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Abstract

Over the last decade, there has been a flurry of activity in the development of autonomous marine
robotic vehicles to improve the means available for ocean exploration and exploitation. A partic-
ular scenario where Autonomous Underwater Vehicles (AUVs) can play an important role is in
the automatic acquisition of marine environmental data. In this case, one or more AUVs acting in
cooperation are programmed to survey a given region. To this end, an important problem that has
to be addressed is the sampling motion control strategy, that is, the high-level software algorithm
that is implemented on a computer system at the AUV, that decides based on the on-board sensors
where (and in some cases when) to acquire environmental data.
Motivated by the above, this thesis proposes a solution to solve the problem of real-time adaptive
sampling using a coordinated fleet of AUVs. In the first part of the thesis, we address the on-line
unsupervised learning problem of Gaussian mixture models (GMMs) in the presence of uncer-
tain dynamic environments. In particular, we assume that the number of Gaussian components
(clusters) is unknown and can change over time. We propose a multi-hypothesis adaptive algo-
rithm that continuously updates the number of components and estimates the model parameters
as the measurements (sample data) are being acquired. This is done by incrementally maximizing
the likelihood probability associated to the estimated parameters and keeping/creating/removing
in parallel a number of hypothesis models that are ranked according to the minimum description
length (MDL), a well-known concept in information theory. The proposed algorithm has the ad-
ditional feature that it relaxes “the sufficiently large data set” restriction by not requiring an initial
batch of data. Simulation results illustrate the performance of the proposed algorithm.
In the second part of the thesis, we use the proposed unsupervised algorithm to develop an adaptive
sampling strategy to obtain relevant conductivity, temperature and depth (CTD) information of a
given area using a coordinated fleet of AUVs. In the proposed setup, a leader AUV is tasked to
acquire CTD data by running a set of user-defined mission instructions like for example following
a desired path profile. The rest of the fleet (the followers AUVs) will follow the leader closely with
a desired formation that will adaptively change according to the CTD data that they are acquiring.
More precisely, each AUV is in charge of running in real-time the proposed unsupervised learning
algorithm for GMMs that is fed by the CTD data. At each time that the vehicles resurface (and
this is done in a coordinated fashion), the leader AUV broadcast its currently estimated parameters
of the GMM, and the followers based on this and their estimated GMM compute the variational
distance error between these GMMs. This error, which provides a notion of how different is, from
the leader, the CTD measurements that each follower is acquiring, is then used to update the next
formation configuration, which typically scales the distance between the AUVs in the formation
(making a zoom-in and zoom-out), in order to improve the efficiency of data acquisition in a given
region. The simulation results show the feasibility and accuracy of the motion learning strategies
in many uniform and complex environments.
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Chapter 1

Introduction

The ocean is a crucial feature of Earth, but due to extreme conditions in deep beneath the sur-

face, it still remains a nearly unexplored territory. Ocean expedition, methodical observations and

documentation of different outlooks of the ocean, e.g., in biology, geochemistry, physics and ar-

chaeology can help us to reveal the mysteries of the deep ocean ecosystems. Recent discoveries

reveal that largest mass of living things on earth are living near the ocean floor.

Figure 1.1(a) shows expanding of molten rock in the form of bubbles, under the pressure of mag-

matic gas. This magmatic gas is presumed to be mostly water because when the water is under the

magmas and the magmatic temperature is a thousand degrees and when it is suddenly cooled by

coming contact with the sea water, the bubble bursts. The ocean floors are formed exclusively by

these volcanic activities.

Hydrothermal vents, which are chimney like structures with several stories high, spewing hot wa-

ter geysers black with minerals and nutrients. The temperature around these deep sea events can

scorch up to 760◦F . Figure 1.1(b) shows an astonishing sight of an exotic garden of giant tube

worms, that thriving without sunlight and feed on sulfur compounds erupting from the vents in

this toxic water [1, 2]. Deep understanding of the ocean, demands novel research approaches to

(a) Hydrothermal vents (b) An exotic marine garden

Figure 1.1: Underwater exploration (image sources: [3]).

study interactive ocean processes thoroughly and simultaneously to determine the linkage among

1



2 Introduction

Figure 1.2: A Lesson In Complexity (image source: [4])

and between chemical, physical, biological and geological factors in a coherent temporal and spa-

tial framework, see Figure 1.2. For example, the chemistry of water in different geographic areas,

affect the organisms that live there and those in turn influence the geology of the ocean floor. With

the recent advances in technology, ocean observatories are gaining the capacity to fulfil the expec-

tations in expedition of vast, unstructured and dynamic environments of the ocean by analysing the

dependency and correlation between ocean dynamics, climate and ecosystem responses at the lo-

cal to basin scales in real-time. These powerful new approaches are named as the grand challenges

in environmental and ocean sciences [4].

1.1 Technologies for ocean sampling

Our climate and weather, the water we drink and the food we eat, even the air we breathe, all of

these are closely connected to the ocean that covers almost three quarters of our planet. Today,

much of the ocean and how it works still remains a mystery, but in the way that the doctors con-

stantly monitor the health of critical patients, scientists from around the world are now using the

sate-of-the-art technology to constantly take the pulse of our dynamic marine and coastal environ-

ments.

In the early days, exploring the ocean started by sending divers down into the water. Divers had to

deal with a number of hazards such as decompression, dragging to the ship holes or pounding into

the infrastructures, due to the currents. During the years, researchers use observatories wherever

they can so they don’t have to put themselves in those kind of situations.

Ocean observatories are collections of high-tech instruments above and below the waves that pro-

vide around-the-clock information about what is happening in the ocean in an systematic non-

invasive way.
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(a) A Research Vessel (b) A surface mooring in deep water

Figure 1.3: Ocean expedition (image sources: Left [4], Right [2]).

Sensors on satellites miles above the earth, look at both large and small areas of the ocean surface

providing key data about the temperature, color and tide of the water. Radar towers on land, col-

lect information about the movement of the water at the surface of the motion, including the speed

and the direction of the surface currents. Sensors and instruments attached to the stationary buoys

collect the information at the same location over long periods of time.

Autonomous underwater vehicles travel independently below the ocean surface collecting infor-

mation about the water conditions. This data then sent back to the scientists on land or board ships.

Instruments connected to the network of underwater hops called nodes continuously collect data

and send it back to the land through cables. The same cables also provide electrical power to the

nodes and other equipments. Using data collected through ocean observatories, scientists are now

beginning to forecast ocean conditions, much like meteorologists do for the weather.

1.1.1 Research Vessels

A typical way to get ocean measurements is called shipboard hydrographic programme, which

is the employment of in-situ sensors on cargo ships or ferry-boats. The ships are equipped with

special tools and technology that allow scientists to collect samples and taking measurements in

a different levels of the ocean. Annual cruises are launched to measure the water properties by

lowering down the instruments all the way to the bottom of the ocean, step by step in different

levels, to measure the water properties and the flow. This enables the scientists to get a snapshot

of the ocean circulation yearly. In early design vessels, typical instruments such as temperature

and conductivity recorders, current profilers and so on, capture the data and store them internally.

It is only retrieved when the ship reaches the final destination [5]. Late research vessels, equipped

with state-of-the-art technological gadgetry, provide stable platforms for the scientists to deploy

divers and submersibles, Figure 1.3(a).

1.1.2 Moored Instrumentation and Ocean Observatories

Ocean processes are around-the-clock, so, the use of annual research vessel cruises is not practical

to observe the ocean throughout the year. Scientists and engineers have come up with ways to
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Figure 1.4: Endurance array and slope base mooring (image source: [4])

leave instruments out in the ocean for long-term monitoring.

A cost-effective solution could be implementing an array of moored profilers which are anchored

to the bottom of the ocean. Moored observatories are platforms which can occupy a spot in the

ocean and allow the researchers to observe a column of water years. They are important tools

for monitoring the oceanic processes in large temporal scale and, due to advances in sensor tech-

nologies, the of them increasing in the last decade [6]. This technology can help the researchers

to develop ocean-atmosphere models, and learn about air-sea interactions in seasonal and yearly

scales.

The basic suite of instruments of a typical buoy is depicted in Figure 1.3(b). Above the water,

moored buoys equipped with meteorological sensors and solar panes are able to measure the hu-

midity and temperature of the air and solar and/or infra red radiation. Beneath the surface, buoys

hold various instruments, such as: current meters, temperature and pressure sensors, sediment

traps, chemical sensors, power supplies, data recorders, and an ACM (acoustic current meter).

The captured data can be sent to a central repository in almost real-time through satellite or radio

communication systems. Researchers are looking ahead to the prospect of sending data home in

real-time via satellite [7]. It is quite challenging to get these instruments to operate for years in

sea in very harsh environments, and only a very small portion of the ocean can be covered in this

approach. As a result, the spatial resolution is typically poor due to the high cost. Furthermore,

sea water generally does not get along well with electronic devices and, on the other hand, the

surface waves can physically damage the instruments and the moorings.

With recent developments, the instrumentation and performance of the moored arrays can be im-

proved by combining a profiling mechanism to a moored based system, see [8]. Nowadays, fi-

bre cables are capable of supplying electric power for the mooring profilers and platforms and

transferring the data from deep in the ocean to the land, see Figure 1.4. Also, battery-powered
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(a) The CAMera samPlER, or
“Camper"

(b) ROPOS on a mission

Figure 1.5: Tethered Underwater Vehicles (image sources: Left [2], Right [4]).

traction motor can help the profilers to climb up and down the mooring and provide unparalleled

spatial-temporal resolution on biological and geochemical features, ocean acidification, and other

oceanographic processes.

1.1.3 Towed Systems

To expand the spatial scale of the area under study, scientists and engineers have devised large

sampling sledges that are tethered to research vessels. Towed systems lowered down to the sea

floor to collect samples from the ocean bottom. With respect to the objective of the mission,

towed sled can be equipped with different instruments to collect samples or take measurements.

Chemical sensors, CTD sensor devices, lights and optical instrumentation, a navigation system, a

video camera, and claws to quickly grab samples, can be mounted on these sledges, Figure 1.5(a).

Recent towed systems, by using impeller-forced wings, are able to rotate and undulate to the

upper level of water. A multi-conductor tow cable, or in sonar type a long fibre, is used to send the

control signals from on-board ship control unit to a hydraulic unit inside the vehicle to modify the

wings. Towed systems have limited maneuverability, are slow, costly and controlled from a ship

via a cable or fibre, that provides electrical and data transfer possibility. Some undulating versions

allow for complex vertical yo-yo paths, even so, during the last decade towed systems are being

widely replaced by untethered submersibles. See [2, 9] for more details.

1.1.4 Remotely Operated Vehicles

Remotely Operated Vehicles (ROVs), see Figure 1.5(b), are tremendous powerful platforms teth-

ered by the ships and typically known as underwater helicopters, because they can hover over a

sea floor target and surf a vast area to explore unblemished ocean parts.

ROVs are tethered to the research vessel by a fiber-optic cable to be able to send high band-width

data to a control console and receive electrical power and mission plan.
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(a) (b)

Figure 1.6: Free-Swimming Autonomous Sampling Vehicles (image sources: Left [2], Right [12]).

Unlike the towed vehicles in Section 1.1.3, here, a pilot can have a direct control over the vehi-

cle’s mission using a hand-controller to send the control commands and adjust the sensors. This,

allows the researchers to carry out detailed experiments, take measurements, collect samples and

observe the deep sea floor while controlling the vehicle from the surface. Another advantage is

that, ROVs are less affected by the position and relative motion of the vessel and the current, so

they get perfect sensor data, perfect video. ROVs, typically, are equipped with video cameras,

lights, acoustic imaging sonars, which are used to “see" in zero visibility, velocity meters and

CTD sensor devices. Using tracking and navigation systems, the exact location f them are known

in real-time which increases the maneuverability of these vehicles. Recent ROVs are called smart

flights which are semi-autonomy package that allow return to the target by pushing a button doing

way-points navigation.

High cost, constrained mobility by the umbilical, relatively low speed the drag associated to the

frame and the tether are the major challenges in using these vehicles [9].

1.1.5 Autonomous Underwater Gliders

An Autonomous Underwater Glider (AUG) is a buoyancy-propelled, fixed-wing vehicle that en-

ables robotic exploration in large bodies of water, Figure 1.6(a). with the help of its wings and by

means of internal mass redistribution, the vehicle goes up and down through the ocean in a pattern

called a saw-tooth [10]. The wings actually take the vertical motion of the vehicle and translate

that into forward motion. In oceanographic studies, these robots are being used to take scientific

measurements of salinity, temperature, volcanic matters, oxygen contents in the water and so on.

They sink and rise, on command, to send the high-resolution data back to the researchers. AUGs,

while on the surface, can communicate with the operators via RF modems or Iridium satellite

phones. As mentioned earlier, gliders sink and rise on command, i.e., during the mission the op-

erators are able to program and change the current task or waypoints of the vehicle and send the

commands via Iridium satellite links. Portability and scalability in infrastructure of the fleet are

the main advantages of these small, inexpensive platforms to cover a vast area. On the other hand,

the waves can cause a lot of damage to the robots or they may get hit by other vehicles during
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resurfacing. The surface currents can become a serious issue, because it is not necessarily clear

what the trajectories of the glider are. Therefore, the researchers may have to trace the AUG down

using its last known location as well as the prediction of water currents to localize and recover the

vehicle. Nevertheless, fleet of AUGs are one of the best at hand approaches to obtain subsurface

spatial resolution necessary in oceanography [11].

1.1.6 Unmanned Surface Vessels: Wave Gliders

Unmanned surface vessels (USVs) are robotic float boats that typically use solar panels to power

their electric systems for propulsion and operate without any tether link with an operator.

USVs have a variety of applications in oceanography science, ocean acidification, national secu-

rity, phytoplankton studies and general robotics research, e.g. [2]. Figure 1.6(b) shows an Un-

manned Wave Glider (UWG), which is a simple, cost effective platform for collecting ocean data

that does not rely on expensive ships or buoys. These wave gliders are propelled through the water

by underwater fins or wings that convert the wave energy into forward thrust. UWGs have revo-

lutionized the cost of data gathering in oceanographic studies. They are the generation of marine

vehicles that are persistent and wave-propelled systems, without any need to fuel or crew.

A wave glider is a two-part system, the float which stays on the surface the entire time and a set

of wings or fins that are connected to the float by a cable. When the vehicle is deployed the set of

wings are a few meter below the float. Whatever direction the float is get to move by the ocean

waves, the glider wings goes up and down with the motion of the ocean surface and consequently

the vehicle propelled itself. Affordable, long range and higher bandwidth satellite system, pow-

ered by solar panels, is used for communication and navigation in real-time. These systems, along

with accurate and compact global positioning systems, have also increased the reliability and ap-

plicability of the UWGs.

While the technology potential of USVs is bright, looming policies in shipping and surface traffic

rules restrict their applicability [13].

1.1.7 Autonomous Underwater Vehicles

Some of the most recent technological advances, particularly in the last decade, have fostered

the development of Autonomous Underwater Vehicles [14]. An Autonomous Underwater Vehi-

cle (AUV) is a robot designed to operate underwater, see Figure 1.7. It is typically a free body

swimming and is not attached to the support vessel to which is launched. Equipped with a set

of relevant sophisticated in-situ sensors, AUVs characterize the underwater environment without

real-time control by human operators. This characteristic increases the maneuverability of AUVs

in temporal and spatial scales in oceanography applications. AUVs have brought together specific

complementary knowledge in computer science, electrical and mechanical engineering.

These vehicles, are a vital tool in gathering detailed ocean data at reasonable cost in order to

targeting specific set of oceanography questions. The vehicle is programmed to complete a partic-

ular mission and uses its on-board sensors to estimate its state in order to complete those mission
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Figure 1.7: Light Autonomous Underwater Vehicles (image source: [17])

objectives. AUVs are generally used in scientific expeditions to map new environments using a

variety of sensors including sonar and/or vision. Scientific applications include geoscience to map

particular features such as hydrothermal events or submarine volcanoes [4]. In oceanography for

mapping the physical structure of the ocean [2]. In archeology for documenting shipwrecks and

submerged cities [7]. In ecological applications for surveying the marine habitants and document

their states to understand the changes through time [4]. In industry they are extensively used for

conducting surveys for minerals and in oil and gas exploration. AUVs are also used in defence

applications to fulfil dangerous roles such as mine counter measures and rapid environmental

assessments. Conventional deployment of the AUVs generally involves following a predefined

mission path in terms of a series of way points, [15]. Because of unstructured and harsh envi-

ronments underwater, navigation and localization of the vehicle is an uneasy task. Thus, various

control techniques needed to intelligently correct the position errors and also update the mission

plan e.g. [16]. In Section 3.4, AUVs are presented in more detail.

1.1.8 The AOSN Concept

In the last couple of decades, with the advances in technology, the introduction of robotic systems

are starting to play an important role. Robotic systems show up in several different ways. Nu-

merous remotely operated vehicles as tele-operated systems, tethered by the ships and operated

by the human operators are being used in oceanographic studies. But, another class of platforms

are AUVs which usually are smaller than tethered platforms but can carry quite sophisticated pay-

loads. Equipped with sonar scan and sub-bottom profilers, AUVs can look for ship wrecks or make

map of the bottom of the ocean, probably with highest resolution maps of any other vehicles. AUV

is a preferred platform, for doing certain classes of ocean observing but its endurance and battery

power is tight comparing to the ship. Energy is a fundamental constraint in designing underwater

systems. We can divide the energy used in an AUV in two general categories. One that depends on

the velocity of the vehicle raised to the power of three, the other called a hotel load which in fact
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Figure 1.8: The Autonomous Ocean Sampling Network (image source: [1])

depends on everything else in the vehicle such as control, navigation systems and sensor devices.

So, the trade off in designing AUVs is between endurance and the energy consumption. There are

vehicles designed with low power sensors, very long endurance and comparatively low speeds.

The other types have much higher power sensor systems, fairly short endurance and significantly

higher speeds.

It can be mathematically proved that, using a couple of vehicles instead of one to do the same

survey can increase the endurance of the vehicles and decrease the power consumption dramati-

cally. For example, to do a survey in a given path in a certain area, consider the fact of using two

vehicles instead of one. What happens then is that the path way that each vehicle goes drops by a

factor of two, but if the time of experiment stays the same, then the speed drops by a factor of two

and the power consumption of each vehicle drops by eight. As a result, the total energy consumed

by the observation system is a factor of four lower. This realization can make the sensor systems

very efficient.

The concept of Autonomous Ocean Sampling Networks (AOSN) is introduced in [18], which

is a multi-platform approach to provide a framework to encompass a set of cooperative efforts

to observe an area of the ocean. Figure 1.8 shows a field experiment involved numerous ships

and dozens of floating, profilers, and autonomous oceanographic instruments operating simulta-

neously. AOSNs have enabled the observatories to cover larger areas and be able to persist for

large amounts of time.

1.2 Objectives

The main motivation behind this thesis is to develop an adaptive sampling strategy to obtain rel-

evant conductivity, temperature and depth (CTD) information of a given area using a coordinated
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fleet of Autonomous Underwater Vehicles (AUVs), where one AUV plays the role of leader and

the other(s) as follower(s). To this end, a real-time motion learning algorithm will be developed

that allows to survey the ocean in close proximity, and provide suitable viewpoints for different ap-

plications. We assume that the mission plan of the leader is predefined, while as for the follower(s),

they will be defined in real-time according to the motion algorithm that will be developed. In this

work, we take into account the communication constraints and in particular we consider that the

vehicles can not exchange data underwater at all. The follower(s), only on the surface can talk to

the leader. The main objectives of the thesis are:

• Propose a new algorithm to solve the problem of real-time unsupervised learning of Gaus-

sian Mixture Models (GMMs) in the presence of uncertain dynamic environments, i.e., we

assume that the number of Gaussian components (clusters) is not only unknown but it can

also change over time.

• Carry out a thorough review of prior work in adaptive sampling and real-time motion learn-

ing literature and identify requirements in this domain that have not been addressed in the

literature.

• Use the algorithm developed in 1. and propose a novel real-time adaptive sampling motion

learning for Autonomous Underwater Vehicles (AUVs) using Gaussian mixture models.

The objective is to find strategies that are suitable for noisy environment and extremely

restricted communication. We assumed that the communication constraints underwater are

extreme, i.e., the vehicles can only communicate on the surface.

• Implement and evaluate the performance of the algorithm proposed through extensive com-

puter simulations.

1.3 Contributions and Scope

A novel on-line unsupervised learning of GMMs in the presence of uncertain dynamic environ-

ments is proposed to be used in motion learning for AUVs. We assume that the complexity of the

model not only is unknown, but it can also change over time. In other words, the number of Gaus-

sian components is unknown and not fixed. Inspired by the work in [19], namely the use of the

minimum description length (MDL) principle, we propose a multi-hypothesis adaptive algorithm

that continuously updates the number of components and estimates the model parameters as the

measurements (sample data) are being acquired. The proposed algorithm has the additional feature

that it relaxes “the sufficiently large data set” restriction by not requiring in fact any initial batch

of data. Simulation results illustrate the performance of the proposed algorithm where it shows

that indeed it is able to continuously adapt to the dynamic changes of the number of clusters and

estimate the parameters of the mixture model.

A second key contribution is the following: we address the problem of adaptive sampling using a

coordinated fleet of AUVs. The system setup consist of one leader AUV and two or more follower
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AUVs, where all the vehicles are equipped with a conductivity, temperature and depth (CTD)

sensor devices. The CTD data that is being acquired by each AUV is modelled in real-time as a

GMM by running locally the proposed unsupervised learning algorithm developed in the first part

of the thesis. The task of the leader vehicle is to follow some desired, predefined path profile while

acquiring CTD data. The aim of the follower AUVs is to follow the leader motion by keeping a

desired formation that is a function of a particular error. This error is the variational distance be-

tween two GMMs, [20], that gives a notion of how different is the environment that each follower

is travelling within from the leader. In other words, every follower has to explore the environments

where in terms of CTD data are desirably, given by a distance value between two GMMs, different

from the leader. The experimental results show the feasibility and accuracy of the motion learning

strategies in many uniform and complex environments.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follow. Chapter 2 is dedicated to the problem

of Unsupervised Learning of Gaussian Mixture Models. First, we present an overview of the state

of the art of the algorithms and methods for unsupervised learning of Gaussian mixture models.

Some background knowledge of unsupervised learning of GMMs is also described. A particular

point is the Titterington’s on-line algorithm to update the GMM in time, which is highlighted in

Section 2.4.2. Section 2.4.3 explains the minimum description length principle, which is used to

determine the complexity of the GMM in our proposed algorithm. Gaussian mixture reduction

methods, as another important feature of our algorithm, is presented in Section 2.4.4. Our pro-

posed algorithm is fully described in detail in Section 2.5. The applicability of the algorithm over

synthetic and real datasets are examined in Section 2.6.

Chapter 3 is devoted to the second contribution of the thesis, which is the development of an adap-

tive ocean sampling scheme for a formation of AUVs. This chapter starts with the motivation and

an overview of strategies for ocean sampling. A brief introduction to coordination frames of AUVs

is then brought in Section 3.4.1. Section 3.4.2 presents a simplified kinematic dynamic motion

equation for an AUV. The CTD sensor devices are explained in Section 3.4.3. Section 3.6 contains

our contribution for real-time motion learning for a fleet of autonomous underwater vehicles. In

the proposed setup, the AUVs are required to keep a defined formation pattern while individually

solving path following problems. As mentioned before, the objective is to find strategies that are

suitable for noisy environment and restricted communication. Therefore data exchange within

the vehicles are only carried out on the surface. Each AUV system contains a path generator,

inter vehicle coordination, communication, path following control, inner low-level dynamic con-

trol (inner loop) and a position estimator. Computer simulations of complete closed loop motion

control system for each AUV as well the overall proposed adaptive ocean sampling scheme were

implemented in Matlab/Simulink R©to evaluate the performance in uniform and more complex en-

vironments. The simulations presented show that the results are sufficiently promising to be tested

in real scenarios. The conclusion and future works are presented in Chapter 4.
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Chapter 2

Unsupervised Learning of Gaussian
Mixture Models

This chapter addresses the problem of unsupervised learning of Gaussian mixture models. We

start with a brief introduction to the problem and present an overview of the state of the art of

Gaussian mixture models. Section 2.3 contains the problem statement that we propose to solve.

Some basic and background knowledge is then provided in Section 2.4. Our proposed algorithm is

fully described in detail in Section 2.5. In Section 2.6, the viability of the proposed unsupervised

learning of the GMMs algorithm is investigated over synthetic and real data. Section 2.7 wraps up

this chapter.

2.1 Introduction

Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis,

primitive exploration with little or no prior knowledge, consists of research developed across a

wide variety of communities. In order to learn a new object or understand a new phenomenon,

people always try to seek the feature that can describe it, and further compare it with other known

objects or phenomena. The comparison is based on some similarity or dissimilarity, generalized

as proximity, according to some certain standards or rules. The goal of clustering is to distinguish

and characterize a finite and discrete set of intrinsically similar or natural in a finite unlabelled

dataset. Generally speaking, in clustering which also called exploratory data analysis, we are more

interested in finding the hidden data structures, rather than provide an accurate characterization of

unobserved samples generated from the same probability distribution [21, 22]. This can make the

task of clustering fall outside of the framework of unsupervised predictive learning problems, such

as probability density function estimation [23] and entropy maximization [24].

Over the years, research on finding the best complex model, identifying and classifying un-

known number of components, to describe a random process has been an important topic in com-

puter vision and pattern recognition communities. In particular, for data clustering, mixture mod-

els, where each component density of the mixture represents a given set of individuals in the total

13
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community, has been applied in a widespread of applications. For example, the deployment of

generic recognition or tracking systems with minimal prior knowledge to set-up the initializa-

tion and the ability to train the model over time. Generally speaking we can name some desired

characteristics of clustering methods as below

• being flexible and capable of generating arbitrary shapes of clusters rather than be limited

to some particular shape;

• handle big data as well as high-dimensional features with acceptable model complexity and

in reasonable time;

• be able to find an automated solution with minimum reliance on the user-defined parameters;

• capable of detecting and excluding the outliers and noises in the data;

• have the capability in real-time applications without relearning from the scratch;

• be immune to the effects of order of incoming points;

• provide some insight to estimate the complexity of the model without prior knowledge;

The normal mixture is perhaps the most popular and widely studied type of the mixture fami-

lies. The main reason could be its natural characteristics and flexibility to modelling the complex

and non-linear pattern variations [25], which makes them an excellent choice for representing

complex class-conditional pdfs (e.g. likelihood functions) in Bayesian supervised learning sce-

narios or prior probabilities for Bayesian parameter estimation [23]. It is simple and efficient in

terms of memory, a principled model complexity selection is possible and importantly, there are

theoretically guaranteed to converge algorithms for model parameter estimation [26]. In this work

we propose a new unsupervised learning of Gaussian mixture models algorithm, that is flexible in

terms of shape of the components, can deal with high dimensional data, is robust toward outliers

and noises and with minimum dependency on initialization or prior knowledge.

2.2 Previous Works/Literature Review

In the probabilistic view, samples are assumed to be generated according to several probability

distributions. Data points in different components are extracted from different probability distri-

butions. They can be derived from different types of density functions, e.g., multivariate Gaussian

or t-distribution, or the same families, but different parameters [27]. If the distributions are known,

finding the clusters of a given dataset is equivalent to estimating the parameters of several under-

lying models. For off-line clustering, and more precisely to compute the parameters that define

the mixture model given a finite data set, a widely used procedure is to apply the expectation-

maximization (EM) algorithm that incrementally converges to a maximum likelihood estimate of

the mixture model [26]. However in the basic EM algorithm, the complexity of the model has to

be known a-priori and the whole dataset should be available. Therefore, the basic EM algorithm is
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unable to deal with on-line data since it is an iterative algorithm that requires all the batch of data

in each iteration. Another important restriction is the number of components of the mixture which

can change under different circumstances.

Greggio et al. [28], presents a method to find the best fit in a batch of data. Starting from a fixed

number of components, a split-and-merge approach together with a dissimilarity index concept is

presented that adaptively updates the complexity of the mixture models. In [29], authors present

an unsupervised algorithm for learning a finite mixture model from multivariate data based on the

Dirichlet distribution. The proposed approach for estimating the parameters of a Dirichlet mixture

is based on the maximum likelihood (ML) and Fisher scoring methods. Briefly, Zwolinski and

Yang [30], and Figueiredo and Jain [19] overestimate the complexity of the model and reduce

it by discarding “weak" components. Vlassis and Likas [31] use a weighted sample kurtoses

of Gaussian kernels, while Verbeek et al. [32], introduces a heuristic greedy approach in which

mixture components are added one at the time. A. Declercq and J. H. Piater et al. [26] presents

a method to incrementally learning Gaussian mixture models (GMMs) based on a new fidelity

criterion for splitting and merging mixture components. Ueda et al. proposes a split-and-merge

EM algorithm to alleviate the problem of local convergence of the EM method [33]. Subsequently,

Zhang et al. introduced another split-and-merge technique [34]. The split-and-merge equations

show that the merge operation is a well-posed problem, whereas the split operation is ill-posed.

Two methods for solving this problem are developed through singular value decomposition and

Cholesky decomposition and then a new modified EM algorithm is constructed. Thrun et al. [35]

presents a modified version of the EM capable of generating online 3D maps.

Essentially all previous works with GMM concentrated on non time critical applications, typ-

ically in which, historical data or some part of it, is available. Model fitting and determining the

complexity of the model is performed in a full batch of data or using a relatively small training

corpus. However, latest direction in robotics and computer vision is towards real-time applica-

tions (for example for human-computer interaction and on-the-fly model building) and modelling

of dynamic, uncertain complex patterns which inherently involves large amounts of data. In both

cases, the usual batch fitting becomes impractical and an having a dynamic model is necessary.

Incremental fitting of GMMs has already been addressed in the machine learning literature. Most

of the existing methods assume that novel data arrives in blocks as opposed to a single datum at

a time. Z. Zivkovic et al. [36] inspired by [19] proposed an on-line (recursive) algorithm that

estimates the parameters of the mixture and simultaneously selects the number of components by

starting with overestimating the complexity of the model in a small batch and searching for the

maximum a posteriori (MAP) solution, and discarding the irrelevant components. Hall et al. [37]

use a pair-wise merging of Gaussian components approach by considering volumes of the corre-

sponding hyper-ellipsoids. Song and Wang et al. [38] propose a more principled method by using

W statistic for covariance and Hottelling’s T 2 statistic for mean equivalence. However, they do not

fully exploit the available probabilistic information by not considering the weights of the Gaussian

components. In other words, they fail to take into account the evidence for each component at the

time of merging, as is suggested in, for example [19]. Hall, Marshal and Martin et al. [37] fail to
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to make use of the existing model when the GMM corresponding to new data is fitted. This means

that even if some of the new data is already explained well by the current model, the complexity of

the model unnecessarily will change, in the context of the other novel data, affecting the accuracy

of the fit as well as the subsequent component merging. Similar to that,in [38] the EM fitting

fails to use the current model properly. The method of Hicks et al. [39] does not suffer from the

same drawback. The authors propose to first “concatenate" two GMMs and then determine the

complexity of the model by taking into account all low complexities and choosing the one that

gives the largest penalized log-likelihood. A similar approach of combining Gaussian components

was also described in [40, 41].

Arandjelovic et al. [42], addresses the problem of unsupervised learning of Gaussian Mixture

Models (GMMs). Similar to our approach, his method works for the case when novel data points

arrive one-by-one. This assumption is in contrary to many previous approaches which universally

assume that new data comes in blocks representable by GMMs which and then merged with the

current model estimate. In his method, two hypotheses are kept at each time and no historical data.

The current fit is updated with the assumption that the number of components is fixed, which is

increased or reduced when enough evidence for a new component is seen. This is deduced from

the change from the oldest fit of the same complexity. This approach can be quite vulnerable to

the order of arriving data. Our proposed method has tackled this problem by in fact keping more

than two hypotheses, no historical data likewise, and checking the Gaussian mixture reduction by

receiving a new sample.

In this chapter, we address the on-line unsupervised learning problem of GMMs in the pres-

ence of uncertain dynamic environments, i.e., we assume that the number of Gaussian components

(clusters) is not only unknown but it also can change over time. Inspired by the work in [19],

namely the use of the minimum description length (MDL) concept, we propose a multi-hypothesis

adaptive algorithm that continuously updates the number of components and estimates the model

parameters as the measurements (sample data) are being acquired. The proposed algorithm has the

additional feature that it relaxes “the sufficiently large data set” restriction by not requiring in fact

any initial batch of data. Simulation results illustrate the performance of the proposed algorithm

where it shows that indeed it is able to continuously adapt to the dynamic changes of the number

of clusters and estimate the parameters of the mixture model.

2.3 Problem Statement

We consider the problem of determining the structure of clustered data, without prior knowledge of

the number of clusters or any other information about their composition. Data are represented by

a mixture model in which each component corresponds to a different cluster. Models with varying

geometric properties are obtained through Gaussian components with different parametrizations

and cross-cluster constraints. Unsupervised learning of Gaussian mixture models is a surprisingly

difficult task. The main challenges of this problem is the model complexity selection which is

required to be dynamic by the nature of the framework, without having access to historical data.
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Intuitively, if the present GMM hypothesis at time t, can fully explain all the available and/or

observed information up to time t, a single novel point never carries enough information to cause

an increase in the number of Gaussian components. Another closely related difficulty lies in the

order in which new data arrives [43]. If successive data points are always badly correlated, a

considerably large number of samples needs to be seen to obtain a highly accurate model.

We now formulate the above ideas mathematically. Let {Yn, n = 0,1,2, . . .} be a discrete-

time random process where for each particular time n, Yn follows a K-component mixture of

d-dimensional Gaussian with probability density function (pdf) given by

p(y|θ) =
K

∑
k=1

w[k] p[k](y|θ [k]), (2.1)

where y represents one particular outcome of Yn and w = {w[1], . . . ,w[K]} is the mixing weight set

that satisfies
K

∑
k=1

w[k] = 1, w[k] > 0, (2.2)

K denotes the number of components of the mixture, θ [k] = {µ [k], Σ[k]} is the mean and covariance

matrix of the kth component, with θ = {θ [1], . . . ,θ [K]}, and

p[k](y|θ [k]) =
1

(2π)d/2|Σ[k]|1/2 exp
(
−1

2
(y−µ

[k])T (Σ[k])−1(y−µ
[k])
)
. (2.3)

Note that for simplicity of notation we have omitted in the parameters K, w, θ their explicit de-

pendence on the time n. As long as the parameter vector θ is decided, the posterior probability for

assigning a data point to a cluster can be easily calculated with Bayes’s theorem. Here, the mix-

ture can be constructed with any types of components, but more commonly, multivariate Gaussian

densities are used due to its complete theory and analytical tractability [44, 45].

We can now formulate the problem addressed in the paper:

Given a sequence of observations Y0,Y1, . . ., find on-line, as the samples are arriving, a sequence

of estimates for the parameters K, w, θ that is most likely to be in some sense close to the correct

characterization of the random process {Yn, n = 0,1,2, . . .}.

2.4 Preliminaries and basic results

This section presents several background results, starting with the EM algorithm, that are needed

to understand the proposed on-line unsupervised learning algorithm.

2.4.1 The Basic Expectation-Maximization (Off-line) Algorithm

Finite mixtures presume that each observation is generated from one of a set of alternative ran-

dom sources, and infer these sources and identify which source is most likely to have produced

each observation. Finite mixtures are fundamental models in pattern recognition, classification
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and clustering analysis applications, where the mixture model uses assumed component densi-

ties to represent individuals that have the same characteristics in the total population. Among

the mixture families, the normal mixture is perhaps the most studied type, due to its naturalness

and some interesting properties of the exponential family to which it belongs [25, 46]. The unsu-

pervised learning of finite mixtures is usually realized via a maximum likelihood estimator. The

Expectation Maximization (EM) algorithm, which was named by Dempster et al. in [26], is con-

veniently suitable for obtaining the Maximum Likelihood Estimation (MLE) of a finite mixture

problem. Thus, it has found application in almost all statistical contexts and in almost all fields in

which statistical techniques may be applied, such as economics, bioinformatics, medical imaging,

etc [23].

The original EM algorithm works in a batch manner, that is, the parameters of mixtures are

not updated until a thorough scan of available data samples is completed. In real-time learning

systems, a stable dataset for off-line estimation does not exist. On-line algorithms are hence

devised to deal with real-time applications. In contrast to the traditional version of EM, on-line EM

variants can flexibly update the parameters of a finite mixture as soon as a new sample is observed,

and meanwhile does not need to store the large number of data samples that is indispensable for

batch learning algorithms. An important on-line EM variant elaborated in our work is proposed

by Titterington in [47]. It is said to be closely related to Stochastic Approximation Theory [48]. A

theoretical proof for utilizing this EM variant is provided in [46]. The EM algorithm is extremely

suitable for deriving Maximum Likelihood Estimation (MLE) or Maximum A Posteriori (MAP)

estimations. Moreover, it has long been recognized to be useful at dealing with incomplete data

problems and mixtures of densities. Although the EM algorithm is reported to have only first-

order convergence (slower than the methods of scoring or Newton-Raphson), it has some desirable

features that can compensate for this drawback. For one thing, the EM algorithm automatically

satisfies the probabilistic constraints of mixture problems [49]. For another, the EM algorithm has

exhibited reliable global convergence behaviour under proper conditions [50]. Finally, EM is easy

to realize and the computation per iteration is relatively low.

For finite mixture models, given a set of n independent and identically distributed samples Y =

{Y1, . . . ,Yn}, the log-likelihood corresponding to a K-component mixture where all the components

are d-dimensional Gaussian is [23]

`= log p(Y |θ) = log
n

∏
i=1

p(Yi|θ) =
n

∑
i=1

log
K

∑
k=1

w[k]p(Yi|θ [k]) (2.4)

Maximum likelihood (ML) estimation is an important statistical approach for parameter estima-

tion [51] and it considers the best estimate as one that maximizes the probability of generating

all the observations, which is given by the joint density function, Equation (2.4). The best esti-

mate can be achieved by solving the log-likelihood equations (∂`(θ))/∂θ [k] = 0. Unfortunately,

since the solutions of the likelihood equations can not be obtained analytically in most circum-

stances [19, 52], iteratively suboptimal approaches are required to approximate the ML estimates.

Among these methods, the expectation-maximization (EM) algorithm is the most popular [53].
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EM regards the dataset as incomplete and divides each data point into two parts, observable fea-

tures and missing data.

It is well-known that the maximum likelihood (ML) or maximum a posteriori (MAP) estimates

can not be found analytically [23, Ch. 9]. An elegant and powerful method for finding ML or

MAP solutions for models with latent variables is called the expectation-maximization or EM

algorithm [26], [23, Ch. 9]. The EM is an easily implementable algorithm that iteratively increases

the posterior density or likelihood function. In order to describe the EM, we need to introduce

for each observation Yi, a discrete unobserved indicator vector Zi = [Z[1]
i , . . . ,Z[K]

i ]. This vector

specifies from which component the observation Yi was drawn, i.e., if Z[k]
i = 1 and Z[p]

i = 0 for

k 6= p, then this means that the sample Yi was produced by the kth component. Hence, the complete

log-likelihood function (i.e. the one from which we could estimate θ ,w if the complete data

X = {Y,Z} was observed [26, 54]) can be written as a product

log p(Y,Z|θ) =
n

∑
i=1

K

∑
k=1

Z[k]
i log

[
w[k]p(Yi|θ [k])

]
(2.5)

The basic EM algorithm works with an incomplete batch sample set to estimate the missing or

potential parameters. It runs over the whole data set Y and until some convergence criterion is

met, iteratively produces a sequence of estimates θ̂m, ŵm,m = 0,1,2, . . . by alternatively applying

two steps:

E-Step: Computes the expected value of conditional probability of unobserved or under-

lying parameters given the observed data at the present parameter setting. Given Y and

the current estimates θ̂m, ŵm and by considering the fact that log p(Y,Z|θ) is linear with re-

spect to the missing Z, the so-called Q-function computes the conditional expectation of the

complete log-likelihood function as

Q(θ , θ̂m)=E
[
log p(Y,Z|θ)

∣∣Y, θ̂m
]
= log p(Y,Γ|θ), (2.6)

where Γ ≡ E[Z|Y, θ̂m, ŵm] is the a conditional expectation that each observation is gener-

ated by which component. Since the elements of Z are binary, as mentioned in [19], their

conditional expectations are given by

Γ
[k]
i = E

[
Z[k]

i |Y, θ̂m

]
= Pr [Z[k]

i = 1|Yi, θ̂m] =
ŵ[k]

m p(Yi|θ̂ [k]
m )

K
∑

k=1
ŵ[k]

m p(Yi|θ̂ [k]
m )

, (2.7)

where ŵ[k]
m corresponds to the a priori probability that Z[k]

i = 1 in the m-th iteration of the

basic EM algorithm over Y , while Γ
[k]
i is the a posteriori probability that Z[k]

i = 1, after ob-

serving Yi.

M-Step: Maximizes the log-likelihood of the observed data on the basis of the result from
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Figure 2.1: An example of good initialization

the former stage. Maximizing Q by constructing a Lagrangian function to update the pa-

rameter estimation for θ .

θ̂m+1 = arg max
θ

Q(θ , θ̂m), (2.8)

for the ML estimation. In the case of MAP criterion, instead of Q(θ , θ̂m), we need to

maximize {Q(θ , θ̂m)+ log p(θ)}.

It is evident that each sample Yi influences the parameter estimation by directly taking part in

computation of the a posteriori probability in Equation (2.7), with all the samples doing the same

thing simultaneously. Figure 2.1 shows a successful implementation of the standard EM algorithm

over a synthetic dataset composed of three components.

2.4.1.1 Drawbacks of the EM

Basically, all deterministic algorithms for fitting mixtures, especially when the true number of

components is unknown [19], which use the EM algorithm have two major drawbacks:

• EM is highly dependent on initialization. It is a local method that is, it tends to converge to

a local optimum and not necessarily the global one, thus it is sensitive to the initialization

because the likelihood function of a mixture model is not uni-modal. Figure 2.2(a) shows a

fail in finding the true component due to “bad" initialization.

• It may converge to the boundary of the parameter space (where the likelihood is unbounded)

leading to meaningless estimates, Figure 2.2(b). For example, when fitting a Gaussian mix-

ture with unconstrained covariance matrices, one of the w[k]
th may approach zero and the

corresponding covariance matrix may become arbitrary close to singular. When the number

of components assumed is larger than the optimal/true one, this tends to happen frequently,

thus being a serious problem for methods that require mixture estimates for various values

of K.
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(a) Local but not optimal solution
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(b) Convergence to the boundary

Figure 2.2: EM drawbacks

To tackle these problems a couple of time-consuming strategies can be done. Using multiple

random starts and choosing the final model with the highest likelihood, or using the clustering

algorithms such as K-means and feed the output of them as the initialization step in the EM algo-

rithm.

Since in many real world applications, the complexity of the model is unknown and it may change

over time, and also due to memory and time constraints, for these types of applications, a modified

version of the EM algorithm should be used to accommodate those issues and also to be applicable

in an on-line context.

2.4.1.2 How Many Clusters?

The clustering process partitions data into an appropriate number of subsets. Although for some

applications, users can determine the number of clusters, K, in terms of their expertise, under

more circumstances, the value of K is unknown and needs to be estimated exclusively from the

data themselves. Many clustering algorithms ask K to be provided as an input parameter, and it

is obvious that the the estimation of K can directly affect the likelihood value and the quality of

the fitting model. Overestimating the complexity of the model can make it hard to interpret and

analyse the results, while a division with too few components, also known as underestimating the

model, may cause the loss of information and misleads the final decision. Dubes called the prob-

lem of determining the best K as “the fundamental problem of cluster validity" [55].

A large number of attempts have been made to estimate the appropriate K and some of represen-

tative examples are illustrated in the following

• Visualization of the dataset

For the data points that can be effectively projected onto two-dimensional Euclidean space,

direct observation can give intuition to estimate the complexity of the model. A histogram or
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scatter plot can be insightful in these cases. Although in many real world complex datasets,

this method fails to give us enough evidence to determine the optimal K. As a result, the

effectiveness of the strategy is only restricted to a small scope applications.

• Construction of certain indices or stopping rules

These indices usually emphasize the compactness of intra-cluster and isolation of inter-

cluster. Mathematically it is easy to show that the minimizing of the intra-class covariance

is the same as maximizing the inter-class covariance. Consider the comprehensive effects of

several factors, including the defined squared error, the geometric or statistical properties of

the data, the number of patterns, the dissimilarity (or similarity) and the number of clusters.

Milligan and Cooper compared and ranked 30 indices according to their performance over

a series of artificial datasets [56]. Among these indices, the Caliñski and Harabasz index,

CH(K), achieved the best performance [55]. The K ∈ [1, . . . ,M], that maximizes the value

of CH(K) is selected as the optimal. The drawback of this method is the dependency of

CH(K) to the data. Therefore, the good performance of this criterion for a certain data does

not guarantee the same behaviour with different data. As pointed out by Everitt, Landau and

Leese, “it is advisable not to depend on a single rule for selecting the number of groups, but

to synthesize the results of several techniques" [57].

• Optimization of some criterion functions under probabilistic mixture-model framework

In a statistical framework, finding the correct complexity for a model, is equivalent to fitting

a model with observed data and optimizing some criterion [52]. As mentioned before, the

EM algorithm is a widely used tool to estimate the model parameters for a given K, which

goes through a predefined range of values. The optimal value of K is the one that maximizes

(or minimizes) some defined criterion. Smyth et al. [58] proposes a Monte-Carlo cross

validation method, which randomly separates the data into training and test sets M times

according to a certain function β (β = 0.5 works well from the empirical results). The

K is selected either directly based on the criterion function or some prior knowledge. In

literature, a large number of criteria with combination with information theory concepts

have been proposed. Typical examples are as follow:

– Akaike’s information criterion (AIC) where K is selected with the minimum value of

AIC(K) [59, 60].

– Bayesian inference criterion (BIC) The optimal K is one that maximizes the value of

BIC(K) [61, 62].

The BIC can be used to select an optimal model for the covariance matrices [63].

– Minimum description length criterion (MDL)

Is a widely used criterion, e.g. [42, 19, 64], and we focus on this in Section 2.4.3

• Other heuristic approaches based on a variety of techniques and theories

Girolami et al. [65], propose an eigenvalue decomposition on the kernel matrix in the high-

dimensional feature space. The dominant K components were used in the decomposition
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summation as an indication of the possible existence of K clusters. A scale-based method,

in which the distance from a cluster centroid to other neighbouring clusters is considered

in [66].

The idea behind these, is that we penalize the models according to the number of parameters that

they have. Therefore, a model with more parameters, is a more complex model, thus it is penalized

more.

AIC, BIC and MDL share a lot in common with maximum likelihood Bayesian approach, where

we want to maximize the probability of a model given the data, e.g. [19].

Besides the previous methods, there are some adaptive methods, such as constructive clustering

algorithms, that are capable of changing the complexity of a model in time. Adaptive Resonance

Theory (ART) network is capable of continuous training in real time. ARTs increase the com-

plexity of the model, only when the confidence level of the match between the input pattern and

the expectation drops below some certain threshold [67]. The Robust Competitive Agglomeration

(RCA) starts by overestimating the complexity of the model to reduce the sensitivity to initializa-

tion, and determines the actual number of clusters by a process of competitive agglomeration. It

processes all the components in stages, and components that become “weak", lose in the competi-

tion discarded and the weights of the others renormalized [68]. The generalization of this method

is in [69], which the trade-off is between the complexity of the model and some fidelity index.

Another example of this process is in [19], which attains the number of components by balancing

the effect between the complexity and the minimum description length criterion. To review further

methods, interested readers are referred to [27, 70].

2.4.2 Titterington’s On-line Algorithm for a Multivariate Normal Mixture

Nowadays, huge datasets are routinely encountered in real applications, rendering a thorough scan

of all the data costly and impractical. Moreover, real-time systems receive data streams from sen-

sors and store them in such a manner that the oldest data are discarded to free up capacity for the

newest one. Therefore, searching for an on-line version of EM has aroused considerable interest

in both statistical and pattern recognition communities. Neal and Hinton [71] proposed an incre-

mental EM algorithm by updating some sufficient statistics in the “E" step and then estimating

parameters from those statistics in the “M" step. Although the method is still confined to batch

dataset, the convergence is claimed to be faster than traditional EM. A step-wise on-line EM algo-

rithm was proposed in [72] for normalized Gaussian networks with a discussion of the conditional

equivalence of the on-line and batch EM. It has been long recognized that recursive EM shares

much in common with stochastic approximation theory, both working favourably with finite mix-

ture densities. The most important work in this respect is Titterington’s on-line algorithm [47]

on which we are going to concentrate. Since the on-line algorithm is closely related to the basic

EM algorithm, the notations of incomplete and complete data functions are considered carefully

in the descriptions of their respective frameworks. We will first present some background about

incomplete and complete data functions in the light of [26], before introducing the algorithm.
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This section is mostly based on [46], where the application of an on-line EM variants for multi-

variate normal mixture model in background learning and moving foreground detection was in-

vestigated.

Definition 1 Consider two sample spaces X and Y and a many-to-one mapping from X to Y. All

the observed data samples Y are from Y, while the actual data vector x ∈X is invisible and is only

reached indirectly from y. In the mapping of y = y(x), we refer to x as the complete data and y

as the incomplete data. By postulating a mathematical representation of the complete data density

f (x|θ) dependent on θ , a connection between f (x|θ) and the incomplete date density p(y|θ) is

formed as

p(y|θ) =
∫

f (x|θ)dx (2.9)

The choice of f (x|θ) is generally not unique. Since in this work p(y|θ) is a family of multivariate

normal models defined by Equation (2.1), the complete data vector x is considered as a concatena-

tion of y and a Kronecker Delta vector δ = [δ [1] . . .δ [K]]T in which exactly one element is 1 while

others are all zeros. We specify f (x|θ) as

f (x|θ) =
K

∏
k=1

[w[k]p[k](y|θ [k])]δ
[k]

(2.10)

As mentioned earlier, the original EM algorithm works in a batch manner. In contrast to the

traditional version of the EM, on-line EM variants can flexibly update the parameters of Yn as

soon as a new sample is observed.

The on-line recursive parameter estimation proposed by Titterington [47] is a popular method for

solving mixture estimation problems. The recursive procedure proposed takes the form

θn+1 = θn +n−1I−1
c (θn)vp(yn+1,θn), (2.11)

where vp(Yn+1,θn) is the score function of p(y|θ) given the newest observed value and the current

parameter estimation, and it is defined as

vp = ∇θ log p(Y |θ) (2.12)

where ∇θ denotes the gradient of θ . In Equation (2.11), n is the time of the last received obser-

vation, and can be interpreted as the sequence of estimation m in the basic EM algorithm, since

during the on-line task, parameter estimations are being updated by every new-comer point. Ic(θ)

is the Fisher Information Matrix (FIM) for the complete likelihood:

Ic(θ) = Eθ [vcvT
c ]. (2.13)

where, vc is the score function of the complete-data likelihood f (x|θ) defined as

vc = ∇θ log f (x|θ) (2.14)
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under the constraint that all derivatives and expected values exist. For further details the reader is

referred to [46].

Titterington’s On-line Algorithm: The Titterington-type on-line recursive parameter estima-

tion for multivariate normal mixtures are given by

µ
[k]
n+1 = µ

[k]
n +

1
n

Γ
[k]
n+1

w[k]
n

(Yn+1−µ
[k]
n ) (2.15)

Σ
[k]
n+1 = Σ

[k]
n +

1
n

Γ
[k]
n+1

w[k]
n

[
(Yn+1−µ

[k]
n )(Yn+1−µ

[k]
n )

T
−Σ

[k]
n

]
(2.16)

w[k]
n+1 = w[k]

n +
1
n
(Γ

[k]
n+1−w[k]

n ) (2.17)

where Yn+1 is the new observation, Γ
[k]
n+1 is the a posteriori probability described by Equation (2.7),

n is the time, w[k]
n+1 is the mixing weight of kth component at time n+1, µ

[k]
n+1 is the updated mean

of kth component and Σ
[k]
n+1 is the updated covariance of kth component. For more details and

the derivation of the formulas see [46]. Before we introduce the proposed algorithm, in the next

section, first we briefly describe the criterion that is used in [19] in order to find the number of

components in a batch of data. Later, we explain how to use this criterion in real time applications.

2.4.3 The Minimum Description Length (MDL) Principle

Two powerful method of inductive inference, the basis of statistical modelling, pattern recogni-

tion, and machine learning are the Minimum Description Length (MDL) and Minimum Message

Length (MML) approaches.

The main difference between these two is the interpretation of prior probabilities. Used as a proxy

for the complexity of the model, the MDL principle is a two-part code that maximizes the probabil-

ity of a model given the data. On the other hand, the MML principle is a one-part code that do not

determine the complexity of a model but instead provide a predictive model for the data [73, 74].

The task of inductive inference is to find patterns or regularities underlying some given set of data.

These patterns are then used to understand the inner nature of the data or to classify or predict

future data.

The MDL principle is rooted in the fact that any regularity in a given set of data can be used to

compress it, i.e., using less symbols than the number of symbols required to describe the data lit-

erally. The more regularities the data have, the more it can be compressed. Formalizing this idea,

which is just a version of famous Ockham’s razor1, leads to a theory that is relevant to all kinds of

high entropy reasoning under uncertainty, including inductive inference. In contrast to most other

approaches in this field, MDL has its roots in theoretical computer science rather than statistics.

The MDL principle has mainly been developed by Risannen [75], having important precursors in

the works of Solomonoff and Wallace and Boulton [74].

1Ockham’s razor says among equally valid alternatives, the best explanation is the simplest one
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Here, we are concentrated on the application of MDL to model selection, the task of deciding

which of several hypotheses best describes the data at hand [76, 77].

In the proposed method, dynamic model complexity estimation is based on the MDL criterion.

Briefly, MDL assigns to a model a cost related to the amount of information necessary to encode

the model and the data given the model (Equation (2.18)).

The rationale behind minimum encoding length criteria (like MDL and MML) is: if you can build

a short code for your data, this means that you have a good data generation model. To formalize

this idea, consider some dataset Y , known to have been generated according to p(Y |θ), which

is to be encoded and transmitted. Following Shannon theory [78, 79], the shortest code length

(measured in bits, if base-2 logarithm is used, or in nats, if natural logarithm is adapted [80])

for Y is d− log p(Y |θ)e, where dae denotes “the smallest integer no less than a". Since for even

moderately large datasets− log p(Y |θ)� 1, the d.e operator is usually dropped. If p(Y |θ) is fully

known to both the transmitter and receiver, they can both build the same code and communication

can proceed. However, if θ is a priori unknown, the transmitter has to start by estimating and

transmitting θ . This leads to a two-part message, whose total length is given by

Length(θ |Y ) = Length(θ)+Length(Y |θ) (2.18)

All minimum encoding length criteria (like MDL and MML) state that the parameter estimate is

the one that minimizes Length(θ ,Y ).

A key issue of this approach, which the several flavours of the minimum encoding length principle

(e.g., MDL and MML) address differently, is that since θ is a vector of real parameters, a finite

code-length can only be obtained by quantizing θ to finite precision.

The central idea involves the following trade off. Let θ̃ be a quantized version of θ . If a fine preci-

sion is used, Length(θ̃) is large, but Length(Y |θ̃) can be made small because θ̃ can be very close

to the optimal value. Conversely, with a coarse precision, Length(θ̃) is small but Length(Y |θ̃)
can be very far from the optimality. There are several ways to formalize and solve this trade off;

see [81, 78] for a comprehensive review and pointers to the literature.

The fact that the data itself may also be real-valued does not cause any difficulty; simply truncate

Y to some arbitrary fine precision δ and replace the density p(Y |θ) by the probability p(Y |θ)δ d

(d is the dimensionality of Y ). The resulting code-length is − log p(Y |θ)−d logδ , but −d logδ is

an irrelevant additive constant. The particular form of MML approach herein adopted is derived

in [19] and leads to the following criterion (where the minimization with respect to θ is to be

understood as simultaneously in θ and c, the dimension of θ ):

θ̂ = arg min
θ

{
− log p(θ)− log p(Y |θ)+ 1

2
log |I(θ)|+ c

2
(1+ log

1
12

)

}
(2.19)

where2 I(θ) = −E[D2
θ

log p(Y |θ)] is the expected Fisher information matrix, and |I(θ)| denotes

its determinant. The MDL criterion (which formally, though not conceptually, coincides with

2Here, D2
θ

denotes the matrix of second derivatives, or also known as the Hessian matrix
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BIC) can be obtained as an approximation to Equation (2.19). Start by assuming a flat prior p(θ)

and drop it. Then, since I(θ) = nI(1)(θ) (where I(1)(θ) is the Fisher information corresponding

to a single observation), log |I(θ)| = c logn+ log |I(1)(θ)|. For large n, drop the order 1 terms

log |I(1)(θ)| and c
2(1+ log 1

12). Finally, for a given c, take − log p(Y |θ)'− log p(Y |θ̂(c)), where

θ̂(c) is the corresponding ML estimate. The result is the well-known MDL criterion,

ĉMDL = arg min
c

{
− log p(Y |θ̂(c))+ c

2
logn

}
(2.20)

whose two-part code interpretation is clear: the data code-length is − log p(Y |θ̂(c)), while each

of the c components of θ̂(c) requires a code-length proportional to (1/2) logn. Intuitively, this

means that the encoding precision of the parameter estimates is made inversely proportional to

the estimation error standard deviation, which, under regularity conditions, decreases with
√

n,

leading to the (1/2) logn term [82].

2.4.3.1 The Proposed Criterion for Mixtures

For mixtures, I(θ) cannot, in general, be obtained analytically [52, 83, 84]. To side-step this diffi-

culty, we replace I(θ) by the complete-data Fisher information matrix Ic(θ)=E[D2
θ

log p(Y,Z|θ)],
which upper-bound I(θ), see [52]. Ic(θ) has block-diagonal structure

Ic(θ) = nblock−diag
{

w[1]I(1)(θ [1]), . . . ,w[K]I(1)(θ [K]),M
}

(2.21)

where I(1)(θ [m]) is the Fisher matrix for a single observation known to have been produced by

the mth component, and M is the Fisher matrix of a multinomial distribution (recall that |M| =
(w[1]w[2] . . .w[K])−1) [52]. The approximation of I(θ) by Ic(θ) becomes exact in the limit of non

overlapping components. We adopt a prior expressing lack of knowledge about the mixture pa-

rameters. Naturally, we model the parameters of different components as a priori independent and

also independent from the mixing probabilities, i.e.,

p(θ) = p(w[1], . . . ,w[K])
K

∏
m=1

p(θ [m]) (2.22)

For each factor p(θ [m]) and p(w[1], . . . ,w[K]), we adopt the standard non informative Jeffreys’ prior

(see, for example [85])

p(θ [m]) ∝

√
|I(1)(θ [m])| (2.23)

p(w[1], . . . ,w[K]) ∝
√
|M|= (w[1]w[2] . . .w[K])−1/2 (2.24)

for 0 < w[1],w[2], . . . ,w[K] < 1 and w[1]+w[2]+ . . .+w[K] = 1. With these choices and noticing that

for a K-component mixture, c = NK +K, where N is the number of parameters specifying each
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component, i.e., the dimensionality of θ [m], Equation (2.19) becomes

θ̂ = arg min
θ

L (θ ,Y ) (2.25)

Now we can define the MDL intuition as follow:

Given a set of hypotheses H = {H1,H2, . . .} and a data set Y , the goal is to find the hypoth-

esis or combination of hypotheses in H that most compress Y . For the particular case of a data

set Y = {Y1, . . . ,Yn}, that has been generated according to Equations (2.1-2.3), which has to be

encoded and transmitted, the description length can be obtained as follow [19, 86]:

L (θ ,Y ) =
N
2

K

∑
m=1

log(
nw[m]

12
)+

K
2

log
n

12
+

K(N +1)
2

− log p(Y |θ) (2.26)

Apart from the order-1 term K(N+1)
2 (1− log12), this criterion has the following intuitively appeal-

ing interpretation in the spirit of the standard two-part code formulation of MDL and MML:

• As usual, − log p(Y |θ) is the code-length of the data.

• The expected number of data points generated by the mth component of the mixture is nw[m];

this can be seen as an effective sample size from which θ [m] is estimated; thus, the “optimal"

(in the MDL sense) code length for each θ [m] is (N/2) log(nw[m]).

• According to [19], we assume that the minimum number of points needed to support a

d-dimensional Gaussian is N/2 where N is a constant that grows quadratically with the

dimension d of the data and for a case of free covariance matrix equals (d +d(d +1)/2).

• The w[m]s are estimated from all the n observations, giving rise to the (K/2) log(n) term. As

mentioned before, all w[m]s in Equation (2.26) are considered to be non zero. Otherwise the

objective function does not make sense if any on them becomes zero (it becomes −∞). This

is the final cost function, whose minimization with respect to θ will constitute our mixture

estimate.

2.4.4 Gaussian Mixture Reduction

Gaussian mixture reduction algorithms are useful in many areas, including in error correction

codes, supervised learning of multimedia data, distributed data fusion, and pattern recognition,

to name a few. In many target tracking problems, data association uncertainty manifests itself

as multiple hypotheses, each corresponding to a component in a multivariate Gaussian mixture

posterior distribution. It is naturally of interest to reduce their number with minimal loss of fidelity.

The simplest method of managing the complexity is to eliminate Gaussian components having low

probabilities, as used, for example, in the track or hypothesis-oriented Multi-Hypothesis Tracker

(MHT) [87]. Alternatively, instead of pruning components of the Gaussian mixture, one could

merge components according to a similarity measure. Hypothesis merging can be considered more
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attractive than (MHT-style) pruning, since the information lost in removing mixture elements is,

in some sense, preserved in the uncertainty (covariances) of those retained. Salmond is among

the first to consider a tracker based on merging hypotheses according to an ad-hoc similarity

measure [88]. Such trackers, which are based upon hypothesis merging, may be considered to be

variants of the hypothesis-oriented MHT or as multimodal generalizations of the Joint Probabilistic

Data Association Filter (JPDAF), as described, for example, in [89]. More advanced techniques for

Gaussian mixture reduction optimize the parameters of the reduced mixture according to a global

optimality criterion. One of the first uses of optimization-based mixture reduction was by Scott

and Szewczyk [90], who introduced the so-called L2E measure of similarity as well as a correlation

measure of similarity. The L2E measure is more commonly known as the Integral Squared Error

(ISE). Next, we introduce of a number of greedy initialization algorithms for mixture reduction.

Most greedy algorithms for Gaussian mixture reduction try to decide which components of a

Gaussian mixture should be merged or pruned in order to reduce the mixture to the desired number

of components.

2.4.4.1 Component extinction

Pruning is the simplest approach to mixture reduction. Given a Gaussian mixture consisting of K

Gaussian components, one can discard the K−L components having the lowest cost (according to

some measure), and then renormalizing the weights of the remaining components.

An important feature of Algorithm 1 (which is the proposed Unsupervised Learning of Gaussian

Mixture Models algorithm that will be described in Section 2.5) is that it performs component

annihilation, thus being an explicit rule for reducing the complexity of the GMM hypothesis. Ac-

cording to [19], we assume that the minimum number of points needed to support a d-dimensional

Gaussian is N/2 where N is a constant that grows quadratically with the dimension d of the data

and for a case of free covariance matrix equals (d + d(d + 1)/2). Notice that this approach can

tackle overfitting issue and prevents the algorithm from approaching to the boundary of the pa-

rameter space: When one of the components does not have enough evidence, meaning that it is not

supported by the data, it is simply annihilated and the weights of other components are normalized

to satisfy the Equation (2.2).

However, this pruning has proven inferior to more sophisticated greedy methods [91]. Instead of

pruning, one can perform mixture reduction utilizing merging, whereby the merging of the com-

ponents comes from taking an expected value across the set of components that are to be merged,

as is described in the sequel.

2.4.4.2 Merging two components

From Equation (2.4) it can be seen that the log-likelihood increases by choosing a more complex

model, i.e. with higher number of components to estimate Y in time. On the other hand, Equa-

tion (2.26) shows that more complex model demands higher description length in turn.

Therefore at each time we check if we can reduce the complexity of the best hypothesis H1 by



30 Unsupervised Learning of Gaussian Mixture Models

merging two most similar components in that hypothesis (in case the number of components is

more than one). This can be interpreted as the over-fitting problem because instead of describing

the random process Y, the over-fitted result will describe the set of observations Y .

One way to tackle this problem is to employ a model complexity reduction scheme by reducing

the GMM to lower number of components. Diverse algorithms in components reduction can be

found in the literature. The goal is to maintain the mean and the variance of the original mix-

ture or at least with a negligible deviation so that the resulting GMM should properly represent

the structure of the original mixture [92]. A common approach is successively to merge pairs of

components, replacing the pair with a single Gaussian component whose moments up to second

order match those of the merged pair. Salmond [88] and Williams [93, 94] have each proposed

algorithms along these lines, but using different criteria for selecting the pair to be merged at each

stage. Salmond [88], proposed an algorithm in which the mixture reduction happens by repeat-

edly merging the two most similar components. His criterion of similarity, based on concepts

from the statistical analysis of variance, seeks to minimise the increase in “within-component”

variance resulting from merging two chosen components. The proposed dissimilarity measure has

two properties that may be considered undesirable. First, the measure depends on the mean of

the components, but not on their individual covariance matrices, leading to merging the pair of

components with the closest means even if their covariance matrices are very different. The sec-

ond drawback arises from the fact that inclusion of a new component, especially if it is far remote

from the existing components, can greatly affect the merging candidates by increasing the overall

covariance in the mixture [95].

Williams [93, 94], proposed an integrated squared difference (ISD) dissimilarity measure to eval-

uate the difference between two arbitrary Gaussian mixture in closed form. The ISD criterion

circumvents both of the drawbacks of the Salmond’s method. On the other hand, it is more time

consuming than the Salmond method. The Williams algorithm has its own puzzling behaviour,

specially when the components are radially symmetric or when the system state vector has high

dimensionality [95].

Kullback-Leibler The Kullback-Leibler (KL) dissimilarity measure B, is a non-symmetric mea-

sure of the difference between two probability distributions g1 and g2.

At each iteration of the algorithm outlined in Algorithm 1, we wish to choose two components

from the mixture for merging. Our ultimate objective is to find a weighted mixture of K−1 Gaus-

sian components in such a way as to keep the KL discrimination of the post-merged mixture from

the original pre-merged K-component mixture as small as possible, subject to being able to accom-

plish this with a method that is computationally reasonably fast. A reasonable criterion, therefore,

is to choose two components in such a way as to minimise the KL discrimination of the mixture

after the merge from the mixture before the merge. As mentioned in [95], unfortunately there

appears to be no closed-form expression for the KL discrimination of one (nontrivial) Gaussian

mixture from another. (This fact deterred Williams [93] from pursuing a cost measure based on

KL discrimination; were it not for this, he says it would be the “ideal cost function" for Gaussian



2.4 Preliminaries and basic results 31

mixture reduction). However, Runnals et al. [95] provided an upper bound on the discrimination

of the mixture after the merge from the mixture before the merge.

The dissimilarity measure B((µ [g1],Σ[g1],w[g1]),(µ [g2],Σ[g2],w[g2])) is defined as

2B
(
(µ [g1],Σ[g1],w[g1]),(µ [g2],Σ[g2],w[g2])

)
= tr(Σ[g12]−1

Σ̆
[g12])

+(w[g1]+w[g2]) logdet(Σ[g12])−w[m] logdet(Σ[g1])−w[g2] logdet(Σ[g2]) (2.27)

where

Σ̆
[g12] = w[g1]Σ

[g1]+w[g2]Σ
[g2]− (w[g1]+w[g2])Σ[g12]+

w[g1]w[g2]

w[g1]+w[g2]
(µ [g1]−µ

[g2])(µ [g1]−µ
[g2])T

We propose that, in each iteration of Algorithm 1, we select for merging two components g1

and g2, g1 6= g2, such that B(g1,g2) is minimized. The dissimilarity measure B(g1,g2) as given

in Equation (2.27) is reasonably easy to compute, with computational complexity at most O(d3).

Consequently, if our task is to reduce a mixture of K components to a mixture of K − 1, this

will have total computational complexity of O(K3d3). This criterion has qualitatively the right

properties. Roughly speaking, it will tend to select for merging:

1) components with low weights. Note how the weights appear outside the logarithm in Equa-

tion (2.27), and so can have a dominant effect,

2) components whose means are close together in relation to their variances,

3) components whose covariance matrices are similar.

For further details see [95]. The fact that B(g1,g2) is merely an upper bound on the KL discrim-

ination, rather than an exact value, is admittedly a drawback. Moreover, since KL discrimination

does not satisfy the triangle inequality, there is no simple way of bounding the discrimination that

arises over the course of two or more iterations of the algorithm.

However, obtaining a direct estimate of the KL bound would appear to require a numerical method,

e.g. numerical integration. Worse, this integration would need to be carried out multiple times:

OK3 times if, as above, our task is to reduce K components to K−1 components. In many appli-

cations this will be computationally prohibitive. A possible compromise approach would be to use

the B(g1,g2) criterion to compile a shortlist of possible component merges, selection from within

this shortlist being by direct numerical integration. In this work, we chose a pairwise merging of

components method that measures the dissimilarity between the post-merge mixture with respect

to the pre-merge mixture based on an easily-computed upper bound of the Kullback-Leibler (KL)

discrimination measure presented in [95].

Suppose we are given a mixture of two Gaussian components g1, g2 with the parameters θ and w,

where θ [i]≡{µ [i],Σ[i]}, i∈ {g1,g2} and w[g1]+w[g2] = 1,and that we wish to approximate this mix-

ture as a single Gaussian. A strong candidate is the Gaussian whose zeroth, first- and second-order

moments match these two components, i.e., the Gaussian with mean vector µ [g12] and covariance
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matrix Σ[g12] as follows

µ
[g12] = w[g1]µ

[g1]+w[g2]µ
[g2]

Σ
[g12] = w[g1]Σ

[g1]+w[g2]Σ
[g2]+w[g1]w[g2](µ [g1]−µ

[g2])(µ [g1]−µ
[g2])T (2.28)

which is referred to as the moment-preserving merge of two Gaussian components g1, g2. Suppose

that we are given a mixture with K components, and we wish to approximate it by a mixture of

K− 1 components, where K > 1. In this work, we choose the two components that in a sense

to be defined are least dissimilar, based on Kullback-Leibler criterion, and replace them by their

moment-preserving merge.

Algorithm 1 On-line Unsupervised Learning of GMM

Input: Sample data: Y0,Y1, . . .,
Covariance matrix for postulated component Σ[0],
Maximum number of hypotheses: ℵmax,
Dissimilarity measure threshold: Bmax

Output: Number of the components: K,
Mean and covariance of the components:{θ [1], . . . ,θ [K]},
Mixing weights: {w[1], . . . ,w[K]}
Initialization: Postulate the first component
Steps:
1.Update the current components in each hypothesis H1, . . . ,Hℵ:
Find the a posteriori probabilities Γn+1 as Equation (2.7)
Update the current components by Equations (2.15-2.17)
Update the log-likelihood ` as in Equation (2.30)
Update the description length L as in Equation (2.26)
2.Add a new hypothesis: Hℵ+1
Create a new component according to Equation (2.29)
Define the log-likelihood of this new hypothesis: `ℵ+1 = `1
Obtain the description length of this new hypothesis: Lℵ+1 in Equation (2.26)
3.Check if we can add another hypothesis: Hℵ+2
Find B for every pair of components in H1 according to Equation (2.27)
if min(B) < Bmax then

Merge two components according to Equation (2.28)
Estimate the expected log-likelihood `ℵ+2 based on Equation (2.30)
Obtain the description length for this new hypothesis Lℵ+2 in Equation (2.26)

end if
4.Check if we can add another hypothesis: Hℵ+3
Component annihilation, Section 2.4.4.1
Estimate the expected log-likelihood `ℵ+3 based on Equation (2.30)
Obtain the description length for this new hypothesis Lℵ+2 in Equation (2.26)
5. Refresh the model
Re-order incrementally the hypotheses with given number of components according to their
description length L
Keep the first ℵmax hypotheses
Acquire the next sample and go to 1
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2.5 The Proposed On-line Unsupervised Learning Algorithm

In this section we describe the proposed on-line unsupervised learning algorithm, which is com-

posed of several models as it will become clear later. Algorithm 1 describes the pseudo-code for

one model and its rational is as follows:

- Start with one single observation and build the first hypothesis H1 described by a single

Gaussian distribution with mean µ [0] at the point itself, and some predefined covariance

Σ[0]. Then, calculate the log-likelihood of this hypothesis `1 =− log
√

(2π)d |Σ| and find the

corresponding description length L1 according to Equation (2.26).

- The second acquired sample, updates the first hypothesis H1 according to Equations (2.15-

2.17), and builds the second hypothesis H2 which contains two components: the first up-

dated component and a second component with mean µ [K+1] at the point itself, with some

predefined covariance Σ[K+1]

µ
[K+1] = Yn+1 w[K+1] =

1
n+1

(2.29)

where K is the number of components at the time (being K = 1 for the case of the second

sample). The selection of the covariance matrix for this new born component is optional and

can be done with respect to the type of data that we are dealing with. We used a diagonal

matrix where each element was a fraction of the standard deviation of the features of Yn+1.

- The third point will update the two current hypotheses and build another one by adding a

new component to H1 and so on and so forth. For the sake of computational speed and

memory, the number of hypotheses has to be bounded. Thus, after reaching the limit of

maximum hypotheses ℵmax, we rank the hypotheses in an increasing order according to

their description length and keep only the first ℵmax hypotheses and discard the rest.

- As explained above, in each iteration we add a new hypothesis by assuming that the new

arriving point is a new component, according to Equation (2.29), beside the current Gaussian

mixture in H1.

Thus, it is likely that we face the very common problem of over fitting, i.e., there is a

tendency for the number of components of the mixture to grow without bound; indeed, if

the algorithm were simply to follow the statistical model on which the method is based,

the number of components would increase exponentially over time. To combat this, various

pragmatic measures must be taken to keep the number of components in check. Typically

this will be achieved either by discarding components with low probability, as suggested

in [19], and/or by merging components which represent similar state hypotheses.

Thus, in each iteration after updating the current components in all hypotheses, we check

the possibility of adding another hypothesis by merging two most similar components in H1

(the hypothesis with minimum description length), according to the dissimilarity measure
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Bmax. For example at time n, if there were 5 components in H1, by receiving a new point

Yn+1, first we would update the components in H1 as we do in all other hypotheses; then if

there were two similar components according to a threshold in H1, we would merge them

and add another hypothesis Hℵ+2 (see Algorithm 1) composed by the post-merge mixture.

For this new hypothesis the log-likelihood is set to be the same as the log-likelihood of the

pre-merge mixture in H1, since it is assumed that the two components were very similar to

each other.

- The dissimilarity measure threshold Bmax is an important quantity since a very small value

would not be helpful in tackling the over-fitting problem and setting a very high threshold

can cause under-fitting of the components. To address this problem, we separate the hy-

potheses with given complexity at each time, then resort incrementally the hypotheses in

each , set of hypotheses with given K.

Basically, in each hypothesis we have the mean, covariance and weights of the mixture beside the

number of points in each Gaussian and the description length of the model.

Another point that needs to be taken into consideration is the fact that the computation of the log-

likelihood has to be done in a recursive on-line format. Thus, after updating θn and wn, For some

practical reasons, in Equations (2.15-2.17), we changed the learning rate 1
n to a faster decaying

envelope, i.e. we added a sufficiently large enough constant to n in order to reduce the problem of

instability as proposed in [36].

One of the greatest challenges of unsupervised learning of GMMs is the dynamic model order

selection. In the last stage of our proposed method, all the current hypotheses are being sorted in-

crementally based on their description length value and the first, Nmax hypotheses are being stored

and the rest discarded.

As mentioned before, in the third and forth stages, we may add a new hypothesis by merging two

candidate components or annihilating some weak components. In order to calculate the descrip-

tion length of these hypotheses, we need to have the log-likelihood of them (Equation (2.4)). The

problem is that for the computation of p(Y |θ) historical data Y is needed, which is not available.

As proposed in [42], instead of p(Y |θ), we use the expected likelihood of the same number of data

points and, hence, the expected description length for the new born hypotheses is then computed.

More precisely, consider two Gaussian components g1(Y ) ∼ N (Y ;θ [g1]), g2(Y ) ∼ N (Y ;θ [g2])

with the parameters θ and w, where θ [i] ≡ {µ [i],Σ[i]}, i ∈ {g1,g2} and w[g1]+w[g2] = 1.

Let g12 be the moment preserving merge of these two components can be obtained by Equa-

tions 2.28.

The expected likelihood of N1 points drawn from the former and N2 points from the latter given

model w[g1]g1(Y )+w[g2]g2(Y ) is

E[p(Y |θ [g12])] =

(∫
g1(Y )(w[g1 ]g1(Y )+w[g2]g2(Y ))dY

)N1
(∫

g2(Y )(w[g1 ]g1(Y )+w[g2 ]g2(Y ))dY
)N2

(2.30)
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(a) n=3 (b) n=1100

(c) n=4000 (d) n=10300

(e) n=12000 (f) n=15000

Figure 2.3: An example of the execution behaviour of the proposed algorithm.

where integrals of type
∫

pi(y)p j(y)dy are recognized as the Bhattacharyya distance, which for

Gaussian distributions can easily computed as

dB(pi, p j) =
∫

pi(y)p j(y)dy =
exp(−C/2)

(2π)(d/2)|ΣiΣ jΣi j|1/2 (2.31)
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where
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After calculating the expected log-likelihood by Equation (2.30), the description length can be

obtained by Equation (2.26).

2.6 Simulation Results

This section illustrates the behaviour of the proposed algorithm for two types of experiments: a

synthetic Gaussian mixture data set and the Iris data set.

2.6.1 A 2-d Gaussian Mixture

Figure 2.3 shows an example of 3 models running in parallel in order to find a mixture of well

separated synthetic Gaussian components in real time starting with one single observation. The

maximum number of hypotheses was set to Nmax = 10 and the merging threshold Bmax to 0.008,

0.08, and 0.8, respectively. This experiment can be split in two steps. For n < 10000, the observed

data were randomly extracted, according to Equation (2.1) with 4 components (K=4) and the

mixing weights of the components from left to right are w = [0.35,0.25,0.15,0.25]. It can be

seen, after some transient situation, that the algorithm merged the two most similar components

and were able to correctly determine the 4 components. Then, for n≥ 10000, we started to extract

data from another component beside those previous ones. The algorithm was able to converge to

the solution rapidly.

2.6.2 The Iris Data Set

We used the well-known 3-component 4-dimensional “Iris" data set [96]. This data set has only

150 samples, and therefore we had to randomize and repeat them 60 times. We set the maximum

number of hypotheses Nmax = 50 in 10 different models with the merging threshold starting from

Bmax = 0.002. Figure 2.4(a) shows that in 64 out of 100 trials the 3 components were correctly

identified. By visual inspection we could observe that the linearly separated component (iris se-

tosa) could almost perfectly be identified. On the other hand, the properly identification of the

other two non-linear separable components (iris versicolor and iris virginca) was more challeng-

ing since the order in which the data is presented can influence the recursive solution. The typical

solution is shown in Figure 2.4(b) by projecting the 4-dimensional data to the first two principal

components.
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(a) Histogram results (100 trials) (b) Projected data in 2-D

Figure 2.4: Iris Data Set Results

2.6.3 A 1-d Gaussian Mixture

In this experiment, the data is a mixture of three linearly separable Gaussian components, as is

shown in Figure 2.5(a). The weights of the components are equal. The means of the components

are [−40,0,40] and the variance values are [15,10,20] respectively. Figure 2.5(b) illustrates the

output of our algorithm at time n = 5000 for a hundred trials.

Next, we did the same experiment with data shown in Figure 2.6(a) that represents a mixture

where the components are closer together ,i.e., they are not linearly separable any more. The means

are [−20,2,25] and variances are [4,60,20]. Figure 2.6(b) shows the results of 100 trials that the

algorithm succeeded to find the components correctly. A more complex case is represented in

Figure 2.7(a), where the components are highly overlapped. The weights of the components are the

same. The mean and variance values are [−10,0,10,20] and [6,2,8,4] respectively. Figure 2.7(b)

illustrates the output of 100 trials. There is no surprise to witness over fitting in some cases, due

to the nature of the mixture.

2.7 Conclusion

This chapter proposed an on-line unsupervised learning of GMMs algorithm in the presence of

uncertain dynamic environments. The algorithm relies on a multi-hypothesis adaptive scheme

that continuously updates the number of components and estimates the model parameters as the

measurements (sample data) are being acquired. The hypothesis models are ranked according to

the MDL. In this work we propose an unsupervised learning of Gaussian mixture models algo-

rithm, that is flexible in terms of shape of the components, can deal with high dimensional data, is

robust toward outliers and noises and with minimum dependency on initialization or prior knowl-

edge. In general, we could conclude that the algorithm has a good performance specially when

the components are well separated. However, it is worth to mention that a critical issue is the

initial selection of the covariance when a new component is created. This has to be done carefully
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Figure 2.5: Linearly separable mixture
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Figure 2.6: Fairly overlapped mixture
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Figure 2.7: Highly overlapped mixture
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because choosing a very small covariance can be experimentally problematic since in the process

of calculating the a posteriori probability in Equation (2.7), the result in Equation (2.3) could be

zero due to finite precision. On the other hand, choosing an extremely large covariance can lead

to the “under-fitting" problem. This is something that deserves further investigation.
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Chapter 3

Real-Time Unsupervised Motion
Learning for Autonomous Underwater
Vehicles

3.1 Introduction

An Autonomous Underwater Vehicle (AUV) is a robot designed to operate underwater. It is typ-

ically a free swimming body and is not attached to the support vessel to which is launched. Au-

tonomous Underwater Vehicles (AUVs), by taking advantage of sophisticated, smart, small and

inexpensive on-board sensors and marine robotic platforms, have brought together specific com-

plementary knowledge in computer science, electrical and mechanical engineering.

Nowadays, we are able to carry out ocean expeditions thoroughly without actually being there.

These vehicles, are a vital tool in gathering detailed ocean data with much higher resolution and

at reasonable cost in order to target specific set of oceanography questions.

Further, the idea of using inexpensive multiple AUVs, acting in cooperation to perform specific

tasks, like for example ocean sampling, mapping, mine detection and neutralization, offers po-

tentially significant advantages in performance and efficiency as well as redundancy in case of

failure, compared with the use of a single AUV, see [97] and [98]. Scientific applications include

geoscience to map particular features such as hydrothermal events or submarine volcanoes [3]. In

archeology for documenting shipwrecks and submerged cities [4]. In oceanography for mapping

the physical structure of the ocean. In ecological applications for surveying the marine habitants

and document their states to understand the changes through time. In industry they are used ex-

tensively used for conducting surveys for minerals and in oil and gas exploration. AUVs are also

used in defence applications to fulfil dangerous roles such as mine counter measures and rapid

environmental assessments.

The rest of this chapter is organized as follows. Section 3.2 describes the state of the art of adap-

tive sampling and motion learning for AUVs. Section 3.3 explains our proposed real-time motion

learning strategy for multiple AUVs . The applicability of the proposed algorithm presented in

41
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Chapter 2, is investigated in Section 3.6. Two different scenarios are defined: Real-time unsuper-

vised motion learning for AUVs in an uniform environment, and a more complex scenario, where

the environment is non-uniform. This chapter ends with some conclusions.

3.2 Literature Review on Adaptive Sampling using AUVs

In oceanographic sampling the goal is to produce a map of a given environmental quantity (e.g.,

temperature, or sound speed, or bottom morphology, depending on the specific payload) accu-

rately and in the minimum amount of time. When a hundred percent coverage is not strictly

required, or it is not possible because the payload can only make a point-wise measurement (as

in the temperature/salinity case), the produced map is an estimate of the true map based on the

available samples. To meet the accuracy specification while minimizing the number of sampled

points, one intuitive idea is that of increasing the spatial sampling rate where the environmental

map is rapidly changing, while decreasing it when the environmental map is almost constant. As

sample progress, the smoothness (or the spatial correlation length) of the map can be estimated

from the data themselves; the next sampling location can then be established on-line on the basis

of the previous measurements. This approach is called “adaptive sampling". If the sampling is

performed by a team of AUVs, then the sampling strategy must be chosen in order to exploit the

availability of multiple vehicles through some coordination strategy, possibly implemented in a

distributed fashion.

To this end, the following questions need to be addressed: How to program the individual robots

so that they have their own on-board fast decision making ability? How to collect data in most

efficient way? How to increase the robustness of the group to uncertainty or disturbances in the

environment? How to conveniently use the network of sensors available to robustly collect data

to reveal desired features of the environment? How to stabilize the formation of the vehicles so

that they could change the resolution of the formation, shape of the formation of individual agents

moving around?

In the literature, it is possible to find several interesting works that have proposed adaptive sam-

pling strategies for marine systems. Inspired by natural systems, for example fish schools that are

able to climb the gradients even through noisy fields, Leonard et al. in [99] presents a framework,

relatively simple at the individual level but with greater functionality and intelligence at the group

level, for coordinated and distributed control of multiple autonomous vehicles using artificial po-

tentials and virtual leaders. Each of these potentials is a function of the relative distance between

a pair of neighbours. Artificial potentials define interaction control forces between neighbouring

vehicles and are designed to manipulate the formation and geometry of the fleet. A virtual leader

is a moving reference point, at the center of the formation, that attracts or repels the neighbouring

vehicles by means of additional artificial potentials. In the reported work, the closed-loop stability

using the system kinetic energy and the artificial potential energy is guaranteed by constructing

a Lyapunov function. By considering no ordering of the vehicles in fleet, the adapted setup is

more robust in comparison with a single vehicle usage. In [100], following the approach proposed
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in [99], a robotic ocean sampling network is developed where AUVs move around on their own,

collecting data on the ocean physics and biology to gain a better understanding of ecosystem and

ocean climate change. This idea in simple words can be described as follow. Having a group of

sensors, maybe in a formation measuring a scalar like temperature, by themselves each individual

can not know about the gradient but collectively, if they act like fish, they can pass the infor-

mation and somehow get an estimation of the gradient and climb that gradient. The algorithm

used in that work is based on artificial potential. Three vehicles at the corners of a triangle, with

this ability that the center of the triangle can track a line. The ability to control the formation to

change the resolution or one edge of the triangle be normal to the path. They have built some

other related things based on this idea of dynamic gradient climbing by extending the approach

to estimating the second derivative and understand the curvature of the level sets, and also by

changing the resolution of the fleet so that minimize the estimation error. The agents not only do

sampling while tracking, but they can reconfigure as they go. This is a significant advantage of

using mobile sensor networks. Ogren et al. in [101], present a stable control strategy for a group

of vehicles to direct and reconfigure cooperatively based on changes in acquired measurements.

In the reported work, the vehicles follow the thermal gradient direction by sending the sampled

data, during each resurfacing, to a central unit to update the mission plan and send it for each ve-

hicle. In [102], the authors propose a cooperation algorithm for adaptive oceanographic sampling,

taking into account range communication constraints. In a fleet of AUVs with static topology, a

distributed dynamic programming algorithm is applied to solve the global optimization problem of

maximizing the oceanographic sampling area coverage. Worth to be mentioned that the solution (

added to a cost function) is computed in a distributed fashion, since each vehicle makes the cost

computation for its own candidate points. In the reported work, for practical issues and to preserve

underwater communication possibilities, the maximum distance between adjacent agents is lim-

ited by an upper bound. Every vehicle submerges vertically to capture the measurements and then

resurface while carrying a payload of Conductivity, Temperature and Depth (CTD) data. The data

is transmitted to a measuring station on the surface of the sea. When on the surface, the vehicle

navigates with the help of GPS. A land-station link enables almost real-time data transmission and

on-line modification of the mission plan. In [103], a map is used to decrease the uncertainty of

the sampling by considering the correlations among the ocean values. In [104] an A∗ approach

to trajectory planning and finding feasible paths through a detailed map of known obstacles and

unsafe regions is presented. Significant computation times for A∗ path planning (order 10-100s

CPU time with currents sampled only once every nautical mile) is stressed by the authors. Smith et

al. in [105], present a near-real time path planning solution for tracking and sampling an evolving

ocean feature using one or more glider(s). In the reported work, a Regional Ocean Model System

(ROMS), which is known a priori, generates a sampling plan that steers deployed gliders to re-

gions of scientific interest based upon the given feature. Throughout the execution of the sampling

plan, the collected data are transmitted and assimilated into the ocean model. We believe that the

performance of the proposed approach strongly depends on ROMS as it predicts the behaviour of

the objective feature and steer the vehicles toward new trajectories. Since the existence of outliers
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in sampling, specially in highly unstructured underwater environment, can affect the 2D gradient

direction dramatically, outlier detection in sampling is an open study. In [106], the authors propose

an adaptive control of autonomous mobile sensor platforms approach for oceanographic sampling

purposes. To investigate the viability of their approach, an experiment with the goal of adaptively

following the ocean thermal gradient was conducted. Considering the fact that the optimum sam-

pling path was not predefined, the sensor platform should have adaptively manoeuvre itself based

on the real-time measurements. The experiment consisted in 4 segments, in each, the CTD au-

tonomy sensor could go down and rise in a certain direction and in a predefined zigzag path to

measure the temperature profile of the ocean. The authors in this work, developed an autonomy

architecture to support adaptive sampling. With the aim of reducing the model uncertainty, and

considering the fact that the optimum sampling path is not predefined, the sensor platform must

adaptively manoeuvre itself based on the real-time measurements. The sampling process, records

the ocean temperature at each proper depth. The direction of any segment, except the first segment

that was predefined, was the 2D thermal gradient of the batch of data captured during the previous

segment. The authors used autonomous surface craft as a mobile sampling platform, which in

comparison with AUV, has the advantage of better navigation and communication. As the authors

stated, higher sampling density could be achieved in shorter time and with less power consump-

tion, if AUV had been used instead of an autonomous surface craft. It seems that, this method

is less resilient to outlier and noise in sampling which is very likely in unstructured underwater

environment. Note that the existence of outlier can change the direction of the 2D gradient dra-

matically. By spreading the use of autonomous vehicles, congestion and highly dynamic traffic

on the surface is becoming more challenging. Svec et al. in [107] tackles this problem by devel-

oping a model-predictive, local path planning algorithm for an unmanned surface vehicle (USV).

The goal is to map the spatio-temporal obstacle regions, with increasing resolution and focused

sampling, by introducing the velocity obstacle concept to the systems with nonlinear dynamics,

nonholonomic constraints, and any form of low level feedback control. In the reported work, to

grant the International Regulations for Prevention of Collisions at Sea (COLREGs), the sampling

of motion goals is constrained.

Our proposed approach consist in one leader AUV and two or more follower AUVs, all equipped

with conductivity, temperature and depth (CTD) sensor devices. The CTD data is modelled as a

Gaussian mixture model (GMM) by running the proposed algorithm in Chapter 2 in each vehicle

separately. In the setup adopted, a leader AUV is tasked to acquire CTD data by running a set

of user-defined mission instructions like for example following a desired path profile. The aim of

each follower AUVs is to follow the leader closely with a desired formation that will adaptively

change according to the CTD data that they are acquiring. More precisely, each AUV is in charge

of running in real-time the unsupervised learning algorithm for GMMs that is fed by the CTD

data. To make the scheme robust to fault of underwater communications, which is very prone to

happen, in this approach we assume that the followers only on the surface can receive the GMM

hypothesis of the leader. In other words, each time the vehicles resurface (and this is done in a

coordinated fashion), the leader AUV broadcast its currently estimated parameters of the GMM,
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and the followers based on this and their own estimated GMM compute the variational distance

error between these GMMs. This error is the variational distance between two GMMs that gives a

notion of how different is the CTD environment of each follower with respect to the leader. Thus,

during each resurfacing, the calculated error and the geographical position of the leader is used

to guide the next formation configuration, which typically scales the distance between the AUVs

in the formation (making a zoom-in and zoom-out), in order to improve the efficiency of data ac-

quisition in the given region. Therefore, every follower has to explore the environments where, in

terms of CTD data, are desirably different from the leader.

Comparing with the related literature described above, in our approach we have the following ad-

vantages: The vehicles do not need to have communication underwater. No prior knowledge of

the dynamics of the environment is required in unsupervised motion learning scenario. Moreover,

no significantly payload to save data is also needed since each vehicle only saves a GMM profile

of the captured CTD data. Furthermore, our proposed GMM based method is much more resilient

toward outlier and noise by nature, because outliers do not carry enough evidence to manipulate

the GMM significantly. Also, it is more efficient in terms of resources since followers can cover a

larger area and expand the formation with respect to the position and GMM of sampling profile of

the leader.

3.3 Problem Formulation

We address the problem of real-time adaptive sampling using a coordinated fleet of AUVs. To

this end, we provide a motion control algorithm that includes the unsupervised learning of Gaus-

sian Mixture Models (GMMs) described in the previous chapter. The system set up consist of

one leader AUV and two or more followers AUVs. All vehicles are equipped with CTD sensor

devices. The leader moves around, in a predefined path, while acquiring CTD data. Meanwhile, it

constructs a GMM profile by running the unsupervised learning of GMM algorithm described in

Chapter 2, see also in [64]. The objective is to execute a coordinated formation maneuver, by driv-

ing and maintaining the other vehicles, henceforth known as followers, at a desired position with

respect to the leader that is a function of the dissimilarity of the CTD profiles of the leader and the

followers. This dissimilarity measure is the variational distance between two GMM profiles. To

make the scheme robust to fault of underwater communications, which is very prone to happen,

in this approach we consider that follower only on the surface can learn the GMM hypothesis of

the leader to calculate the error (dissimilarity measure). while on the surface, the vehicles can also

use GPS to correct their navigation errors.

3.4 Preliminaries and Background

AUVs are equipped with a variety of sensor systems and communication devices. There are some

concepts and devices found in nearly every AUV and others, which are only used for specific
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Figure 3.1: The earth-fixed inertial frame {U} and the body-fixed frame {B} with position, orien-
tation and linear and angular velocities

mission tasks. The following section gives an overview of sensor and communication systems that

are used in AUVs.

3.4.1 Coordinate Frames

The equations of motion for an AUV require the definition of an earth-fixed inertial frame {U}
with the orthogonal axes {xU ,yU ,zU} and a body-fixed frame {B}with the orthogonal axes {xB,yB,zB}.
The position and orientation of the vehicle is usually given with respect to the inertial frame {U}.
The linear and angular velocities are expressed in the body-fixed frame. The body-fixed frame

usually coincides with the center of gravity of the vehicle. The body axes are defined as fol-

lows [108]:

• xB is the axis from aft to fore

• yB is the axis from port to starboard

• zB is the axis from top to the bottom

Figure 3.1 shows the two frames. For the sake of more clarity, we define the following entities:

• η1 = [x,y,z]T , the origin of {B} with respect to {U}

• η2 = [φ ,θ ,ψ]T , the angles of orientation of {B} with respect to {U}. φ is called roll, θ

pitch and ψ yaw.

• v1 = [u,υ ,w]T , the linear velocities of the origin of {B} relative to {U} expressed in {B}. u

is called surge, υ is called sway and w is called heave.
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Figure 3.2: Simplified kinematic model of an underwater vehicle that maintains in a horizontal
plane.

• v2 = [p,q,r]T , the angular velocities of the origin of {B} relative to {U} expressed in {B}.

• τ1 = [X ,Y,Z]T , the actuating forces expressed in {B}

• τ2 = [K,M,N]T , the actuating torques expressed in {B}

The following vectors are introduced for convenience:η = [ηT
1 ,η

T
2 ]

T , v = [vT
1 ,v

T
2 ]

T , τ = [τT
1 ,τ

T
2 ]

T .

3.4.2 Simplified Kinematic Equations

In this thesis, we consider the control of the vehicles in horizontal plane. The kinematic equations

relate the position and orientation vector η , which is expressed in the inertial frame {U}, to the

velocity vector v, which is expressed in the body-fixed frame {B}. The dynamic equations, which

are not considered in here, relate the velocity vector v, which is expressed in the body-fixed frame

{B}, to the force and torque vector τ , which is also expressed in the body-fixed frame {B}. Fig-

ure 3.2 shows a simplified version of the kinematic model of an underwater vehicle. Interested

readers are encouraged to see [109, 108]. This assumption leads to simplified kinematic equations ẋ

ẏ

ψ̇

=

ucosψ−υ sinψ

usinψ−υ cosψ

r

 (3.1)

with p = [x,y,ψ]T denoting the position and orientation of the vehicle on the two-dimensional

plane and v = [u,υ ,r]T denoting the velocity. Equation (3.4) can be written in the form

ṗ = R(ψ)v, (3.2)
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Figure 3.3: A close up of the CTD sensor of the AUV (image source: [1])

with the rotational matrix R(ψ)

R(ψ) =

cosψ −sinψ 0

sinψ −cosψ 0

0 0 1

 (3.3)

3.4.3 CTD Sensors

A CTD, an acronym for Conductivity, Temperature, and Depth, is a package of electronic instru-

ments and a primary tool for determining essential physical properties of sea water, see Figure 3.3.

The depth of the vehicle from the surface is determined by means of a pressure sensor. The pri-

mary function of a CTD device is to detect how the conductivity and temperature of the water

column changes relative to depth. Figure 3.4 represents the 2-D and 3-D temperature profile in

a trial. Conductivity is a measure of how well a fluid conducts electricity. Figure Conductivity

is directly related to salinity, which is the concentration of salt and other inorganic compounds in

seawater. Salinity is one of the most basic measurements used by ocean scientists. When com-

bined with temperature data, salinity measurements can be used to determine seawater density

which is a primary driving force for major ocean currents.

Ocean explorers often use CTD measurements to detect evidence of volcanoes, hydrothermal

vents, and other deep-sea features that cause changes to the physical and chemical properties of

seawater. CTDs can provide profiles of chemical and physical parameters through the entire water

column. By analysing these parameters, scientists can make inferences about the occurrence of

certain biological processes, such as the growth of algae. Knowledge obtained from CTD devices

can, in turn, lead scientists to a better understanding of such factors as species distribution and

abundance in particular areas of the ocean. Sudden changes or anomalies, in one or more of the

properties being measured may alert scientists to an unusual occurrence, such as an active hy-

drothermal vent [1]. The main advantages of CTDs are accuracy and light weight. On the flip-side

the calibration of the devices especially for long term missions can be challenging. Until recently,

once an AUV was launched it was completely isolated from its human operators until it returned
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Figure 3.4: Temperature Profiles (images source: [17]).

from its mission. Because there was no effective means for communicating with a submerged

AUV, everything depended upon instructions programmed into the AUV’s on-board computer.

Today, it is possible for AUV operators to send instructions and receive data with acoustic com-

munication systems that use sound waves with frequencies ranging roughly between 50 Hz and

50 kHz [7]. These systems allow greater interaction between AUVs and their operators, but basic

functions are still controlled by the computer and software on-board the AUV.

Basic systems found on most AUVs include: propulsion, usually propellers or thrusters (water

jets); power sources such as batteries or fuel cells; environmental sensors such as video and de-

vices for measuring water chemistry; computer to control the robot’s movement and data gathering

functions; and a navigation system.

Navigation has been one of the biggest challenges for AUV engineers. Today, everyone from back-

packers to ocean freighters use global positioning systems (GPS) to find their location on Earth’s

surface. But GPS signals do not penetrate into the ocean. One way to overcome this problem

is to estimate an AUV’s position from its compass course, speed through the water, and depth.

This method of navigation is called “dead reckoning", and was used for centuries before GPS was

available. Dead reckoning positions are only estimates however, and are subject to a variety of

errors that can become serious over long distances and extended time periods.

In a confined area, the position of an AUV can be determined using acoustic transmitters that are

set around the perimeter of the operating area, see Section 3.4.4.3. These transmitters may be

moored to the seafloor, or installed in buoys. Some buoy systems also include GPS receivers, so

the buoys’ positions are constantly updated. Signals from at least three appropriately positioned

transmitters can be used to accurately calculate the AUV’s position. Although this approach can

be very accurate, AUV operators must install the transmitters, and the AUV must remain within a

rather small area [109, 110].

A more sophisticated approach uses Inertial Navigation Systems (INS) that measure the AUV’s
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acceleration and angular velocity in all directions. These systems provide highly accurate position

estimates, but require periodic position data from another source for greatest accuracy. On surface

vessels and aircraft equipped with INS, additional position data are often obtained from GPS. On

underwater vessels, the accuracy of INS position estimates is greatly improved by using a Doppler

Velocity Logger (DVL) to measure velocity of the speed of the vessel. On some AUVs, several of

these systems are combined to improve the overall accuracy of on-board navigation.

3.4.4 Navigation

With recent advances in battery capacity and the development of hydrogen fuel cells, autonomous

underwater vehicles (AUVs) are being used to undertake longer missions that were previously

performed by manned or tethered vehicles. Navigation is one of the most critical factors in deter-

mining the operational suitability of any unmanned vehicle for its designated environment. In fully

autonomous vehicles, due to the lack of a human operator to perform the navigation task, there is

a fundamental requirement to incorporate estimation techniques that can provide the desired in-

formation necessary for navigation. Such information includes position, attitude, and velocity of

the vehicle. Unlike unmanned underwater vehicles (UUVs) which are usually operated remotely

by an acoustic modem link, AUVs present a uniquely challenging navigational problem because

they operate autonomously in a highly unstructured environment where satellite-based navigation

is not directly available, see e.g. [111]. As a result, more advanced navigation systems are needed

to maintain an accurate position over a larger operational area.

Generally speaking, all underwater navigation systems problems fall into the 2D position local-

ization (i.e. longitude and latitude). It is due to the fact that all submersible vehicles are outfitted

with a pressure sensor and are capable of determining their absolute depth with high accuracy and

a high update rate.

The accuracy of a navigation system is critical for the oceanographers to more fully exploit quan-

titative data from high resolution sensors such as high-frequency bathymetric sonar sensors and

optical cameras. Furthermore, the closed-loop feedback control of underwater robotic vehicles

and improvement of the quality of collected data during survey missions are eminently dependent

on the accuracy of the navigation system.

In this work, the need for precise navigation is more evident because the trajectories of the follow-

ers are a function of the GMM hypothesis of the leader which in turn, depends on how accurate

the leader moves in a predefined path. If the AUV does not follow the path accurately during the

mission, critical features may not be recorded and the position of any features recorded during

the mission will be uncertain. In the literature, many different methods for navigation in different

under-water environments have been proposed, see e.g., [110, 111].

Most AUV navigation breaks down into five major categories: GPS, inertial, visual, dead-reckoning

and acoustic.
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Figure 3.5: A two-dimensional kinematic model of an AUV. The angle θ of the resulting velocity
V does not necessarily correspond with the heading angle ψ

3.4.4.1 Global Positioning System (GPS)

An easily accessible global frame is the International Terrestrial Reference Frame 2000 (ITRF2000)

available by GPS positioning [112]. The GPS can be used for navigation with bounded-error when

the vehicle is operating on the surface. The GPS system’s radio-frequency signals are blocked by

sea water, thus GPS signals cannot be directly received by deeply submerged ocean vehicles.

However, GPS commonly aides a variety of underwater vehicle navigation techniques, including

surveying of acoustic transponders, alignment calibration of Doppler sonar systems [113].

3.4.4.2 Magnetic Compass

Digital compass plays a vital role in autonomous vehicles. It provides the 3D-vector of the local

magnetic field. It can not only determine bearing, but when used as an element for dead reckoning,

can determine location. Placement in a vehicle, however, exposes compasses to a variety of hard to

quantify influences. Digital compasses are subject to hard and soft iron errors, acceleration errors,

and severe inclinations, which can affect a heading calculation and increase error.

Therefore, before computing the heading angle ψ of the vehicle from the magnetic field vector it is

necessary to carefully calibrate the compass each time we have a mission in a new environment, as

the “variation", difference between the orientation of the 3D magnetic field vector and the direction

of true north, changes in new geographic location.

In the field, if something goes wrong, it can be difficult to determine what has happened; by

testing compass accuracy in a lab one can better understand the limitations of a given device. The

two-dimensional heading angle ψ of the vehicle can be measured by a magnetic compass. Such

a compass is found in almost every underwater vehicle. Furthermore, the compass suffers from

local magnetic anomalies and magnetic fields induced by the vehicle itself [109]. All mentioned

aspects lead to noisy measurements, which can hardly assumed to be Gaussian. In contrary to

most land vehicles, for marine vehicles the heading angle ψ does not necessarily correspond with

the angle θ of the resulting velocity V of the vehicle (see Figure 3.5).



52 Real-Time Unsupervised Motion Learning for Autonomous Underwater Vehicles

Figure 3.6: A typical DVL device (image source: [1])

3.4.4.3 Doppler velocity log (DVL)

The Doppler velocity log (DVL) is a device that is used to obtain the three-dimensional speed

vector of the vehicle. A typical DVL device (see Figure 3.6) consists of 4 transceiver units. This

instrument, mounted on the vehicle, sends out a sound signal and the acoustic pulses are reflected

from the seafloor or from the surface. Then, the vehicle measures the Doppler shift of its return.

From this shift, the vehicle’s velocity is calculated and is used to determine position and depth. The

measurement is called “bottom-lock" if the measured reflection is from the seafloor or “surface-

lock" if the reflection from the surface is measured. DVL can be used to obtain a three-dimensional

linear velocity vector as well as a three dimensional angular velocity vector in the body-fixed frame

of the vehicle. They have become increasingly popular in AUVs and ROVs, which is a result of

the significantly decreased size of available devices [109, 2].

3.4.4.4 Dead-reckoning Navigation

A Dead-Reckoning system is a basic requirement for any AUV. It involves simple measurements

of bearing or magnetic heading, depth, ground velocity, and travelled distance. The AUV uses an

on-board digital compass for bearing and a pressure sensor to measure the depth, Section 3.4.4.2.

It also calculates the velocity and displacement based on thruster commands, with this assumption

that there is a certain linear dependency between propeller RPM and forward vehicle speed. Ease

of use and affordability are the main advantages of this approach. When using dead reckoning,

due to the integrative nature of the position estimate, the error of the position estimate will grow

unbounded. The growth in this error is caused by errors in the velocity and attitude estimates

which are in turn affected by the accuracy of the navigational filter and the accuracies of the

measurements observing these states.

3.4.4.5 Inertial Navigation System (INS)

Inertial navigation involves the detection of acceleration of the vehicle with the use of three

orthogonally-mounted gyroscopic sensors.
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(a) A stable platform IMU (b) Strap-down Systems

Figure 3.7: Two categories of INSs (image sources: Left [4], Right [7]).

Inertial navigation is a self-contained navigation technique in which measurements provided by

accelerometers and gyroscopes are used to track the position and orientation of an object relative

to a known starting point, orientation and velocity. Inertial Measurement Units (IMUs) typically

contain three orthogonal rate-gyroscopes and three orthogonal accelerometers. This allows the

system to measure linear and rotational accelerations in 3-dimensions, thereby track the posi-

tion and orientation of the device and characterizing vehicle motion in all 6-Degree Of Freedom,

see [111, 114, 115]. Nearly all IMUs fall into one of the two categories outlined below. The

difference between the two categories is the frame of reference in which the rate-gyroscopes and

accelerometers operate.

• Stable Platform Systems In stable platform type systems the inertial sensors are mounted

on a platform which is isolated from any external rotational motion. In other words the

platform is held in alignment with the global frame, Figure 3.7(a). This is achieved by

mounting the platform using frames which allow the platform freedom in all three axes, The

platform mounted gyroscopes detect any platform rotations. These signals are fed back to

torque motors which rotate the gimbals in order to cancel out such rotations, hence keeping

the platform aligned with the global frame.

• Strap-down Systems In strap-down systems the inertial sensors are mounted rigidly onto

the device, and therefore output quantities measured in the body frame rather than the global

frame, Figure 3.7(b). To keep track of orientation the signals from the rate gyroscopes are

“integrated". To track position the three accelerometer signals are resolved into global co-

ordinates using the known orientation, as determined by the integration of the gyroscope

signals. The global acceleration signals are then integrated as in the stable platform algo-

rithm.
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Figure 3.8: Overall visual servoing control scheme.(image source: [117])

Stable platform and strap-down systems are both based on the same underlying principles. Strap-

down systems have reduced mechanical complexity and tend to be physically smaller than stable

platform systems. These benefits are achieved at the cost of increased computational complexity.

As the cost of computation has decreased strap-down systems have become the dominant type of

INS.

However, the problem with this approach is that the accuracy of navigation can deteriorate rapidly

due to accumulated error in integrating of these accelerations over time. This error can be reduced

through state-estimation methods such as Kalman Filtering, and/or completely bounded by peri-

odic resurfacing and using absolute position fixes, through the use of Differential GPS (see [111]

and [116]). This is a significant improvement over dead reckoning and is often combined with a

Doppler velocity log (DVL) that can measure the vehicle relative velocity [111].

3.4.4.6 Visual Navigation

Visual navigation systems are mainly used for object identification, following, and collision avoid-

ance. Due to attenuation of light underwater, this approach only is suitable for short distance. In

literature, a set of algorithms for the creation of underwater mosaics and their use as visual maps

for underwater vehicle navigation are presented, Figure 3.8. An automatic video mosaics is being

created, which deals with the problem of image motion estimation in a robust and automatic way.

The motion estimation is based on a initial matching of corresponding areas over pairs of images,

followed by the use of a robust matching technique, which can cope with a high percentage of

incorrect matches. Several motion models, established under the projective geometry framework,

allow for the creation of high quality mosaics where no assumptions are made about the camera

motion [118, 117].
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3.4.4.7 Acoustic Navigation

Acoustic navigation systems can be used for navigation over long distances, due to high speed of

sound underwater (avg. 1500 m/s in seawater). This method can be used in environments that

are opaque to the radio-frequencies upon which the GPS relies, as in subsurface, and are more

affordable than conventional INSs. Several types of acoustic systems are available for AUVs, in-

cluding Long-Base-Line (LBL), Ultra-Short-Base-Line (USBL), Sound Navigation And Ranging

(SONAR), and Acoustic Doppler (ADCPs & DVLs) technologies (see [119], [120] and [121]).

Deep-sea research got a boost with the invention of sonar in 1914. Developed to detect icebergs

at night or in fog, sonar quickly proved to be an excellent depth-finder, much faster than the old

sounding line. Sonar is based on the principle that sound travels through water at a rapid and fairly

constant rate. A “pinger" mounted underwater on a ship’s hull sends out periodic bursts of sound.

The sound waves bounce off obstacles and get reflected back to the ship. By measuring how long

it takes for the reflected waves to return to the ship, the distance to an obstacle can be calculated.

Finally, it is concluded that only geophysically referenced methods will enable AUVs to navigate

accurately over large areas and that advances in underwater feature recognition are required before

these methods can be implemented in operational AUVs.

3.5 CTD adaptive sampling strategy

As mentioned before, this work deals with a cooperative coordinated formation of AUVs. We

assume that one vehicle always plays the role of leader and the rest as follower(s). The task of

the leader vehicle is to follow some predefined path profile while is acquiring CTD data. The

aim of the each follower is to keep a coordinated formation with respect to the leader by keeping

a desired distance from it. This distance is a function of a dissimilarity measure, which is the

variational distance between its own GMM hypothesis and the leader. This measure, ζ , provides

a quantity of how different or similar is the CTD data between the leader and each follower at

the time of resurfacing. As mentioned before, we assume that all followers, adjust their position

during each resurfacing with respect to the leader. A control strategy is adopted to generate speed

and heading commands so as to drive suitably defined along track and cross track errors to zero.

The commands are used as input to local inner loops for yaw and speed control.

In practice, executing this type of mission without expensive inertial sensor suites requires the fol-

lower vehicles to manoeuvre into formation by relying on measurements of their distances to the

leading vehicles and exchanging complementary data. This entails considerable difficulties un-

derwater, as conventional communication and localization systems (like GPS) are unavailable and

usually replaced by acoustic devices: acoustic modems that allow the exchange of data, and rang-

ing devices that estimate distances by measuring time-of-fight of acoustic signals. These devices

exhibit a number of constraints that are inherent to the medium, such as temporary communica-

tion losses, outliers in the range measurements, and low bandwidth of the acoustic communication

systems. In practice, an important consequence of these limitations is the inability to measure
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Figure 3.9: Schematic representation of the setup

or communicate frequently, with inter-sample times often in the range of seconds, making the

problem of underwater range-based multiple vehicle formation keeping very challenging.

3.5.1 Path Following

As it can be seen in Figure 3.9, the vehicles are required to follow segments of line, which for

simplicity and without loss of generality are perpendicular to the y axis. During each resurfacing,

every follower separately regulates the desired linear velocity ud and heading ψd . These are then

fed to inner loop controllers specific to the vehicle. A simplified version of the kinematic model

of an underwater vehicle can be described as follows ẋ

ẏ

ψ̇

=

ucosψ−υ sinψ

usinψ−υ cosψ

r

 (3.4)

where u is the surge velocity, υ is the sway velocity, r is the angular velocity and ψ is the heading.

Using the path-following algorithm in [124], we have

ey = y− yd ⇒ ėy = ẏ− ẏd = usinψ−0 = uU (3.5)

where U = sinψ , and yd define the desired position of the line to be followed by the AUV, which

will correspond to the desired distance from the leader AUV (see Figure 3.9). Therefore, if U =

sinψ we obtain ėy = −k1ey, which implies that the error ey will converge exponentially to zero.

The desired heading angle can be obtained as

ψd = sin−1(sat(U)) (3.6)
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Table 3.1: Simulation parameters

ε k1 kψ ku k2

0.8 1 1.5 1.2 1

where

sat(U) =


U if |U | < ε

ε if U > ε

−ε if U < −ε

(3.7)

and ε ∈ (0,1). A possibility for the inner-loop in heading can be derived by noting that

ψ̃ = ψ−ψd ⇒ ˙̃ψ = r− ψ̇d (3.8)

Thus, if r = −kψ ψ̃ = −kψ(ψ −ψd) , kψ > 0 it can be concluded that ψ will converge to ψd

for ψd constant. Note that it is possible to show, using Lyapunov-based analysis tools, that the

above nonlinear control law yields convergence of the cross track error to zero if the actual vehicle

heading equals the desired heading reference ψd . The work in [124] also shows that “identical

behaviour" is obtained when the dynamics of the heading autopilot (inner loop) and the sideslip

of the vehicle are taken into account. Table 3.1 contains the parameters of this controller that are

fixed throughout the simulation experiment.

3.5.2 Coordinated Formation

For simplicity we consider a formation in line parallel with the y axis as illustrated in Figure 3.9.

To keep the coordinated formation, a follower during each resurfacing needs to correct its position

with respect to the leader. To achieve this goal, a PI controller is used

ξ̇ = ex ,u f =−ku ex− k2ξ (3.9)

where ex is the difference between the position of the leader and each follower along the x axis

(see Figure 3.9).

3.5.3 Variational distance between GMMs

The Gaussian mixture model defined in this work reflects the CTD feature distributions of an

environment by a linear combination of Gaussian densities. In this way, the density of a single

feature or the probability of regions in the feature space depends on all components of the Gaussian

mixture model, Equation (2.1). Thus, this model corresponds to the soft assignment approach of

modelling image contents [23]. Kullback Leibler (KL) divergence, which is a widely used tool in
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Figure 3.10: Schematic representation of the leader

statistics and pattern recognition, to measure the similarity between them as follows:

D( f‖g) =
∫

f (x) log
f (x)
g(x)

dx (3.10)

Note that unlike two single Gaussian distributions, there is no closed form expression to measure

the similarity between two GMMs. Thus, in this work we use the variational approximation [20]

to measure the dissimilarity between GMM hypotheses, that is,

ζ = Dvariational( f‖g) = ∑
a

wa log
∑a′ wa′e−D( fa‖ fa′ )

∑b wbe−D( fa‖gb)
(3.11)

where wa and wa′ are the mixing weights of the components in f (x) and wb is the mixing weights

of the components in g(x).

3.6 Simulation Results

In this section, the performance of the proposed algorithm is demonstrated in uniform and change-

able environments which were reconstructed based on real CTD data.

3.6.1 The Leader AUV

Figure 3.10 shows a schematic representation of a leader AUV. As mentioned above, its task is

to follow some desired predefined path, reference position, while acquiring CTD data. This data,

is fed to the on-line GMM estimator to create a CTD profile for the leader. The AUV real-time

mission planner is a high-level decision maker on-board the AUV. It monitors all system states and

issues the speed and steering commands to the low-level thruster controllers (AUV guidance and

navigation block). In literature, the problem of position trajectory-tracking and path-following for

AUVs have been addressed repeatedly, e.g. see [122], and [123]. The low-level AUV controller set

consists of three controllers, depth, speed and heading, which are dedicated to receiving commands
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Figure 3.11: Schematic representation of the follower

from the reference controller and generating thruster outputs based on error between commanded

and actual depth and heading.

3.6.2 The follower AUV

A scheme of a follower AUV, is represented in Figure 3.11. Similar to the leader, each follower

AUV captures CTD data in real-time and construct its own GMM hypothesis. Unlike the leader,

the desired path is not predefined and has to be updated in each resurfacing (adaptive sampling).

In fact, the task of the follower, can be divided into on-surface and subsurface.

In each resurfacing, using the available GPS signals, the follower can correct its own navigation

errors as suggested in [123] and learn the position of the leader. Suitable velocity command can

be issued to have a coordinated formation with respect to the last seen position of the leaser. Fur-

thermore, on surface, the follower can learn the CTD profile, GMM hypothesis, of the leader and

measure the dissimilarity measure, ζ , according to Equation (3.11). If the dissimilarity is high,

the follower continues the current formation. On the other hand, too small dissimilarity measure

means that expanding of the formation, to sample new environment is needed. In subsurface, the

vehicle has to follow the last updated mission plan as in [122].

Worth to be mentioned that, some limits were put for the acceleration of the vehicles and expan-

sion of the formation, to address the various operational constraints associated with real world

applications. To maintaining the group structure: 1) attraction to the leader up to a maximum

distance 2) repulsion from the leader when it is too close 3) alignment or velocity matching with

the leader. Every follower makes its own decision based on the difference or distance between its

GMM and the leader. In particular, for the case of one single follower (which means 2 AUVs), the

task would consist in keeping the follower AUV at a convenient distance from the leader, whose

distance depends on the CTD that is being measured. Figure 3.12, shows a real CTD data that
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Figure 3.12: Real CTD data

was used in the simulations. A typical scenario is to make the follower vehicle close to the leader

when the difference of the CTDs is large, and on the contrary, increase the distance when the dif-

ference is small. To implement this strategy, we propose the following steps to compute the error

or dissimilarity measure:

• The CTD data is modelled as a Gaussian Mixture Model (GMM) and each vehicle runs an

on-line unsupervised learning algorithm to estimate the GMM parameters. As mentioned in

Chapter 2, the number of components of the GMM is not fixed and can change over time,

which provides more flexibility to deal with uncertain dynamic environments.

• During each resurfacing, every follower learn the last seen position of the leader and its

GMM hypothesis. Then, together with its own estimated GMM parameters, compute an

error that measures the dissimilarity of the two GMM probability density functions given by

a closed-form formula (the variational approximation) that measures the Kullback Leibler

(KL) divergence, see [20].

The desired position yd for each follower corresponds to the case when variational distance ζ

becomes equal to some reference value ζr, and it is given by

eζ = (ζ −ζr) / ζr

yd = y f +λ eζ (3.12)

where λ is a constant value and can be positive or negative, depending on which direction we want

to guide the follower. yd is the desired position in x− y plane and y f is the current position of the

follower. The intuition behind the normalization of eζ between [0,1] is to moderate the changes in
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(a) 3D temperature dynamics (b) coordinated formation in x-y
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Figure 3.13: Uniform environment.

the formation with respect to the value of ζ specially at the beginning of the experiment (zoom-in

and zoom-out of the formation be more dependent on user-defined value of λ than unknown value

of ζ ).

3.6.3 Uniform Environment Simulation

Figure 3.13(a) shows the temperature field of a reconstructed environment, where the top layer

represents the near surface and the lowest one is 12m beneath the surface. In this experiment, we

assume that the environment is uniform along the x axis. As expected, we see that the average

temperature on the surface is higher than in depth. We assumed a fleet of three vehicles, and the

leader is in the middle. Every vehicle could go down to 12m below the surface, in a saw-tooth
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(a) 3D temperature dynamics (b) coordinated formation in x-y
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Figure 3.14: Uneven environment.

pattern. The mission plan for the leader is to follow a line, in parallel with the x axis, with a con-

stant speed. The followers need to adapt their speed and distance from the leader to maintain the

coordinated formation of the fleet. In other words, every follower has to expand the formation to

find the regions where the CTD data is desirably different from the leader. Figure 3.13(b) shows

the overall performance of the fleet, from the top view, and the position of the vehicles during

resurfacing intervals in x− y plane. Figure 3.13(c), compatible with Figure 3.13(b) and based on

Equation (3.12), shows by expanding the formation at the beginning of the experiment,the follow-

ers find the desirable environment. After moving to that position, the fleet goes on as a coordinated

group along the x axis. The objective is that during each resurfacing, each follower learn the last

seen position of the leader and its GMM hypothesis to update its own mission plan. Figure 3.13(d)

shows the linear velocity changes of each vehicle at the beginning of the experiment. As men-

tioned before, the leader travels with a constant speed. And each follower, adjust its velocity in
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each resurfacing to keep the coordinated formation.

3.6.4 Complex Environment Simulation

For the second task, we assume that the environments on the left side of the leader is not uniform

and changes at some point in x−y frame, see Figure 3.14(a). Like the previous case, the followers

learn their path toward desired position according to Equation (3.12). Figure 3.14(b) shows that

at some point the left follower enters a new environment which leads to changes in dissimilarity

measure, see Figure 3.14(c). Therefore, after some time the left AUV successfully relearn the

desired path. Figure 3.14(d) confirms the results.

3.7 Conclusion

This Chapter demonstrated the performance of the unsupervised learning of GMM algorithm pro-

posed in the previous chapter, qualitatively and quantitatively in CTD adaptive sampling for a feet

of Autonomous Underwater Vehicles (AUVs). The practical implementation requires a careful

tuning of the gain parameters. The manoeuvrability of the vehicles, e.g. how fast the vehicles can

place themselves in the desired position or the greatness of the displacement based on the dissimi-

larity measure can be decisive in the performance of the model. For example with very slow linear

velocity the followers would resurface before reaching the desired position which was learned dur-

ing the last resurfacing and this could jeopardise the overall performance of the model, especially

convergence to the desired position in reasonable time. The simulation results show the feasibility

and accuracy of the motion learning strategies in many uniform and complex environments.
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Chapter 4

Conclusions and FutureWork

4.1 Conclusions

This thesis addressed the problem of motion learning and adaptive sampling for a fleet of au-

tonomous underwater vehicles. An overview of sensor systems and navigation techniques is given

as well as a brief description of the main motion control system formed with a path following

controller, a path generator and coordination control. A novel unsupervised learning of Gaussian

mixture models in the presence of dynamic environments is presented. The algorithm relies on a

multi-hypothesis adaptive scheme that continuously updates the number of components and esti-

mates the model parameters as the measurements (sample data) are being acquired. The hypothesis

models are ranked according to the minimum description length. The virtue of this approach is

the fact that it addresses explicitly the case that the complexity of the GMM is not only unknown,

but it also can change over time. The proposed algorithm has the additional feature that it relaxes

“the sufficiently large data set” restriction by not requiring in fact any initial batch of data.

The simulations that are presented here led to a variety of conclusions and assumptions. A spar-

ingly important assumption is that cooperative unsupervised motion learning for the followers is

reasonable, only if the navigation of an individual vehicle is reliable. The performance of the

proposed method is demonstrated qualitatively and quantitatively in CTD adaptive sampling for a

fleet of Autonomous Underwater Vehicles (AUVs).

The practical implementation requires a careful tuning of the gain parameters that has been suc-

cessfully done as demonstrated with experimental data. It opens up the possibility of oceano-

graphic missions conducted by a team of vehicles. In the simulations a Gaussian noise is con-

sidered for the pressure sensor. The communication constraints underwater are extreme, i.e., the

followers only on the surface can “talk" to the leader and learn its position and GMM hypothesis.

The manoeuvrability of the vehicles, e.g. how fast the vehicles can place themselves in the desired

position or the greatness of the displacement based on the dissimilarity measure can be decisive

in the performance of the model. For example, if the followers do not move fast enough in the

horizontal plane (linear velocity be too low), the vehicles can resurface before reaching to the

desired position that was learned during the last resurfacing and this could jeopardise the overall

65
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performance of the model and the convergence to the desired position in reasonable time.

A further important property of the proposed unsupervised motion learning strategy is that, the

leader can distribute its individual errors to the whole formation. Because the position of the fol-

lowers is a function of the position of the leader and its sampling profile in terms of Gaussian

mixture models. As a results, high navigation errors and sampling noises can disturb and aggra-

vate the coordinated formation dramatically.

This suggests that a higher number of vehicles, more than one leader, can improve the quality

of the estimations. The simulations have shown that all strategies are very sensitive towards the

values of parameters.

4.2 Future Work

This thesis showed the strengths and the weaknesses of a novel real-time unsupervised motion

learning of AUVs strategy based on Gaussian mixture models. The coordinated formation strat-

egy was evaluated through computer simulations but using real CTD data. In order to implement

the proposed algorithms in real systems, further steps are necessary.

Defining a more complex scenario, where the number of leader is more than one or the follower

AUVs can communicate and exchange GMM hypotheses can help to improve the overall per-

formance of the model. This would make the overall system more robust and less vulnerable to

navigation and sampling error could be the direct result of that.

The most important next step is the validation of this strategy with real data and experiments with

real AUVs in a test laboratory and later in an ocean environment. These steps are necessary to

study the behaviour of the algorithms under non Gaussian noise and the effect of outliers.
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