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Abstract. When no exact measurements are available the task of solving the differential
equations describing the dynamics of mobile robot can be hard and inefficient. In this paper
we propose a procedure for dynamic model identification and control of the process (motor
+ reduction + encoder) of a omni-Directional Mobile Robot’s Motors. Our techniques are
based in Least Squares Methods and Instrumental Variable Methods for linear dynamic
systems. Notably, the approach used here is applicable to any robot with DC motors, or,
more generally, to any process with DC motor with encoder and PWM control made by a
microcontroller.
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1. INTRODUCTION

In this paper we focus attention on a omni-
directional mobile robot with four motors, as
shown in 1, built for the 5dpo-2005 Robotic Soc-
cer team from the Department of Electrical and
Computer Engineering at the University of Porto
at Porto, Portugal. We are particularly interested
in the motor+reduction+encoder process repre-
sented in Fig. 2. This process consists on the
relation between the voltage and the velocities of
the robot’s motors. The dynamics of this process
is complex and may be nonlinear due to the me-
chanic architecture of the robot which may add
perturbations like attrition due to the interaction
between the robot components. The task of sol-
ving the differential equations modeling the dy-
namics of this process may be a hard one or even
be inefficient not only because of the nonlinearities
but also because no exact measurements of the pa-
rameters are known. The design and simulation of
controllers (as for example, the discrete PID con-
troller implemented in the microcontroller of the
robot) for the navigation of the robot require the
identification of a dynamic model for this process.
Here we present the identification of a discrete sys-
tem (see Fig. 1) for the motor+reduction+ en-
coder process. This is a first step towards the dy-
namic model identification of the whole robot. We

consider a discrete linear model and we use techni-
ques based on Least Square Methods and Instru-
mental Variable methods to estimate a transfer
function for the process. This procedure is not
only confined to our mobile robot. It can be ap-
plied to any robot with DC motors, or, more gene-
rally, to any process with DC motor with encoder
and PWM control made by a microcontroller.

Figure 1: Mobile robot - motors.

Figure 2: Discrete dynamic system.

The robot’s control and communication struc-
ture is as sketched in Fig. 3. The computer (PC)
controls all the actions of the robot. The commu-
nication with the microcontroller is done through
the serial port (RS232). It controls the motors
using signals of PWM and a drive of power. The
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software of control in PC works in a frequency of
25Hz, from the camera. However, and in order
to control efficiently the motors of the robot, the
microcontroller has a discrete PID controller that
works in a frequency of 100Hz.

Figure 3: Robot’s control and communication
structure.

This paper is structured in the following way.
In section 2. we give a brief description of a deter-
ministic model and we determine a Least Square
Estimator. In section 3. we apply the Least
Squares estimator to the process for the motor
1 (front) of the mobile robot. An Instrumental
variable estimator is presented in section 4.. The
estimation results for motors 2, 3 and 4 of the mo-
bile robot is presented in Section 5.. The design
of PID controller for Robot’s Motors is showed
in section 6.. Finally, the conclusion and future
works is drawn in section 7..

2. DETERMINISTIC MODEL AND
LEAST SQUARES ESTIMATOR

In general, a linear time-invariant discrete-time
system with input sequence u(k) and output se-
quence y(k) can be represented by an nth-order
difference equation relating the input and output
([3]),

y(k) = −
na∑

i=1

aiy(k − i) +
nb∑

i=0

biu(k − i), (1)

where k is the time variable, and n is a fixed in-
teger called the order of the difference equation.
The Z-transform of the difference equation (1)
leads to

U(z)

Y (z)
=

(1 + a1z
−1 + ... + anz−n)

(bo + b1z−1 + ... + bnz−n)
, (2)

Multiplying both sides of (2) by zn and re-
arrange it to obtain the transfer function of the
discrete-time system,

H(z) =
Y (z)

U(z)
=

B(z)

A(z)
, (3)

where the numerator polynomial B(z) and deno-
minator polynomial A(z) are defined as:

B(z) = b0z
n + b1z

n−1 + ... + bn, (4)

A(z) = zn + a1z
n−1 + ... + an. (5)

For the design of a computer-controlled system
like the one in Fig. 2, the model (1) must des-
cribe the dynamical behavior of the control loop
between the input of the D/A converter and the
output of the A/D converter. A general model for
a large class of single-input, single-output systems
proposed in [6] and [4], is

y(k) = H1(z)u(k) + H2(z)ξ(k), (6)

where y(k) and u(k) are the output and input se-
quences, respectively, and ξ(k) is a gaussian white
noise sequence with variance σ2 and zero mean.
Parameterizing H1(z) and H2(z) respectively as
B(z)
A(z) and 1

A(z) where B(z) and A(z) are defined in

(4) and (5), (1) can be expressed as,

A(q−1)y(k) = B(q−1)u(k) + ξ(k) (7)

where q−1 is the operator of unit delay q−1y(k) =
y(k − 1) yielding

y(k) = −a1y(k − 1)...− anay(k − na) + ...

b0u(k)... + bnbu(k − nb) + ξ(k)

= x(k)T θ + ξ(k) (8)

where

θT = (a1, ..., ana, b0, ..., bnb) (9)

x(k)T = (−y(k − 1), ...,−y(k − na)...

u(k), ..., u(k − nb)). (10)

Equation (8) can be expressed in vector form for
N samples, as

Y = Xθ + Ξ (11)

where

Y T = [y(1), ..., y(N)], (12)

XT = [x(1), ..., x(N)], (13)

ΞT = [ξ(1), ..., ξ(N)]. (14)

Applying the Least Square Method to (11) sug-
gests that the resulting estimator for θ is,

θ̂ = [XT X]−1XT Y. (15)

3. APPLICATION OF LEAST SQUARES
ESTIMATOR

Now we apply the excitation signal in Fig. 4(a) to
the process to obtain the curve of speed of robot’s
motor 1 (front), in meters per second, as is shown
in Fig. 4(b).
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(b) Curve of speed - motor
1.

Figure 4: Signal of excitation 1 and response of
motor 1.

We test the efficiency of the Least Square
Estimator (15) for eight different transfer func-
tions(TF). Table 3 shows the results of the Least
Squares estimation for those eight TFs: the esti-
mation error, value of the gain, poles and zeros
are presented for each TF.

Fig.5(a) shows the measured and estimated
speed for robot’s motor 1, with the transfer func-
tion type FTb. The estimation values can be seen
in table 3. The error in table 3 is calculated by
MSE (Mean Square Error),

MSE() =

∑N

1 [(Φ̂− Φ)2]

N
, (16)

It calculates the sum of squared errors between
the vector of estimated speeds(Φ̂)

Φ̂ = [ŷ(1), ..., ŷ(N)]T ,

and the vector of measured speeds (Φ) of the
motor,

Φ = [y(1), ..., y(N)]T .

where N is the number of samples.
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(a) Measured and esti-
mated speeds with FTb -
motor 1.
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Figure 5: Speeds - motor 1.

3.1. VALIDATION

To validate the Least square estimation, we apply
another excitation signal to the process and esti-
mated transfer functions, shown in Fig 6(a). In
Table 1 and Fig.6(b) we present the MSE of error
for the eight TFs for the second excitation signal.
Fig.5(b) shows the curves of measured speed and
simulated speed, for the transfer function of type
FTb.
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Figure 6: Signal of excitation 2 and results of va-
lidation.

Type TF order MSE(error)
FTa 1 0.0042402
FTb 2 0.0010013
FTc 2 0.00099887
FTd 3 0.00099609
FTe 4 0.00099436
FTf 5 0.00099183
FTg 6 0.00099442

Table 1: Results of validation for eight TFs.
Analyzing the errors in the validation in table

1, we conclude that a TF type TFb, order two,
is a good approximation of the process, because
the system in Fig. 2 has one delay from the loop
of communication, represented by the pole at the
origin in transfer function TFb. The process of
DC motor can be approximated by one first-order
system, considering inductance of motor null. No-
tice that the error with TFg is greater that with
TFf , so the best order is 5. The TFb has or-
der two, hence it is simpler to use when designing
the controller in general. Moreover the difference
between the error of TFb and the others TFs is
small. Taking all this into account, we chose TFb.
Observe that the transfer function TFa does not
have a satisfactory result. The TFd was tested to
verify the estimation with two delays (two poles
at the origin), but the estimation error is greater
than the TFs with one delay.

4. INSTRUMENTAL VARIABLE

The Least Squares estimators are not in general
consistent when the sequence ξ(k), in (8), is corre-
lated. Since Instrumental variable estimators are
weakly consistent (see [6]and [4]) we implemente it
and compare with results from the Least Squares
Estimator.

Our Instrumental variable estimator is

θ = [ZT X]−1ZT Y

the matrix Z being constructed using the auxiliary
model

Z(k)T = [−ŷ(k − 1),−ŷ(k − 2), ... (17)

−ŷ(k − n), u(k), u(k − 1), ..., u(k − n)] (18)
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where
Â(z)ŷ(k) = B̂(z)u(k)

In the above Â(z), B̂(z) are polynomials in z−1.

Â(z) and B̂(z) are obtained from an initial least
squares fit. Table 2 presents results of estima-
tion with Instrumental variable(IV) and Least
squares(LS), for the transfer function type TFb.
After three iterations, the values of poles and gain
stabilize.

FTs LS IV 3a Iteration

b1 0.00081626 0.00081538
z(z + a1) z(z − 0.6827) z(z − 0.7051)

MSE(error) 0.0010013 0.00098799

Table 2: Estimated values.
Analyzing the auto-correlation of error, calcu-

lated as

ŷ(k) = −â1y(k − 1) + b̂1u(k − 2), (19)

Error(k) = ŷ(k)− y(k). (20)

where ŷ(k) is the output estimated, y(k) is the
output measured and u(k) the input signal, we
can calculate the correlation of residuals. In Fig.7
we present the auto-correlation for the estimation
with Least Squares and Instrumental Variable,
for 100 samples. For the Least Square estima-
tor the mean of de error Error(k), (see (20)) is
5.2879e− 4 and for Instrumental variable estima-
tor is 5.2554e − 4. It is possible to verify that
the auto-correlation of error Error for the Least
Squares estimator is similar to auto-correlation of
the a white noise. This is the reason why it does
not have a significant improvement when we use
the Instrumental variable estimator.
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(a) Least Squares
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(b) Instrumental variable

Figure 7: Auto-correlation of error.

5. OTHERS RESULTS WITH ROBOT’S
MOTORS

In the previous sections we show the procedure
for transfer function estimation of the motor 1 of
the mobile robot. Now, we present the estimation
results of the motors 2, 3 and 4 of the mobile ro-
bot. For these motors the estimation results using
LS and IV estimators are shown in table 4. The
mobile robot into consideration has left and right
wheels (2 and 4) larger than the front and back (1
and 3) wheels. The estimated gains of motors 2
and 4 in table 4 reflect this difference.

Differences between robot’s motors estimation
are not surprising. They are due to irregular dis-
tribution of the weight on base of mobile robot.
The transfer function of the motor 4 has a slower
pole. This is because of the position of battery on
the base of the robot which adds weight to wheel 4.
In Fig. 8 and 9 we present the measured and esti-
mated speeds for robot’s motors using the transfer
function type TFb.
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(a) Motor 1 - front wheel
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Figure 8: Motors 1 and 3.
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(a) Motor 2 - left wheel
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Figure 9: Motors 2 and 4.

6. PID CONTROLLER FOR ROBOT’S
MOTORS

To choose appropriated values for parameters of
the PID controller (Kc, Ti and Td), we use the
close-loop pole locations for an nth-order plant
using prototype Bessel systems (see [3]). Equa-
tion (21) shows the transfer function chosen to
process, obtained from the IV estimator, detailed
in section 4..

G(z) =
0.00081538

(z − 0.7051)
=

b1

z − a1
(21)

The pole of the origin is ignored since it represents
one delay from the loop of communication. The
equivalent continuous of the process (21) can be
calculated as in is [3]. It is

G(s) =
K

τs + 1
,

for

K =
b1

1 + a1

τ =
1

|ps|

pz = eTps.
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where ps is the pole in S-plane and pz is the pole
in Z-plane. The continuous transfer function is

G(s) =
0.002765

0.1145s + 1
(22)

A PI (Proportional + Integral) controller is repre-
sented as

Gc(s) =
Kc(Tis + 1)

Tis
(23)

We choose a PI controller (Td = 0), because
the process has characteristics of a first-order sys-
tem.

The open-loop system GMA is

GMA(s) = Gc(s).G(s) =
Kc(Tis + 1)

Tis
.

K

τs + 1
(24)

The close-loop system with unit feedback, from
GMA(s), is

GMF (s) =
KKc

Tiτ
+ KKcs

τ

s2 + (1+KKc)s
τ

+ KKc

Tiτ

(25)

With the transfer function of the close-loop
system, which is a second-order system, the pro-
cedure for choosing close-loop pole locations is as
follows. Let the desired settling time be called
Ts. We determine the desired settling time (Ts =
0.6seg) of the close-loop system based on perfor-
mance of robot and taking into account the limi-
tations of the system hardware. Considering the
table of normalized Bessel polynomials[3], we di-
vide the roots of the second-order polynomials
p1s = −4.0530 ± j2.3400 by Ts to obtain the de-
sired close-loop s-plane pole locations. This yields
poles at p0.6s = −6.7550± j3.9000.

The value for Kc is given by,

−(p1 + p2) =
(1 + K ∗Kc)

τ

Kc =
−τ ∗ (p1 + p2)− 1

K
(26)

and for Ti,

(p1p2) =
KKc

Tiτ

Ti =
KKc

τp1p2
(27)

where p1 = −6.7550+j3.9000 and p2 = −6.7550−
j3.9000. The result TF is given by(28),

GMF (s) =
4.775s + 0.3747

s2 + 13.51s + 60.84
. (28)

Equations (29) and (30) are, respectively, the
continuous PI transfer function and the discrete
PI transfer function, invariant to step responses
(ZOH-zero-order hold) [1], for a sample period of
10ms:

Gc(s) =
197.68(0.07848s + 1)

0.07848s
(29)

Gc(z) =
197.68(z − 0.8726)

(z − 1)
(30)

In Fig.10(a) we show the results of PI con-
troller with the desired settling time (Ts =
0.6(seg)). In order to improve this result, we in-
troduce a Feedforward gain f from the reference
input to the process input. This gain cannot affect
the stability of the control system because it does
not alter the close-loop poles (see [3]). However,
this gain may improve the transient response of
the system. We chose the value of the parameter
f to be 200, the choice being made based on si-
mulations. Fig.10(b) shows the response of system
with gain f . The reference input is a step with am-
plitude of 0.3(m/s) (from 0.3(m/s) to 0.6(m/s)).
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(a) Close-loop system with-
out the Feedforward gain f .
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Figure 10: Response of Close-loop system.

7. CONCLUSION AND FUTURE
WORKS

In this paper we identify a discrete system, shown
in Fig. 2, of the a mobile robot. We use
Least Squares and Instrumental Variable estima-
tor. These estimations permit the selection of ap-
propriate values for PI controller, implemented in
the mobile robot. This is the first step for the iden-
tification of a dynamic model for the whole mobile
robot considering it as a multi-variable system and
using the dynamic models estimated in this work.
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FTs FTa FTb FTc FTd

order 1 2 2 3

b1 b2 b1z + b2 b2z + b3
z + a1 z(z + a1) z(z + a1) z

2(z + a1)

gain,zero, −5.73e− 6 8.16e− 4 7.58e− 6(z + 107.7) 8.12e− 4(z − 0.1077)
pole (z − 0.7033) z(z − 0.6827) z(z − 0.6823) z

2(z − 0.7295)

MSE(error) 0.0034488 0.00036275 0.00036142 0.00036471
FTs FTe FTf

order 3 4

b1z
2 + b2z + b3 b1z

3 + b2z
2 + b3z + b4

z(z2 + a1z + a2) z(z3 + a1z
2 + a2z + a3)

gain,zero, 6.25e− 6(z + 129.6)(z + 0.2702) 5.28e− 6(z + 153.5)(z2 + 0.206z + 0.053)
pole z(z − 0.7541)(z + 0.4024) z(z − 0.6946)(z + 0.457)(z − 0.183)

MSE(error) 0.00035635 0.00032468
FTs FTg

order 5

b1z
4 + b2z

3 + b3z
2 + b4z + b5

z(z4 + a1z
3 + a2z

2 + a3z + a4)

gain,zero, 5.6e− 6(z + 143.8)(z − 0.1982)(z2 + 0.4159z + 0.1107)
pole z(z − 0.6526)(z − 0.4272)(z2 + 0.6709z + 0.1383)

MSE(erro) 0.00031945
FTs FTh

order 6

b1z
5 + b2z

4 + b3z
3 + b4z

2 + b5z + b6
z(z5 + a1z

4 + a2z
3 + a3z

2 + a4z + a5)

gain,zero, 9.50e− 6(z + 84.98)(z2
− 0.6704z + 0.2717)(z2 + 0.8872z + 0.3613)

pole z(z − 0.6577)(z2
− 0.728z + 0.2254)(z2 + 0.9745z + 0.3502)

MSE(error) 0.00031737

Table 3: Results of estimation for TFs with Least Squares.

Least Squares Motor 1 Motor 2 Motor 3 Motor 4
front left back right

b1 0.0008163 0.00044521 0.00075587 0.00037482
z(z + a1) z(z-0.6827) z(z-0.6425) z(z-0.677) z(z-0.7448)

Instrumemtal Motor 1 Motor 2 Motor 3 Motor 4
Variable front left back right

b1 0.00081538 0.00044513 0.00075507 0.0003748
z(z + a1) z(z-0.7051) z (z-0.6734) z (z-0.6953) z (z-0.7565)

Table 4: Estimation with Least Squares and Instrumental Variable for Robot’s Motors.
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