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Resumo 

A interação entre o escoamento do sangue e as paredes das artérias promove, 

frequentemente, o aparecimento de doenças vasculares. No caso da crossa da aorta, o 

procedimento convencional para estas patologias é a cirurgia aberta, cuja taxa de 

mortalidade é de 7 a 17 %. Uma alternativa aliciante à cirurgia, por se tratar de um 

procedimento menos invasivo, é a reparação aórtica endovascular, que consiste na introdução 

de um stent-graft através de uma artéria de acesso.  

Estudos experimentais e numéricos têm contribuído para uma maior e melhor 

compreensão das doenças cardiovasculares, assim como para o desenvolvimento de técnicas 

de diagnóstico e stent-grafts de melhor desempenho.   

Este trabalho consistiu no estudo numérico do escoamento sanguíneo num modelo 

tridimensional simplificado da crossa da aorta, com os seus três vasos superiores, antes e 

depois da introdução de um stent-graft ramificado. Verificou-se que a introdução do stent-    

-graft aumenta a perfusão sanguínea através das três artérias superiores. Verificou-se, 

também, um aumento da tensão de corte nas paredes dos vasos, o que pode resultar em 

complicações pós-operatórias, e.g., migração do dispositivo.  

Foi testada uma nova metodologia para estabelecer uma condição fronteira resistiva, 

que consiste na extensão do modelo da crossa da aorta por um tubo constritivo, o qual impõe 

sobre o domínio a resistência da restante vasculatura. As principais caraterísticas fisiológicas 

do escoamento foram estudadas, após as simulações. Verificou-se uma diminuição da 

magnitude do caudal, possivelmente devida ao facto da curvatura da crossa da aorta não ter 

sido considerada. Os valores da resistência mantiveram-se constantes em todas as simulações.   

Três stent-grafts ramificados foram testados, de forma a avaliar o impacto do 

diâmetro dos seus ramos no desempenho dos dispositivos. Foi identificada uma zona de 

recirculação no bypass da subclávia esquerda através da carótida esquerda comum. Apesar do 

uso de um stent-graft personalizado garantir melhor desempenho, de modo a reduzir os 

atrasos e os custos associados à sua produção, deve ser dada preferência a dispositivos cujo 

diâmetro dos ramos seja ligeiramente superior ao das artérias. 

 

Palavras Chave: reparação aórtica endovascular; crossa da aorta; stent-grafts 

ramificados; dinâmica de fluidos computacional; condições 

fronteira resistivas. 
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Abstract 

Vascular pathologies may arise from the interaction between blood flow and arteries 

walls. In the case of aortic arch diseases, the conventional open surgery procedure has a 

reported mortality rate of 7 – 17 %. Endovascular aortic repair, consisting in the introduction 

of a stent-graft through an access artery, constitutes an appealing alternative, being a less 

invasive procedure.  

Haemodynamic studies performed both experimentally and numerically, have shed 

significant light over the characteristics of blood flow, leading to a better understanding of 

cardiovascular diseases and to the development of diagnosis tools and stent-grafts of 

improved performance.  

In this work, numerical flow studies in simplified three-dimensional models of the aortic 

arch and three upper branches, before and after the introduction of an idealized branched 

stent-graft, were performed. The presence of the stent-grafts increases blood perfusion 

through the three supra-aortic vessels. Nevertheless, wall shear stress increases drastically 

after the introduction of the stent-graft, which may result in post-operative complications.  

A new methodology for a resistance type outflow boundary condition, consisting in the 

attachment of a constriction tube to the outlets of the models, imposing the resistance of the 

downstream vasculature, was also tested. Using this methodology, the main physiological flow 

features are captured. A decrease in the flow rate magnitude is observed, possibly due to the 

absence of the arch’s curvature. The specific resistance held constant for all simulations.  

Three branched stent-grafts were tested, in order to evaluate the impact of the 

diameter of the stent-graft’s branches in its hemodynamic performance. A persistent flow 

recirculation zone, FRZ, was identified in the bypass of the left subclavian artery through the 

left common carotid. Results suggested that, although the best haemodynamic performance 

would be achieved with customized branched stent-grafts, in order to minimize delays and 

costs, preference should be given to branches with slightly higher diameters than the ones of 

the vessels as these yield smaller FRZ. 

 

Key-words: endovascular aortic repair; aortic arch; branched stent-graft; 

computational fluid dynamics; resistance boundary condition. 
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Notation and Glossary 

 

𝑎 Radius   m 

𝐶 Compliance m3.Pa-1 
𝑑 Diameter  m 
𝐷! Inlet diameter of the constriction tube m 
𝐷! Outlet diameter of the constriction tube m 
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𝐿! Length of the largest section of the constriction tube m 
𝐿! Length of the narrowest section of the constriction tube m 
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𝑝 Mean pressure  Pa 
𝑄 Volumetric flow rate m3.s 
𝑄 Mean volumetric flow rate m3.s 
𝑄 Volumetric flow rate at peak systole m3.s 
𝑅 Resistance kg.m-4.s-1 
𝑅! Proximal resistance  kg.m-4.s-1 
𝑅! Distal resistance  kg.m-4.s-1 
Re Reynolds number  
Re Reynolds number at peak systole   
𝑆 Cross-sectional area m2 
𝑡 Time s 
𝑢 Velocity m.s-1 
𝑢 Mean velocity m.s-1 
𝑍 Proximal landing zone of the stent-graft  

 

Greek Letters  

α Womersley parameter  
𝛾 Ratio between diameters   
Γ Boundary   
𝜇 Dynamic viscosity Pa.s 
𝜌 Density  kg.m3 
𝜏 Wall shear stress Pa 
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𝜐 Kinematic viscosity m2.s-1 
𝜔 Cardiac frequency s-1 
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Indexes  

𝑐 Critical value  
𝐹 Fluid  
𝑖 Outlet of the model   
𝑖𝑛𝑙𝑒𝑡 Value at the inlet  
𝑛 Number of the landing zone of the stent-graft  
𝑡 Value at the downstream vasculature   
𝑤 Value at the wall   
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1 Introduction 

1.1 Motivation 

As a response to the interaction between blood flow and arteries walls, blood vessels 

are able to remodel themselves over time, responding to the haemodynamic stresses they are 

facing. Vascular pathologies may appear as a biological response to the fluid mechanical 

environment.  

According to the World Health Organization, WHO, cardiovascular diseases are the 

number one cause of death in the world, having caused 17.5 million deaths, in 2012 [1]. The 

most common pathologies of the aortic arch include aneurysm and dissection caused by the 

over time weakening of the aortic wall [2]. These vascular pathologies are associated with 

high risk of vessel’s rupture, underlying the need for emergency surgery in such cases.  

The conventional procedure for aortic arch repair is open surgery, which has a reported 

7 – 17 % mortality rate [3]. In the last decade, endovascular aortic repair, EVAR, has appeared 

as a successful less invasive surgical procedure, consisting in the introduction of a stent-graft 

through an exposed access artery. The device is conducted to the desired landing site, where 

it is fixated, excluding the aneurysm sac or the dissection’s false lumen from the mainstream 

blood circulation. Although EVAR for the descending aorta has acceptable rates of mid-term 

mortality and morbidity, EVAR for the aortic arch is still in development, owning to the 

challenges that this anatomical location represents.   

The site’s complex geometry, with extensive curvature and the presence of the three 

supra-aortic vessels (the brachiocephalic trunk or innominate artery, the left common carotid 

artery and the left subclavian artery), makes it hard to obtain a landing zone of sufficient 

length for the stent-graft implementation. The particular haemodynamic of this anatomical 

region, due to both its angulated morphology and proximity to the heart, must be carefully 

studied in order to accurately access the device performance.  

Although there are several options when choosing a stent-graft for aortic arch EVAR, in 

this work branched stent-grafts were selected. Branched stent-grafts consist of a main body 

stent-graft with fixed branches of specific dimensions that can be oriented into the vessels of 

the aortic arch, making them adaptable to a wide variety of anatomical geometries. The use 

of this type of devices is usually associated with hybrid repair, combining aortic arch bypass 

with stent-grafting, to ensure landing zones of sufficient length and prevent migration of the 

device. The use of off-the-shelf branched stent-grafts is a particularly appealing option since 
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their use preclude delays associated with customization of the device, allowing to reduce 

costs and ensuring democratization of the EVAR technique.   

Blood flow analysis is of major importance when addressing vascular pathologies. 

Several studies on the dependence of the development of vascular diseases on flow structure 

have suggested that different types of shear stresses can induce different responses in the 

endothelial cells that constitute de inner part of the arteries walls [2, 4]. Those results 

suggest the possibility for a correlation between the development of this lesions and the fluid 

mechanical environment to which the vessels are subjected. Studies on blood flow have shed 

significant light over its characteristics, leading to a better understanding of cardiovascular 

diseases and to the development of diagnosis tools and stent-grafts of improved performance.  

Haemodynamic studies have been performed experimentally using both in vitro and 

in vivo experimental methods. In recent years, the development of Computational Fluid 

Dynamics, CFD, enabled the analysis of patient-specific haemodynamic through three-           

-dimensional numerical simulations.  

 

1.2 Research question  

In this work, numerical flow studies in simplified three-dimensional models of the aortic 

arch, with its three upper branches, before and after the introduction of an idealized 

branched stent-graft are performed.  

The pre-operative geometry is based on the surgically relevant aortic arch mapping 

reported by Finlay et al., in 2012 [5]. The idealized branched stent-graft is also based on the 

prototype suggested by Finlay’s group [5]. As it is constructed based on the most frequent 

dimensions for the aortic arch, this hypothetical off-the-shell prototype stent-graft is 

expected to obviate the need for customization in 60 to 75 % of the cases, democratizing the 

use of this technique. Such results will allow to overcome one of the main disadvantages of 

the EVAR procedure: the delay on the device’s production along with the high costs 

associated with its customization [4].  

In this work, a new and easy to implement methodology for a resistance type outflow 

boundary condition is also tested. This methodology consists in the attachment of a 

constriction tube to the outlets of the model, imposing the resistance of the downstream 

vasculature.   
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1.3 Objectives  

It is the aim of this work to analyse the blood flow in simplified three-dimensional 

models of the aortic arch, with its three upper branches, before and after the introduction of 

an idealized branched stent-graft, using CFD software. Along with the blood flow analysis, a 

new and easy to implement methodology for a resistance type outflow boundary condition is 

studied. The optimisation of the stent-graft design for the best haemodynamic performance is 

also assessed.  

 

1.4 Thesis layout  

This thesis begins with this introductory chapter, where a general perspective of the 

motivation and research questions underlying this work are presented.  

Chapter 2 provides more detailed information on the aortic arch, the aortic arch 

pathologies and repair procedures for these diseases, highlighting the advantages associated 

with endovascular procedures using branched stent-grafts. An introduction to the use of 

Computational Fluid Dynamics in blood flow analysis, together with a review of the literature 

existing on this subject can also be found in this section.  

The methodology employed in this work is presented in Chapter 3, where the 

construction of the models, as well as the mathematical and numerical flow modelling, from 

pre- to post-processing, are described.   

In Chapter 4, the results from the numerical simulations are presented, followed by 

their discussion, dividing the work in two parts: the evaluation of the resistance type outflow 

boundary condition and the analysis of blood flow in the branched stent-grafts.  

In the final chapter, the main conclusions, along with comments on the limitations of 

this work and suggestions for future ones are presented.   
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2 State-of-the-Art 

2.1 The aortic arch  

The aorta is the main trunk of the vascular system, conveying oxygenated blood to the 

tissues of the body. It begins at the upper part of the left ventricle, with a diameter of 

approximately 3 cm, passing upwards and to the right for about 5 cm, arching backwards and 

to the left, over the root of the left lung, then descending within the thorax, and entering 

the abdominal cavity, presenting a diameter of about 1.75 cm [6]. It is usual to divide the 

aorta in three sections: the ascending, the arch, and descending, which is differentiated in 

the thoracic and the abdominal parts [6]. The focus of this work is on the aortic arch. 

The ascending aorta is about 5 cm long, beginning at the base of the left ventricle [6]. 

As the ascending aorta continues into the aortic arch, the calibre of the vessels is slightly 

increased, due to a bulging of its right wall, causing a dilatation named the bulb of the 

aorta [6]. On transverse section at this level, the vessel presents an approximately oval 

outline.  

The aortic arch begins at the level of the upper border of the second right sternocostal 

articulation, and runs first upwards, then backwards and to the left side of the trachea, 

passing downwards on the left side of the body, continuing into the descending aorta [6]. The 

arch has two curvatures, one with its convexity upward, the other forward and to the left.  

Three vessels arise from the upper part of the arch, supplying blood to the brain and 

upper parts of the body: the brachiocephalic trunk (innominate artery), the left common 

carotid artery and the left subclavian artery [6, 7]. A schematic representation of the heart 

with its main vessels, giving specific focus on the aortic arch and on the three supra-aortic 

vessels is shown in Figure 1.  

The brachiocephalic trunk or innominate artery, IA, is the largest of the three supra-     

-aortic vessels, with a length of 4 - 5 cm [6]. It arises from the convexity of the arch, and 

divides itself into the right common carotid and right subclavian arteries at the level of the 

upper border of the right sternoclavicular [6]. The principal arteries of the head and neck are 

the two common carotids. The left common carotid artery, LCCA, springs from the higher part 

of the aortic arch, behind and to the left of the IA, ascending to the level of the left 

sternoclavicular joint [6]. Behind it is related to the left subclavian artery, LSCA, ascending to 

the root of the neck and then arching laterally [6]. 
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Figure 1 – The heart and its main vessels, with focus on the ascending aorta, the aortic arch, the 
brachiocephalic trunk or innominate artery, IA, the left common carotid, LCCA, and the left 

subclavian artery, LSCA. 

 

As a response to the interaction between the blood flow and their walls, the arteries 

are able to remodel themselves over time, alteration that can lead to the development of 

diseases. The walls of the aorta consist of three thick, muscular and elastic layers: the tunica 

intima, tunica media and tunica adventitia, counting from the lumen [7]. Wall shear stress, 

WSS, has been reported as being intrinsically related to aortic pathologies [2, 7-9], with the 

biggest impact being seen on the intima layer that incorporates the endothelial cells in direct 

contact with blood. 

Common diseases of the aortic arch include aneurysm and dissection. Aneurysms are 

local enlargements of the artery, causing thinning of the vessels wall [9]. The development of 

an aneurysm increases the risk of aortic dissection, which consists in the tear of the intima 

layer, causing blood to pass through this separation of layers of the aortic wall, producing a 

false lumen [10, 11]. The weakening of the aortic wall that occurs in this pathologies can lead 

to aortic rupture within minutes or hours of the acute event, after which the patient’s risk of 

death increases 1 % per hour [12]. This imminent risk of rupture underlies the necessity of 

emergency surgery in aortic arch pathologies. 

 

2.2 Endovascular repair of the aortic arch  

The conventional procedure for the treatment of aortic arch pathologies is open 

surgery, which has a reported 7 - 17 % mortality rate and a 4 – 12 % neurological injury 

rate [3]. In the last decade, endovascular aortic repair, EVAR, appeared as a successful less 

invasive technique, consisting in the introduction of a stent-graft through an exposed access 
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artery, excluding the aneurysm sac or the dissection’s false lumen from the mainstream blood 

circulation. Although EVAR has acceptable rates of mid-term mortality for the descending 

aorta, EVAR for the aortic arch is less developed due to the challenges that this anatomical 

site represents [3, 13]. 

A particularly important feature of EVAR techniques using stent-graft is the need for a 

sufficiently long length of healthy aorta to use as the landing site, with, according to 

Ishimaru et al. [13], at least 15 mm from an arch vessel to the margin of aneurysm being 

required. However, in the aortic arch, the curvature and proximity of the entrance of the 

three vessels (IA, LCCA and LSCA) makes it difficult to obtain a landing zone with sufficient 

length to ensure firm fixation of the device [13]. 

The need to maintain blood flow to the brain and upper extremities of the body must 

be assessed as well, and several alternatives to assure cerebral perfusion have been reported. 

Some of the currently available options for EVAR of the aortic arch include (I) hybrid repair – 

combining aortic arch bypass with stent-grafting, and the use of (II) branched or 

(III) fenestrated stent-grafts.  

When considering EVAR that requires aortic arch landing, techniques are usually 

classified according to the proximal landing zone, 𝑍, as proposed by Balm et al.: 𝑍3 if landing 

is possible in the distal arch, 𝑍2 if only LSCA is occluded by the stent-graft, 𝑍1 if both LCCA 

and LSCA are occluded and 𝑍0 if all three supra-aortic vessels are occluded (Figure 2) [14].  

 

 

Figure 2 - Anatomical landing zone map  [13]. 

 

With aortic arch repair, at least 𝑍2 landing is usually required, thus a bypass of the 

LSCA through the LCCA to ensure blood perfusion to the upper left side of the body is 
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essential, since the entrance of the LSCA in the aortic arch will be occluded [14]. Hybrid 

procedures combine the use of endovascular devices with bypass for revascularization of the 

cervical vessels occluded by the stent-graft, being a less invasive technique than open 

surgery, with promising early- and long-term results. In 2014, Shirakawa et al. [3] reported on 

the efficacy and short-term results of combined supra-aortic bypass and stent-graft into the 

ascending aorta for 40 high-risk patients with aortic arch pathologies. The group achieved 

a 3 % 30-day mortality rate and 0 % incidence of stroke occurrence, with 85 % of the patients 

being able to recover at home and return to independent lifestyles. Hybrid techniques are an 

appealing option for high-risk patients since the aortic arch bypass creates a proximal landing 

zone of adequate length for stent-graft deployment, preventing migration of the device.  

EVAR for the aortic arch using branched stent-graft (Figure 3.A) was first reported by 

Inoue et al., in 1997 [15], and later by Chuter and colleagues [16]. This type of devices 

consists of a main body stent-graft with fixed branches of specific dimensions that can be 

oriented into the arch’s vessels. Such characteristic makes them adaptable to a wide variety 

of anatomical geometries.  

On their turn, fenestrated stent-grafts (Figure 3.B) are customized devices in which 

fenestrations in the main body are aligned with the entrance of the supra-aortic vessels and 

secured to these by covered stents [17]. These fenestrations will house supplemental stent-   

-grafts that protrude into the supra-aortic vessels. As these devices need to be tailor-made to 

ensure that the fenestrations are correctly aligned with the vessels, they require several 

weeks in the manufacturing, rendering their use expensive and unsuitable for urgent cases [4, 

5, 17]. As mentioned by Finlay et al. [5], off-the-shelf branched stent-grafts would preclude 

this delay and reduce costs, ensuring democratization of the EVAR technique.  

 

 

Figure 3 – (A) Schematic representation of a aortic arch branched stent-graft with a branch for the 
innominate artery and occlusion of both the left common carotid and left subclavian arteries [16]. 

(B) Precurved fenestrated stent-graft for the aortic arch with fenestration for the three supra-aortic 
vessels [18]. 
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In 2012, Finlay et al. [5], performed a surgically relevant aortic arch mapping using 

Computed Tomography, CT, scans. After mapping the aortic arch diameters, branch 

orientations and centre line distances, the group proposed a prototype for a standard off-the-

-shelf stent-graft (Figure 4) that would obviate the need for customization in 60 to 75 % of 

cases, since its dimensions were based on the most common values obtained in CT scans [5].  

 

 
Figure 4 – Schematic drawing of the stent-graft prototype suggested by Finlay et al. [5]. A to E2: 

geometric parameters based on frequency measurements of the aortic arch mapping. 

 

2.3 Modelling blood flow using Computational Fluid Dynamics  

Studies on blood flow have shed significant light over its haemodynamic characteristics, 

leading to a better understanding of cardiovascular diseases and to the development of 

diagnosis tools and stent-grafts of improved performance.  

Haemodynamic studies have been performed experimentally since the 1960s using both 

in vitro and in vivo methods. In recent years, the development of Computational Fluid 

Dynamics, CFD, enabled the analysis of patient-specific haemodynamic through three-           

-dimensional, 3D, numerical simulations. CFD simulations allow for the quantification of 

variables not measurable in vivo, and are appropriate for a combination with image-based 

measurements data [19]. CFD studies can be divided into four steps: problem identification, 

pre-processing, solving and post-processing.  

 

2.3.1 Problem Identification 

Vascular lesions tend to develop in regions of complex vessel geometry, as it is the 

case of the aortic arch. Several authors have used CFD simulations to study the 
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haemodynamic in this particular region [19-23]. In fact, the curvature and non-planarity of 

the arch, together with the tapering of the aorta from its ascending to descending portions, 

have been reported as responsible for the helical patterns and flow recirculations 

observed there [19-23]. 

 

2.3.2  Pre-processing 

The first step when carrying out blood flow simulations is to define the geometry of 

the region under study. Simulations can be performed in idealized or image-based patient-     

-specified geometries.  

Experimental and computational studies, conducted using both straight and curved 

tubes, provided a keen understanding on the influence of the arch’s curvature, documenting 

the skewness of the velocity profiles and the appearance of secondary flow patterns. They 

have also provided knowledge on the influence of the non-Newtonian blood behaviour, fluid-  

-structure interaction, mass transport phenomena, Reynolds and Dean dimensionless 

numbers, and Womersley parameter [19-21, 23]. The most common simplifications 

considered, when using idealized geometries for the aortic arch, include the assumption of 

circular cross-section of constant diameter, and negligence of both the curvature of the arch 

and the presence of the supra-aortic vessels.  

Providing a realistic description of the anatomical region, image-based patient-specific 

geometries acquired via Magnetic Resonance Imaging, MRI, or CT scans have gain great 

popularity in the recent years. Using CT scans, high spatial resolution X-ray images are 

obtained with thin slice thickness and high contrast, allowing the distinct observation of 

different body parts through contrast adjustment. Nevertheless, CT scans are related to a 

certain degree of radiation, while the MRI technique, where contrast is achieved by exploiting 

differences in the magnetic spin relaxation properties of the body tissues and fluids using 

blood as the contrast agent, is thought to be benign [7, 19]. After image acquisition, it is 

necessary to reconstruct the geometry as a 3D model.  

Once the 3D model is created, it is discretized into a mesh of finite number of smaller 

sub–domains over which the governing equations are solved. The smaller the number and 

distribution of these elements, the more accurate the simulation will be, at expense of 

computational costs, being essential the optimization of the ratio between solution accuracy 

and computational resources employed.  

Meshes can be structured (hexahedral) or unstructured (tetrahedral). For the curved 

tubes or idealized geometries aforementioned, structured meshing has been usually used, 

since it can be easily automated, while unstructured meshes produced by commercial 
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meshing software are commonly used in patient-specific simulations due to its potential of 

effortless grid generation over complex geometries [19]. In the later approach, distributions 

of tetrahedral, prismatic and pyramid elements are generated using a variety of sophisticated 

algorithms requiring higher resolution to reach mesh independency. When the focus of the 

study is on wall shear stress, boundary layer mesh generation techniques with high resolution, 

i.e., higher mesh density near the artery wall, should be employed.  

It is also essential to consider the accurate properties of the materials. Blood is a non-

-Newtonian fluid, since its viscosity decreases with the increase of the shear-rate, i.e., it is a 

shear-thinning fluid [7, 19]. Blood’s viscosity increases with the increase of the volume 

percentage of red blood cells and the decrease of body temperature [19]. The presence of 

red blood cells, measured in terms of their percentage, haematocrocit, gives some elasticity 

to the blood, which can be classified as a visco-elastic fluid. Nevertheless, the majority of the 

CFD studies assume blood as having a Newtonian behaviour, based on the premise that the 

mean shear-rate in the boundary layer exceeds 100 s-1, minimum value for which the viscosity 

is independent of the shear-rate [7]. Sustaining this assumption is the study by 

Fung et al. [24], reporting that blood viscosity has a milder impact on the shear forces acting 

in the vessels walls, compared to the effects of blood pressure and pressure waveforms.  

The arteries are dynamic systems that adapt over time to the haemodynamic 

conditions to which they are subjected, in addition to expanding and relaxing throughout the 

cardiac cycle. The adaptation of the walls owes primarily to the long-term variations in the 

WSS, 𝜏!, sensed directly as a force onto the endothelial cells [2]. Equation 2.1 describes WSS 

for a Newtonian fluid, where 𝑢 is the velocity, which is zero on the wall, 𝜇 the fluid’s 

dynamic viscosity, and 𝑎 the radius of the vessel. Blood pressure has also been reported as 

contributing for the dynamic response of the arteries, affecting primarily the cells on the 

tunica media layer [2].  

 

𝜏! =   −  𝜇
d𝑢
d𝑟
  
!!!

                                                                                                                                          (2.1) 

 

Fluid-Structure Interaction, FSI, assigns the dynamic behaviour of the elastic walls as a 

response to the pulsatile blood flow and pressure. Modelling FSI is currently one of the major 

challenges in CFD haemodynamic simulations due to its dependence on blood flow and 

pressure, as well as on the tissues and organs outside the vessel, requiring extensive models 

of the arterial system as an all. Rigid wall assumption is commonly employed in CFD 

simulations, although FSI provide a more accurate description of the physiology of the site 



Analysis of flow in branched stent-grafts for endovascular repair of the aortic arch 

State-of-the-Art 12 

under study. However, the latter requires complex numerical algorithms and patient-specific 

data, drastically increasing the need for computational resources.  

In order to run CFD simulations and solve the governing equations it is essential to 

prescribe boundary conditions that match accurately clinical data. 

Although the aorta is subjected to large deformations over time due to blood flow and 

pressures waveforms, and it is coupled with the surrounding organs and tissues, rigid, 

impermeable wall and no-slip conditions at the wall of the vessels are assumed in the 

majority of CFD studies [11, 19-29]. The effect of blood particles is also not considered as it is 

expected that such approximation would yield minor effects on the simulation results, 

according to Lam et al. [30].  

In the human body, the majority of the studies assume laminar flow since, even in 

large arteries, the velocity has been reported to be low enough to yield relatively low 

Reynolds numbers [24, 26, 27]. Stein and Sabbah [31], in 1976, followed by Kilner et al. [32], 

in 1997, reported the flow through the aorta of a normal adult at rest as being laminar with 

possible disturbances, helical and disturbed flows patterns, in specific zones. The presence of 

abnormalities that change the widening of the blood vessel, e.g., atherosclerosis, aneurysms, 

dissections and stenosis, cause the flow inside the lumen to vary as well [7].  

The Reynolds number, Re, given by Equation 2.2, where 𝑢 is the cross-sectional mean 

velocity of the fluid, 𝑑 the vessel’s diameter, 𝜌 the density of the fluid, 𝜇 the fluid’s dynamic 

viscosity and thus 𝜐 its kinematic viscosity, is a measure of the ratio between the inertial and 

viscous forces acting onto a fluid element [33]. 

 

Re =   
𝑑!. 𝑢!. 𝜌
𝑑. 𝑢. 𝜇

=   
𝑑. 𝑢. 𝜌
𝜇

=
𝑑. 𝑢
𝜐
                                                                                                                    (2.2)  

     

For Re values smaller than the critical, Re!, the magnitude of the viscous forces 

surpasses the one of the inertial forces, and the flow is said to be laminar, while a flow for 

which Re   >   Re! is said to be turbulent. In the human aorta, the Re  is approximately 4 000 

and turbulent flow has been reported to be present when the peak Reynolds (Re at peak 

systole, Re) is between 5 000 and 6 000 [2, 19].  

Kousera et al. [34], in their numerical study of aortic flow stability, presented a 

stability diagram, in Figure 5, showing in vivo disturbed and undisturbed flow data depending 

on the Re and the Womersley parameter.  
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Figure 5 – Stability diagram showing in vivo disturbed and undisturbed flow data [34]. 

 
 

The Womersley parameter, α, is a dimensionless frequency parameter governing the 

relationship between the unsteady and viscous forces acting onto to the fluid element. It is 

mathematically described by Equation 2.3, where 𝑎 is the characteristic dimension of the 

vessel, its radius, 𝜐 the kinematic viscosity and 𝜔 the cardiac frequency [7]. 

 

α = 𝑎  
𝜔
𝜐
                                                                                                                                                      (2.3)  

       

For low α values, viscous forces dominate over unsteady ones, and velocity profile is 

parabolic with the centreline velocity oscillating in phase with the pressure gradient [2]. It is 

considered that for α > 10 the unsteady inertial forces predominate, and the velocity profile 

is almost flat due to a piston-like flow motion of the flow [2].  

The most common inlet boundary condition in blood flow analyses consists in 

prescribing an idealized velocity profile (flat, parabolic or Womersley flow pattern) together 

with a pulsatile waveform. In 1955, Womersley reported data on the oscillatory motion of a 

viscous fluid in a thin-walled elastic tube, when subjected to a pressure gradient, proposing a 

mathematical solution for the blood flow rate in large arteries [35]. In this work, Womersley 

reported fare agreement when comparing the data with determinations made using high-       

-speed cinematography to study the motion through the translucent arterial wall [35].  

Several in vivo studies using hot-film anemometry, such as those conducted by Seed and 

Wood [36], in 1971, and Nerem et al. [37], in 1972, have verified that the velocity profile is 

essentially flat in the beginning of the ascending aorta, then skews towards the inner wall in 

the aortic arch, with the development of a weak helical flow. The pulsatile waveform can be 
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obtained from patient-specific MRI, Phase-Contrast MRI, PC-MRI, or CT data, or extracted 

from literature, being the experimental data reported by Pedley [38] the most common 

reference  [11, 19, 20, 29, 39].   

Time-varying pressure waveforms are less frequently applied as inlet boundary 

condition since determination of the pressure using in vivo catheterization techniques are 

extremely invasive and may induce errors by disturbing the blood flow [19].  

The intensity and magnitude of the pulsatile flow and pressure waveforms generated 

at the heart decrease towards the capillaries. Thus, outflow boundary conditions depending 

on the downstream vasculature have been the focus of several studies [19].  Being impossible 

to trace the complete vasculature in a simulation, the model must be truncated at some 

point, and the downstream system must be lumped in a way that allows for an exact 

description of the vasculature, ensuring realistic representation of the wave propagation.  

The most common CFD outlet boundary conditions for large arteries include constant 

or pulsatile pressures, constant/zero traction, velocity profiles, pure resistance, 3-Element 

Windkessel, and Structure Tree models [19, 40]. Nevertheless, some of the aforementioned 

do not replicate accurately the system’s haemodynamic behaviour.  

Since blood flow and pressure waveforms are coupled together - the pressure gradient 

along the arteries is the driving force of the blood flow - prescribing constant (zero) pressure 

at the outlet and pulsatile flow rate at the inlet seems to be a contradiction, even if the 

mean pressure difference between these boundaries is only a small fraction of the systolic-    

-diastolic pulse amplitude [19]. The popularity of this technique arises from the difficulty in 

obtaining experimental patient-specific data on pressure, as previously mentioned, although 

the constant pressure approach may only be valid at the capillary level [40].  

Prescribing pure resistance, assuming that pressure, 𝑝, and flow, 𝑄, are directly 

proportional (𝑝 = 𝑅.𝑄, where 𝑅 is the resistance), constrains 𝑝 and  𝑄 to be in phase and 

eliminates the effect of the truncated vasculature [40].  

The 3-Element Windkessel Model, 3-EWM, is a lumped model relating 𝑃 and  𝑄 through 

a linear ordinary differential equation (Equation 2.4, where 𝑅! and 𝑅! are the proximal and 

distal resistances, and 𝐶 the compliance), capturing the compliant and resistive effects of the 

vasculature, but falling short in capturing wave reflection throughout the vascular 

network [40].  

 

d𝑝
d𝑡

= 𝑅!
d𝑄
d𝑡

+   
1

𝑅!.𝐶
   𝑅! +   𝑅! 𝑄 − 𝑝                                                                                                         (2.4)  
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The Structured Tree Model (impedance boundary condition) was developed by 

Olufsen [41], in 2000, and modified by Vignon-Clementel et al. [25], in 2006. It relates 𝑝 

and  𝑄 in the time domain through Equation 2.5, where 𝑘 is the inverse Fourier transform of 

the impedance in the frequency domain, 𝐾  (𝑥,𝜔). Although the phase shift between 𝑝 and  𝑄 

is considered, the periodicity assumption, given by the period, 𝛵, is not applicable for non-    

-periodic phenomena simulation [40].  

 

𝑝   𝑥,𝜔 =
1
𝑇

𝑘   𝑥, 𝑡   −   𝜉   .𝑄   𝑥, 𝜉     d𝜉
!/!

!!/!
                                                                                                (2.5)  

                         

In 2011, Pahlevan et al. [40] presented a new outflow model for FSI of blood flow in 

cardiovascular systems. In the model, the computational domain is extended through an 

elastic tube connected to a rigid contraction, where user-defined geometrical and material 

properties allow the preservation of the desired resistance, compliance, and appropriate 

wave reflection of a truncated vasculature. The model, Figure 6, was applied to a 3D model 

of the aorta and the solutions correctly captured the physiological flow behaviour. 

 
Figure 6 – Straight vessel with a rigid contraction tube [40]. 

 

For branched geometries, such as the one of the aortic arch, a widely used outlet 

boundary condition is to prescribe constant fractions of the inflow rate through each branch 

of the aorta [19, 27, 29]. This approach turns out to be unrealistic since the artery 

experiences considerable diameter variations throughout the cardiac cycle, as reported by 

van Prehn et al. [28], in 2007, and the assumption of constant flow through the branches 

states itself as inadequate. Although Pahlevan’s group [40] only presented results for single 

outlets, they claimed that multiple outlets can be incorporated into the model by applying 

the outflow boundary condition from Figure 6 to each individual outlet.  
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2.3.3 Solving  

Blood flow in the aorta is typically sufficient for blood to be assumed as an 

incompressible, homogenous, Newtonian fluid with a time-dependent 3D flow. The governing 

principles of which can be described by the conservation laws of mass (continuity equation) 

and momentum, i.e., by the Navier-Stokes equations [24, 26, 27, 30].  

The system of equations has an exact solution only for laminar flows of simple fluids. 

For more complex flows numerical methods implemented using CFD software are needed to 

solve the governing equations. Two of these methods are the finite element method, FEM, 

and the finite volume method, FVM.  

To describe the variation of the unknown variables, the FEM makes use of approximate 

piecewise polynomial functions that are substituted into the governing equations. As the 

functions do not hold exactly during substitution, residuals are used to evaluate the errors. 

These errors must be minimized by multiplying them by a set of weighting function followed 

by integration [19]. This procedure yields a system of algebraic equations for the unknown 

variables.  

The FVM uses an integral form of the governing equations directly into a finite number 

of sub-domains of smaller size – control volumes -, ensuring global conservation [19]. The 

terms of the integrated equation are then substituted by finite difference approximations 

yielding a system of algebraic equations that can be solved iteratively [19]. This methodology 

is valid for both structured and unstructured meshes. When using CFD software that employs 

FVM, attention must be taken when choosing the convergence criterion.  

 

2.3.4 Post-processing 

Once the governing equations are solved, i.e., the desired convergence criterion is 

reached, the simulation results can be visualized and must be analysed.  

For the ascending aorta and aortic arch, WSS remains the parameter most commonly 

studied, and has been depicted by spatial maps or trends [19]. In the case of branched 

geometries, studies have showed that velocity iso-contours are ideal for visualizing or 

quantifying the regions of flow recirculation and of retrograde flow, common patterns in 

these anatomical sites [19].  

The results from CFD simulations must be validated in order to determine the degree to 

which the model exactly represents the real case under study. Validation of CFD studies 

requires a combination of numerical results with experimental data, and is primarily done 

using in vitro models [19]. Few cases of validation with in vivo data have been reported [19]. 
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3 Methodology 

3.1 Geometries 

When performing CFD simulations, the first step is to select the fluid domain, Ω!, of 

interest. As the focus of this work is on the aortic arch, this anatomical region was selected 

as Ω!, and artificially reconstructed with the physiological dimensions reported by 

Finlay et al., in the group’s aortic arch mapping [5]. This idealized domain (Figure 7) 

encompasses part of the ascending aorta, the aortic arch with its three branches (innominate 

artery, IA, left common carotid artery, LCCA, and left subclavian artery, LSCA), and part of 

the descending aorta.  

 

Figure 7 – Fluid domain. An artificially model of the aortic arch was selected as the fluid domain, 𝛺!. 
The idealized geometry was reconstructed with the physiological dimensions reported by 

Finlay et al. [5]. 

 

Besides the geometry on Figure 7, CFD simulations were performed on three other 

modified geometries, which included a branched stent-graft consisting of a main body and 

two tunnel/branch stent-grafts for the IA and the LCCA. Such geometries were based on the 

prototype suggested by Finlay et al. [5], with the difference that, in the current work, 

occlusion of the LSCA and consequent bypass of this vessel through the LCCA, was considered. 

Such method was preferred since, for repair of aortic arch pathologies, at least 𝑍2 landing 

(Figure 2, in Chapter 2) is usually required, thus making necessary the bypass of the LSCA 

through the LCCA [14]. This hybrid technique has proven itself to be an appealing option for 
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high-risk patients since the occlusion of the vessel creates a proximal landing zone of 

adequate length for stent-graft deployment, preventing migration of the device. 

As off-the-shelf branched stent-grafts are only manufactured in a small range of sizes, 

one of the aims of this work is to access the impact of the diameter of the tunnel stent-grafts 

for the supra-aortic vessels on the flow characteristics. This is the reason why three 

combinations for the diameter of the tunnel stent-grafts were tested:  

- In the first geometry, the diameter of the tunnel stent-grafts matched the one of the 

vessels reported in the aortic arch mapping of Finlay et al. (15 mm for the IA, and 9.5 mm for 

the LCCA) – stent-graft 1; 

- In the second (stent-graft 2) and third (stent-graft 3) geometries, the diameter of 

the tunnel stent-grafts was set equal to some of the most commonly manufactured diameters 

(8 mm and 10 mm, respectively for each geometry, for both IA and LCCA).  

These new geometries are represented in Figure 8, where the difference in the 

diameters of the tunnel stent-grafts is made clear by the distance between their inlets, at the 

proximal (left) side of the models.  

 

 

Figure 8 – Modified geometries for the fluid domain, 𝛺!, including a branched stent-graft consisting of a 
main body and two tunnel stent-grafts for the innominate, IA, and the left common carotid, LCCA, 

arteries. (A) stent-graft 1; (B) stent-graft 2; (C) stent-graft 3. 

 

Although the curvature and non-planarity of the arch have been reported to be 

responsible for helical and recirculating flow patterns observed in the anatomical region 

A" B"

C"
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under study [19-23], neglecting the curvature is expected not to have a significant impact on 

the results, particularly in a preliminary approach.  

The outlet length of the three supra-aortic branches was extended by five times the 

respective diameter, in all geometries (Figures 7 and 8), to ensure fully developed flow at 

their outlet, as recommended by CFD software, ANSYS CFX 15.0 (ANSYS, Canonsburg, PA, 

USA) [34]. Also, a cylindrical extension of arbitrarily length (5 mm) was added to the inlet to 

provide developed flow at the entrance of the supra-aortic vessels [17]. 

The dimensions of the geometric parameters used to describe the geometries can be 

found in Table A.1, in the Appendix. 

 The 3D idealized geometries were constructed using commercially available software 

SolidWorks 2012 (Dessault Systemes, France). 

 

3.2 Mathematical flow modelling  

In all the simulations carried out in this work, blood was considered to be a Newtonian 

fluid, with a density, 𝜌, of 1 060 kg/m3 and a constant dynamic viscosity, 𝜇, of 0.004 Pa.s [2, 

11], feasible assumptions for large arteries such as the aorta, as it is explained in Chapter 2. 

Effects of the blood particles were not considered since, according to Lam et al. [30], they 

would have a minor effect on the simulation results. Flow was assumed to be laminar, 

common assumption in the majority of the blood flow studies, and was modelled through the 

Navier-Stokes equations - continuity (Equation 3.1) and momentum (Equation 3.2) 

conservation equations, where 𝑢 represents the velocity, 𝑝 the pressure and 𝑡 the time.  

 

∇. 𝑢 = 0                                                                                                                                                                    (3.1) 

 

𝜌
𝜕𝑢
𝜕𝑡
+ 𝑢.∇. 𝑢 =   −∇𝑝 +   𝜇∇!𝑢                                                                                                                    (3.2) 

 

 The walls of the arteries and of the stent-graft were assumed to be solid, rigid, 

motionless and impermeable. For all simulations, a no-slip boundary condition was specified 

at the walls.  
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3.3 Numerical flow modelling  

Besides analysing blood flow in an idealized model of a branched stent-graft for EVAR of 

the aortic arch, a new, and easy to implement, methodology for a resistance type outflow 

boundary condition is also studied in this work. Resistance type outflow boundary conditions 

were implemented in all four outlets of the geometries tested, using the methodology 

described in the following section.  

 

3.3.1 Resistance type outflow boundary condition 

Resistance type boundary conditions were imposed at the outlet boundaries, Γ!, by 

attaching a rigid constriction tube (Figure 9) at every outlet. These constriction tubes were 

calibrated so that they can accurately offer the resistance imposed by the downstream 

vasculature at every Γ!.  

 

 

Figure 9 – Rigid constriction tube representing the resistance type outflow boundary model. 

 

For the calibration of the constriction tubes, the first step was to determine the mean 

pressure values, 𝑝!, and volumetric flow rates, 𝑄!, at the four outlets of Ω! (𝑖 = IA, LCCA, 

LSCA and descending aorta). This was done performing transient simulation on Ω! from 

Figure 7, prescribing: 

- At the inlet, a flat velocity profile combined with pulsatile flow rate waveform 

(Figure 10) extracted from PC-MRI data of a healthy 28 year-old male subject published by 

Nan Xiao [39]; 

- At the outlet of the three supra-aortic vessels, patient PC-MRI flow waveforms 

extracted from the same work (Figures 11 to 13); 

- At the outlet of the descending aorta, a pressure waveform obtained by coupling the 

outlet with a 3-EWM, using an in-house Matlab R2015a (MathWorks, Natick, Massachusetts, 

USA) code. The parameters of the 3-EWM were obtained using the Nelder-Mead Simplex 
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algorithm. Pressure was imposed to be in the physiological range, i.e., between the diastolic 

value of 80 mmHg and the systolic peak of 120 mmHg. 

 

 

Figure 10 – Volumetric flow rate waveform at the ascending thoracic aorta. The flow waveform was 
extracted from Xiao [39], and corresponds to patient data acquired via Phase-Contrast MRI of a healthy 

28 year-old male subject. 

 

 

Figure 11 – Volumetric flow rate waveform at the innominate artery, IA. The flow waveform was 
extracted from Xiao [39], and corresponds to patient data acquired via Phase-Contrast MRI of a 

healthy 28 year-old male subject. 

 

 

Figure 12 - Volumetric flow rate waveform at the left common carotid artery, LCCA. The flow 
waveform was extracted from Xiao [39], and corresponds to patient data acquired via Phase-Contrast 

MRI of a healthy 28 year-old male subject. 
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Figure 13 - Volumetric flow rate waveform at the left subclavian artery, LSCA. The flow waveform 
was extracted from Xiao [39], and corresponds to patient data acquired via Phase-Contrast MRI of a 

healthy 28 year-old male subject. 

 

Figure 14 shows a schematic representation of the boundary conditions prescribed in 

this calibration case.  

 

 

Figure 14 – Schematic of the computational model adopted in this work in order to obtain the 
boundary conditions for the calibration of the constriction tubes. At the inlet and outlets of the 

model, the boundary conditions prescribed are represented. 

 

Four constriction tubes were constructed, one for each outlet of Ω!. These 

constriction tubes constitute the outflow boundary models to be attached to the outlets of 

Ω!, similarly to method described by Pahlevan et al. [40]. 

p(t) 
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The main characteristic parameters required in order to fully define the constriction 

tubes are the ratio between the outlet and inlet diameters, 𝛾! =   𝐷!,! 𝐷!,!, and the lengths 𝐿!,! 

and 𝐿!,!, along with the pressure at the outlet of the tubes, which will correspond to the one 

of the downstream vasculature,  𝑝!,! (Figure 9). In order to represent accurately the pressure 

at the capillaries, 𝑝!,! should be as close as possible to 0 Pa. To be attached to the outlets of 

Ω!, the inlet diameter of the constriction tubes, 𝐷!,!, must be equal to the diameter of the 

respective outlet.  𝐿!,! and 𝐿!,! (Figure 9) were arbitrarily set equal to 𝐷!,!. 

Three steady state simulations, for different values of 𝛾!, were performed for each 

constriction tube. In these steady state simulations, the inlet and outlet boundary conditions 

were 𝑝! and 𝑄!, respectively, obtained during the transient simulations performed for 

calibration. As a result, the pressure at the outlet of the constriction tubes,  𝑝!,!, was 

obtained.  

Afterwards, the relationship between 𝛾! and 𝑝!,! (outlet pressure) was quantified as it 

can be seen in Figure 15, and a value of 𝛾!, which would yield 𝑝!,! sufficiently close to 0 Pa, 

was chosen, for the final constriction tube for each outlet. Attention should be paid to the 

fact that the second order polynomial trend depicted in the four charts of Figure 15 is only 

valid for the prescribed 𝑝! and 𝑄!, and should be used only in the domain presented there.  

 

 

Figure 15 – Experimental relationship between the ratio of the outlet and inlet diameters, 𝛾!, and the 
outlet pressure for the constriction tubes for: (A) innominate artery, (B) left common carotid artery, 

(C) left subclavian artery, and (D) descending aorta. A second order polynomial trend line (dashed 
line) was used to establish the relationship between both variables. 
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After obtaining 𝑝! and 𝑄! from the transient simulations performed in the calibration, 

and 𝑝! from the steady state simulations using the constriction tubes, the resistances, 𝑅!, at 

all four outlets (𝑖 = IA, LCCA, LSCA and descending aorta) were quantified as:    

 

𝑅! =   
∆𝑝!
𝑄!

=   
𝑝! −   𝑝!,!

𝑄!
  .                                                                                                                                        (3.3) 

  

These resistance values will serve as reference values on which the outflow boundary 

model will be built.  

A constriction tube with the correct dimensions is attached to each outlet, and the 

respective 𝑝!,! is prescribed at the outlet of the constriction tube when the resistance type 

boundary condition is imposed. Ω!, together with the constriction tubes attached to every 

outlet, constitute the fully defined CFD model, Ω!,!"#$% (Figure 16). 

 

 

Figure 16 – Schematic of the fully defined CFD model, 𝛺!,!"#$%, for all geometries: (A) the aortic arch 
model, and the aortic arch model including the branched stent-graft: (B) stent-graft 1, (C) stent-        

-graft 2, and (D) stent-graft 3.The black boxes highlight the constriction tubes.  

 

A" B"

C" D"
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3.3.2 Flow analysis in the branched stent-grafts  

After Ω! and Ω!,!"#$% were defined, and before performing any CFD simulations, the 

domains were divided into a fine unstructured grid of a finite number of small volume sub-     

-domains over which the governing Navier-Stokes equations (Equations 3.1 and 3.2) were 

solved. This was performed using the commercially available software ANSYS ICEM CFD 15.0 

(ANSYS, Canonsburg, PA, USA). To improve the quality of the numerical results, prismatic 

boundary layer mesh was used along with tetrahedral elements.  

Grid independence test were not carried out due to time constraints. Nevertheless, 

the mesh was highly refined in the curvature and in the small dimensions regions, yielding a 

number of elements per mesh close to or higher than one million for all geometries 

(Table A.2, in the Appendix).  

 

In order to access the impact of the EVAR of the aortic arch using the branched stent- 

-graft presented in this work, it was essential to analyse blood flow in a preoperative model 

of the aortic arch – reference case. Bearing this in mind, transient simulations were 

performed in the Ω!,!"#$% from Figure 16.A, imposing the following boundary conditions:  

- At the inlet, a flat velocity profile combined with pulsatile flow rate waveform 

(Figure 10) extracted from PC-MRI data of a healthy 28 year-old male subject published by 

Nan Xiao [39]; 

- At all four outlets, resistance type boundary conditions.   

 

Despite the studies of Seed and Wood [36], in 1971, and Nerem et al. [37], in 1972, 

reporting essentially flat velocity profile in the beginning of the ascending aorta, two 

problems should be pointed out:  

- The ascending aorta section of the models is located considerably distant from the 

heart root, at the end of the ascending aorta;  

- It is only possible to prescribe a flat/uniform velocity profile at the inlet if there is 

sufficient length for the flow profile to be fully developed before reaching the entrance of 

the branches, which may not be true in this case, as highlighted during the description of the 

geometries (first section of this chapter).  

 To overcome this limitation and evaluate the impact of the velocity profile on the 

results, the previous simulation for the reference case was repeated, substituting the uniform 

velocity profile at the inlet for a Womersley velocity profile. Equation 3.4 corresponds to the 
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mathematical expression of the Womersley velocity profile for oscillatory motion of a viscous 

fluid in a rigid tube, as reported by Womersley, in 1955 [35]:  

 

𝑢   𝑟 =
𝐴𝑎!

𝜇
.
1

𝑖!𝛼!
   1 −

𝐽! α. 𝑟𝑎 . 𝑖
!
!

𝐽! α. 𝑖! !
𝑒!"#                                                                                          (3.4) 

    

where 𝑎 is the radius of the tube, 𝑢(𝑟) the radial velocity, 𝐴𝑒!"# represents the pressure 

gradient, 𝜇 the dynamic viscosity of the liquid, and α the non-dimensional quantity known as 

Womersley parameter. 

Finally, it was possible to performed CFD simulations in the models for the aortic arch 

including the branched stent-grafts (stent-graft 1, 2 and 3 from Figure 16.B, C and D, 

respectively), which was done prescribing the following boundary conditions:  

- At the inlet, a Womersley velocity (Equation 3.4) profile combined with pulsatile flow 

rate waveform (Figure 10) extracted from PC-MRI data of a healthy 28 year-old male subject 

published by Nan Xiao [39]; 

- At all four outlets, resistance type boundary conditions. 

ANSYS CFX 15.0 (ANSYS, Canonsburg, PA, USA), a commercially available package, was 

the software used in all CFD simulations. The equations were discretised through the finite 

volume method, FVM.  

The 3D blood flow in the aorta was assumed incompressible, homogenous and time-     

-dependent, with Newtonian behaviour. The governing equations are derived from Newton’s 

laws applied to fluid motion: mass and momentum conservation equations (Equations 3.1 

and 3.2).  

From Figure 10, it is possible to see that the peak systolic flow rate, 𝑄, prescribed at 

the inlet is 500 cm3/s. Since the diameter of the inlet was the same for all geometries 

(Table A.1, in the Appendix), the mean inlet velocity, 𝑢, at the inlet is determined by:  

 

𝑢 =   𝑄 𝑆 ,                                                                                                                                                          (3.5) 

 

where 𝑆 is the cross-sectional area at the inlet. 

Considering this mean velocity, the maximum Reynolds number, Re, correspondent to 

the peak systole value, and the Womersley parameter, α, both based on the inlet area, were 
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determined: 5 272 and 23.7, respectively. The determination of Re and α is accessible in the 

Appendix. The representation of Re  𝑣𝑠. α in the stability diagram from Figure 5, in Chapter 2, 

places the flow in the laminar regime (Figure 17), validating the assumptions previously 

made.  

 

 

Figure 17 – Stability diagram [34]. Representing the peak systole Reynolds number, 𝑅𝑒, against the 
Womersley parameter, 𝛼, determined at the inlet (intersection of the red horizontal and vertical 

lines) yields a point in the laminar flow region. 

 

Transient simulations were run for two cardiac cycles of 0.76 s each. The results were 

then used to initialise a third cycle with the same duration. The convergence criterion based 

on the root mean square residues was set equal to 10-5 and a uniform 0.001 s time-step was 

used.  

 

The post-processing of the results was performed using ANSYS CFD-Post 15.0 (ANSYS, 

Canonsburg, PA, USA) and EnSight 10.1 (CEI, Apex, North Carolina, USA), and will be further 

elaborated in the following chapter. 
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4 Results and Discussion 

4.1 Results 

Results can be divided into three categories:  

(a) Calibration case where the calibration of the constriction tubes was performed;  

(b) Reference case where simulations with the geometry from calibration were performed 

with resistance type outflow boundary conditions. Firstly imposing a uniform velocity profile 

at the inlet, along with a pulsatile flow rate waveform, and repeated with a Womersley 

velocity profile;  

(c) The geometry was then modified to include a branched stent-graft for the aortic arch 

and a bypass of the LSCA through the LCCA. Simulations were performed for three different 

combinations of the diameters of the tunnel stent-grafts, prescribing Womersley velocity 

profile combined with a pulsatile flow rate waveform at the inlet and resistance type 

boundary condition at the outlets.  

Key results, that will be further presented and discussed, are volumetric flow rate and 

pressure waveforms, specific resistance, as well as the split of blood inflow into the outlets of 

the models, in order to access the accuracy of the resistance type boundary condition 

prescribed. Time-averaged wall shear stress, TAWSS, flow patterns, particularly flow 

recirculation zones, FRZ, in the post-operative geometries resulting from the stent-grafting of 

the aortic arch, were also assessed in order to evaluate the performance of the devices.   

 

4.1.1 Calibration case vs. Reference case 

Volumetric flow rate waveforms prescribed in the calibration case and those obtained 

from the transient simulations for the reference case, at the outlet of the three supra-aortic 

vessels (IA, LCCA and LSCA), are shown in Figure 18. From those waveforms, the cycle-           

-averaged percentage of flow split into the four outlets of the model (IA, LCCA, LSCA and 

descending aorta) was determined for both cases, and can be found in Figure 19. Comparison 

between the mean flow rate in the calibration and reference cases can be found in Figure 20.  

It can be noted, from Figure 18, that the resistance type boundary condition captures 

the main flow features, following the trend observed in the original patient-specific PC-MRI 

flow waveforms, prescribed in the calibration case. The flow in the IA and LCCA is always 

positive, while reverse flow can be observed in the LSCA during diastole. Nevertheless, the 

magnitude of the flow rate decreases in the reference case, comparing to its real values.  



Analysis of flow in branched stent-grafts for endovascular repair of the aortic arch 

Results and Discussion 30 

 

Figure 18 – Flow rate waveforms prescribe in the calibration case from patient PC-MRI data (on the 
left) and those obtained in the reference case (on the right), for the three supra-aortic vessels. 

Results are presented over one cardiac cycle (0.76 s). 

 

 

Figure 19 – Blood inflow split into the four outlets of the aortic arch model for the calibration and 
reference cases. 

 

Using the resistance type boundary condition in the reference case yields percentages 

of blood inflow very similar to those in the calibration case. A maximum difference of 3 % is 

reported for the blood inflow into the descending aorta (Figure 19). The use of a resistance 

type boundary condition increases the percentage of flow split into the three supra-aortic 

vessels, particularly into the innominate artery, with a consequent decrease of the inflow 

into the descending aorta.  
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The mean flow rate in the reference case is 14.3 %, 3.2 % and 1.8 % higher for the IA, 

LCCA and LSCA, respectively, being 4.3 % lower for the descending aorta (Figure 20). 

 

 

Figure 20 - Mean volumetric flow rate at the four outlets of the aortic arch model for the calibration 
and reference cases. 

 

The outlet pressure waveforms obtained for the calibration and reference cases are 

shown in Figure 21, for all four outlets of the model.  One significant difference between the 

results is the temporal dependence of the pressure waveforms. In fact, in the reference case, 

no phase lag between the flow (Figure 18) and the pressure waveforms (Figure 21) occurs. 

Besides, the shapes of the pressure waveforms and of the flow waveforms are very similar, 

expected result in line with the relationship prescribed by Equation 3.3. 

 

 

Figure 21 - Pressure waveforms at the four outlets of the aortic arch model, for the calibration and 
reference cases. Results are presented over a cardiac cycle (0.76 s). 
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4.1.2 Reference case: uniform velocity profile vs. Womersley velocity profile  

In order to evaluate the influence of the velocity profile at the inlet, the reference case 

was repeated maintaining the resistance type boundary conditions at the four outlets, and 

changing the inlet boundary condition from a uniform velocity profile associated with a 

pulsatile flow rate waveform, to a Womersley velocity profile. 

This alteration yielded no significant differences: in both cases, the flow rate 

waveforms exhibit the same trend and capture the physiological characteristics of the flow 

(Figure 22). The mean flow rate at the outlets (Figure 23) differs by a maximum of 1.6 %, 

value registered for the LSCA, while the blood inflow split (Figure 24) into each outlet is 

coincident.  

 

 

Figure 22 – Flow rate waveforms at the four outlets of the aortic arch model, for a uniform and for a 
Womersley velocity profiles at the inlet (reference case). Results are presented over a cardiac 

cycle (0.76 s). 
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Figure 23 - Mean volumetric flow rate at the four outlets of the aortic arch model, for a uniform 
velocity profile and for a Womersley velocity profile at the inlet (reference case). 

 
 

 

Figure 24 – Blood inflow split into the four outlets of the aortic arch model, for a uniform velocity 
profile and for a Womersley velocity profile at the inlet (reference case). 

 

Specific resistances for all outlets were calculated using Equation 3.3, and identical 

values were obtained (Figure 25). The results suggest that the resistances, as well as the 

temporal flow behaviour, do not depend strongly on the velocity profile prescribed at the 

inlet, which may only affect the spatial flow patterns. These resistance values were used in 

the simulations with the modified geometries, including the branched stent-grafts.  
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Figure 25 – Specific resistance for all outlets of the aortic arch model, for a uniform velocity profile 
and for a Womersley velocity profile at the inlet (reference case). 

 

4.1.3 Branched stent-grafts for the aortic arch  

The following work can be seen as a virtual scenario where the blood flow in the aortic 

arch of three patients treated with three different geometries branched stent-grafts is 

compared to the one of a healthy person (reference case). 

Volumetric flow rate waveforms at all the outlets of the aortic arch models (one for the 

reference case and three for the modified geometry including the stent-graft) are shown in 

Figure 26. From those waveforms, the cycle-averaged percentages of flow split into the four 

outlets of the models (IA, LCCA, LSCA and descending aorta) were determined (Figure 27).  

The mean values of the volumetric flow rate at the outlets are also shown in Figure 28. 

 

 
Figure 26 - Flow rate waveforms at the four outlets of the aortic arch models for the reference case 
and for the three geometries including a branched stent-graft: (A) stent-graft 1, (B) stent -graft 2, 

(C) stent-graft 3. 
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Figure 27 - Blood inflow split into the four outlets of the aortic arch models for the reference case 
and for the three geometries including a branched stent-graft: (A) stent-graft 1, (B) stent-graft 2, 

(C) stent-graft 3. 

 

 

Figure 28 – Mean volumetric flow rate at the four outlets of the aortic arch models for the reference 
case and for the three geometries including a branched stent-graft:  (A) stent-graft 1, (B) stent-         

-graft 2, (C) stent-graft 3. 

 

The data from Figures 26 to 28 suggest that the stent-graft increases blood perfusion 

through the three supra-aortic vessels (4 – 6 % for the IA, 11 % for the LCCA, and 9 % for the 

LSCA), and, consequently, decreases the amount of blood flowing through the descending 

aorta by 3 - 4 % (comparison with the reference case, i.e., aortic arch without stent-graft). 

No significant differences, in the mean volumetric flow rate values at the outlets and in the 

blood flow split into each outlet, were found between the three stent-grafting geometries.  

Specific resistances for all outlets of the models were calculated using Equation 3.3. As 

it can be seen in Figure 29, the specific resistances differ very slightly for all the performed 

simulations: only fairly lower values for the supra-aortic vessels (and higher for the 

descending aorta) are observed in the geometries that include the stent-graft, once again in 

line with the relationship prescribed by Equation 3.3, i.e., for the same pressure gradient, an 

increase in the mean flow rate implies a decrease in the resistance value.  
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Figure 29 - Specific resistance for all outlets of the aortic arch models for the reference case and for 
the three geometries including a branched stent-graft: (A) stent-graft 1, (B) stent-graft 2, (C) stent-   

-graft 3. 

 

 

Time-averaged wall shear stresses, TAWSS, and flow patterns, with particular 

emphasis on flow recirculation zones, FRZ, in the aortic arch models, were also assessed.  

 

The results (Figure 30) indicate that wall shear stress is higher at flow entrance 

regions:  

- In the distal wall at the entrance of the three supra-aortic vessels - reference case; 

- In the distal wall at the entrance of the of branches of the stent-graft, particularly in 

that of the IA; 

- In the distal wall of the LSCA, in the bypass region, for the three post-operative 

geometries.  

 

The magnitude of the TAWSS was found to be higher in the models including the stent-

-graft, when comparing to the reference case (52 – 62 %). The highest TAWSS being 

experienced at the walls of the model including stent-graft 2, branch stent-grafts with 

diverging tunnels (Figure 30.C). The lowest TAWSS values are for stent-graft 3 (Figure 30.D). 

Regions of low TAWSS along the proximal wall of the LSCA in the bypass region are observed 

in all three geometries.  

 

8.
7 

x 
10

8 

3.
5 

x 
10

9 

2.
5 

x 
10

9 

2.
0 

x 
10

8 

8.
2 

x 
10

8 

3.
1 

x 
10

9 

2.
3 

x 
10

9 

2.
1 

x 
10

8 

8.
2 

x 
10

8 

3.
1 

x 
10

9 

2.
2 

x 
10

9 

2.
0 

x 
10

8 

8.
2 

x 
10

8 

3.
1 

x 
10

9 

2.
3 

x 
10

9 

2.
1 

x 
10

8 

1	   2	   3	   4	  

Resistance (kg.m-4.s -1)  

Reference case A B C 

IA LCCA LSCA Descending Aorta 



Analysis of flow in branched stent-grafts for endovascular repair of the aortic arch 

Results and Discussion 37 

 

Figure 30 - Time-averaged wall shear stress, TAWSS, contours for the models of the aortic arch 
(A) without stent-graft, and including the branched stent-graft: (B) stent-graft 1, (C) stent-graft 2, 
(D) stent-graft 3. The arrows mark flow recirculation zones found in the bypass of the LSCA through 

the LCCA, which are regions of low TAWSS. 

 

To evaluate instantaneous variables, such as velocity, specific time-points over the 

cardiac cycle must be selected. The most common ones are peak systole, diastole and the 

mid-deceleration time-point between the latter two (Figure 31).  

 

 

Figure 31 – Time-points over the cardiac cycle. 

 

Flow patterns during peak systole (𝑡 = 0.11 s) and mid-deceleration time-point 

(𝑡 = 0.21 s) were compared by means of the instantaneous velocity streamlines at those time 

points (Figures 32 and 33, respectively). Disturbed flow is particularly visible in the mid-        

-deceleration time-point, with a highly helical flow pattern visible at the aorta section right 

under the entrance of the IA, and throughout this vessel, in the reference case. The results 

from Figure 33 suggest that the introduction of the stent-grafts increases the region of 

disturbed flow in the aorta, especially in the regions downstream of the branch stent-grafts, 
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with return of the flow to its undisturbed patterns further towards the descending section of 

the aorta, at the level of the LSCA.  

 

 

Figure 32 - Velocity streamlines during peak systole (𝑡 = 0.11 s) observed in the models of the aortic 
arch (A) without stent-graft, and including the branched stent-graft: (B) stent-graft 1, (C) stent-        

-graft 2, (D) stent-graft 3. 

 

 

Figure 33 – Velocity streamlines during mid-deceleration time point (𝑡 = 0.21 s) observed in the 
models of the aortic arch (A) without stent-graft, and including the branched stent-graft: (B) stent-    

-graft 1, (C) stent-graft 2, (D) stent-graft 3. 
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Flow recirculation zones, FRZ, are usually associated with low wall shear stresses, 

WSS, which have been reported to stimulate plaque deposition, and consequently increase 

the risk of thrombosis’ development, as mentioned in Chapter 2. Flow recirculation zones 

were found in all models, at regions of sudden flow direction changes: near the proximal wall 

in the inlet region of the three supra-aortic vessels in the reference case; proximal wall in the 

inlet of the IA and LCCA, in the post-operative geometries; and proximal wall of the bypass 

region, as it is highlighted in Figure 34. To compare FRZ, the mid-deceleration time-point 

(𝑡 = 0.21 s) was chosen as it is when largest FRZ are observed. 

 

 

Figure 34 - Velocity vectors highlighting the flow recirculation zones, FRZ, found in the models of the 
aortic arch (A) without stent-graft, and including the branched stent-graft: (B) stent-graft 1, 

(C) stent-graft 2, (D) stent-graft 3, at 𝑡 = 0.21 s. 

 

The sudden change in the flow direction, from vertical to horizontal or horizontal to 

vertical, is the main responsible for the development of the recirculation regions in the 

bypass of the three models including the stent-graft.  

FRZ in the bypass region were quantified by measuring the distance between the flow 

separation and reattachment points (Figure 35). Comparing Figures 30, 34 and 35, it is 

possible to see that FRZ are, in fact, regions of low TAWSS.  
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Figure 35 – Velocity vectors highlighting the separation and reattachment points of the flow 
recirculation zone, FRZ, at 𝒕 =  0.21 s, in the bypass region of the three geometries including a 

branched stent-graft: (A) stent-graft 1, (B) stent-graft 2, (C) stent-graft 3. 

 

 As summarized in Figure 36, the largest FRZ is found in stent-graft 2 (diverging 

diameter branch stent-grafts) (Figure 36.B). The smallest FRZ is observed in the model where 

the diameter of the branch stent-grafts matched the one of the vessels – stent graft 1 

(Figure 36.A).  

 

 

Figure 36 – Lengths of the flow recirculation zone, FRZ, found in the bypass of the LSCA through the 
LCCA in the geometries including a branched stent-graft: (A) stent-graft 1, (B) stent-graft 2, (C) stent-

-graft 3. 
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4.2 Discussion  

The main objective of this work was to analyse the blood flow in an idealized prototype 

of a branched stent-graft for the endovascular repair of the aortic arch, using CFD methods. 

With this purpose, a new and easy methodology for a resistance type outflow boundary 

condition was implemented. The optimization of the stent-graft design for the best 

haemodynamic performance was also assessed.  

Resistance type outflow boundary conditions were implemented in all four outlets of the 

models, using the methodology described in Chapter 3. Initial CFD simulations with an aortic 

arch model constructed with physiological dimensions, based on the aortic arch mapping 

reported by Finlay et al. [5], were performed and used as a reference case. Comparisons 

were performed with simulations in modified geometries of the aortic arch, including a 

branched stent-graft with a bypass of the LSCA through the LCCA, in order to access the 

haemodynamic performance of the device. Different branched stent-grafts, consisting of a 

main body with two branches for the IA an LCCA, were tested to study the impact of the 

diameter of the branches for the supra-aortic vessels on the flow characteristics. 

 

4.2.1 Resistance type outflow boundary condition  

Volumetric flow rate waveforms obtained at the outlet of the three supra-aortic vessels 

of the aortic arch model, in the simulations performed prescribing resistance type outflow 

boundary conditions, captured the main physiological flow features. They follow the same 

trend observed in the original flow waveforms corresponding to patient PC-MRI data, 

indicating the accuracy of this boundary condition. Results obtained for the blood inflow into 

the outlets of the models, as well as the mean values of the flow rates, were also 

significantly similar, when the resistance type outflow boundary condition was prescribed.  

Comparing the physiological waveforms from patient-specific PC-MRI data with the ones 

obtained when performing simulations with the idealized geometry of the aortic arch, a 

decrease in the magnitude of the flow rate in the supra-aortic vessels was observed. Such 

result may arise from the simplification in the geometry that did not take into account the 

real curvature of the aortic arch. In fact, as has been reported by several authors [2, 19-21, 

23, 36, 37], the curvature of the region promotes the blood inflow through the supra-aortic 

vessels, due to its skeweness, initially towards the inner wall and then to the outer wall of 

the aortic arch.  

The similarity between the flow results obtained using the resistance type outflow 

boundary condition and the PC-MRI data from a patient was expected since the flow split into 

each vessel is dictated by the demands of the downstream arterial tree. Thus, prescribing the 
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resistance imposed by the downstream vasculature at the outlets, a realistic description of 

blood flow is ensured. It is important to note that, in order to maintain the flow demand of 

the downstream vasculature, the pressure waveform has to change accordingly. 

In fact, when resistance type outflow boundary conditions were prescribed, the 

physiological phase lag between the flow and the pressure waveforms was not observed. The 

shape of the pressure waveform is similar to that of the flow waveform, as prescribed by the 

relationship between flow and pressure, Equation 3.3. Thus, although using this methodology 

for resistance type outflow boundary conditions yields physiological flow results, those are 

obtained at the expense of the temporal dependence of the pressure waveform.  

The specific resistance hold constant for all simulations (with and without stent-grafts), 

and periodicity was achieved in all within three cardiac cycles. Such results suggest that the 

methodology used in this work is, in fact, a fast and robust method of easily implementing a 

resistance type boundary condition.   

 

4.2.2 Branched stent-grafts for the aortic arch  

Branched stent-grafts consist of a main body stent-graft with fixed branches of specific 

dimensions that can be oriented into the vessels of the aortic arch, making them adaptable to 

a wide variety of anatomical geometries, while eliminating the need for customization. 

However, commercially available stent-grafts can only be manufactured in a small range of 

dimensions that may not fit perfectly the patient’s anatomy. The primarily aim of this work 

was precisely to use CFD simulations to evaluate the hemodynamic consequences of 

endovascular reparation of the aortic arch using branched stent-grafts and to study the 

impact of the diameter of the branches for the supra-aortic vessels on the flow 

characteristics.  

The simulations results suggest that stent-grafts increase blood perfusion through the 

three supra-aortic vessels, and, by consequence, there is a slight decrease of the amount of 

blood flowing through the descending aorta. Such behaviour is mainly due to the presence of 

the branches of the stent-graft, which act as tunnels directing the blood flow through the 

vessels as a result of their protrusion into the main body of the stent-graft. This is a very 

interesting result since the major concern, when performing EVAR of the aortic arch, is the 

need to ensure blood perfusion to the upper parts of the body.  

Results indicate that the presence of the stent-graft drastically increase the magnitude 

of the wall shear stress, since higher time-averaged values were found in the models 

including the branched stent-graft. For the post-operative geometries, the higher TAWSS 

values were observed at the walls of stent-graft 2, when the branch stent-grafts are diverging 



Analysis of flow in branched stent-grafts for endovascular repair of the aortic arch 

Results and Discussion 43 

tunnels, while the lowest was found in stent-graft 3. High wall shear stresses are associated 

with higher displacement forces experienced by the stent-grafts [17]. Since large 

displacement forces are strongly related to future migration of the stent-grafts after surgery, 

the drastically increase of the TAWSS observed for the stent-grafted geometries should be 

carefully access, namely through the quantification of the displacement forces, to ensure 

that post-operative complications, such as migration of the device, do not arise.  

Helical blood flow patterns were observed in all four models of the aortic arch (without 

and with branched stent-graft) during the mid-deceleration time-point of the cardiac cycle 

(𝑡 = 0.21 s). Such result is consistent with blood flow patterns in a healthy aorta reported by 

several authors: blood flow ranges from axial during the first part of the systole, to helical in 

its mid-to-late portion, with complex flow recirculation at the end of the systole and at 

diastole [8, 34]. 

Persistent FRZ were identified in the proximal wall of the bypass of the LSCA through the 

LCCA, with the largest ones being observed at the mid-deceleration time-point (𝑡 = 0.21 s). In 

FRZ, the flow is disturbed, causing regions of low WSS, parameter that has been reported to 

be associated with the formation of atherosclerotic plaques [2, 9, 17, 19]. Therefore, the 

presence of FRZ may be favourable to the development of thrombus, leading to partial, or 

even complete, occlusion of the bypass, preventing blood perfusion through the LSCA, which 

could result in ischemia of the left upper part of the patient’s body. This is the reason why 

FRZ should be avoided.  

The FRZ was found to be significantly larger in the model where the branch stent-grafts 

consisted in diverging diameter tunnels for both the IA and LCCA, followed by the one where 

the branch stent-grafts consisted in a converging diameter tunnel for the IA and a diverging 

one for the LCCA. The smallest FRZ was found in the geometry where the diameter of the 

branch stent-graft was equal to the one of the vessels. As expected, such results suggest that 

the best haemodynamic performance would be achieved with customized branched stent-      

-grafts whose branches dimensions matched the ones of the patient’s vessels. As an off-the-   

-shelf device is intended, in order to minimize delays and cost, according to the results 

obtained, preference should be given to branches with slightly higher diameters than the ones 

of the vessels (converging diameter tunnels) as these yield smaller FRZ in the bypass.  

In this work, a simplification of the geometry of the aortic arch was considered, 

neglecting the sites curvature and non-planarity. Since these two geometric parameters have 

been reported to be responsible for the helical and retrograde flow patterns observed in this 

anatomical region, further studies should be performed to include them and access their 

impact on the results. As the flow through the supra-aortic vessels in a healthy aortic arch is 

largely promoted by its curvature, a combination of this geometric parameter with the 
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tunnels from the branched stent-graft is expected to favour the inflow split into the supra-    

-aortic vessels. Nevertheless, this work provides a basic understanding of the flow 

characteristics, and its dependence on geometric parameters of the stent-graft as it was 

intended. 
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5 Conclusions 

5.1 Main conclusions  

In this work, the blood flow in simplified three-dimensional models of the aortic arch, 

with its three upper branches, before and after the introduction of an idealized branched 

stent-graft, was analysed, using numerical methods. Flow rate waveforms, flow split into the 

outlets and mean flow rates were extracted and compared. The presence of the stent-grafts 

increases blood perfusion through the three supra-aortic vessels, ensuring blood perfusion to 

the upper parts of the body. 

 The introduction of the stent-graft drastically increases the magnitude of the wall 

shear stress. Such observation should be carefully assessed, namely through the quantification 

of the displacement forces associated to higher wall shear stresses, in order to ensure that 

post-operative complications do not arise.  

In the numerical analysis, a new and easy to implement methodology for a resistance 

type outflow boundary condition, consisting in the attachment of a constriction tube to the 

outlets of the models, imposing the resistance of the downstream vasculature, was also 

tested.  

Volumetric flow rate waveforms obtained in the simulations, where resistance type 

outflow boundary conditions were prescribed, capture the main physiological flow features, 

and follow the trend observed in patient PC-MRI data. Nevertheless, a decrease in the flow 

rate magnitude is observed, possibly due to simplifications in the geometry, where the real 

curvature of the aortic arch was neglected.  

The specific resistance held constant in all simulations (with and without stent-grafts), 

and periodicity was achieved in all within three cardiac cycles, suggesting that the 

methodology used is, in fact, a fast and robust method of easy implementation of a resistance 

type boundary condition.   

Three branched stent-grafts were tested, in order to evaluate the impact of the diameter 

of the stent-graft’s branches in the hemodynamic performance of the device. No significant 

differences, in the flow rate waveforms, mean flow rate values and the flow split, were found 

between the three stent-graft geometries.  

A persistent flow recirculation zone was identified in the proximal wall of the bypass of 

the LSCA through the LCCA, with the largest being observed in the model where the branch 

stent-grafts consists in diverging diameter tunnels for both the IA and LCCA. The smallest FRZ 

was found when the diameter of the branch stent-graft is equal to the one of the vessels. FRZ 
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should be avoided, since they may be favourable to the development of thrombus, leading to 

partial or even complete occlusion of the bypass, which can result in ischemia of the left 

upper part of the body.   

Although the best haemodynamic performance will be achieved with customized 

branched stent-grafts, in order to minimize delays and cost in their manufacturing, 

preference should be given to branches with slightly higher diameters than the ones of the 

vessels (converging diameter tunnels) as these yield smaller FRZ in the bypass. 

 

5.2 Limitations and Future work 

The main limitation in this work relates to the simplification in the geometry, where the 

curvature and non-planarity of the aortic arch was neglected. Since these two geometric 

parameters have been reported to be responsible for the helical and retrograde flow patterns 

observed in this anatomical region, further studies should be performed in order to access 

their impact on the results, e.g., mean flow rates and blood inflow split for each outlet. 

Nevertheless, as the flow through the supra-aortic vessels, in a healthy aortic arch, is largely 

promoted by its curvature, a combination of this geometric parameter with the tunnels from 

the branched stent-graft presented in this work is expected to favour the inflow split into the 

three vessels.  

In a future detailed study on the haemodynamic performance of the stent-graft, 

quantification of the displacement forces should be carried out. The study of this parameter 

will shed some light on the impact of the increase of the wall shear stresses observed for the 

stent-grafted geometries and its implications, usually related with post-operative 

complications, such as migration of the device.  

 

5.3 Global statement  

This work provides a basic understanding of the flow characteristics in an idealized 

branched stent-graft, and its dependence on geometric parameters of the device, as it was 

intended. A new, robust and easy to implement methodology for a resistance type outflow 

boundary condition was used, yielding physiological results. 
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Appendix 

I. Tables  

 

Table A. 1 - Dimension of the geometric parameters used to describe the fluid domain. Models of the 
aortic arch including stent-graft: (A) stent-graft 1, (B) stent-graft 2, (C) stent-graft 3.  

 

Parameter (mm) Model of the aortic arch 

Inlet diameter 32 

Outlet diameter 28 

Total length 150 

Length of the constant diameter section 100 

Length of the tapered section 50 

IA diameter 15 

LCCA diameter 9.5 

LSCA diameter 13 

IA, LCCA and LSCA length 20 

Distance between IA and LCCA 5.5 

Distance between LCCA and LSCA 8 

Distance between inlet and IA 15 

Distance of LCCA anterior to IA and LSCA 4 

Modified geometries including the branched stent-graft 

Parameter (mm) (A) (B) (C) 

IA branch stent-graft diameter 15 8 10 

LCCA branch stent-graft diameter 9.5 8 10 

Height of the LSCA bypass on the LCCA 20 

 



Analysis of flow in branched stent-grafts for endovascular repair of the aortic arch 

Appendix 52 

Table A. 2 - Mesh statistics for all geometries: (A) the aortic arch model without stent-graft, and the 
models including the branched stent-graft: (B) stent-graft 1, (C) stent-graft 2, (D) stent-graft 3. 

 

Geometry 
Aortic arch 

model (A) 

Modified geometries including the 

branched stent-graft 

(B) (C) (D) 

Number of nodes 293 824 978 514 959 829 973 331 

Number of elements 851 224 3 636 988 3 575 606 3 623 894 

 

 

II. Calculations 

 

Determination of the peak systole Reynolds number and Womersley parameter:  

 

For a vessel with an inlet diameter of 𝑑!"#$% = 32  mm, the cross-sectional area of the 

inlet is given by:  

 

𝑆 = Π
𝑑!"#$%
2

!

= Π
0.032  m

2

!

=   8,0  ×  10!!  m!  , 

 

and the mean velocity at the inlet can be determined as follows:  

 

𝑢 =   
𝑄
𝑆   , 

 

where 𝑄 is the peak systole volumetric flow rate. The value of 𝑄 can be extracted from the 

volumetric flow rate waveform at the ascending thoracic aorta (Figure 10, in Chapter 3):  

 

𝑄 = 500  
cm!

s = 5,00  ×  10!!
m!

s   . 
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 Assuming blood to be a Newtonian fluid, with a density, 𝜌, of 1 060 kg/m3 and a 

constant dynamic viscosity, 𝜇, of 0.004 Pa.s, the peak Reynolds number, Re, can be 

determined as follows:  

 

Re =   
𝜌.𝑢.𝑑!"#$%

𝜇 =   
𝜌. 𝑄 𝑆 .𝑑!"#$%

𝜇 = 52  727  . 

 

On its turn, the Womersley parameter, α, is given by:  

 

α =   
𝑑!"#$%
2

𝜔
𝜐 =   

𝑑!"#$%
2

2Π Τ
𝜌 𝜇 = 23.7  , 

 

where 𝜔 is the cardiac frequency, 𝜐 is the kinematic viscosity and 𝛵 the period of the 

volumetric flow waveform, i.e., the duration of one cardiac cycle, 0.76 s.   
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