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Resumo 

O presente relatório tem como objetivo documentar todo o trabalho realizado durante a 

unidade curricular: Dissertação de Mestrado Integrado em Engenharia Electrotécnica e de 

Computadores. Neste documento é possível encontrar os resultados de uma primeira 

abordagem ao projeto, começando com uma introdução ao tema, seguido de uma revisão da 

literatura com o estado da arte, e terminando com uma explicação sobre a arquitetura e o 

algoritmo usado para desenvolver a ferramenta, bem como os resultados obtidos. 

Uma investigação em curso, por Nuno Paulino consiste no mapeamento de traços binários 

para hardware em tempo de execução. O sistema desenvolvido gera descrição de hardware 

correspondente a um programa a ser executado num sistema embarcado. A sua finalidade é 

fazer seleções de alguns troços do programa para ser mapeado para o RPU em vez da GPU de 

modo a melhorar o desempenho global do sistema. Essas seleções são baseadas em grupos de 

instruções denominadas por Megablocks, que representam uma porção bastante elevada da 

execução total do programa. 

A análise completa das computações e a deteção de Megablocks são feitos pela 

ferramenta Megablock Extractor desenvolvida por João Bispo que implementou várias 

técnicas complexas que permitem a partição dinâmica ao nível binário. Megablocks extraídos 

com esta ferramenta representam pedaços de código que tendem a repetir-se uma elevada 

quantidade de vezes e, portanto, ao usar essas unidades de deteção como elementos de 

estudo e aperfeiçoamento, há melhores chances de obter uma melhoria do desempenho 

global. 

A ferramenta interativa desenvolvida nesta dissertação pode ser vista como um elo entre 

esses dois projetos descritos anteriormente. Ela lê as informações extraídas pelo Megablock 

Extractor e representa-as numa interface gráfica interativa de modo a permitir uma melhor 

visualização e compreensão dos Megablocks. Ela também implementa uma técnica que 

permite a fusão de dois Megablocks. Assim, abre a possibilidade de ter dois Megablocks 

mapeados no RPU em vez de apenas um e, portanto, reduzindo a sobrecarga de comunicação 

entre o GPU e o RPU. 
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Abstract 

The present report has the goal to document all the work done under the course unit: 

Dissertation of Integrated Master in Engineering Electronic and Computers. It is possible to 

find on it the results of a first approach to the project, starting with a theme introduction, 

followed by a literature review prototype with the state of the art, and ending with an 

explanation of the architecture and the algorithm used to develop the tool as well as its 

results. 

An investigation being held by Nuno Paulino consists on mapping binary traces to 

hardware in run-time. The system that he developed generates hardware description 

corresponding to a program to be executed on an embedded system. Its purpose is to make 

selections of some portions of the program to be mapped into the RPU instead of the GPU to 

improve the system’s performance. These selections are based on groups of instructions 

denoted Megablocks, which represent a fairly high portion of the total execution of the 

program. 

The complete analysis of computations and detection of Megablocks is done by the 

Megablock Extractor tool developed by João Bispo which implements several complex 

techniques that allow dynamic partition at the binary level. Megablocks extracted from this 

tool represent chunks of code that tend to repeat themselves a high amount of times and 

therefore, by using these detection units as elements of study and improvement, there are 

better chances to get better overall performance boost. 

The interactive tool developed on this dissertation can be seen as a link between those 

two works. It reads the information extracted from the Megablock Extractor and represents it 

on an interactive GUI so that a better visualization and understanding of the Megablocks is 

obtained. It also implements a technic that allows the merge of two Megablocks. By doing so, 

it opens the possibility to have two Megablocks mapped into the RPU instead of just one and 

therefore reducing the communication overhead generated by moving computations between 

the GPU and the RPU.  
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Chapter 1 

 

Introduction 

1.1 - Motivation 

Embedded application systems play a very important role on technological evolution as 

they are prevalent in our everyday life and can be found everywhere, from commercial 

electronic products (tablets, cell phones, televisions, microwave ovens, automobiles), to 

much bigger and complex systems like GPS, WWW, oil refineries and nuclear plants. 

Embedded systems are becoming more and more demanding, they require better 

performances with lower power consumption and lower area. Researches on this matter are 

of great importance, extensive design automation and optimization tools are crucial to create 

more complex embedded systems that can perform as required. 

A common practice is to enhance the performance of embedded applications executing on 

general purpose processors (GPP) is to map computationally intensive parts (hot-spots) to 

specialized hardware such as Reconfigurable Processing Units (RPU) that act like acceleration 

coprocessors of the GPP. 

An interesting technique to reduce energy consumption and to improve execution time, is 

the dynamic mapping. This allows to move computations from the GPP to the coprocessor in a 

transparent and flexible way, at runtime, and without pre-changing the program binary.  

Currently, there is a research being done on this matter [1] that uses dynamic mapping on 

an embedded system model mainly consisting of a Xilinx MicroBlaze processor connected to a 

Coarse Grained Reconfigurable Array (CGRA). The technique used is to optimize the code 

segments that are most repeated. As they represent a very big portion of the execution of a 

program, this will result in a great overall performance boost. The detection of these code 

segments is gradually made by first detecting BasicBlocks. Each structure of these is formed 

by a sequence of instructions with both only a single entry-point and one exit-point. By 

adding several BasicBlocks, a SuperBlock is formed. This type of segment also has only a 

single entry but multiple exits. But the most complex structure and the one that is more 

important to work on is the Megablock. This is built by a sequence of SuperBlocks that repeats 

itself at least once. Each repetition is called an iteration and since Megablocks tend to 

usually have a high number of iterations, they can be considered as hot-spots. 
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1.2 - Objectives and contributions  

This dissertation arises from a research, currently in progress [1], as a need to have an 

interactive tool that allows the user to visualize the entire data flow based on Megablock 

representations and to manipulate them. 

The mapper can make decisions that despite of being chosen as the best ones, might not 

result as the most beneficial performance and a human perspective could be most useful to 

detect particular cases and make a final tweak. 

Therefore, the main objective of this dissertation is to develop an interactive application 

to allow the user to see a graphical representation of the data flux of the code along with 

some important information about it. This would allow having an overview of the entire 

execution flow and immediately identifying and do some specific operations on the hot-zones 

(Megablocks) of the code without modifying its results. As hardware designers might not have 

background knowledge to totally understand and decipher the binary code, this application 

should have the feature to convert chosen code segments (represented as Megablocks) into its 

hardware representation in Verilog. The application should also keep track of the changes 

that the user does, to allow to recover a later version of the work that was done in case of an 

interruption either intended by the user or from a failure of undetermined cause as without 

this ability, working progress would be lost which could lead to a very frustrating usage of the 

application. 

The approach was to use the Megablock Extractor (tool that detects and operates on 

Megablocks) as a starting point to develop a tool capable of manipulating Megablocks further 

so that a better performance can be achieved. This can be done by looking at several 

MegaBlocks contents and analyzing them to find common sequences of operations that would 

allow merging Megablocks and to create another one, able to work as the ones that originated 

it. 

Nesting View feature on the interactive GUI, was defined as an additional objective to 

allow the visualization of cases that have several Megablocks nested inside other Megablocks. 

With Nesting View, the user can understand better how all Megablocks are related and make 

more precise optimizations since a deeper representation of the system is available. 

When a high iteration Megablock is mapped to the CGRA, the GPP will be waiting for it to 

end in order to continue its work. Though the CGPRA can do all the iterations way faster than 

the GPP, if even a few of them had been done by the GPP, it would result into a faster 

conclusion time for all iterations since the GPP wouldn’t be idle all the time. This same 

technique can be used when several CGRA units are available. It would be advantageous to 

have several RPUs executing iterations of the same Megablock which would results in a great 

reduction of the time needed to finish all iterations. In order to get this implemented in the 

future, another additional objective was created. It consists on making a careful analysis of 

the shared resources to detect Megablocks that can be processed on several hardware devices 

at the same time and to find a solution for the Megablocks where this could not be possible. 

The work done on this dissertation provides an interactive tool which represents an 

overview of the Megablocks detected by the MegaBlock Extractor and also their inside view. 

This helps to understand how the instructions are connected and makes it easier to detect 

possible techniques to be used to increase the overall performance. Sections 2.6 and 2.7 show 

some of the techniques that were studied. Section 2.6 explains traversal techniques and it 

focus on Depth First Search, which was used as a base to an algorithm developed that allows 
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the merge of two MegaBlocks: the Multipath. While section 2.7 contains some loop 

transformation techniques that weren’t included directly at the instruction level as it is 

shown but represent in some way the merge ability developed in the Multipath. By using it, a 

Megablock is created which can execute as two Megablocks, one at a time. This can avoid 

significant changes on processing between the GPU and the CGRA which can represent better 

performances.  

As chapter five demonstrates, the application was correctly implemented and shows 

correctly all the MegaBlocks contents, allowing also to merge them. The merged Megablock 

that resulted from the Multipath couldn’t be verified but analysis into it show that at the very 

most, some debug could need to be done but the major algorithm and techniques are already 

implemented. 

1.3 - Structure of this report 

This report is organized into six chapters. The current one is the introduction and it’s 

about how this dissertation proposal arises and its objectives. The second chapter is the state 

of the art, it refers the previous work done on another researches about similar subjects and 

has important information that was useful for the work done on this dissertation. Chapter 

three explains how the tool can be used, all possible actions and how they were achieved, 

and also the organization of the code behind the tool. The algorithm used for merging graphs 

is explained on the forth chapter. Chapter five is all about validation of the tool and its 

results. The report ends on Chapter six with a conclusion of all the work done on this 

dissertation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 2 

State of the Art 

2.1 - Target architecture 

The general target architecture considered for this work is an embedded system 

consisting of a GPP and a CGRA co-processor like shown on Figure 2.1. 

 

 

Figure 2.1 – General architecture considered [2]. 

 

The GPP that is going to be used is a MicroBlaze processor without cache and with on-chip 

instructions and data memories. 

The CGRA model has a similar concept than the DIM architecture [3, 4], it’s composed by a 2D array in 
which, each row can have arithmetic/logic functional units (FUs) and load/store units. With the 

exception of data inputs, any other communication within FUs can only be directly done to the FUs of 
the row below. When a FU needs to communicate with another that isn’t adjacent, move instructions 

are used to progressively send the data along the unused FUs on each row until it reaches its 
destination. 

The mapping module is a high-level model connected to a cycle accurate simulator for the 

MicroBlaze processor. The mapping algorithm is an instruction-by-instruction technique based 

on the one used by Clark et al. on the CCA [5, 6] in which the instructions are available for 
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mapping in the execution order and the mapper only uses information from instructions that 

were previously executed. As it receives instructions and places them on the FU array, the 

mapper updates a table that allows it to keep track of how mapping is going and to search an 

empty place for the current instruction. So, each time an instruction is present to the 

mapper, it is placed on the first row possible according to the data dependencies and 

instruction restrictions. After each placement, the mapper checks if the instruction 

communicates with adjacent FUs and if not, it places move instructions on unoccupied FUs as 

needed and the routing is established. As mapping goes on, the array becomes more filled and 

complex which can lead to a situation where an instruction has no available row that allows a 

communication route with a specific FU, the mapping configuration ends and a new one 

starts. An example of this mapping technique is represented on Figure 1.1. It shows the 

sequence of instructions to be mapped, the FU array of the CGRA being filled and the register 

table that the mapper keeps. 

 

 

Figure 2.2 – Mapping example which shows how branches and memory operations can be mapped [2]. 

 

2.1.1 - Tests and Results 

To evaluate all the work done so far, Nuno Paulino [7] has recently tested the three 

different architectures presented on Figure2.3 with 15 code kernels that work on 32-bit 

values. Tests were done with each benchmark calling its corresponding kernel 500 times.  
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Merge1 and merge2 are two additional tests that group together 6 kernels. For these 2 

tests, several Megablocks were generated as for the other 15, they only had one Megablock 

implemented. 

 

 

 

 

 

 

 

 

  

Figure 2.3 – Architectures used for testing: i) DDR-PLB; ii) LMB-PLB; iii) LMB-FSL [7]. 

As it can be seen on Table 2.1, the MegaBlock coverage is very good, the average was 

91.59%, which means that the detection was very high and optimization was made on a 

significant amount of code. Other MegaBlock characteristics are present on Table 2.1: the 

average number of instructions per call is the product of the number of instructions per 

iteration with the average number of iterations, maximum ILP is the maximum instruction 

level parallelism and SW IPC is the amount of instructions per cycle achieved by software. 

 

 

Table 2.1 — Detected MegaBlock characteristics [7]. 
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The speedup tests results present on Figure 2.4 show that from the 3 different 

architectures used. It is proved that if used the right architecture, the speedup can be very 

high and even reach its maximum potential which happens for LMB-FSL with some of the 

benchmarks used. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 – Speedups for all three architectures. Results for DDR-PLB architecture use the axis on the 
right. Bar labels show the results for the LMB-PLB and LMB-FSL architectures (axis on the left). A trend 
can be observed for all three cases. The different overheads dictate the relative scales of the attained 
speedups [7]. 

2.1.2 - Other approaches 

Nuno Paulino’s work [7] included a study of other efforts on the same matter that also 

focus on mapping computations to RPUs during runtime but with different approaches:  

 Warp processor [8, 9] is a runtime reconfigurable system which uses a custom FPGA as 

a hardware accelerator for a GPP. The system performs all steps at runtime, from 

binary decompilation to FPGA placement and routing. The running binary code is 

decompiled into high-level structures, which are then mapped to a custom FPGA 

fabric with tools developed by the authors. Warp attains good speedups for 

benchmarks with bit-level operations and is completely transparent. It relies on 

backward branches to identify small loops in the program. 

 AMBER [10, 11] uses a profiler alongside a sequencer. The sequencer compares the 

current Program Counter (PC) with previously stored PC values. If there is a match, it 

configures the proposed accelerator to execute computations starting at that PC. The 

accelerator consists of a reconfigurable functional unit (RFU), composed by several 

levels of homogeneous functional units (FUs) placed in an inverted pyramid shape, 

with a rich interconnection scheme between the FUs. The RFU is configured whenever 

a basic block is executed more times than a certain threshold. Further work 

considered a heterogeneous RFU [10], and introduced a coarser-grained architecture 

to reduce the configuration overhead. The AMBER approach is intrusive as the RFU is 

coupled to the GPP’s pipeline stages. 
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 CCA [5, 6] is composed of a reconfigurable array of FUs in an inverted pyramid shape, 

coupled to an ARM processor. The work addresses the detection of computations 

suitable to be mapped to a given CCA, as well as discovering a CCA architecture that 

best suits a set of detected control-data flow graphs (CDFGs). Initially, the detection 

was performed during runtime, by using the rePLay framework, which identifies large 

clusters of sequential instructions as atomic frames. The detection was later moved 

to an offline phase, during compilation [6]. Suitable CCA CDFGs are discovered by 

trace analysis, and the original binary is modified with custom instructions and 

rearranged to enable the use of the CCA at runtime. 

 The DIM reconfigurable system [3, 4] proposes a reconfigurable array of FUs in a 

multiple-row topology and uses a dynamic binary translation mechanism. The DIM 

array is composed of uniform columns, each with FUs of the same type. DIM 

transparently maps single basic blocks from a MIPS processor to the array. DIM also 

introduced a speculation mechanism which enables the mapping of units composed by 

up to 3 basic blocks. The system is tightly coupled to the processor, having direct 

access to the processor’s register file.  

 

2.2 - Concept of Megablock 

Previous work [12] has focused on moving sequence of instructions from a GPP to a RPU 

during runtime. Even though the RPU will process these instructions faster, there is a 

communication overhead generated by moving computations. But loops tend to execute for a 

longer time so, they have a higher potential for improvement, which means that by moving 

entire loops, the possibility of amortizing the communication overhead is very high and the 

outcome will most likely result into a processing boost. The Figure 2.5 exemplifies the 

identification of the several types of code segments that are going to be further explained 

next. 
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Figure 2.5 – Execution trace partitioning according to different granularities: a) BasicBlocks; b) 
SuperBlocks; c) MegaBlocks [13]. 

 

The detection of the code segments that are worth moving to the RPU begins by first 

identifying a BasicBlock. Each BasicBlock consists of a sequence of instructions with only one 

entry point and one exit point. So, a BasicBlock ends with the detection of a jump or branch 

and then, another BasicBlock starts. 

The next step is to identify SuperBlocks [14]. A SuperBlock is formed by adding 

BasicBlocks until a backward jump is reached. The target address of the backward jump will 

then, start another SuperBlock, a hash value is created with this address and it allows to 

uniquely identify each SuperBlock. Thus, it has only one entry point but multiple exits as it 

can be formed by several BasicBlocks that can verify conditions to decide if the trace 

execution continues within the SuperBlock or exits. 

Finally, Megablocks are formed by using the same concept that is used to create 

SuperBlocks but this time, with them as the “source”, this is, by adding SuperBlocks until 

they repeat themselves. When adding SuperBlocks, there has to be a predetermined 

maximum size for the Megablock. Tests concluded [7], that 32 is a good amount of maximum 

consecutive SuperBlocks as usually there are no significant gains for MegaBlocks with a bigger 

size. The Megablock is a sequence of instructions that tend to repeat several times and each 

repetition is an iteration. Even sequences of SuperBlocks that don’t repeat themselves are 

considered Megablocks but with only 1 iteration. The identification and extraction of 

MegaBlocks can easily be made at runtime by analyzing a stream of SuperBlock hashes. 

Results shown on Figure 2.6 prove that the usage of Megablocks with a size of up to 32 

Superblocks is a better partitioning method than only using BasicBlocks, Superblocks or Warp 

processor’s method [8] which uses the Superblock concept. 
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Figure 2.6 –Portions of the trace (Y axis) covered by blocks, identified by several partitioning 
techniques, which have at least a certain amount of iterations (X axis) [7]. 

2.3 - HDL Generation Tool 

A toolchain has already been develop [7] with the purpose to detect Megablocks and 

generate an RPU and its configuration bits. The HDL description and routing generation tool 

parses Megablock information, determines FU sharing across Megablock graph 

representations, assigns FUs to rows, adds pass through units, and generates a file containing 

the placement of FUs and data required for Megablock identification. Only one Megablock is 

executed on the RPU at a time so FUs are shared between different Megablocks. Each call 

treats a single Megablock so, to generate a combined RPU description for several Megablocks, 

the tool maintains information between calls.  

The Figure 2.7 shows an excerpt of a RPU HDL header file that this tool creates (on the 

right side) and it’s respective Megablock information that serves as input (on the left side). 

The HDL header fully characterizes the RPU as it specifies the number of inputs/outputs and 

routing registers, the number of rows and columns of the RPU, the placement of functional 

units (FUs) and its constant value operators, and other auxiliary parameters.  



 

   Interactive Application 11 

 

 

Figure 2.7 - RPU HDL header excerpt [7]. 

2.4 - Interactive Application 

Python was first chosen as the implementation programming language for the multipath 

and for the interactive tool because it’s available for all major operating systems, has a 

simple and concise syntax, many good resources available and is simple and easy to debug 

(which 0increases productivity). The latest version of Python would be desirable but some of 

the chosen tools and libraries might not support it so this depends on the requirements of the 

packages that would be used.  

Windows OS was used to install and test the tools because it is the most used OS, and 

usually it is harder to install than for example on UNIX or MAC OS so if it works on Windows, it 

will pretty much work on the other relevant OS. Based on Python programming, the next tools 

to develop the interactive application were considered: 

 Matplotlib [15] is a Python 2D plotting library that allows flexible drawing of graphs. It 

was not considered as a tool to work on but it is a requirement for some other tools. 

It also requires other libraries (numpy, libpng, freetype, dateutil and pyparsing) and 

is available for Python 2.6, 2.7 and 3.2. 

 Graphviz [16] is a graph visualization software. It takes descriptions of graphs in a 

simple text language and makes diagrams in useful formats like SVG and PDF. 

Available for Python 2.6 and 2.7. 

 Pydot [17] is a python interface to Graphviz’s Dot language. Allows to easily create 

both directed and non-directed graphs from Python. Requires Pyparsing and Graphviz. 

Works with Python 2.6 and 2.7. 



 

12  State of the Art 

12 

 Xdot [18] is an interactive viewer for graphs written in Graphviz’s dot language. 

Requires Python 2.6 or 2.7, Graphviz, PyGTK, Pycairo and PyGobject. 

 Python-graph [19] provides a suitable data structure for representing graphs and a 

whole set of important algorithms. Requires Python 2.6, Pydot and Pyparsing.  

 Networkx [20] is a Python language software package for the creation, manipulation, 

and study of the structure, dynamics, and functions of complex networks. Requires 

Matplotlib, Graphviz, Pyparsing and works with Python 2.6 or later. 

 NodeBox [21] is a node-based software application for generative design. Requires 

Python 2.5 or 2.6 and Pyglet.  

 Igraph [22] is a software package to create and manipulate undirected and directed 

graphs. Requires Python 2.4 or later and Pycairo. 

 

There is a python repository [23] , though unofficial, has a very big database of Python 

extension packages for windows and is of great help for developing on this programming 

language. 

Though the preference on working with Python, after more thoughts on the matter, 

decision was made to work on java instead since it was the language used to develop the 

MegaBlock Extractor and allows to have easier access to data created from it. A couple of 

experiments done with Jgraph tool soon made it the selection for this work. It’s a graph 

visualization library with interaction capability, Swing compatible and simple to use. It is 

based on the graph theory which is basically representation of nodes and edges connecting 

them, exactly what was needed for this work. 

Previous work [12] includes a Megablock intermediate representation based on a graph 

structure. It uses four types of nodes and five types of connections as Figure 2.8 shows. 

 

 

 

 

 

 

 

 

 

Figure 2.8 - Types of nodes and possible connections in a Megablock graph. [12]. 

The first node (Figure 2.8 a)), represents an operation. Figure 2.8 b) is a constant node 

which indicates its value and cannot be changed. LiveIn node on Figure 2.8 c) represents an 

external value. The Exit node (Figure 2.8 d)), represents an exit point of the Megablock. 

Figure 2.8 also shows all the five different types of connections and how they can be 

linked to each type of node to represent all the possible interactions between them. 
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Data connections represent the flow of data between outputs and inputs of some nodes. It 

is labeled in the format “OUT:IN” where OUT is the output index of the source node while IN 

is the input index of the destination node. Operation, Constant and LiveIn nodes can all be 

sources of data connections but only Operation nodes can be destinations. LiveIn and Exit 

nodes can still receive data but it has some particularities so they are considered of another 

type which is explained ahead. 

Control connections are boolean values which indicate if exit points are triggered or not. 

It always has an operation as source and an exit as destination, therefor its label is in the 

format “OUT” to indicate the output index of its source. 

Liveout is a data connection in the format “OUT:SYSTEM_VAR” where as usual “OUT” 

indicates the output index of the source and “SYSTEM_VAR” indicates the system variable to 

be updated. This connection can only have Exit nodes as destinations. 

Feedback is also a data connection but this one represents internal updates to values that 

were initially fetched. Only LiveIn nodes can be destinations and so, the format used for it’s 

label is “OUT” to indicate the output index of the source operation. 

exitAddress can only have Exit nodes as destinations and it indicates the instruction 

address from where the processor resumes execution for that particular Exit. Its label 

indicates the output index of the source node and is in the format “OUT”. 

Whenever a connection doesn’t have an operation node as source, its label “OUT” field is 

simply left blank.  

This concept was adopted by the jgraph graph representation used on the interactive 

tool, but to be in accordance with jgraph’s literature, nodes will be called vertices and 

connections will be edges. 

2.5 - Multipath Extension of Megablock Extractor 

The initial approach was to develop the multipath in Python language and to read the files 

resulting from the Megablock Extractor processing to analyze and make the optimization. 

Even though with the Java approach, those files are still used to read Megablock data, this 

way it is possible to use some methods from the Megablock Extractor to recover the original 

java objects that originated that data and therefor have access to more detailed information. 

On a downside, this required a deep study to the Megablock Extractor to understand how it 

generates the data and to know how to use it while on the first approach, the data would 

simply be read from the files but still, this can be beneficial as some processing that 

Multipath needs can already be found in the Megablock Extractor. 

In certain cases like when a program has two MegaBlocks that need to be executed 

several times, the mapper choses the one that needs to be executed the most to run on the 

CGRA. At a first thought this approach looks good and seems not to have any problem with it 

but in some cases, despite of that Megablock being executed more than the other, it doesn’t 

mean that all its iterations are done in a row, it can be constantly interrupted by the need to 

run the other one. And if the difference between the number of iterations of each one is low, 

it means that the Megablock chosen can be interrupted a lot of times and so, mapping to the 

CGRA can end up not being profitable due to all the overhead generated by constantly 

changing execution between it and the processor. The best way to solve this is to somehow 

merge both Megablocks into just one so that it could work as both and load it to the CGRA. 
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This requires a deep view into how each Megablock operates and comparisons between them 

in order to find out what they have on common and what changes  need to be done to make 

them work as one. To analyze all vertices of a graph, a Graph Traversal technique was used: 

by using the depth first search algorithm, all vertices are guaranteed to be visited, and by 

doing this simultaneously on two graphs, comparisons are made and information are gathered 

to then decide which parts of those graphs can be merged and how. An explanation of the 

Depth First Search can be found next on 2.6.1 and the algorithm that uses this can be found 

on chapter four where it is explained with detail. 

2.6 - Graph Traversal Algorithms 

A part of the Multipath requires the comparison between two Megablock’s contents and 

their analysis to figure out which parts are mergeable or not. For this, a graph traversal 

algorithm was used to do the part of going through all vertices of both graphs. There are two 

interesting types of graph traversals: Breadth First Search examines all the connected nodes 

of the one it is visiting and then moves to one of them while putting the others into a queue 

to be visited later. The Depth First Search starts on a node and follows a random path until it 

finds its end and then backtracks and revisits nodes to find other paths with unvisited nodes. 

This is repeatedly done until all nodes are discovered. The Depth First Search approach is the 

one that fits Multipath algorithm better and so, it was the used one. Figure 2.9 represents it: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 - Flowchart of the DFS traversal algorithm. 

2.7 - Loop transformation techniques  

Some other techniques based on loop transformations were also studied. Even though 

these transformations are intended to affect directly program’s code, the same basis was 
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used but with runtime information and a graph approach for the Multipath extension of the 

application developed on this work.  

2.7.1 - Loop fusion 

Loop fusion is a powerful program transformation that can improve the timing 

performance of both sequential and parallel programs. As the name suggests, it reduces the 

number of loops by merging them. But simple loop fusions aren’t always applicable because 

of the existence of conflict data dependences among loops. Next is shown an example of a 

loop fusion problem. 

 

 

 

 

 

 

 

 

 

Figure 2.10 – Loop fusion example with data dependency problem [25]. 

 

Figure 2.10(a) represents a program with 3 loops (L1, L2 and L3) inside another loop. 

Despite of all three loops having the same characteristics (they all go from j=0 till j=M), they 

all cannot be fused without making proper changes. If we take a closer look at the content of 

each loop, we will see that there are some data dependencies that wouldn't allow a simple 

fusion. The computation of some variables depend on a future iteration. On L2, B[i,j] depends 

on A[i,j+1] so, each iteration of B couldn't be calculated because it depends on a value that is 

only going to be available on a future iteration. The same problem occurs on L3, C[i,j] 

depends on A[i,j+1] and A[i,j+2] which also creates another dependency problem with L2 as it 

depends on C[i+1,j]. To solve these fusion-preventing dependency problems, loop shifting or 

retiming can be used. A prologue and an epilogue have to be added when creating a fused 

loop as shown on Figure 2.10(b). By using this technique, the loop decision overhead is 

reduced as we will only have 1 loop instead of 3 but it creates a longer sequence of 

instructions and if used on low iteration loops, it could not be profitable. But MegaBlocks tend 

to have high iterations so by applying it on this dissertation, it is expected to have good 

results. 
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2.7.2 - Loop Distribution with Direct Loop fusion 

Loop distribution is a technique that works on the reverse way of loop fusion. This 

technique is usually used on large loops that don't fit into cache. The point is to separate 

some instructions inside the same loop, into multiple loops. Figure 2.11(a) shows a code 

example with three inner loops and one outer loop, Figure 2.11(b) shows the result of this 

technique. 

 

 

Figure 2.11 – Loop distribution example [25]. 

On the original code, there was a loop that accessed two arrays (B[i,j] and C[i,j]) while 

after loop distribution, each array is accessed on a separate loops and the processor only 

needs to access 1 array at a time. This might look like counter-productive on a speed 

optimization point of view because it adds 1 more loop and so, the decision overhead is 

increased. But by applying Loop Distribution with direct loop fusion, the result is a mid-term 

between speed optimization and code size as it can be seen on Figure 2.12(a). 

 

 

 

 

 

 

 

 

 

Figure 2.12 – Code results after applying a) Loop distribution with direct loop fusion and b) Loop fusion 

[25]. 

By comparing with the Loop fusion technique on Figure 2.12, Loop Distribution with direct 

loop fusion still has more loops but it also has a much reduced code size. This technique 
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allows a reduction on the number of loops while still maintaining a low sized code, so it can 

be used if optimization with the loop fusion technique is problematic by resulting into a very 

big code size. 

 

This chapter described all the research done before starting developing the application. It 

explains its target architecture developed by Nuno Paulino [7] and the concept of Megablock. 

It also explains the choices for the technologies used on the implementation of the 

application. The approach used on the Multipath and several techniques related to it were 

also discussed. The following chapter is about the most important components of the 

application and how they work together. It explains how the organization of this project was 

done. 

 

 

 

 

 

 



 

 

Chapter 3 

Architecture of the Interactive 
Megablock Merging Tool 

As 1.2 describes, the main objectives of this dissertation are to develop an interactive 

application and a Multipath extension for the Megablock Extractor. Which means that the 

project would have two main streams and so, it was clear that to achieve a good 

organization, two packages should be created, one for each objective. “GUI” which contains 

all the classes that deal with visualization and interactions such as representation of 

Megablocks, Operations and menus. And “MegaBlockMultipath” that has the data processing 

classes responsible to read information from the files generated by the Megablock Extractor 

Tool to create objects from the GUI Package in order to present a correct representation of 

all Megablocks and to make all the necessary changes when a merge is requested. 

Due to the high complexity of the application developed and to the high amount of 

components used to implement the solution, only the most significant ones are described in 

this section. Auxiliary methods and variables are sometimes mentioned but their explanation 

isn’t done because they just do a simple task and their names are most of the time self-

explanatory. The next figures (3.1 and 3.2) show the organization of the work done on this 

dissertation as the main components. For detailed view on the full architecture, Appendixes 

section can be consulted as it has figures of all components of each class used. 
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Figure 3.1 – Project’s file organization 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 – Overview of all Classes of the Project 

 

3.1 - Organization of the MegaBlockMultipath Package 

 

 This project has mainly two kinds (types) of processing information and therefore, 

two java files were created, each one with its own purpose. The application has a need to 

read information from the Megablock Extractor and to create objects that would visually 

represent them, so, “MultipathExecute.java” was created and it acts mostly like a link 

between the MegaBlock Extractor and the jgraph visualization system used which is organized 

into the “GUI” package. The other file created is “MergeExecute.java” and it contains more 

complex data manipulation relative to merging graphs. It focuses on comparing jgraphs 
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already created and it allows creating a different one (merged graph) that represents two 

Megablocks at once. 

 

 

 

 

Figure 3.3 – MegablockMultipath pack organization. 

 

3.1.1 - The MultipathExecute Class 

 

 This is the main class of the project. It reads the files extracted from Megablock 

Extractor, it creates the main graph, all the graphs that represent each Megablock and the 

simplified versions as well. When the interactive tool is launched, the main class of this file is 

executed. It uses “readMBCoverage” to get the “coverage” file from the MegaBlock 

Extractor directory, which provides global information about the program executed. Then it 

uses “readMegablock” to read all information of each MegaBlock detected and it ends by 

using the “CreateJGraph” method to build the main graph and all MegaBlock graphs. 

“readMBCoverage” and “readMegablock” use SPECs methods to retrieve information from 

the files while “CreateJGraph” uses “GUIExecute” to create all the graphs. After this is 

done, the application just responds to interactions from the user. “SimplifyGraph” is 

activated when the “simplify” button is pressed and it uses the same “GUIExecute” methods 

than “CreateJGraph” to create a simplified graph. “MergeView” is activated by the button 

with the same name on the popup menu. It shows both graphs side-by-side and it uses 

“MergeExecute” for comparisons between each Megablock’s content and it uses “Buttons” 

to change the top menu accordingly. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 – Organization of the MultipathExecute content. 
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Table 3.1 — Resumes of the main MultipathExecute components. 

Component Function 

readMBCoverage 
Reads global information from 

the “Megablock Extractor” 

readMegablock 

Reads information related to a 

specific “MegaBlock” from 

“Megablock Extractor” 

CreateJgraph Creates a graph 

SimplifyGraph 
Creates a simplified version of a 

graph 

MergeView 
Shows two mergeable graphs in 

a side-by-side view 

 

 

 readMBCoverage: searches into the output directory of the MegaBlock Extractor for 

the “(…)mbcoverage.xml” file and with aid of some SPECS methods, a “coverage” 

object is retrieved from it. This object contains several information about the 

Megablocks extracted and it is used to build the “main graph” by creating a 

representation of each Megablock with the GUIExecute.createvertex method and 

ordering them according to their memory location by connecting them with edges, 

using the “GUIExecute.createedge” method. 

 

 readMegablock: creates for each vertex, on the main graph, another graph with the 

content of its respective MegaBlock. This is done by “readMegablock” which uses 

SPECS methods to get a “MicroBlazeGraph” object from the “(…)microblaze-

megablock.xml” file that corresponds to the current MegaBlock that is going to be 

created. This method is used as many times as the amount of Megablocks so that each 

one is then created on “CreateJGraph”. 
 

 CreateJGraph: uses the object gotten from “readMegablock” to obtain information 

about the nodes and connections regarding the instructions that are part of the 

Megablock and to create vertices and edges on the graph. When these cells are 

created, they receive the same attributes as the nodes and connections have. Each 

Operation, Constant, LiveIn and Exit has a unique ID in the format of its type 

followed by a number e.g. “constant_X” for a constant, where X is a different number 

for each constant. They also have its unique label but each type of node has its own 

format for it. Constants have their value as label, LiveIns show their register followed 

by “(input)” e.g. “r6(input)” for the variable r6, Exits labels have similar format as 
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their IDs which is “Exit:X” where X is again a different number for each exit vertex 

and operations use the format “X:OP” where X is a different number and OP is the 

operation type of the vertex e.g “4:add” for an add vertex. There are two more 

attributes (address and instruction) but these are exclusive to operations due to their 

nature. The address indicates directly an operation location in the memory and the 

instruction is the assembly instruction of the operation. From the instruction it is 

possible to obtain the operation’s inputs and outputs though these are also 

represented on the edges connected to it.  

When creating the jgraph, there are some particularities to pay attention. For some 

reason, the Megablock Extractor duplicates some constants, so when they are 

detected, “CreateJgraph” method insures that they aren’t added again and that the 

only constant vertex created has all the edges that were connected to both constant 

nodes. Some operations have different IDs and labels but can have same address and 

instruction. This happens when the exactly same instruction repeats itself but gets its 

inputs/output from different sources. Due to Megablock’s repetitive nature, this 

happens quit often, the same operations are executed many times and the presence 

of conditions makes it to receive and send data to different vertices. So in that case, 

the operation that represents that instruction needs to be connected to different 

vertices and so, another vertex is created representing the exact same instruction. 

There is also a special case regarding the store and load operations. These operations 

are interpreted by the MegaBlock Extractor as two each. An “addi” that adds an 

offset to the register in order to correctly indicate the data, and the store/load 

operation itself. But when the store/load operation executes directly on the register 

without no offset, the MegaBlock Extractor doesn’t create an add node and just 

considers the store/load operation. The problem is that when the two nodes are 

created from one of these operations, they both have the same address which can 

lead to some problems when identifying operations by addresses. So to avoid it, at 

the point of creation of any store and load vertices, it is added the value of 1 to its 

address. Since assembly addresses are all even, these will be odd and there won’t be 

any chance to have another operation with the same address. This is reverted when 

the parsablegraph file is created so that it has no visible effects afterwards.  

 

 SimplifyGraph: creates the simplified version of a graph. When the “simplify” 

button is selected in the upper menu of a graph, this creates another representation 

of it with only operation vertices and the edges between them. It uses the 

information about the complete graph to create another “GUIExecute” object that 

only contains information about the cells that are to be represented in this simplified 

version.  
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 MergeView: is an option available from the popup menu of the main graph and so, it 

is used by “PopupMenu” class. When the user selects the Merge View option on the 

popup menu, the graphs relative to both Megablocks are shown side-by-side and 

“Buttons.CreateMergeButtons” is used to change the buttons on the top panel of 

each one according to this new view. “MergeExecute.Setup” is called to compare 

both graphs and to detect merge possibilities that are shown on this view. 

 

3.1.1 - The MergeExecute Class 

 

This is the class used to merge graphs. When an instance is created, the two 

“GUIExecute” objects corresponding to the graphs to merge have to be passed to it. “Setup” 

is used at the moment of creation of a “MergeExecute” object and it uses some inner 

methods to detect and to keep information about matching cells from both graphs as well as 

cells that can’t be matched, control cells that will generate the control bit for the 

multiplexers, and also edges where those multiplexers will need to be inserted. Here is where 

the merge algorithm is used which is explained with detail on chapter four. This is a 

preparation for the merge step. When a merge is requested, “MergeGraphsv2” is called and 

it uses all information gathered to merge the two MegaBlocks. This can be done either from 

an option on the popup menu or from a button on the top panel and it is the only class that 

uses “GUIExecute.CreateMux”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.5 – Organization of the MergeExecute content. 
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Table 3.2 —  Resumes of the main MergeExecute components. 

Component Function 

Setup 

Calls inner classes to gather all 

information needed for the 

merge 

BuildMergeMap 
Stores information about cells 

that can be merged. 

FillControlCellsMap 
Stores information about the 

control cells. 

BuildCantMergeList 
Stores information about the 

cells that can’t be merged. 

FillEdgeLists 

Stores information about the 

location where multiplexes are 

going to be inserted. 

MergeGraphsv2 Merges two graphs. 

 

 

 Setup: uses “BuildMergeMap”, “FillControlCellsMap”, “BuildCantMergeList” 

and “FillEdgeList” in the correct order and with the right parameters to build all 

the lists and maps that are needed on a possible merge. 

 

 BuildMergeMap: uses a recursive method: “HelpFillMergeMap” to analyze cells from 

both graphs and to make associations between them. It also uses the 

“CompatibilityFactor” method to compare some operations and to help making 

better decisions. 

 

 FillControlCellsMap: uses the instruction that makes the decision on which 

Megablock to execute. It detects the corresponding vertices on both graphs and it 

stores that information. These cells are the ones where the bit that makes the 

decision of the multiplexers comes from. 

 

 BuildCantMergeList: stores information about cells from one graph that aren’t 

corresponded on the other one. It is used to make some vertices to only activate 

according to the control bit of the multiplexers. 

 

 FillEdgeList: marks the edges that connect a vertex that is on the “merge list” to 

one that is on the “can’t merge list”. This represents edges that need to have 

multiplexers so that the vertices on the “can’t merge list” are only active when they 

belong to the Megablock that is being executed at the time. 
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 MergeGraphsv2 is the method called to start the merge process. It can be activated 

from “Buttons” or from “PopupMenu”. It checks all the information gathered from: 

“BuildMergeMap”, “FillControlCellsMap”, “BuildCantMergeList” and 

“BuildEdgeList” when “MergeExecute” was created and it uses methods from 

“GUIExecute” to make the appropriated changes on the Megablock graph that is 

about to become the merged one, such as removal and creation of vertices and 

edges, and multiplexers as well. It also operates on the main graph to replace both 

MegaBlock representations by the merged one. 

3.2 - Organization of the GUI Package 

 

This package contains all the visualization type of objects and therefore files were 

created to separate the main ones. GUIExecute is the main file and it contains all cells such 

as vertices and edges of a graph while the other files contain objects that are used to create 

elements to insert into the GUIExecute object and to complement it. Buttons creates a 

panel shown on the top of each graph with some options to help the user to interact. 

PopupMenu creates a specific menu that pops up on the main graph and also listens and 

handles mouse actions and movements done on the GUIExecute object. 

 

 

 

 

Figure 3.6 –  Organization of the GUI package. 

 

3.2.1 - The GUIExecute Class 

 

This class creates a jgraph object and also stores all the data associated to it. It contains 

several lists and hashmaps to group cells of the same type and to associate their 

characteristics. It also has a set of methods that work around those hashmaps and lists in 

order to allow retrieving a cell object given any type of attribute or the other way around and 

even get an attribute by providing another, e.g it is possible to get a vertex ID by passing its 

label to the correct method. GUIExecute also allows to make changes on its graphs content 

e.g. create/remove cells and change their color or label. It also provides methods that 

retrieve a cell connected to other on any other way, e.g it enables the possibility to get an 

edge source or destination vertex. These methods that can detect, which cells are connected 

to which and how they are connected, are available from the jgraph library. GUIExecute 
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class has so many elements that use each other’s in so many ways and their names also speak 

for themselves. However it is necessary to explain the methods that stand out. 

 GUIExecute basically holds and provides all information about the graph and the nodes 

that originated it and it has methods that allow other classes to make changes on the graph. 

When it is created, it also creates a Buttons and a PopupMenu class associated to it. Details 

about them can be found on the next two sections of this report. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 –  Organization of the GUIExecute content. 

 

 
Table 3.3 — Resumes of the main GUIExecute components. 

Component Function 

Setup 
 

Creates an empty graph. 

CreateVertex Creates a vertex. 

CreateEdge Creates an edge 

CreateMux Creates a mux 

Save 
Saves all information of the 

graph 

Load Loads information of a graph 

HighLightCells Highlights selected cells 

CreateDataFile Creates a data file 
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 Setup: is used whenever a graph representation needs to be created. It creates a 

jgraph instance and uses Buttons.Setup and PopClickListener to create and 

associate a button panel and listener for the popup menu. Since Setup builds an 

empty graph, CreateVertex and CreateEdge need to be used by the method that 

calls Setup to fill up the graph with the right vertices and edges. This method is used 

by MultipathExecute.CreateJGraph to create a jgraph of each Megablock and it is 

used by MultipathExecute.SimplifyGraph to create a simplified version of a 

Megablock when the Simplify button from the top panel is selected. Note that it is 

also used by MultipathExecute.main to create the main graph but since this is only 

used once, it isn’t represented on Figure 3.7. 

 

 CreateVertex: is used by MultiPathExecute.CreateJGraph and 

MultipathExecute.SimplifyGraph to fill a graph with vertices according to the 

intended representation. As described on section 2.4, there are four possible Node 

types: Operation, Constant, Livein and Exit. The way they are converted into vertices 

is explained with detail on CreateJGraph in 3.1.1 section. CreateVertex method 

insures that each vertex has its color and shape according to the type that they 

belong to and it also builds lists to keep information about each vertex’s 

characteristics organized. After this method is used to build all vertices of the graph, 

they need to be connected by edges and for that purpose the CreateEdge method is 

called by the same methods that call CreateVertex. 

 

 CreateEdge: is used after CreateVertex, when all the vertices of a graph have been 

made. It is used by MultiPathExecute.CreateJGraph and by 

MultipathExecute.SimplifyGraph to build all the edges that connect those 

vertices. 

 

 Save: is used to save the state of a graph once, after its creation, and whenever 

changes are made to its cells. PopClickListener uses Save when it detects the 

movement of a cell so that the “Undo” button from the Buttons panel can use the 

Load method to get the graph back to a previous state. The save function was 

implemented by converting the model of the jgraph into an xml file to store 

information about each cell in the jgraph system while all the data behind the graph 

was stored into another xml file. 

 

 Load: is used by Buttons.ActionPerformed method when the “Undo” button is 

selected. It loads the last xml files saved by the Save method to return the graph to 

its previous state. 
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 HighLightCells: is used to highlights cells for a better understanding of the graph. 

It is used by PopClickListener when the mouse cursor hovers over a vertex to 

highlight it. In case of a merge-view, it also highlights the other mergeable cells 

related to it and this same option can be obtained from Buttons.actionPerformed 

when selecting the “merge” button related to it. 

 

 CreateDataFile: this method is used by PopupMenu class when the “Create Data 

File” option from the popup menu is selected. It builds an xml file with information 

regarding the selected MegaBlock the same way that the MegaBlock Extractor does 

when it finishes its work. This method also creates a parsablegraph file which is the 

format that Nuno Paulino needs to use on his work. 

 

3.2.2 - The Buttons Class 

  

Creates a jpanel located on the upper side of the graph. When a graph is created, a 

buttons instance is also created and associated to it. The Setup is responsible to build the 

panel with the default buttons which are stored in the Actions variable, to resize it and to 

set its correct position in the graph window. CreateMergeButtons uses MergeActions to add 

buttons to the panel if needed. ActionPerformed is used whenever a button of the panel is 

pressed and it guarantees that each button does what it’s supposed to. The most important 

components of the Buttons class are described below: 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 –  Organization of the Buttons content 
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Table 3.4 — Resumes of the main Buttons components. 

Component Function 

Setup 
Creates the panel and inserts it 

on the graph 

Actions Contains the default buttons 

MergeActions 
Contains the merge-specific 

buttons 

actionPerformed 
Does the action according to the 

button pressed 

CreateMergeButtons 
Adds merge-specific buttons to 

the panel 

 

 

 Setup: is used by GUIExecute.Setup in the moment a graph is created to build a 

Buttons instance and to associate it to the graph. It uses javax.Swing to create a 

JPanel on top of the graph window with all the default buttons which are stored on 

the Actions enum type of variable. It also creates a listener to detect buttons 

pressed and actionPerformed executes the correct action. 

 

 actionPerformed: is activated when a button is pressed. By consulting the listener’s 

information, it knows which button was selected and therefore executes the code 

according to that button. Detailed explanation on how each feature was implemented 

can be found in the Actions and MergeActions sections bellow. 

 

 Actions: is an enum type that contains the default actions/buttons: Zoom in, Zoom 

out, Undo, Simplified and Reset. The next figure shows the panel created with only 

the default buttons followed by an explanation of each one. 

 

Figure 3.9 –  Default buttons panel. 

o Zoom in: zooms in the scale of the screen by a default amount. This feature 

is obtained by using the jgraph methods available for this specific purposes. 

o Zoom out: zooms out the scale of the screen by a default amount. This 

feature is obtained by using the jgraph methods available for this specific 

purposes. 



 

30  Architecture of the Interactive Megablock Merging Tool 

30 

o Undo: undoes the last change to the graph. By pressing this button, the Load 

method of GUIExecute is used to load the last save file representing the 

previous state of the graph. 

o Simplified: opens another window with a simplified version of the graph 

which doesn’t include inputs and exits, therefore, only operations and the 

edges between them are represented. The SimplifyGraph method on 

MultipathExecute is used to create this simpler version of the current 

graph. 

o Reset: positions all the cells back to the original Hierarchical organization 

that is first shown when the current graph window was opened. Uses the 

Layout method on GUIExecute which rearranges all the cells again.  

 

 

 MergeActions: If the graph is being visualized on a merge view, then some more 

buttons are added: the “MergeGraphs” button and some “Merge” ones according to 

the amount of groups of cells that can be merged. Next figure shows the panel with 

these extra buttons. 

     

Figure 3.10 – Merge Button Panel 

 

o MergeGraphs: opens a new window with the merged graph. This button is 

only available on the “merge view” so a MergeExecute instance has already 

been created and all this button does is call the 

MergeExecute.MergeGraphsV2 method to merge both graphs. 

o Merge: by checking the amount of corresponding groups of cells between 

both graphs on the MergeExecute instance, the same amount of Merge 

buttons are created and when one of them is pressed, it calls the 

HighlightCells method on both graphs while passing to them the group of 

cells corresponding to the button clicked so that they are highlighted.  

 

 CreateMergeButtons: is the method responsible to add the Merge relative buttons. It 

is used when a “MergeGraph” is created to add the Merge Buttons to the default 

buttons panel. 

3.2.3 - Handling Popup Menus 

The PopupMenu.java file has two main classes: PopupMenu itself which contains the model 

of the menu and the handler to deal with all the selections made within it, and 

PopclickListener which is responsible to handle actions made within the graph area such as 

mouse movements, clicks and cell movements. It also makes the popup menu appear when 

and where it is supposed to. 
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Though the popup menu is only available on the main graph, the other instances of 

GUIExecute that represent Megablocks contents also use the PopclickListener. This class 

not only creates the popup menu but it also uses listeners and handlers to keep track of the 

activity done with the mouse and to respond properly to each action. When created on the 

main graph, it makes the popup menu appear with a right click on a vertex and then, the 

PopupMenu object executes the action associated to each button clicked on the menu. When 

created on a Megablock graph, it keeps track of the cells that are hovered with the mouse 

cursor to highlight and to change colors of cells for a better interpretation of the graph by the 

user, it also keeps track on changes made on the layout so that it can be undone by the 

“Undo” button when it is selected, it also shows a vertex detailed information when a double 

click is done on one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 – Organization of the PopClickListener content 
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Table 3.5 — Resumes of the PopupMenu components. 

Component Function 

mouseMoved Highlights cells 

mouseDragged 
Saves graph’s layout when a 

change is made 

mouseClicked 
Shows vertex’s info or a popup 

menu 

doPopMain Creates a popup menu 

PopupMenu 

The menu itself and does the 

action according to the button 

pressed 

PopClickListener 
Does the action according to 

mouse inputs 

 

 PopclickListener: contains the methods that are going to handle interactions with 

the mouse and doPopMain method to build a PopupMenu instance on the main graph. 

An instance of this class is created at the moment of creation of each graph so it is 

called by GUIExecute.Setup and it is responsible to handle the actions done with 

the mouse on the zone of the graph. 

 

 mouseMoved: keeps reading the mouse cursor's location and uses 

GUIExecute.highlight to highlight the current cell in case of the listener not 

belonging to a merge graph. In case it is a merge graph then it highlights all the cells 

that belong to the mergeable tree that the current cell belongs. And in case of a 

merge view then it also highlights the corresponding mergeable tree of cells on the 

other graph. 

 

 mouseDragged: checks if a cell is moved and if so, it calls GUIExecute.Save to save 

the graph's layout so that it can be undone if needed. When the “Undo” button from 

the top panel is selected, it loads the last saved state. 

 

 mouseClicked: is used to detect double-clicks and right-clicks and to handle them. 

Whenever a double click is done in the main graph, it opens the corresponding graph 

window. If it is done on a vertex of a Megablock graph, then it opens a window 

showing detailed information about it such as its address, corresponding instruction 

and parent and child vertices. All this information is obtained from GUIExecute since 

it stores them all at the creation time of each graph. As for the right click: when it is 

done on a vertex, mouseClick checks if the current graph is the main graph and if 

so, it calls up doPopMain to make the popup menu appear with all the appropriate 

buttons. 

 

 doPopMain: uses PopupMenu to create the menu and to adjust it according to the cell 

which it is related to. Because the popup menu only makes sense if the current 
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instance of this class is related to the main graph, this method only creates it once 

and for that specific graph only. 

 

 PopupMenu: builds the popup menu as shown on figure 3.11 and it creates inner 

listeners and handlers to detect selections in the menu and submenu and to make the 

according action take place. 

 

Following is a figure showing this menu and explanations about each action integrated 

into it. 

 

 

 

 

 

 

 

Figure 3.12 –  Popup menu example. 

o Open Megablock: this button opens the graph that shows the content of the 

Megablock which this menu corresponds. To do so, it uses the SetVisible 

method on the GuiExecute instance that has the information of this 

MegaBlock. 

o Open Merge View: Due to Megablock’s nature described on 3.2, the ones that 

start with the same address are good candidates for a possible merge. So, 

when this button is selected, MultipathExecute.MergeView is called to 

show the graph corresponding to the present MegaBlock and the other one 

with the same address on a merge view allowing the user to analyze both with 

further detail, compare them and to eventually perform a merge if desirable. 

If there is no other MegaBlock with the same starting address, the selection of 

this operation shows a warning message like the one bellow:  

 

 

 

 

 

 

 

Figure 3.13 –  Unable to merge warning message. 

 

But despite the error, it is still possible to take a look at the merge view” of 

the selected Megablock with another one by using the “Merge this Megablock 

with…” button. 
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o Merge this Megablock with…: By selecting this option, a submenu opens for 

the user to select which MegaBlock is intended to merge with the current 

one. Just like the “Open Merge View” button, this one also uses the 

MultipathExecute.MergeView method to show both graphs on the merge 

view. This allows the user to check for another possible merge between 

Megablocks that don’t start with the same address. 

o Merge Megablocks: merges the Megablock selected with the other one that 

has the same address. It uses the MergeExecute.Setup to compare and 

prepare graphs for merge and then the MergeExecute.MergeGraphsV2 to 

effectively do the merge. Details on how the merge is done can be found on 

Chapter 4. The next figure shows the main graph before and after a merge. 

 

Figure 3.14 – Main graph before and after a merge. 

 

o Create Data File: This method uses GUIExecute.CreateDataFile to create 

data files relative to the graph chosen and updated with all the changes done 

in it. 

 

 

This chapter presented the application’s structure while explaining the main parts of it. It 

was organized with all the classes directly related with the visual part into the GUI package 

while MegablockMultipath contains the ones that do most of the data related methods. It 

also explained with detail the function of the most important classes and methods, and how 

they are related. Now that the structure and organization was explained, next chapter will 

focus on giving a deeper insight of the solution developed to merge Megablocks. 

 

 

 



 

 

Chapter 4 

Algorithm for Megablock Merging 

The diagram on Figure 4.1 represents the algorithm used to analyze both graphs and to 

match cells to be merged. This code is in the MergeExecute class and it is requested by the 

PopupMenu class when merging 2 graphs. 

The technique used to analyze both graphs and to look for matches begins with the 

constants or registers cells since they are the inputs and calculate a “compatibility factor” 

between their children. These actions are used recursively until an “exit” is reached and the 

information is used to determinate which cells can be merged. 

Inputs were used as starting points because they are the most easy to compare since they 

only have as attributes the “ID” and “LABEL” that must be the same. This also happens with 

the “Exit” cells so the technique could be used by starting on these ones and going backwards 

until the “inputs” are reached. In this case, the parents would have been followed instead of 

the children. 
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Figure 4.1 – UML diagram explaining the algorithm used to match cells. 

 

The first step is to look for same “input” vertices on both graphs. This is done by 

comparing the “input” list of vertices on each graph which only contain this type of vertices. 

Then, for each input, a test is made to check if it has already been matched on both graphs. 

If it is not the case, they are marked as matched and for each children of matched cells, 

it starts looking for possible matches for them on every children of the other graph. A list of 

possible matches is saved, if it has only 1 element, then a match is directly made and moves 

to the next children. If it has more than 1 element, then, a compatibility factor is calculated 

and the child with a higher value is chosen. 

To better explain it, it is necessary to follow the example on Figure 4.2, it shows how 

matches are done on one of the graphs and its order. Bear in mind that only matches are 

represented, because these cells can also have children and parents that weren’t matched. 
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Figure 4.2 – Example of the order that matches are being done. 

 

It starts by looking at the inputs, and if both graphs have the same input, they are 

matched as it happens on cell 1. Then it looks at their children and compares them, in order 

to find the best match. The comparison is made by picking a child on the first graph and 

giving a “Compatibility Factor” to each possible match on the other graph and the match is 

made with the cell that has the highest factor. This selection procedure is explained with 

detail further ahead. 

Each time a match is made, the search proceeds to its child. For example after looking on 

cell 2’s children and finding cell 3 as a match, it doesn’t look for more matches of 2’s 

children. Instead, it goes on, following 3’s path and looking for its children for matches and 

then matches cell 4. This time no match is possible on 4’s children so it looks for a match on 

its parents other than the one where it came from and also no match is found so it goes one 

step back to cell 3. The same happens here, the procedure repeats itself and goes back again, 

this time to cell 2. Already in 2, there is other child that can be used to match and that’s 

what happens. Cell 5 is matched and because there is no other match on its path, it goes back 

to cell 2. Now that all possible matches on cell 2 were made, its parents are checked. Since it 

came from 1, this isn’t considered and cell 6 is found as a match. A match on 6’s children is 

found and after another one on its parents is done always following the same method. After 

cell 8 is matched, there is no other match possible on the graph. This can be easily checked 

by following the algorithm, the analysis goes all back to cell 1 (through 8->6->2->1) and by 

reaching it, no other match is found to “go back another step”, the cycle ends. To sum up, by 

following this method, the route made while analyzing cells was: 1->2->3->4->3->2->5->2->6-

>7->6->8->6->2->1. At this point, it starts all over again by looking on the inputs for one that 

hasn’t been matched before and has a match on the other graph. When this point fails, then 
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the matches are completed and the mapping of possible merges between both graphs is 

complete. 

 

To compare cells and match them, whenever there is more than one possibility, the 

compatibility factor is used. It was necessary to use this complex approach due to the 

possibility of having several cells representations of the same operations and therefor also 

having same address and the only difference would be their inputs and outputs (which have 

been explained with more detail on section 3.1.1). 

The compatibility factor is obtained by comparing all parents and all children of each 

vertex, and for each correspondence, the factor increases. For constants, inputs and exits it 

compares their IDs and their Labels (they do not have addresses or instructions). And for 

operations, addresses and instructions are the attributes compared. After doing this 

procedure to all possible merges, the one with the best factor is selected. Figure 4.3 shows a 

merge view example that can help understand this problem and how the solution works and 

Figure 4.4 contains information about some vertexes of this example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 4.3 – Merge view example. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 – Detailed information of some vertices. 

 

As it can be seen by the yellow colored vertices, “37: add” on the first graph is associated 

to “24: add” on the second one. The first graph has the exact same operation, “24: add”, and 

despite that, “37: add” was chosen instead. So, in this case, it started by the constant “1” 

which was directly linked on both graphs and then, compared all the children of both “1” 

vertices for the ones that have the exact same instruction. If the first graph would have only 

one vertex with the instruction “addik r8, r8, 1”, it would have been linked and the 

procedure would go on through their children but since both “24:add” and “37:add” have the 

same instruction as “24:add” on second graph, they need to be compared with the 

compatibility factor. Detailed vertex info on Figure 4.4 show that “24:add” on second graph 

has 2 parents (“11:add” and “1”) and 2 children (“Exit:3” and “r8(input)”), “37:add” has the 

same amount and types of cells connected to it while “24:add” on first graph, on its turn, has 

the same type of parent vertices but it has some differences regarding its children: it has 

“28:xor”, “Exit:4” and “37:add”, and it is missing an input type of cell. So, vertex “37: add” 

has a higher factor and it will be chosen over “24: add”. 

 

At this point, all mergeable cells are mapped. To actually merge both graphs, the one 

with more cells is used to be changed so it can also work as the other graph. Looking back on 

the last example, graph 1 of Figure 4.3 has a red edge connecting “24: add” to “37: add”. 

These red edges show where multiplexers are placed to create the merged graph. They are 

detected by analyzing both graph’s matching and non-matching vertices. Whenever a 

matching vertex receives data from different sources on each graph, edges that represent 

that data flow are marked as red. By inserting a multiplexer on that spot, connecting both 

edges to its inputs and connecting its output to the matching cell, a selection between each 
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input of the multiplexer can be made. Figure 4.5 shows the result of the merge operation 

that explains it better. 

 

 

Figure 4.5 – Result of merging both graphs from Figure 4.3. 

The difference is that on graph 1, cell “37: add” has cell 1 and cell “24: add” has parents 

while it’s matching on graph 2, cell “24: add”, has cell 1 and cell “11: add”. This cell “11: 

add” of graph2 is matched to the same cell “11: add” on graph1 so cell “37: add” will have a 

multiplexer connected to it to select if either the input comes from “24: add” or “11: add”. 

In this example, the merged graph needs more multiplexers. As Figure X shows, there is 

another connected to “r7(input)”. For this Megablock to be able to operate correctly as either 

one of the graphs that gave origin to ti, it is necessary to make the correct selection on all 

multiplexers. To achieve this, all edges from graph 1 (the red ones) are connected, as the 

first input of each multiplexer, while the other edges are its second input. To choose 

between all inputs 1 or all inputs 2, all multiplexers have the same control bit on its input 3. 

Figure 4.6 shows where this control bit comes from. 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4.6 – Portion of a merge view showing the control vertex as red. 

 

 

 

 

 



 

 

Those red cells represent a special case. They are both the same operation and they have 

both the same parent and the same child but, in fact they have a different label. In graph 1 

it’s “greaterOrEqualZero” and on graph 2 it’s “lessZero”. This means that they represent 

opposite conditions and the control bit they generate (that goes to the exit) is never the same 

on both graphs. This is where the control bit comes from, the merged graph only shows 2 

inputs on each multiplexer, but this bit is actually connected as its 3rd input. It just isn’t 

shown because it would increase the complexity of the graph and that becomes less pleasant 

to visualize. In this way it is possible to control all multiplexers to have the same input at the 

same time, making the merged graph to execute as either graph1 or graph2. 

 

 

 

 



 

 

Chapter 5 

 

Validation and Results 

5.1 - GUI 

By comparing several graph representations of megablocks created by this software with 

their respective “asm” files, it is possible to conclude that there is always a correct 

representation of all the operations contained on each Megablock and all the edges between 

them. In fact, its interactivity also works properly and vertices and edges can be moved 

around causing no issue. The popup menu is only accessible on the main graph by right 

clicking a Megablock as intended and, as checked, the options on the menu show no problem. 

The top panel shows the correct buttons according to the type of graph shown (main graph, 

Megablock’s content, merge view, simplified) and they all work perfectly. The only problem 

detected is related with the fact that it hasn’t been possible to undo a merge due to its 

complexity. The display and organization of Megablock contents could be better indeed. With 

a big amount of vertices and edges, their labels and also the cells where the edges are 

connected can be hard to see. However, this is a limitation that comes from the use of jgraph 

as it only contains few layout types available and this is the result of the hierarchical layout. 

Additional features like Zoom in, Zoom out and double click to show the cell’s 

parents/children were implemented to help to get a better understanding of how each 

Megablock works. 

Following is a more detailed description of the tool’s usage. The tool starts up by showing 

a representation of the Megablocks of the last program executed in the Megablock Extractor 

as shown on Figure 5.1.  
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Figure 5.1 – Main graph with popup menu opened 

They are ordered from the top to the bottom by the starting position in the memory of 

each one, in such way that the MegaBlocks with lower address are positioned on the top and 

the ones with higher are on the bottom. The edges might mislead to a false interpretation 

about a possible relation between MegaBlocks or even an execution order but this is not the 

case. They connect MegaBlocks to the next one(s) in this order of addresses. With this view, 

MegaBlocks with the same starting address are next to each other horizontally and might be 

good candidates for a merge. 

By hovering the mouse cursor over a Megablock, it is highlighted along with all the others 

that have the same starting address. And by double clicking it, another window opens showing 

its content. 

The panel on the very top has a couple of buttons which allows to “Zoom in”, “Zoom 

out”, “Undo” changes done on the graph and “Reset” the view to the starting one. The zoom 

buttons are useful on cases when, for instance, there are so many vertices that they can’t fit 

on the original window. If a user drags to many cells around, he can use the “Undo” button to 

reverse the last action or the “Reset” to return the view to the starting point. 

There is also a popup menu that can be accessed by right clicking on a Megablock. This 

menu allows to “Open MegaBlock” which performs the same action as double clicking it, 

“Open Merge view” opens both the selected Megablock and one with the same address side-

by-side allowing to compare both and to perform a merge if wanted. “Merge Megablocks” 

immediately merges the selected Megablock with one with the same address without opening 

the merge view, “Create Data File” creates a file with the parsablegraph format like the one 

created by the Megablock Extractor, but in case of applying to a merged block, it has all the 

changes included addition of multiplexers, “Merge view this Megablock with…” performs the 

“Open merge view” action with a chosen Megablock. 
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The inside view of a Megablock accessed either by a double-click or the “Open 

Megablock” option, on the right-click menu, brings up a window representing the content of 

the Megablock. An example of the inside view of a Megablock is visible on Figure 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 – Inside view of a Megablock 

Inputs are represented by pink rectangles, constants have their value shown on the label 

and only have outgoing edges, registers can have both incoming and outgoing edges as they 

can be read or/and written from. 

Exit points are shown as grey rectangles and because they lead to the end of the 

Megablock processing, only incoming edges are connected to them. 

The blue elliptical cells represent operations. Each one has a different number which was 

assigned by the Megablock Extractor and doesn’t have any meaning, it only serves to better 

identify and reference each particular operation vertex. Followed by the number is the 

operation type of the vertex. Despite of having, all of them, different identification numbers, 

a very same operation can be, and it is most of the times due to MegaBlock’s repetitive 

nature, represented more than once. These vertices have the same operation and process on 

the same inputs but since they are (or at least one of them is) obtained from a different 

vertex, it is represented again on the graph. Detailed information about an operation can be 

obtained by simply double clicking on it. This pops up a window with its address, complete 

assembly instruction and parent/child vertices that are connected to it if any. Figure 5.3 

contains an example. 
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Figure 5.3 – Detailed information about a vertex. 

In case of viewing a Megablock that results from a merge, white hexagons are shown as 

representing multiplexers that allow the Megablock to operate as any of the two ones that led 

to this merge. Another difference is the presence of an operation colored red instead of blue. 

This operation is the one that controls the selections of all multiplexers. It generates a 

control bit that is connected to each multiplexer but it isn’t shown on the graph to not 

overwhelm it with more edges. 

On this view, the top panel has an additional button: “SIMPLIFIED”. This shows another 

view of the current graph without inputs and exits. Even though, it loses most of its 

information, because some graphs can have too many vertices and, by restricting the view to 

operations only, it can help to understand how they are connected and also their 

dependencies. This can be seen on Figure 5.4. 
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Figure 5.4 – Simplified view. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 5.5 – Merge view. 

 

 



 

 

The “Merge View” shows the two MegaBlocks contents side-by-side as displayed on Figure 

5.5. The graph on the left is the one that will register changes done in case of a merge. This 

is the Megablock that has more operation vertices which usually makes it the best one to 

create the merge from. In this view, both graphs have a red colored operation indicating the 

place where the control bit for the multiplexers is going to be generated. The red edges 

indicate edges that will need to have a multiplexer and another edge connected to it 

according to the other graph. 

In this view, hovering over a vertex changes its color to yellow as well as its corresponding 

vertex on the other graph. It also highlights the group of mergeable vertices that they both 

belong to by giving a good perception of common vertices to both graphs that can be merged. 

The “Merge” button on the top panel also highlights these vertices. If there are more group 

associations, more buttons are added to allow the highlight of different correspondences 

between both graphs. The panel on top also has a MergeGraphs button to perform that exact 

action by making the needed adjustments on the graph on the left side and to transform it 

into the merged graph and to be able to process both graphs. The representations of these 

megablocks on the main graph are also merged and a new Megablock named “megablock1 

MERGED WITH megablock2” (where megablock1 and megablock1 are the Megablock IDs of 

each one) replaces both of them. Due to its complexity, the UNDO button has no effect on 

this action and the merged megablock cannot be merged with another Megablock but it is still 

possible to see its content and detailed information of each vertex. 

5.2 - Validation of the Merged Block 

Initially, the procedure to validate the merge ability was to use the “parsablegraph.txt” 

created from a merged Megablock, on the embedded system that Nuno Paulino uses in his 

work. But the results from MegaBlock Extractor don’t include any multiplexer and since this is 

a new type of vertex and it has particularities such as a control bit and a selection between 

two inputs that needs to be done. At the time this work was done, the system wasn’t 

prepared to receive and to implement this on its hardware. So, it was decided that validation 

would be done by using ModelSim to simulate hardware that would correspond to the merged 

megablock. 

The steps were starting by creating simple programs in “c”, compiling them with gcc to 

create the “.elf” file, then loading them into “MegablockExtractor” to finally generate all 

output files, running MegablockMultipath and merging two megablocks and finally using 

ModelSim to make a model of the resulting merge. At the compiling step, the program’s 

variables final values are obtained and then compared with the simulation. By comparing 

these values, conclusions can be made such as if the merge block can correctly work as both 

megablocks or not. 

On the attempt to use this method to validate the merge structure, very simple codes 

were made and Figure 5.1 shows an example. 
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Figure 5.6 – Source code of an example to test. 

An “if” inside a “for” makes this case to have a loop and several decisions. Each time the 

loop is done, “A” is incremented and in case of being lower than 5, it is incremented again. 

This example resulted into two MegaBlocks with the same address and with the possibility to 

be merged. Figure 5.7 shows the assembly code for one of those MegaBlocks while Figure 5.8 

shows its graph representation obtained with the MegablockMultipath. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 5.7 – Assembly code resulting from using the source code of Figure 5.1 on the Megablock 

Extractor. 
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Figure 5.8 – Graph representing operations from Figure 5.1 

A simple example like this one is represented by a quit complicated graph with more than 

20 vertices and 40 edges. This led into struggles to create a model and unfortunately, 

validation was not possible.  

A flaw was also found with this case and it can be seen on Figure 5.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 5.9 – Example of a flaw on the merge technique. 



 

 

All vertices on the graph on the right side are matched on the left one but this left one 

has some more vertices that aren’t on the graph of the right side, these are the ones that 

aren’t highlighted. The merge algorithm adds multiplexers between a non-mergeable vertex 

and its mergeable child as explained on chapter 4, this selects the mergeable cell input. In 

this case, there isn’t any non-mergeable vertex with a mergeable child because these 

operations end on the “14: store” operation that doesn’t even have a child. To correct this, 

that “14: store” has to be limited on the merged Megablock and to only be able to process 

when the graph on the left is selected, which can still be checked by the control bit from the 

red colored vertex. 

 

 

 

 



 

 

Chapter 6 

Conclusions and future work 

This dissertation has its basis on other previous work done on embedded systems 

consisting of a GPP and a CGRA with focus to boost its overall performance. As embedded 

systems are very common on most of the technological equipment that we need to deal on a 

daily basis, evolution on this matter have a big impact on a very wide range of types of 

electronic products which result into evolution on several different areas. CGRAs are able to 

process data faster than a GPP so an effective method to map instructions into it is desirable. 

This means finding high execution program traces, which is already done by the detection of 

Megablocks. The aim of this dissertation is to aid by having a good overview of the programs 

to execute in an embedded system with usage of the MegaBlock concept and to try to boost 

its performance by exploring a weak spot on the mapping technique used and for which a 

Merge of Megablocks would have high impact on improving its performance.  

The work done on this dissertation shows that a tool was developed and it correctly shows 

MegaBlock’s contents and allows to interact with them. It also allows doing the Merge of 

Megablocks. Though it couldn’t be validated as explained on chapter 5, the algorithm used 

(chapter 4) can be of good use since it focuses on a careful analysis of the relationships 

between vertices and at the same time comparing some of their characteristics. So the 

objective to make an interactive tool was fulfilled, while the objective of developing the 

merge Megablock technique was also done but still unable to be validated and a flaw was 

detected. Generation of the VHDL code wasn’t implemented but on the other hand, the tool 

generates an output file in parsablegraph format that allows the receiver of this work to use 

it on its hardware. As for additional goals, the tool does not allow having a nested view on the 

Megablocks but it does allow to have an overview of them and to pick which one to open and 

show its content. The tool does not allow recovering a work previously finished but has the 

ability to undo the interactions done with the exception of Megablock’s merging due to its 

complexity. 

Future work should include improvements on this tool to overcome the flaw on the merge 

ability and to develop it further in order to be able to merge more than 2 Megablocks and 

even to do some other operations that can improve performance. It would also be very 

interesting to expand the merge technique to another kind of approach that would allow the 

execution of the same Megablock on more than 1 CGRA at a time or even spreading some 

execution between them so that more than one could be processing at the same time. 
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These figures show all components that are part of the application developed in this 

dissertation. Each class has some elements that can be considered the main ones while others 

aren’t so important and serve to help the main ones. Therefore, the architecture of the 

Multipath Merging Tool was simplified on chapter 3. Here on this section can be found figures 

illustrating the complete architecture of each class. 

 

Appendix 1 

Complete architecture of the MultipathExecute class: 
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Appendix 2 

Complete architecture of the MergeExecute class: 
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Appendix 3a 

Complete architecture of the GUIExecute class (part 1): 
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Appendix 3b 

Complete architecture of the GUIExecute class (part 2): 
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Appendix 4 

Complete architecture of the Buttons class: 
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Appendix 5 

Complete architecture of the PopClickListener and PopupMenu classes: 

 

 

 

 

 

 

 

 

 

 

 

 


