MJD, where the mutant allele 

acts through a dominant toxic mechanism, is to turn off the responsible gene, suppressing its 

expression and mitigating disease pathogenesis.  This gene silencing strategy has been successfully 

used in rodent models of several autosomal dominant neurodegenerative diseases, including HD, 

ALS and SCA1, delaying disease onset progression and protecting against neurodegeneration (33, 41, 

42). Lacking discrimination between normal and mutant forms of the protein can represent a 

potential risk of gene silencing by nullifying the normal protein function (33,42). Since, ataxin-3 has 

been implicated in protein quality control pathways and its normal activity was found to have a 

protective role and to mitigate neurodegeneration in Drosophila models (6), silencing the normal 

protein might lead to impair neuronal function and cell viability (33, 41, 42). In order to spare normal 

ataxin-3 function, allele-specific downregulation of mutant ataxin-3 has been researched (33,41-43). 

Two strategies for allele-specific downregulation have been postulated. The first strategy approach is 
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based on the presence of a single nucleotide polymorphism (SNP) identified at the 3’end of CAG tract 

of ATXN3 gene that was found to be present in 70% of MJD patients, but in only 2% of the normal 

population (41,42). Using lentiviral vectors encoding short-hairpin RNAs (shRNA) targeting the 

specific intragenic SNP of the mutant ataxin-3 gene, a report was able to demonstrate in vivo 

downregulation of mutant ataxin-3 in a selective manner, associated with a significant decrease in the 

formation and accumulation of inclusions, reduced number of degenerating neurons and neuronal 

dysfunction (42). In a subsequent work, it was also shown in transgenic MJD mouse models, 

exhibiting an early and severe phenotype, that allele-specific silencing of mutant ataxin-3 improves 

motor coordination and alleviation of neuropathology even when initiated at late stages of disease 

(41). However, this approach is limited to MJD patients carrying the heterozygous SNP in the ATXN3 

gene (43) and there’s still important questions that will first need to be addressed before a similar 

strategy can be attempted in a clinical trial for MJD, such as finding a suitable delivery of shRNAs to 

precise, targeted brain regions as determining the safety of a long-term shRNAs treatment (33, 41).  

The second strategy approach is to target directly the expanded CAG repeat, removing it from the 

mutant ataxin-3 protein, reducing its toxicity through protein modification (43).  

Through the use of small molecules, such as antisense oligonucleotides (AON) or peptide nucleic 

acids (PNAs), a study was able to achieve allele-specific reduction of mutant ataxin-3 by using AONs 

to mask exons of the ataxin-3 pre-mRNA from the splicing machinery, consequently excluding the 

targeted exon from subsequent translation leading to the formation of a modified ataxin-3 protein, 

lacking the polyQ stretch but maintaining its ubiquitin binding properties and functional domains 

intact (43). In the respective study, to preserve the reading frame for subsequent translation exon 9 

and exon 10 needed to be skipped simultaneously (43). The CAG repeat in ATXN3 gene is located in 

exon 10, whereas exon 9 seems to encode a calcium-dependent calpain cleavage and a NLS. There 

were no observed toxic properties from the resulting truncated ataxin-3 protein and the overall 

ataxin-3 transcript and protein levels were preserved (43). Another advantage of this AON-based 

protein modification is that is can be applied to all MJD patients, in contrast to SNP-specific approach 

(43). These results represent a promising approach, although there is still some concerns regarding 

their specificity (33) and there are still questions that remain to be assessed about the resulting 

modified protein, e.g., the impact of exon skipping in localization, function and aggregation (43).  

In a more recent study conducted in MJD mice models, transplantation of cerebellar neural stem cells 

(NSC) into the cerebellum of diseased mice led to a significant and ample reduction in MJD-

associated neuropathology, alleviating and improving the motor phenotype, promoting 

neuroprotection by increasing the levels of neurotrophic factors, such as BDNF and modulating 

neuroinflammation, reducing the levels of proinflammatory mediators, such as IL1β and TNFA (44). 

Thus, cerebellar NSC transplantation has demonstrated that cell replacement might be an effective 

treatment in symptomatic patients with extensive neuronal loss (44).  
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Concluding Remarks 

 

Several pathways have been targeted in the quest for a therapy for MJD, but an effective treatment is 

still currently lacking and of the therapeutic strategies in play none has yet advanced to human 

clinical trials. Even so, these strategies hold great promise as therapeutic approaches and as potential 

routes towards a therapy for MJD, either by targeting the expression, processing or conformation of 

the mutant protein or by reversing the cellular defects. 
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SINAPSE 

  

A SINAPSE é uma revista médica, propriedade da Sociedade Portuguesa de 

Neurologia (SPN), publicada em edição clássica e em suporte electrónico.   

  

A SINAPSE é orgão oficial da Sociedade Portuguesa de Neurologia (SPN), incluindo 

as secções e  os grupos de estudos, da Liga Portuguesa Contra a Epilepsia (LPCE), 

da Sociedade Portuguesa de Cefaleias (SPC), da Sociedade Portuguesa de Estudos 

de Doenças Neuromusculares (SPEDNM) e da Sociedade Portuguesa de 

Neuropatologia (SPNp). 

  

Princípios gerais 

  
A SINAPSE orienta-se pelos seguintes princípios gerais:  

1. Defesa e promoção da Neurologia Clínica portuguesa;  
2. Apoio empenhado e independente às iniciativas de SPN, LPCE, SPC, 

SPEDNM, SPNp, espelhando os seus estadios de desenvolvimento e 

contribuindo para a sua consolidação e robustez;  

3. Prática da Neurologia Clínica como vocação primordial;  
4. Trabalhos transversais, integradores ou promotores da unidade da Neurologia 

como interesses privilegiados;    

5. Preservação da memória das instituições como preocupação permanente;  
6. Especialidades médicas afins e neurociências como interesses potenciais;  
7. Abertura e acessibilidade a pessoas e a instituições;  
8. Procura de qualidade técnico-científica, formal e estética;  
9. Rigor e pedagogia na aplicação sistemática das normas do “ICJME- 

International Committee of Medical Journal Editors” (http://www.icmje.org);  
10. Garantia de independência científica e editorial, relativamente aos Órgãos 

Sociais da SPN, patrocinadores ou outras entidades;  
11. Predisposição para a mudança.  



 

 

Órgãos da SINAPSE 

  

1. Administração. É composta por três elementos da Direcção da SPN (Presidente, 

Vice-Presidente para a área editorial e Tesoureiro), sendo responsável pelas 

componentes económicas, financeiras e logísticas.   

2. Director. É nomeado pela Direcção da SPN, podendo ser membro dos Órgãos 

Sociais ou independente; estabelece a orientação global, a preparação e execução 

das edições, ouvido o Conselho Editorial. 

3. Conselho Editorial. É nomeado pela Direcção da SPN, mediante proposta 

fundamentada do Director, sendo os seus membros sócios independentes dos Órgãos 

Sociais; compete ao Conselho Editorial participar nas grandes opções de natureza 

editorial, científica e estética. 

4. Conselho Científico. É, por inerência, o Conselho Científico da SPN, competindo-

lhe garantir o rigor ético e  técnico-científico das publicações. 



 

Normas de candidatura  

 

1.      Os trabalhos candidatos a publicação serão inéditos, e não deverão ser enviados 

para outras publicações. 

2.      Deverão ser remetidos por correio electrónico, em documentos anexos (attached 

files) Microsoft Word™, em qualquer versão actual.   

3.      Deverão ser evitados símbolos, sublinhados, palavras em maiúsculas, bolds, 

itálicos, notas de topo ou de rodapé, e artifícios formais.  

4.      As páginas não deverão ser numeradas. 

5.      Deverão ser redigidos em português ou em inglês. Poderão, excepcionalmente, 

aceitar-se trabalhos em francês ou espanhol.   

6.      Da primeira página constarão: título do trabalho, nome próprio, apelido, 

departamento ou serviço, instituição, profissão, cargo, endereço, telemóvel e correio 

electrónico de todos os autores. 

7.      A segunda página incluirá: o título do trabalho, o nome dos autores, o resumo, as 

palavras-chave e o título de cabeçalho; a morada institucional e o endereço de correio 

electrónico a incorporar no artigo.  

8.      A  terceira página será a versão em inglês da segunda página, se o artigo foi 

redigido em português (e vice-versa). Se o artigo for redigido em francês ou espanhol, 

a terceira e quarta página serão versões em português e Inglês, respectivamente. 

9.      As restantes folhas incluirão as diferentes secções do trabalho. Os trabalhos 

originais incluirão as seguintes secções: introdução/objectivos, metodologia, 

resultados, discussão/conclusões e bibliografia. Os casos clínicos serão  estruturados 

em introdução, caso clínico, discussão e bibliografia. As revisões incluirão, pelo 

menos, introdução, desenvolvimento, conclusões e bibliografia. Os editoriais e as 

cartas estarão isentos de organização em secções. No texto das secções, a 

identificação institucional será evitada, podendo ser acrescentada, se imprescindível, 

no fim do processo de avaliação e antes da publicação do artigo. 

10.  As tabelas e figuras deverão ser enviadas em documento adicional Microsoft 

Word™, uma por página, precedidas por uma página que inclua as notas 

correspondentes. As figuras serão enviadas em ficheiros GIF ou JPEG. 

11.  Os agradecimentos ou menções particulares constarão em página própria.  

12.  Os compromissos particulares ou institucionais (patrocínios, financiamentos, 

bolsas, prémios) serão expressos obrigatoriamente em página adicional.  



Regras para elaboração do trabalho 

 

1.      Título  

Será claro e informativo, representativo do conteúdo do artigo e captando a atenção 

do leitor. Não terá iniciais ou siglas,  nem excederá vinte palavras. Sub-títulos 

genéricos ou vulgares como “caso clínico” ou “ a propósito de um caso clínico” não 

serão aceites. 

 

2.      Autores e instituições  

A autoria exige, cumulativamente, contribuições substanciais para:  

a)      concepção e desenho, ou aquisição de dados, ou análise e interpretação 

de dados;  

b)      redacção  ou revisão crítica de uma parte importante do seu conteúdo 

intelectual;  

c)      responsabilidade pela aprovação da versão final.  

Cada um dos autores deve ter participado suficientemente no trabalho para assumir 

responsabilidade pública pelo seu conteúdo.  

A obtenção de financiamento, a colecção de dados ou a supervisão da equipa de 

investigação não justificam a autoria.  

Todas pessoas designadas por autores devem cumprir os critérios; nenhuma pessoa 

qualificada para autoria deve ser excluída.  

Membros do grupo de trabalho (coordenadores, directores, técnicos, consultores), que 

não cumpram os critérios internacionais de autoria, poderão ser listados em 

“agradecimentos”. 

O número de autores será parcimonioso, particularmente em “Casos Clínicos”. 

A inclusão e compromisso do nome das instituições é da responsabilidade dos 

autores.  

3.      Resumo  

O resumo tem um limite máximo de 400 palavras. Não deve incluir abreviaturas. Deve 

apresentar-se estruturado. 

Originais: Introdução, Objectivos, Metodologia, Resultados e Conclusões.  

Revisões: Introdução, Objectivos, Desenvolvimento e Conclusões.  

Casos clínicos: Introdução, Caso Clínico  e Conclusões.  

O resumo será coerente com o conjunto doo artigo. 

4.      Palavras-chave 



Devem ser incluídas até seis palavras-chave, na língua original do artigo e em inglês, 

preferencialmente previstas na lista do Medical Subject Headling List of the Index 

Medicus. 

5.  Cabeçalho  

Versão reduzida do título, para eventuais efeitos de composição gráfica.  

6.  Introdução / Objectivos  

Exposição, completa e sucinta, do estado actual do conhecimento sobre o tema do 

artigo.  

Expressão clara das motivações e objectivos que levaram ao planeamento do 

trabalho.  

7. Metodologia  

Descrever os critérios de selecção do material do estudo e o desenho do mesmo.  

Usar unidades  internacionais.  

Assinalar os métodos estatísticos.  

8. Resultados 

Devem ser escritos os dados relevantes.  

Os dados constantes de tabelas ou figuras não devem, em princípio, ser repetidos no 

texto.  

As tabelas devem ser nomeadas em numeração romana (p. ex.: Tabela IV), por ordem 

de aparecimento no texto.  

As figuras devem ser nomeadas em numeração árabe (p. ex.: Fig. 4.), pela ordem de 

aparecimento no texto.  

A responsabilidade de protecção dos direitos de figuras previamente publicadas é da 

responsabilidade dos autores.  

A publicação de fotografias de pessoas exige a completa dissimulação da sua 

identidade ou uma folha assinada de consentimento informado e parecer de uma 

Comissão de Ética de uma instituição pública..  

  

9. Discussão  

Não voltar a apresentar resultados, evitando redundâncias.  

Não mencionar dados que não foram apresentados nos resultados.  

Dar-se-á relevo aos aspectos novos, reflectir sobre as limitações e justificar os erros 

ou omissões.   

Relacionar os resultados com outros estudos relevantes.  

As conclusões deverão basear-se apenas nos resultados.  

Poderão fazer-se recomendações. 

10. Bibliografia 



As referências bibliográficas devem ser identificadas no texto através de numeração 

árabe, entre parêntesis, ao nível da linha.  

Devem ser numeradas segundo a ordem de aparecimento no texto.  

A referência deve incluir o apelido e inicial de todos os autores; se o artigo tiver mais 

de seis autores, devem ser referidos apenas os três primeiros, seguindo-se a 

expressão et al.  

Os nomes dos autores devem ser seguidos por título do artigo, abreviatura da revista 

segundo as recomendações do List of Journals Indexed in Index Medicus, ano de 

edição, volume, primeira e última página.  

As referências a livros devem incluir o título do livro, seguido do local de publicação, 

editor, ano, e páginas relevantes.  

Se alguma referência se encontrar pendente de publicação deverá descrever-se como 

“in press”. A referência a comunicações pessoais não é aceitável. 

11.  Dúvidas ou casos omissos  

Serão resolvidos de acordo com as normas do ICMJE (http://www.icmje.org). 

  

  



 

Processo de Avaliação e Edição 

  

1. A SINAPSE notificará o primeiro autor, imediatamente após a recepção do 

trabalho;  

2. A SINAPSE poderá devolver imediatamente o trabalho aos autores para 

correcções formais, de acordo com as normas de publicação;  
3. Após recepção definitiva, o trabalho será enviado a todos os membros do 

Conselho Editorial, que sugerem os revisores adequados (membros do 

Conselho Editorial, do Conselho Científico ou independentes). Os revisores 

não terão ligações às instituições constantes do trabalho. Os membros do 

Conselho Editorial e os revisores não serão informados dos nomes e 

instituições dos autores;  

4. Os autores terão acesso aos pareceres anónimos dos revisores;  
5. Os autores terão quinze dias úteis para alterar o artigo e/ou contestar as 

revisões;  

6. As respostas serão analisadas pelo Conselho Editorial, podendo ser remetidas 

aos revisores para novo parecer; 

7. A Direcção da SINAPSE assumirá a aceitação ou rejeição do trabalho para 

publicação, após análise e interpretação final de todos os documentos;  

8. Os autores terão acesso aos conjunto dos documentos, em caso de rejeição do 

trabalho, mantendo-se oculta a identidade dos revisores.  
Os trabalhos aceites serão publicados na edição seguinte da SINAPSE, após  

assinatura de uma norma de responsabilidade e transferência de direitos por todos os 

autores. Por critérios editoriais, a Direcção da SINAPSE poderá acordar com os 

autores o adiamento da publicação. 
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