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Resumo

O sussurro € uma importante forma de comunicagdo que € vulgarmente utilizada em alternativa
a denominada fala vozeada. Infelizmente, em algumas situagdes ndo se trata de uma alternativa,
mas sim a tnica forma de dialogar. Tal é o caso, por exemplo, de pacientes laringectomizados,
com paralisia bilateral das pregas vocais ou disfonia espasmddica. Consequentemente, as dife-
rengas entre as caracteristicas dos dois tipos de fala, tanto a nivel fisiolégico como a nivel das
propriedades acusticas associadas, tém despertado interesse na comunidade cientifica, tendo por
isso sido exploradas ao longo dos dltimos anos. No entanto, a conversao de fala sussurrada para
fala vozeada ainda ndo foi inteiramente conseguida, ja que as solu¢des propostas sofrem ainda de
algumas debilidades, como incapacidade de operacdo em tempo real ou falta de naturalidade da
fala sintetizada.

Assim, esta proposta de dissertacdo tem como objetivo o estudo e desenvolvimento de um
algoritmo capaz de realizar tal conversdao em tempo real, através da criacdo ou implante de vozea-
mento em regides selecionadas da fala sussurrada. Para isto, serd necessdrio também identificar
de forma automatica, na fala ndo-vozeada, as regides candidatas a vozeamento. Adicionalmente,
deverd ser assegurada uma sonoridade natural da voz sintetizada e incorporando, o mais possivel,
elementos da assinatura vocal especifica do orador.

Neste documento é apresentado primeiramente o estado da arte, o qual contém a descricao de
conceitos base, assim como solu¢des desenvolvidas no ambito do tema proposto. Seguidamente, é
proposto um sistema para a conversio da fala sussurrada em fala vozeada, assim como a descri¢do
de todo o seu desenvolvimento. Isto é dividido em duas partes: algoritmo para a identificacdo
automatica das regides candidatas a vozeamento na fala ndo-vozeada e algoritmo para implante
de vozeamento artificial. Todas as operacdes e andlises efetuadas durante o desenvolvimento das
solucdes, tiveram em conta amostras dos dois modos de fala de uma base de dados anotada de um
paciente com disfonia espasmédica. Por fim, sdo apresentados os resultados obtidos da conver-
sdo automadtica da fala ndo-vozeada em fala artificialmente vozeada. Além disso, sdo realizados
testes subjetivos com o objetivo de avaliar o impacto percetivo da técnica de vozeamento artifi-
cial adotada, em trés parametros - inteligibilidade, naturalidade e identidade. Conclui-se tecendo
consideracdes sobre futuros refinamentos do trabalho exposto.
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Abstract

Whispering is an important form of communication commonly used as an alternative to the so-
called voiced speech. Unfortunately, sometimes it is not an alternative, but rather the only means
of conveying information. Such is the case, for instance, of laryngectomised patients, patients
suffering from bilateral paralysis of the glottal folds or patients suffering from spasmodic dyspho-
nia. Consequently, the differences between the characteristics of the two speech modes, both at
physiological and acoustic levels, have drawn attention among the scientific community and thus,
have been researched over the years. However, an effective whisper-to-speech conversion has not
yet been fully accomplished, since the proposed solutions have some shortcomings, such as their
inappropriate nature for real-time operation or the lack of naturalness in the synthesized speech.

This dissertation proposal aims for the research and implementation of an algorithm for real-
time whisper-to-speech conversion, by implanting artificial voicing on selected regions of the
whispered speech. To that end, it is necessary to perform an automatic identification of the re-
gions that are candidates to artificial voicing. Additionally, a natural sounding synthesized voice
should be ensured as well as the incorporation of as much vocal signature elements as possible.

This document starts by presenting the fundamental concepts as well as proposed solutions
for whisper-to-speech conversion so as to provide an insight on the state of the art in this field.
Afterwards, a system for whisper-to-speech conversion is proposed, along with the description of
all its implementation steps. This consists of two parts: the algorithm for the automatic identi-
fication of the candidate regions to artificial voicing in the whispered speech and the algorithm
to implant artificial voicing. All the analysis performed during the development of the solutions
were based on an annotated speech database containing samples provided by a patient suffering
from spasmodic dysphonia. Finally, the results of the automatic whisper-to-speech conversion are
presented. Additionally, subjective tests are conducted in order to assess the perceptual impact
of the adopted artificial voicing technique by using three parameters - intelligibility, naturalness
and speaker’s identity. The document concludes with considerations on future refinements of the
described work.
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“It’s the time that you spent on your rose
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Chapter 1

Introduction

1.1 Context

Whispering is an important mechanism in human vocal communication, as it provides a softer
form of speech. This ability is very useful in several situations as in the exchange of private
information or in quiet places, in which the loudness of the voiced speech is not desirable. In
fact, it is interesting to note that even some animals benefit from this powerful skill, howbeit the

purpose of such behavior is not entirely understood.

Unfortunately, whispers are in some cases the only means of conveying information in a hu-
man dialogue. Aphonic individuals, such as people who have been submitted to partial or full
laryngectomy, or individuals with spasmodic dysphonia are not able to produce natural sound-
ing speech but are capable of producing whispered speech ! without much effort. Therefore, the
problem of returning normal speech to patients unable to produce phonated speech has been mi-
tigated over the years. Currently, the existing solutions involve an invasive medical procedure.
Additionally, these solutions have inherent inconveniences that comprise usage difficulties, risk of
infection and an unnatural sounding output speech. The most common techniques used by post-
laryngectomised patients are esophageal speech, tracheo-esophageal puncture (TEP) [9] and the
electrolarynx (EL) [10]. The clear disadvantages of these methods prompted the research for best
solutions, ideally real-time and noninvasive alternatives. Consequently, some methods emerged
based on an analysis-by-synthesis approach. These methods, rely on signal processing techniques,
which encompass spectral modifications, in an attempt to perform a real-time whisper-to-speech
conversion by transposing the whisper features to normal sounding speech features. The algorithm
would later be inserted in an external device and thus, no medical surgery would be required to
return to these patients a voice similar to the healthy voice. However, these techniques either do

not synthesize a natural speech or are not yet suitable for everyday usage, e.g not appropriated

!In fact the concept of whispered speech comprises two types of speech, soft whispers and stage whispers. The latter
implies partial phonation and consequently some vibration of the vocal folds. Since the most part of laryngectomised
persons are not able to produce any degree of phonation, soft whispers are the most similar to those produced by
laryngectomy patients [8].



2 Introduction

for real-time operation. Hence, the need to continue developing such solutions and deepen the

existing techniques.

1.2 Motivation

As mentioned above, the current solutions that provide these type of patients with a better quality
of life are not entirely satisfactory. Therefore, it is extremely important to continue searching
for solutions capable of overcoming this limitation. The innovative nature and clear impact that
an effective answer to such a problem would have, provide undoubtedly a strong impetus for the
research of this subject.

Actually, there is an additional reason that motivates this study, namely a real case of a patient
with spasmodic dysphonia. The patient has provided samples of his voice to perform the proof-
of-concept of this dissertation. Therefore, a successful solution would have a direct impact on this

person’s life.

1.3 Objectives

In this dissertation a research for an analysis-by-synthesis approach for a real-time whisper-to-
speech conversion is undertaken. It follows the work in [11] aiming to improve the results by
the research of new methods. The purpose is to implement an algorithm that allows for a recons-
truction of natural sounding speech from an in-depth analysis of the whispered speech so as to
perform a proof-of-concept. The algorithm is expected to implant artificial voicing by the insertion
of a periodic pattern in selected regions of the whispered speech, taking into consideration the
characteristics of both speech modes. The spectral modifications should be performed ensuring
a coherent synthesized speech, improving intelligibility first of all. Also, temporal smoothness
should be applied to ensure the best possible naturalness. Finally, the implemented algorithm
would be included in an external prosthesis, providing a noninvasive alternative.

In particular, a specific stage of the overall conversion approach must be accurately exploited,
namely automatic segmentation strategies of whispered speech. The success of this segmentation
is essential for the implementation of a real-time system.

Therefore, the main challenges of the dissertation proposal are the implementation of an algo-
rithm for an automatic segmentation of the whispered speech, by identifying the candidate regions
to artificial voicing; to perform a whisper-to-speech conversion with satisfactory levels of intelli-

gibility and naturalness of the synthesized speech; and to reach real-time operation.

1.4 Structure

The document consists of six more chapters. In Ch. 2 we describe the state of the art, which com-
prises the discussion of some useful fundamental concepts, the description of some implemented

solutions about the overall procedure of whisper-to-speech conversion and the presentation of a
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statistical parametric model for future use in the design of an automatic segmentation strategy of
whispered speech. In Ch. 3, we describe the speech corpora that are used throughout the study, as
well as some considerations on the samples characteristics. The proposed approach for automatic
segmentation of whispered speech is described in detail in Ch. 4, while the proposed algorithm
for whisper-to-speech conversion is presented in Ch. 5. Finally, in Ch. 6 the results of the overall
system are exhibited and in Ch. 7 the document is concluded along with final considerations on

future work.
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Chapter 2

State of the Art

2.1 Overview

This chapter discusses some of the existing methods for conversion of continuous whispered
speech to natural sounding speech. To that end, the first goal is to comprehend what whispered
speech is and what makes it different from the normal speech. This comprises a study of how a
voice sound is generated and shaped by the human vocal system, how can the underlying features
be represented from a signal processing point of view and what sounds should be taken into con-
sideration in the analysis of European Portuguese. Therefore, the second section of the chapter
describes in detail these required concepts. The second stage encompasses the investigation of
how to use those differences and relate them so that a conversion is possible. Thus, in the third
section of this chapter, several approaches are discussed regarding the overall procedure of normal
speech reconstruction, wherein methods of normal speech coding are used and some modifications

are performed so as to adapt to whispered voice.

Finally, in the last section a particular part of the reconstruction process is investigated, the
automatic segmentation of whispered speech. This part deserves particular attention, since a suc-
cessful automatic segmentation would be essential for the implementation of a real-time system,

i.e. the inclusion of an algorithm in an external assistive device.

2.2 Main Differences Between Voiced Speech and Whispered Speech

So as to better understand the systems performing whispered speech to voiced speech conversion,
some fundamental concepts explaining the main differences between these two speech modes need
to be introduced. In this section, specific topics are briefly explained such as characterization of
speech production mechanisms, introduction to European Portuguese phonetics, representation
and characterization of speech signals, as well as a final consideration about the main spectral

differences between the two types of speech.
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Figure 2.1: Speech Production System [1]

2.2.1 Speech Production
2.2.1.1 Human Vocal Apparatus

The human vocal apparatus is a very complex system responsible for the speech production. Thus,
its study should be the starting point in our discussion as it allows to identify the main signal
processing steps involved in the production of voiced and unvoiced speech, as well as to identify
the characteristics and behavior of source signals and filter configurations in both cases.

The speech production system, in Figure 2.1, is divided into three parts [1]: subglottal system
(system below the larynx), larynx and its surrounding components and supraglottal system (system
above the larynx).

The subglottal system contains the main energy source, which is provided by the lungs in
the form of an airflow. The subglottal pressure during the exhalation is responsible to provide the
airstream necessary for speech production and can be controlled so as to adjust the speech volume,
stress pattern and speech duration.

The larynx contains the vocal folds and the glottis. The latter is the space between the vocal
folds and defines the dividing line between subglottal and supraglottal systems. The shape of the
space between the vocal folds changes during phonation and breathing and is controlled by the
arytenoid cartilages. During normal breathing, arytenoid cartilages are far apart, i.e. in abduction
position, consequently so are the vocal folds (the glottis forming a V shape), thus the air passes
freely.

While speaking, during the exhalation, the arytenoid cartilages become close to each other,
closing the vocal folds (adduction position) and forming a constriction. Therefore, when the air
from the lungs (subglotal pressure) passes through the closed vocal folds they vibrate according to

a periodic pattern that modulates the airflow. The fundamental frequency of this periodic pattern
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Figure 2.2: Articulators of the Vocal Tract. [2]

corresponds to the perceived pitch of the voice. This periodic pattern is further shaped in frequency
by the influence of the supra-laryngeal structures as explained later on in this chapter.

The different types of voice are due to different kinds of vibration of the vocal folds. Phonated
sounds are produced by the entire vibration of the vocal folds while unvoiced sounds are pro-
duced without any vibration, i.e. the vocal folds remain in the abduction position, resulting in a
continuous airstream with no periodic excitation.

The supraglottal system acts as a modulator of the created sound, as it behaves as a variable
ressonator, consisting of the pharynx and the vocal tract [4]. The latter can be divided into oral
cavity and nasal cavity, which are responsible for the oral sounds and nasal sounds respectively.
This is the system responsible for the timbre shaping and formation of the vowels and consonants
through articulatory movements. Thus, the different parts of the vocal tract are called the articula-
tors and consist of the active articulators, such as lips, tongue, velum (soft palate) and jaw and the
passive articulators, such as teeth (upper and lower), alveolar ridge and hard palate. The different
articulators can be seen in Figure 2.2. These articulators control the production of speech in such
a way that different speech sounds are determined by the manner and place of articulation, as will

be described in the next section.

2.2.1.2 Source-filter Model

The source-filter model describes the human vocal system as a combination of sound sources and
filters, relating the articulation of the speech sounds with the features of acoustic signals [4] and
relies on the simplifying assumption that source and the filter are independent, i.e. it ignores
coupling effects.

Thus, there are two types of sound sources, a periodic and a non periodic one, representing
the vocal folds vibration and noise, respectively. The filters represent the supraglottal system,
namely the vocal tract, whose resonances represent the filter formants (this concept will be further

explained later), and the radiation characteristics. The model is represented in Figure 2.3.
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Figure 2.3: Source-Filter Model of Speech Production [3]

The common implementation of the source-filter model of speech production assumes that the
sound source, or excitation signal, is modelled as a periodic impulse train, for voiced speech, or
white noise for unvoiced speech. Moreover, the vocal tract filter is, in the simplest case, approxi-
mated by an all-pole filter, where the coefficients are obtained through the use of linear prediction
minimizing the mean-squared error in the speech signal to be reproduced. This is mentioned in

the literature as the basis of Linear Prediction Coding [12].

2.2.2 European Portuguese Phonetics

As this work is developed assuming the characteristics of the European Portuguese dialect, it is
important to first identify results in this area of study, in order to take them into consideration in
all future conclusions.

The first step is to find a common way to represent the different types of speech sounds, since
the use of graphemes by itself are not enough (one grapheme may represent several phones ' and a
phone can be orthographically represented by several distinct graphemes). The IPA (International
Phonetic Alphabet) is an alphabet of phonetic notation, which associates each existing pronounce-
able sound in all existing dialects to a single specific representation, through the use of letters
and diacritics. In short, IPA establishes a univocal relation between the sound and the symbol.
Each language only uses a subset of the IPA, thus the one regarding the European Portuguese is
described in Appendix A.

As stated before, resonances in the vocal tract modify the sound waves according to the posi-
tion and shape of the articulators, creating formant regions and thus different qualities of sound,
leading to the distinction of vowels and consonants. Therefore, the classification of the vowels and
consonants of the EP, according to the place of articulation and position of the articulator, is now

discussed.

2.2.2.1 EP Vowels Articulatory Classification

The EP vowels are produced without significant constrictions to the airflow in the vocal tract,
which explains that they are very resonant, and always involve vibration of the vocal folds. This

means that, typically all vowels are voiced sounds. There are nine oral vowels and five nasalized

1A phone is a unit of speech sound, a speech segment that holds distinct physical or perceptual properties.
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vowels? in EP [4], that are classified according to two parameters: height (high, medium, low)
and backness (front, central, back) of the tongue and lips position. In addition, there are two
semivowels, j and w (see Appendix A), which are different from the vowels, because of their

lower energy. A semivowel is always followed by a vowel, thus giving rise to a diphthong.

2.2.2.2 EP Consonants Articulatory Classification

Unlike the vowels, the consonants are produced with significant constrictions to the airflow in the

vocal tract, caused by the movement of the articulators. Thus, their sound can be affected by noise.
Consonants can be classified according to the place of articulation, manner of articulation and

phonation (voiced or unvoiced), which together gives the consonant its distinctive sound.

The place of articulation is the point of contact where an obstruction occurs in the vocal tract
depending on the location of an active articulator and a passive one. The possible classifications
are [4]: Bilabial, Labio-Dental, Dental, Alveolar, Palatal, Velar and Uvular.

The manner of articulation describes the way the airflow is expelled depending on its pertur-

bation during the passage in the vocal tract. It can be classified as [4]:

o Plosive/stop (oral or nasal) - results from a total constriction to the airflow because of the

blocking of the vocal tract.

e Fricative - results from a partial constriction to the airflow by forcing air through a narrow

space when two articulators are close together.

e Lateral - results from a central constriction to the airflow, forcing the air to proceed along

the sides of the tongue.
e Trill - results from a partial constriction that causes tongue vibration.

The consonants classification is shown in table 2.1.

Finally, the speech sounds can be divided into obstruents and sonorants. The obstruents are
produced with total or partial constriction to the airflow in the vocal tract (oral plosive consonants
and fricative consonants), while the sonorants are produced without any constriction to the airflow
(nasal plosive consonants, lateral and trill consonants, vowels and semivowels). Therefore, there
are only six unvoiced consonants, three oral plosive and three fricative.

It is important to mention that the above classification of vowels and consonants according
to their articulatory characteristics, was performed considering each sound produced individually.
However, during speech, these sounds are produced sequentially, leading to a superposition of the
individual segments and modifying the speech sound. This phenomenon known as coarticulation,

should be taken into account.

2In the nasalized vowels, the airflow passes both through the oral and nasal cavities.
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Place of Articulation | Manner Plosive Fricative | Lateral | Trill
Oral Nasal
Bilabial Voiced b m
Unvoiced | p
Labio-dental Voiced v
Unvoiced f
Dental Voiced d z
Unvoiced | t S
Alveolar Voiced n 1 r
Unvoiced
Palatal Voiced 1 3 A
Unvoiced |
Velar Voiced g
Unvoiced | k
Uvular Voiced
Unvoiced R

Table 2.1: Articulatory classification of the EP consonants. Adapted from [4]

2.2.3 Acoustic Phonetics
2.2.3.1 Fundamental Concepts for Representation and Analysis of Speech Signals

Speech sound waves can be periodic, as in the case of vowels, continuous aperiodic, as fricative
consonants or non-continuous aperiodic, such as in the explosion of the plosive consonants. Fur-
thermore, speech signals are usually classified as voiced or unvoiced, but they can consist of the

two types of sounds. According to this feature, they can be analyzed differently:

e Voiced sounds - They are characterized by a fundamental frequency (FO), which is the low-
est frequency, and its harmonic components produced by the vocal folds. The vocal folds
generate complex periodic sound waves with fundamental frequency values between 50 and
500Hz. Furthermore, the signal is characterized by its formants (poles) and sometimes an-
tiformants (zeros) frequencies, caused by modification of the excitation signal by the vocal
tract. Each formant frequency has also an amplitude and bandwidth that should be consi-
dered.

e Unvoiced sounds - There is no fundamental frequency in the excitation signal and thus no
harmonics. Moreover, the excitation signal is non-periodic and resembles white noise. Some
unvoiced sounds are characterized by stoppage of airflow followed by a sudden release in

the vocal tract.

In the special case of whispering a voiced sound, there is no fundamental frequency, as
expected, and the first formant frequencies produced by the vocal tract are perceived. This

particular case will be discussed later in more detail.
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The fundamental frequency and formant frequencies are probably the most important concepts
in speech synthesis, therefore we will address them in detail along with other important concepts

that will be used throughout the dissertation.

Formants

Formants represent the acoustic resonances of the vocal tract. Each area of the vocal tract has its
own resonance frequency, thus the amplitude and harmonics of the signal are modified during the
passage through the supraglottal cavities, depending on the area. Formants are often measured as

amplitude peaks in the envelope of the magnitude spectrum of the sound.

Cepstral Analysis

As for the determination of the fundamental frequency cepstral analysis is often used. It provides
a method for separating the vocal tract information from excitation as it allows the conversion of
signals obtained by convolution (such as source and filter) into sums of their cepstra, thus pro-
viding linear separation. Therefore, as the fundamental frequency represents the pitch (excitation
signal) it is possible to determine it from the cepstrum.

As a particular case, the real cepstrum is obtained by first windowing and performing Discrete
Fourier Transform (DFT) of the signal, determining the logarithm of the magnitude spectrum and
finally taking the Inverse Discrete Fourier Transform (IDFT), i.e. transforming it back to the time-
domain. Thus, the cepstrum we are considering in this dissertation is the real cepstrum although a

more general complex cepstrum also exists.

Mel-Frequency Cepstral Coefficients (MFCCs)

In cepstral analysis, the spectrum is usually first transformed using the Mel Scale, resulting in
a Mel-frequency cepstrum (MFC), whose coefficients are denominated Mel-Frequency Cepstral
Coefficients (MFCCs). The MFC is a representation of the short-term spectrum of a sound, having
its envelope representing the shape of the vocal tract.

Mel frequency scale represents the spectrum coefficients taking into account the natural fre-
quency resolution of the human auditory system. Humans are more sensitive to small changes in
pitch at low frequencies than they are at high frequencies, so the Mel filterbank uses this informa-
tion to size and space its filters properly. The first filter is very narrow, but as the frequencies get
higher the filters become wider because of the human lower sensitivity in those regions.

In short, to obtain the MFCCs, firstly the speech signal is split into small frames. This is done
because speech is a non-stationary signal, thus the need arises to split the signal into short-term
stationary segments. The samples of the speech signal presented in the frame are weighted by
a Hamming window. Then, the FFT is applied to each frame to obtain the magnitude spectrum,

and this is followed by the Mel scale transformation through a bank of triangular filters uniformly
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spaced in the mel scale. This scale is defined as [13]:

f

= 25951 1+ =
m 951og;( +700)

2.1

where m is the mel frequency and f represents frequency in Hertz.

Finally, the logarithm is applied to the filter outputs (the resulting mel frequencies) aiming the
compression of the dynamic range. This is due to the fact that the human ear does not perceive the
loudness in a linear scale, but rather in a logarithmic approximated manner. In the final step, the
DCT of the logarithm energies is computed in order to de-correlate them (because of the previous
overlapping of the filterbank) and smooth the spectrum by eliminating the higher DCT coefficients,
which represent fast transitions in the filterbank energies.

As a summary, the advantage of MFCCs is that they allow the representation of the spectra
using logarithmic frequency resolutions similar to that of the human ear, which involves a higher

resolution at low frequencies.

2.2.3.2 Acoustic Segmental Properties of some EP Speech Sounds

As mentioned above, the different phonemes can be distinguished by the properties of their source(s)
and their spectral shape. Wherein the vocal folds vibration represents the fundamental frequency,
the supraglottal cavities configuration represents the spectral structure, the exhaling force is rep-
resented by the amplitude and finally the exhaling duration is represented by the time. All these
features can be observed in the spectrogram of the sounds.

The relation between the acoustic properties, observed in the spectrogram, and the articulation

of the sounds is briefly addressed in this section, regarding the EP speech sounds.

Vowels

It was previously mentioned that vowels consist of voiced sounds without constrictions in the
vocal tract. Therefore, they can be characterized by having a source mostly due to periodic glottal
excitation, which can be approximated by an impulse train in the time domain and by harmonics in
the frequency domain, and a filter that depends on, for instance, tongue position and lip protrusion.

As the vowels are produced with a great amount of energy, they have a well defined formant
structure and are therefore, highly visible in the spectrogram. The first three formants (represented
upwards in the spectrogram) of a vowel are the most important, although usually the first two
provide enough information for the identification of the vowel. The first formant (F1) is related
to the height of the tongue during the vowel, namely a low F1 corresponds to a high vowel and a
high F1 corresponds to a low vowel. As for the second formant (F2), it is related to the backness
of the tongue, wherein a low F2 corresponds to back vowels and a high F2 to front vowels.

The vowel triangle diagram, shown in Figure 2.4, does the matching between each EP oral

stressed vowel and its formant pair.
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Figure 2.4: Acoustic triangle diagram of the EP oral stressed vowels [4]. It illustrates the matching
between each vowel and its formant pair, as well as the relative positions between vowels.

With regard to semivowels, they also exhibit a well defined formant structure, although there
is a reduction in the amount of energy. This is observed comparing Figure 2.5a, which represents
the spectrogram of the oral vowel [a], to Figure 2.5b, which represents the spectrograms of the
words "pai" and