

COMUNICAÇÕES OPORTUNÍSTICAS PARA
AQUISIÇÃO DE DADOS DE SENSORES

AMBIENTAIS USANDO UMA REDE VEICULAR

DIOGO MANUEL CASTRO GUIMARÃES
DISSERTAÇÃO DE MESTRADO APRESENTADA
À FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO EM
ÁREA CIENTÍFICA

M 2015

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO
Departamento de Engenharia Electrotécnica e de Computadores

Comunicações oportunisticas para aquisição de
dados de sensores ambientais usando uma rede

veicular

Diogo Manuel Castro Guimarães

Dissertação
em

Engenharia Electrotécnica e de Computadores

Dissertação realizada sob a supervisão de:
Orientadora: Doutora Tânia Pinto Calçada
Co-Orientadora: Doutora Susana Sargento

Porto, Junho de 2015

Resumo

Esta dissertação foca-se no problema da transferência de grandes quanti-
dades de dados recolhidos por sensores espalhados pela cidade do Porto
para um servidor central. O principal objetivo é usar infra-estruturas
existentes na cidade, como pontos de acesso WiFi e transportes públi-
cos, tais como autocarros, taxis e camiões do lixo, para enviar dados
de forma fiável, em vez de comunicações celulares, que se tornaria bas-
tante caro. A análise ao estado da arte permitiu concluir que o uso
de veículos como transporte de dados para recolher e transportar da-
dos sem requisitos temporais é muito eficaz e consome poucos recursos.
Na abordagem seguida pelo nosso trabalho os sensores ligam-se e en-
viam dados oportunisticamente para os autocarros, que anunciam uma
rede WiFi publica, e transportam-nos até encontrarem uma unidade
fixa perto da estrada onde os descarregam. Esta unidade tem ligação
à Internet e envia os dados para a cloud do UrbanSense. O trabalho
desenvolvido nesta dissertação inclui uma arquitetura nova de software
para os sensores e a cloud do UrbanSense, um mecanismo para permitir
aos sensores escolherem entre usar um ponto de acesso WiFi ou a rede
veicular para enviar dados, a possibilidade de abordar o envio de dados
para os autocarros de duas maneiras diferentes e a realização de testes
para confirmar o correto funcionamento do software e analisar o desem-
penho do sistema. Os testes efetuados mostram que a solução proposta
é capaz de enviar dados de forma fiável para a cloud do Urbansense
através da rede veicular e que a percentagem de mensagens entregues
ao servidor é aproximadamente 85 %. Esta dissertação apresenta todo
o software desenvolvido e a architectura resultante do sistema.

i

Abstract

This dissertation addresses the problem of transferring large amounts of
data gathered by sensors scattered through the city of Porto to a central
server. The main focus is to use existing infrastructure in the city, in-
cluding public WiFi hotspots and public transports, such as buses, taxis
and garbage trucks to send data in a reliable manner, instead of using
cellular communications, which would become expensive. An analysis
to the state of the art allowed to conclude that the usage of vehicles as
data mules to collect and transport data without timely requirements is
very effective and has low resource consumption.
In the approach followed by our work the sensors opportunistically con-
nect and send data to the buses, which announce a public WiFi network,
and then transport it until they find a road side unit to offload it. The
road side unit has connection to the Internet and relays the data to
the UrbanSense cloud. The work developed in this dissertation includes
a new software architecture for both the sensors and the UrbanSense
cloud, a mechanism by which a sensor can choose if the data is sent
through a WiFi hotspot or through the vehicular network, the possibil-
ity of using two different approaches to send data to the buses, and the
setup of tests to confirm the functioning of the developed software and
analyze the performance of the system. The performed tests showed
that the proposed solution is capable of reliably send data from sensors
to the UrbanSense cloud through the vehicular network and has a de-
livery ratio of messages of roughly 85 %. This dissertation covers the
software modules created and the overall architecture of the resulting
network.

iii

Acknowledgments

I would like to start by thanking to Dra. Tânia Calçada, for inviting me to be
a part of the Future Cities project, and give me the chance to contribute to
it’s growing and development, as well as for all the help, council, availability
and support provided which were essential for me to complete with success
this dissertation.
I would also like to thank to Tiago Condeixa, João Azevedo, Rui Costa,
Pedro Santos, Carlos Penichet, Yunior Luis and Dra. Susana Sargento who
also contributed with their knowledge and expertise to the success of this
work.
Finally, I thank the constant support and motivation of my girlfriend, family
and close friends.

Diogo Manuel Castro Guimarães

v

“A wise man can learn more from a foolish question than a fool
can learn from a wise answer.”

Bruce Lee

vii

Contents

1 Introduction 1
1.1 Problem characterization 1

1.1.1 Motivation . 1
1.1.2 Objectives . 2
1.1.3 Methodologies 3
1.1.4 Contributions and Results 4

1.2 Outline of the document 5

2 Future Cities Project 7
2.1 Overview . 7
2.2 Vehicular Network 8
2.3 UrbanSense Platform 10

2.3.1 DCU architecture 11
2.4 Data management . 12

2.4.1 Data Sender 14
2.4.2 Asynchronous communications 15

2.5 Network . 16
2.6 UrbanSense and Vehicular network integration 17
2.7 Summary . 19

3 State-of-the-Art 21
3.1 Delay Tolerant Networks 21

3.1.1 Standardization 22
3.1.2 Vehicular Delay Tolerant Networks 23
3.1.3 Data Mulling 24

3.2 Related Projects . 26
3.2.1 Routing Protocols in DTNs 26
3.2.2 Data Mulling Implementations 31
3.2.3 DTN Testbeds 33
3.2.4 Sensor Platforms 36

3.3 Summary . 37

4 Proposed Solution 39
4.1 Architecture overview 40
4.2 Operation Modes . 41

4.2.1 DCU integrated in the DTN 42

ix

x CONTENTS

4.2.2 CoAP data transmission 43
4.2.3 Interaction with the Server 44

4.3 Implementation . 45
4.3.1 Sending data to the DTN 45
4.3.2 Acknowledge bundles with VeniamDTN 47
4.3.3 Integration with Twisted 48

4.4 Summary . 50

5 Tests and Results 51
5.1 Lab tests . 51

5.1.1 DCU in the DTN 52
5.1.2 CoAP data transmission 53

5.2 Urban scale testing 53
5.2.1 First Link Testing 54
5.2.2 Urban Testbed without UrbanSense Cloud . . 56
5.2.3 Urban Testbed with UrbanSense Cloud 61

5.3 Summary . 64

6 Conclusions and Future Work 65
6.1 Conclusions . 65
6.2 Future Work . 67

A Experimental Characterization of V2I WiFi Connec-
tions in an Urban Testbed 69

B Poster for EWSN Conference 73

References 75

List of Figures

2.1 RSU . 9
2.2 OBU . 9
2.3 Diagram of the architecture of the system. 10
2.4 Deployed DCU. 11
2.5 DCU components. 12
2.6 DCU software architecture. 13
2.7 UrbanSense server architecture. 13
2.8 Message sequence of the Data Sender protocol. 14
2.9 Structure of a bundle message. 15
2.10 Structure of an acknowledgment sent by the server. . 16
2.11 Network topology. 17
2.12 Previous work proposed architecture. 18

3.1 Comparison between DTN and OSI architectures. . . 23
3.2 Proposed layered architecture for VDTNs. 24
3.3 Three layers architecture of data mulling. 26

4.1 Implemented architectures. 40
4.2 Software architecture in a DCU when it runs Veni-

amDTN. 43
4.3 DCU final architecture. 44
4.4 DCUs interacting with the server. 45
4.5 Flow chart of the DataSenderProtocol. 46
4.6 Acknowledgments in the DTN. 47
4.7 Implemented architectures. 48

5.1 Setup used for small scale testing. 52
5.2 Path taken by the vehicle with the OBU. 55
5.3 First link test results. 55
5.4 Urban scale DCU results 58
5.5 Urban scale DTN results. 59
5.6 Bundle replication. 60
5.7 Contact durations. 62
5.8 Sent and Acknowledged bundles. 62
5.9 Delay since sample creation to it’s arrival. 63
5.10 Collected temperature data. 64

xi

Abbreviations

DCU Data Collecting Unit
DTN Delay Tolerant Network
OBU On Board Unit
RSU Road Side Unit
WSNs Wireless Sensor Networks
CoAP Constrained Application Protocol
STCP Sociedade de Transportes Coletivos do Porto
EWSN European Wireless Sensor Networks
VDTN Vehicular Delay Tolerant Networks
M2M Mobile to Mobile
V2V Vehicle to Vehicle
V2I Vehicle to Infrastructure
GPS Global Positioning System
IEEE Institute of Electrical and Electronics Engineers
TCP Transmissions Control Protocol
UDP User Datagram Protocol
SSID Service Set Identifier
VLAN Virtual Local Area Network
IP Internet Protocol
WAN Wide Area Network
AODV On Demand Distance Vector
VANET Vehicular Ad-Hoc Network
R2R RSU to RSU
AUV Autonomous Underwater Vehicle
USN Underwater Sensor Networks
ARQ Automatic Repeat reQuest
ADT Adaptive Data Transfer
GPRS General Packet Radio Service
WWBAN Wireless Body Area Network
API Application Programming Interface
DHCP Dynamic host Configuration Protocol

xiii

Chapter 1

Introduction

1.1 Problem characterization

1.1.1 Motivation

A critical step towards smarter and safer cities is to endow them
with the ability to gather a wide variety of data sets for decision
support tools and applications [1]. A challenge to this step is the
creation of a low-cost infrastructure to gather the massive amount
of data from sensors in the city, people and vehicles, to be provided
in cities platforms. A possible solution is to use vehicles as data
mules for data collected by sensors delivering it to the vehicles op-
portunistically. Although several real platforms based on vehicular
communications have been developed [2, 3, 4, 5], they mostly run
with WiFi (low transmission range) and cellular communications
(high cost). A viable solution is to use Delay Tolerant Networks.

Delay-Tolerant Networks (DTNs) are gaining relevance due to
their ability to allow a whole new array of applications to emerge.
They can be used to allow communications in networks where there
is lack of end-to-end connectivity, high latency, high error rates,
which is very common in zones affected by natural disasters, in
Wireless Sensors Networks (WSNs), in networks with high node
mobility and in networks with nodes with low range, for example.
DTN can, however, use the mobility existent in the environment,

1

2 Introduction

for instance in vehicles, pedestrians or even animals to collect and
transport data.
Vehicular DTNs are DTNs where vehicles communicate with each
other and with fixed nodes in order to disseminate, obtain and share
information. This can lead to usages such as notification of traffic
information, accident warnings, weather conditions, advertisements,
mechanisms to avoid vehicle collisions, Internet access to vehicles,
and multimedia sharing. A vehicle can even gather information
about the environment around it.

There are three main components in the Future Cities project,
the BusNet, the UrbanSense platform and the UrbanSense cloud.
The BusNet is an urban-scale vehicular network with 600 nodes
such as buses, trucks and road-side units, all communicating through
IEEE 802.11p vehicular technology. The UrbanSense platform is a
network of Data Collecting Units (DCUs) with 75 nodes. In the
city there are also several WiFi hotspots so that a DCU can either
connect to a passing bus or to the hotspot. The UrbanSense cloud is
the destination of all data and is responsible for sharing the stored
information with the city. Following the validation of [6] on using
public transportation as data mules, a proof of concept to use ve-
hicles to collect data from DCUs was developed in [7]. The data
collected is then offloaded to Road Side Units (RSUs) with Internet
connection, which relay the data to the UrbanSense cloud. This
work is continued in this dissertation, where in a first stage the us-
age of the BusNet to collect data from UrbanSense has been tested
with a single sensor deployed along a bus route [8]. However, several
challenges need to be addressed to evolve our network to efficiently
gather data in a smart city, through a delay-tolerant approach.

1.1.2 Objectives

This work is part of the FutureCities project which has the main
objective of deploying an urban scale data muling system that uses
nodes of the vehicular network, BusNet, existing in Porto’s public
transports to collect data from DCUs scattered through the city and
send it to the UrbanSense cloud. The main challenges to overcome

1.1 Problem characterization 3

are 3: (1) Each DCU must be able to either send data through the
DTN or directly to the server through a WiFi hotspot. The WiFi
connection is also important to access the DCUs through SSH con-
nections to change configurations or to solve occasional problems
with its functioning. (2) Defining and implementing a light and effi-
cient software architecture for the DCUs in order to allow the usage
of the DTN in large scale, using DTN routing software developed
by third-parties. (3) Defining the metrics to evaluate the perfor-
mance of the implemented solution, and obtain the corresponding
results. The chosen metrics used to evaluate the performance of the
DTN are the number of packets sent in each contact between an On
Board Unit (OBU) and a DCU, the number of packets that effec-
tively reached the OBU, the duration of each contact, the number
of packets lost in the DTN and the delay between the instant data
is gathered and the instant it reaches the UrbanSense cloud.

1.1.3 Methodologies

This dissertation extends the work started in [7] where a data mulling
proof-of-concept was developed to use vehicles to collect data from
fixed sensors and deliver them to the cloud through RSUs connected
to the municipal fiber optical network. The work in [7] was based on
an existent DTN open-source implementation IBR-DTN [9]. IBR-
DTN has no support for node resource management, nor oppor-
tunistic routing optimized for vehicular networks and caused mem-
ory problems in the existing nodes of the network. To overcome
this problem we propose to use VeniamDTN, an alternative DTN
implementation developed by partners of the Future Cities project,
which is lighter and has better performance. There are two modes
to integrate VeniamDTN. The first is to install it in the DCUs ex-
tending the DTN up to the sensors. In the second mode, the DTN
is confined to the vehicular network and the DCUs interact with
the mules through CoAP [10], a communications protocol designed
to run on resource limited devices. To interact with this DTN im-
plementation, in both modes, adaptations to the DCU software ar-
chitecture were designed and developed. A new software module

4 Introduction

was introduced and adaptations to existent DCU modules were also
required. The first mode was implemented and demonstrated in a
small scale setup in EWSN conference, 12th European Conference
on Wireless Sensor Networks (EWSN 2015), February 2015, Porto,
and is accepted to be presented at MOBICOM. The second mode
is used in a large scale experiment in the city. The first mode of
using VeniamDTN had the disadvantage of duplicating some of the
functions that were already implemented, such as detecting when
an OBU is near and storing the messages waiting to be sent, while
there is no OBU nearby. The second mode has the advantage of not
having to run on the DCUs. Since the new version brings several
advantages, it was the one used in the urban scale implementation.

1.1.4 Contributions and Results

The development of this work allowed the deployment of an urban-
scale testbed using several DCUs, STCP buses and RSUs to collect
and store environmental data from the city of Porto. The DCUs
have mechanisms to choose between using the vehicular network or
an WiFi hotspot to send data. The option to include the DCUs in
the Delay Tolerant Network is also available. This testbed will not
only allow for a better understanding of DTNs and their function-
ing, but also will give the opportunity to study the data collected
and gather diverse information about the city, and use this infor-
mation to improve the citizens quality of life. The tests done in
this work allowed to conclude that the main factor that influences
the contact time between a DCU and an OBU is the traffic. The
number of messages sent in each contact depends on the duration
of each contact and on the time elapsed between contacts, since the
longer the time between them more samples are collected. It was
also possible to see that the average delay since a sample is gathered
until it reaches the server is roughly 2 hours and that there was a de-
livery rate of messages to the server of 85%. These results show that
the proposed solution offers a reliable way of sending data without
time restrictions. This work also contributed to a demonstration in
the 12th European Conference on Wireless Sensor Networks (EWSN
2015), February 2015, Porto, Portugal that resulted in publication

1.2 Outline of the document 5

[8] which is included in Appendix A. The poster presented in the
conference is included in Appendix B.

1.2 Outline of the document

This dissertation is organized in 6 chapters. This chapter contextu-
alizes this work and shows why it’s relevant. Chapter 2 presents and
describes the Future Cities project, gives an overview of what has
been done before the beginning of this work and it’s main character-
istics. Chapter 3 presents the fundamental concepts and the state
of the art on Delay Tolerant Networks and Vehicular Delay Toler-
ant Networks, Data Mulling, and presents some deployed testbeds
which use data mulling and apply the concept of Delay Tolerant
Networks. Chapter 4 presents a detailed description of all the work
developed in this dissertation, and explains what was added to the
previous work developed in the Future Cities project. Chapter 5 de-
scribes all tests performed as well as the obtained results. Chapter
6 resumes all the work done and the fundamental points discussed
in this work. It also suggests some aspects to focus in some future
work.

Chapter 2

Future Cities Project

This chapter presents the Future Cities project where the current
work is contextualized. The deployed platforms are described, in-
cluding the crowdsensing application, the vehicular network and
the UrbanSense platform. The main components of the vehicular
network are described as well as the way it works. Then the Ur-
banSense platform is detailed, including the software and hardware
architecture of the Data Collecting Units. The overall architecture
of the network topology present in Porto is also described. Finally,
the work which serves as a starting point for this dissertation is
described to allow a better understanding of the contributions this
dissertation added to the Future Cities project.

2.1 Overview

The goal of the Future Cities project is to turn the city of Porto
into an urban-scale living-lab, allowing researchers and companies
to make and improve the quality of their studies, and minding the
results, develop products to improve the citizens’ life quality. To
achieve this goal, multi disciplinary work is required involving mul-
tiple fields of engineering, computer science, psychology and human
sciences. To this point there are three main platforms implemented:
a crowdsensing application, a vehicular network and the UrbanSense
platform. The latter two will be the main focus of this dissertation.

7

8 Future Cities Project

The crowdsensing application, SenseMyCity, runs on Android smart-
phones to acquire data from its external and internal sensors. Data
is then sent to a server in the cloud for analysis and processing.
An example of an external sensor is the use of a vital jacket that
measures the ECG levels of the user.
The vehicular network is currently spread over 600 vehicles includ-
ing buses, taxis and garbage trucks. In each vehicle there is an On-
Board-Unit (OBU) able to communicate directly with other OBUs
and with Road-Side-Units (RSU) through 802.11p [11] forming the
largest Vehicle-to-Vehicle (V2V) network in the world. Road-Side-
Units (RSU) are fixed gateways to the Internet and have a 802.11p
interface and a connection to the optical-fiber municipal network.
OBUs are also mobile WiFi hotspots being used by people and other
devices on-board the vehicles, on side walks or in the roads. This is
possible through the usage of the 802.11n interface of the OBU.
The UrbanSense platform is a large-scale infrastructure for local
monitoring. UrbanSense includes 75 Data Collecting Units (DCUs)
spread through the city of Porto and a server in the cloud responsible
for storing and processing the data. These DCUs are able to gather
information about the air quality, noise, meteorology, GPS coordi-
nates, Carbone Monoxide, Carbone Dioxide and Nitrogen Dioxide
levels, and count pedestrians in a given place using image captured
by a video camera. The information obtained with this data can help
to identify problems in certain city areas and lead to possible inter-
ventions, improve city planning and environmental management.

2.2 Vehicular Network

The main components of the vehicular network are the OBUs, in-
stalled on the STCP buses, taxis and garbage trucks, and the RSUs
placed near the side of the roads which provide access to the In-
ternet for the vehicular network. Currently the vehicular network
counts with 600 vehicles including STCP buses, waste management
vehicles and taxis, and with 57 access points or RSUs and is being
managed by a private company, VeniamWorks, that is part of the

2.2 Vehicular Network 9

Future Cities project consortium. RSUs are connected to the city’s
network infrastructure with fiber links.
The available interfaces in the OBUs are IEEE 802.11n, IEEE 802.11p,
and cellular (4G). The OBU uses 802.11n to broadcast the network
”STCP | PortoDigital” to which it’s possible to connect to, to gain
access to the Internet. IEEE 802.11p is used to communicate with
other OBUs and with RSUs. The cellular interface of the OBUs
is used when RSUs are not available in order to provide a stable
Internet connection to the users on the bus. The OBUs also have
a GPS to obtain the position of the vehicle and other localization
purposes. The RSUs have an optical-fiber connection to the Inter-
net. In figure 2.1 it’s represented a real implementation of a RSU
while figure 2.2 depicts and OBU.

Figure 2.1: RSU Figure 2.2: OBU

The vehicular network has to deliver a large amount of data to
the UrbanSense cloud. In order to do so, the mobile nodes of the
vehicular network apply the store and forward paradigm where they
store collected data and, when possible, forward information to the
RSUs. This mechanism is standardized and is known as the Delay
Tolerant Network (DTN) [12, 13] paradigm. The software responsi-
ble for the routing and controlling all data transmission between all
DTN elements is VeniamDTN. There is the possibility of using it
in two modes, one that has the DTN extending to the sensors and
the other which restrains the DTN to the vehicular network. The
first mode has to run VeniamDTN in the sensors while he other
mode uses CoAP [10] to communicate with the OBUs. CoAP is a
software protocol aimed to be used in very simple electronic devices

10 Future Cities Project

that allows them to communicate interactively over the Internet. It
is particularly targeted for small low power sensors, switches, valves
and similar components that need to be controlled or supervised
remotely, through standard Internet networks. This has the advan-
tage of not having to run extra software on the sensors thus requiring
less processing.

2.3 UrbanSense Platform

The architecture of the UrbanSense platform was designed with
both simplicity and flexibility in mind. The main components are
sketched in figure 2.3.

Figure 2.3: Diagram of the architecture of the system.

Data is gathered either by fixed Data Collecting Units (DCUs)
located at carefully selected locations throughout the city or, by
mobile DCUs, located on top of buses that are also part of the
vehicular network. When data is collected, it is initially stored in
a database running locally on the sensor node. Figure 2.4 shows a
real implementation of a DCU.

2.3 UrbanSense Platform 11

Figure 2.4: Deployed DCU.

The use of the local database was motivated by the need to
provide consistent and robust persistent storage for the collected
data during periods of lack of connectivity. This design has the
added advantage of turning the data storage very robust to power
cuts and similar incidents. All the collected data is stored in this
database while there is no opportunity to upload it to the central
database.

Data transport towards storage may be performed by taking
advantage either of static public WiFi hotspots provided by Porto
Digital, using an Ethernet connection or using OBUs from the ve-
hicular network as data mules. In the case of static public WiFi
hotspots, nodes tend to be connected permanently to the cloud for
exchanging data or for remote management operations. To be able
to use the BusNet hotspots, nodes opportunistically connect to a
nearby WiFi network provided by the OBU of a passing bus. The
latter is the result of the work developed in this dissertation.

2.3.1 DCU architecture

Figure 2.5 illustrates the components that make a DCU.

12 Future Cities Project

Figure 2.5: DCU components.

In the figure it’s possible to see that a DCU has three main com-
ponents: a sensor board, a control board and a Raspberry Pi. The
sensor board contains the environmental sensors and the most basic
support circuitry. It’s placed outside of the DCU box and placed
inside an appropriate enclosure in a location where the magnitudes
to measure are in contact with the sensors. The available sensors
are temperature, precipitation, wind speed, wind direction, lumi-
nosity, noise, solar radiation, particles, CO, NO, NO2 and CO2.
The control board is in charge of interacting with the actual sensing
devices. The Raspberry Pi is in charge of all communications, data
storage, interfacing with the control board and with the WiFi cards.
In the figure it is possible to see two WiFi cards, one to connect to
the DTN and another to connect to a WiFi hotspot.

2.4 Data management

The software architecture of a DCU is portrayed in figure 2.6. The
figure shows that the software architecture of the DCU has four main
components: (1) the Data Collector, which is in charge of scheduling
the polling to each sensor in order to obtain measurement values;
(2) a local database, where the sensor samples and the pending
messages are stored; (3) the Connection Manager which controls
how data is transmitted; and (4) the Data Sender with the function
of sending the data stored in the local database to the UrbanSense
server, and managing the local database.

2.4 Data management 13

Figure 2.6: DCU software architecture.

The UrbanSense cloud server is in charge of storing data in the
central database; its software architecture is displayed in figure 2.7.

Figure 2.7: UrbanSense server architecture.

The server software architecture has two main components: (1)
a service that accepts TCP or UDP connections to receive data from

14 Future Cities Project

sensors and store it in the central database; and (2) the database
used to store the data permanently.

2.4.1 Data Sender

The Data Sender is in charge of sending the data present in the
DCUs local database to the central database. For that it communi-
cates with a service running in the server, which authenticates and
validates the data before accepting any data into the database. After
the data has been successfully stored, an acknowledgment message
is returned to the Data Sender running in the origin DCU. Once it
receives this message the Data Sender can delete the corresponding
messages from its database. This process is illustrated in figure 2.8.

Figure 2.8: Message sequence of the Data Sender protocol.

This process involves two types of messages, the Bundle mes-
sages and the Acknowledgment messages. The Bundle messages
contain the data intended to send to the UrbanSense cloud while
the Acknowledgments confirm the reception of the data. Figure 2.9
contains the structure of the bundle messages, while figure 2.10 rep-
resents the acknowledgments.

To form the bundle messages the Data Sender checks every table
of the DCU’s database, and adds an entry from every table with data
in it. For instance, in figure 2.9 it’s present data from the “Basic
Environment” and “Noise tables”.

2.4 Data management 15

Figure 2.9: Structure of a bundle message.

2.4.2 Asynchronous communications

The Data Sender and Data Collector modules mentioned earlier used
the Twisted framework [14]. Twisted is an event-driven networking
engine written in Python and licensed under the open source MIT li-
cense. It’s based on the event-driven programming paradigm, mean-
ing that it’s possible to write short callbacks which are called by the
framework. It’s a very powerful tool to handle asynchronous tasks.
This tool is designed for complete separation between logical proto-
cols and physical transport layers. The connection between a logical
protocol and a transport layer happens at the last possible moment.
The logical protocol is informed of the transport layer instance and
can use it to send messages.
A major concept of Twisted is the deferred. A deferred is an in-
stance of a class designed to receive and process a result which has
not been computed yet. They can be passed around, but cannot
be asked for their value. Each deferred supports a callback chain.
When the deferred gets the value, it is passed to the functions on the
callback chain, with the result of each callback becoming the input
for the next. Deferreds make it possible to arrange to operate on
the result of a function call before its value has become available.
Another major concept is the reactor. The reactor is the core of

16 Future Cities Project

Figure 2.10: Structure of an acknowledgment sent by the server.

the event loop within Twisted. The event loop is a programming
construct that waits for and dispatches events or messages in a pro-
gram. The reactor provides basic interfaces to a number of services,
including network communications, threading, and event dispatch-
ing.
In Twisted there is also an important class which is the factory. The
factory is a Twisted object that creates an instance of the communi-
cations protocol when the connections are made, and decides what
to do when the connection is lost or when an attempt to connect
fails.
In our modules Twisted is used to implement all communication
tasks. This includes the Data Collector communication with the
control board and all the Internet based communications in the
Data Sender. The most relevant component of the Data Sender
module is the DataSenderProtocol class. This class implements the
communication protocol that is discussed in section 2.4.1. Because
it is a class intended to implement a protocol, it inherits directly
from the Protocol class defined by twisted.

2.5 Network

The DCUs can send data to the UrbanSense server through two
different ways, using Ethernet or public WiFi hotspots. The network
topology used to make this possible is present in figure 2.11.

Currently a DCU has the option to connect through public WiFi
hotspots provided by Universidade do Porto and Associação Porto
Digital. Besides the existing "Eduroam" and "WifiPortoDigital"
SSIDs, the hotspots in Universidade do Porto and Associação Porto
Digital, also have configured the non broadcasted SSID "PortoLiv-
ingLab" which is used by DCUs. Traffic exchanged through the
SSID "PortoLivingLab" is switched in a VLAN (Virtual LAN) that

2.6 UrbanSense and Vehicular network integration 17

Figure 2.11: Network topology.

spans the Universidade do Porto and Porto Digital Networks. The
"bridge" server hosted at FEUP is the default gateway of this VLAN
and routes its traffic to the Internet.
In the UrbanSense cloud there is the server, responsible for receiv-
ing data from the DCUs and storing it in the cloud database. In
the case where a DCU uses a hotspot, it sets a TCP connection
directly with the UrbanSense cloud and data is exchanged directly
between both parts. The DCU sends sensor’s data and the server,
after storing it in the database sends back the acknowledgments.

2.6 UrbanSense and Vehicular network
integration

In [7] a proof-of-concept was developed to use vehicles to collect data
from DCUs and carry it until it reaches an RSU which, through the
connections it has to the municipal fiber optical network, delivers
the data to the UrbanSense server. The Authors propose the archi-
tecture in figure 2.12. When a DCU detects an OBU, it sends the
data stored in its local database. The OBU carries and stores this

18 Future Cities Project

data and later delivers it to a RSU. This process is known as data-
mulling. The RSU forwards the data to the UrbanSense server that
extracts, processes, stores and acknowledges the information. The
Acknowledgments are then sent back to the original DCU. When
a DCU receives an Acknowledgment confirming the reception and
storage of a sample, it deletes the respective sample from its local
database.

OnBoardUnit

802.11p3G

Road Side UnitSense Unit

802.11p Optic
Fiber

Future Cities Server
and Database

Figure 2.12: Previous work proposed architecture.

For the routing and communication between the DTN nodes this
work used an open-source implementation IBR-DTN [9], which has
no support for node resource management, nor opportunistic rout-
ing optimized for vehicular networks and caused memory problems
in the existing nodes of the network.
Currently, the partners operating the vehicular network have the
proprietary VeniamDTN implementation running in the network.
The VeniamDTN implementation is lighter and faster, and solves
the performance issues of IBR-DTN by reducing the OBU’s mem-
ory, communication and processing demands. The performance im-
provements have been made at the expense of giving away some
functionalities such as the support for bidirectional communications
which were supported in [9]. In order to use the VeniamDTN soft-
ware, a new software architecture is required, for both the DCUs

2.7 Summary 19

and the server. In the current thesis, we design, implement, deploy
and test the required interface.

2.7 Summary

This chapter is a summary of the project before the contributions
added in this dissertation. It describes in a few topics the current
solution and it gives insight on the main components of the project.
The vehicular network, the UrbanSense platform and the DCU ar-
chitecture are described in more detail because they are the areas
with more relevance to this dissertation.

Chapter 3

State-of-the-Art

In this chapter the fundamental concepts used in this dissertation
and in the practical work are introduced, such as Delay Tolerant
Networks (DTN), Vehicular Delay Tolerant Networks (VDTN), and
Data Mulling, along with insights on work done in these areas. Delay
Tolerant Networks gained relevance due to their potential capabil-
ity of transmitting data in conditions where end-to-end connection
is not guaranteed. They can be extremely useful in disseminating
safety information in VDTNs [15, 16], in wireless sensor networks, in
providing Internet connectivity to remote locations [17, 18] and pro-
viding a mean for communications for rescue teams in catastrophe
scenarios [19]. Data Mulling is a solution to implement a store-
carry-and-forward mechanism that allows a mobile node to carry
data when it has no neighbor nodes and upload it to the destination
on another node with better connection conditions. This chapter
ends with the exposure of several testbeds already implemented,
and how they compare to the work developed in this dissertation.

3.1 Delay Tolerant Networks

DTNs are networks which appear to deal with scenarios unable
to provide end-to-end connectivity, due to the constant connection
breaks between its nodes, caused by their movement, harsh environ-
mental conditions, physical obstacles or limited range transmission.

21

22 State-of-the-Art

This kind of topology is usually used in extreme environments such
as underwater networks, interplanetary networks, sparse wireless
sensor networks, people networks, military tactical networks, tran-
sient networks and vehicular networks. The network should be able
to transport information from the source to the destination, even
if this process takes hours. DTN routing protocols take advantage
of temporal paths created in the network as nodes encounter their
neighbors and exchange messages they have been asked to forward.
There are several approaches to deal with the connection problems
in DTNs that depend on use cases such as Data Mulling and Ve-
hicular Delay Tolerant Networks (VDTN). VDTNs take advantage
of the mobility of vehicles to disseminate data between nodes, while
applying the same paradigm. Data mulling is the process of obtain-
ing information from a node, fixed or mobile, and carrying it until
it’s possible to deliver the information to the destination, thus the
vehicle is functioning as a data mule.

3.1.1 Standardization

As seen above, in DTNs loss of connection, extreme delays, lack
of an end-to-end connection, low transmission reliability are issues
very present, and currently there is a lot of research being made to
cope with these issues, in fact the DTN Research Group proposed
an architecture [12] and a communication protocol for DTNs [13].
The work in [12] defines a “bundle layer”, an end-to-end message-
oriented overlay placed above the transport layer. Every node inte-
grating the DTN runs this new layer. The function of the bundle
layer is to provide persistent storage to combat lack of connectivity.
The DTN architecture can be seen in figure 3.1. The stack in the
left is the standard OSI architecture, while the right is the one pro-
posed in [12] by the DTN Research Group.

The bundle layer is responsible for aggregating data from the
application into bundles, which are the protocol data units for this
layer. Bundles are defined as the protocol data unit at the DTN bun-
dle layer, and represent aggregates of packets with common charac-
teristics, such as the same destination node. It also includes a hop-

3.1 Delay Tolerant Networks 23

Figure 3.1: Comparison between DTN and OSI architectures.

by-hop transfer of reliable delivery responsibility (custody transfer)
and an optional end-to-end acknowledgment (return receipt). It also
uses a flexible naming scheme based on Uniform Resource Identi-
fiers [20] capable of encapsulating different naming and addressing
schemes in the same overall naming syntax.

3.1.2 Vehicular Delay Tolerant Networks

VDTNs are DTNs that use vehicles to disseminate bundles through
the network. The vehicles can be the origin node, the destination
node or used to relay bundles. These networks have special char-
acteristics such as: predictable mobility, because movements are
not random since vehicles have to stay on the road; high mobility,
the network topology changes rapidly because of vehicle speed and
the network topology evolves depending on time and location; large
scale since all vehicles are potential nodes; partitioned networks,
since the communication range is limited; no significant power of
computation constraints since a vehicle can generate sufficient power
[21].
The mobility of the vehicles is used to collect bundles from fixed
nodes and carry them to the destination. If necessary the mobile
nodes can interact with each other to achieve a better performance.
In scenarios where there is a low density of mobile nodes, it’s pos-
sible to use relay nodes, with store-and-forward capabilities where
vehicles can obtain or deposit information. These networks can be
used to carry emergency and traffic information between vehicles
[22].

24 State-of-the-Art

In [23] a layered architecture for the implementation of VDTN is
proposed. The main characteristic of this proposal is that separates
the data plane from the control plane. This means that, when two
nodes connect, control information is exchanged in order to adjust
the connection characteristics to support the appropriate transmis-
sion and reception of data, thus improving the performance of the
network. In contrast with the regular DTN layered architecture, it’s
proposed that the bundle layer instead of being on top of the trans-
port layer, is placed below the network layer, like in the figure 3.2.

Figure 3.2: Proposed layered architecture for VDTNs.

Since the components needed for the VDTN to work are in the
two bottom layers, it can lead to a faster processing of protocol data
units. Also, it allows that in cases where mobile nodes only forward
bundles, only the bottom layers can be implemented, thus increas-
ing the speed at which the bundles are processed and transmitted.
Another advantage is that it’s possible to aggregate IP packets with
the same destination into a bundle. It’s also proposed alternatives
to bundle aggregation such as combining packets from the same ap-
plication or with the same QoS. With security in mind, the necessity
of nodes authentication is also emphasized. The BusNet, however,
implements the standard DTN implementation because this archi-
tecture has not been yet tested.

3.1.3 Data Mulling

Nowadays, sensor networks have an incredibly wide set of potential
usages. Typically, sensors are deployed over a large geographical

3.1 Delay Tolerant Networks 25

area and form a dense ad-hoc network where multi-hop communi-
cation is used to send data to a gateway. However, there are situa-
tions where fine-grain sensing is not needed, and therefore, a sparse
sensor network would be enough, such is the case with environmen-
tal monitoring. This allows reducing costs because less equipments
are used. When compared to other categories of wireless networks,
wireless sensor networks possess two fundamental characteristics:
multi-hop transmission and constrained energy sources. First, since
sensor nodes have limited transmission ranges and organize them-
selves in an ad hoc fashion, two wireless sensor nodes that cannot
reach each other directly rely on other sensor nodes to relay data
between them. In general, data packets from the source node need
to traverse multiple hops before they reach the destination. Second,
since sensors are usually small and inexpensive, they are assumed to
have constrained energy sources, and any protocols to be deployed
in sensor networks need to be aware of energy usage [24].

The monitored area could be far away from the nearest gate-
way. When the distance between sensors and gateways becomes
too big, communication between them becomes impossible. This
is the perfect scenario for the utilization of data mules, where a
mobile component of the network called mule collects information
from the sensors and carries it until it reaches a gateway. A mule
can differ from scenario to scenario, in a city traffic monitoring ap-
plication vehicles can act as mules, in a habitat monitoring scenario
the role can be served by animals, and in a park monitoring scenario
people can be mules. To improve system performance mules can ex-
change data with each other, allowing a multi-hop mule network to
be formed, thereby reducing the latency times on the mules and in-
creasing overall reliability from replication of data. Usually the data
mulling architecture consists of three layers: a bottom layer made
of fixed or mobile wireless sensor nodes, a middle layer of mobile
transport agents (mules) and a top tier of WAN connected devices
[25, 26, 24]. Figure 3.3 illustrates the data mulling architecture.

This architecture is also scalable as deployment of new sensors
or mules requires no network configuration. Also, since sensors only
rely on mules to transmit data and mules are interchangeable, the

26 State-of-the-Art

Figure 3.3: Three layers architecture of data mulling.

failure of any number of mules does not mean connectivity failure.
It’s important to refer that no sensor depends on any individual
mule, hence failure of any particular mule does not disconnect the
sensor from the sparse network. Although a failure of a mule does
not cause lack of connectivity, the primary effect of a mule failure
on the overall system is a slight increase in latency as there are now
fewer mules to pick up data. Usually, in this kind of networks, energy
consumption of the sensors is a concern, as explained in [25] and
[27], so the mule discovery and the data transfer processes must be
energy efficient [24], in order to prolong the lifetime of the sensors. In
this kind of network topologies, where data mulling is implemented,
unlike the architectures mentioned in the previous sections, there
are always mobile nodes that have the function to carry data. In
the DTN and VDTN architectures there is the concern to make the
network deal with connection loss in the best way possible.

3.2 Related Projects

3.2.1 Routing Protocols in DTNs

Currently there are several proposals for routing and application
protocols to implement DTNs such as [28, 29, 30, 31, 32, 33]. DTN
routing protocols can be classified as either forwarding-based [30, 31]
or replication-based [29, 32, 33]. Forwarding-based protocols keep a
copy of a message in the network and attempt to forward that copy

3.2 Related Projects 27

toward the destination at each encounter. In contrast, replication-
based protocols insert multiple copies, or replicas, of a message into
the network to increase the probability of message delivery. Many
of these protocols trade overhead and computational complexity for
increased successful delivery. Since there are no guarantees that a
route will ever be available, many current DTN routing protocols ap-
ply epidemic-style techniques, leveraging the fact that an increased
number of copies of a particular message in the network should im-
prove the probability that the message will reach its intended desti-
nation. However, such techniques come at a high price in terms of
network resources, resulting in the rapid deletion of buffer space and
energy on resource-limited devices, the rapid depletion of available
bandwidth, and the potential to greatly increase end-to-end delay.

Many DTN protocols make routing and forwarding decisions
based on advertised contact information, allowing for denial-of-service
attacks over the already intermittently connected network. The
work in [28] tries to avoid some of these issues by taking advantage
of the fact that in environments targeted by DTNs, such as disaster
scenarios and certain vehicular networks, different classes of nodes
naturally tend to have more node encounters than others. It uses
an encounter-based metric for optimization of message passing that
maximizes message delivery ratio while minimizing overhead, both
in terms of extra traffic injected into the network and control over-
head, as well as minimizing latency as a second order metric.

The protocol proposed in [29] optimizes a specific routing metric,
such as the worst-case delivery delay or the fraction of packets that
are delivered within a deadline. The key insight is to treat DTN
routing as a resource allocation problem that translates the routing
metric into per-packet utilities, which determine how packets should
be replicated in the system. This protocol was evaluated through a
prototype deployed over a VDTN testbed of 40 buses and simula-
tions based on real traces.
The routing in [30] is based on prioritizing both the schedule of
packets transmitted to other peers and the schedule of packets to
be dropped. These priorities are based on the path likelihoods to

28 State-of-the-Art

peers according to historical data and also on several complemen-
tary mechanisms, including acknowledgments, a head-start for new
packets, and lists of previous intermediaries. This work was tested
in a DTN deployed in 30 buses.

A protocol that uses a probabilistic metric called delivery pre-
dictability, PRoPHET is proposed in [31], and is established at each
node for each known destination indicating the predicted chance of
that node delivering a message to that destination. When a node
encounters another node, they exchange information about the de-
livery predictabilities they have and update their own information
accordingly. Based on the delivery predictabilities, a decision is then
made on whether or not to forward a certain message to this node.
However, this work is only theoretical and was not simulated nor
tested.

In [32] a routing protocol is described, and it prioritizes bun-
dles based on costs to destination, source, and expiry time. Costs
are derived from per-link “average availability” information that is
disseminated in an epidemic manner. This maintains a gradient
of replication density that decreases with increasing distance from
the destination, and simulations show that it outperforms AODV,
a routing protocol for Ad-Hoc networks.
A protocol called Spray andWait was developed in [33] that “sprays”
a number of copies into the network, and then “waits” until one of
these nodes meets the destination. Through theory and simulations,
it was shown that this protocol is higly scalable and maintains a
good performance under a large range of scenarios.

In [34], an efficient way to disseminate information from a RSU
to every node in VANETs is described. The disseminated informa-
tion distributed is usually for safety support, advertisement, news
delivery and passenger entertainment. In the cited work the sce-
nario studied is a bidirectional linear highway where several RSUs
are available. Their main goal is to optimize the physical distance
from a RSU where a vehicle can obtain its data, which depends
on the throughput available using store-and-forward routing. This
is done by keeping the density of packets as a function of the dis-

3.2 Related Projects 29

tance from the RSU at the desired level set for the target decoding
distance. Due to the constant changes of the network topology,
traditional methods of routing and forward will not perform well,
therefore, the proposed method combines vehicle to vehicle (V2V)
and RSU to RSU (R2R) communication in a way that a vehicle
can potentially carry packets from several sources simultaneously to
achieve reliable transfer of information. Rateless coding is applied,
which is suitable for this type of application due to the fact that
it avoids issues related to rate choice and have low coding and de-
coding complexity. However this work has been thought for a linear
highway which does not serve our purposes.

The impact of network coding in collaborative downloading in
VANETs is analyzed in [35]. Collaborative downloading takes ad-
vantage of the fact that when a content is desired by a subset of
vehicles in a network, a peer to peer content distribution V2V ad
hoc network is a very efficient way to distribute data, and is a data
dissemination protocol that has the objective of distributing infor-
mation among all the nodes of the network. Data dissemination
in VANETs consists of two main phases, communication RSU to
vehicle, when a vehicle uploads data from a RSU, and V2V commu-
nication, when vehicles exchange information with each other when
they are out of the range of the RSU. A large file to be transmitted
is divided into several segments, and a vehicle who wants said file,
when in contact with an RSU will only obtain a fraction of the total
number of fragments; thus, it needs to tell the RSU which segments
it needs. This means that part of the time that a vehicle is connected
to an RSU is for signaling only. In the previously cited document
network coding is used instead and there is no need for the RSU to
know which segments the vehicle already has. With network coding
the RSU sends the vehicle a combination of all the segments of the
file, and then the vehicle shares this combination with other vehicles
that will then get a different combination from the RSU. The vehicle
can decode the information when it gets enough linearly indepen-
dent packets. Although this reduces the number of transmissions
needed to send a file, it increases the computational complexity. In
cases where energy is a concern this may not be a good solution.

30 State-of-the-Art

The algorithms proposed in [36] attempt to deliver data from
vehicles to fixed infrastructures in an urban setting. They alternate
between data mulling and multi-hop forwarding, and have local or
global knowledge of the traffic conditions. The goal of these algo-
rithms is to allow the vehicles to transfer data to RSUs. The main
difference between these algorithms and the previously mentioned
protocols, is that information in the mules may be relayed multi-
ple times, from mule to mule before reaching an RSU. They both
alternate between multi-hop forwarding, when a vehicle forwards
information to other vehicles that are better positioned to deliver
the required information to an RSU, and data mulling, when a ve-
hicle decides to store the information and carries it until it reaches
an RSU. An additional difference from existing work is that these
algorithms treat each buffered message in a different way depend-
ing on its remaining delay budget, that is, the same vehicle may
decide to adopt the Multihop Forwarding strategy for one message
and data mulling for another. They are differentiated by the us-
age of information local to a node or information obtained from the
network.Multi-hop forwarding is used when the network is dense
enough, while data mulling is preferred when traffic is more sparse.
Using these algorithms in the BusNet could provide useful because
they optmize the routing in VDTNs.

The work in [37] is part of the Future Cities project and evalu-
ates the performance of several DTN routing protocols in real world
vehicular networks with different degrees of connectivity to under-
stand if it’s plausible to use in real vehicular environments. The
authors study and compare 3 routing protocols: epidemic, static
and PRoPHET [31]. The tests are made using vehicular networks
deployed in the harbor of Leixões in Porto, and the vehicular net-
work described in section . In the cited work was concluded that
routing protocol designs for DTNs must: support networks that
are partially long-time connected and partially intermittently con-
nected; have a acknowledgment dissemination strategy, in order to
save resources; keep the status of variables in the periods where the
devices are turned of; replicate messages in an adequate manner
according to the network resources; and consider the patterns of

3.2 Related Projects 31

mobility and interaction in the network to make next-hop decisions.

3.2.2 Data Mulling Implementations

3.2.2.1 Node Mobility Present in the Scenario

A number of researchers have proposed mobility as a solution to
the problem of data gathering. In some cases the mobility al-
ready present in the environment can be used, like suggested in
[38, 25, 39, 40, 27]. The first two works introduce the basics of data
mulling and the characteristics of the resulting network explained
in the previous section, while the rest offer solutions for specific
environments. The work in [39] offers a solution for a biological in-
formation acquisition system that captures data from whales whilst
using them as mules to transport the acquired data. In this sce-
nario data is offloaded to fixed stations placed on buoys that have
connectivity to the shore. When a whale comes in proximity to an-
other whale, the stored information may be transmitted and stored
in the other whale’s memory as well. Anytime a whale comes within
transmission range of a station, the information from the whale is
transmitted to the station and erased from the tag.
Another work that uses animal mobility to carry and transmit data
is ZebraNet [40], a wireless sensor network aimed at wildlife track-
ing. This system includes custom tracking collars carried by animals
under study across a large wild area. The collars operate as a peer-
to-peer network to deliver logged data back to researchers. This
work aims to use the least energy, storage and other resources nec-
essary to maintain a reliable system with a very high success delivery
rate.
There is also research done in order to save power in sensor networks
based on predictable mobility of the data mule [27]. This work was
thought for networks where the mules are vehicles due to the fact
that these mules have a source of power that is more than sufficient
for communicating, storing and processing data, which means that
they are not power constrained like sensor nodes. Also, if the vehi-
cles are public transportations, their movement becomes much easier
to predict. The main aspect that allows a lower energy consump-
tion is that in this case the data is pulled by the mule by waking

32 State-of-the-Art

up the nodes when it is close to them. Since the sensor nodes only
transmit when the mule is close to them, the power requirements
are significantly reduced.
In the UrbanSense platform both the DCUs and RSUs are connected
to the power line and the OBUs are connected to the vehicles bat-
tery, which means that our platform is not energy restricted. Data
mulling is currently deployed in [18]. DakNet provides asynchronous
digital connectivity to remote villages at a very low cost. It takes
advantage of existing infrastructures for communications and trans-
portations to do so. This is possible because data is transferred
wirelessly from kiosks to mules, with the mules being mules or mo-
torcycles, which physically carries data between kiosks or an access
point. DakNet has been implemented in schools, in telemedicine
clinics, governor’s offices, and some other locations.

3.2.2.2 Node Mobility added to the Scenario

On the other hand, there are cases where mobility is added to the
system [41, 42, 43, 44, 45]. In [41] mobile components are deliber-
ately built into the system infrastructure for enabling functionalities
that are very hard to achieve using other methods. The addition of
these nodes that physically carry data increases the network capac-
ity. They also present adaptive algorithms that are used to control
mobility and a communication protocol supporting a fluid infras-
tructure and long sleep durations on energy constrained devices.
This work has been implemented in a prototype system in which
infrastructure components move autonomously to carry out impor-
tant networking tasks.
This work is carried forward in [43] and [42]. They describe an ap-
proach to data mulling named Message Ferrying but in the latter
the nodes that wish to communicate are static while in the former
they are mobile. This approach utilizes a set of special nodes called
message ferries to provide communication service for nodes in the
deployment area. The main ideia behind Message Ferrying is to in-
troduce non-randomness in the movement of the nodes and exploit
such non-randomness to help deliver data. The knowledge of ferry

3.2 Related Projects 33

routes allows that other nodes can move close to a ferry and com-
municate with it. In both works the ferrys move proactively to meet
nodes and that is the main difference between this work and other
solutions that exploit node mobility.
The work in [45] presents algorithms, systems and experimental
results for underwater data mulling. In these systems Underwa-
ter Sensor Nodes (USN) and an Autonomous Underwater Vehicle
(AUV) are utilized. The AUV can locate USNs and can download
or upload data from or to them or carry information to another
physical location. These systems allow the monitoring of underwa-
ter environments, the measurement of the impacts of weather and
ground activities on water quality, between many other cases of uti-
lization.
In [46], an Automatic Repeat reQuest (ARQ) window based data
transfer protocol named Adaptive Data Transfer (ADT) combines
efficiency and adaptability to external conditions. Authors show
analytically that the average transfer time is reduced significantly
when compared to currently used protocols, where simple stop and
wait protocols are used as in [41], [47]. What allows ADT to improve
the performance of data transfer is the usage of a window larger than
one, and the fact that with ADT the sensor, based on the knowl-
edge it has on the movement of the mule and periodical beacons
sent by the mule, tries to guess the instant of time where the mule
will be at the minimum distance from it. The main motivation for
this protocol is energy efficiency. [26] continues the work previously
mentioned, but explains that ADT does not consider the impact of
the mule discovery on the subsequent data transfer phase. Thus,
using the joint impact of mule discovery and data transfer proto-
cols, it manages to transfer information on a more efficient way.

3.2.3 DTN Testbeds

The work developed in [48], Harbornet, is a real testbed for research
and development in vehicular networking, deployed in the harbor of
Leixões in Porto.To obtain a wide range of experiments, they collect
data from moving elements of the harbor, like trucks, cranes, tow

34 State-of-the-Art

boats, patrol vessels and deliver the data to roadside-units connected
to optical fiber. Their goal was to o build a real-world testbed for
vehicular networks that could offer high density of vehicles in a man-
ageable space, continuous availability and frequent mobility (close to
24 hours a day), fiber optical backbone for the roadside infrastruc-
ture, and internet access for remote experimentation. Harbornet has
a structure similar to our urban-scale testbed, consisting of OBUs
which offload data to RSUs, which through optical fiber relay it to
a cloud. The total number of nodes in the cited work is 35 and it
covers a total area of approximately 1 km2. This offers the possi-
bility to test and experiment communication protocols and security
mechanisms for vehicular networks.

Cabernet [49] is a system to share information between vehicles
using WiFi hotspots placed on the road. The use of WiFi from mov-
ing vehicles imply connectivity problems, the time of connection is
short and the hotspot do not offer constant coverage zones. How-
ever, when there is connectivity data transfers occur at broadband
speed. This system is good for applications that do not have real-
time requirements and don’t have the necessity to have an end-to-
end connection between the origin and the source, such as message
deliveries. To improve throughput, they developed CTP, a trans-
port protocol that handles high non-congestive wireless loss rates
by running a lightweight probing protocol between a sender and
the access point to isolate congestion events on the Internet path
from last-hop losses. They have deployed a vehicular network which
consists of 25 taxis in the area of Boston.

CarTel [3] is a mobile sensor computing system designed to col-
lect, process, deliver, and visualize data from sensors located on
mobile units such as automobiles. A CarTel node consists of a pro-
cessing unit, such as a computer, connected to a set of sensors.
The data collected from the sensors is processed by the computer
and delivered to a central portal, in charge of storing data in a
database. In the automotive context, a variety of on-board and
external sensors collect data as users drive. CarTel provides a sim-
ple query-oriented programming interface, handles large amounts
of heterogeneous data from sensors, and handles intermittent and
variable network connectivity. To communicate with the portal, op-

3.2 Related Projects 35

portunistic WiFi and Bluetooth is used, as well as data mules, such
as other vehicles, mobile phones or USB keys. CarTel is a small scale
testbed consisting of six cars deployed in Boston and Seattle. Data
is collected as cars drive, and by the means previously exposed send
it to the central portal. It has been used to analyze metropolitan
WiFi deployments, car diagnostics and commute times.

In [50], the cooperation of ad-hoc vehicle-to-vehicle communica-
tions and roadside infrastructure is analyzed and it’s argued that
it’s a fundamental aspect in order to broaden the supported appli-
cations. In the cited work a model where a mesh network consisting
of RSUs to make the interface between vehicles and the Internet
is presented. They aim at building a network where V2V and V2I
are optimized in order to allow optimal performance of the applica-
tions used, for example, crash prevention and intelligent transport
applications would not be feasible or effective relying only on pure
car-to-car communications only under sparse vehicle distributions.
Their testbed, C-VeT consists of 60 vehicles circulating in the Uni-
versity of California at Los Angeles and has the goal to help to
understand the interaction between the vehicular network and the
wireless mesh networks.

A testbed for large-scale mobile experimentation, Diverse Out-
door Mobile Environment was built in [5], in order to study and
address the difficulties inherent to mobile networks, such as node
mobility and density, channel and radio characteristics and power
consumption. This testbed has been running since 2004 and in-
cludes 40 transit buses equipped with computers and a variety of
wireless radios, 26 stationary WiFi mesh access points, thousands
of organic access points and 6 nomadic relay nodes. It also sup-
ports diverse radio technologies, such as WiFi, 900MHz, 3G, and
GPRS. It covers an area of 150 square miles and provides spatial
diversity; parts of the network form a sparse, disruption tolerant
network while others are denser. The testbed can support research
ranging from infrastructure-based networking to sparse and dense
ad hoc networks. Furthermore, it can be used as a valuable in-
frastructure to collect real-world information about mobile users in
various scenarios at a large scale.

36 State-of-the-Art

3.2.4 Sensor Platforms

In the work developed in [51] a study of using wireless sensor net-
works in real-world habitat monitoring is made. The authors de-
velop a set of system design requirements which include the hard-
ware design of the nodes, the design of the sensor network and the
capabilities for remote data access and management. Then a sys-
tem architecture is proposed to address the defined requirements.
The authors have deployed a network consisting of 32 nodes on a
small island off the coast of Maine which streams live data onto
the web. The proposed architecture consists in wireless mesh sensor
networks which send data through the sensor networks gateway.The
gateway is responsible for transmitting sensor data from the sensor
patch through a local transit network to the remote base station
that provides WAN connectivity and data logging. The base sta-
tion connects to database replicas across the Internet. Finally, the
data is displayed to scientists through a user interface.
The work in [52] focuses on wireless personal networks for health
monitoring. The authors discuss implementation issues and de-
scribes a prototype sensor network for health monitoring that uti-
lizes off-the-shelf 802.15.4 compliant network nodes and custom-
built motion and heart activity sensors. The user has a number
of wireless medical sensor nodes that are integrated into a Wear-
able Wireless Body Area Network (WWBAN). Each sensor node
can sense and process one or more physiological signals. Then there
is an application that runs on a PDA or in a home personal com-
puter, responsible for a number of tasks, providing a transparent
interface to the wireless medical sensors, an interface to the user
and an interface to the medical server. The last component is the
medical server(s) accessed via Internet. This server runs a service
that connects to the user application and collects reports from it.
Then based on this reports the server generates recommendations
or alerts.
SmartSantander [53] proposes a city-scale experimental research fa-
cility in support of typical applications and services for a smart

3.3 Summary 37

city. They aim to enable researching and experimentation of archi-
tectures, key enabling technologies, services and applications for the
Internet of Things.
The work in [54] explores the concept of smart-cities as environments
of open and user-driven innovation for experimenting and validating
Future-Internet enabled services. The authors gathered some tasks
needed to address in order to make a city smart, such as: the devel-
opment of broadband infrastructure combining cable, optical fibre,
and wireless networks, offering high connectivity and bandwidth to
citizens and organizations located in the city, the enrichment of the
physical space and infrastructures of cities with embedded systems,
smart devices, sensors, and actuators, offering realtime data man-
agement, alerts, and information processing, and the creation of
applications enabling data collection and processing, web-based col-
laboration, and actualisation of the collective intelligence of citizens.
The project Open Cities [55] provides three different types of contri-
butions: new understandings on how to approach Open Innovation
from the Public Sector and especially towards Smart Cities, func-
tioning platforms for Open Data and Open Networks encompassing
several important cities in Europe and actual Future Internet Ser-
vices provided by developers using this platforms.

3.3 Summary

As we can see, the DTN paradigm is gaining relevance and becom-
ing an area of high interest, due to its potential to transmit data
in harsh conditions, and its ability to interconnect several machines
that without mechanisms implemented in DTNs would not be ca-
pable of sending of obtaining data from a distant machine. VDTNs
bring the possibility of using V2V and V2I communications to bring
a new array of applications, such as traffic information dissemina-
tions, media dissemination, along with the possibility of a vehicle to
collect information from the environment around it and disseminate
that information. The testbed implemented during this dissertation
will be a significant step towards this reality, and will allow for a
more profound knowledge of DTNs and mobile networking, while at

38 State-of-the-Art

the same time being a innovation in the manner in which data is
collected from sensors and sent to the UrbanSense cloud using data
mulling.

Chapter 4

Proposed Solution

The main goal of this work is to provide mechanisms for the urban
scale implementation of a system that uses the city’s public buses
to transport data from a set of static sensors deployed in the city
to the cloud. The deployment of the DTN is the responsibility of
VeniamWorks, while the Urbansense deployment is ours. To do so,
this dissertation continues the work started in [7] which was already
described in section 2.6.
The accomplishments of this work are essentially 5: (1) It inte-
grates the DTN solution with the work previously developed by
members of the project, making it ready for large scale deployment.
(2) Adds a mechanism, Connection Manager, that allows for a DCU
to choose to send data to the UrbanSense cloud using aWiFi hotspot
or using the DTN. (3) The possibility of using both modes of Veni-
amDTN was added, by creating software modules compatible with
each mode. (4) Software was added to the UrbanSense cloud to
make it capable of receiving data from the DTN and (5) the de-
ployment of the large scale testbed which allowed the obtainment
of environmental data from the DCUs as well as to measure the
performance of the proposed solution. The details of the proposed
solution and its implementation are described in this chapter.

39

40 Proposed Solution

4.1 Architecture overview

The work developed in this dissertation allowed for the functioning
of the system as depicted in figure 4.1.

Figure 4.1: Implemented architectures.

Figure 4.1 is an extension of figure 2.11 in the aspects that adds
the DTN as well as the Amazon server, owned by VeniamWorks.
These components appear now to show the effects of the developed
work. If a DCU uses the DTN to send data, first it must connect
to an OBU which broadcasts the ”STCP | PortoDigital” network.
This network is the one used to give bus passengers Internet access.
Then the OBU offloads data to the RSUs. All RSUs are connected
to the Internet through optical fiber and send received data to the
Amazon server owned by VeniamWorks. This server, when it re-
ceives data which originated in the UrbanSense platform, relays it
through a WebSocket to an application running in the UrbanSense
cloud server. This application then uses a socket to send the data to
the service present in 2.7, which inserts it in the central UrbanSense
database.

4.2 Operation Modes 41

All DCUs have a mechanism to define if data is sent through a pub-
lic WiFi hotspot or through the vehicular network.
When the DTN is used, the acknowledgment method differs from
the one explained in section 2.4.1. As before, bundles are deleted
from the database when they are acknowledged. What differs is
the fact that now it’s not the server that generates the acknowledg-
ment, instead, it’s the OBU which has this role, due to the fact that
VeniamDTN assures that, once a bundle reaches the DTN, it will
be delivered at the destination. This happens because VeniamDTN
doesn’t support a mechanism to allow communications in the Server
to DCU direction yet. For this to happen, the Server would have
to know what is the best RSU to send the acknowledgment to, and
this would have to know what is the best OBU to send it to. And in
cases where the DCU is mobile, it’s a very difficult task. So the only
solution would be to flood the network to make it reach the intended
DCU, which would cause congestions and decrease the packet de-
livery rate. This justifies the need for the acknowledgments to be
generated in the OBUs.

4.2 Operation Modes

Previously in this document, it was mentioned that VeniamDTN
has two modes of usage, one where the DTN extends to the DCUs
and another where it is restricted to the vehicular network. Inde-
pendently of the mode utilized, it’s only possible to interact with
VeniamDTN using a provided API written in C, which implied the
development of a C application, DTN Interactor, in charge of con-
necting the Data Sender to the DTN. There are two versions of DTN
Interactor, one for each mode of using VeniamDTN. All communica-
tions between the Data Sender and DTN Interactor occur through
a permanent socket. The API couldn’t be directly integrated in the
Data Sender module due to the fact that it’s written in Python. In
this section the details on how both modes were implemented in the
DCU and in the server are explained.

42 Proposed Solution

4.2.1 DCU integrated in the DTN

The first mode of using VeniamDTN implies its functioning on the
DCUs, thus making them integrate the DTN. It was the first mode
available and was used for the initial tests of the developed soft-
ware, as well as in the 12th European Conference on Wireless sen-
sor Networks (EWSN 2015). This implementation works as follows:
VeniamDTN, which is running in the DCU, is constantly checking
if an OBU is nearby. When it detects an OBU, it adds it as a
neighbor. Since VeniamDTN is a proprietary software the mech-
anisms it uses to discover OBUs are not known to us. However,
the Data Sender protocol when using the DTN, is also constantly
checking if an OBU is nearby. This is done by checking if the WiFi
interface used to connect to the OBU is associated with the SSID
broadcasted by the OBU and associated with an IP address. If
these conditions are verified then an OBU is discovered, if not, the
interface is restarted and performs DHCP requests and waits for
a reply from an OBU. When it detects an OBU, it starts to send
bundles through a socket to the DTN Interactor, which in turn will
send them to VeniamDTN. VeniamDTN then sends the bundles to
the OBU. In this mode of using VeniamDTN there is no need for
acknowledgments and the bundles and the corresponding samples
could be deleted from the DCU’s database after they are sent. This
is true because VeniamDTN stores all the messages while they are
not received at the OBU and assures that the messages arrive at the
intended destination. However, the functioning of the Data Sender
protocol doesn’t change according to the version of VeniamDTN
which is one of the reasions VeniamDTN is not used in this mode.
VeniamDTN and the DTN Interactor are also connected through
a socket. Obviously, DTNInteractor and the Data Sender proto-
col will only be connected if the DTN is being used. Figure 4.2
illustrates the software architecture used in the DCU.

In the figure, it’s possible to see a new block named Connection
Manager when compared to figure 2.6. This block is responsible for
determining if the DCU will connect to VeniamDTN, or if a direct
TCP connection to the server will be used. Currently, this is made
through a configuration file that specifies the type of connection.

4.2 Operation Modes 43

Figure 4.2: Software architecture in a DCU when it runs Veni-
amDTN.

4.2.2 CoAP data transmission

Due to the fact that VeniamDTN is still a work in progress, the
second mode of utilizing it appeared. Since this mode saves com-
putational resources and allows for a better performance from the
DCUs this was the chosen mode to implement. This brought the
need to change the software developed. The new implementation
brought some advantages.
The new VeniamDTN implementation supports CoAP, which is a
software protocol, conceived to be used in Internet devices with re-
source limitations such as short memory or limited power supplies.
Due to the fact that simplicity is a fundamental concept in the In-
ternet of Things and M2M communications, CoAP allows a better
performance from the DCUs, OBUs and RSUs. It also has the
advantage of not having to run VeniamDTN on the DCUs, which
means less processing and less work load for the DCU. To interact
with VeniamDTN the DTNInteractor was modified in order to use
CoAP, using the provided API. Another improvement is the fact
that with the previous implementation, some functionalities were
duplicated. For instance, both VeniamDTN and Twisted checked if
an OBU was around and VeniamDTN also stores the messages to
send, which again is redundant because all the DCUs have a local

44 Proposed Solution

database where the messages waiting for an acknowledgment are
stored. As showed, the new implementation is much lighter and
simpler, and allows for a better performance from the DCUs.
In the final implementation, DTNInteractor interacts with the DataSender-
Protocol through a socket, as before, however, it sends the messages
using CoAP directly to an OBU. The new software architecture is
depicted in Figure 4.3.

Figure 4.3: DCU final architecture.

4.2.3 Interaction with the Server

The UrbanSense server has to be able to receive bundles from the
DCUs, independently of the bundle arriving through the DTN or
through a direct TCP connection. For this to happen, the server
is constantly listening on a server socket for connections. When a
connection is detected, the server creates a new socket exclusively
for that client. This means that the server can be connected to N
DCUs at the same time, provided they use a direct TCP connec-
tion. All the data that its sent through the DTN is received at the
Amazon server. Here the data is sent through a WebSocket to the
UrbanSense cloud server. In here there is an application running,
Bundle Receiver, which is expecting data from the Amazon server
and sends it to the service described in 2.7. All data sent through
the DTN arrives to the UrbanSense server through this socket, inde-
pendently of the original DCU. This interactions are shown in figure
4.4. The DCUs which sent data through TCP will be expecting the
Acknowledgments from the server confirming a successful insertion
in the database. However, the DCUs which used the DTN already

4.3 Implementation 45

received the Acknowledgment from the OBUs. To the UrbanSense
cloud server this is irrelevant, and every time it makes an insertion
to the database it sends the Acknowledgment back to the socket the
bundle came from.

Figure 4.4: DCUs interacting with the server.

4.3 Implementation

4.3.1 Sending data to the DTN

The functioning of the DataSenderProtocol when sending data to
the UrbanSense cloud through the DTN, is described in the fig-
ure 4.5.

The verification of the presence of an OBU present in the figure
is described in section 4.3.3. If the DCU is connected to an OBU,
the DataSenderProtocol is initiated, and it first checks if it has any
bundle with the timeout value exceeded. If there are, and if they
have not reached the maximum number of retransmissions, they are
sent again and their timeout value is updated. A bundle can be sent
3 times. If a bundle has reached this number of transmissions it’s
deleted from the database along with the corresponding sensor sam-
ples. If there are no bundles waiting, then the database is checked
for new sensor samples. If there are no samples in the database and
if the connection is still active then the process starts over. If there

46 Proposed Solution

Figure 4.5: Flow chart of the DataSenderProtocol.

are samples to send a new bundle with these samples is created
and sent to the DTN Interactor using the created Twisted method
dtnwrite(). The method dtnwrite() sends the bundles to the DTN
Interactor through a socket. At the same time and if there is con-
nection to the OBU the dtnread() method is constantly checking if
any acknowledgments arrive from DTN Interactor and is constantly
checking the connection with the OBU. When one arrives the cor-
responding bundle is removed from the database along with the
corresponding environmental data.

4.3 Implementation 47

4.3.2 Acknowledge bundles with VeniamDTN

As mentioned in section 4.1, when the DTN is used, the acknowledg-
ment are generated in the OBUs. Thus, the explained acknowledg-
ment mechanism explained in section 2.4.1 can only be applied when
a TCP connection to the UrbanSense cloud is used. The acknowl-
edgment mechanism used for the DTN is described in figure 4.6.

Figure 4.6: Acknowledgments in the DTN.

The acknowledgment message sent by the OBU is generic and
independent of the bundle it receives. This happens because the
OBUs can receive information from other sensors that do not belong
to the UrbanSense platform. Hence, the acknowledgment consists
of a message saying that the OBU received a bundle. To deal with
the generic nature of the acknowledgments, the Data Sender keeps
track of the number of the bundle it sends and like this it knows
what bundle to delete when it receives one. A bundle is retransmit-
ted if after a determined timeout an acknowledgment for it doesn’t
arrive. The value of the timeout is defined in a settings file. The
value currently used is 10 seconds. Due to the fact that the contact

48 Proposed Solution

time between OBUs and DCUs is short, a timeout never rarely oc-
curs during the same contact, instead it occurs in the time between
contacts. This causes that, in every, contact all the bundles which
timed out are transmitted first.

4.3.3 Integration with Twisted

The DCU must be adaptable to the kind of connections it has avail-
able. This means that if there is a public WiFi hotspot or an ether-
net connection available, it may perform a direct TCP connection
to the UrbanSense server. In this case, the default Twisted meth-
ods used to control TCP connections can be used. To make a TCP
connection with Twisted it’s enough for the Data Sender to call
Twisted’s connectTCP() method. This method then creates the
transport layer, the connector and an instance of the DataSender-
Protocol. However Twisted standard implementation doesn’t sup-
port mechanisms to search for the presence of a mobile access point
needed for locating an OBU installed on a vehicle. In order to deal
with this it was necessary to add methods to Twisted in order to
make it compatible with our scenario. As mentioned in section 2.4.2,
Twisted separates the protocols from the transport layers. In Figure
4.7 it’s represented the generic Twisted layered architecture along
with the layered architectures used in this work, in order to allow
different types of connections.

Figure 4.7: Implemented architectures.

4.3 Implementation 49

In the DTN implementation, instead of calling the connectTCP()
method, the Data Sender calls the dtnConnect() method instead.
But since the connector, the client, the factory and almost all meth-
ods used in the TCP implementation were inherent to Twisted and
only work for TCP connections, it was necessary to create a new
connector, a new client, a new factory and methods for testing the
connection and for interacting with VeniamDTN. In similarity with
the connectTCP() method, the dtnConnect() returns a connector.
This connector, is named dtnConnector and inherits all the methods
and attributes of Twisted’s BaseConnector. When dtnConnect() is
called the arguments given are the SSID of the network we want
to connect and the factory. The SSID announced by the OBUs is
the ”STCP | PortoDigital”. When dtnConnector is initialized the
method connect() is called. This method starts the factory and ini-
tializes the transport layer. When the transport layer is initialized
the dtnClient is returned. This client has all the methods for test-
ing the connection, interacting with DTN Interactor and with the
communications protocol. When the client is initialized it checks if
an OBU is around. If it can’t find an OBU the connector’s method
connectionFailed() is called. This deletes the transport, calls the fac-
tory’s method clientConnectionFailed() and then stops the factory.
This calls the dtnretry() method which keeps restarting the wireless
interface until an OBU is detected. If an OBU is detected the client’s
dtndoConnect() is called, which uses the connectors method build-
Protocol() and, after the protocol is built, calls protocol’s makeCon-
nection(). The buildProtocol() method, calls the factory’s build-
Protocol, which is where an instance of the DataSenderProtocol is
created. After this the protocols runs normally until the connection
is lost. When this happens the connector’s connectionLost() is used,
which calls the factory’s clientConnectionLost(). This method does
the same as clientConnectionFailed().
A DCU knows it’s connected to an OBU if the DCU’s wireless in-
terface used to connect to the DTN is associated to the ”STCP |
PortoDigital” SSID and has an IP address. During the time it’s
connected to the OBU pings are constantly made. When the ping
requests stop obtaining responses the connection is assumed lost.

50 Proposed Solution

4.4 Summary

In this chapter the main accomplishments of this dissertation were
mentioned and explained. The final architecture of the network was
exposed. This architecture includes the public WiFi hotspots avail-
able in the city as well as the DTN and both represent the possibil-
ities a DCU has to send data to the UrbanSense server. Then both
implementation modes of VeniamDTN are explained as well as the
resulting designed software architecture of the DCU for each mode.
Then, the resulting software architecture of the UrbanSense cloud
is explained along with the mechanisms used to allow the recep-
tion of data either through the DTN or through a TCP connection.
The details of the implementations are then described including the
acknowledgments mechanisms between the DCUs and OBUs, the al-
terations made to the Twisted framework to allow the usage of the
DTN, and finally the functioning of the Data Sender is detailed.

Chapter 5

Tests and Results

This chapter gives some insight on the tests done to validate the
work developed, as well as the obtained results. It explains the
tests done with both versions of VeniamDTN: the one that runs in
the DCU and the one that doesn’t. In all the below described tests
the DCUs are composed by the following components: a Raspberry
Pi 2 running Raspbian GNU/Linux 7 connected to at least one WiFi
card. The card that is always used is a TP-LINK TL-WN722N and
is used for the connection with the OBUs. The other WiFi card,
when present, is a 802.11n WiFi dongle and is used for connecting
to WiFi hotspots. In some tests the collected data is randomly
generated and written in the local database, while in the others real
sensors are connected to the Raspberry Pi by the means of a control
board. In this case, the sampling rate of the sensors is configured
in a settings file.

5.1 Lab tests

This section presents the tests done in laboratory environment.
These tests have the objective of testing the functioning of the devel-
oped software, to discover errors and improve its functioning. The
tests in the following sections include both modes of using Veni-
amDTN.

51

52 Tests and Results

5.1.1 DCU in the DTN

In order to test the added features, a small scale setup similar to
the real scenario was assembled. The functioning of the setup can
be seen in figure 5.1.

Figure 5.1: Setup used for small scale testing.

This setup consisted of a DCU with the architecture explained
above with two Wi-Fi cards, one to connect to the OBU and another
one to connect to "eduroam", to allow SSH connections, an OBU
and a RSU both with VeniamDTN running and an Ubuntu Virtual
machine with an image of the UrbanSense server. Both the DCU
and the server have a PostgreSQL database. The DCU used for this
test was only collecting data from the temperature sensor. This
setup works as follows. The DCU obtains temperature data from a
sensor every ten seconds. When it detects that an OBU, which is
assembled on a scooter, is around it sends all the data that it can in
the space of time that is connected to the OBU. This connection is
through 802.11n. The OBU then continues it’s path until it reaches
a RSU, to offload the data.
Every component of this setup runs VeniamDTN, which means that
the DTN is extended to all components. On the virtual machine
a plotter was used to show the value of the temperature samples
arriving at the server in real time. This test allowed the testing of
the DataSenderProtocol to see how it reacted to the fact that the
connection with the OBU is constantly breaking. The connection

5.2 Urban scale testing 53

between the OBU and the RSU is through 802.11p. The RSU is
connected to the Virtual Machine through an Ethernet connection.

5.1.2 CoAP data transmission

As mentioned before, another mode of implementing VeniamDTN
appeared during the development of this work, which had the objec-
tive of making it lighter and the interaction with it much simpler, as
well as confining the DTN to the OBUs and RSUs. Using this mode
VeniamDTN doesn’t run on the DCU, instead the DTN Interactor
uses CoAp to interact with the OBU, where VeniamDTN is running.
But this means that new software was developed in order to be allow
the interaction with the new version. This was discussed in section
4.2.2. To test the new versions of the software some tests were neces-
sary. Due to the fact that VeniamDTN assures that when a message
arrives at an OBU, it will reach the destination, only the DCU and
the OBU used in the previous setup were used. VeniamDTN assures
that the message arrives at the destination, since if after 24 hours
from the moment a message arrives at an OBU the message does
not arrive at the intended recipient, then the OBU cellular interface
is used to send all pending messages. In order to make the test,
it was needed to compile an application for the OBU which simply
receives a bundle from a DCU, prints it and sends back the acknowl-
edgment, using provided code and libraries. The test consisted on
the DCU running the Data Sender and the DTN Interactor, while
the OBU runs the mentioned application. Random data was be-
ing written into the DCU’s database every ten seconds, and sent to
the OBU present in the lab which emulates the functioning of the
OBUs present in the buses. The test allowed the demonstration of
the correct functioning of both the DataSenderProtocol and DTN
Interactor.

5.2 Urban scale testing

The three tests described here are performed after the correct func-
tioning of the software was confirmed and all of them include the
communication of a DCU with vehicles. The difference is that, in

54 Tests and Results

the first test, only one car is used while in the others the vehicu-
lar network with STCP buses is used. The difference between the
second and third tests is in the final part. In the second the data
is received in a browser, in a personal machine, while in the third
all data is received in the UrbanSense cloud. The third test has
the objective of testing the functioning of the Bundle Receiver, the
software that receives data from the DTN in the UrbanSense cloud,
which was completed after the second test, as well as to obtain more
data using the DTN.

5.2.1 First Link Testing

In order to understand how the DCUs behave when in contact with
an OBU installed on a moving vehicle, a reenactment of the real
scenario’s first link, this is, the link between a DCU and a STCP
bus was made. To do so the DCU was placed in FEUP’s parking
lot 2, and random data was being written in it’s database every ten
seconds. An OBU was placed inside a car which made the path
highlighted in figure 5.2. As shown, the path starts near the DCU,
goes to the back through INESC and finishes near the entrance of
the parking lot. Inside the green circumference is the zone where the
OBU is visible to the DCU, and where message could be exchanged
without interruption. The main objective was to understand the
average contact time between the OBU and the DCU, the number
of bundles that the OBU is able to send during that contact, the
range of the DCU and the number of acknowledgments received by
the DCU.

Each time the DCU lost connection with the OBU, a file was
written with the information mentioned above. This file was then
analyzed which allowed to obtain the wanted information. Fig-
ure 5.3 shows the contact duration, the number of bundles sent
and the bundle delivery ratio for every contact, respectively.

5.2 Urban scale testing 55

Figure 5.2: Path taken by the vehicle with the OBU.

(a) Contact durations

(b) Number of sent bundles

(c) Bundle delivery ratio

Figure 5.3: First link test results.

56 Tests and Results

During the duration of this test the path described was covered
ten times. However, sometimes it occurred that when the car was
inside the green circumference the connection was lost very briefly,
which caused more contacts that the ones that really happened. The
contacts where this happened have a very short duration, sometimes
so short that no bundles were sent at all. Observing the obtained
results it’s possible to see that the average number of sent bundles
per contact is 6.67 while the average duration of a contact is 19.93
seconds. The average of sent bundles could be higher however, since
the data only was stored in the database every ten seconds, and int
the time it took to cover the chosen path,the small of data gathered
in that interval of time was sent successfully in almost every contact.
That combined with the small number of sent bundles in the very
short contacts make the average value smaller. It’s also possible to
observe that the delivery ratio increases with the number of sent
bundles. This happens due to the fact that the loss of a bundle only
happens in the moment that a DCU loses the connection with the
OBU, and the number of lost bundles has a maximum of two.
These results allowed a better understanding of the system work,
and what to expect when the urban scale testbed is deployed.

5.2.2 Urban Testbed without UrbanSense Cloud

With the testbed deployed, it’s possible to evaluate the performance
of the DTN according to several metrics. In this test, an HTML
file was used to connect to the Amazon server through Web Sock-
ets. This file was placed in the ”public HTML” directory in the
author’s personal FEUP account, and could be used from any ma-
chine with a browser. This was a temporary solution to collect data
arriving through the DTN while the application which connects the
UrbanSense cloud to the Amazon server was being developed. The
metrics evaluated were the contact time between the DCUs and the
OBUs, the number of bundles sent during each contact, the bundle
delivery ratio, and the delay since a sample creating to the time it
arrives to the server. The first three metrics were obtained by mea-
suring them with the DCU and then sending them along with the
environmental data to the database. The other one was obtained

5.2 Urban scale testing 57

by measuring the data time of arrival to the server.
In this test a single DCU, deployed in FEUP’s parking lot, was used.
The DCU was measuring temperature and humidity from sensors at
a rate of one sample per minute. The DCU used two WiFi cards, the
TP-LINK to connect to the ”STCP | PortoDigital” announced by
the OBUs installed on the buses and the WiFi dongle to connect to
a 3G Kanguru hotspot placed inside the DCU box. The TP-LINK
card has a greater range, hence it was used for connecting to the
OBUs. The usage of a 3G hotspot allows to remotely control the
functioning of the DCU and to confirm the correct functioning of
the software developed. It also allows for the DCU to access NTP
servers to synchronize it’s local time. This is very important to
obtain accurate timestamps for both the contact instants and the
sample storing.
In this test screen was used to initiate the developed software. The
screen allows to not only make the software developed to keep run-
ning after the SSH session ended, but also to see the status of the
software from any other session. This is the test of the final ver-
sion of the testbed and it runs the optimal version of every software
developed.

The following results were obtained by gathering data approxi-
mately from 19:00 of day 22 to 13:30 of day 25 of June. During this
interval the DCU made roughly 470 contacts and sent 2700 bundles.
After the analysis of the gathered data, it was possible to obtain the
graphics present in figure 5.4, consisting in the contact durations,
the number of bundles sent and the delivery ratio per contact. In
this graphics the xx axis represents the instant of contact.

In figure 5.4 the day and night times are very clear. It’s possible
to see a high concentration of contacts during the day and sparse
contacts during the night. The number of sent bundles is directly
related to the contact durations, as is possible to observe. A longer
contact time allows more bundles to be sent. Another aspect that
influences the number of sent bundles is the time between contacts.
Longer time between contacts allows more data to be stored during
that period, originating in a large number of bundles being sent in
the next one. This can be seen in the first contacts of every day.
Contact durations are also longer during the traffic hours in the

58 Tests and Results

(a) Contact durations

(b) Number of sent bundles

(c) Bundle delivery ratio

Figure 5.4: Urban scale DCU results
.

5.2 Urban scale testing 59

beginning of the morning and end of afternoon. The delivery ratio
with average 77 % is related to the number of sent bundles as before,
the higher the number of sent bundles the higher the delivery ratio.
Figure 5.5 shows the results of the performance of the DTN.

(a) Delay since sample creation to arrival at the server

(b) Bundles with delay within one hour

Figure 5.5: Urban scale DTN results.

Figure 5.5(a) shows the delay since a a sample was created until
the time it reached the server. In the first bar are the number of
samples which had a delay below one hour, in the second are the
number of samples with a delay superior to one hour and below two
hours and so on. It’s possible to see that most samples have a delay
below two hours. This shows a good performance of the system,
and that the factor which is most influential is the frequency of the

60 Tests and Results

buses. Figure 5.5(b) shows the bundles with delays up to one hour,
to emphasize that most bundles have a delay inferior to one hour.
And even in this interval, the most frequent delay is around ten
minutes, which again shows the good performance of the system, and
it’s ability to transfer data without time restrictions in an efficient
way.

Figure 5.6: Bundle replication.

The samples which have a higher delay are the ones created dur-
ing the night and have to wait until the first bus in the morning to
be sent. It’s also possible to see that a few samples have an excep-
tionally large delay. This can be an issue of the VeniamDTN for
when a samples reaches three timeouts it’s deleted from the DCUs
database, hence it’s not possible for the DCU to have data with that
much time. It can also be an indicator that the Data Sender ignores
some older data since it sends most recent samples first.
Figure 5.6 shows how many times a bundle was replicated. It shows
that roughly 1800 bundles arrived once, 390 were replicated once,
and that a very small number of bundles were replicated 2 times.
Another thing it’s possible to notice is the fact that some bun-
dles were replicated 3 and 4 times, even if the maximum number

5.2 Urban scale testing 61

a bundle can be replicated is two. This could be an indicator that
VeniamDTN replicates some bundles and causes some of them to be
delivered repeatedly. It can also be an indicator that, sometimes,
an OBU can receive a bundle and send an acknowledgment back,
but the DCU doesn’t receives it, causing a retransmission of a bun-
dle that was already sent. It’s possible to see that a high number
of bundles were lost. This happened because during the tests, the
Amazon server unexpectedly closed the WebSocket which connects
to the Bundle Receiver in the cloud, as depicted in section 4.2.3.
This caused the high number of lost bundles seen. Even with this
problem, the number of bundles which arrived with one transmis-
sion is higher than rest combined, which is a sign that demonstrates
the good functioning of the system.

5.2.3 Urban Testbed with UrbanSense Cloud

This test presents the results obtained by analyzing the received
bundles in the UrbanSense Cloud. When the application responsi-
ble for connecting the UrbanSense cloud to the Amazon server was
ready to use, the Socket.IO library for python was installed in the
cloud. Only at this stage the cloud was in conditions to receive data
transmitted through the DTN. The setup for this test is the same
as the previous one, the only differences are in the receiving end
and the collection of humidity data in addition with temperature.
In this test is the cloud’s database, in the previous one was a web
browser. These results were obtained by analyzing data gathered
from 09:20 of day 10 to 09:36 of day 13 of July. During this time
roughly 408 contacts were made and 4445 bundles were sent. Fig-
ure 5.7 shows the duration of every contact made in the mentioned
time interval.

In this tests it’s possible to see the effects of the weekend as well
as the differences between night and day. It’s possible to see even
the differences between the Saturday and the Sunday. On the week
days the contacts are much closer to each other and during the night
they are very sparse. On Saturday the contacts aren’t as close to
each other as on week days but there are still more contacts than
on Sunday. Figure 5.7 confirms what the previous test showed, that

62 Tests and Results

Figure 5.7: Contact durations.

the factor that most influences the contact durations is traffic, for
the contacts are longer on the beginning of the morning and end of
the afternoon. In figure 5.8 the relation between the number of sent
and acknowledged bundles for each contact is depicted.

Figure 5.8: Sent and Acknowledged bundles.

It’s possible to see that the number of sent and acknowledged
packets for almost every contact is very close, which means that
practically almost every sent bundle reaches the OBU at the first
try. The non-acknowledged bundles are usually the last ones to
be sent, which means that even if they are not acknowledged it’s
not certain that they didn’t reach the OBU because it could be

5.2 Urban scale testing 63

the acknowledgments that didn’t reach the DCU. Figure 5.8 also
confirms that the number of sent bundles is proportional to the
contact duration and to the time since the last contact.

Figure 5.9 shows the delay since a sample creation to the time
it reaches the UrbanSense cloud database. The yy axis shows the
delay in minutes while the xx axis shows the time of creation.

Figure 5.9: Delay since sample creation to it’s arrival.

The first thing it’s possible to conclude from figure 5.9 is that
the samples gathered during night time take more time to reach the
cloud, as expected, due to the fact that it has to wait for the first
bus of the morning, or an occasional night bus to be sent. When
the amount of data present in the DCU’s database is such that it’s
possible to send it all in the next contact, the delay is very low and
only depends on when the bus will reach an RSU. However, in cases
where this is not possible, and due to the fact that the DCU sends
the most recent data first, some of the data that was not sent will
be constantly relegated, resulting in the peaks shown in the figure.
It’s also possible to see that on Sunday, the number and duration
of contacts weren’t enough to send all the samples present in the
DCU’s database. That only happended again Monday morning.
The descending tendency of the delay of the samples originating
during the night means that if a certain number of samples are sent
in the same contact, the more recent ones waited less to be sent.
Finally figure 5.10 shows the temperature data collected during this
time period.

64 Tests and Results

Figure 5.10: Collected temperature data.

It’s possible to see a fairly accurate representation of the tem-
perature in the time period of this test. This demonstrates that this
implementation and the usage of DTN technology allow to send data
without time restraints in a reliable way, without wasting resources.

5.3 Summary

In this chapter the details of all testing performed during this dis-
sertation were discussed. It started by the test in the lab where
the correct functioning of the developed software was confirmed us-
ing both versions of VeniamDTN. Then the large scale tests were
performed and the obtained results allowed to understand what to
expect from the system functioning according to the already spec-
ified metrics, and showed that the testbed is capable of reliably
deliver the collected data to the UrbanSense server. Both modes
of using VeniamDTN were tested, and although it still doesn’t sup-
port bidirectional communication, it was shown that once a bundle
reaches the DTN it reaches the intended destination.

Chapter 6

Conclusions and Future
Work

6.1 Conclusions

This dissertation presents a solution to use the DTN deployed in
Porto to send data originated in the UrbanSense platform to the
UrbanSense server. The solution was designed and implemented in
the data collecting units (sensors), on board units (vehicles) operat-
ing in the city and on the UrbanSense server. The performance of
the solution was also evaluated by the means of a set of pre-defined
metrics. Chapter 1 contextualizes this dissertation and explains
the reasons that motivates it. It introduces the concept of smart
cities and explains the benefits and possibilities that come with
the usage of DTNs. It also traces the goals for this dissertation,
along with the challenges to overcome. Chapter 2 introduces the
FutureCities project, along with its main platforms: the Vehicular
Network, the UrbanSense plaftorm and the network topology that
is used to connect all the involved devices to the Internet and to
the UrbanSense server. The hardware and software architectures of
the DCUs are also described. Furthermore, previous work where a
proof-of-concept to use vehicles to collect data from the DCUs in an
opportunistic manner and later deliver to a server is set as the start-
ing point of this work. In chapter 3 the concepts of Delay Tolerant

65

66 Conclusions and Future Work

Networks, Vehicular Delay Tolerant Network and Data Mulling are
introduced and described. Then, related work such as routing proto-
cols in DTNs, data mulling implementations and DTN testbeds are
described. This allows to show that our deployed testbed, with the
integration of the UrbanSense platform with the vehicular network
is unique both in terms of dimension, and duration. Chapter 4 is
where the proposed solution is described. It includes the two main
tools used in this work, VeniamDTN, along with both modes of
using it, and Twisted. The integration with previous work is also
described. For both modes of using VeniamDTN the different re-
sulting software architectures and way of interacting with the server
are also explained. Chapter 5 describes all the tests done, which in-
clude a small scale setup using VeniamDTN in the DCUs, the same
small scale test without VeniamDTN in the DCU, the test of the
link between a DCU and the OBU in a car and finally the charac-
teristics of the urban scale testbed. Then the results obtained are
displayed and described.
The testing done during this work allowed to conclude that the pro-
posed solution is capable of delivering data without time restrictions
in an reliable way. The average delay since a sample creation until
its arrival to the UrbanSense cloud is under 2 hours and the de-
livery rate of samples is over 85 %. The number of contacts and
their duration is mostly influenced by traffic, since it’s during rush
hours that the contacts are longer. This results in more sent bundles
and in lower delays. It was also noticed that younger samples are
sent first than older ones, which sometimes means that they will be
ostracized. With the completion of this work a set of applications
are available to use the DTN to send environmental data to the Ur-
banSense server. This applications were made for the DCUs and the
server and allow to use both modes of VeniamDTN. With this appli-
cations an urban scale testbed was deployed in Porto. There is also
the possibility to choose to use the DTN or a WiFi hotspot if one
is available. The testbed includes 25 DCUs, 600 public transports
including STCP buses, taxis and garbage trucks and 57 RSUs. The
obtained results allowed a better understanding of the functioning
of DTNs as well as what aspects of the implementation to improve
in order to make it more efficient.

6.2 Future Work 67

6.2 Future Work

For the future there is plenty of room to improve the overall perfor-
mance of the system. The mechanism to construct bundles can be
changed to include more than one sample of each type, and to avoid
cases where older samples are ostracized. Another thing to consider
is the creation of priority classes and define which kind of data be-
longs in each class. Then apply priority mechanisms to send data
with more relevance or time restraints first. This methods however
should not ignore the data with less priority. This would ensure an
almost optimal use of the resources of the network. The process
of choosing the way a DCU sends data to the UrbanSense server
could also improve, by working in an autonomous manner. This,
however, could be a very challenging task. A factor that highly in-
fluences the performance of the DCU is the usage of a PostgreSQL
database. During this work it was noted that the interaction with
the database added some latency to the performance of the sys-
tem. Maybe the way to interact with it could change or maybe even
replace the database with other mechanisms to store the data lo-
cally. One alternative could be use the VeniamDTN in the alternate
mode.

Appendix A

Experimental
Characterization of V2I
WiFi Connections in an
Urban Testbed

69

Demo Abstract: Experiments On Using Vehicles As Data
Mules For Data Collection From Urban Sensors

Pedro Santos∗, Tânia Calçada∗, André Sá∗, Diogo Guimarães∗, Tiago Condeixa†, Carlos Penichet∗,
Susana Sargento†‡, Ana Aguiar∗ and João Barros∗†

Instituto de Telecomunicações, ∗Faculdade de Engenharia da Universidade do Porto, †VENIAM,
‡Departamento de Electrónica, Telecomunicações e Informática da Universidade de Aveiro

Email: {pedro.salgueiro,tcalcada,ee12256,ee10158}@fe.up.pt,
tcondeixa@veniamworks.com,cpp@fe.up.pt,susana@ua.pt,{anaa,jbarros}@fe.up.pt

Abstract—In the UrbanSense platform developed in the Future
Cities Project, sensing devices based on the open-source Rasp-
berry Pi platform were sparsely distributed across the city to
measure environmental parameters. The data gathered by the
sensors needs to be transferred to the cloud, preferably taking
advantage of the existent local infrastructures. This work presents
a proof-of-concept of a system that will use Porto’s vehicular
network, composed by over 600 vehicles, to transfer sensor
samples from the sensing devices of the UrbanSense platform to
a cloud server, in a Delay Tolerant Networking (DTN) fashion.
During the demo, we will show data being collected by a moving
vehicle and later delivered to a server in the cloud.

I. INTRODUCTION

In recent years, pervasive monitoring became possible by
the development of small sensing devices with communication
capabilities. One of the major challenges in such large-scale
sensing platforms is to perform low-cost aggregation of the
collected data at a central database. Solutions such as cellular
networks or physical wiring to all sensors may be impractical
or costly when compared with data benefits. A purposely-
built M2M solution ([1], [2]) would require considerable
investment, whereas our implementation takes advantage of
an already-deployed, cost-free platform.

An low-cost alternative is provided by vehicular networks.
With the Future Cities project [3], the vehicles of Porto’s
public transportation and municipal services systems have
become equipped with wireless communication technologies,
creating an operational vehicular network. This set of vehicles
covers a significant area of the city on a daily basis, creating
numerous opportunities to collect the data acquired by sensors
and deliver it to a cloud server. Such strategy is known as Data
muling, a case of Delay Tolerant Networking (DTN) [4].

The UrbanSense platform proposes to bring together these
two realities, pervasive urban sensing and data muling, in
order to support large scale data gathering from fixed urban
sensors and aggregation at a cloud-based server. A number
of processing devices equipped with environmental sensors
and WiFi interface are being deployed at several strategic

This work was partially funded by three research projects: SenseBusNet
(PEst-OE/EEI/LA0008/2013), I-City for Future Mobility (NORTE-07-0124-
FEDER-000064), and FP7 - Future Cities (FP7-REGPOT-2012-2013-1). The
authors would like to thank the Municipality of Porto for the logistic support,
and Porto Digital for providing fiber connection to the RSU.

Fig. 1. Sensing device deployed in R. Damião de Góis, Porto, Portugal.
UrbanSense sensing devices are processing devices (Raspberry Pi) equipped
with environmental sensors (wind direction and speed, rain, solar radiation,
luminosity, humidity, temperature, noise) and a IEEE 802.11b/g/n interface.

locations of the city of Porto. Their data is collected at a
cloud-based database server. Fig. 1 shows one of such units
that was deployed at the margin of an important artery of the
city where buses of the vehicular network pass by regularly.
This demo shows a proof-of-concept scenario that includes one
sensor, one mule and one infra-structured node that collects
data from the mule and delivers it to the cloud database.

II. DATA COLLECTION ARCHITECTURE

There are three main elements in this sensing and com-
munication system: (i) the sensing devices, (ii) the vehicular
network, and (iii) the cloud-based server. Fig. 2 presents the
elements of the architecture, and the data and control messages
exchanged between them.

The sensing devices are processing devices (Raspberry Pi)
equipped with environmental sensors and a IEEE 802.11b/g/n

Vehicular Network UrbanSense
Cloud

UrbanSense
Sense Unit

Road Side
Unit

Local
Database

DTN

Hotspot

FutureCities
Database

Sensors Data

Application Ack

DTN

OnBoardUnit

OnBoardUnit

Fig. 2. Global perspective of the architecture. Data is gathered and locally
stored by the sensing devices, transmitted through the vehicular network, and
delivered to a server in the cloud. The acknowledgements are generated by the
server and transmitted through the vehicular network to the sensing devices,
so they can delete the local data already received in the server.

Sense Unit Road Side Unit

On-Board Unit

Fig. 3. Path travelled for measurements.

interface, which are encapsulated in hermetic casing and
deployed at the sites of interest. They have a local database
that stores the data collected by the sensors.

The vehicular network is composed of two types of ele-
ments: mobile and static nodes. The mobile nodes, in the
form of buses and garbage-collection trucks, are equipped
with a communicating device called On-Board Unit (OBU)
that has IEEE 802.11b/g/n and 802.11p interfaces [5], provid-
ing the vehicles with wireless networking capabilities. These
mobile units communicate with the sensing devices via IEEE
802.11b/g/n interface (WiFi). The static nodes of the vehicular
network are infrastructure devices called Road Side Units
(RSU). These equipments have high-speed connection to the
Internet and communicate with the mobile nodes via the IEEE
802.11p interface. They bridge the communication between the
vehicular network and the cloud-based UrbanSense server.

The cloud UrbanSense database server receives, acknowl-
edges and stores the data collected by all sensing devices.

III. PROOF-OF-CONCEPT

A. Implementation

This architecture was tested in a real-world scenario. For
this purpose, we had to create software modules at the end-
points (the sensing devices and the cloud-based server) to
manage the end-to-end communication, and integrate it with
a software implementation that provides support for DTN
communication over all elements of the architecture.

Regarding the DTN requirements of this architecture, we
chose the bundle protocol specified in RFC 5050 [6]. The
bundle protocol defines a number of services and primitives
tailored specifically to handle the opportunistic nature and
long delays that are inherent to Delay Tolerant Networks. The
protocol was designed as a layer in the network stack that sits
between the network and application layer, the bundle layer.
The datagrams exchanged at this layer are named bundles. We
used a specific implementation of the bundle protocol, the open
source implementation IBR-DTN [7]. The IBR-DTN software
package was installed in all elements of the architecture:
sensing devices, OBUs, RSUs and server.

The communication module at the sensing device constantly
searches for opportunistic connections to passing OBUs. If de-
tected, it fetches sensor data from the local database and stores
it into a bundle, which then delivers to the bundle layer. The
information about which data was sent is locally stored. Upon
reception of an acknowledgement of the previously sent data,

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

Bundle sending time (seconds since experiment start)

D
el

ay
 (

s)

Fig. 4. End-to-end delay measurements.

the sensing device deletes that data from the local database.
The communication module at the cloud-based server is in
charge of receiving and processing the bundles received from
the bundle layer, storing them in the global database, and sends
acknowledgements to the sensing device that originated the
data via the bundle layer.

B. Tests

The proof-of-concept tests were conducted using a sensing
device installed at Rua Damião de Góis and a personal vehicle,
that was fitted with one OBU. The vehicle performed an
itinerary that involved passing by the sensing device, giving
the opportunity to establish a connection to the OBU, and
continued to a nearby RSU, located at Praça do Marquês de
Pombal. This path is depicted in Fig. 3.

This itinerary was made multiple times, over a period of
time of 5565 seconds (apr. 93 minutes). There were 11 contacts
between the sensing device and the OBU. In total, 250 bundles
were transferred, corresponding to 145.85 kilobytes of sensor
data. All data bundles successfully arrived to the cloud server.

Fig. 4 shows the delay experienced while transmitting the
bundles during the test. The minimum, mean and maximum
bundle delays were 27 s, 140 s and 257 s, respectively. This
shows that the roads traffic conditions are determinant to
bundles delay. All data samples created during the tests were
transmitted at the first transmission attempt.

IV. CONCLUSIONS

This work presents an architecture to use vehicles as mules
for data gathered by environmental sensors deployed in the
city. Our proof-of-concept has shown the reliability of the
system and how delay is dependent on road traffic.

REFERENCES

[1] SIGFOX, http://www.sigfox.com.
[2] M2M Spectrum Networks, http://www.m2mspectrum.com.
[3] “Future Cities Project,” http://futurecities.up.pt/, 2014.
[4] V. Cerf, S. Burleigh, A. Hooke, L. Torgeson, R. Durst, K. Scott, K. Fall,

and H. Weiss, “Delay-Tolerant Networking Architecture. RFC 4838
(Experimental),” April 2007.

[5] C. Ameixieira, J. Matos, R. Moreira, A. Cardote, A. Oliveira, and
S. Sargento, “An IEEE 802.11p/WAVE implementation with synchronous
channel switching for seamless dual-channel access (poster),” in Vehicular
Networking Conference (VNC), 2011 IEEE, Nov 2011, pp. 214–221.

[6] K. Scott and S. Burleigh, “Bundle Protocol Specification. RFC 5050
(Experimental),” November 2007.

[7] M. Doering, S. Lahde, J. Morgenroth, and L. Wolf, “IBR-DTN: an
efficient implementation for embedded systems,” in Proceedings of the
3rd ACM Workshop on Challenged Networks. ACM, 2008, pp. 117–120.

Appendix B

Poster for EWSN
Conference

73

4. Data sent to server via backbone optical fiber

Pedro M. Santos1, Tania Calçada1, André Sá1, Diogo Guimarães1, Tiago Condeixa2,
Carlos Penichet1, Susana Sargento2,3, Ana Aguiar1, João Barros1,2

Experiments on Using Vehicles as Data Mules
For Data Collection From Urban Sensors

 City-wide monitoring platform

 Sensing units deployed at strategic locations

 Data gathered at backbone server

 Challenge: collect data from disparate sites

Data Muling for Sensor Data Collection

“Data Sender” module manages

data transmissions through DTN.

 STCP buses equipped with WiFi APs and DTN support

 Cost-free, but no delivery deadline guaranties

 Bus network routes have wide coverage

 Avoids expensive cellular communication

Acknowledgements:

Demonstration

Instituto de Telecomunicações; 1 - Faculdade de Engenharia da Universidade do Porto;
2 - VENIAM; 3 - Departamento de Electrónica, Telecomunicações e Informática da Universidade de Aveiro

DCU at Rua das Flores

Implementation Details

HELIX

OBU

Local database

“Data Sender” module

HELIX

DCU

 DTN-oriented bundle protocol BP (RFC 5050) is used.

 Software implementation of BP exists in all architecture elements.

 HELIX: VENIAM’s implementation of the Bundle Protocol.

“Data Receiver” module

processes bundles and stores in

the UrbanSense database.

ServerVehicular
Network UrbanSense database

“Data Receiver” module

HELIX

UrbanSense Platform

DCU Data Collection Unit
(Sensor cluster with WiFi)

Optical fiber

Implementation and Demonstration

1. DCU searches for AP from bus OBU Operation:

Server

RSU

DCU OBU
(mobile node)

 SenseBusNet (PEst-OE/EEI/ LA0008/2013)

 I-City for Future Mobility (NORTE-07-0124-FEDER-000064)

 FP7 - Future Cities (FP7-REGPOT-2012-2013-1, 316296)

Sensors:

 Luminosity

 Termometer

 Hygrometer

 Sonometer

 Pluviometer

 Wind Vane

 Anemometer

Inside the box:

 Raspberry Pi

 WiFi antenna

 Control electronics

HELIX

RSU

2. Data off-loaded to bus OBU using WiFi

3. Data routed to RSU through vehicular network

RSU Road-side Unit
(Internet gateway for mobile nodes)

OBU On-Board Unit
(Car PC with WiFi and DSRC)

DCU at Rua
Damião de Góis

1,2

3

4

WiFi

DSRC

Backend Server
(Stores data of all DCUs)

Solution: Data muling with BusNet

References

[1] Edward J Malecki. Connecting the fragments: Looking at the
connected city in 2050. Applied Geography, 49:12–17, 2014.

[2] Shimin Guo, Mohammad Hossein Falaki, Earl A Oliver,
S Ur Rahman, Aaditeshwar Seth, Matei A Zaharia, and Srini-
vasan Keshav. Very low-cost internet access using kiosknet.
ACM SIGCOMM Computer Communication Review, 37(5):95–
100, 2007.

[3] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen,
Michel Goraczko, Allen Miu, Eugene Shih, Hari Balakrishnan,
and Samuel Madden. Cartel: a distributed mobile sensor com-
puting system. In Proceedings of the 4th international confer-
ence on Embedded networked sensor systems, pages 125–138.
ACM, 2006.

[4] Sven Lahde, Michael Doering, Wolf-Bastian Pöttner, Gerrit
Lammert, and Lars Wolf. A practical analysis of communica-
tion characteristics for mobile and distributed pollution mea-
surements on the road. Wireless Communications and Mobile
Computing, 7(10):1209–1218, 2007.

[5] Hamed Soroush, Nilanjan Banerjee, Aruna Balasubramanian,
Mark D Corner, Brian Neil Levine, and Brian Lynn. Dome: a
diverse outdoor mobile testbed. In Proceedings of the 1st ACM
International Workshop on Hot Topics of Planet-Scale Mobility
Measurements, page 2. ACM, 2009.

[6] Kun-chan Lan and Ze Ming Wu. On the feasibility of using
public transport as data mules for traffic monitoring. In Intel-
ligent Vehicles Symposium, 2008 IEEE, pages 979–984. IEEE,
2008.

[7] André Sá. Fixed Sensors Integration for Future Cities using
M2M. Master’s thesis, Faculdade de Engenharia da Universi-
dade do Porto, Portugal, 2014.

[8] Pedro Santos, Tania Calcada, Andre Sa, Diogo Guimarães,
Tiago Condeixa, Carlos Penichet, Susana Sargento, Ana

75

76 REFERENCES

Aguiar, and João Barros. Experiments on using vehicles as
data mules for data collection from urban sensors. In Wireless
Sensor Networks. Springer, 2015.

[9] Michael Doering, Sven Lahde, Johannes Morgenroth, and Lars
Wolf. Ibr-dtn: an efficient implementation for embedded sys-
tems. In Proceedings of the third ACM workshop on Challenged
networks, pages 117–120. ACM, 2008.

[10] Application Protocol CoAP. Coap: An application protocol for
billions of tiny internet nodes. 2012.

[11] Daniel Jiang and Luca Delgrossi. Ieee 802.11 p: Towards an
international standard for wireless access in vehicular environ-
ments. In Vehicular Technology Conference, 2008. VTC Spring
2008. IEEE, pages 2036–2040. IEEE, 2008.

[12] Vinton Cerf, Scott Burleigh, Adrian Hooke, Leigh Torgerson,
Robert Durst, Keith Scott, Kevin Fall, and Howard Weiss.
Delay-tolerant networking architecture. RFC4838, April, 2007.

[13] Keith L Scott and Scott Burleigh. Bundle protocol specifica-
tion. RFC5050, 2007.

[14] Ken Kinder. Event-driven programming with twisted and
python. Linux journal, 2005(131):6, 2005.

[15] Raymond Tatchikou, Subir Biswas, and Francois Dion. Co-
operative vehicle collision avoidance using inter-vehicle packet
forwarding. In Global Telecommunications Conference, 2005.
GLOBECOM’05. IEEE, volume 5, pages 5–pp. IEEE, 2005.

[16] Joon-Sang Park, Uichin Lee, Soon Y Oh, Mario Gerla, and
Desmond S Lun. Emergency related video streaming in vanet
using network coding. In Proceedings of the 3rd international
workshop on Vehicular ad hoc networks, pages 102–103. ACM,
2006.

[17] Maria Kristina Uden. Networking for communications chal-
lenged communities: Report from a european project targeting
conditions of poor or lacking ict coverage. The Journal of Com-
munity Informatics, 7(3), 2011.

[18] Alex Pentland, Richard Fletcher, and Amir Hasson. Daknet:
Rethinking connectivity in developing nations. Computer,
37(1):78–83, 2004.

REFERENCES 77

[19] Mikael Asplund, Simin Nadjm-Tehrani, and Johan Sigholm.
Emerging information infrastructures: Cooperation in disas-
ters. In Critical Information Infrastructure Security, pages 258–
270. Springer, 2009.

[20] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Rfc 3986:
Uniform resource identifier (uri): Generic syntax. The Internet
Society, 2005.

[21] Paulo Rogério Pereira, Augusto Casaca, Joel JPC Ro-
drigues, Vasco NGJ Soares, Joan Triay, and Cristina Cervelló-
Pastor. From delay-tolerant networks to vehicular delay-
tolerant networks. Communications Surveys & Tutorials,
IEEE, 14(4):1166–1182, 2012.

[22] Tamer Nadeem, Sasan Dashtinezhad, Chunyuan Liao, and
Liviu Iftode. Trafficview: traffic data dissemination using car-
to-car communication. ACM SIGMOBILE Mobile Computing
and Communications Review, 8(3):6–19, 2004.

[23] Vasco NGJ Soares, Farid Farahmand, and Joel JPC Rodrigues.
A layered architecture for vehicular delay-tolerant networks.
In Computers and Communications, 2009. ISCC 2009. IEEE
Symposium on, pages 122–127. IEEE, 2009.

[24] Zhihua Hu and Baochun Li. Fundamental performance limits of
wireless sensor networks. Ad Hoc and Sensor Networks, pages
81–101, 2004.

[25] Rahul C Shah, Sumit Roy, Sushant Jain, and Waylon Brunette.
Data mules: Modeling and analysis of a three-tier architecture
for sparse sensor networks. Ad Hoc Networks, 1(2):215–233,
2003.

[26] Giuseppe Anastasi, Marco Conti, and Mario Di Francesco.
Data collection in sensor networks with data mules: An in-
tegrated simulation analysis. In Computers and Communi-
cations, 2008. ISCC 2008. IEEE Symposium on, pages 1096–
1102. IEEE, 2008.

[27] Arnab Chakrabarti, Ashutosh Sabharwal, and Behnaam
Aazhang. Using predictable observer mobility for power effi-
cient design of sensor networks. In Information Processing in
Sensor Networks, pages 129–145. Springer, 2003.

[28] Samuel C Nelson, Mehedi Bakht, and Robin Kravets.
Encounter-based routing in dtns. In INFOCOM 2009, IEEE,
pages 846–854. IEEE, 2009.

78 REFERENCES

[29] Aruna Balasubramanian, Brian Levine, and Arun Venkatara-
mani. Dtn routing as a resource allocation problem. ACM
SIGCOMM Computer Communication Review, 37(4):373–384,
2007.

[30] John Burgess, Brian Gallagher, David Jensen, and Brian Neil
Levine. Maxprop: Routing for vehicle-based disruption-
tolerant networks. In INFOCOM, volume 6, pages 1–11, 2006.

[31] Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic
routing in intermittently connected networks. ACM SIGMO-
BILE mobile computing and communications review, 7(3):19–
20, 2003.

[32] Ram Ramanathan, Richard Hansen, Prithwish Basu, Regina
Rosales-Hain, and Rajesh Krishnan. Prioritized epidemic rout-
ing for opportunistic networks. In Proceedings of the 1st inter-
national MobiSys workshop on Mobile opportunistic network-
ing, pages 62–66. ACM, 2007.

[33] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and
Cauligi S Raghavendra. Spray and wait: an efficient rout-
ing scheme for intermittently connected mobile networks.
In Proceedings of the 2005 ACM SIGCOMM workshop on
Delay-tolerant networking, pages 252–259. ACM, 2005.

[34] Mohsen Sardari, Faramarz Hendessi, and Faramarz Fekri. In-
focast: A new paradigm for collaborative content distribution
from roadside units to vehicular networks. In Sensor, Mesh and
Ad Hoc Communications and Networks, 2009. SECON’09. 6th
Annual IEEE Communications Society Conference on, pages
1–9. IEEE, 2009.

[35] Mohammad Hamed Firooz and Sumit Roy. Collaborative
downloading in vanet using network coding. In Communica-
tions (ICC), 2012 IEEE International Conference on, pages
4584–4588. IEEE, 2012.

[36] Antonios Skordylis and Niki Trigoni. Delay-bounded routing
in vehicular ad-hoc networks. In Proceedings of the 9th ACM
international symposium on Mobile ad hoc networking and com-
puting, pages 341–350. ACM, 2008.

[37] Tiago Condeixa Filipe Neves Susana Sargento Lucas Guardal-
bent Peter Steenkiste Romeu Monteiro, Luis Guedes. Lessons
Learned from a Real Vehicular Network Deployment of Delay-
Tolerant Networking.

REFERENCES 79

[38] Sushant Jain, Rahul C Shah, Waylon Brunette, Gaetano Bor-
riello, and Sumit Roy. Exploiting mobility for energy efficient
data collection in wireless sensor networks. Mobile Networks
and Applications, 11(3):327–339, 2006.

[39] Tara Small and Zygmunt J Haas. The shared wireless infos-
tation model: a new ad hoc networking paradigm (or where
there is a whale, there is a way). In Proceedings of the 4th
ACM international symposium on Mobile ad hoc networking &
computing, pages 233–244. ACM, 2003.

[40] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi,
Li Shiuan Peh, and Daniel Rubenstein. Energy-efficient com-
puting for wildlife tracking: Design tradeoffs and early experi-
ences with zebranet. In ACM Sigplan Notices, volume 37, pages
96–107. ACM, 2002.

[41] Aman Kansal, Arun A Somasundara, David D Jea, Mani B
Srivastava, and Deborah Estrin. Intelligent fluid infrastructure
for embedded networks. In Proceedings of the 2nd international
conference on Mobile systems, applications, and services, pages
111–124. ACM, 2004.

[42] Wenrui Zhao and Mostafa H Ammar. Message ferrying: Proac-
tive routing in highly-partitioned wireless ad hoc networks. In
Distributed Computing Systems, 2003. FTDCS 2003. Proceed-
ings. The Ninth IEEE Workshop on Future Trends of, pages
308–314. IEEE, 2003.

[43] Wenrui Zhao, Mostafa Ammar, and Ellen Zegura. A message
ferrying approach for data delivery in sparse mobile ad hoc net-
works. In Proceedings of the 5th ACM international symposium
on Mobile ad hoc networking and computing, pages 187–198.
ACM, 2004.

[44] Jun Luo and J-P Hubaux. Joint mobility and routing for life-
time elongation in wireless sensor networks. In INFOCOM
2005. 24th annual joint conference of the IEEE computer and
communications societies. Proceedings IEEE, volume 3, pages
1735–1746. IEEE, 2005.

[45] Matthew Dunbabin, Peter Corke, Iuliu Vasilescu, and Daniela
Rus. Data muling over underwater wireless sensor networks
using an autonomous underwater vehicle. In Robotics and Au-
tomation, 2006. ICRA 2006. Proceedings 2006 IEEE Interna-
tional Conference on, pages 2091–2098. IEEE, 2006.

80 REFERENCES

[46] Giuseppe Anastasi, Marco Conti, Emmanuele Monaldi, and
Andrea Passarella. An adaptive data-transfer protocol for sen-
sor networks with data mules. In World of Wireless, Mobile
and Multimedia Networks, 2007. WoWMoM 2007. IEEE In-
ternational Symposium on a, pages 1–8. IEEE, 2007.

[47] Arun A Somasundara, Aman Kansal, David D Jea, Deborah
Estrin, and Mani B Srivastava. Controllably mobile infrastruc-
ture for low energy embedded networks. Mobile Computing,
IEEE Transactions on, 5(8):958–973, 2006.

[48] Carlos Ameixieira, André Cardote, Filipe Neves, Rui Meire-
les, Susana Sargento, Luís Coelho, Joao Afonso, Bruno Areias,
Eduardo Mota, Rui Costa, et al. Harbornet: A real-world
testbed for vehicular networks. Communications Magazine,
IEEE, 52(9):108–114, 2014.

[49] Jakob Eriksson, Hari Balakrishnan, and Samuel Madden.
Cabernet: vehicular content delivery using wifi. In Proceedings
of the 14th ACM international conference on Mobile computing
and networking, pages 199–210. ACM, 2008.

[50] Matteo Cesana, Luigi Fratta, Mario Gerla, Eugenio Giordano,
and Giovanni Pau. C-vet the ucla campus vehicular testbed:
Integration of vanet and mesh networks. In Wireless Conference
(EW), 2010 European, pages 689–695. IEEE, 2010.

[51] Alan Mainwaring, David Culler, Joseph Polastre, Robert
Szewczyk, and John Anderson. Wireless sensor networks for
habitat monitoring. In Proceedings of the 1st ACM interna-
tional workshop on Wireless sensor networks and applications,
pages 88–97. ACM, 2002.

[52] Aleksandar Milenković, Chris Otto, and Emil Jovanov. Wire-
less sensor networks for personal health monitoring: Issues and
an implementation. Computer communications, 29(13):2521–
2533, 2006.

[53] Luis Sanchez, José Antonio Galache, Veronica Gutierrez,
Jose Manuel Hernandez, Jesús Bernat, Alex Gluhak, and
Tomás Garcia. Smartsantander: The meeting point between fu-
ture internet research and experimentation and the smart cities.
In Future Network & Mobile Summit (FutureNetw), 2011, pages
1–8. IEEE, 2011.

[54] Hans Schaffers, Nicos Komninos, Marc Pallot, Brigitte Trousse,
Michael Nilsson, and Alvaro Oliveira. Smart cities and the fu-
ture internet: Towards cooperation frameworks for open inno-
vation. Future Internet Assembly, 6656:431–446, 2011.

REFERENCES 81

[55] Open cities. http://opencities.net/.

http://opencities.net/

	Front Page
	Contents
	List of Figures
	1 Introduction
	1.1 Problem characterization
	1.1.1 Motivation
	1.1.2 Objectives
	1.1.3 Methodologies
	1.1.4 Contributions and Results

	1.2 Outline of the document

	2 Future Cities Project
	2.1 Overview
	2.2 Vehicular Network
	2.3 UrbanSense Platform
	2.3.1 DCU architecture

	2.4 Data management
	2.4.1 Data Sender
	2.4.2 Asynchronous communications

	2.5 Network
	2.6 UrbanSense and Vehicular network integration
	2.7 Summary

	3 State-of-the-Art
	3.1 Delay Tolerant Networks
	3.1.1 Standardization
	3.1.2 Vehicular Delay Tolerant Networks
	3.1.3 Data Mulling

	3.2 Related Projects
	3.2.1 Routing Protocols in DTNs
	3.2.2 Data Mulling Implementations
	3.2.3 DTN Testbeds
	3.2.4 Sensor Platforms

	3.3 Summary

	4 Proposed Solution
	4.1 Architecture overview
	4.2 Operation Modes
	4.2.1 DCU integrated in the DTN
	4.2.2 CoAP data transmission
	4.2.3 Interaction with the Server

	4.3 Implementation
	4.3.1 Sending data to the DTN
	4.3.2 Acknowledge bundles with VeniamDTN
	4.3.3 Integration with Twisted

	4.4 Summary

	5 Tests and Results
	5.1 Lab tests
	5.1.1 DCU in the DTN
	5.1.2 CoAP data transmission

	5.2 Urban scale testing
	5.2.1 First Link Testing
	5.2.2 Urban Testbed without UrbanSense Cloud
	5.2.3 Urban Testbed with UrbanSense Cloud

	5.3 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	A Experimental Characterization of V2I WiFi Connections in an Urban Testbed
	B Poster for EWSN Conference
	References

