

INTERACTIVE TOOL FOR SPECIFYING

DEDICATED HARDWARE ACCELERATORS

JOÃO PAULO PAIVA REBOCHO
DISSERTAÇÃO DE MESTRADO APRESENTADA
À FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO EM
ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

M 2015

ii

iii

iv

v

Faculdade de Engenharia da Universidade do Porto

Interactive tool for specifying dedicated hardware
accelerators

João Paulo Paiva Rebocho

Relatório de Projeto realizado no âmbito do

Mestrado Integrado em Engenharia Electrotécnica e de Computadores

Major Telecomunicações, Eletrónica e Computadores

Orientador: Professor João Canas Ferreira

Co-orientador: Professor João Cardoso

31 de Julho 2015

vi

© João Paulo Paiva Rebocho, 2015

vii

Resumo

O presente relatório tem como objetivo documentar todo o trabalho realizado durante a

unidade curricular: Dissertação de Mestrado Integrado em Engenharia Electrotécnica e de

Computadores. Neste documento é possível encontrar os resultados de uma primeira

abordagem ao projeto, começando com uma introdução ao tema, seguido de uma revisão da

literatura com o estado da arte, e terminando com uma explicação sobre a arquitetura e o

algoritmo usado para desenvolver a ferramenta, bem como os resultados obtidos.

Uma investigação em curso, por Nuno Paulino consiste no mapeamento de traços binários

para hardware em tempo de execução. O sistema desenvolvido gera descrição de hardware

correspondente a um programa a ser executado num sistema embarcado. A sua finalidade é

fazer seleções de alguns troços do programa para ser mapeado para o RPU em vez da GPU de

modo a melhorar o desempenho global do sistema. Essas seleções são baseadas em grupos de

instruções denominadas por Megablocks, que representam uma porção bastante elevada da

execução total do programa.

A análise completa das computações e a deteção de Megablocks são feitos pela

ferramenta Megablock Extractor desenvolvida por João Bispo que implementou várias

técnicas complexas que permitem a partição dinâmica ao nível binário. Megablocks extraídos

com esta ferramenta representam pedaços de código que tendem a repetir-se uma elevada

quantidade de vezes e, portanto, ao usar essas unidades de deteção como elementos de

estudo e aperfeiçoamento, há melhores chances de obter uma melhoria do desempenho

global.

A ferramenta interativa desenvolvida nesta dissertação pode ser vista como um elo entre

esses dois projetos descritos anteriormente. Ela lê as informações extraídas pelo Megablock

Extractor e representa-as numa interface gráfica interativa de modo a permitir uma melhor

visualização e compreensão dos Megablocks. Ela também implementa uma técnica que

permite a fusão de dois Megablocks. Assim, abre a possibilidade de ter dois Megablocks

mapeados no RPU em vez de apenas um e, portanto, reduzindo a sobrecarga de comunicação

entre o GPU e o RPU.

viii

ix

Abstract

The present report has the goal to document all the work done under the course unit:

Dissertation of Integrated Master in Engineering Electronic and Computers. It is possible to

find on it the results of a first approach to the project, starting with a theme introduction,

followed by a literature review prototype with the state of the art, and ending with an

explanation of the architecture and the algorithm used to develop the tool as well as its

results.

An investigation being held by Nuno Paulino consists on mapping binary traces to

hardware in run-time. The system that he developed generates hardware description

corresponding to a program to be executed on an embedded system. Its purpose is to make

selections of some portions of the program to be mapped into the RPU instead of the GPU to

improve the system’s performance. These selections are based on groups of instructions

denoted Megablocks, which represent a fairly high portion of the total execution of the

program.

The complete analysis of computations and detection of Megablocks is done by the

Megablock Extractor tool developed by João Bispo which implements several complex

techniques that allow dynamic partition at the binary level. Megablocks extracted from this

tool represent chunks of code that tend to repeat themselves a high amount of times and

therefore, by using these detection units as elements of study and improvement, there are

better chances to get better overall performance boost.

The interactive tool developed on this dissertation can be seen as a link between those

two works. It reads the information extracted from the Megablock Extractor and represents it

on an interactive GUI so that a better visualization and understanding of the Megablocks is

obtained. It also implements a technic that allows the merge of two Megablocks. By doing so,

it opens the possibility to have two Megablocks mapped into the RPU instead of just one and

therefore reducing the communication overhead generated by moving computations between

the GPU and the RPU.

x

xi

Acknowledgments

I would like to thank my supervisor, João Canas Ferreira, and my second supervisor, João

Manuel Paiva Cardoso, for their support and guidance during my work on the dissertation

I would also like to thank my colleagues: João Bispo and Nuno Paulino for being available

to explain me their work and specially for helping me to connect my work to theirs.

Last but not least, I thank my family for all the encouragement, motivation and

understanding that helped me to finish this dissertation.

xii

xiii

Table of Contents

Abstract .. vi

Table of Contents .. xiii

List of Figures.. xv

List of Tables .. xvii

Acronyms and Symbols .. xviii

Chapter 1 ... 1

Introduction ... 1
1.1 - Motivation ... 1
1.2 - Objectives and contributions .. 2
1.3 - Structure of this report ... 3

Chapter 2 ... 4

State of the Art .. 4
2.1 - Target architecture.. 4
2.1.1 - Tests and Results .. 5
2.1.2 - Other approaches ... 7
2.2 - Concept of Megablock ... 8
2.3 - HDL Generation Tool .. 10
2.4 - Interactive Application ... 11
2.5 - Multipath Extension of Megablock Extractor .. 13
2.6 - Graph Traversal Algorithms .. 14
2.7 - Loop transformation techniques .. 14
2.7.1 - Loop fusion .. 15
2.7.2 - Loop Distribution with Direct Loop fusion ... 16

Chapter 3 ... 18

Architecture of the Interactive Megablock Merging Tool ... 18
3.1 - Organization of the MegaBlockMultipath Package ... 19
3.1.1 - The MultipathExecute Class ... 20
3.1.1 - The MergeExecute Class .. 23
3.2 - Organization of the GUI Package .. 25
3.2.1 - The GUIExecute Class ... 25
3.2.2 - The Buttons Class.. 28
3.2.3 - Handling Popup Menus .. 30

Chapter 4 ... 35

xiv

Algorithm for Megablock Merging ... 35

Chapter 5 ... 44

Validation and Results .. 44
5.1 - GUI ... 44
5.2 - Validation of the Merged Block .. 50

Chapter 6 ... 55

Conclusions and future work ... 55

References ... 57

Appendixes ... 59

xv

List of Figures

Figure 2.1 – General architecture considered [2]. .. 4

Figure 2.2 – Mapping example which shows how branches and memory operations can be
mapped [2]. .. 5

Figure 2.3 – Architectures used for testing: i) DDR-PLB; ii) LMB-PLB; iii) LMB-FSL [7]. 6

Figure 2.4 – Speedups for all three architectures. Results for DDR-PLB architecture use
the axis on the right. Bar labels show the results for the LMB-PLB and LMB-FSL
architectures (axis on the left). A trend can be observed for all three cases. The
different overheads dictate the relative scales of the attained speedups [7]. 7

Figure 2.5 – Execution trace partitioning according to different granularities: a)
BasicBlocks; b) SuperBlocks; c) MegaBlocks [13]. ... 9

Figure 2.6 –Portions of the trace (Y axis) covered by blocks, identified by several
partitioning techniques, which have at least a certain amount of iterations (X axis)
[7]. ... 10

Figure 2.7 - RPU HDL header excerpt [7]. .. 11

Figure 2.8 - Types of nodes and possible connections in a Megablock graph. [12]. 12

Figure 2.9 - Flowchart of the DFS traversal algorithm. .. 14

Figure 2.10 – Loop fusion example with data dependency problem [25]. 15

Figure 2.11 – Loop distribution example [25]. ... 16

Figure 2.12 – Code results after applying a) Loop distribution with direct loop fusion and
b) Loop fusion [25]. ... 16

Figure 3.1 – Project’s file organization ... 19

Figure 3.2 – Overview of all Classes of the Project ... 19

Figure 3.3 – MegablockMultipath pack organization. ... 20

Figure 3.4 – Organization of the MultipathExecute content. .. 20

Figure 3.5 – Organization of the MergeExecute content. .. 23

Figure 3.6 – Organization of the GUI package. .. 25

Figure 3.7 – Organization of the GUIExecute content. .. 26

Figure 3.8 – Organization of the Buttons content .. 28

xvi

Figure 3.9 – Default buttons panel. ... 29

Figure 3.10 – Merge Button Panel .. 30

Figure 3.11 – Organization of the PopClickListener content .. 31

Figure 3.12 – Popup menu example. .. 33

Figure 3.13 – Unable to merge warning message. .. 33

Figure 3.14 – Main graph before and after a merge. ... 34

Figure 4.1 – UML diagram explaining the algorithm used to match cells. 36

Figure 4.2 – Example of the order that matches are being done. 37

Figure 4.3 – Merge view example. ... 39

Figure 4.4 – Detailed information of some vertices. .. 40

Figure 4.5 – Result of merging both graphs from Figure 4.3. 41

Figure 4.6 – Portion of a merge view showing the control vertex as red. 42

Figure 5.1 – Main graph with popup menu opened .. 45

Figure 5.2 – Inside view of a Megablock .. 46

Figure 5.3 – Detailed information about a vertex. .. 47

Figure 5.4 – Simplified view. .. 48

Figure 5.5 – Merge view. ... 49

Figure 5.6 – Source code of an example to test. .. 51

Figure 5.7 – Assembly code resulting from using the source code of Figure 5.1 on the
Megablock Extractor. ... 51

Figure 5.8 – Graph representing operations from Figure 5.1 .. 52

Figure 5.9 – Example of a flaw on the merge technique. .. 53

xvii

List of Tables

Table 2.1 — Detected MegaBlock characteristics [7]. ... 6

Table 3.1 — Resumes of the main MultipathExecute components. 21

Table 3.2 — Resumes of the main MergeExecute components. 24

Table 3.3 — Resumes of the main GUIExecute components.. 26

Table 3.4 — Resumes of the main Buttons components. ... 29

Table 3.5 — Resumes of the PopupMenu components. .. 32

xviii

Acronyms and Symbols

AMBER Adaptive Dynamic Extensible Processor

ARM Advanced RISC Machine

CCA Custom Compute Accelerator

CDFG Control and Data Flow Graph

CGRA Coarse-Grained Reconfigurable Array

DEEC Departamento de Engenharia Electrotécnica e de Computadores

DIM Dynamic Instruction Merging

FEUP Faculdade de Engenharia da Universidade do Porto

FPGA Field Programmable Gate Array

FSL Fast Simplex Link

FU Functional Unit

GUI Graphical User Interface

GPU General Purpose Unit

GPS Global Positioning System

HDL Hardware Description Language

MIPS Microprocessor without Interlocked Pipeline Stages

OS Operating System

PC Program Counter

PDF Portable Document File

PLB Processor Local Bus

RFU Reconfigurable Functional Unit

RISC Reduced Instruction Set Computing

RPU Reconfigurable Processing Unit

SVG Scalable Vector Graphics

WWW World Wide Web

Chapter 1

Introduction

1.1 - Motivation

Embedded application systems play a very important role on technological evolution as

they are prevalent in our everyday life and can be found everywhere, from commercial

electronic products (tablets, cell phones, televisions, microwave ovens, automobiles), to

much bigger and complex systems like GPS, WWW, oil refineries and nuclear plants.

Embedded systems are becoming more and more demanding, they require better

performances with lower power consumption and lower area. Researches on this matter are

of great importance, extensive design automation and optimization tools are crucial to create

more complex embedded systems that can perform as required.

A common practice is to enhance the performance of embedded applications executing on

general purpose processors (GPP) is to map computationally intensive parts (hot-spots) to

specialized hardware such as Reconfigurable Processing Units (RPU) that act like acceleration

coprocessors of the GPP.

An interesting technique to reduce energy consumption and to improve execution time, is

the dynamic mapping. This allows to move computations from the GPP to the coprocessor in a

transparent and flexible way, at runtime, and without pre-changing the program binary.

Currently, there is a research being done on this matter [1] that uses dynamic mapping on

an embedded system model mainly consisting of a Xilinx MicroBlaze processor connected to a

Coarse Grained Reconfigurable Array (CGRA). The technique used is to optimize the code

segments that are most repeated. As they represent a very big portion of the execution of a

program, this will result in a great overall performance boost. The detection of these code

segments is gradually made by first detecting BasicBlocks. Each structure of these is formed

by a sequence of instructions with both only a single entry-point and one exit-point. By

adding several BasicBlocks, a SuperBlock is formed. This type of segment also has only a

single entry but multiple exits. But the most complex structure and the one that is more

important to work on is the Megablock. This is built by a sequence of SuperBlocks that repeats

itself at least once. Each repetition is called an iteration and since Megablocks tend to

usually have a high number of iterations, they can be considered as hot-spots.

2 Introduction

2

1.2 - Objectives and contributions

This dissertation arises from a research, currently in progress [1], as a need to have an

interactive tool that allows the user to visualize the entire data flow based on Megablock

representations and to manipulate them.

The mapper can make decisions that despite of being chosen as the best ones, might not

result as the most beneficial performance and a human perspective could be most useful to

detect particular cases and make a final tweak.

Therefore, the main objective of this dissertation is to develop an interactive application

to allow the user to see a graphical representation of the data flux of the code along with

some important information about it. This would allow having an overview of the entire

execution flow and immediately identifying and do some specific operations on the hot-zones

(Megablocks) of the code without modifying its results. As hardware designers might not have

background knowledge to totally understand and decipher the binary code, this application

should have the feature to convert chosen code segments (represented as Megablocks) into its

hardware representation in Verilog. The application should also keep track of the changes

that the user does, to allow to recover a later version of the work that was done in case of an

interruption either intended by the user or from a failure of undetermined cause as without

this ability, working progress would be lost which could lead to a very frustrating usage of the

application.

The approach was to use the Megablock Extractor (tool that detects and operates on

Megablocks) as a starting point to develop a tool capable of manipulating Megablocks further

so that a better performance can be achieved. This can be done by looking at several

MegaBlocks contents and analyzing them to find common sequences of operations that would

allow merging Megablocks and to create another one, able to work as the ones that originated

it.

Nesting View feature on the interactive GUI, was defined as an additional objective to

allow the visualization of cases that have several Megablocks nested inside other Megablocks.

With Nesting View, the user can understand better how all Megablocks are related and make

more precise optimizations since a deeper representation of the system is available.

When a high iteration Megablock is mapped to the CGRA, the GPP will be waiting for it to

end in order to continue its work. Though the CGPRA can do all the iterations way faster than

the GPP, if even a few of them had been done by the GPP, it would result into a faster

conclusion time for all iterations since the GPP wouldn’t be idle all the time. This same

technique can be used when several CGRA units are available. It would be advantageous to

have several RPUs executing iterations of the same Megablock which would results in a great

reduction of the time needed to finish all iterations. In order to get this implemented in the

future, another additional objective was created. It consists on making a careful analysis of

the shared resources to detect Megablocks that can be processed on several hardware devices

at the same time and to find a solution for the Megablocks where this could not be possible.

The work done on this dissertation provides an interactive tool which represents an

overview of the Megablocks detected by the MegaBlock Extractor and also their inside view.

This helps to understand how the instructions are connected and makes it easier to detect

possible techniques to be used to increase the overall performance. Sections 2.6 and 2.7 show

some of the techniques that were studied. Section 2.6 explains traversal techniques and it

focus on Depth First Search, which was used as a base to an algorithm developed that allows

 Target architecture 3

the merge of two MegaBlocks: the Multipath. While section 2.7 contains some loop

transformation techniques that weren’t included directly at the instruction level as it is

shown but represent in some way the merge ability developed in the Multipath. By using it, a

Megablock is created which can execute as two Megablocks, one at a time. This can avoid

significant changes on processing between the GPU and the CGRA which can represent better

performances.

As chapter five demonstrates, the application was correctly implemented and shows

correctly all the MegaBlocks contents, allowing also to merge them. The merged Megablock

that resulted from the Multipath couldn’t be verified but analysis into it show that at the very

most, some debug could need to be done but the major algorithm and techniques are already

implemented.

1.3 - Structure of this report

This report is organized into six chapters. The current one is the introduction and it’s

about how this dissertation proposal arises and its objectives. The second chapter is the state

of the art, it refers the previous work done on another researches about similar subjects and

has important information that was useful for the work done on this dissertation. Chapter

three explains how the tool can be used, all possible actions and how they were achieved,

and also the organization of the code behind the tool. The algorithm used for merging graphs

is explained on the forth chapter. Chapter five is all about validation of the tool and its

results. The report ends on Chapter six with a conclusion of all the work done on this

dissertation.

Chapter 2

State of the Art

2.1 - Target architecture

The general target architecture considered for this work is an embedded system

consisting of a GPP and a CGRA co-processor like shown on Figure 2.1.

Figure 2.1 – General architecture considered [2].

The GPP that is going to be used is a MicroBlaze processor without cache and with on-chip

instructions and data memories.

The CGRA model has a similar concept than the DIM architecture [3, 4], it’s composed by a 2D array in
which, each row can have arithmetic/logic functional units (FUs) and load/store units. With the

exception of data inputs, any other communication within FUs can only be directly done to the FUs of
the row below. When a FU needs to communicate with another that isn’t adjacent, move instructions

are used to progressively send the data along the unused FUs on each row until it reaches its
destination.

The mapping module is a high-level model connected to a cycle accurate simulator for the

MicroBlaze processor. The mapping algorithm is an instruction-by-instruction technique based

on the one used by Clark et al. on the CCA [5, 6] in which the instructions are available for

 Tests and Results 5

mapping in the execution order and the mapper only uses information from instructions that

were previously executed. As it receives instructions and places them on the FU array, the

mapper updates a table that allows it to keep track of how mapping is going and to search an

empty place for the current instruction. So, each time an instruction is present to the

mapper, it is placed on the first row possible according to the data dependencies and

instruction restrictions. After each placement, the mapper checks if the instruction

communicates with adjacent FUs and if not, it places move instructions on unoccupied FUs as

needed and the routing is established. As mapping goes on, the array becomes more filled and

complex which can lead to a situation where an instruction has no available row that allows a

communication route with a specific FU, the mapping configuration ends and a new one

starts. An example of this mapping technique is represented on Figure 1.1. It shows the

sequence of instructions to be mapped, the FU array of the CGRA being filled and the register

table that the mapper keeps.

Figure 2.2 – Mapping example which shows how branches and memory operations can be mapped [2].

2.1.1 - Tests and Results

To evaluate all the work done so far, Nuno Paulino [7] has recently tested the three

different architectures presented on Figure2.3 with 15 code kernels that work on 32-bit

values. Tests were done with each benchmark calling its corresponding kernel 500 times.

6 State of the Art

6

Merge1 and merge2 are two additional tests that group together 6 kernels. For these 2

tests, several Megablocks were generated as for the other 15, they only had one Megablock

implemented.

Figure 2.3 – Architectures used for testing: i) DDR-PLB; ii) LMB-PLB; iii) LMB-FSL [7].

As it can be seen on Table 2.1, the MegaBlock coverage is very good, the average was

91.59%, which means that the detection was very high and optimization was made on a

significant amount of code. Other MegaBlock characteristics are present on Table 2.1: the

average number of instructions per call is the product of the number of instructions per

iteration with the average number of iterations, maximum ILP is the maximum instruction

level parallelism and SW IPC is the amount of instructions per cycle achieved by software.

Table 2.1 — Detected MegaBlock characteristics [7].

 Other approaches 7

The speedup tests results present on Figure 2.4 show that from the 3 different

architectures used. It is proved that if used the right architecture, the speedup can be very

high and even reach its maximum potential which happens for LMB-FSL with some of the

benchmarks used.

Figure 2.4 – Speedups for all three architectures. Results for DDR-PLB architecture use the axis on the
right. Bar labels show the results for the LMB-PLB and LMB-FSL architectures (axis on the left). A trend
can be observed for all three cases. The different overheads dictate the relative scales of the attained
speedups [7].

2.1.2 - Other approaches

Nuno Paulino’s work [7] included a study of other efforts on the same matter that also

focus on mapping computations to RPUs during runtime but with different approaches:

 Warp processor [8, 9] is a runtime reconfigurable system which uses a custom FPGA as

a hardware accelerator for a GPP. The system performs all steps at runtime, from

binary decompilation to FPGA placement and routing. The running binary code is

decompiled into high-level structures, which are then mapped to a custom FPGA

fabric with tools developed by the authors. Warp attains good speedups for

benchmarks with bit-level operations and is completely transparent. It relies on

backward branches to identify small loops in the program.

 AMBER [10, 11] uses a profiler alongside a sequencer. The sequencer compares the

current Program Counter (PC) with previously stored PC values. If there is a match, it

configures the proposed accelerator to execute computations starting at that PC. The

accelerator consists of a reconfigurable functional unit (RFU), composed by several

levels of homogeneous functional units (FUs) placed in an inverted pyramid shape,

with a rich interconnection scheme between the FUs. The RFU is configured whenever

a basic block is executed more times than a certain threshold. Further work

considered a heterogeneous RFU [10], and introduced a coarser-grained architecture

to reduce the configuration overhead. The AMBER approach is intrusive as the RFU is

coupled to the GPP’s pipeline stages.

8 State of the Art

8

 CCA [5, 6] is composed of a reconfigurable array of FUs in an inverted pyramid shape,

coupled to an ARM processor. The work addresses the detection of computations

suitable to be mapped to a given CCA, as well as discovering a CCA architecture that

best suits a set of detected control-data flow graphs (CDFGs). Initially, the detection

was performed during runtime, by using the rePLay framework, which identifies large

clusters of sequential instructions as atomic frames. The detection was later moved

to an offline phase, during compilation [6]. Suitable CCA CDFGs are discovered by

trace analysis, and the original binary is modified with custom instructions and

rearranged to enable the use of the CCA at runtime.

 The DIM reconfigurable system [3, 4] proposes a reconfigurable array of FUs in a

multiple-row topology and uses a dynamic binary translation mechanism. The DIM

array is composed of uniform columns, each with FUs of the same type. DIM

transparently maps single basic blocks from a MIPS processor to the array. DIM also

introduced a speculation mechanism which enables the mapping of units composed by

up to 3 basic blocks. The system is tightly coupled to the processor, having direct

access to the processor’s register file.

2.2 - Concept of Megablock

Previous work [12] has focused on moving sequence of instructions from a GPP to a RPU

during runtime. Even though the RPU will process these instructions faster, there is a

communication overhead generated by moving computations. But loops tend to execute for a

longer time so, they have a higher potential for improvement, which means that by moving

entire loops, the possibility of amortizing the communication overhead is very high and the

outcome will most likely result into a processing boost. The Figure 2.5 exemplifies the

identification of the several types of code segments that are going to be further explained

next.

 Concept of Megablock 9

Figure 2.5 – Execution trace partitioning according to different granularities: a) BasicBlocks; b)
SuperBlocks; c) MegaBlocks [13].

The detection of the code segments that are worth moving to the RPU begins by first

identifying a BasicBlock. Each BasicBlock consists of a sequence of instructions with only one

entry point and one exit point. So, a BasicBlock ends with the detection of a jump or branch

and then, another BasicBlock starts.

The next step is to identify SuperBlocks [14]. A SuperBlock is formed by adding

BasicBlocks until a backward jump is reached. The target address of the backward jump will

then, start another SuperBlock, a hash value is created with this address and it allows to

uniquely identify each SuperBlock. Thus, it has only one entry point but multiple exits as it

can be formed by several BasicBlocks that can verify conditions to decide if the trace

execution continues within the SuperBlock or exits.

Finally, Megablocks are formed by using the same concept that is used to create

SuperBlocks but this time, with them as the “source”, this is, by adding SuperBlocks until

they repeat themselves. When adding SuperBlocks, there has to be a predetermined

maximum size for the Megablock. Tests concluded [7], that 32 is a good amount of maximum

consecutive SuperBlocks as usually there are no significant gains for MegaBlocks with a bigger

size. The Megablock is a sequence of instructions that tend to repeat several times and each

repetition is an iteration. Even sequences of SuperBlocks that don’t repeat themselves are

considered Megablocks but with only 1 iteration. The identification and extraction of

MegaBlocks can easily be made at runtime by analyzing a stream of SuperBlock hashes.

Results shown on Figure 2.6 prove that the usage of Megablocks with a size of up to 32

Superblocks is a better partitioning method than only using BasicBlocks, Superblocks or Warp

processor’s method [8] which uses the Superblock concept.

10 State of the Art

10

Figure 2.6 –Portions of the trace (Y axis) covered by blocks, identified by several partitioning
techniques, which have at least a certain amount of iterations (X axis) [7].

2.3 - HDL Generation Tool

A toolchain has already been develop [7] with the purpose to detect Megablocks and

generate an RPU and its configuration bits. The HDL description and routing generation tool

parses Megablock information, determines FU sharing across Megablock graph

representations, assigns FUs to rows, adds pass through units, and generates a file containing

the placement of FUs and data required for Megablock identification. Only one Megablock is

executed on the RPU at a time so FUs are shared between different Megablocks. Each call

treats a single Megablock so, to generate a combined RPU description for several Megablocks,

the tool maintains information between calls.

The Figure 2.7 shows an excerpt of a RPU HDL header file that this tool creates (on the

right side) and it’s respective Megablock information that serves as input (on the left side).

The HDL header fully characterizes the RPU as it specifies the number of inputs/outputs and

routing registers, the number of rows and columns of the RPU, the placement of functional

units (FUs) and its constant value operators, and other auxiliary parameters.

 Interactive Application 11

Figure 2.7 - RPU HDL header excerpt [7].

2.4 - Interactive Application

Python was first chosen as the implementation programming language for the multipath

and for the interactive tool because it’s available for all major operating systems, has a

simple and concise syntax, many good resources available and is simple and easy to debug

(which 0increases productivity). The latest version of Python would be desirable but some of

the chosen tools and libraries might not support it so this depends on the requirements of the

packages that would be used.

Windows OS was used to install and test the tools because it is the most used OS, and

usually it is harder to install than for example on UNIX or MAC OS so if it works on Windows, it

will pretty much work on the other relevant OS. Based on Python programming, the next tools

to develop the interactive application were considered:

 Matplotlib [15] is a Python 2D plotting library that allows flexible drawing of graphs. It

was not considered as a tool to work on but it is a requirement for some other tools.

It also requires other libraries (numpy, libpng, freetype, dateutil and pyparsing) and

is available for Python 2.6, 2.7 and 3.2.

 Graphviz [16] is a graph visualization software. It takes descriptions of graphs in a

simple text language and makes diagrams in useful formats like SVG and PDF.

Available for Python 2.6 and 2.7.

 Pydot [17] is a python interface to Graphviz’s Dot language. Allows to easily create

both directed and non-directed graphs from Python. Requires Pyparsing and Graphviz.

Works with Python 2.6 and 2.7.

12 State of the Art

12

 Xdot [18] is an interactive viewer for graphs written in Graphviz’s dot language.

Requires Python 2.6 or 2.7, Graphviz, PyGTK, Pycairo and PyGobject.

 Python-graph [19] provides a suitable data structure for representing graphs and a

whole set of important algorithms. Requires Python 2.6, Pydot and Pyparsing.

 Networkx [20] is a Python language software package for the creation, manipulation,

and study of the structure, dynamics, and functions of complex networks. Requires

Matplotlib, Graphviz, Pyparsing and works with Python 2.6 or later.

 NodeBox [21] is a node-based software application for generative design. Requires

Python 2.5 or 2.6 and Pyglet.

 Igraph [22] is a software package to create and manipulate undirected and directed

graphs. Requires Python 2.4 or later and Pycairo.

There is a python repository [23] , though unofficial, has a very big database of Python

extension packages for windows and is of great help for developing on this programming

language.

Though the preference on working with Python, after more thoughts on the matter,

decision was made to work on java instead since it was the language used to develop the

MegaBlock Extractor and allows to have easier access to data created from it. A couple of

experiments done with Jgraph tool soon made it the selection for this work. It’s a graph

visualization library with interaction capability, Swing compatible and simple to use. It is

based on the graph theory which is basically representation of nodes and edges connecting

them, exactly what was needed for this work.

Previous work [12] includes a Megablock intermediate representation based on a graph

structure. It uses four types of nodes and five types of connections as Figure 2.8 shows.

Figure 2.8 - Types of nodes and possible connections in a Megablock graph. [12].

The first node (Figure 2.8 a)), represents an operation. Figure 2.8 b) is a constant node

which indicates its value and cannot be changed. LiveIn node on Figure 2.8 c) represents an

external value. The Exit node (Figure 2.8 d)), represents an exit point of the Megablock.

Figure 2.8 also shows all the five different types of connections and how they can be

linked to each type of node to represent all the possible interactions between them.

 Multipath Extension of Megablock Extractor 13

Data connections represent the flow of data between outputs and inputs of some nodes. It

is labeled in the format “OUT:IN” where OUT is the output index of the source node while IN

is the input index of the destination node. Operation, Constant and LiveIn nodes can all be

sources of data connections but only Operation nodes can be destinations. LiveIn and Exit

nodes can still receive data but it has some particularities so they are considered of another

type which is explained ahead.

Control connections are boolean values which indicate if exit points are triggered or not.

It always has an operation as source and an exit as destination, therefor its label is in the

format “OUT” to indicate the output index of its source.

Liveout is a data connection in the format “OUT:SYSTEM_VAR” where as usual “OUT”

indicates the output index of the source and “SYSTEM_VAR” indicates the system variable to

be updated. This connection can only have Exit nodes as destinations.

Feedback is also a data connection but this one represents internal updates to values that

were initially fetched. Only LiveIn nodes can be destinations and so, the format used for it’s

label is “OUT” to indicate the output index of the source operation.

exitAddress can only have Exit nodes as destinations and it indicates the instruction

address from where the processor resumes execution for that particular Exit. Its label

indicates the output index of the source node and is in the format “OUT”.

Whenever a connection doesn’t have an operation node as source, its label “OUT” field is

simply left blank.

This concept was adopted by the jgraph graph representation used on the interactive

tool, but to be in accordance with jgraph’s literature, nodes will be called vertices and

connections will be edges.

2.5 - Multipath Extension of Megablock Extractor

The initial approach was to develop the multipath in Python language and to read the files

resulting from the Megablock Extractor processing to analyze and make the optimization.

Even though with the Java approach, those files are still used to read Megablock data, this

way it is possible to use some methods from the Megablock Extractor to recover the original

java objects that originated that data and therefor have access to more detailed information.

On a downside, this required a deep study to the Megablock Extractor to understand how it

generates the data and to know how to use it while on the first approach, the data would

simply be read from the files but still, this can be beneficial as some processing that

Multipath needs can already be found in the Megablock Extractor.

In certain cases like when a program has two MegaBlocks that need to be executed

several times, the mapper choses the one that needs to be executed the most to run on the

CGRA. At a first thought this approach looks good and seems not to have any problem with it

but in some cases, despite of that Megablock being executed more than the other, it doesn’t

mean that all its iterations are done in a row, it can be constantly interrupted by the need to

run the other one. And if the difference between the number of iterations of each one is low,

it means that the Megablock chosen can be interrupted a lot of times and so, mapping to the

CGRA can end up not being profitable due to all the overhead generated by constantly

changing execution between it and the processor. The best way to solve this is to somehow

merge both Megablocks into just one so that it could work as both and load it to the CGRA.

14 State of the Art

14

This requires a deep view into how each Megablock operates and comparisons between them

in order to find out what they have on common and what changes need to be done to make

them work as one. To analyze all vertices of a graph, a Graph Traversal technique was used:

by using the depth first search algorithm, all vertices are guaranteed to be visited, and by

doing this simultaneously on two graphs, comparisons are made and information are gathered

to then decide which parts of those graphs can be merged and how. An explanation of the

Depth First Search can be found next on 2.6.1 and the algorithm that uses this can be found

on chapter four where it is explained with detail.

2.6 - Graph Traversal Algorithms

A part of the Multipath requires the comparison between two Megablock’s contents and

their analysis to figure out which parts are mergeable or not. For this, a graph traversal

algorithm was used to do the part of going through all vertices of both graphs. There are two

interesting types of graph traversals: Breadth First Search examines all the connected nodes

of the one it is visiting and then moves to one of them while putting the others into a queue

to be visited later. The Depth First Search starts on a node and follows a random path until it

finds its end and then backtracks and revisits nodes to find other paths with unvisited nodes.

This is repeatedly done until all nodes are discovered. The Depth First Search approach is the

one that fits Multipath algorithm better and so, it was the used one. Figure 2.9 represents it:

Figure 2.9 - Flowchart of the DFS traversal algorithm.

2.7 - Loop transformation techniques

Some other techniques based on loop transformations were also studied. Even though

these transformations are intended to affect directly program’s code, the same basis was

 - Loop fusion 15

used but with runtime information and a graph approach for the Multipath extension of the

application developed on this work.

2.7.1 - Loop fusion

Loop fusion is a powerful program transformation that can improve the timing

performance of both sequential and parallel programs. As the name suggests, it reduces the

number of loops by merging them. But simple loop fusions aren’t always applicable because

of the existence of conflict data dependences among loops. Next is shown an example of a

loop fusion problem.

Figure 2.10 – Loop fusion example with data dependency problem [25].

Figure 2.10(a) represents a program with 3 loops (L1, L2 and L3) inside another loop.

Despite of all three loops having the same characteristics (they all go from j=0 till j=M), they

all cannot be fused without making proper changes. If we take a closer look at the content of

each loop, we will see that there are some data dependencies that wouldn't allow a simple

fusion. The computation of some variables depend on a future iteration. On L2, B[i,j] depends

on A[i,j+1] so, each iteration of B couldn't be calculated because it depends on a value that is

only going to be available on a future iteration. The same problem occurs on L3, C[i,j]

depends on A[i,j+1] and A[i,j+2] which also creates another dependency problem with L2 as it

depends on C[i+1,j]. To solve these fusion-preventing dependency problems, loop shifting or

retiming can be used. A prologue and an epilogue have to be added when creating a fused

loop as shown on Figure 2.10(b). By using this technique, the loop decision overhead is

reduced as we will only have 1 loop instead of 3 but it creates a longer sequence of

instructions and if used on low iteration loops, it could not be profitable. But MegaBlocks tend

to have high iterations so by applying it on this dissertation, it is expected to have good

results.

16 State of the Art

16

2.7.2 - Loop Distribution with Direct Loop fusion

Loop distribution is a technique that works on the reverse way of loop fusion. This

technique is usually used on large loops that don't fit into cache. The point is to separate

some instructions inside the same loop, into multiple loops. Figure 2.11(a) shows a code

example with three inner loops and one outer loop, Figure 2.11(b) shows the result of this

technique.

Figure 2.11 – Loop distribution example [25].

On the original code, there was a loop that accessed two arrays (B[i,j] and C[i,j]) while

after loop distribution, each array is accessed on a separate loops and the processor only

needs to access 1 array at a time. This might look like counter-productive on a speed

optimization point of view because it adds 1 more loop and so, the decision overhead is

increased. But by applying Loop Distribution with direct loop fusion, the result is a mid-term

between speed optimization and code size as it can be seen on Figure 2.12(a).

Figure 2.12 – Code results after applying a) Loop distribution with direct loop fusion and b) Loop fusion

[25].

By comparing with the Loop fusion technique on Figure 2.12, Loop Distribution with direct

loop fusion still has more loops but it also has a much reduced code size. This technique

 - Loop Distribution with Direct Loop fusion 17

allows a reduction on the number of loops while still maintaining a low sized code, so it can

be used if optimization with the loop fusion technique is problematic by resulting into a very

big code size.

This chapter described all the research done before starting developing the application. It

explains its target architecture developed by Nuno Paulino [7] and the concept of Megablock.

It also explains the choices for the technologies used on the implementation of the

application. The approach used on the Multipath and several techniques related to it were

also discussed. The following chapter is about the most important components of the

application and how they work together. It explains how the organization of this project was

done.

Chapter 3

Architecture of the Interactive
Megablock Merging Tool

As 1.2 describes, the main objectives of this dissertation are to develop an interactive

application and a Multipath extension for the Megablock Extractor. Which means that the

project would have two main streams and so, it was clear that to achieve a good

organization, two packages should be created, one for each objective. “GUI” which contains

all the classes that deal with visualization and interactions such as representation of

Megablocks, Operations and menus. And “MegaBlockMultipath” that has the data processing

classes responsible to read information from the files generated by the Megablock Extractor

Tool to create objects from the GUI Package in order to present a correct representation of

all Megablocks and to make all the necessary changes when a merge is requested.

Due to the high complexity of the application developed and to the high amount of

components used to implement the solution, only the most significant ones are described in

this section. Auxiliary methods and variables are sometimes mentioned but their explanation

isn’t done because they just do a simple task and their names are most of the time self-

explanatory. The next figures (3.1 and 3.2) show the organization of the work done on this

dissertation as the main components. For detailed view on the full architecture, Appendixes

section can be consulted as it has figures of all components of each class used.

 Organization of the MegaBlockMultipath Package 19

Figure 3.1 – Project’s file organization

Figure 3.2 – Overview of all Classes of the Project

3.1 - Organization of the MegaBlockMultipath Package

 This project has mainly two kinds (types) of processing information and therefore,

two java files were created, each one with its own purpose. The application has a need to

read information from the Megablock Extractor and to create objects that would visually

represent them, so, “MultipathExecute.java” was created and it acts mostly like a link

between the MegaBlock Extractor and the jgraph visualization system used which is organized

into the “GUI” package. The other file created is “MergeExecute.java” and it contains more

complex data manipulation relative to merging graphs. It focuses on comparing jgraphs

20 Architecture of the Interactive Megablock Merging Tool

20

already created and it allows creating a different one (merged graph) that represents two

Megablocks at once.

Figure 3.3 – MegablockMultipath pack organization.

3.1.1 - The MultipathExecute Class

 This is the main class of the project. It reads the files extracted from Megablock

Extractor, it creates the main graph, all the graphs that represent each Megablock and the

simplified versions as well. When the interactive tool is launched, the main class of this file is

executed. It uses “readMBCoverage” to get the “coverage” file from the MegaBlock

Extractor directory, which provides global information about the program executed. Then it

uses “readMegablock” to read all information of each MegaBlock detected and it ends by

using the “CreateJGraph” method to build the main graph and all MegaBlock graphs.

“readMBCoverage” and “readMegablock” use SPECs methods to retrieve information from

the files while “CreateJGraph” uses “GUIExecute” to create all the graphs. After this is

done, the application just responds to interactions from the user. “SimplifyGraph” is

activated when the “simplify” button is pressed and it uses the same “GUIExecute” methods

than “CreateJGraph” to create a simplified graph. “MergeView” is activated by the button

with the same name on the popup menu. It shows both graphs side-by-side and it uses

“MergeExecute” for comparisons between each Megablock’s content and it uses “Buttons”

to change the top menu accordingly.

Figure 3.4 – Organization of the MultipathExecute content.

 The MultipathExecute Class 21

Table 3.1 — Resumes of the main MultipathExecute components.

Component Function

readMBCoverage
Reads global information from

the “Megablock Extractor”

readMegablock

Reads information related to a

specific “MegaBlock” from

“Megablock Extractor”

CreateJgraph Creates a graph

SimplifyGraph
Creates a simplified version of a

graph

MergeView
Shows two mergeable graphs in

a side-by-side view

 readMBCoverage: searches into the output directory of the MegaBlock Extractor for

the “(…)mbcoverage.xml” file and with aid of some SPECS methods, a “coverage”

object is retrieved from it. This object contains several information about the

Megablocks extracted and it is used to build the “main graph” by creating a

representation of each Megablock with the GUIExecute.createvertex method and

ordering them according to their memory location by connecting them with edges,

using the “GUIExecute.createedge” method.

 readMegablock: creates for each vertex, on the main graph, another graph with the

content of its respective MegaBlock. This is done by “readMegablock” which uses

SPECS methods to get a “MicroBlazeGraph” object from the “(…)microblaze-

megablock.xml” file that corresponds to the current MegaBlock that is going to be

created. This method is used as many times as the amount of Megablocks so that each

one is then created on “CreateJGraph”.

 CreateJGraph: uses the object gotten from “readMegablock” to obtain information

about the nodes and connections regarding the instructions that are part of the

Megablock and to create vertices and edges on the graph. When these cells are

created, they receive the same attributes as the nodes and connections have. Each

Operation, Constant, LiveIn and Exit has a unique ID in the format of its type

followed by a number e.g. “constant_X” for a constant, where X is a different number

for each constant. They also have its unique label but each type of node has its own

format for it. Constants have their value as label, LiveIns show their register followed

by “(input)” e.g. “r6(input)” for the variable r6, Exits labels have similar format as

22 Architecture of the Interactive Megablock Merging Tool

22

their IDs which is “Exit:X” where X is again a different number for each exit vertex

and operations use the format “X:OP” where X is a different number and OP is the

operation type of the vertex e.g “4:add” for an add vertex. There are two more

attributes (address and instruction) but these are exclusive to operations due to their

nature. The address indicates directly an operation location in the memory and the

instruction is the assembly instruction of the operation. From the instruction it is

possible to obtain the operation’s inputs and outputs though these are also

represented on the edges connected to it.

When creating the jgraph, there are some particularities to pay attention. For some

reason, the Megablock Extractor duplicates some constants, so when they are

detected, “CreateJgraph” method insures that they aren’t added again and that the

only constant vertex created has all the edges that were connected to both constant

nodes. Some operations have different IDs and labels but can have same address and

instruction. This happens when the exactly same instruction repeats itself but gets its

inputs/output from different sources. Due to Megablock’s repetitive nature, this

happens quit often, the same operations are executed many times and the presence

of conditions makes it to receive and send data to different vertices. So in that case,

the operation that represents that instruction needs to be connected to different

vertices and so, another vertex is created representing the exact same instruction.

There is also a special case regarding the store and load operations. These operations

are interpreted by the MegaBlock Extractor as two each. An “addi” that adds an

offset to the register in order to correctly indicate the data, and the store/load

operation itself. But when the store/load operation executes directly on the register

without no offset, the MegaBlock Extractor doesn’t create an add node and just

considers the store/load operation. The problem is that when the two nodes are

created from one of these operations, they both have the same address which can

lead to some problems when identifying operations by addresses. So to avoid it, at

the point of creation of any store and load vertices, it is added the value of 1 to its

address. Since assembly addresses are all even, these will be odd and there won’t be

any chance to have another operation with the same address. This is reverted when

the parsablegraph file is created so that it has no visible effects afterwards.

 SimplifyGraph: creates the simplified version of a graph. When the “simplify”

button is selected in the upper menu of a graph, this creates another representation

of it with only operation vertices and the edges between them. It uses the

information about the complete graph to create another “GUIExecute” object that

only contains information about the cells that are to be represented in this simplified

version.

 The MergeExecute Class 23

 MergeView: is an option available from the popup menu of the main graph and so, it

is used by “PopupMenu” class. When the user selects the Merge View option on the

popup menu, the graphs relative to both Megablocks are shown side-by-side and

“Buttons.CreateMergeButtons” is used to change the buttons on the top panel of

each one according to this new view. “MergeExecute.Setup” is called to compare

both graphs and to detect merge possibilities that are shown on this view.

3.1.1 - The MergeExecute Class

This is the class used to merge graphs. When an instance is created, the two

“GUIExecute” objects corresponding to the graphs to merge have to be passed to it. “Setup”

is used at the moment of creation of a “MergeExecute” object and it uses some inner

methods to detect and to keep information about matching cells from both graphs as well as

cells that can’t be matched, control cells that will generate the control bit for the

multiplexers, and also edges where those multiplexers will need to be inserted. Here is where

the merge algorithm is used which is explained with detail on chapter four. This is a

preparation for the merge step. When a merge is requested, “MergeGraphsv2” is called and

it uses all information gathered to merge the two MegaBlocks. This can be done either from

an option on the popup menu or from a button on the top panel and it is the only class that

uses “GUIExecute.CreateMux”.

 Figure 3.5 – Organization of the MergeExecute content.

24 Architecture of the Interactive Megablock Merging Tool

24

Table 3.2 — Resumes of the main MergeExecute components.

Component Function

Setup

Calls inner classes to gather all

information needed for the

merge

BuildMergeMap
Stores information about cells

that can be merged.

FillControlCellsMap
Stores information about the

control cells.

BuildCantMergeList
Stores information about the

cells that can’t be merged.

FillEdgeLists

Stores information about the

location where multiplexes are

going to be inserted.

MergeGraphsv2 Merges two graphs.

 Setup: uses “BuildMergeMap”, “FillControlCellsMap”, “BuildCantMergeList”

and “FillEdgeList” in the correct order and with the right parameters to build all

the lists and maps that are needed on a possible merge.

 BuildMergeMap: uses a recursive method: “HelpFillMergeMap” to analyze cells from

both graphs and to make associations between them. It also uses the

“CompatibilityFactor” method to compare some operations and to help making

better decisions.

 FillControlCellsMap: uses the instruction that makes the decision on which

Megablock to execute. It detects the corresponding vertices on both graphs and it

stores that information. These cells are the ones where the bit that makes the

decision of the multiplexers comes from.

 BuildCantMergeList: stores information about cells from one graph that aren’t

corresponded on the other one. It is used to make some vertices to only activate

according to the control bit of the multiplexers.

 FillEdgeList: marks the edges that connect a vertex that is on the “merge list” to

one that is on the “can’t merge list”. This represents edges that need to have

multiplexers so that the vertices on the “can’t merge list” are only active when they

belong to the Megablock that is being executed at the time.

 Organization of the GUI Package 25

 MergeGraphsv2 is the method called to start the merge process. It can be activated

from “Buttons” or from “PopupMenu”. It checks all the information gathered from:

“BuildMergeMap”, “FillControlCellsMap”, “BuildCantMergeList” and

“BuildEdgeList” when “MergeExecute” was created and it uses methods from

“GUIExecute” to make the appropriated changes on the Megablock graph that is

about to become the merged one, such as removal and creation of vertices and

edges, and multiplexers as well. It also operates on the main graph to replace both

MegaBlock representations by the merged one.

3.2 - Organization of the GUI Package

This package contains all the visualization type of objects and therefore files were

created to separate the main ones. GUIExecute is the main file and it contains all cells such

as vertices and edges of a graph while the other files contain objects that are used to create

elements to insert into the GUIExecute object and to complement it. Buttons creates a

panel shown on the top of each graph with some options to help the user to interact.

PopupMenu creates a specific menu that pops up on the main graph and also listens and

handles mouse actions and movements done on the GUIExecute object.

Figure 3.6 – Organization of the GUI package.

3.2.1 - The GUIExecute Class

This class creates a jgraph object and also stores all the data associated to it. It contains

several lists and hashmaps to group cells of the same type and to associate their

characteristics. It also has a set of methods that work around those hashmaps and lists in

order to allow retrieving a cell object given any type of attribute or the other way around and

even get an attribute by providing another, e.g it is possible to get a vertex ID by passing its

label to the correct method. GUIExecute also allows to make changes on its graphs content

e.g. create/remove cells and change their color or label. It also provides methods that

retrieve a cell connected to other on any other way, e.g it enables the possibility to get an

edge source or destination vertex. These methods that can detect, which cells are connected

to which and how they are connected, are available from the jgraph library. GUIExecute

26 Architecture of the Interactive Megablock Merging Tool

26

class has so many elements that use each other’s in so many ways and their names also speak

for themselves. However it is necessary to explain the methods that stand out.

 GUIExecute basically holds and provides all information about the graph and the nodes

that originated it and it has methods that allow other classes to make changes on the graph.

When it is created, it also creates a Buttons and a PopupMenu class associated to it. Details

about them can be found on the next two sections of this report.

Figure 3.7 – Organization of the GUIExecute content.

Table 3.3 — Resumes of the main GUIExecute components.

Component Function

Setup

Creates an empty graph.

CreateVertex Creates a vertex.

CreateEdge Creates an edge

CreateMux Creates a mux

Save
Saves all information of the

graph

Load Loads information of a graph

HighLightCells Highlights selected cells

CreateDataFile Creates a data file

 The GUIExecute Class 27

 Setup: is used whenever a graph representation needs to be created. It creates a

jgraph instance and uses Buttons.Setup and PopClickListener to create and

associate a button panel and listener for the popup menu. Since Setup builds an

empty graph, CreateVertex and CreateEdge need to be used by the method that

calls Setup to fill up the graph with the right vertices and edges. This method is used

by MultipathExecute.CreateJGraph to create a jgraph of each Megablock and it is

used by MultipathExecute.SimplifyGraph to create a simplified version of a

Megablock when the Simplify button from the top panel is selected. Note that it is

also used by MultipathExecute.main to create the main graph but since this is only

used once, it isn’t represented on Figure 3.7.

 CreateVertex: is used by MultiPathExecute.CreateJGraph and

MultipathExecute.SimplifyGraph to fill a graph with vertices according to the

intended representation. As described on section 2.4, there are four possible Node

types: Operation, Constant, Livein and Exit. The way they are converted into vertices

is explained with detail on CreateJGraph in 3.1.1 section. CreateVertex method

insures that each vertex has its color and shape according to the type that they

belong to and it also builds lists to keep information about each vertex’s

characteristics organized. After this method is used to build all vertices of the graph,

they need to be connected by edges and for that purpose the CreateEdge method is

called by the same methods that call CreateVertex.

 CreateEdge: is used after CreateVertex, when all the vertices of a graph have been

made. It is used by MultiPathExecute.CreateJGraph and by

MultipathExecute.SimplifyGraph to build all the edges that connect those

vertices.

 Save: is used to save the state of a graph once, after its creation, and whenever

changes are made to its cells. PopClickListener uses Save when it detects the

movement of a cell so that the “Undo” button from the Buttons panel can use the

Load method to get the graph back to a previous state. The save function was

implemented by converting the model of the jgraph into an xml file to store

information about each cell in the jgraph system while all the data behind the graph

was stored into another xml file.

 Load: is used by Buttons.ActionPerformed method when the “Undo” button is

selected. It loads the last xml files saved by the Save method to return the graph to

its previous state.

28 Architecture of the Interactive Megablock Merging Tool

28

 HighLightCells: is used to highlights cells for a better understanding of the graph.

It is used by PopClickListener when the mouse cursor hovers over a vertex to

highlight it. In case of a merge-view, it also highlights the other mergeable cells

related to it and this same option can be obtained from Buttons.actionPerformed

when selecting the “merge” button related to it.

 CreateDataFile: this method is used by PopupMenu class when the “Create Data

File” option from the popup menu is selected. It builds an xml file with information

regarding the selected MegaBlock the same way that the MegaBlock Extractor does

when it finishes its work. This method also creates a parsablegraph file which is the

format that Nuno Paulino needs to use on his work.

3.2.2 - The Buttons Class

Creates a jpanel located on the upper side of the graph. When a graph is created, a

buttons instance is also created and associated to it. The Setup is responsible to build the

panel with the default buttons which are stored in the Actions variable, to resize it and to

set its correct position in the graph window. CreateMergeButtons uses MergeActions to add

buttons to the panel if needed. ActionPerformed is used whenever a button of the panel is

pressed and it guarantees that each button does what it’s supposed to. The most important

components of the Buttons class are described below:

Figure 3.8 – Organization of the Buttons content

 The Buttons Class 29

Table 3.4 — Resumes of the main Buttons components.

Component Function

Setup
Creates the panel and inserts it

on the graph

Actions Contains the default buttons

MergeActions
Contains the merge-specific

buttons

actionPerformed
Does the action according to the

button pressed

CreateMergeButtons
Adds merge-specific buttons to

the panel

 Setup: is used by GUIExecute.Setup in the moment a graph is created to build a

Buttons instance and to associate it to the graph. It uses javax.Swing to create a

JPanel on top of the graph window with all the default buttons which are stored on

the Actions enum type of variable. It also creates a listener to detect buttons

pressed and actionPerformed executes the correct action.

 actionPerformed: is activated when a button is pressed. By consulting the listener’s

information, it knows which button was selected and therefore executes the code

according to that button. Detailed explanation on how each feature was implemented

can be found in the Actions and MergeActions sections bellow.

 Actions: is an enum type that contains the default actions/buttons: Zoom in, Zoom

out, Undo, Simplified and Reset. The next figure shows the panel created with only

the default buttons followed by an explanation of each one.

Figure 3.9 – Default buttons panel.

o Zoom in: zooms in the scale of the screen by a default amount. This feature

is obtained by using the jgraph methods available for this specific purposes.

o Zoom out: zooms out the scale of the screen by a default amount. This

feature is obtained by using the jgraph methods available for this specific

purposes.

30 Architecture of the Interactive Megablock Merging Tool

30

o Undo: undoes the last change to the graph. By pressing this button, the Load

method of GUIExecute is used to load the last save file representing the

previous state of the graph.

o Simplified: opens another window with a simplified version of the graph

which doesn’t include inputs and exits, therefore, only operations and the

edges between them are represented. The SimplifyGraph method on

MultipathExecute is used to create this simpler version of the current

graph.

o Reset: positions all the cells back to the original Hierarchical organization

that is first shown when the current graph window was opened. Uses the

Layout method on GUIExecute which rearranges all the cells again.

 MergeActions: If the graph is being visualized on a merge view, then some more

buttons are added: the “MergeGraphs” button and some “Merge” ones according to

the amount of groups of cells that can be merged. Next figure shows the panel with

these extra buttons.

Figure 3.10 – Merge Button Panel

o MergeGraphs: opens a new window with the merged graph. This button is

only available on the “merge view” so a MergeExecute instance has already

been created and all this button does is call the

MergeExecute.MergeGraphsV2 method to merge both graphs.

o Merge: by checking the amount of corresponding groups of cells between

both graphs on the MergeExecute instance, the same amount of Merge

buttons are created and when one of them is pressed, it calls the

HighlightCells method on both graphs while passing to them the group of

cells corresponding to the button clicked so that they are highlighted.

 CreateMergeButtons: is the method responsible to add the Merge relative buttons. It

is used when a “MergeGraph” is created to add the Merge Buttons to the default

buttons panel.

3.2.3 - Handling Popup Menus

The PopupMenu.java file has two main classes: PopupMenu itself which contains the model

of the menu and the handler to deal with all the selections made within it, and

PopclickListener which is responsible to handle actions made within the graph area such as

mouse movements, clicks and cell movements. It also makes the popup menu appear when

and where it is supposed to.

 Handling Popup Menus 31

Though the popup menu is only available on the main graph, the other instances of

GUIExecute that represent Megablocks contents also use the PopclickListener. This class

not only creates the popup menu but it also uses listeners and handlers to keep track of the

activity done with the mouse and to respond properly to each action. When created on the

main graph, it makes the popup menu appear with a right click on a vertex and then, the

PopupMenu object executes the action associated to each button clicked on the menu. When

created on a Megablock graph, it keeps track of the cells that are hovered with the mouse

cursor to highlight and to change colors of cells for a better interpretation of the graph by the

user, it also keeps track on changes made on the layout so that it can be undone by the

“Undo” button when it is selected, it also shows a vertex detailed information when a double

click is done on one.

Figure 3.11 – Organization of the PopClickListener content

32 Architecture of the Interactive Megablock Merging Tool

32

Table 3.5 — Resumes of the PopupMenu components.

Component Function

mouseMoved Highlights cells

mouseDragged
Saves graph’s layout when a

change is made

mouseClicked
Shows vertex’s info or a popup

menu

doPopMain Creates a popup menu

PopupMenu

The menu itself and does the

action according to the button

pressed

PopClickListener
Does the action according to

mouse inputs

 PopclickListener: contains the methods that are going to handle interactions with

the mouse and doPopMain method to build a PopupMenu instance on the main graph.

An instance of this class is created at the moment of creation of each graph so it is

called by GUIExecute.Setup and it is responsible to handle the actions done with

the mouse on the zone of the graph.

 mouseMoved: keeps reading the mouse cursor's location and uses

GUIExecute.highlight to highlight the current cell in case of the listener not

belonging to a merge graph. In case it is a merge graph then it highlights all the cells

that belong to the mergeable tree that the current cell belongs. And in case of a

merge view then it also highlights the corresponding mergeable tree of cells on the

other graph.

 mouseDragged: checks if a cell is moved and if so, it calls GUIExecute.Save to save

the graph's layout so that it can be undone if needed. When the “Undo” button from

the top panel is selected, it loads the last saved state.

 mouseClicked: is used to detect double-clicks and right-clicks and to handle them.

Whenever a double click is done in the main graph, it opens the corresponding graph

window. If it is done on a vertex of a Megablock graph, then it opens a window

showing detailed information about it such as its address, corresponding instruction

and parent and child vertices. All this information is obtained from GUIExecute since

it stores them all at the creation time of each graph. As for the right click: when it is

done on a vertex, mouseClick checks if the current graph is the main graph and if

so, it calls up doPopMain to make the popup menu appear with all the appropriate

buttons.

 doPopMain: uses PopupMenu to create the menu and to adjust it according to the cell

which it is related to. Because the popup menu only makes sense if the current

 Handling Popup Menus 33

instance of this class is related to the main graph, this method only creates it once

and for that specific graph only.

 PopupMenu: builds the popup menu as shown on figure 3.11 and it creates inner

listeners and handlers to detect selections in the menu and submenu and to make the

according action take place.

Following is a figure showing this menu and explanations about each action integrated

into it.

Figure 3.12 – Popup menu example.

o Open Megablock: this button opens the graph that shows the content of the

Megablock which this menu corresponds. To do so, it uses the SetVisible

method on the GuiExecute instance that has the information of this

MegaBlock.

o Open Merge View: Due to Megablock’s nature described on 3.2, the ones that

start with the same address are good candidates for a possible merge. So,

when this button is selected, MultipathExecute.MergeView is called to

show the graph corresponding to the present MegaBlock and the other one

with the same address on a merge view allowing the user to analyze both with

further detail, compare them and to eventually perform a merge if desirable.

If there is no other MegaBlock with the same starting address, the selection of

this operation shows a warning message like the one bellow:

Figure 3.13 – Unable to merge warning message.

But despite the error, it is still possible to take a look at the merge view” of

the selected Megablock with another one by using the “Merge this Megablock

with…” button.

34 Architecture of the Interactive Megablock Merging Tool

34

o Merge this Megablock with…: By selecting this option, a submenu opens for

the user to select which MegaBlock is intended to merge with the current

one. Just like the “Open Merge View” button, this one also uses the

MultipathExecute.MergeView method to show both graphs on the merge

view. This allows the user to check for another possible merge between

Megablocks that don’t start with the same address.

o Merge Megablocks: merges the Megablock selected with the other one that

has the same address. It uses the MergeExecute.Setup to compare and

prepare graphs for merge and then the MergeExecute.MergeGraphsV2 to

effectively do the merge. Details on how the merge is done can be found on

Chapter 4. The next figure shows the main graph before and after a merge.

Figure 3.14 – Main graph before and after a merge.

o Create Data File: This method uses GUIExecute.CreateDataFile to create

data files relative to the graph chosen and updated with all the changes done

in it.

This chapter presented the application’s structure while explaining the main parts of it. It

was organized with all the classes directly related with the visual part into the GUI package

while MegablockMultipath contains the ones that do most of the data related methods. It

also explained with detail the function of the most important classes and methods, and how

they are related. Now that the structure and organization was explained, next chapter will

focus on giving a deeper insight of the solution developed to merge Megablocks.

Chapter 4

Algorithm for Megablock Merging

The diagram on Figure 4.1 represents the algorithm used to analyze both graphs and to

match cells to be merged. This code is in the MergeExecute class and it is requested by the

PopupMenu class when merging 2 graphs.

The technique used to analyze both graphs and to look for matches begins with the

constants or registers cells since they are the inputs and calculate a “compatibility factor”

between their children. These actions are used recursively until an “exit” is reached and the

information is used to determinate which cells can be merged.

Inputs were used as starting points because they are the most easy to compare since they

only have as attributes the “ID” and “LABEL” that must be the same. This also happens with

the “Exit” cells so the technique could be used by starting on these ones and going backwards

until the “inputs” are reached. In this case, the parents would have been followed instead of

the children.

36 Algorithm for Megablock Merging

36

Figure 4.1 – UML diagram explaining the algorithm used to match cells.

The first step is to look for same “input” vertices on both graphs. This is done by

comparing the “input” list of vertices on each graph which only contain this type of vertices.

Then, for each input, a test is made to check if it has already been matched on both graphs.

If it is not the case, they are marked as matched and for each children of matched cells,

it starts looking for possible matches for them on every children of the other graph. A list of

possible matches is saved, if it has only 1 element, then a match is directly made and moves

to the next children. If it has more than 1 element, then, a compatibility factor is calculated

and the child with a higher value is chosen.

To better explain it, it is necessary to follow the example on Figure 4.2, it shows how

matches are done on one of the graphs and its order. Bear in mind that only matches are

represented, because these cells can also have children and parents that weren’t matched.

 Handling Popup Menus 37

Figure 4.2 – Example of the order that matches are being done.

It starts by looking at the inputs, and if both graphs have the same input, they are

matched as it happens on cell 1. Then it looks at their children and compares them, in order

to find the best match. The comparison is made by picking a child on the first graph and

giving a “Compatibility Factor” to each possible match on the other graph and the match is

made with the cell that has the highest factor. This selection procedure is explained with

detail further ahead.

Each time a match is made, the search proceeds to its child. For example after looking on

cell 2’s children and finding cell 3 as a match, it doesn’t look for more matches of 2’s

children. Instead, it goes on, following 3’s path and looking for its children for matches and

then matches cell 4. This time no match is possible on 4’s children so it looks for a match on

its parents other than the one where it came from and also no match is found so it goes one

step back to cell 3. The same happens here, the procedure repeats itself and goes back again,

this time to cell 2. Already in 2, there is other child that can be used to match and that’s

what happens. Cell 5 is matched and because there is no other match on its path, it goes back

to cell 2. Now that all possible matches on cell 2 were made, its parents are checked. Since it

came from 1, this isn’t considered and cell 6 is found as a match. A match on 6’s children is

found and after another one on its parents is done always following the same method. After

cell 8 is matched, there is no other match possible on the graph. This can be easily checked

by following the algorithm, the analysis goes all back to cell 1 (through 8->6->2->1) and by

reaching it, no other match is found to “go back another step”, the cycle ends. To sum up, by

following this method, the route made while analyzing cells was: 1->2->3->4->3->2->5->2->6-

>7->6->8->6->2->1. At this point, it starts all over again by looking on the inputs for one that

hasn’t been matched before and has a match on the other graph. When this point fails, then

38 Algorithm for Megablock Merging

38

the matches are completed and the mapping of possible merges between both graphs is

complete.

To compare cells and match them, whenever there is more than one possibility, the

compatibility factor is used. It was necessary to use this complex approach due to the

possibility of having several cells representations of the same operations and therefor also

having same address and the only difference would be their inputs and outputs (which have

been explained with more detail on section 3.1.1).

The compatibility factor is obtained by comparing all parents and all children of each

vertex, and for each correspondence, the factor increases. For constants, inputs and exits it

compares their IDs and their Labels (they do not have addresses or instructions). And for

operations, addresses and instructions are the attributes compared. After doing this

procedure to all possible merges, the one with the best factor is selected. Figure 4.3 shows a

merge view example that can help understand this problem and how the solution works and

Figure 4.4 contains information about some vertexes of this example.

Figure 4.3 – Merge view example.

Figure 4.4 – Detailed information of some vertices.

As it can be seen by the yellow colored vertices, “37: add” on the first graph is associated

to “24: add” on the second one. The first graph has the exact same operation, “24: add”, and

despite that, “37: add” was chosen instead. So, in this case, it started by the constant “1”

which was directly linked on both graphs and then, compared all the children of both “1”

vertices for the ones that have the exact same instruction. If the first graph would have only

one vertex with the instruction “addik r8, r8, 1”, it would have been linked and the

procedure would go on through their children but since both “24:add” and “37:add” have the

same instruction as “24:add” on second graph, they need to be compared with the

compatibility factor. Detailed vertex info on Figure 4.4 show that “24:add” on second graph

has 2 parents (“11:add” and “1”) and 2 children (“Exit:3” and “r8(input)”), “37:add” has the

same amount and types of cells connected to it while “24:add” on first graph, on its turn, has

the same type of parent vertices but it has some differences regarding its children: it has

“28:xor”, “Exit:4” and “37:add”, and it is missing an input type of cell. So, vertex “37: add”

has a higher factor and it will be chosen over “24: add”.

At this point, all mergeable cells are mapped. To actually merge both graphs, the one

with more cells is used to be changed so it can also work as the other graph. Looking back on

the last example, graph 1 of Figure 4.3 has a red edge connecting “24: add” to “37: add”.

These red edges show where multiplexers are placed to create the merged graph. They are

detected by analyzing both graph’s matching and non-matching vertices. Whenever a

matching vertex receives data from different sources on each graph, edges that represent

that data flow are marked as red. By inserting a multiplexer on that spot, connecting both

edges to its inputs and connecting its output to the matching cell, a selection between each

 Handling Popup Menus 41

input of the multiplexer can be made. Figure 4.5 shows the result of the merge operation

that explains it better.

Figure 4.5 – Result of merging both graphs from Figure 4.3.

The difference is that on graph 1, cell “37: add” has cell 1 and cell “24: add” has parents

while it’s matching on graph 2, cell “24: add”, has cell 1 and cell “11: add”. This cell “11:

add” of graph2 is matched to the same cell “11: add” on graph1 so cell “37: add” will have a

multiplexer connected to it to select if either the input comes from “24: add” or “11: add”.

In this example, the merged graph needs more multiplexers. As Figure X shows, there is

another connected to “r7(input)”. For this Megablock to be able to operate correctly as either

one of the graphs that gave origin to ti, it is necessary to make the correct selection on all

multiplexers. To achieve this, all edges from graph 1 (the red ones) are connected, as the

first input of each multiplexer, while the other edges are its second input. To choose

between all inputs 1 or all inputs 2, all multiplexers have the same control bit on its input 3.

Figure 4.6 shows where this control bit comes from.

Figure 4.6 – Portion of a merge view showing the control vertex as red.

Those red cells represent a special case. They are both the same operation and they have

both the same parent and the same child but, in fact they have a different label. In graph 1

it’s “greaterOrEqualZero” and on graph 2 it’s “lessZero”. This means that they represent

opposite conditions and the control bit they generate (that goes to the exit) is never the same

on both graphs. This is where the control bit comes from, the merged graph only shows 2

inputs on each multiplexer, but this bit is actually connected as its 3rd input. It just isn’t

shown because it would increase the complexity of the graph and that becomes less pleasant

to visualize. In this way it is possible to control all multiplexers to have the same input at the

same time, making the merged graph to execute as either graph1 or graph2.

Chapter 5

Validation and Results

5.1 - GUI

By comparing several graph representations of megablocks created by this software with

their respective “asm” files, it is possible to conclude that there is always a correct

representation of all the operations contained on each Megablock and all the edges between

them. In fact, its interactivity also works properly and vertices and edges can be moved

around causing no issue. The popup menu is only accessible on the main graph by right

clicking a Megablock as intended and, as checked, the options on the menu show no problem.

The top panel shows the correct buttons according to the type of graph shown (main graph,

Megablock’s content, merge view, simplified) and they all work perfectly. The only problem

detected is related with the fact that it hasn’t been possible to undo a merge due to its

complexity. The display and organization of Megablock contents could be better indeed. With

a big amount of vertices and edges, their labels and also the cells where the edges are

connected can be hard to see. However, this is a limitation that comes from the use of jgraph

as it only contains few layout types available and this is the result of the hierarchical layout.

Additional features like Zoom in, Zoom out and double click to show the cell’s

parents/children were implemented to help to get a better understanding of how each

Megablock works.

Following is a more detailed description of the tool’s usage. The tool starts up by showing

a representation of the Megablocks of the last program executed in the Megablock Extractor

as shown on Figure 5.1.

 GUI 45

Figure 5.1 – Main graph with popup menu opened

They are ordered from the top to the bottom by the starting position in the memory of

each one, in such way that the MegaBlocks with lower address are positioned on the top and

the ones with higher are on the bottom. The edges might mislead to a false interpretation

about a possible relation between MegaBlocks or even an execution order but this is not the

case. They connect MegaBlocks to the next one(s) in this order of addresses. With this view,

MegaBlocks with the same starting address are next to each other horizontally and might be

good candidates for a merge.

By hovering the mouse cursor over a Megablock, it is highlighted along with all the others

that have the same starting address. And by double clicking it, another window opens showing

its content.

The panel on the very top has a couple of buttons which allows to “Zoom in”, “Zoom

out”, “Undo” changes done on the graph and “Reset” the view to the starting one. The zoom

buttons are useful on cases when, for instance, there are so many vertices that they can’t fit

on the original window. If a user drags to many cells around, he can use the “Undo” button to

reverse the last action or the “Reset” to return the view to the starting point.

There is also a popup menu that can be accessed by right clicking on a Megablock. This

menu allows to “Open MegaBlock” which performs the same action as double clicking it,

“Open Merge view” opens both the selected Megablock and one with the same address side-

by-side allowing to compare both and to perform a merge if wanted. “Merge Megablocks”

immediately merges the selected Megablock with one with the same address without opening

the merge view, “Create Data File” creates a file with the parsablegraph format like the one

created by the Megablock Extractor, but in case of applying to a merged block, it has all the

changes included addition of multiplexers, “Merge view this Megablock with…” performs the

“Open merge view” action with a chosen Megablock.

46 Validation and Results

46

The inside view of a Megablock accessed either by a double-click or the “Open

Megablock” option, on the right-click menu, brings up a window representing the content of

the Megablock. An example of the inside view of a Megablock is visible on Figure 5.2.

Figure 5.2 – Inside view of a Megablock

Inputs are represented by pink rectangles, constants have their value shown on the label

and only have outgoing edges, registers can have both incoming and outgoing edges as they

can be read or/and written from.

Exit points are shown as grey rectangles and because they lead to the end of the

Megablock processing, only incoming edges are connected to them.

The blue elliptical cells represent operations. Each one has a different number which was

assigned by the Megablock Extractor and doesn’t have any meaning, it only serves to better

identify and reference each particular operation vertex. Followed by the number is the

operation type of the vertex. Despite of having, all of them, different identification numbers,

a very same operation can be, and it is most of the times due to MegaBlock’s repetitive

nature, represented more than once. These vertices have the same operation and process on

the same inputs but since they are (or at least one of them is) obtained from a different

vertex, it is represented again on the graph. Detailed information about an operation can be

obtained by simply double clicking on it. This pops up a window with its address, complete

assembly instruction and parent/child vertices that are connected to it if any. Figure 5.3

contains an example.

 GUI 47

Figure 5.3 – Detailed information about a vertex.

In case of viewing a Megablock that results from a merge, white hexagons are shown as

representing multiplexers that allow the Megablock to operate as any of the two ones that led

to this merge. Another difference is the presence of an operation colored red instead of blue.

This operation is the one that controls the selections of all multiplexers. It generates a

control bit that is connected to each multiplexer but it isn’t shown on the graph to not

overwhelm it with more edges.

On this view, the top panel has an additional button: “SIMPLIFIED”. This shows another

view of the current graph without inputs and exits. Even though, it loses most of its

information, because some graphs can have too many vertices and, by restricting the view to

operations only, it can help to understand how they are connected and also their

dependencies. This can be seen on Figure 5.4.

48 Validation and Results

48

Figure 5.4 – Simplified view.

Figure 5.5 – Merge view.

The “Merge View” shows the two MegaBlocks contents side-by-side as displayed on Figure

5.5. The graph on the left is the one that will register changes done in case of a merge. This

is the Megablock that has more operation vertices which usually makes it the best one to

create the merge from. In this view, both graphs have a red colored operation indicating the

place where the control bit for the multiplexers is going to be generated. The red edges

indicate edges that will need to have a multiplexer and another edge connected to it

according to the other graph.

In this view, hovering over a vertex changes its color to yellow as well as its corresponding

vertex on the other graph. It also highlights the group of mergeable vertices that they both

belong to by giving a good perception of common vertices to both graphs that can be merged.

The “Merge” button on the top panel also highlights these vertices. If there are more group

associations, more buttons are added to allow the highlight of different correspondences

between both graphs. The panel on top also has a MergeGraphs button to perform that exact

action by making the needed adjustments on the graph on the left side and to transform it

into the merged graph and to be able to process both graphs. The representations of these

megablocks on the main graph are also merged and a new Megablock named “megablock1

MERGED WITH megablock2” (where megablock1 and megablock1 are the Megablock IDs of

each one) replaces both of them. Due to its complexity, the UNDO button has no effect on

this action and the merged megablock cannot be merged with another Megablock but it is still

possible to see its content and detailed information of each vertex.

5.2 - Validation of the Merged Block

Initially, the procedure to validate the merge ability was to use the “parsablegraph.txt”

created from a merged Megablock, on the embedded system that Nuno Paulino uses in his

work. But the results from MegaBlock Extractor don’t include any multiplexer and since this is

a new type of vertex and it has particularities such as a control bit and a selection between

two inputs that needs to be done. At the time this work was done, the system wasn’t

prepared to receive and to implement this on its hardware. So, it was decided that validation

would be done by using ModelSim to simulate hardware that would correspond to the merged

megablock.

The steps were starting by creating simple programs in “c”, compiling them with gcc to

create the “.elf” file, then loading them into “MegablockExtractor” to finally generate all

output files, running MegablockMultipath and merging two megablocks and finally using

ModelSim to make a model of the resulting merge. At the compiling step, the program’s

variables final values are obtained and then compared with the simulation. By comparing

these values, conclusions can be made such as if the merge block can correctly work as both

megablocks or not.

On the attempt to use this method to validate the merge structure, very simple codes

were made and Figure 5.1 shows an example.

 - Validation of the Merged Block 51

Figure 5.6 – Source code of an example to test.

An “if” inside a “for” makes this case to have a loop and several decisions. Each time the

loop is done, “A” is incremented and in case of being lower than 5, it is incremented again.

This example resulted into two MegaBlocks with the same address and with the possibility to

be merged. Figure 5.7 shows the assembly code for one of those MegaBlocks while Figure 5.8

shows its graph representation obtained with the MegablockMultipath.

Figure 5.7 – Assembly code resulting from using the source code of Figure 5.1 on the Megablock

Extractor.

52 Validation and Results

52

Figure 5.8 – Graph representing operations from Figure 5.1

A simple example like this one is represented by a quit complicated graph with more than

20 vertices and 40 edges. This led into struggles to create a model and unfortunately,

validation was not possible.

A flaw was also found with this case and it can be seen on Figure 5.9.

Figure 5.9 – Example of a flaw on the merge technique.

All vertices on the graph on the right side are matched on the left one but this left one

has some more vertices that aren’t on the graph of the right side, these are the ones that

aren’t highlighted. The merge algorithm adds multiplexers between a non-mergeable vertex

and its mergeable child as explained on chapter 4, this selects the mergeable cell input. In

this case, there isn’t any non-mergeable vertex with a mergeable child because these

operations end on the “14: store” operation that doesn’t even have a child. To correct this,

that “14: store” has to be limited on the merged Megablock and to only be able to process

when the graph on the left is selected, which can still be checked by the control bit from the

red colored vertex.

Chapter 6

Conclusions and future work

This dissertation has its basis on other previous work done on embedded systems

consisting of a GPP and a CGRA with focus to boost its overall performance. As embedded

systems are very common on most of the technological equipment that we need to deal on a

daily basis, evolution on this matter have a big impact on a very wide range of types of

electronic products which result into evolution on several different areas. CGRAs are able to

process data faster than a GPP so an effective method to map instructions into it is desirable.

This means finding high execution program traces, which is already done by the detection of

Megablocks. The aim of this dissertation is to aid by having a good overview of the programs

to execute in an embedded system with usage of the MegaBlock concept and to try to boost

its performance by exploring a weak spot on the mapping technique used and for which a

Merge of Megablocks would have high impact on improving its performance.

The work done on this dissertation shows that a tool was developed and it correctly shows

MegaBlock’s contents and allows to interact with them. It also allows doing the Merge of

Megablocks. Though it couldn’t be validated as explained on chapter 5, the algorithm used

(chapter 4) can be of good use since it focuses on a careful analysis of the relationships

between vertices and at the same time comparing some of their characteristics. So the

objective to make an interactive tool was fulfilled, while the objective of developing the

merge Megablock technique was also done but still unable to be validated and a flaw was

detected. Generation of the VHDL code wasn’t implemented but on the other hand, the tool

generates an output file in parsablegraph format that allows the receiver of this work to use

it on its hardware. As for additional goals, the tool does not allow having a nested view on the

Megablocks but it does allow to have an overview of them and to pick which one to open and

show its content. The tool does not allow recovering a work previously finished but has the

ability to undo the interactions done with the exception of Megablock’s merging due to its

complexity.

Future work should include improvements on this tool to overcome the flaw on the merge

ability and to develop it further in order to be able to merge more than 2 Megablocks and

even to do some other operations that can improve performance. It would also be very

interesting to expand the merge technique to another kind of approach that would allow the

execution of the same Megablock on more than 1 CGRA at a time or even spreading some

execution between them so that more than one could be processing at the same time.

56 Conclusions and future work

56

References

[1] N. Paulino, "Transparent Generation of Reconfigurable Hardware at Runtime from
Execution Traces," 2013.

[2] J. Bispo and J. M. P. Cardoso, "On Identifying and Optimizing Instruction Sequences
for Dynamic Compilation," Proceedings of the International Conference on Field-
Programmable Technology, pp. 1-440, 2010.

[3] A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro, “Transparent reconfigurable
acceleration for heterogeneous embedded applications,” in Proceedings of the
Conference on Design, Automation and Test in Europe (DATE ’08), pp. 1208–1213,
Munich, Germany, March 2008.

[4] A. C. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro, “Run-time adaptable
architectures for heterogeneous behavior embedded systems,” in Proceedings of the
4th International Workshop Reconfigurable Computing: Architectures, Tools and
Applications, pp. 111–124, 2008.

[5] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner, “An architecture
framework for transparent instruction set customization in embedded processors,” in
Proceedings of the 32nd Interntional Symposium on Computer Architecture (ISCA ’05),
pp. 272–283, June 2005.

[6] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-specific
processing on a general-purpose core via transparent instruction set customization,”
in Proceedings of the 37th International Symposium on Microarchitecture (MICRO’04),
pp. 30–40, Portland, Ore, USA, December 2004.

[7] J. Bispo, N. Paulino, J. M. P. Cardoso, and J. C. Ferreira, "Transparent Runtime
Migration of Loop-Based Traces of Processor Instructions to Reconfigurable Processing

Units," International Journal of Reconfigurable Computing, pp. 1-20, 2013.
[8] R. Lysecky and F. Vahid, “Design and implementation of a MicroBlaze-based warp

processor,” Transactions on Embedded Computing Systems, vol. 8, no. 3, article 22,
2009.

[9] R. Lysecky, G. Stitt, and F. Vahid, “Warp processors,” ACM Transactions on Design
Automation of Electronic Systems, vol. 11, no. 3, pp. 659–681, 2006.

[10] A. Mehdizadeh, B. Ghavami, M. S. Zamani, H. Pedram, and F. Mehdipour, “An eficient
heterogeneous reconfigurable functional unit for an adaptive dynamic extensible
processor,” in Proceedings of the IFIP International Conference on Very Large Scale
Integration (VLSI-SoC ’07), pp. 151–156, October 2007.

[11] H. Noori, F. ehdipour, K. Murakami, K. Inoue, and M. S. Zamani, “An architecture
framework for an adaptive extensible processor,” Journal of Supercomputing, vol. 45,
no. 3, pp. 313–340, 2008.

[12] J. Bispo, "Mapping Runtime-Detected Loops from Microprocessors to Reconfigurable
Processing Units," 2012.

[13] J. Bispo and J. M. P. Cardoso, "On Identifying Segments of Traces for Dynamic
Compilation," International Conference on Field Programmable Logic and
Applications, pp. 263-266, 2010.

[14] "<SUPERBLOCK.pdf>."
[15] Matplotlib. Available: http://matplotlib.org/
[16] Graphviz. Available: http://www.graphviz.org/
[17] Pydot. Available: https://code.google.com/p/pydot/
[18] Xdot. Available: https://github.com/jrfonseca/xdot.py

http://matplotlib.org/
http://www.graphviz.org/
https://code.google.com/p/pydot/
https://github.com/jrfonseca/xdot.py

58 Conclusions and future work

58

[19] Python-Graph. Available: https://code.google.com/p/python-graph/

[20] Networkx. Available: http://networkx.github.io/
[21] NodeBox. Available: http://nodebox.net/
[22] Igraph. Available: http://igraph.sourceforge.net/
[23] Python Repository.Available:http://www.lfd.uci.edu/~gohlke/pythonlibs/
[24] Jython. Available:http://www.jython.org/
[25] M. LIU, "Nest-loop transformation techniques considering timing and memory

optimization for embedded systems," Doctor of Philosophy in Computer Science,
University of Texas, 2006.
Graph Transversals. Available: http://basudip.hubpages.com/hub/Graph_Traversals

https://code.google.com/p/python-graph/
http://networkx.github.io/
http://nodebox.net/
http://igraph.sourceforge.net/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.jython.org/

Appendixes

60 Conclusions and future work

60

These figures show all components that are part of the application developed in this

dissertation. Each class has some elements that can be considered the main ones while others

aren’t so important and serve to help the main ones. Therefore, the architecture of the

Multipath Merging Tool was simplified on chapter 3. Here on this section can be found figures

illustrating the complete architecture of each class.

Appendix 1

Complete architecture of the MultipathExecute class:

 - Validation of the Merged Block 61

Appendix 2

Complete architecture of the MergeExecute class:

62 Conclusions and future work

62

Appendix 3a

Complete architecture of the GUIExecute class (part 1):

 - Validation of the Merged Block 63

Appendix 3b

Complete architecture of the GUIExecute class (part 2):

64 Conclusions and future work

64

Appendix 4

Complete architecture of the Buttons class:

 - Validation of the Merged Block 65

Appendix 5

Complete architecture of the PopClickListener and PopupMenu classes:

