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Abstract

The goal of this project was to develop and implement strategies to extract meaningful clusters
from images shared in social media websites, more specifically on Twitter, using only features ex-
tracted from the images’ content and not any associated tag or text. This represents a big challenge
given that there is still no effective way to analyze and process visual content similar to the way
humans process it.

Usually, features extracted from images are low-level, which can be, for instance, gradient
histograms or color signatures. The challenge is how to use these features to find similar images
in the social media. Many algorithms have been developed to try to solve this problem, but by
far the most popular is the Bag-of-Features which takes the low-level features and builds a fre-
quency histogram of visual words. However, there are some important limitations concerning this
method, for instance, the fact that all the spacial information is lost and that color features are
ignored. For this reason, apart from extensively evaluating this method for the purpose of image
clustering, other approaches were also implemented and evaluated, namely, the Fisher Vectors,
Spatial Pyramid Matching, the Bag-of-Colors and a combination of the Bag-of-Features and the
Bag-of-Colors.

At first, before considering images extracted from the social media, three public labeled image
datasets were used. The results of all the algorithms applied to the datasets were then compared
and discussed. Finally, for the ultimate tests, 1000 images were obtained from Twitter. However,
these images did not contain any labels and, for this reason, a user evaluation was conducted in
order to discover a subset of pairs of similar and dissimilar images to assess the performance of
the algorithms.

The results for the public datasets indicate that the Bag-of-Features model works well for sim-
ple object and scene datasets. Nonetheless, the Fisher Vectors and the Bag-of-Feature+Colors were
able to outperform it. Moreover, for the Twitter dataset, these three methods achieved relatively
acceptable results. This suggests that these methods are able to create a higher level representation
which allows the clustering of images. However, there is still a long way to go until automatic al-
gorithms are able to successfully analyze and summarize the content of the huge amount of images
shared in the social networks.
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Resumo

O objectivo deste projeto foi desenvolver e implementar estratégias para obter clusters relevantes
a partir de images partilhadas nas redes sociais, mais espcificamente do Twitter, usando apenas
características extraídas do conteúdo das imagens e não com os textos associados. Esta tarefa
representa um desafio na medida em que ainda não foi desenvolvido um algoritmo para analisar e
processar conteúdo visual de uma forma similar à realizada pelo Homem.

Normalmente, as características extraídas a partir das imagens são de baixo nível, como por
exemplo, histogramas de gradiente ou padrões de cor. O desafio é então, como usar estas carac-
terísticas para obter imagens similares nas redes sociais. Uma grande quantidade de algoritmos foi
desenvolvido para tentar resolver esse problema, no entanto, o mais popular é o denomiado Bag-
of-Feature em que cada imagem é representada por histogramas de frequência de palavras visuais.
Contudo, este método possui algumas limitações, por exemplo, o facto de se estar a perder infor-
mação de posicionamento das características e o facto de se ignorar a cor. Por essa razão, além
de explorar em detalhe este método, outros métodos foram também implementados e avaliados,
nomeadamente, os Fisher Vectors, Spatial Pyramid Matching, Bag-of-Colors, e uma combinação
entre o Bag-of-Features e o Bag-of-Colors.

Primeiramente, antes de considerar as imagens extraídas das redes sociais, três conjuntos de
imagens públicos foram usados. Os resultados dos algoritmos aplicados a esses conjuntos foram
então comparados e discutidos. Finalmente, para o teste final, 1000 imagens foram recolhidas do
Twitter. Contudo, essas imagens não possuíam nenhuma anotação e desta forma, uma avaliação
por utilizadores foi realizado para se poder avaliar a performance dos algoritmos.

Os resultados para os datasets públicos indicam que o método Bag-of-Features funciona bem
para conjuntos de imagens de objects e cenas simples. Mesmo assim, os Fisher Vectors e o Bag-
of-Features+Colors apresentaram resultados superiores. Additionalmente, para o cunjunto de im-
agens do Twitter, esses três métodos atingiram resultados relativamente aceitáveis. Desta forma,
os resultados sugerem que esses métodos são capázes de criar representações de mais alto nível
que possibilita a tarefa de clustering de imagens. No entanto, ainda é necessário o desenvolvi-
mento de estratégias mais robustas e automáticas para analisar e sumarizar o conteúdo da enorme
quantidade de imagens partilhadas nas redes sociais.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

With the emergence of social media websites like Twitter, Facebook, Flickr and YouTube, there
has a been a huge amount of information produced everyday by millions of users. Facebook alone
reports 6 billion photo uploads per month and Youtube sees 72 hours of video uploaded every
minute [1]. The truth is that we have experienced an explosion of visual data available online,
mainly shared by users through the social media websites.

The information shared in the social media websites can have many formats such as text,
images or video. Until recent years, there has been a research focus on the analysis and extraction
of relevant information from text content. This is because text is easier to analyze and categorize
than the other two formats. However, ignoring the visual content shared in the social media could
be seen as a waste of important information for research.

Therefore, there is a need to develop more robust and more powerful algorithms for the anal-
ysis of images from large image collections. The big issue with visual content is that the features
which can be extracted directly from the image, called low-level, do not give information about
the content or high-level concepts present in an image. For that reason, it is extremely difficult to
compare images in a way that is understandable and acceptable to humans. Consequently, this is
an area of great potential for research.

The possibilities for applications of those types of systems are endless and could include safety,
marketing and behavioral studies. This could also provide a different user experience when search-
ing for information on a given topic. For example, if a Twitter user would like to search for images
from a given event, he/she could receive image results which does not necessarily contain the key-
words he specified because the search would be based on the content of the images instead of the
metadata associated with them.

1



2 Introduction

1.2 Objectives

The goal of this thesis is to find patterns in images shared via the social network Twitter. These pat-
terns will be found using a technique called clustering, where given a set of unlabeled data, groups
are formed based on the similarity of the content. This means that the each cluster will represent a
pattern or concept, which could depict, for example, a location, an activity or a photographic trend
(e.g. "selfies").

More specifically, the first objective is to study the different strategies and algorithms for image
description and image clustering. A similar and more widespread field is Content-Based Image
Retrieval (CBIR) which will be explained in detail in section 2.3. It is relevant to understand the
most recent trends and approaches in these fields in order to develop something scientifically up
to date.

After the theoretical study, several algorithms will be implemented. Following this first im-
plementation, there will be a rigorous evaluation phase with the use of publicly available image
collection databases. This evaluation will provide useful information concerning the suitability of
those algorithms for the purpose of image clustering. Then, the algorithms implemented will be
tested using images extracted from Twitter.

Next, once the clusters are obtained, there needs to be a visual representation of the clusters. In
order to do so, algorithms for the visualization of image collections, will be studied and presented
in subsection 2.6.

Finally, there will be an attempt at a partial or full integration with TweeProfiles [2].
In sum, the goal of this thesis is to be able to distinguish patterns or groups of interest in the

huge image database provided from the user’s tweets.

1.3 Project Overview

The task of clustering images from Twitter involves a number of different steps from the extraction
of the data to the presentation of the clusters. These steps can be summarized into three modules,
which were all implemented during this work.

Figure 1.1 presents a diagram that illustrates the different modules involved in an ideal process
of image clustering applied to social media content. First, there is the image acquisition module,
which is responsible for extracting, downloading and filtering visual content from Twitter. Next,
the images pass to the image representation module which transforms the image data into useful
and discriminating features. Each image is represented as a D-dimensional feature vector. Lastly,
these features are fed to the clustering and visualization module that use the features to obtain
the final clusters and present them. In this work, module 1 is separated from modules 2 and 3.
Therefore, the images are first extracted and then processed offline.

The biggest challenge is the development of the image representation module, because if the
images are transformed into feature vectors which are not discriminative, the clustering algorithm
will not be able to obtain meaningful clusters. However, before applying different strategies to
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Figure 1.1: Diagram showing the different modules involved in the process of obtaining clusters
from the image collected from Twitter.

the images extracted from Twitter, public image datasets were used. These datasets are already
labeled, which means that each image has a class or group associated with it.

1.4 Contributions

The first major contribution of this thesis was the development and implementation of Python
scripts, which are available open-source, of five different methods for image clustering. These
methods can be easily applied to a dataset by calling a single Python script from the command line
specifying the algorithm to use and all of its parameters. It is important to note that this enables
researchers to test these methods on their own datasets using any parameters.

Additionally, apart from the classical clustering techniques like K-Means or Hierarchical Clus-
tering, the program also contains the implementation of another clustering algorithm, based on
graph theory and community detection. This approach is introduced in Section 3.2 and is very
useful, since there is no need to choose any parameter such as the number of clusters or a maxi-
mum distance. Also, after applying this algorithm, each cluster can be represented by the image
with the highest centrality-based measure.
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Also, this thesis presents detailed evaluations of all the algorithms implemented on three public
datasets and on a dataset obtained from Twitter. This is relevant since, to the best of our knowledge,
most of these methods were not previously tested for the purpose of image clustering.

Finally, a paper was submitted for review to the British Machine Vision Conference (BMVC)
in May with the results of the first study, which is presented in Section 3. The author notification
is scheduled for July.

1.5 Document Structure

In relation to background and similar work, Chapter 2 will describe many important concepts and
areas related to this subject. First, in Section 2.1, a small background on social network mining
will be given. Also some popular research areas in that field will be presented in order to give some
idea of the applications and research trends related to social networks. After that, some concepts
of data mining will be presented in Section 2.2. The main focus will be in the area of clustering
algorithms and clustering evaluation. Next, in Section 2.3, a very important area of research
called Content-Based Image Retrieval (CBIR), which is related to the topic of this thesis, will
be presented. Following that, section 2.4 will describe algorithms for image description, which
is a way of extracting features from visual content. After that, in Section 2.5, some ideas for
performance evaluation will be presented, based on the evaluation methodologies used in similar
works. Next, Section 2.6 presents some papers in the topic of visualization of image collections.
Lastly, in Section 2.7, some recent and similar work will be presented. These works will give more
insight on the best approach to follow in this thesis.

Concerning the development of this work, Chapter 3 will analyze in detail the Bag-of-Features
model due to its popularity, on public image datasets. Then, Chapter 4 will explore other algo-
rithms developed thought the years as alternatives or extensions to the Bag-of-Features model, also
using public datasets. Next, Chapter 5 will introduce the image acquisition module and present
the final results of the application of the algorithms to images obtained from Twitter.

Finally, Section 6 will present the conclusions obtained from all the studies and concerning the
overall achievements of this work in relation to the set of objectives designed in the beginning of
the project and Section 6.2 will describe suggested future work for anyone who wishes to continue
to study and develop further on this topic.



Chapter 2

Concepts, Background and Related
Work

2.1 Social Network Mining

Social networks have become very popular over the last couple of decades. During this techno-
logical breakthrough, many social networks have appeared such as Facebook, Twitter or Flickr. In
general, a social network is defined as [3]:

Definition 1. A network of interactions or relationships, where the nodes consist of actors, and
the edges consist of the relationships or interactions between these actors.

According to the statistics in [4], Facebook has the largest number of users, 1.39 Billion
monthly active users, from which 890 million are daily active users as of the present date. On
the other hand, Twitter has 288 million active users and 500 million tweets are sent every day [5].
Many such social networks are extremely rich in content, whether it has the form of text, images
or other multimedia data. The amount of content that is being shared in these social networks
provides huge opportunities from the perspective of knowledge discovery and data mining.

According to [3], there are two types of primary kinds of data which are often analyzed in the
context of social networks:

• Linkage-based and structural analysis: analysis of the linkage behavior of the network
in order to determine important nodes, communities or links, and to study relationships
between the different elements involved. For example, the verification of the small world
phenomenon, preferential attachment, and other general structural dynamics has been a
topic of great interest in recent years.

• Content-based analysis: describing, analyzing, linking and classifying the content shared
in social networks. An example is text mining, which is used to discover useful patterns and
information from the text shared by users in social networks, which can have wide variety
of application.

5
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The next sections will introduce the social networks Twitter and Instagram, present some in-
teresting research areas within the topic of social network mining, and finally introduce a system
called TweeProfiles [2]. As mentioned before, this work intends to be a contribution for an exten-
sion of TweeProfiles in order to allow the mining of visual content.

2.1.1 Twitter

Twitter is an online social networking used primarily as a microblogging service. Unlike on most
online social networking sites, such as Facebook or MySpace, the relationship of following and
being followed requires no reciprocation [6]. A user can follow any other user, and the user being
followed does not need to follow back. Being a follower on Twitter means that the user receives
all the messages from those the user follows. Users share messages called tweets, which have
a maximum length of 140 characters. Additionally, the retweet mechanism empowers users to
spread information of their choice beyond the reach of the original tweet’s followers.

Twitter users can also share other type of content such as pictures. In the tweet box, users
can add up to 4 images, which will be converted to a pic.twitter.com link in the actual tweet sent
(although it displays the image instead of the link).

Twitter has been the data source for many interesting studies for various types of applications.
For instance, the authors of [6] studied the topological characteristics of Twitter and its power as
a new medium of information sharing. For this work, they collected 41.7 million user profiles,
1.47 billion social relations, 4,262 trending topics and 106 million tweets. Other example is [7],
where a hashtags retrieval system was built, where hashtags were obtained based on users interest
expressed in the user’s tweets. Content analysis was also performed in many researches (refer to
section 2.1.6).

2.1.2 Instagram

Instagram is a social network oriented to mobile photo-sharing and video-sharing. It enables
users to take pictures, make videos and share them in a number of other different social network
platforms including Facebook, Flickr and Twitter. One appealing aspect of Instagram is that users
can apply digital filters to the photographs taken. Also, all the images shared are converted to a
square shape. As of December 2014, Instagram reported to have 300 million users accessing the
site per month [8].

In recent years, several studies have focused on analyzing visual information from Instagram.
The authors of [9] investigated the way a culture manifests itself through its visual production on
Instagram. On the other hand, [10] attempted to characterize the different categories of images
shared to Instagram and the major types of users.

2.1.3 Research Directions and Trends

Next, three fields of research in the area of social network mining are presented. The first is com-
munity detection, where the relationships in the social network form a graph that can be partitioned
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in order to form groups or communities. The second topic is information cascade and influence
maximization, where the objective is to discover influential users in the social network. Finally the
last one is opinion mining and sentiment analysis which studies the subjective information present
in the text content shared by users.

2.1.4 Community Detection

Relationships in social networks can be described by interconnected nodes that form complex net-
works or graphs. In order to obtain information on the structure of those networks, a strategy used
is to decompose the network into sub-networks or communities, which are groups of highly con-
nected nodes. This is referred as the problem of community detection [11]. Community detection
is also applied in other types of networks including computer networks, information networks and
biological networks

Community detection requires an algorithm to partition the network in a way that the nodes in-
side each community are highly interconnected and the nodes belonging to different communities
are sparsely connected.

Many algorithms have been proposed for this problem, but generally they can be divided into
three categories: divisive (starts with the entire network and then remove weak links), agglomera-
tive (merges similar nodes and communities) and minimization of an objective function.

The quality of the detected partition is usually measured in terms of the modularity (Q), which
is a measure that varies from -1 to 1 and can be computed as follows:

Q =
1

2m Â
i, j
[Ai, j�

kik j

2m
]d (ci,c j) (2.1)

Where Ai, j is the weight of the edge between nodes i and j (in case of a weighted graph), ki is
the sum of the weights from the node i, ci is the community of the node i, m is half of the sum of
all weights in the network and function d (u,v) is 1 if u = v or 0 otherwise.

Next an efficient algorithm for community detection will be presented. It is called the Louvain
Community detection algorithm and was introduced in [11]. This algorithm finds high modularity
partitions in a short time. It is composed by two phases that are repeated iteratively that are
presented next:

1. First assign a different community to each node of the network. For each node i of the net-
work, compute the improvement in terms of modularity by adding node i to the community
of each of its neighbors j and adds the node to the community with the maximum gain. One
of the reasons for the efficiency of this algorithm is the fact that the gain in modularity is
easy to compute.

2. Next, the algorithm builds a new network whose nodes are the communities found during the
first stage. The weights between the communities are computed as the sum of the weights of
the links between the nodes of the communities. Also, the sum of the weights of the edges
from the same community are originate self-loops.
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These steps are then iterated until there are no more changes and a maximum of modularity
has been achieved. Figure 2.1 illustrates the different steps of the algorithm. In the first iteration,
the network is reduced to 4 communities, then in the final iteration it becomes only 2.

Figure 2.1: Illustration of the steps of the Louvain algorithm for community detection. Extracted
from [11].

This algorithm was validated in [11] and compared to a number of different community detec-
tion algorithms which proved its efficiency and performance.

2.1.5 Cascade and Influence Maximization

In marketing, companies attempt to promote ideas or behaviors, within a population of individu-
als. One way to do this could be to target key individuals by offering them free samples of the
product or explaining an idea. That individual would then share this idea, engaging others. The
question in this situation is whom the companies should target. The answer should be to target the
most influential individuals. Therefore, this approach is based on the premise that targeting a few
key individuals may lead to strong cascade of recommendations. This is known as the influence
maximization problem [12].

Online social networks provide good opportunities to address this problem, because they are
connecting a huge number of people and they collect a huge amount of information about the
social network structures and communication dynamics. However, they also present challenges
due to the large scale, complex connection structures, and also variability [13].

A simple way of obtaining the most influential nodes is to compute centrality-based measures,
which identifies the most important nodes in a graph [14]. There are several centrality-based
measures divided into different categories. The most popular ones are: degree centrality, closeness
centrality, betweenness centrality and eigenvector centrality. The degree centrality of a node is the
simplest and is measured by the sum of the number of edges that this node has. The more edges, the
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more important a node is considered in terms of this measurement. Next, the closeness centrality
of a node is defined as the inverse of the sum of the distances to all other nodes. That means
that the most central node is the one with the smallest distances to all other nodes. Betweenness
centrality measures the number of times a node acts as a bridge along the shortest path between
two other nodes. Finally, the eigenvector centrality assumes that each node’s centrality is the sum
of the centrality values of the nodes that it is connected to. It computes the eigenvectors for the
largest eigenvalue of the adjacency matrix of the graph.

2.1.6 Opinion Mining and Sentiment Analysis

Opinions have always been a fundamental part of human relationships. Nowadays, opinion content
is present almost everywhere and it is of easy access to almost anyone due to the popularity of the
Internet and other media such as TV or music. This availability in data creates an opportunity for
information technologies to produce systems that can automatically detect and evaluate opinions.

Opinions and its related concepts such as sentiments, evaluations, attitudes, and emotions are
the subjects of study of sentiment analysis and opinion mining [15]. In particular, opinion mining
can be defined as a sub-discipline of computational linguistics that focuses on extracting people’s
opinion from the Web. Sentiment analysis, on the other hand, is about determining the subjectivity,
polarity (positive or negative) and polarity strength (e.g. weakly positive, mildly positive, strongly
positive) of a text message [15]. The concepts of opinion mining and sentiment analysis usually
work together in determining the nature of an opinion.

An interesting project in this area is REACTION (Retrieval, Extraction and Aggregation Com-
puting Technology for Integrating and Organizing News) which is being developed by several Por-
tuguese institutions. One of the objectives of the project is the automatic analysis of content from
social networks. The system named Twitómetro attempts to collect and infer polarity on tweets
related to politics personalities during elections.

2.1.7 TweeProfiles

TweeProfiles [2] is a project started in 2012 that aims to identify tweet profiles or trends from
user collected data. The profiles integrate multiple types of data, namely, spacial, temporal, social
and content. Therefore, the goal is to find interesting patterns and clusters using a combination
of different types of information extracted from a Twitter community, called dimensions. Another
goal of this project is to develop a visualization tool that would allow the effective displaying of
the different patterns.

The data collected and used by TweeProfiles was obtained using SocialBus [16]. SocialBus
is a Twitter crawler that collects data from a particular user community for research purposes.
It an open-source project with the objective to promote research in the area of social network
analysis. Researches can, therefore, collect their own data focusing on different communities of
users, choosing different factors such as geographic, demographic, linguistic or even content-based
characteristics.
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In terms of the implementation of TweeProfiles, it uses data mining methods in order to ac-
complish the goals mentioned earlier. First, it prepares the data by filtering the tweets that have
spacial information (latitude and longitude) and extracts the social relationships between the users
that sent the tweets processed. After all the data is collected and prepared, dissimilarity matrices
are computed for each dimension. For each dimension, a different dissimilarity measure is used.
The spacial distance is computed using the Haversine function [17]. For the temporal distance,
a timestamp difference is chosen. As for content, the cosine dissimilarity is used (please refer to
section 2.2.1.1). Finally, the social distance is calculated using the graph geodesic [18] (the dis-
tance between two vertices in a graph, which is the number of edges in a shortest path) between
the users in the social graph constructed earlier. A min-max normalization function was applied to
all matrices. For combining the matrices of each dimension, weights can be set by the user. This
allows to perform and evaluate different combinations of dimensions and obtain different results
based on these weights.

After the dissimilarity matrix is computed, clustering is performed. Among all the possible
clustering algorithms, the one chosen is DBSCAN (please refer to section 3.4.4).

In the visualization tool each cluster is represented in the map by a circular shape that roughly
represented the cluster locations, a time interval (time of the first and last tweet of that cluster), the
most frequent words used (the content dimension) and a mini social graph.

An example of the visualization of different clusters obtained using multiple values of the
weights is presented in Figure 2.6.

Figure 2.2: Clus-
ters in Portugal;
Content proportion
100%.

Figure 2.3: Clus-
ters in Portugal;
Content 50% +
Spacial 50%.

Figure 2.4: Clus-
ters in Portugal;
Content 50% +
Temporal 50%.

Figure 2.5: Clus-
ters in Portugal;
Content 50% +
Social 50%

Figure 2.6: Visualization of the clusters obtained by TweeProfiles using different weights for the
different dimensions. Extracted from [2].

Due to lack of time and complexity of the task, there was little attempt to perform evaluation
on the clusters obtained. Also, the only content used to find patterns was text, which can be
restrictive given that, as mentioned before, Twitter users can also share other types of content. For
this and other reasons, many other works have been developed since, having the initial version
of TweeProfiles as the reference. This thesis will be one more contribution towards improving
TweeProfiles.
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2.2 Data Mining Techniques and Algorithms

Generally, data mining is the process of analyzing data from different perspectives and summa-
rizing it into useful information that can be used, for example, in the business field to increase
revenue, cuts costs, or both. Algorithms for data mining have a close relationship to methods of
pattern recognition and machine learning.

Data mining techniques and algorithms can be separated into a number of different categories,
each one with a different purpose [19]:

• Anomaly detection (or outlier detection): the identification of unusual data records. Typ-
ically the anomalous items will translate to some kind of issue such as bank fraud, medical
problems or errors in text [20];

• Association rule learning: the discovery of relevant relationships between variables. Prod-
uct placement inside a commercial establishment is an example of application of association
rules. In that case, the goal is to discover products bought usually together in order to make
decision about where to presents those products [21];

• Classification: a supervised learning method used to predict the label or class of an unseen
dataset (test set) based on the information collected from a known dataset (training set).
Supervised in this context means that the examples contained in the datasets are labeled,
and therefore, there is a reference for training and evaluation [22];

• Regression: the method of finding the best function to model a given dataset. It is similar
to classification apart from the fact that there is no concept of classes but of target variables
that can take any real or numerical value [22];

• Clustering: an unsupervised method which consists of finding groups and similarities in
the examples of the dataset. In a clustering problem, there are no labels nor classes already
present in the data, so the goal is to be discover possible organizations or patterns [22];

• dimensionality reduction: where the goal is to reduce the number of dimensions of the
feature vectors of a dataset in order to improve the performance of the algorithms for re-
gression, classification or clustering. There are two types of dimensionality reduction tech-
niques: feature selection and feature extraction. In feature selection, some of the variables
(features) are considered irrelevant, and therefore are excluded, while in feature extraction,
features are combined to create more powerful features for the selected purpose [22].

• Evaluation: the task of accessing the performance of a model, which could be a clustering
results, a classification result, among others [22].

• Summarization: which goal is to extract information a source and present the most im-
portant content to the user in a condensed form and in a manner sensitive to the user’s
application’s needs [23].
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The next section will cover some algorithms used for clustering, since it is the most important
concept used for this thesis. The description will cover simple and classic algorithms as well as
some more complex and recent approaches.

2.2.1 Clustering

Clustering is one of the human’s primitive mental activities and is part of their learning process
[22]. It is used to handle the huge amount of information received everyday by defining basic cat-
egories (e.g. animal, kitchen, school). In a similar way, computers can apply clustering algorithms
to collected data to reveal hidden information and structures.

Before applying a clustering technique, the data needs to be prepared by defining the features
which will be used. The term features denotes the characteristics or variables that describe each
example in the dataset. For example, if the dataset is formed by animals in a Zoo, the features
collected could be the size of the animal, the color of the fur, the life expectancy, etc. If the features
are not carefully selected, in order to have a minimum redundancy and a maximum information
encoded, the clustering task will be less efficient [22].

2.2.1.1 Proximity Measures

The proximity measures define how two sets of points or sets in a dataset are similar or dissimilar
to each other. A similarity measure quantifies how close two elements of the dataset are in relation
to its features. In contrast, the dissimilarity measures evaluate how far apart they are.

Next some examples of popular similarity and dissimilarity measures will be presented.

Starting by the dissimilarity measures, some of the most popular measures can be generalized
using the weighted Minkowski distance of order m. Using this measure, the dissimilarity between
two points x = (x1, . . . ,xl) and y = (y1, . . . ,yl) in the dataset are computed as follows:

dp(x,y) = (
l

Â
i=1

wi|xi� yi|p)
1
p (2.2)

Where the following dissimilarity measures can be obtained by changing the values of p and
wi:

• Euclidean distance (p = 2 and wi = 0):

de(x,y) =

s
l

Â
i=1

(xi� yi)2 (2.3)

The Euclidean distance is the most common measure of distance between two points. It can
be extended to any number of dimensions and represents the smallest distance between two
points in an Euclidean space [24].
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• Weighted Euclidean distance (p = 2 and wi 6= 0):

dwe(x,y) =

s
l

Â
i=1

wi(xi� yi)2 (2.4)

• City-block or Manhattan distance (p = 1 and wi = 0):

d1(x,y) =
l

Â
i=1

|xi� yi| (2.5)

Other dissimilarity measures include:

• Chebyshev distance:

d•(x,y) = max
1il

|xi� yi| (2.6)

• Mahalanobis distance, where B is the inverse of the within-group covariance matrix.

dm(x,y) =
q

(x�y)T B(x�y) (2.7)

If the covariance matrix, B, is the identity matrix (uncorrelated variables with unit variance), the
Mahalanobis distance reduces to the Euclidean distance. If the covariance matrix is diagonal, then
the resulting distance measure is called a normalized Euclidean distance.

dne(x,y) =

s
l

Â
i=1

(xi� yi)2

s2
i

(2.8)

The Mahalanobis distance accounts for the variance of each variable and the covariance between
variables. Geometrically, it does this by transforming the data into standardized uncorrelated data
and computing the ordinary Euclidean distance for the transformed data [25]. Thus, it provides a
way to measure distances that takes into account the scale of the data.

In relation to similarity measures, some of the commonly used include:

• Inner product:

sinner(x,y) = xT y (2.9)

The inner product is a basic similarity function between two points. If x tends to be high
where y is also high, and low where y is low, the inner product will be high, and therefore
the vectors are more similar.

• Cosine similarity measure:

scosine(x,y) =
xT y

||x|| ||y|| (2.10)
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Where ||x|| =
q

Âl
i=1 x2

i and ||y|| =
q

Âl
i=1 y2

i . Since the inner product is unbounded, one
way to make it bounded between -1 and 1 is to divide by the vectors’ norms, giving the
cosine similarity. If x and y are non-negative, it is actually bounded between 0 and 1. The
cosine similarity is a measure of the cosine of the angle between the two points or feature
vectors. It is thus a judgment of orientation and not magnitude. One of the reasons for the
popularity of cosine similarity is that it is very efficient to evaluate, especially for sparse
vectors, as only the non-zero dimensions need to be considered [26]. It is widely used in
retrieval systems where each data is represented by a vector of frequencies (for example, of
words in text mining), so that the cosine similarity measure will give a good estimate of how
similar the examples are without being too expensive computationally [27].

• Pearson’s correlation coefficient:

sperson(x,y) =
xT

d yd
||xd || ||yd ||

(2.11)

Where xd = [x1�mean(x), ...,xl�mean(x)]T and yd = [y1�mean(x), ...,yl�mean(y)]T

The cosine similarity is not invariant to shifts. If x was shifted to x+ 1, the cosine similarity
would change. This problem is solved by using Person’s correlation, which is the cosine similarity
between centered versions of x and y, again bounded between -1 and 1 [26].

Additionally, there are also distance measures between vectors having discrete or binomial
values, but this will not be covered in this document.

To conclude, there are many proximity measures that could potentially be used for clustering
analysis. Overall, the choice of the best one depends largely on the application.

2.2.1.2 Clustering Algorithms

In the previous subsection, some popular proximity measures where presented. Each of these
measures gives a different interpretation of the terms dissimilarity and similarity associated with
the type of clusters one wants to obtain. Next, a number of popular clustering algorithms will be
explained.

2.2.1.3 Centroid-based Clustering: K-Means

Also called partition-based algorithms, these types of algorithms construct a partition of a database
D of n objects into a set of k clusters. Some domain knowledge is required since an input parameter
k is required for these algorithms, which unfortunately is not available for many applications.
The partitioning algorithm typically starts with an initial partition of D and then uses an iterative
process to optimize an objective function.

K-Means [28] is one of the simplest unsupervised learning algorithms for clustering. It min-
imizes the within-cluster variance. The number of clusters k is fixed beforehand. The main idea
is to define k centroids, one for each cluster. The centroids are initialized randomly in the feature
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space or can be chosen to be coincident with k data points. The next step is to take each data
point and associate it to the nearest centroid based on the Euclidean distance 2.2.1.1). When all
the points are assigned to the nearest centroid, the k centroids are re-calculated as the mean of the
feature values of the data points assigned to it. The procedure continues until there are no changes
in the clusters obtained in each iteration or a stopping criteria is reached.

Using a different notation, given a set of observations (x1,x2, . . . ,xn), where each observation
is a d-dimensional real vector, K-Means clustering aims to partition the n observations into k(
n) sets S = S1,S2, . . . ,Sk so as to minimize the within-cluster sum of squares (WCSS). This, its
objective is to find:

argmaxs

k

Â
i=1

Â
x2Si

||x�µi||2 (2.12)

Where µi is the mean of points in Si.

An example of the K-Means clustering can be found in Figure 2.7. In this 2-D dataset, the
value used for k was 2 and the algorithm converged to the 2 centroids represented by the red X’s.
The clusters were then colored with green or blue. In this example, the results were perfect due to
the nature of the data (two generated Gaussian sets with a well separated mean). When working
with real data, the results are usually not expected to be ideal.

Figure 2.7: Example of K-Means clustering algorithm in a 2-D dataset.

One of the biggest problems with the K-Means clustering algorithm for unsupervised learning
is the fact that the value of k (number of clusters) needs to be provided by the user, when in most
of the situations this values is not known. One method generally applied is to do the K-Means
algorithm using different values for k and comparing the results objectively or subjectively. Some
attempts to solve this problem include the called X-means algorithm [29].

Other problems with the K-Means algorithm is that it scales poorly computationally and the
search is prone to local minima depending on the initial seeds.
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Finally, the shape of all clusters found by any centroid-based algorithm is convex which is
very restrictive.

In spite of the problems and disadvantages of this method, and even though K-Means was
proposed over 50 years ago when thousands of clustering algorithms have been published since
then, K-Means is still widely used [30].

2.2.1.4 Connectivity-based Clustering: Hierarchical Clustering

Hierarchical clustering is a clustering method which seeks to build a hierarchy of clusters. Strate-
gies for hierarchical clustering generally fall into two types agglomerative and divisive [22]. In
the first type, each observation starts as its own cluster and then clusters are merged based on
the similarity or dissimilarity measure chosen until there is only one cluster. Alternatively, the
algorithm starts with only one cluster containing all the observation and then are splited until each
observation becomes a different cluster. The results of a hierarchical clustering process are usu-
ally represented by a dendrograms, which is a type of tree diagram. Figure 2.8 represents two
examples of dendrograms using the two types of hierarchical clustering algorithms.

Figure 2.8: Example of a dendrograms for hierarchical clustering, using either agglomerative or
divisive methods. Extracted from [31].

In order to decide which clusters should be combined (for agglomerative), or where a cluster
should be split (for divisive), a measure of dissimilarity between sets of observations is required. In
most methods of hierarchical clustering, this is achieved by use of an appropriate metric (proximity
measures mentioned in section 2.2.1.1), and a linkage criterion which specifies the dissimilarity of
sets as a function of the pairwise distances of observations in the sets. That is, the criterion used
to access distances between clusters. For example, if a cluster is composed by n observations and
other is composed by m, there should be a way to compute the distance between these clusters
using only a single distance measure between two observations.

The most popular linkage criterion are the following:
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• single linkage clustering:

min{d(a,b) : a 2 A,b 2 B} (2.13)

In single-linkage clustering, the distance between two clusters is computed by a single element
pair, namely those two elements (one in each cluster) that are closest to each other.

Figure 2.9: Illustration of single-link clustering. Extracted from [31].

• complete linkage clustering:

max{d(a,b) : a 2 A,b 2 B} (2.14)

In complete linkage, the distance between two clusters is computed as the distance between
those two elements (one in each cluster) that are farthest away from each other. Complete linkage
clustering avoids a drawback of the alternative single linkage method - the so-called chaining
phenomenon, where clusters formed via single linkage clustering may be forced together due to
single elements being close to each other, even though many of the elements in each cluster may
be very distant to each other. Complete linkage tends to find compact clusters of approximately
equal diameters.

Figure 2.10: Illustration of complete-link clustering. Extracted from [31].

• average linkage clustering:

1
|A||B| Â

a2A
Â
b2B

d(a,b) (2.15)

Average linkage is a combination of the two previous methods. The distance between two
clusters is the average of the distances between every pair of elements of each cluster.

To conclude, the type of linkage method is important and needs to be chosen considering the
nature of the clusters which are to be obtained.
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Figure 2.11: Illustration of average-link clustering. Extracted from [31].

The main problem with hierarchical clustering algorithms has been the difficulty of deriving
appropriate parameters for the termination (or stopping) condition. The termination condition
should find the best place to cut the dendrogram in order to separate all the important clusters and,
at the same time, avoid splitting them in more than one cluster. Usually the stopping condition
used is a threshold indicating that the clusters are too far apart to be merged (distance criterion) or
is related to the number of clusters, when there is a sufficiently small number of clusters (number
criterion).

2.2.1.5 Density-based clustering: DBSCAN

For density-based clustering algorithms, clusters are considered as regions in the l-dimensional
space that are "dense" in data points [32]. Most of these algorithms do not impose restrictions on
the shape of the clusters. In addition, they are able to hand efficiently outliers. Moreover, the time
complexity of these algorithms is lower than O(N2), which makes them eligible for processing
large datasets.

DBSCAN (Density-based Spatial Clustering of Applications with Noise) is an algorithm, pro-
posed in [32] to overcome some of the issues concerning the clustering of large spacial databases.
This algorithm requires only one input parameter and supports the user in determining an ap-
propriate value for it. It can also discover clusters with arbitrary shape (e.g. spherical, linear,
elongated).

The DBSCAN estimates the density around a data point p as the number of points in the
dataset that fall inside a certain region in the l-dimentional space surrounding p. That is, the key
idea of DBSCAN is that for each point of a cluster, the neighborhood of a given radius has to
contain at least a minimum number of points, i.e. the density in the neighborhood has to exceed
some threshold. The shape of a neighborhood is determined by the choice of a distance function
for two points p and q, denoted by dist(p,q).

According to DBSCAM, an EPS-neighborhood of a point p, denoted by NE ps(p), is the
number of points belonging to the neighborhood of distance E ps to p. This is mathematically
defined by:

NE ps(p) = {q 2 D|dist(p,q) E ps} (2.16)

Another important definition for this algorithm is the term directly density-reachable. A point
p is directly density-reachable from a point q given the values of EPS and MinPts if:
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1. p 2 NE ps(q) and

2. |NE ps(q)|�MinPts (core point condition)

Density-reachability is another relevant concept and is a canonical extension of direct density-
reachability. A point p is density-reachable from a point q with respect to E ps and MinPts if there
is a chain of points p1, . . . , pn, p1 = q and pn = p such that pi + 1 is directly density-reachable
from pi.

Finally, the last concept is density-connection. A point p is density-connected to a point q with
respect to E ps and MinPts if there is a point w such that both, p and q are density-reachable from
w using E ps and MinPts.

After those definitions, density-based notion of a cluster can be presented. Intuitively, a cluster
is defined to be a set of density-connected points which has maximal density-reachability. Addi-
tionally, noise is the set of points in D not belonging to any of its clusters. More specifically, a
cluster is defined as:

Let D be a database of points. A cluster C with respect to E ps and MinPts is a non-empty
subset of D satisfying the following conditions:

1. 8p,q : i f p 2C and q is density-reachable from p wrt. E ps and MinPts, then q 2C. (Maxi-
mality)

2. 8p,q 2C : p is density-connected to q wrt. EPS and MinPts. (Connectivity)

In order to use these definitions to find the clusters, the values of EPS and MinPts are needed
for every cluster. The problem is that there is no easy way to get this information in advance for
all clusters of the database. However, there is a simple and effective heuristic presented in [32] to
determine the parameters E ps and MinPts of the smallest, i.e. least dense cluster in the database.
The reason behind choosing the least dense cluster is that the clustering algorithm will find all
the other clusters except for the ones with lower parameters, which will should correspond to the
noise.

Figure 2.12: Clusters found by DBSCAN in 3 databases. Extracted from [32].

Figure 2.12 shows an example the results of the DBSCAN algorithm applied to some datasets
with a variety of different shapes. The database 1 has rounded clusters that could be obtained using
almost classic algorithm (e.g. K-Means). Database 2 has various shapes of clusters, which would
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be very hard for a simple algorithm to detect. Nonetheless, DBSCAN can effectively obtain the
"correct" clusters. Finally, database 3 has noise, which are ignored by DBSCAN.

A Pseudocode for the DBSCAN algorithm can be found in [32] for further insight.

2.2.1.6 Fuzzy Clustering: Fuzzy C-Means

Unlike the algorithms mentioned before, where the final clusters obtained are disjoint (or hard
clusters), fuzzy clustering algorithms partition the dataset into non-disjoint clusters (or soft/fuzzy
clusters) [33]. For this reason, a data element can belong to more than one cluster, and usually a
membership level is associated to it. This family of clustering algorithms is based on the fuzzy
logic theory [34].

Fuzzy clustering has been around for a long time [33] and many algorithms where designed.
The most popular is the Fuzzy C-Means (FCM) algorithm, which will be explained next.

The goal of the FCM algorithm is to partition a set of n elements X = {x1, . . . ,xn} into c
fuzzy clusters, C = {c1, . . . ,cc}. In the Fuzzy C-Means algorithm, each data point has a degree of
belonging to a certain cluster (named membership). This value can range between 0 and 1 and the
sum of all the memberships in a given data example needs to be 1. They are represented by wi, j

where i is the datapoint and j is the cluster. The FCM algorithm aims to minimize the following
objective function [35]:

argmin
C

n

Â
i=1

c

Â
j=1

wm
i j
��xi� c j

��2
, (2.17)

where:
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i j =
1
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k=1
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kxi�c jk
kxi�ckk

◆ 2
m�1

. (2.18)

which is a similar objective function to the K-Means clustering algorithm. The m variable is
called the fuzzifier and determines the level of fuzziness of the clusters obtained. The minimal
value of m is 1, for which the clusters are no longer fuzzy, but hard.

Given these membership degrees, wk(x) for each datapoint x in the dataset, the centroid of the
kth cluster is obtained by computing the following expression:

ck =
Âx wk(x)mx
Âx wk(x)m . (2.19)

which is just the mean of all points weighted by the degree of belonging to the given cluster,
excluding a parameter m.

As for the algorithm, it is very similar to the popular K-Means algorithm (sec. 2.2.1.3) [35]:

1. Select the number of clusters

2. Assign the coefficients of belong to each cluster randomly

3. Calculate the centroid of each cluster using equation 2.19



2.2 Data Mining Techniques and Algorithms 21

4. Compute, for each point, the new coefficients using equation 2.18

5. Repeat steps 3 and 4 until a stopping criteria is achieved

Fuzzy clustering has been successfully applied to image segmentation, text categorization,
among others [36]. For a more a detailed description of other fuzzy clustering algorithms, please
refer to [36].

2.2.2 Data Stream Clustering

Sometimes, the data obtained from a given source is generated and captured continuously and
with high variability in data rate. This is the case for most of the data extracted from the Web (for
example, through Twitter crawlers). The storage, querying and mining of data of this nature is
challenging and complex. In order to obtain a fixed dataset, data has to be stored. This is consid-
ered to be "offline" processing. Recently, researchers have been focused on designing algorithms
for data stream processing [37]. One of these types of tasks is clustering analysis. Here, instead of
obtaining a single clustering result, the clusters are constantly changing as new data is added and
old data is removed.

Next two algorithms for data stream clustering are presented, BIRCH and Mini Batch K-
Means.

2.2.2.0.1 BIRCH The BIRCH clustering algorithm is one of the most popular algorithms for
incremental clustering. BIRCH was introduced in [38] and is a type of hierarchical clustering
algorithm that is efficient in the presence of large datasets. Its efficiency is based on many charac-
teristics: each clustering decision is made without scanning all data points and currently existing
clusters, it considers the importance of different data points to the overall clustering result and it
is an incremental method which does not require the whole dataset in advance.

The BIRCH algorithm works by building a clustering feature tree (CF tree). Each element
of the CF tree is a cluster and has three features: N (number of points), LS (linear sum of the
elements) and SS (square sum of the elements).

The clustering results obtained depend on three parameters: the branching factor, the leaf
threshold and the Threshold. The tree size depends on the value of T chosen since the larger this
value, the smaller the tree obtained.

Overall, the BIRCH algorithm has several advantages including the fact that it is faster than
algorithms such as K-Means for large datasets, it only scans the whole dataset once, it handles
outliers better and has a high stability and scalability. However, it cannot handle non spherical
clusters since it uses the notion of radius and diameter.

2.2.2.0.2 Mini Batch K-Means The Mini Batch K-Means algorithm was developed with the
goal of reducing the computational complexity of the traditional K-Means algorithm for large scale
applications. Nonetheless, it still aims to optimize the same objective function [39].
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Unlike the K-Means algorithm, it uses mini-batches which are smaller subjects randomly sam-
pled from input data. For this reason, the results of this algorithm are slightly worse than the
classical K-Means.

The algorithm has two main steps: the assignment of the samples to the nearest centroid (at
first the centroids are picked randomly from the samples) and update the centroids. One important
difference from K-Means is that the centroids are updated with each sample considering all the
previous samples that have already been assigned to it. These steps are performed until conver-
gence or a predetermined number of iterations is reached.

For a better understanding, the algorithm for the Mini Batch K-Means algorithm is presented
in Algorithm 1.

Algorithm 1 Mini Batch K-Means algorithm
1: Given: k, mini-batch size b, iterations t, data set X
2: Initialize each c 2C with an x picked randomly from X
3: v 0
4: for i = 1 to t do
5: M b examples picked randomly from X
6: for x 2M do
7: d[x] f (C,x) . Store the nearest center to x
8: end for
9: for x 2M do

10: c d[x] . Get the nearest center to x
11: v[c] v[c]+1 . Update per-center counts
12: h  1

v[c] . Get per-center learning rate
13: c (1�h)c+hx . Update center
14: end for
15: end for

2.2.3 Cluster Validity

As seen in the last section, clustering is a technique for unsupervised learning. This means that
there are no true classes represented in the dataset. Therefore, the question now is how to eval-
uate the quality of the clusters found using the clustering algorithms. To answer this question,
researchers have created techniques for what is known as clustering validation or clustering valid-
ity, which is the process of estimating how well a partition fits the structure underlying the data
[40].

The objectives of cluster validity methods include determining whether non-random structure
exists in the data, evaluating how well the results of a cluster analysis fit the data, comparing the
results of two different sets of cluster results from two different algorithms and determining the
best number of clusters present in the data.

The last objective mentioned refers to the fact that most clustering algorithms require a tuning
of the input parameters to achieve optimal results. For example, the K-means algorithm, as seen
before, requires the number of clusters as an input. A way of determining this parameter would
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be to test with many different values of k and compute, for each a validity index, which would
measure the quality of the partition. Therefore the clustering validity methods are a good way of
determining the best input parameters to use for a certain clustering analysis.

In order to numerically measure different aspects for clustering validity, there are three main
types of indexes or criteria:

• External Index: used to measure how well the clusters obtained match externally supplied
class labels (which could not be available).

• Internal Index: used to measure the quality of the clusters obtained without respect to exter-
nal information.

• Relative Index: used to compare two different clusters or clustering results.

In this section, the focus will be on the external and internal indexes, which are the ones
generally used in unsupervised learning. The external indexes are applied when a benchmark
dataset is available, otherwise, the internal indexes are used.

2.2.3.1 External Indexes

The external criteria measures the similarity of the clusters obtained against the class labels present
in the dataset. Although there is a variety of external indexes available, but only 4 will be presented
in the following. All of these indexes were described in [41].

The first external index is purity, which is computed by assigning each cluster to the majority
class of the elements of that cluster, and then the accuracy is measured by counting the number of
correctly assigned points and dividing by the total number of points N. Mathematically, purity is
defined as:

purity(W,C) =
1
N Â

k
max j|wk\ c j| (2.20)

where W = {w1, . . . ,wk{ is the set of clusters and C = {c1, . . . ,cJ} is the set of labels.
Since purity is 1 if each data point has its own cluster, which means it is 1 if the number of

clusters is N, purity cannot be a quality measure for defining the optimal number of clusters.
The next widely used external index, is Normalized Mutual Information (NMI), which can

have many forms depending on the upper-bound chosen [42]. One of these measures is computed
by:

NMI(W,C) =
I(W,C)p

H(W )H(C)
(2.21)

where I(W,C) is called the mutual information between W and C and can be obtained as
follows:

I(W ;C) = Â
k

Â
j

P(wk\ c j)log
P(wk\ c j)

P(wk)P(c j)
(2.22)
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and H is the entropy:

H(W ) =�Â
k

P(wk)logP(wk) (2.23)

The value of the mutual information is expected to be 0 if the clusters are obtained randomly
and 1 if the clusters are perfect with the labels. Nonetheless, mutual information has the same
problem as purity, which is that it is maximum for the number of clusters N. What fixes this
problem is the normalization since entropy tends to increase with the number of clusters. The
NMI is always a number between 0 and 1.

Another alternative is to use the Rand index (RI) measure. The idea is to view a clustering as
a series of decisions, which are taken for pairs of data points. The different types of decisions are:
true positives (TP) - two similar data points are assigned to the same cluster, true negatives (TN)
- two dissimilar data points are assigned to different clusters, false positive (FP) - two dissimilar
data points are assigned to the same cluster and false negatives (FN) - two similar data points are
assigned to different clusters. Then, the index is computed as:

RI =
T P+T N

T P+FP+EN +T N
(2.24)

which is simply the accuracy.

Rand index gives the same weights for false positives and false negatives, which can be inap-
propriate for some situations. In this case, the F measure can be used. This measure penalizes
the false negatives more than the false positives with a chosen value b > 1. This measure can be
computed as follows:

Fb =
(b 2 +1)PR

b 2P+R
(2.25)

where P = T P
T P+FP is the precision, and R = T P

T P+FN is the recall.

Finally, although the Rand Index can measure the validity of a clustering result, it has some
strong disadvantages: it is not 0 for random clustering and also increases with the number of
clusters obtained. Therefore, in order to overcome these issues, one of the most used validation
indexes for clustering is the Adjusted Rand Index (ARI) [43], which is ensured to have a value
close to 0 for random labeling independently of the number of clusters and samples and exactly 1
when the clusterings are identical. This measure can also have a negative in some cases. The ARI
can be computed as follows, where n is the number of images in the dataset:

ARI =

✓
n
2

◆
(T P+T N)� [(T P�FP)(T P�FN)+(T N�FP)(T N�FN)]

✓
n
2

◆2

� [(T P�FP)(T P�FN)+(T N�FP)(T N�FN)]

(2.26)
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2.2.3.2 Internal Indexes

A very simple way to measure the quality of a clustering result is by computing the correlation
between the points of each cluster. High correlation indicates that points that belong to the same
cluster are close to each other, with respect to some similarity measure.

For this calculation, two matrices need to be computed using all data points: the proximity
matrix and the incidence matrix. Both the proximity matrix and the incidence matrix have n rows
and n columns, with n being the total number of data points in the dataset. The proximity matrix
has the similarity measures between all the data points, normalized to be in the interval from 0
to 1. On the other hand, the incidence matrix is, at each entry, 1 if the associated pair of points
belong to the same cluster (according to the results obtained after the clustering analysis), and 0
if they belong to different clusters. Then, the correlation is computed as the multiplication of the
two matrices. Figure 2.13 shows two examples of clustering results on two datasets. The first has
a high correlation (corr = -0.9235) and the second has a smaller correlation (corr = -0.5810). This
measure has many limitations, especially when the clusters have an arbitrary shape.

Figure 2.13: Example of two clustering results (obtained by K-Means algorithm) in two different
datasets.

Other than the correlation, most clustering validity indexes are usually defined by combining
the following pair of evaluation criteria:

• Compactness or cohesion: Measures how closely related objects are in a cluster.

• Separability: Measure how distinct or well-separated a cluster is from other clusters.

There are many articles that study and compare different clustering validity indexes. One of
the most recent and extensive one is [44] in which the authors compared as many as 30 clustering
validity indexes in a well defined experimental design using both synthetic and real datasets.

The best performing index in almost all the experiments was the silhouette index [45], which
is a normalized summation-type index. The cohesion is measured based on the distance between
all the points in the same cluster and the separability is based on the nearest neighbor distance.
To define this index, the dataset X is denoted as the set of N objects represented as vectors in
an F-dimensional space: X = {x1,x2, . . . ,xN} ✓ ¬F . The k partitions C are represented as C =

{c1,c2, . . . ,ck}, where ck is the mean vector of the cluster.
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Finally, the silhouette index is defined as:

Sil(C) = Â
ck2C

Â
xi2ck

b(xi,ck)�a(xi,ck)

max{a(xi,ck),b(xi,ck)}
(2.27)

where

a(xi,ck) =
1
|ck| Âx j2ck de(xi,x j),

b(xi,ck) = { 1
|ck| Âx j2ck de(xi,x j)}

Other indexes that achieved got scores in the experiment performed by [44] where the Calinski-
Harabasz index [46] and a variation of the Davies-Bouldin index presented in [47].

The Calinski-Harabasz index is a ratio-type index where the cohesion is estimated based on
the distances from the points in a cluster to its centroid. The separation is based on the distance
from the centroids to the global centroid. It can be defined as:

CH(C) =
N�K
K�1

Âck2C |ck|de(ck,X)

Âck2C Âxi2ck de(xi,ck)
(2.28)

where

ck =
1
|ck| Âxi2ck xi,

X = 1
N Âxi2X xi

and

de(xi,x j) is the euclidean distance between vector xi and x j.

To conclude, the clustering analysis is one of the most important techniques in the area of
pattern discovery and data mining and its applications are endless. Nevertheless, evaluating the
quality of a clustering analysis is an essential but difficult task, especially when there is no refer-
ence to the underlying structure of the dataset. This evaluation is done using clustering validity
indexes.

2.3 Content-based Image Retrieval

With the widespread of Internet and of image capturing devices, the size of digital image collec-
tions is increasing rapidly. For this reason, there is a great need for developing efficient image
search systems. Until now, two classes of systems have been developed: text-based and content-
based. The text-based is an older approach, that dates back to the 1970s [48]. In such systems,
images are searched by a given text query that relies on the text present in the image annotation.
One disadvantage with this approach is that many images are not annotated, and therefore, cannot
be found using this method. Other disadvantage is the fact that many images are inaccurately
annotated, so the results will probably not correspond to the user’s expectations. To overcome
the above disadvantages, content-based image retrieval (CBIR) was introduced in the early 1980s
[49]. In CBIR, images are indexed based on visual features such as color, shape or texture. Since
then, there has been a great amount of research focus on the area of CBIR.
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CBIR is the most developed application filed, which applies image representation techniques.
The difference between CBIR and image clustering is that CBIR attempts to find search items
similar to the query image and clustering deals with finding groups in all the images from a dataset.
Nonetheless, the concepts are very similar, and therefore, some important background about CBIR
is presented in this section.

The initial step for a CBIR system is to analyze the images from its database. For this purpose,
the system needs to describe the content of the image. First, the images are processed using image
processing techniques in order to enhance relevant aspects. Next, features are extracted from the
images. Usually, low-level features are extracted and combined into creating higher level features.
There are several types of low-level features that can be extracted from the images, including color,
shape, texture, and global features. After a feature vector for each image is obtained, these feature
vectors are stored in a feature database. In the case of CBIR by example, when a query image
is given, the process of image processing and feature extraction is also performed in the query
image. The following step is to compute the similarity between the query image and the images in
the database. This is accomplished by computing similarity measures between the feature vectors.
Figure 2.14 In relation to a semantic CBIR system, there are more steps to take since the query will
be text-based, which either has to be converted to a feature-based query or the feature database
needs to have high-level concepts associated with the images.

Figure 2.14: A general model of CBIR systems. Extracted from [50].

2.3.1 The Semantic Gap

An important difference between text-based and content-based image retrieval systems is the fact
that humans tend to use text and keywords to express high-level concepts in order to interpret
images and measure their similarity, whereas visual features automatically extracted from images
can usually only represent low-level features. In general there is no link between the low-level
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features and the high-level features [48]. Therefore, the performance of CBIR is still far from the
user’s expectations. According to [51], there are three levels of queries in CBIR:

• Level 1: Retrieval by primitive (low) features such as color, texture and shape. A typical
query of this kind is a query by example, i.e. "find a picture like this".

• Level 2: Retrieval of objects of a given type. For example, "find a picture of a flower".

• Level 3: Retrieval by abstract attributes, involving a significant amount of high-level reason-
ing about the purpose of the objects or scene depicted. An example could be "find pictures
of a joyful crowd".

Levels 2 and 3 together are referred as semantic image retrieval, and the gap between Levels 1
and 2 as the semantic gap. A more detailed definition of the semantic gap is presented in [49]:

Definition 2. The semantic gap is the lack of coincidence between the information that one can
extract from the visual data and the interpretation the same data have for a user in a given situa-
tion.

Users in Level 1 retrieval are usually required to submit an example image, which can not be
available. Therefore, semantic image retrieval is a more desirable approach.

2.3.2 Reducing the Sematic Gap

There has been many attempts of creating CBIR algorithms for reducing the semantic gap ex-
plained previously. According to [48], these approaches can be classified into five different cat-
egories: using object ontology to define high-level concepts, using machine learning methods to
associate low-level features with query concepts, using relevance feedback to learn user’s inten-
tions, generating semantic template to support high-level image retrieval and fusing the evidences
from HTML text and the visual content of images for WWW image retrieval.

A description of the first three approaches is presented in the following sections.

2.3.2.1 Object-ontology

Object-ontology is used to derive simple semantics. First, different intervals are defined for low-
level image features, with each interval corresponding to an intermediate-level descriptor of im-
ages, for example, "light blue, large, middle". These descriptors form a simple vocabulary, called
object-ontology, which provides a qualitative definition of high-level query concepts [48].

An example of a CBIR system which used object-ontology is the one presented in [52]. First,
the proposed approach employs a segmentation algorithm to divide images into regions. After
that, each region of the image is described by color, position, shape and size.

One key components in a ontology-based system is the quantization of the color and texture
features. A widely used method for quantization of color is color naming. This method relates a
numerical color space with semantic color names used in natural language. A well-known color
naming system is CNS (Color Naming System) presented in [53].
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Figure 2.15: Example of object-ontology model used in [52]. Extracted from [52]

The object-ontology approach for reducing the semantic gap may be a possibility but when
considering large image databases with a variety of contents, more powerful tools need to be
derived.

2.3.2.2 Machine Learning

Another way to learn higher level concepts from low-level features extracted from images is to
use machine learning tools such as supervised or unsupervised learning, which were mentioned in
Section 2.2.

In terms of the algorithms, many supervised learning techniques have been applied to CBIR.
SVM (Support Vector Machines), Bayesian classifier and neural networks are often used for this
purpose [48]. For example, in [54], SVM is employed for image annotation. In the training stage,
a binary SVM model is trained for the 23 classes (concepts). After that, in the testing stage, the
input are unlabeled regions and the resulting label of the model trained is associated with the image
or region.

Unsupervised learning techniques such as clustering, can also be used to reduce the semantic
gap in CBIR systems. In [55], a method called CLUE is presented. Unlike other CBIR systems,
which display the top matched target images, this system attempts to retrieve semantically coherent
image clusters.

2.3.2.3 Relevance Feedback

Relevance Feedback (RF) is a powerful tool originally used in text-based information retrieval
systems. It is an online processing task which tries to reduce the semantic gap by attempting to
learn the users’ preferences as it searches for information [48].

During an image search, the first K images in the similarity ranking are presented to the user,
who has the opportunity of marking them as relevant or non-relevant if not satisfied with the result
[56].
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A typical scenario for RF in CBIR is described by the steps bellow [48]:

1. The system provides initial retrieval results through query-by-example, sketch, etc.

2. User judges the above results as to whether and to what degree, they are relevant (positive
examples)/irrelevant (negative examples) to the query.

3. Machine learning algorithms is applied to learn the users’ feedback. Then go back to (2).

Steps (2) and (3) are repeated until the user is satisfied with the result. A representative diagram
of the RF process can be seen in Figure 2.16.

Figure 2.16: CBIR with RF. Extracted from [48].

In order to take advantage of the user interaction, an effective learning method should be
adopted to improve the retrieval results. One of the most simple methods for learning from rele-
vance feedback is to automatically adjust the weights of each of the low-level features extracted
from the images.

The authors of [57] proposed a CBIR system with RF which is based on the random walker
algorithm introduced in the context of interactive image segmentation. The idea is to treat the
relevant and non-relevant images labeled by the user at every feedback round as "seed" nodes for
the random walker problem [58]. The ranking score for each unlabeled image is computed as
the probability that a random walker starting from that image will reach a relevant seed before
encountering a non-relevant one.

2.4 Image Descriptors

An image descriptor is an information or characteristic that can be extracted from an image. There
are generally three types of image descriptors: low-level descriptors, mid-level descriptors, and
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high-level descriptors. Figure 2.17 shows a schematic representation of the three levels of image
descriptors.

Figure 2.17: Schematic representation of the different types of image descriptors. Extracted from
[59].

From this figure, it can be seen that the low-level image descriptors are the ones extracted
directly using the raw signal (in this case, a image pixels), whereas the mid-level descriptors use
information gathered by the low-level descriptors, and so does the high-level descriptors, in which
the input is generally given by the mid-level descriptors.

The high-level descriptors represent a piece of human-interpretable semantic information de-
scribing an image. They represent the goal of describing and annotating images [59].

In this section, low-level image features and techniques for building mid-level image descrip-
tors will be described and presented.

2.4.1 Low-level Image Features

A low-level descriptor is a continuous, discrete or symbolic measurement, which is computed
directly from the signal (e.g. image pixels) [59]. It is designed to capture a certain visual property
of an image, either globally for the entire image or locally for a small group of pixels. The most
commonly used features include those reflecting color, texture, shape and salient/interest points in
an image.

In this section, some important and widely used low-level descriptors are presented. These
descriptors belong to a number of different groups and have different characteristics and applica-
tions.

2.4.1.1 Color Features

Color features are one of the most widely used features in describing images or segmented regions
in an image. They are the most intuitive and most obvious image features. Compared to other
image features such as texture and shape, color features are very stable and robust. It is not
sensitive to rotation, translation and scale changes as it is usually very simple to compute [60].
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2.4.1.1.1 Color Spaces A color space is the dimensional space where the colors are defined. A
variety of color spaces exist and each of them has its own applications. A brief description of the
RGB, YCbCr, HSV and L*a*b color spaces will be presented next. A more detailed presentation
of color spaces can be found in [61].

RGB The most widely used color space is called RGB (Red, Green and Blue), which is based
on the three primary colors and a white reference point. Using an appropriate scale along each
primary axis, the space can be normalized, so that the maximum value is 1. Therefore, as can be
seen in figure 2.18, the RGB color solid is a cube with vertices at (0,0,0), which corresponds to
the color black and (1,1,1) which represents white.

Figure 2.18: The RGB color model. Extracted from [61].

YCbCr For storage and transmission reasons, the human’s visual system needs to be taken into
account to allow for compression. According to [61], it is believed that the human’s visual system
forms an achromatic channel and two chromatic color-difference channels in the retina. Therefore,
a color image can be represented as a wide band component corresponding to brightness, and two
narrow band color components.

YCbCr or Y’CbCr is a color space linearly related to the RGB space and is used for digital
video (MPEG). Y’CbCr is calculated using nonlinear gamma corrected values of R, G, B denoted
R’,G’,B’. The relationship between Y’CbCr is presented bellow:
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The Y’CbCr color space is a scaled and offset version of the YUV color space.
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HSV The HSV (Hue Saturation Value) color model belongs to the group of hue-oriented color
coordinate systems (which also includes HSI). It was originally proposed in [62], and is a cylin-
drical coordinate system. It can be represented by a hexcone model, which is shown in figure
2.19.

The advantages of the hue-oriented color spaces are, among others [61]:

• Good compatibility with human intuition.

• Separability of chromatic values and achromatic values.

• The possibility of using only one component, hue, for segmentation purposes.

Figure 2.19: HSV color representation. Extracted from [63]
.

L*a*b Due to the fact that R,G and B components are highly correlated, chromatic information
is not directly fit for use. The L*a*b is designed to approximate human vision. Therefore, it is
a good choice for representing two color points. L* stands for lightness and a* and b* for the
color-opponent dimensions.

The nonlinear relations for L*, a*, and b* are intended to mimic the nonlinear response of the
eye. Furthermore, uniform changes of components in the L*a*b* color space aim to correspond to
uniform changes in perceived color, so the relative perceptual differences between any two colors
in L*a*b* can be approximated by treating each color as a point in a three-dimensional space and
taking the Euclidean distance between them.

To convert between RGB and L*a*b, a number of different computations need to be done and
can be found in [61].

2.4.1.1.2 Color Histograms A color histogram is the most used method to extract color fea-
tures [60]. A color histogram is a frequency statistic for different colors in a certain color space
(such as the ones described previously). It does not require any form of segmentation of the image
since it describes the color content of the global image. However, one of its drawback is that it
cannot describe the local distribution of the image in color space and the spatial position of each
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color. This means that the color histogram cannot describe specific objects or regions in an image.
Another disadvantage of using color histograms is that it is not unique and robust to noise [64].

In order to compute a color histogram, the color space needs to be divided into several small
ranges, which are denoted as bins. Thus, the color is quantized. Each bin represents the number of
pixels that fall into that color space interval. Figure 2.20 shows an example of a color histogram of
an image. In total, there are three histograms, one for each color component red, green and blue.

Figure 2.20: Example of color histograms for an example image.

Color features include global color histogram and block color histogram.

In [60], the authors used a global color histogram for Content-based image retrieval as one of
the features. First, the images where converted to the HSV color space in order to meet visual
requirements of humans. Next, the image colors where quantified using 8 levels for H, 3 levels
for S and V. After the histogram of each image was computed, the similarity between images
was computed as the euclidian distance between the histograms of the images. These features
extracted are invariant to rotation and translation. The drawback is that two completely different
images can get the same global color histogram, which is a problem for the purpose of the article
(image retrieval).

Color histograms have proven effective for small databases, but their limitations become
rapidly apparent with larger databases [65].

2.4.1.1.3 Color Moments Color moments are another way of characterizing a color distribu-
tion of an image. It is based on the idea of that a color distribution of an image can be interpreted
as a probability distribution, which can be characterized by its central moments. The authors of
[66], who were the first to propose such features, suggested storing of the first, the second and the
third moments of each color channel. The first moment is the average color whereas the second
and the third moments are the variance and the skewness of each color channel. If the value of the
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i-th color channel at the j-th image pixel is pij, then the first, second and third color moments can
be calculated as follows:
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The difference between two color images can be thus calculated using a (weighted) distance
measure between the moments of all the color channels or the images.

The greatest advantage of using color moments comes from the fact that there is no need to
store the complete color distribution, and therefore, it is an efficient method.

2.4.1.1.4 Color Coherence Vectors A color coherence vector (CCV) stores the number of
coherent versus incoherent pixels with each color [67]. By separating coherent pixels from inco-
herent pixels, CCV provide finer distinctions than color histograms.

A CCV can be defined, intuitively, as the degree to which pixels of that color are members of
large similarly-colored regions. These regions are referred as coherent regions, and they have a
significant importance in characterizing images.

For example, the images shown in figure 2.21 have similar color histograms, despite being
taken in completely different contexts. The color red appears in both images in approximately the
same quantities, but in the left image the red pixels (from the flowers) are widely scattered, while
in the right image the red pixels (from the golfer’s shirt) form a single coherent region.

Figure 2.21: Two images with similar color histograms. Extracted from [67].

In order to compute the coherence vectors, the pixels of a given color regions need to be
classified as either coherent or not, given that a coherent pixel is part of a large group of pixels of
the same color, based on an 8-neighborhood. When this process is done, each pixel will belong
to exactly one connected component. The classification between coherent and incoherent is based
on the size of its connected component.
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To calculate the difference between two images based on the color coherence vectors, one
needs to compute the difference between the number of coherent pixels and the difference between
the incoherent pixels for each color bin in the two images.

CCV creates a finer distinction than color histograms since an image can have the same his-
togram but different CCVs based on the coherent color regions.

2.4.1.2 Texture Features

Texture gives information about the spatial arrangement of the colors or intensities in an image
[68]. Suppose that the histogram of a region shows that it has 50% white pixels and 50% black
pixels. Figure 2.22 shows three different images of regions with this intensity distribution that has
three very different textures. As illustrated by the figure, texture provides important information
in image description.

Figure 2.22: Three different textures with the same distribution of black and white. Extracted from
[68].

There are many features that reveal information about the texture of an image. Some of the
most used are: Gabor filtering, wavelet transform, Tamura texture features and Edge Histogram
Descriptor (EDH). In the following sections, a brief description of Gabor filtering and the Wavelet
transform will be presented.

2.4.1.2.1 Gabor Filtering One of the most popular signal processing based approaches for
texture feature extraction is the use of Gabor filters. It has been proposed that Gabor filters can
be used to model the responses of the human visual system. Frequency and orientation informa-
tion can be extracted by using a bank of filters at different scales and orientations which allows
multichannel filtering of an image. These can then be used as texture features [69].

A two dimensional Gabor function g(x,y) and its Fourier transform G(u,v) can be written as
[70]:
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where su = 1/2psx and sv = 1/2psy. Gabor functions form a complete but nonorthogonal
basis set. They provide a localized frequency description.

After this, a bank of Gabor filters can be generated by dilating and rotating the function from
equation 2.33:

hi, j(x,y) = a�ih(x0,y0), i, j = integer (2.35)

where x0 = a�i(xcosq + ysinq), y0 = a�i(�xsinq + ycosq), q = jp/K and K is the total
number of orientations. The scale factor a�i is meant to ensure equal energy among different
filters. The statistics of the detected features can be used to characterize the underlying texture
information. Given an image I(x,y), filtering the image with Gabor filters hi, j results in:

Oi, j(x,y) =
Z

I(x,y)h⇤i, j(x� x1,y� y1)dx1dy1 (2.36)

where * indicates the complex conjugate. Therefore, a simple texture feature can be con-
structed using the mean and the standard deviation of the amplitude information [70].

2.4.1.2.2 Wavelet Transform A wavelet transform decomposes a 1-D signal f (x) onto a basis
of wavelet functions [71]:

(Wa f )(b) =
Z

f (x)y⇤a,b(x)dx (2.37)

Which is obtained translating and dilating a single mother wavelet y:
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The wavelet decomposition of an 2-D image can be obtained by performing the filtering con-
secutively along the horizontal and the vertical directions. The decomposition steps are depicted
schematically in figure 2.23. This leads to a representation with an equal amount of pixels as the
original image.

The wavelet image decomposition provides a representation that is easy to interpret. Each
subimage contains information of a specific scale and orientation, and therefore, the spacial infor-
mation is not lost.

2.4.1.3 Shape Features

A Shape feature attempts to quantify shape of the relevant objects in an image in ways that agree
with human intuition [72]. There are many shape features available, used in image processing and
computer vision applications such as aspect ratio, circularity, moments and chain codes. However,
shape features are more difficult to apply than color and texture features due to the fact that it
usually requires a segmentation procedure to be implemented previously, which can be highly
inaccurate. Nonetheless, shape features have shown to be useful in many domain specific images
such as man-made objects [48].
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Figure 2.23: First level of a wavelet decomposition in 3 steps: Low and High pass filtering in
horizontal direction, the same in the vertical direction, subsampling. Extracted from [71].

Among the most popular shape features are the Hough transform and Moments. Therefore,
both methods will be described in the following sections.

2.4.1.3.1 Hough Transform The Hough transform is a feature extraction technique used in
many different application in image processing and computer vision. The goal of this technique is
to find imperfect instances of objects within a certain class of shapes by a voting procedure. This
voting procedure is carried out in a parameter space, from which object candidates are obtained as
local maxima in a so-called accumulator space that is explicitly constructed by the algorithm for
computing the Hough transform [73].

The classical Hough transform was concerned with the identification of lines in the image, but
later the Hough transform has been extended to identifying positions of arbitrary shapes.

The Hough transform is usually applied to a binary image. In order to convert a image to a
binary image, significant image feature points need to be determined. One of the alternatives is
to apply a thresholding to the output of a mask-based, edge detection operators such as Sobel, or
Prewitt. A more sophisticated edge/contour detector like Canny can also be used.

After obtaining the significant points, the key ideas of the Hough transform can be illustrated
by considering identifying sets of colinear points in an image (a line). A set of image points (x, y)
which lie on a straight line can be defined by a relation, f, such that:

f ((m̂, ĉ),(x,y)) = y� m̂x� ĉ = 0 (2.39)

where m is the slope parameter and c is the intercept parameter, which characterize the line.
In equation 2.39, the hat symbol is used to indicate that the pair of parameters (m,c) are constant,
and therefore, the pair (x,y)can take many values. An alternative perspective is to consider the
opposite, which is that the pair (m,y) can vary and the the pair (x,y) is constant (a point in the xy
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space). This function, called g, is defined in equation 2.40:

f ((x̂, ŷ),(m,x)) = ŷ� x̂m� c = 0 (2.40)

Therefore a point in the xy space corresponds to a line in the mc space and vice-versa. There-
fore, a group of points that form a straight line are converted to lines in the mc space, which have a
interception point that corresponds to the slope (m) and the intercept (c) of the line in the xy space.
An example of this behavior can be found in figure 2.24.

Figure 2.24: The basis of Hough transform line detection; (A) (x,y) point image space; (B) (m,c)
parameter space. Extracted from [73].

The determination of the point of intersection in parameter space is a simple local operation.
In order to detect parametrically defined curves other than straight lines, instead of defining

the function with parameters m and c, the parameters will be {a1, . . . ,an}:

f ((â1, . . . , ân),(x,y)) = 0 (2.41)

And by swapping the roles of the parameters and the variables comes:

g((x̂, ŷ),(a1, . . . ,an)) = 0 (2.42)

This equation maps a point into a hypersurface in the n-dimensional space defined by the
parameters. Similarly to the line case, the most probable curve in the image is detected by the
point with the most intersections of the several hyperserfaces.

The Hough transform can be used to detect lines and other shapes, and that can be used as a
feature to describe images [73].

2.4.1.3.2 Moments An image moment is a certain particular weighted average (moment) of the
image pixels’ intensities, or a function of such moments, usually chosen to have some attractive
property or interpretation [74].

Image moments can be used to obtain simple properties of a image region which includes area,
centroid, and information about its orientation.
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Among the region-based descriptors, moments are very popular. These include invariant mo-
ments, Zernike moments and Radial Chebyshev moments [72].

The general form of a moment function mpq of order (p+ q) of a shape region can be given
as:

mpq = Â
x

Â
y

Ypq(x,y) f (x,y) p,q = 0,1,2, . . . (2.43)

where Ypq is know as the moment weighting kernel or the basis set and f (x,y) is the shape
region values.

Invariant moments (IM) are also called geometric moment invariants. Geometric moments are
the simplest of the moment functions, with basis Ypq = xpyq. Despite being complete, they are
also not orthogonal [72]. Geometric moments function mpq are given as:

mpq = Â
x

Â
y

xpyq(x,y) f (x,y) p,q = 0,1,2, . . . (2.44)

The so called geometric central moments, which are invariant to translation are defined by:

µpq = Â
x

Â
y
(x� x)p(y� y)q(x,y) f (x,y) p,q = 0,1,2, . . . (2.45)

where x = m10/m00 and x = m01/m00.

Finally, a set of 7 invariant moments (IM) are given by:
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2] (2.55)

where hpq = µpq/µg
00 and g = 1+(p+q)/2 for p+q = 2,3, . . .

IM are simple to compute, invariant to rotation, scaling and translation. However they suffer
from information redundancy and noise sensitivity (in higher order moments).

Zernike Moments (ZM) are other type of moments. Unlike the invariant moments, they are
orthogonal. The complex Zernike moments are derived from orthogonal Zernike polynomials
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[72]:

Vnm(x,y) =Vnm(r cosq ,sinq) = Rnm(r)exp( jmq) (2.56)

where Rnm(r) is the orthogonal radial polynomial:
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(n�|m|)/2
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where n = 0,1,2, . . . ; 0 |m| n; and n� |m| is even.
The Zernike moments of order n with repetition m of the region f (x,y) is given by:

Znm =
n+1

n Â
r

Â
q

f (r cosq ,r sinq) ·Rnm(r) · exp( jmq) r  1 (2.58)

The Zernike moments are rotation invariant, robust to noise, and since the basis is orthogonal,
they have minimum information redundancy [72]. However, it is more complex computationally
than the other moments.

2.4.1.4 Local Descriptors

Global features have the ability to generalize an entire object with a single vector. Consequently,
their use in standard classification or retrieval techniques is straightforward. Local features, on
the other hand, are computed at multiple points in the image and are consequently more robust to
occlusion and clutter. They also do not require a segmentation of the object from the background,
unlike many texture features, or representations of the object’s boundary (shape features) [75].
One of the disadvantages of dealing with local features is that there may be differing numbers of
feature points in each image, making comparing images more complicated.

A general framework for computing local descriptors is [76]:

1. Find the interest points.

2. Consider the region around each keypoint.

3. Compute a local descriptor from the region and normalize the feature.

4. Match local descriptors in multiple images.

The first stage of these types of systems, is the search for interesting points (keypoints). These
points should be chosen so that they can be matched in different images with different types of
conditions. Some available algorithms to find keypoints are: Hessian/Harris corner detection,
Laplacian of Gaussian (LOG) detector and Difference of Gaussian (DOG) detector. Usually cor-
ners are good candidates for keypoints since in the region around a corner, image gradient has two
or more dominant directions, and therefore, they are repeatable and distinctive.

Next, the SIFT, PCA-SIFT, SURF and ORB algorithms will be introduced.
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2.4.1.4.1 SIFT SIFT (Scale Invariant Feature Transform) features, presented by [77], are in-
variant to image scaling and rotation, and partially invariant to change in illumination and 3D
camera viewpoint. It is widely used nowadays due to its robustness.

To compute the SIFT features, four major stages are required [77]:

1. Scale-space peak selection: the first stage of computation searches over all scales and
image locations. It is implemented efficiently by using a difference-of-Gaussian (DoG)
function to identify potential interest points that are invariant to scale and orientation.

2. keypoint localization: at each candidate location, a detailed model is fit to determine loca-
tion and scale. Keypoints are selected based on measures of their stability.

3. orientation assignment: one or more orientations are assigned to each keypoint location
based on local image gradient directions. All future operations are performed on image data
that has been transformed relative to the assigned orientation, scale, and location for each
feature, thereby providing invariance to these transformations.

4. keypoint descriptor: the local image gradients are measured at the selected scale in the
region around each keypoint. These are transformed into a representation that allows for
significant levels of local shape distortion and change in illumination.

An important aspect of this approach is that it generates large numbers of features that densely
cover the image over the full range of scales and locations.

Next, a more detailed explanation will be made of the steps required for computing the SIFT
local descriptors.

Scale-space Peak Selection

This step has the goal of identifying candidate locations for the local descriptors. In order for
the descriptors to be scale invariant, the locations need to be invariant to scale change. That can
be accomplished by searching for stable features across all possible scales, using a continuous
function of scale known as scale space. For that, the Gaussian function is chosen as the scale-
space kernel. The scale-space of an image is defined as a function L(x,y,s), produced by the
convolution of the variable-scale Gaussian G(x,y,s) and the image I(x,y).

L(x,y,s) = G(x,y,s)⇤ I(x,y) (2.59)

where G is the gaussian function:

G(x,y,s) =
1

2ps2 e�(x
2+y2)/2s2

(2.60)

The difference-of-Gaussians function convolved with the image, D(x,y,s) can be computed
from the difference of two nearby scales separated by a constant multiplicative factor k:

D(x,y,s) = (G(x,y,ks)�G(x,y,s))⇤ I(x,y) = L(x,y,ks)�L(x,y,s) (2.61)
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An efficient approach to construction of D(x,y,s) is shown in Figure 2.25. The initial image
is incrementally convolved with Gaussians (eq. 2.60) to produce images separated by a constant
factor k in scale space, shown in the left column. Each octave of scale space (i.e., doubling of s
) has s intervals, thus k = 21/s . Each stack of blurred images must have s+ 3 images for each
octave. The adjacent image scales are subtracted to produce the difference-of-Gaussian images
shown on the right using eq. 2.61. Once a complete octave has been processed, a resampling is
implemented in the Gaussian image that has twice the initial value of s by taking every second
pixel in each row and column.

Figure 2.25: For each octave, adjacent Gaussian images are subtracted to produce the difference-
of-Gaussian images. After each octave, the images are downsampled with a factor of 2, and the
process is repeated. Extracted from [77].

In order to detect the local maxima and minima of D(x,y,s), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below. This
is illustrated in figure 2.26. The point is selected only if it is larger than all of these neighbors or
smaller than all of them.

Figure 2.26: Detection of the maxima and minima of the difference-of-Gaussian images by com-
paring the neighbors. Extracted from [77].



44 Concepts, Background and Related Work

Keypoint Localization

Once the set of keypoints has been found, the next step is to perform a detailed fit to the nearby data
for location, scale, and ratio of principal curves. This process is required since the first keypoint
step detects a huge amount of points that are not good candidates.

First, for each candidate keypoint, interpolation of nearby data is used to accurately determine
its position. For that, the interpolated location of the extremum is calculated. The interpolation
is done using the quadratic Taylor expansion of the Difference-of-Gaussian scale-space function,
D(x,y,s) with the candidate keypoint as the origin. This Taylor expansion is given by:

D(x) = D+
∂DT

∂x
x+ 1

2
xT ∂ 2D

∂x2 x (2.62)

The location of the extremum, x̂, is determined by taking the derivative of this function with
respect to x and setting it to zero. If the offset x̂ is larger than 0.5 in any dimension, then that is
an indication that the extremum lies closer to another candidate keypoint. Otherwise the offset is
added to its candidate keypoint to get the interpolated estimate for the location of the extremum.

To discard the keypoints with low contrast, the value of the second-order Taylor expansion
D(x) is computed at the offset x̂. If this value is less than 0.03, the candidate keypoint is discarded.
Otherwise it is kept.

The difference-of-Gaussian function will also have a strong response along edges, which is
not desirable. They can be characterized as having a poorly defined peak in the difference-of-
Gaussian function which will indicate a large principal curvature across the edge but a small one
in the perpendicular direction. The principal curvatures can be obtained from a 2⇥ 2 Hessian
matrix, H, computed at the location and scale of the keypoint:

H =

2

4
Dxx Dxy

Dxy Dyy

3

5 (2.63)

The derivatives are estimated by taking differences of neighboring sample points. The eigen-
values of H are proportional to the principal curvatures of D. If the ratio R = Tr(H)2/Det(H), for
a candidate keypoint is larger than a given threshold, that keypoint is poorly localized and hence
rejected. This process suppresses the response at the edges. Figure 2.27 shows an example of the
SIFT descriptor steps until the identification of the final keypoints.

Orientation Assignment

The next step has the objective to make this method invariant to rotation.

For an Gaussian-smoothed image L(x,y) at scale s , the gradient magnitude, m(x,y), and ori-
entation, q(x,y), are computed using pixel differences:

m(x,y) =
q
(L(x+1,y)�L(x�1,y))2 +(L(x,y+1)�L(x,y�1))2 (2.64)
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Figure 2.27: Stages of keypoint selection. (a) The 233⇥189 pixel original image. (b) The initial
832 keypoints locations at maxima and minima of the difference-of-Gaussian function. Keypoints
are displayed as vectors indicating scale, orientation, and location. (c) After applying a threshold
on minimum contrast, 729 keypoints remain. (d) The final 536 keypoints that remain following an
additional threshold on ratio of principal curvatures. Extracted from [77].

q (x,y) = atan2(L(x,y+1)�L(x,y�1) ,L(x+1,y)�L(x�1,y)) (2.65)

The magnitude and direction calculations for the gradient are done for every pixel in a neigh-
boring region around the keypoint. An orientation histogram with 36 bins is formed, and each
bin covers 10 degrees. Each sample in the neighboring window adds to a histogram bin. Once
the histogram is filled, the orientations corresponding to the highest peak and local peaks that are
within 80% of the highest peaks are assigned to the keypoint.

Keypoint Descriptor The goal of this final step is to create a descriptor vector for each keypoint
such that the descriptor is highly distinctive and partially invariant to the remaining variations.

First a set of orientation histograms is created on 4⇥4 pixel neighborhoods with 8 bins each.
The magnitudes are then weighted by a Gaussian function with s equal to one half the width of
the descriptor window. The descriptor then becomes a vector of all the values of these histograms.
In the end, each vector has 128 elements. This vector is then normalized to unit length in order
to enhance invariance to affine changes in illumination. Furthermore, to reduce the effects of
non-linear illumination a threshold of 0.2 is applied and the vector is again normalized.

Matching Images After the description stage, two images can be matched by comparing the fea-
ture vectors obtained by using the SIFT descriptors. It searches in the feature vectors for matches
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in the descriptors in a nearest neighbor methodology. The nearest neighbors are defined as the key-
points with minimum Euclidean distance from the given descriptor vector. Figure 2.28 presents
two images of the same sight with some differences in illumination and partial occlusion.

Figure 2.28: Example of a SIFT descriptor matching found in two different images of the same
sight. Extracted from [78].

To conclude, the SIFT descriptor is a very robust and distinctive image descriptor, and is well
suited for applications such as object recognition. Nonetheless it has be applied to many task that
requires identification or matching.

2.4.1.4.2 PCA-SIFT PCA-SIFT is a variation of the SIFT descriptors, introduced in [79]. The
essential difference between the algorithms lies in the description stage, where to encodes the
salient aspects of the image gradient in the feature point’s neighborhood, instead of using SIFT’s
smoothed weighted histograms, it applies Principal Components Analysis (PCA) to the normal-
ized gradient patch. This creates significantly smaller feature vectors than the standard SIFT
feature vector, and can be used with the same matching algorithms. The experiments held in
[79] demonstrate that the PCA-based local descriptors are more distinctive, more robust to image
deformations, and more compact than the standard SIFT representation.

Next, a short background information about PCA is given.

PCA Principal Component Analysis (PCA) [80] is a standard technique for dimensionality re-
duction and has been applied to a broad class of computer vision problems. It is a statistical proce-
dure that uses an orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables called principal components.

This transformation is defined in such a way that the first principal component has the largest
possible variance (that is, accounts for as much of the variability in the data as possible), and
each succeeding component in turn has the highest variance possible under the constraint that it is
orthogonal to (uncorrelated with) the preceding components.

Back to PCA-SIFT, after the initial steps of keypoint determination and orientation, a 41⇥
4 patch (regions of pixels) at the given scale, centered over the keypoint, and rotated to align
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its dominant orientation to a canonical direction is extracted. The rest of the algorithm can be
summarized in the following steps [79] :

1. Pre-compute an eigenspace to express the gradient images of local patches.

To build the eigenspace, the authors of [80] ran the first three stages of the SIFT algorithm
on a diverse collection of images and collected 21,000 patches. Each was processed as
described in the next step to create a 3042-element vector, and PCA was applied to the
covariance matrix of these vectors. The matrix consisting of the top n eigenvectors was
stored on disk and used as the projection matrix for PCA-SIFT.

2. Given a patch, compute its local image gradient.

The input vector is created by concatenating the horizontal and vertical gradient maps for
the 41⇥41 patch centered at the keypoint. Thus, the input vector has 3042 elements, which
are then normalized to minimize the impact of illumination variations.

3. Project the gradient image vector using the eigenspace to derive a compact feature vector.
A feature space of n = 20 of principal components were used in [80].

This method is effective because projecting the gradient patch onto the low-dimensional space
appears to retain the identity-related variation while discarding the distortions induced by other
effects [80].

2.4.1.4.3 SURF SURF (Speeded Up Robust Features) is a robust local feature detector, first
presented in [81]. It is similar to the SIFT descriptor, although being several times faster. It is
based on sums of 2D Haar wavelet responses and makes an efficient use of integral images.

The SURF algorithm is defined by a similar three-step procedure as the SIFT features (key-
point detection, orientation assignment and description).

A detailed explanation about the steps of the SURF algorithm will be done next.

Fast-Hessian Detector In SURF, squares are used instead of Gaussians. The idea is to rely on
integral images for a much faster processing time. Integral images allow for the fast implementa-
tion of box type convolution filters. The entry of an integral image IS(x) at a location x = (x,y)
represents the sum of all pixels in the input image I of a rectangular region formed by the point x
and the origin, as given by the following equation:

IS(x) =
i<=x

Â
i=0

j<=y

Â
j=0

I(i, j) (2.66)

With the integral image calculated, it only takes four additions to calculate the sum of the
intensities over any upright, rectangular area, independent of its size.
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As for the keypoint detector, SURF uses a blob detector based on the Hessian matrix. Given a
point (x,y) in an image I, the Hessian matrix H(x,s) at scale s is calculated as follows:

H(x,s) =

2

4
Lxx(x,s) Lxy(x,s)

Lxy(x,s) Lyy(x,s)

3

5 (2.67)

where Lxx(x,s) is the convolution of the Gaussian second order derivative with the image I in
the point x, and similarly for Lxy(x,s) and Lyy(x,s). However, instead of Gaussian filters SURF
approximates by using box filters, which can be computed significantly faster, given that the image
is an integral image. The filter approximation can be found in figure 2.29.

Figure 2.29: Left to right: The (discretised and cropped) Gaussian second order partial derivatives
in y-direction and xy-direction, and our approximations thereof using box filters. The grey regions
are equal to zero. Extracted from [81].

The approximations are denoted Dxx, Dxy and Dyy. Then the determinant of the approximate
matrix is computed:

det(Haprox) = DxxDyy� (0.9Dxy)
2 (2.68)

The approximation of the determinant of the Hessian matrix represents the response blob im-
age on location x. These responses are stored in the blob response map on different scales. After
that, the local maxima are searched.

Orientation Assignment In order to be invariant to rotation, a reproducible orientation for each
interest points needs to be identified. The Haar wavelet responses in both x and y directions
within a circular neighborhood of radius 6s around the point of interest are computed, where s
is the scale at which the point of interest was detected. The obtained responses are weighed by
a Gaussian function centered at the point of interest, then plotted as points in a two-dimensional
space, with the horizontal response in the abscissa and the vertical response in the ordinate. After
that, the dominant orientation is estimated by computing the sum of all responses within a sliding
orientation window of size p/3. The two summed responses (horizontal and vertical) yield a local
orientation vector. Finally, the longest such vector overall defines the orientation of the point of
interest.

Descriptor Components The first step of the description phase consists of constructing a square
region (of size 20s) centered around the interest point, and oriented along the orientation obtained
in the previous section.



2.4 Image Descriptors 49

The interest region is split up into smaller 4⇥4 square sub-regions, and for each one, a Haar
wavelet responses at 5⇥5 regularly spaced sample points is computed and weighted with a Gaus-
sian (s = 3.3s) centered at the interest point.

Then, the wavelet responses dx and dy are summed up over each sub-region and form a first set
of entries to the feature vector. Hence, each sub-region has a four-dimensional descriptor vector v
for its underlying intensity structure:

v = (Âdx,Âdy,Â |dx|,Â |dy|) (2.69)

The wavelet responses are invariant to a bias in illumination (offset). Also, invariance to
contrast (a scale factor) is achieved by turning the descriptor into a unit vector.

To illustrate, Figure 2.30 shows the properties of the descriptor for three distinctively different
image intensity patterns within a sub-region.

Figure 2.30: The descriptor entries of a sub-region represent the nature of the underlying intensity
pattern. Left: In case of a homogeneous region, all values are relatively low. Middle: In presence
of frequencies in x direction, the value of |dx| is high, but all others remain low. If the intensity is
gradually increasing in x direction, both values |dx| and |dx| are high. Extracted from [81].

To conclude, the authors stated in [81] that the SURF descriptors outperforms the other algo-
rithms until that date, both in speed and accuracy. The fact that is is a it is less complex are more
efficient than the SIFT descriptors makes it a good choice for applications that require real-time
computation.

2.4.1.4.4 ORB ORB (Oriented FAST and Rotated BRIEF) [82] is a recent algorithm for de-
tection and description of local image features that uses improved versions of the FAST (Features
from accelerated segment test) keypoint detector [83] and the BRIEF (Binary Robust Independent
Elementary Features) descriptor [84]. According to [82], it is an efficient alternative to SIFT and
SURF.

Next, before describing the modifications introduced by ORB, the FAST detector and the
BRIEF descriptor are presented.

FAST FAST is a method for corner detection that can be used to extract keypoints for low-level
feature extraction from images. It has a very high computational efficiency and it is faster than



50 Concepts, Background and Related Work

the Difference of Gaussians (DoG) and Harris detector. For this reason, it is suitable for real-time
applications.

As shown in Figure 2.31, the algorithm works by first creating a circle of 16 pixels around
every pixel. Then it considers that pixel a corner if there exists a set of n contiguous pixels in the
circle which are all brighter than the intensity of the pixel plus a margin, or darker than intensity
of the pixel minus a margin. Also, in order to improve the speed of the detector, a procedure is
done to exclude a large number of non-corners.

Figure 2.31: Illustration of the circle considered by the FAST detector. Extracted from [83].

In order to avoid the detection of multiple features adjacent to one another, non-maximal
suppression is performed. Therefore, for every pixel considered a corner in the first step, the sum
of the differences in intensity of all the circle of 16 pixels is computed. Then, for adjacent pixels,
only the one with the highest value of the sum can be a corner.

BRIEF BRIEF is a binary descriptor that intends to reduce the amount of memory and time to
compute the features and to match them. First it take the smoothened image and selects, following
some kind of algorithm, pairs of pixel inside the patches obtained previously by a detector. It
then compares these pairs of pixels. If the value of the intensity of the first pixel is larger than
the second pixel, then the resulting binary feature is 1. Therefore, it obtains nd binary features for
each patch. Usually the values of nd can be either 128, 256 or 512.

ORB uses the FAST detector and then applies Harris corner measure to find the top N points.
Additionally, it uses pyramid to produce multiscale features. However, the FAST detector does
not compute the orientation of the keypoint. For this reason, ORB computes a weighted centroid
that helps to give the orientation of the interest point detected. Also, moments are computed.

In relation to the descriptors, ORB uses the BRIEF descriptor with a few modifications that
allow it to perform better under rotation transformations. It does this by rotating the BRIEF de-
scriptor according to the orientation of the keypoint obtained previously.

An additional improvement introduced by ORB is that it runs a greedy search among all pos-
sible binary tests of BRIEF to find the ones that have both high variance and means close to 0.5,
as well as being uncorrelated. The result is called rBRIEF.

2.4.1.4.5 CenSurE or STAR Detector The CenSurE or STAR detector was first introduced in
[85] and was developed as a feature detector for the specific problem of visual odometry, which
is the process of determining the position and orientation of a robot by analyzing camera images.



2.4 Image Descriptors 51

The detector approach is similar to the SIFT detector but uses bi-level filters to approximate the
Laplacian instead of the Difference of Gaussians (DoG). These filters can only multiply the image
pixels by -1 or 1. The most used shape of the bi-filters are octagons.

Therefore, first computes a simplified center-surround filter at all locations and all scales, and
finds the extrema in a local neighborhood. Then, these extrema are filtered by computing the
Harris measure and eliminating those with a weak corner response.

One of the key characteristics of the CenSurE detector is the efficiency in which it computes
the bi-level filters at all sizes, which is done using integral images, which are also used in the SURF
detector. This detector is said to suitable for real-time applications, unlike the SIFT detector.

The results presented in [85] show that the CenSurE detector performs better than the SIFT
and SURF detector for image matching when there is small viewpoint changes.

2.4.1.5 Global Descriptors

As mentioned before, global descriptors obtain features shared by all the pixels of an image.
Therefore, there is no need to perform any kind of segmentation or keypoint detection. The only
global descriptor that will be introduced in this section is the recent GIST descriptor.

2.4.1.5.1 GIST The GIST descriptor was initially proposed in [86]. It was designed for the
application of scene recognition. The idea was to develop a low-dimensional representation of the
scene, called the special envelop, which does not require any form of segmentation. The name
GIST is given due to the fact that it is a global descriptor, that represents the general idea of
the image/scene. The authors proposed a set of perceptual dimensions: naturalness, openness,
roughness, expansion and ruggedness. These dimensions represent the dominant spacial structure
of a scene.

As defined by the authors of [86], a scene is when there is a larger space between the observer
and a fixed point. Therefore, a scene is not an object, but can be considered to be a place where
people can move.

The features extracted from the images are the discrete Fourier transform (DFT) and the win-
dowed Fourier transform (WFT).

The discrete Fourier transform can be computed as follows:

I( fx, fy) =
N�1

Â
x,y=0

i(x,y)h(x,y)� j2p( fxx+ fyy) = A( fx, fy)e jF( fx, fy (2.70)

where i(x,y) is the intensity of the image I along the spacial variables, fx and fy are the spacial
frequency variables and h(x,y) is a circular Hanning window to reduce boundary effects. Also,
I( fx, fy) is a periodic function and the central period is between ( fx, fy) = [�0.5,0.5]⇥ [�0.5,0.5].
The amplitude spectrum of the image is A( fx, fy) = |I( fx, fy)| and the phase function of the Fourier
transform is F( fx, fy).

The amplitude spectrum A( fx, fy) gives unlocalized information about the image structure, ori-
entation, smoothness, length and width of the contours that compose the scene image. In contrast,
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the phase function F( fx, fy) contains information relative to the form and the position of the image
components.

Additionally, the energy spectrum, A( fx, fy)2 is computed as the squared magnitude of the
Fourier transform. This feature gives information about the distribution of energy among the
different spatial frequencies.

Finally, in order to obtain information about the spatial distribution of the spectral information,
a windowed Fourier transform is computed, which is given by:

I(x,y, fx, fy) =
N�1

Â
x0,y0=0

i(x0,y0)h(x0 � x,y0 � y)� j2p( fxx0+ fyy0) (2.71)

where hr(x0,y0) is a circular hamming window of radius r. The energy spectrum (spectrogram)
of this function provides localized structural information and can be used for a detailed analysis
of the scene.

After extracting these features from the image, a Principal Component Analysis (PCA) is
implemented in order to do dimensionality reduction of the set of features extracted.

2.4.2 Mid-Level Image Descriptors

A mid-level image descriptor is a continuous or discrete numeric or symbolic measurement ob-
tained after a global analysis of the low-level descriptors, possibly by applying supervised or un-
supervised learning methods on a subset of images in a collection or involving the use of external
knowledge [59].

Mid-level image descriptors represent an intermediate step between low and high-level de-
scriptors dedicated to a specific task or application.

Next, a review of different approaches to the construction of mid-level image descriptors is
done.

2.4.2.1 Bag-of-Features (BoF)

Bag-of-Features (BoF) approaches are characterized by the use of an orderless collection of image
features, lacking any structure or spatial information. Due to its simplicity and performance, the
Bag-of-Features approach has become well-established in the field of computer vision [87].

The name comes from an analogy with the Bag-of-Words representation used in textual infor-
mation retrieval (text mining). The idea is to consider that an image is composed by visual words
with a given topology. A visual word is a local segment in an image, defined either by a region
(image patch or blob) or by a reference point with its neighborhood. Then, the analysis of the
visual word occurrences and configurations allows the development of a frequency histogram of
visual words for each image.

The general steps for building a Bag-of-Features representation of a collection are [88]:
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1. Compute low-level image descriptors: usually, local image descriptors are extracted from
the image, such as the SIFT descriptors presented in section 2.4.1.4.1, preceded by a salien-
t/interest point detection step (such as the Hessian affine region detector).

2. Quantize the descriptors into clusters: once the descriptors for each image are computed (a
feature vector), an unsupervised method is used (clustering) to reduce the number of visual
words (quantize) to only the centroids of each cluster (that represent the cluster). These will
be the visual words used to form the vocabulary.

3. Represent each image by a vector of frequencies of visual words in order to do matching,
retrieval or similarity analysis.

This process is illustrated in figure 2.32 for the application of content-based image retrieval.

Figure 2.32: Process for Bag-of-Features Image Representation for CBIR. Extracted from [87].

Due to the fact that, usually, a large vocabulary is selected, and most images have only a few
of those visual words, most of the feature vector obtained by the BoF approach is zero. The strong
sparsity of these vectors allows for efficient indexing schemes and other performance improve-
ments, as discussed in later sections [87].

To improve the results of the Bag-of-Features model, and in analogy to text retrieval, it is
usual to apply a weighting to the components of the feature vector (visual words), rather than
using the feature vector directly. The standard weighting used is known as ’term frequency-inverse
document frequency’, tf-idf, as is computed as follows. Suppose there is a vocabulary of k words,
then each document is represented by a k-vector Vd = (t1, . . . , tk)T , of weighted word frequencies
with components [88]:

ti =
nid

nd
log

N
ni

(2.72)

where nid is the number of occurrences of word i in document d, nd is the total number of
words in the document d, ni is the number of occurrences of term i in the whole database and
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N is the number of documents in the database. With the strategy of using term weights, one can
penalize terms found to be too common to be discriminative and emphasize those that are more
unique.

An early work defining the Bag-of-Features image retrieval approach is [88], where the authors
presented a project called Video Google. Video Google uses both MSER [89] and Harris-Affine
keypoint detectors to extract features, which are represented by SIFT descriptors. The vocabulary
is built using K-Means clustering. Nearest Neighbor term assignment and the Euclidean distance
on tf-idf weighted term vectors are used for similarity scoring.

2.4.2.2 Fisher Vectors

The Fisher Vector (FV), which was introduced in [90] is a method for image representation based
on the Fisher Kernel [91]. In sum, this method first extracts local descriptors from the images,
then it tries to fit a GMM (Gaussian Mixture Model) to a sampled portion of the data, and finally,
it computes statistics regarding each descriptor in relation to the GMM fitted. This gives a great
amount of information about the structure of the descriptors of the images. It can be seen as a
generalization of the BoF model, since it can be reduced to it under several restrictions.

It has several advantages over the BoF model, w.r.t. image classification, namely:

1. It was shown to provide more accurate results.

2. It can be computed using much smaller vocabularies reducing the computational complexity.

3. It performs well even with simple linear classifiers.

A GMM is a linear combination of Gaussians. A GMM of K-components is represented by
the following equation:

ul (x) =
K

Â
k=1

wkuk(x) (2.73)

where each uk is a different Gaussian, which can be written as follows:

uk(x) =
1

(2p)D
2 (|Sk|)

1
2

exp{�1
2
(x�uk)

0S�1
k (x�uk)} (2.74)

Usually, 8k : wk � 0:

k

Â
k=1

wk = 1 (2.75)

The data extracted from the images using the descriptors is first sampled, and then a GMM
is fitted to that data. To accomplish this task, Expectation Maximization (EM) to optimize a
Maximum Likelihood (ML) criterion [92] is used. Just like the BoF model, the GMM is considered
to be the dictionary and its size is given by k.
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Now, the features for each image are computed as the log-likelihood of the descriptors con-
sidering the GMM obtained. Therefore, let X = {xt , t = 1, . . . ,T} be the group of D�dimensional
descriptors extracted from an image, assuming that they are independent. The FV of this image
can be written as:

FX
l =

T

Â
t=1

Ll —l logul (xt) (2.76)

One of the statistics used is the posterior probability, which can be computed as follows, where
xt is a single descriptor:

gt(k) =
wkuk(xt)

ÂK
j=1 w ju j(xt)

(2.77)

After the FV is obtained, it is normalized in order to improve the representation. In [90] two
normalization procedures were used: the l2�normalization and the power normalization. The
l2�normalization is applied to remove the fact that different images contain different amounts
of background information, whereas the power normalization makes the FV representation less
sparce and therefore makes it more suitable for comparison with the dot-product.

Additionally, in order to obtain better results, PCA is usually applied to the local descriptors
obtained from the images. A number of components often used is 64, reducing the dimensionality
of the features from 128 (in the case of SIFT) in half. The reason behind using PCA is that it
obtains more independent features, which is one of the restrictions of the algorithm.

As stated in [90], compared to the BoF model, the Fisher Vector offers a more complete
representation of the dataset, as it encodes not only the count of occurrences but also higher or-
der statistics related to its distribution. The better use of the information provided by the model
translates also into a more efficient representation, since much smaller vocabularies are required
in order to achieve a given performance. The experiments also show an improved performance
compared to the BoF model in terms of classification accuracy.

Ultimately, the algorithm for computing the FVs is presented in Algorithm 2, as presented in
[90].

2.4.2.3 Spatial Pyramid Matching (SPM)

Spatial Pyramid Matching (SPM) [93] is a technique that works by partitioning the image into
increasingly fine sub-regions and computing histograms of local features found inside each sub-
region. It is an extension of the Bag-of-Features representation which attempts to add information
concerning spacial location. The authors of the method demonstrated significant improved perfor-
mance on challenging scene categorization tasks.

SPM is a kernel-based recognition method that works by computing rough geometric corre-
spondence on a global scale using an efficient approximation technique adapted from the pyramid
matching scheme of [94].
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Algorithm 2 Fisher Vectors Algorithm

Input: • Local image descriptors X = {xt 2¬D, t = 1, . . . ,T}
• Gaussian mixture model parameters l = {wk,µk,sk,k = 1, . . . ,K}

Output: • Normalized Fisher Vector representation FX
k 2 RK(2D+1)

1: Compute Statistics
• For k = 1, . . . ,K initialize accumulators

– S0
k  0, S1

k  0, S2
k  0

• For t = 1, . . . ,T

– Compute gt(k) using equation 2.77
– For k = 1, . . . ,K:
⇤ S0

k  S0
k + gt(k)

⇤ S1
k  S1

k + gt(k)xt

⇤ S2
k  S2

k + gt(k)x2
t

2: Compute the Fisher Vector signature
• For k = 1, . . . ,K:

– FX
ak

= (S0
k �Twk)/

p
wk

– FX
µk
= (S1

k �µkS0
k)/(
p

wksk)

– FX
sk

= (S2
k �2µkS1

k +(µ2
k �s2

k )S
0
k)/(
p

2wks2
k )

• Concatenate all Fisher vector components into one vector

3: Apply Normalizations
• For i = 1, . . . ,K(2D+1) apply power normalization

– [FX
l ]i sign([FX

l ]i)
q
|[FX

l ]i|

• Apply l2�normalization:

– FX
l  FX

l /
q

FX
l
>FX

l
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Pyramid match kernels work by placing a sequence of increasingly coarser grids over the
feature space and taking a weighted sum of the number of matches that occur at each level of
resolution. At any fixed resolution, two points are said to match if they fall into the same cell
of the grid. Matches found at finer resolutions are weighted more highly than matches found at
coarser resolutions. More specifically, the number of matches I(Hl

X ,H
l
Y ) (or Il) for each level l, is

computed as:

I(Hl
X ,H

l
Y ) =

D

Â
i=1

min(Hl
X(i),H

l
Y (i)) (2.78)

where Hl
X(i) and Hl

Y (i) are the number of points from X and Y that fall into the ith cell of
the grid at level l. Also, the grid at level l has 2l cells. This is called the histogram intersection
function.

It can be noted that the number of matches found at level l also includes all the matches found
at the finer level l+1. Therefore, the number of new matches found at level l is given by Il� Il+1

for l = 0, . . . ,L� 1. Therefore, in order to penalize matches found in larger cells, due to the fact
that they involve increasingly dissimilar features, a weight is associated with the matches found
on level l which is given by 1

2L�l . Therefore the final expression for the pyramid match kernel is:

kL(X ,Y ) = IL +
L�1

Â
l=0

1
2L�l(Il� Il+1)

=
1
2L I0 +

L

Â
l=1

1
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The next step is to quantize all feature vectors into M discrete types. Each channel m gives
two sets of two-dimensional vectors, Xm and Ym, representing the coordinates of features of type
m found in the respective images. The final kernel is then the sum of the separate channel kernels:

KL(X ,Y ) =
M

Â
m=1

kL(Xm,Ym) (2.80)

This approach is reduced to the Bag-of-Features when L = 0.

For L levels and M channels, the resulting vector has a dimensionality of:

M
L

Â
l=0

4l = M
1
3
(4L+1�1) (2.81)

The authors of [93] noted no performance increase beyond M = 200 and L = 2.

A illustration of the SPM can be found in figure 2.33. In this figure, the image has three types
of descriptor classes indicated by the circles, the crosses and the diamonds. In level 0, the image
is not split and the histogram has 3 different bins (which are the three different classes). Next, in
resolution with level 1, the image is subdivided into 4 sub-images and for each of then, the number
of examples of the three different classes of features is computed making 4⇥ 3 histogram bins.
Finally, in level 2, the image is divided in 4⇥4 sub-regions and the histogram is again computed.
Each spacial histogram is also weighted according to equation 2.79.
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Figure 2.33: Example of a construction of a three-level pyramid. Extracted from [93].

2.4.2.4 Bag-of-Colors (BoC)

In contrast with the Bag-of-Features model that uses local image descriptors like SIFT or SURF
to extract information from the images, the Bag-of-Colors (BoC) model, which was introduced in
[95], uses only color information. Therefore, it extracts color patches from the images, creates a
color dictionary (codebook) and then represents each image as a histogram of frequency of colors
from the dictionary.

The procedure, presented in [95] for the BoC model is as follows:

1. Convert images to a more efficient color spaces, in this case, the authors chose CIE Lab due
to the more consistency with the euclidean space.

2. Split the images into blocks of 16⇥16 pixels.

3. For each block, compute the most frequent color (using 3-D a color histogram).

4. Apply K-Means clustering algorithm to produce the color dictionary of K colors.

5. For each image, build a histogram of frequency of the colors from the color dictionary. This
is called the color signature.

The essential parameters for this model are the number of color patches extracted per image
and the size of the color dictionary. Figure 2.34 shows examples of color dictionaries of different
sizes.

It is shown in [95] that the BoC, used as a global image descriptor achieves comparable results
when evaluated against various state of the art global descriptors. Nonetheless it is much simpler
than others.

2.5 Performance Evaluation

The performance evaluation of a image mining (image clustering, image classification and image
retrieval) system can be achieved using many different types of methodologies. One method is
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Figure 2.34: Example of color dictionaries learned for different number of colors (K = 16,32,64).
Extracted from [95].

to use labeled data (supervised evaluation), where images were previously annotated. Here, the
external indexes for clustering validity (sec. 2.2.3.1) can be used to compare different algorithms
and to access its performance. The other type is using unsupervised techniques such as estimating
statistical parameters that represent the quality of the clusters obtained (please refer to section
2.2.3). The problem with this last method for evaluating the performance of an image mining
algorithm is that there is no concrete relationship between the values of the the descriptors obtained
from the image and the true concept represented by the image (as seen by humans). This is related
to the concept of the semantic gap, described in section 2.3.1.

There is also other method that has been used to evaluate image clustering, which is to estimate
the relevance of the cluster results as perceived by users. Thus, this is a subjective measure. This
approach has been used, for instance in [96], where a study involving 20 users was conducted on
a subset of the derived image clusters in order to assess the perceived relevance of the produced
clusters.

Next, some image databases are presented. All these databases have been used for research in
the area of image mining.

2.5.1 Image databases

There are many different image databases available. In CBIR, the most popular image database for
evaluation and comparison purposes is Corel image database [97]. Corel image database contains
a large amount of images of various contents such as animals, sports and people. These images
are divided into 100 different categories. Figure 2.35 presents some example images from Corel
dataset. Although this dataset is one of the most widely used databases for CBIR, it has some
problems [98]. First, some images with very similar content are divided in different groups. Also,
some category labels are very abstract, and the images within the same category can be largely
varied in content. Hence, it is usual for researchers to select a subset of the original database (Corel
5-K, Corel 10-K, etc) or to do some changes in the labels of some categories. Additionally, there
is the issue of image quality (images have approximately 200 pixels of size), which is particularly
important for modern image feature representations. For example, it is not recommended to use
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Difference-of-Gaussian based SIFT features because the approach is not suited for small images
due to the sparsity of extracted interest regions [99].

Figure 2.35: Examples of images from the Corel dataset.

Another image database available and used for many purposes is the Urban and Natural Scenes
dataset [86] which was collected in the MIT labs. It is composed by 2688 color images divided
into 8 classes. Another scene dataset is the Event dataset [100] that contains images from 8 sports
event categories with roughly 200 images per category.

Columbia Object Image Library (Coil-100) is a database for object-detection [101]. It consists
of 7,200 color images of 100 objects (72 images per object). There is also a smaller subset of this
dataset with only 20 classes of objects with only grayscale images called Coil-20 dataset [102].
Since the database only has the same exact object in each category, although shifted or rotated,
this database is not at all representative of what is shared on Twitter. Nevertheless, it is a very
interesting image dataset that could be potentially used for testing different algorithms for image
description. Other object datasets are Caltech-101 [103] and ETH-80 [104].

Figure 2.36: The 100 objects (classes) from the Coil-100 image database. Extracted from [102].

In 2008, a new image dataset was released, MIR Flickr dataset [105]. It is composed by
250,000 high quality annotated images taken from the Flickr website, which are freely available
for research purposes. The images represent a real community of users both in the image content
and image tags. In Flickr, users share and search pictures based on image tags provided by them.
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The average number of tags per image collected for the database was 8.94. The majority of tags
are in English and were subdivided in various categories to allow for recognition tasks. Figure 2.37
shows some examples from images in the database together with the Creative Common attribution
license icons and creators of each images.

Figure 2.37: Examples of images from the MIR Flickr dataset. Also listed are Creative Common
attribution license icons and the creators of the images. Extracted from [105].

Another interesting image database is ImageNet, which was released in 2009 [106]. It is
organized according to the WorldNet hierarchy [107]. Each meaningful concept in WordNet,
possibly described by multiple words or word phrases, is called a "synonym set" or "synset". The
aims of ImageNet is to provide on average 1000 images to illustrate each synset. Images of each
concept are human-annotated. As of the latest update (April 30, 2010), ImageNet had a total of
14,197,122 images covering 21841 synsets. There are 27 high-level concepts that represent the
first level of the WorldNet three. These concepts include concepts such as animal, food, plant,
sport, vehicle and person. Figure 2.38 shows some examples of images belonging to two different
subtree groups (mammals and vehicles). The other concepts (synsets) are more specific than from
left to right. For each synsets, 9 images are presented.

Finally, some works in image mining use a combination of different benchmark image databases
[108, 109]. These databases do not need to represent an extensive amount of diversity due to the
fact that they will be sampled and combined, which would potentially create a more diverse and
robust dataset. Examples of datasets that have been used for this purpose is MNIST database
[110], USPS database [111], USF HumanID [112] and UMIST face image database [113].
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Figure 2.38: A snapshot of two root-to-leaf branches of ImageNet: the top row is from the mammal
subtree; the bottom row is from the vehicle subtree. For each synset, 9 randomly sampled images
are presented. Extracted from [106].

2.6 Visualization of Image Collections

After the clustering process is performed and the images are grouped relative to their similarity in
content, there is still probably a large number of images in each group. For this reason, there is
a need for developing a scheme for image visualization that allows the user of the application to
browse the clusters obtained.

One alternative would be to present for each cluster a few representative images, as done in
[114]. The problem with this method is how to pick these representative images, since they would
need to represent well the content and similarity found by the algorithm in that cluster.

Other approach would be to represent each cluster by one image or a set of modes represented
in that cluster. These images would be the combination of all the images in the cluster (or a few
for the case of the modes). In [1], a technique called weighted image averaging was used. The
system proposed, AverageExplorer, is an interactive system that was developed recently for this
purpose. The idea of AvergaeExplorer is to summarize the visual data by weighted averages of
the image collection, with the weights reflecting the user-indicated image and feature importance.
It is an interactive system since the user can "edit" the average image by using various types of
brushes and warps provided, similarly to a image edition software. The input of the system is
image collection representing the same semantic concept (for instance, "cats", "shoes", "Paris",
etc), but with a variety of appearances (images retrieved using a search engine). The output is a set
of average images that depict different modes in the data. Figure 2.39 presents the results of the
AverageExplorer applied to a query "Kids with Santa" after editing and extraction of informative
modes.

Given a set of N images {I1, . . . , IN}, the simple weighted average (Iavg) of the images is given
by:

Iavg =
ÂN

i=1 si · Ii

ÂN
i=1 si

(2.82)
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Figure 2.39: Results obtained by AverageExplorer: the many informative modes and examples of
images and patches within each mode. Extracted from [1].

where the weights, si are initialized as si = 1/N for all i. Once the editing begins, the weights
are updated to reflect how well that image matches the user’s edits:

si =
T

Â
i=1

match(wt
user, Ii) (2.83)

where si are the weights updated after T edits, wt
user represents the user edit at time t, and

match(.) returns how similar an image Ii is to the user edit wt
user.

Three brush tools are provided [1]:

• Coloring brush tool: The coloring brush allows the user to paint on the average image by
adding color strokes. This changes the weights by assigning a higher weight to the images
with the selected color in that spacial area.

• Sketching brush tool: The sketching brush tool allows the user to add line strokes to the av-
erage image. It is useful for adding fine details (for instance, adding glasses when exploring
faces).

• Explorer brush tool: The explorer brush tool is the most important tool of the Average-
Explorer system. The goal is to allow the user to find hidden information in the image
collection. The main idea is to collect local patches situated in the same spacial position
across all database images, and cluster them into a set of visually informative modes.

Assuming that the images are taken from the Web, using a search engine, for example, even if
they have the same semantic concept, that does not mean that it will be spatially aligned. There-
fore, if no alignment is performed, the resulting averages will be blurry. AverageExplorer provides,
during the interactive edition, an image wraping algorithm which transforms the images leading
to image stacks with increasing image alignment.

Figure 2.40 shows three image collections of "cats", "bikes" and "horses". In the left, the initial
averages are presented. It is a very blurry image and almost no pattern can be distinguished. Next,
these averages are edited four times and the resulting images are displayed ("final average"). It
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can be seen that these images are very sharp and the objects are clearly represented. To the right,
the versions of the final average with no alignment are shown. Compared to the final images with
alignment, it is clear why the alignment step is needed in this process, since the quality is much
higher.

Figure 2.40: Examples of average images edited and aligned compared to the unaligned versions,
using the AverageExplorer interactive visualization tool. Extracted from [1].

To conclude, although the AverageExplorer system can successfully provide an effective vi-
sualization of an image collection, it requires user interactivity, which means that this is not an
automatic process. Still, these ideas could potentially be used to create an automatic version, if
needed.

Other image visualization systems are also presented by other authors, for example, [115],
which proposes a solution for the problem of scene summarization which examines the distribution
of images in the collection to select a set of canonical views to form the scene summary, using
clustering techniques on visual features.

First, local image descriptors are obtained for all the images. Then, the features are matches
between every pair of images and an incidence matrix is computed using the pairs of images that
match in the set.

In order to select views (images) as a summary for the scene, the concept of image likelihood
is used, which states that an image should be included in the summary if it is similar to many other
images in the input set. The similarity between images is computed as [115]:

sim(Vi,Vj) =
|Vi\Vj|p
|Vi||Vj|

(2.84)

The equation 2.86 measures the cosine angle between the normalized features of the two im-
ages. If the views have the same number of features, it can be defined as:

sim(Vi,Vj) =Vi ·Vj (2.85)
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And therefore, the likelihood of a view is simply:

lik(V ) = Â
Vi2n

Vi ·V (2.86)

where n is the set of target image views.

The algorithm attempts to maximize the following function:

Q(C) = Â
Vi2n

(Vi ·Cc(i))�a|C| (2.87)

where Cc(i) is a canonical view. This objective function promotes the orthogonality of canoni-
cal views. Then, a greedy algorithm selects the final set of canonical views.

This system attempts to provide a much better image browsing experience than available nowa-
days, for example, for the image collections of the website Flickr. The authors used a set of
500,000 photos from the city of Rome. Most of the photos contained user tags. However, some
tags were missing, some were misleading and others uninformative. Therefore, they presented a
browsing system that can work either with no tags or by using an algorithm, it can incorporate the
tag information to produce better results.

An example of the results obtained by this system is shown in Figure 2.41. Here, given a set
of images tagged as "Vatican", the algorithm was able to select 10 canonical views to server as a
summary.

Figure 2.41: A summary of 10 images extracted from a set of 2000 images of the Vatican computed
by our algorithm. Extracted from [115].
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2.7 Related Work

In this section, some relevant and recent work closely related to the topic of this thesis will be
presented and discussed. In general, image clustering is the focus of this work, and therefore, the
studies mentioned will be mainly in that area of research.

Clustering has been used extensively for many types of data from documents to images. Image
clustering has been used for many applications such as to improve the performance of CBIR
systems [116], image annotation and indexing [117] and image summarization [115]. The most
used algorithm for image clustering has been K-means due to its simplicity.

In terms of recent works in this area of Web image clustering, it is important to refer the
predecessor of this thesis, which is [114]. In this study, the problem was the same (find patterns and
clusters in images shared via Twitter). As for the approach, the author used local image descriptors,
more specifically the SIFT descriptor (sec. 2.4.1.4.1) to extract features from the images. Then,
using a Bag-of-Features technique (sec. 2.4.2.1), a visual vocabulary of 1000 words was created
using K-means clustering algorithm (sec. 2.2.1.3) on the descriptors of a random sub-sample of
the total number of images in the database. After that, a frequency histogram was created for each
image in relation to the occurrence of the visual words. Next, a distance matrix was computed for
all the images in the database using the euclidean distance (sec. 2.2.1.1). Finally, the clusters were
obtained using DBSCAN clustering algorithm (sec. 2.2.1.5). Each clusters obtained was then,
represented in a matrix of 9 images, chosen randomly, in the visualization tool implemented.

Another recent work, [117], also used the BoF approach for image clustering, with the final
purpose of image indexing. The difference is that the authors proposed two new algorithms, SAIL
( Summation-based Incremental Learning) and V-SAIL (Summation-based Incremental Learning
with Variable Neighborhood Search), which are extensions of the Info-Kmeans algorithm [118],
for clustering high-dimensional data in an attempt to deal with the high sparsity of image data
(the features extracted from the images). The Info-Kmeans clustering belongs to a type of clus-
tering called information-theoretic clustering, in which the loss of mutual information due to the
partitioning is the minimized [117]. More specifically, Info-Kmeans uses a K-means clustering
algorithm with a KL-divergence [119] distance measure. One of the problems with this algorithm
is the zero-feature dilemma which is caused by the number of features in the data that have a zero
value (e.g. the histogram of the BoF method). Apart from other types of data, the authors also
presented an experimental design to test the algorithms to the application of image clustering. For
that, an image dataset called Oxford 5K was used, which contains 11 classes of images retrieved
from the social network Flickr. In terms of feature extraction of the image data, the authors used
the BoF approach with 1 million visual words. Other interesting procedure implemented in this
work, prior to the image clustering, was the use of noise removal, using an algorithm named Cos-
Miner [120]. This noise refers to images that belong to a given class but do not present visual
characteristics that could distinguish and assign to the given cluster, and therefore, are seem as
noise. The results with this challenging dataset, show that the algorithms proposed improve the
performance of the Info-Kmeans algorithm, for highly sparce data.
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In [121], the authors proposed a different approach to the usually applied BoF model. The idea
was to integrate the processes of image clustering and codebook learning, which are traditionally
performed separately. The reason behind this idea is that the two processes are related and there-
fore, the correlation between them should not be ignored. The relationship is that the codebook
representation is the input for the clustering algorithm and thus, influences the clustering results,
and, at the same time, the clusters obtained by the clustering algorithm can be helpful to guide
the codebook learning by serving as supervised information. For this reason, the authors propose
two relevant contributions which are a Double Layer Gaussian Mixture Model (DLGMM) to inte-
grate clustering and codebook learning and a Spatially Coherent Double Layer Gaussian Mixture
Model (SC-DLGMM) which uses a Markov Random Field (MRF) [122] to incorporate the idea
of spacial coherence between neighboring patches in the process of codebook training. This last
contribution attempts to solve the problem of the BoF approach to ignore the spacial distribution
of the local patches by building a model in which patches near each other are more likely to be as-
signed to the same visual word. The experiments conducted in [121] demonstrate that integrating
image clustering and codebook learning can improve the codebook and that incorporating spacial
coherence may produce better final results.

In [123], the authors attempted to cluster images in order to detect landmarks and events in
large image collections. This is very useful since, usually, images shared by users online capture
experiences related to some landmarks (e.g. touristic sites) or events (e.g. a concert). The clus-
tering is performed using the notion of community detection in similarity graphs. Both visual and
tag information is used to build the similarity graph. Then, the authors classify each cluster as
a landmark or event using temporal, spacial, social and tag characteristics of the image cluster.
For the process of clustering, the different types of input (visual and tag) generate separate image
similarity graphs, which are then combined in order to create a hybrid graph. The visual features
extracted from the images are the SIFT descriptors (sec. 2.4.1.4.1), followed by a BoF model (sec.
2.4.2.1) with a vocabulary of 500 words and K-means clustering. After that, similarity measures
are computed for the image collection’s features and the 20 most similar images of each image are
considered their neighbors on the graph, given that they pass on the similarity threshold chosen.
On the other hand, for the tag similarity graph, an inverted table of tags and images is obtained.
The edges in the graph are weighted by the number of times a pair of images are found together
in the tag list. Additionally, tags which have many images associated with it are excluded to avoid
suspicious edges and to reduce the computational time required. After that, a hybrid graph is com-
puted and community detection based clustering is performed. For the classification of images into
the two large categories (landmarks or events), a supervised learning approach is used based on
labeled data acquired (training examples). Finally, spacial information provided by some tagged
images assist in predicting the labels of the images classified as landmarks. The evaluation experi-
ments were done using a dataset of 207,750 images collected from Flickr using a geoquery (query
on the location) of the city of Barcelona, which demonstrated the efficiency and performance of
the proposed techniques.

Due to the fact that the dimensionality of the feature vectors of an image after the image
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description procedure is usually very high, there is the problem of the curse of dimensionality
[124], which states that the performance of a learning algorithm will tend to decrease with the
number of dimensionalities, if the number of samples remains unchanged. This is caused by the
sparcity of the data in a high-dimensional space. For this reason, many attempts have been made
to develop more efficient algorithms for these types of data. One of these approaches is to perform
dimensionality reduction, such as Principal Component Analysis, PCA (sec. 2.4.1.4.2) and Linear
Discriminant Analysis, LDA [125], on the original feature set in order to project the dataset into a
space with less features. LDA is a supervised method which attempts to reduce the dimensionality
of the feature set while preserving as much of the class discriminatory information as possible.
More specifically, for image clustering applications, a simple solution has been to project the
high-dimensional data into a low-dimensional subspace using PCA (as a pre-processing step), and
then apply a clustering algorithm like K-means. Recently, LDA has shown to be very useful and to
produce better results than PCA. Usually, the K-means algorithm is first used to obtain the clusters,
which are labeled. After that, the LDA algorithm is performed to obtain the most discriminative
subspace. Examples of works in those directions are [109], [126] and [127].

Other approach to describe an image collection, similar to a similarity graph is presented in
[128], where a type of graph named Image Webs is introduced. These graphs are different than
the similarity graphs discussed until now since each node no longer represents and image but a
region of collected pixels in an image. Therefore, what is connected is distinctive regions in the
image from the collection. The process of extracting these regions is called Affine Cosegmentation,
which implements a local-feature matching technique between a pair of images at a time. The
result of these processes is a graph which connects components of images and could be potentially
useful for exploring an image collection and for doing image clustering. Another interesting work
that shares similar ideas is [129]. In this paper, the authors propose an automatic supervised
system that seeks to find visual elements (sub-regions of the image), that are at the same time,
frequently occurring, within the class and informative (can distinguish between different classes).
The specific application for this work was to geographically classify images from the Google
Street View. The idea could potentially be useful for this thesis since it could be an alternative to
computing local image descriptors that are harder to understand and to evaluate by the human eye.

2.8 Discussion

To sum up, social networks (Section 2.1) have been the source for many research in the field
of data mining. In terms of the nature of the data analyzed, research has been focused, mostly,
in the textural content shared on the Web. Still, researchers have also been exploring the visual
information contained in the huge image collections, mainly in the field of CBIR (Section 2.3).
The images are characterized by image descriptors (Section 2.4) obtained directly from the data
(low-level) or by further processing (mid-level). However, there is also the issue of capturing the
essence or semantic meaning of the images, which has been a constant challenge. The next step is
to obtain the same level of maturity found in text mining for the topic of image mining.
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In order to access the performance of a image mining system, many image databases (Section
2.5.1) have been created and some of them are widely used as benchmarks to compare algorithms.
Also, a number of different measures can be applied if a database is not available.

Additionally, for presenting to the users the final results from the clustering analysis per-
formed, visualization tools (Section 2.6) are needed, and could rely on applying aligned averages
of the images from the cluster or to present some representative examples.

In relation to previous similar work (Section 2.7), although image clustering has been studied
in image processing and computer vision fields, it remains a topic of constant improvement due to
the fact that a clear and obvious solution for this problem has not yet been presented. Nonetheless,
there are many works describing different algorithms. However, most of them concentrate on a
small application or a small dataset (with low variability). Also, it is clear that the most popular
approach is to use local image features, then apply a Bag-of-Features method to create the features
for a clustering algorithm such as K-Means for obtaining the final clusters. Still, there are also
other approaches using techniques such as graph theory to represent similarity between image in
the collection or using dimensionality reduction techniques in order to other try to overcome the
problem of high-dimensionality of the feature vectors produced. In the end, the goal is to provide
a summarization of the huge amount of information provided by the images shared in the Web.
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Chapter 3

Study 1: Experimental Evaluation of
the Bag-of-Features Model for Image
Clustering

3.1 Introduction

As described in section 2.4.2.1 The Bag-of-Features (BOF) is a model that aims to represent
images as an orderless collection of image features without the use of any spatial information.
Each image is represented by a frequency histogram of visual words from a codebook. A visual
word is a local segment in an image, defined either by a region (image patch or blob) or by a
reference point with its neighborhood. The name comes from an analogy with the Bag-of-Words
representation used in textual information retrieval (text mining).

Although the model is quite simple in terms of the implementation, there are several steps in
which parameters and algorithms need to be chosen. This chapter aims to assess the performance
of this model for the application of unsupervised learning for a set of images, also called image
clustering. Additionally, it aims to provide valuable insight on the different steps of the model and
to compare different algorithms in order to achieve the best performance for a given dataset.

The fundamental difference between supervised learning (e.g. classification) and unsupervised
learning (e.g. clustering) is that the data is not annotated and thus there is no previous informa-
tion about the and categories. For this reason, the methods used for this purpose aim to find an
underlying structure of the data and obtain relevant partitions.

The process of the BOF model and the main steps are summarized in Figure 3.1. As shown
in this Figure, there are three main parts in the BOF model designed for image clustering. The
first one is the image description in which the input images from the dataset are processed by
first detecting keypoints or patches and then describing them using a certain strategy (as described
in Section 2.4.1.4). The number of keypoints per image is a parameter that can be varied in
the implementation for almost all the algorithms tested. The next step is the codebook learning
where a portion of the feature vectors from the images are used in order to obtain a codebook of
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visual words. Here, the codebook size is a very important parameter that can be specified to obtain
different codebooks. The following step is the BOF representation of the images where each image
is represented by a histogram of frequencies based on the codebook obtained. The histograms are
then weighted and normalized following a chosen methodology. Finally, the images are clustered
using a clustering algorithm of choice.

Figure 3.1: Bag-of-Features model for image clustering, presenting the main steps and parameter
setting of the system.

The next sections will cover the following material: Section 3.2 will present similar studies
about this topic, Section 3.3 will provide useful information and details concerning the test setting
and design, Section 3.4 will present the results of the experiments and small discussions and finally
Section 3.5 will provide some final remarks and conclusions.

3.2 Similar Studies

Due to the popularity of the BoF model for many applications in the field of Computer Vision,
a number of works have been focused on evaluating its performance. Moreover, due to the great
number steps needed to apply the model to a given problem, these studies also compare different
strategies for each of the steps. For instance, in [130] the authors presented the results of an
experimental study concerning the BoF model applied to the problem of image classification.
Several key steps of the model were tested using different algorithms and parameters, including
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the detection of the interest points, the size of the codebook and the histogram normalization
procedure. Their results show the most influential parameter is the number of patches extracted
from the images. Additionally, they have also determined that the codebook learning method does
not have a significant impact on the performance provided that even randomly sampled codebooks
also performed fairly well.

Another empirical study presented in [131] evaluated the impact of applying techniques used in
text categorization to the BoF model for the application of scene classification. More specifically,
they have tested, among others, the use of term weighting, stop word removal and feature selection.
The results indicate that these techniques successfully improve the classification results. Other
example of a similar work that propose and evaluate the use of text classification techniques for
the BoF model is [132].

The main contributions of this study are: (1) the experimental analysis of the BoF model for
image clustering, (2) the addition of a number of steps and algorithms (e.g. sampling the features
for codebook learning and visual words selection), (3) the evaluating the techniques proposed orig-
inally for text mining (e.g. term frequency weighting) and (4) the proposal of an undersampling
technique for the features obtained from the images.

3.3 Experimental Design

3.3.1 Datasets

Three datasets were used in this empirical study. The first one is the popular Coil-20 dataset [102],
which is an object-based dataset created for the purpose of object recognition. It is composed by
1440 small pictures of size 26⇥26 pixels divided into 20 classes of objects taken under different
perspectives (lightning, rotation, etc). The second dataset used was the Natural and Urban Scenes
dataset [86], which is made from 8 nature and human-made scenes such as coastlines and build-
ings. It has 2688 images which have a dimension of 264⇥ 264 pixels. Finally, the last image
dataset used was the Event Dataset [100] which is composed by 1580 images of 8 sports event cat-
egories. The images from this datasetwere reduced to 500 pixels in the largest side for simplicity
and to reduce the execution time.

These datasets were chosen in order to obtain different levels of difficulty and complexity for
the purpose of image clustering. The Coil-20 dataset is the simplest due to the fact that it is an
object dataset. The Natural and Urban dataset is a scene dataset containing simple images so it
was considered medium difficulty. Finally, the Event dataset is composed by images of complex
activities that may be hard for the model to distinguish, and therefore, it was considered as high
difficulty.

Figures 3.2 to 3.4 show examples of images from all the classes from the datasets Coil-20,
Natural and Urban and Event, respectively.
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(a) Object 1 (b) Object 2

(c) Object 3 (d) Object 4

(e) Object 5 (f) Object 6

(g) Object 7 (h) Object 8

(i) Object 9 (j) Object 10

(k) Object 11 (l) Object 12

(m) Object 13 (n) Object 14

(o) Object 15 (p) Object 16

(q) Object 17 (r) Object 18

(s) Object 19 (t) Object 20

Figure 3.2: Example of images from the 8 classes of the Event dataset.
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(a) Mountain

(b) Open Country

(c) Street

(d) Tall Buildings

(e) Coast

(f) Forest

(g) Highway

(h) Inside City

Figure 3.3: Example of images from the 8 classes of the Natural and Uban scene dataset.
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(a) Bocce

(b) Badminton

(c) Croquet

(d) Polo

(e) Rowing

(f) Sailing

(g) Rockclimbing

(h) Snowboarding

Figure 3.4: Example of images from the 8 classes of the Event dataset.
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3.3.2 Test Methodology

As mentioned before, the first step of the BoF model consists of obtaining image descriptors for
each image in the dataset. Usually, the adopted technique is to extract local image descriptors
represented as keypoints in the image so that they are fully or partially invariant to afine trans-
formations (rotation, scale and translation) and to luminosity changes. In this way, these patches
can be matched in similar images. Among the different methods, the detectors used in this study
were: SIFT (Scale-Invariant Feature Transform) [77], SURF (Speeded Up Robust Features) [81],
FAST (Features from Accelerated Segment Test) [133], STAR - derived from CenSurE (Center
Surrounded Extrema) [85] and ORB (Oriented FAST and Rotated BRIEF) [82] and the descrip-
tors were: SIFT, SURF, BRIEF (Binary Robust Independent Elementary Features) [84], ORB, and
FREAK (Fast Retina Keypoint) [134].

All of these algorithms were described in Section 2.4.1.4. To sum up, the pair of detectors
and descriptors SIFT and SURF are the most popular choices although not being fast enough for
real-time applications. In contrast, FAST and STAR are among the fastest detectors. However,
they tend to produce the most number of irrelevant interest points, which could generate noise. In
relation to the descriptors, they can either produce numerical or binary features. Unlike SIFT and
SURF, the descriptors BRIEF, ORB and FREAK produce binary feature vectors. Finally, the ORB
algorithm is an optimized version of the FAST detector and the BRIEF descriptor.

Similarly to [130], a random generator of patches (RANDOM) was also used. It works by
randomly sampling the output of the a DENSE detector [135], which produces a regular grid of
interest patches.

In Figure 3.5, the five detectors used are applied to an example image taken from the Event
dataset. All the detectors were used with their default parameters. Note that the local descriptors
are computed using the grayscale image and therefore, do not use any color information. By
analyzing the images, it can be seen that, by default, the SURF and FAST detectors are the ones
that obtain the most keypoints. Also, they do not only find keypoints in objects (in this case,
the horse and person) but in the background as well. However, they obtain many overlapping
keypoints. In contrast, the ORB and STAR detectors are the ones that obtain the fewest number
of keypoints and they obtain more keypoints within the objects of the image. The SIFT detector
seems to be the one that is able to find the most appropriate keypoints.

After the descriptors for each image are obtained, the codebook learning method is performed.
For this purpose two clustering algorithms were selected: K-Means [28] and Mini Batch K-Means
[39]. These algorithms were chosen due to the high scalability property which is required for
the computation of the codebook, since both the number of data examples and dimensionality are
very large. K-Means is by far the most popular algorithm for this application and has been used in
almost all the works that applied the BoF for either image classification or image clustering [136,
117, 123]. The Mini-Batch K-Means algorithm is an online version of K-Means which allows the
use of small data batches to update the centroids instead of using all the data at the same time.
This method is several times faster than the K-Means algorithm but generally produces slightly
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(a) Original image (b) SIFT detector: 1371 kp (c) SURF detector: 2995 kp

(d) FAST detector: 4419 kp (e) ORB detector: 500 kp (f) STAR detector: 335 kp

Figure 3.5: Example of application of the five different detectors: SIFT, SURF, FAST, ORB and
STAR, using the default parameters. Here, kp stands for keypoints.

worse results. Additionally, with the aim of testing whether the codebook learning algorithm is
significantly relevant to the performance of BoF model, the last methods adopted for constructing
the codebook was using randomly selected feature vectors from the images (RANDOMV) and
also entirely random vectors (RANDOM).

Next, instead of using all the features obtained from the images to produce the codebook,
two types of sampling strategies were adopted. The first one is simply considering all the vectors
as a unique group and selecting random keypoints from that group. However, given that some
images generate more interest points than others, we believe that this could potentially have a
negative impact on the codebook and consequently on the performance of the model. The reason
behind this argument is that generally the keypoint detectors tend to find more keypoints in regions
where there is more contrast, and therefore, if a class of images has, on average, more contrast
areas than other, the detectors will find more keypoints on the images of that class. Then, during
the codebook learning algorithm, these will have a bigger impact on the decision of the visual
words for the codebook, potentially creating a bad representation for the images that have less
keypoints. Empirically, we found that scenes like forests or buildings produce a much higher
number of keypoints in contrast to scenes such as sea or snow. For this reason, we tested a simple
algorithm for adaptative sampling of the images in order to reduce the standard deviation of the
keypoints detected per image. The algorithm first selects a random sample of images. Then, for
each image that was chosen, it randomly selects a proportion of the keypoints in order to construct
the codebook. This proportion of keypoints sampled per image depends on the relation between
the number of keypoints of that image and the average number of keypoints per image of the
entire dataset. This algorithm attemps to reduce the variations in the number of keypoints per
image when selecting the visual words. Figure 3.6 shows the relationship between the proportion
of features sampled per image based on the number of features it has. As can be seen by the
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function, if an image has a number of features equal to the average number of features per image
in the dataset, 50% of its features will be sampled and used for codebook learning. In contrast, if
it has much less or much more features than average, less or more features will be selected.

Figure 3.6: Adaptative sampling: function that relates the number of features per image and the
proportion of features that is selected for obtaining the codebook.

After obtaining the codebook, each image is represented by a histogram of frequency of vi-
sual words from the codebook. These histograms are the features that will allow the comparison
between images in order to obtain the final clustering result. However, before the features are
ready for clustering, the histograms are weighted and normalized. Although usually applied in the
area of text processing, these steps have also been applied to image data. The methods tested for
weighting and normalization were simple binarization (reducing the features to a binary value that
represents the presence or absence of that visual word) and different forms of the term frequency-
inverse document frequency technique (tf-idf) [88].

In the last step of the process, the clusters are obtained using a given clustering algorithm. A
number of different approaches were tested including K-Means, DBSCAN, BIRCH and Hierar-
chical Clustering. Additionally, some of these methods allow the choice of the dissimilarity metric
used. That parameter was also varied in order to obtain different clustering results.

Since there is a huge number of possible combinations of algorithms and parameters, it is not
possible to test all of them in finite time. For this reason, a test procedure was used. Each step
was tested separately, thus for each step, only the algorithms and/or parameters of that step were
varied maintaining the rest unchanged. This procedure required the choice of an initial setting.

3.3.3 Performance Measure

In order to assess the performance of the model for the purpose of unsupervised learning of image
data, and given that the datasets are annotated (every image has a label), external clustering indexes
were used. Therefore, an information-based method, Normalized Mutual Information (NMI) [42]
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and a decision-based method, Adjusted Rand index (ARI) [137], were chosen. These measures
were described in Section 2.2.3.1.

3.3.4 Implementation Details

The framework for testing the BoF model was developed in Python and it is openly available on
GitHub 1. The implementation required three libraries: OpenCV [135] library for the functions
related to image description, Scikit-Learn [138] and Scipy [139] for the implementation of the
machine learning algorithms tested.

3.4 Results

3.4.1 Image Description

3.4.1.1 Detectors and Descriptors

First, the different detectors and descriptors for the stage of image description were tested. For
these tests, all the other settings of the BoF model for image clustering were fixed. The K-Means
algorithm was selected as the codebook learning algorithm and the final clustering algorithm.
Also, the size of the codebook and the proportion of images to be used for the process of codebook
learning were fixed for each dataset. The values of the parameters used can be found at Table
3.1. Additionally, as the K-Means clustering algorithm does not take into account if the features
have different scales, a whitening transformation of the features from the histograms was applied
prior to the application of the K-Means clustering algorithm. Finally, the number of keypoints
extracted per image vary because it could not be successfully fixed for each of the detectors due to
differences in their nature.

Table 3.1: Values of the codebook size and proportion of keypoints for the codebook learning step
used in the first tests of the detectors and descriptors.

Datasets Codebook size Proportion of keypoints
for codebook

Coil-20 110 0.3
Natural and Urban 300 0.05

Event 500 0.05

The results of this analysis for all three datasets can be found in Table 3.2, where the perfor-
mance of the best and the worst combination of detectors and descriptors are presented. The table
contains the following information: average ARI, standard deviation of the ARI, average NMI
score and standard deviation of the NMI score, average number of keypoints per image and finally
a relative qualitative value for the computational time required. In order to obtain the average and
the standard deviation of the indexes, every test was repeated 10 times.

1The source code of this project can be found in the link: https://github.com/marianafza/ImageClustering
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By analyzing the results for the Coil-20 dataset, it can be seen that the best performing combi-
nation was the FAST detector with the FREAK descriptor with an average ARI of 52.2% and an
average NMI score of 78.7%. Also, as expected, the SIFT detector with the SIFT descriptor com-
bination also performed fairly well since it usually has a good performance for object recognition
tasks due to the level of invariance to several transformations [77]. Overall, the FAST detector ob-
tains good results, which could be related to the higher number of keypoints per image it is able to
detect. In contrast the worst combinations of detectors and descriptors for this dataset was found
to be the use of the RANDOM detector with the SURF descriptor. In general, the RANDOM de-
tector performed poorly for this dataset. These results are not surprising since the images represent
objects with a black background which will most likely generate a great number of keypoints and
will be seen as noise for the BoF model.

Table 3.2: Performance of the BoF model for image clustering using different detectors and de-
scriptors in order to extract the features in the images from the three datasets.

Dataset Detector Descriptor Avg ARI Std ARI Avg NMI Std NMI Avg. # of
keypoints / img.

Computational
time

Coil-20

FAST FREAK 52,2% 3,9% 78,7% 1,5% 88 High
FAST SURF 48,8% 4,3% 76,2% 1,5% 88 Medium
SIFT SIFT 46,4% 4,9% 75,3% 2,1% 51 High

RANDOM FREAK 32,8% 2,8% 53,7% 2,0% 50 High
ORB ORB 19,3% 2,1% 40,6% 1,8% 11 Low

RANDOM SURF 12,4% 0,9% 28,4% 1,4% 50 Medium

Natural and Urban

STAR SIFT 34,2% 2,2% 46,0% 1,6% 130 Low
RANDOM SIFT 31,2% 0,8% 41,8% 1,2% 500 Medium

SURF SIFT 27,1% 1,6% 38,7% 1,0% 332 High
SIFT SURF 14,0% 1,1% 25,2% 1,4% 393 Medium
STAR BRIEF 13,8% 1,3% 23,4% 1,4% 130 Very Low
FAST FREAK 11,8% 0,5% 21,1% 0,4% 851 Low

Events

RANDOM SURF 18,7% 0,8% 27,1% 0,6% 1000 High
STAR SIFT 16,5% 1,0% 26,5% 0,9% 554 High

SURF SIFT 15,9% 0,8% 25,9% 0,3% 972 Very
High

FAST BRIEF 5,4% 0,3% 13,0% 0,2% 1038 Low
FAST FREAK 5,2% 0,2% 11,1% 0,4% 972 Medium
ORB ORB 4,1% 0,3% 8,1% 0,5% 957 Low

In relation to the Natural and Urban dataset, the best performing descriptor is definitely the
SIFT descriptor with an average ARI of 32% and an average NMI score of 42%. An interesting
result is that the RANDOM detector achieved very good results, by which can be concluded that
using specific interest point detectors can yield worse results for scene datasets than randomly
selecting patches from the whole image. Additionally, in spite of achieving the best results for the
Coil-20 dataset, the combination of the FAST detector with the FREAK descriptor was the worst
performer for the Natural and Urban dataset.

Finally, concerning the Event dataset, the descriptors SIFT and SURF achieved the best results
(>16% ARI and >26% NMI score) in contrast to the binary descriptors BRIEF, FREAK and ORB
(<5% ARI and <13% NMI score). It is clear from the poor results that this is a very challenging
dataset with regards to unsupervised learning.

In relation to the computational time, the SURF and SIFT detectors and descriptors are among
the slowest algorithms. Therefore, for larger datasets and/or real-time applications a more efficient
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combination of detectors and descriptors should be selected, for instance, using the FAST, STAR
or RANDOM detectors and the BRIEF or FREAK descriptors.

In conclusion, after analyzing these results, it can be observed that the performance of the BoF
model applied to unsupervised learning of image data highly depends on the algorithms for the
description of the images. Also, the choice of the algorithms is dependent of the dataset in which
one is working with.

For the following steps, only one of the pairs of detectors and descriptors were selected for
each dataset. Therefore, the combination of the FAST detector with the FREAK descriptor, the
RANDOM detector with the SIFT descriptor and the RANDOM detector with the SURF descrip-
tor were chosen for further testing for the Coil-20, Natural and Urban, and Event datasets, respec-
tively. In relation to the choice for the Natural and Urban datasets, although the STAR detector
achieved the best results, we were unable to efficiently adjust its number of keypoints per image,
and for this reason, the RANDOM detector was preferred.

3.4.1.2 Number of Keypoints and Codebook Size

In this step, several combinations of the average number of keypoints per image and the size of
the codebook were tested. These parameters are correlated since the more features extracted from
the images, the more diversity of visual words will exist and therefore, the size of the codebook
can increase. Figure 3.7 presents the results for all the datasets. Here, the performance index was
chosen as the NMI score since both the NMI score and the Adjusted Rand index followed the same
trends.

As shown in the charts of Figure 3.7, regardless of the codebook size used, the performance
almost always increases with the average number of keypoints per image. As referred in Section
3.2, this result was also obtained in [130] for the problem of image classification.

Another interesting conclusion, also observed in [130], is that the performance increases with
the codebook size until a certain point in which the performance starts to go down. This behavior
can probably be attributed to the curse of dimensionality [22]. The curse of dimensionality states
that the accuracy of a learning algorithm decreases with very high dimensionalities due to unpre-
dictable effects that comes with it. Additionally, it could be observed that the ideal size of the
codebook increases with the complexity of the dataset.

Regarding the average number of keypoints per image and the size of the codebook used for
the next steps of the BoF model, for the Coil-20 dataset, the ideal codebook size and number of
keypoints per image were selected as 100 and 109, respectively. Next, in relation to the Natural
and Urban dataset, the number of keypoints was chosen as 500 and the size of the codebook as
300 visual words. Finally, for the Event dataset, 1500 keypoints and 500 visual words were the
values selected.
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Figure 3.7: Results for the three datasets using different values for the average number of keypoints
per image and the codebook size. The performance was evaluated using the NMI score.

3.4.1.3 Sampling for Codebook Learning

Next, the influences of the sampling technique and the proportion of features used for the codebook
learning algorithm were tested. As mentioned before, two methods for sampling were evaluated,
named in our testing framework SAMPLEP and SAMPLEI. SAMPLEP is the simple sampling
technique using a proportion of all the features of all the images, while the SAMPLEI is the adap-
tative sampling technique described in Section 3.3.2. For both techniques, the number of features
used was varied between a very small value and a large one, considering the time constraint for
each dataset.

Considering that the RANDOM detector was chosen in the previous steps for the Natural and
Urban dataset and the Event dataset and this detector extracts the exact same number of keypoints
per image, it is not suited for the comparison of the sampling techniques mentioned. For this
reason, the combination of the SURF detector with the SIFT descriptor was selected for these
datasets (also due to its good performance).

The NMI scores for the three datasets are presented as charts in Figure 3.8. The chart’s er-
ror bar represents the standard deviation of the NMI score. It is important to note that for the
SAMPLEI method, the x-axis refers to the percentage of images used for codebook learning
whereas for the SAMPLEP method it is the percentage of features. This is because SAMPLEI
method downsamples the images with above average number of keypoints per image and there-
fore less features will be sampled.

In terms of the sampling algorithm, it can be seen that for the Coil-20 dataset, the SAMPLEI
method performs, in average, slightly better than the SAMPLEP, and therefore, it was used in
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the next testing stages. Additionally, in relation to the proportion of features to construct the
codebook, the performance increases until approximately 60% and then decreases. Since using
60% of the images would require a great amount of computational time, the value chosen as the
percentage for the further testing steps was 30%.

Considering the results for the Natural and Urban dataset and the Event dataset, it can be
inferred that there is no clear method that performs the best. This behavior could possibly be
related to the fact that these datasets are composed of more complex images which do not have
significantly different number of keypoints per image in each category. To evaluate this, the total
number of features extracted from each category of the datasets were compared. It was observed
that the ratio between the category with the most features and the category with the least features
was approximately 11 for the Coil-20 dataset, whereas for the other two datasets it was around 2.

For the reasons mentioned above, the percentage of features selected was 3% and 1%, respec-
tively, for the Natural and Urban dataset and the Event dataset using the SAMPLEP method.

Figure 3.8: Results for the three datasets using different values for the proportion of images and
features used for the codebook learning step and using two different methods for selecting or
sampling these features SAMPLEP and SAMPLEI.

3.4.2 Codebook Learning Method

Regarding the codebook learning method, two algorithms, K-Means and Mini-batch, were tested
due to their scalability property to deal with high dimensionality and high number of samples. The
results are presented in Table 3.3.

For all the datasets, the K-Means was, on average, the best performing algorithm. Nonetheless,
for the Natural and Urban dataset, the Mini-Batch had almost the same score, and therefore, is
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preferred considering the less computational time required. As for the Event dataset, K-Means,
Mini-Batch and Random Vectors got the same score, resulting in the choice of the Random Vectors
for the same reason mentioned previously. For the Coil-20 dataset, there is a significant difference
between K-Means and Mini-Batch and therefore, K-Means will be used in further testing stages.
Finally, as expected, the completely random codebook got significantly poorer results in terms of
the clustering validity indexes.

One of the reasons for the poor performance of the Random codebook is that, in practice only
a small portion of the visual words obtained will be actually assigned to a keypoint. It was found,
for example, that for the Event dataset, out of the 500 visual words, only 20 were used, in average.
This is because the dimensionality space is so sparse that many visual words will be extremely far
away from any keypoint.

By the analysis of the results, given that codebook obtained by randomly selecting feature
vectors achieved good results, it can be concluded that the choice of the codebook learning method
does not significantly influence the performance for image clustering, as long as it is not defined
as all random vectors.

Table 3.3: Performance of the BoF model for image clustering evaluated by the NMI score for
different algorithm for codebook learning.

Algorithm Coil-20 Dataset Natural and
Urban Dataset Event Dataset

K-Means 81.0% 42.8% 27.2%
Mini-Batch 77.9% 42.4% 27.4%

Random Vectors 75.9% 40.8% 27.7%
Random 53.9% 16.3% 21.7%

3.4.3 Histogram Weighting and Normalization

After obtaining the histograms of frequency of visual words for each image in the dataset, the
normalization and weighting of the histograms can be performed.

For this purpose, five types of normalization and weighting procedures usually applied to the
text processing were tested. Details of the techniques used are presented in Table 3.4. The variable
f(t,d) refers to the frequency of the word t in the document (or in this case, image) d. The number
of images is given by N and the number of images that have the visual word t is given by nt . In
the tf-idf variation, N⇤ is the total number of features (sum of all visual word frequencies) and nt⇤
is the total number of incidences of that visual word on all images. The results of the application
of these normalization procedures for the datasets tested can be found in Figure 3.9.

By analyzing the charts in Figure 3.9, it is clear that no technique outperforms the others in all
three datasets used. More specifically, for the Coil-20 dataset, the method that achieved the best
performance was the tf-idf and the one that got the worst was the tf-idf variation. In relation to the
Natural and Urban dataset, the best was simple binary normalization while the least was the tf-idf
normalized. Finally, concerning the Event dataset, almost all methods got similar result apart from
the simple binarization, which obtained significantly worse results.
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Figure 3.9: Performance of the BoF model for image clustering evaluated by the NMI score for
different techniques for weighting and normalization of the histogram representations of the im-
ages.

In summary, although the use of normalization and weighting can help to improve the results
of the BoF model for image clustering, it does not significantly influence it, and therefore is not a
core step.

Table 3.4: Methods tested for histogram normalization and weighting and the mathematical ex-
pression for the final value for the histogram.

Method Mathematical Expression
Simple Binarization (SBIN) 1 if ti is present, 0 if not

tf-idf (TFIDF) f(t,d) · log(1+ N
nt
)

tf-idf variation (TFIDF2) f(t,d) · log(1+ N⇤
nt⇤ )

tf normalized (TFNORM)
f(t,d)

Âd f(t,d)

tf-idf normalized (TFIDFNORM)
f(t,d)·log(1+ N

nt )

Âd f(t,d)·log(1+ N
nt )

3.4.4 Clustering Algorithm

The last step of the testing procedure is the clustering algorithm. For this, five algorithms were
tested: K-Means, BIRCH, DBSCAN and two different implementations of hierarchical clustering,
one from the Scikit-learn library (HIERAR1) and another from the Scipy library (HIERAR2). Ad-
ditionally, for DDBSCAN and Hiearchical clustering, the dissimilarity measure used to compute
the distances between images was varied between: euclidean, cosine, correlation, city-block and
hamming. The results are shown in Table 3.5.

Most of the algorithms tested require the specification of the number of clusters as an input. In
a total unsupervised manner that would be impossible, and therefore, DBSCAN and HIERAR2,
which do not require that parameter were tested. Nonetheless, by analyzing the results, only in
the Coil-20 dataset, the HIERAR2 achieved comparable results with the other methods. It was
verified that regardless of the attempts in changing the parameters of the DBSCAN algorithm, it
either found too many data points as noise, or considered a great number of image to be part of
the same cluster. Therefore, and since it is developed to find consistent density-based clusters, it
fails for the datasets considered here.

In contrast, both BIRCH and K-Means performed very well. Regarding Coil-20 dataset,
the best combination was to use simple binarization as the method for histogram normalization,
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BIRCH clustering algorithm and hamming distance measure. Nevertheless, for both the Natural
and Urban and the Event datasets, K-Means with no normalization still got the best results.

The conclusion of this last step of the BoF method applied for unsupervised learning of images
is that, although an algorithm which does not require the number of clusters is desirable, it is not
an easy task, since usually those algorithms require other parameters that need to be adjusted and
can be very specific to a given set of images and parameter configurations. For this reason, a better
alternative might be to compute the clustering algorithm for different number of clusters and then
pick the one that maximized a given internal index, such as the silhouette index [44].

Table 3.5: Results for the three datasets using different algorithms for the final clustering step.

Coil-20 dataset

Normalization Clusting Algorithm Distance
measure

Avg.
Rand
Index

Avg.
NMI
Index

Number
of

clusters
SBIN BIRCH hamming 67,4% 84,8% 20
TFIDF KMEANS euclidean 59,6% 81,9% 20
NONE HIERAR1 correlation 56,9% 82,7% 20
NONE HIERAR2 cosine 54,5% 81,4% >150
SBIN DBSCAN correlation 18,0% 64,2% 15 avg.

Natural and Urban dataset
NONE KMEANS euclidean 30,2% 40,6% 8
NONE BIRCH euclidean 27,4% 37,9% 8
SBIN HIERAR1 cosine 25,7% 37,6% 8
NONE HIERAR2 cosine 8,1% 44,6% >700
NONE DBSCAN correlation 5,8% 36,6% >1200

Event dataset
NONE KMEANS euclidean 19,4% 27,4% 8
TFIDF BIRCH euclidean 17,1% 25,6% 8
TFIDF HIERAR1 correlation 15,8% 23,6% 8
NONE HIERAR2 correlation 9,5% 48,0% >860
TFIDF DBSCAN cosine 2,3% 35,0% >700

3.5 Discussion

This study aimed to evaluate the performance of a very popular model for image representation
called Bag-of-Features, in which the goal is to represent an image as a collection of visual words.
Although this model has been applied with good results to image classification, there has been
few works towards solving the problem of image clustering. Therefore, the objective of this study
was to develop some insight on this model including the evaluation of different algorithms and
parameters for the different steps of the model.

As a result of this experimental evaluation, the steps or parameters that most influenced the
performance of the model for image clustering were the algorithm for image description, the
average number of keypoints per image, the size of the codebook and the final clustering algorithm.
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Another interesting observation was that, although having been proposed several decades ago,
the K-Means algorithm continues to be a very fast and robust choice for the codebook learning
algorithm and for the clustering algorithm compared to other recent approaches.

Additionally, from all the different experiments developed and presented in this work, it can
be concluded that although the Bag-of-Features model can be successfully applied to the problem
of unsupervised learning for visual data, it provides a poor representation of the images when the
datasets represent complex scenes. This was clearly illustrated by the results for the Event dataset.

For this reason, there needs to be further research towards a better understanding of visual data
and the way humans categorize images in order to really be able to achieve comparable automatic
results.



Chapter 4

Study 2: Alternatives to the
Bag-of-Features Model

4.1 Introduction

The Bag-of-Features (BoF) model is very popular and achieves good results on simple datasets.
However, the representations of the images into histograms contains limited information. Addi-
tionally, it lacks the use of both color and spacial information. Thus, four methods or extensions
to the BoF were implemented: the Fisher Vectors (Section 2.4.2.2), Spatial Pyramid Matching -
SPM (Section 2.4.2.3), the Bag-of-Colors - BoC (Section 2.4.2.4) and the Bag-of-Features+Colors
- BoF+C. The last method is the combination of the Bag-of-Features and the Bag-of-Colors.

These algorithms were implemented in Python and is program is also publicly available at
Github 1. The first version of the software only implemented the BoF model. However, the
alternative methods being tested in this section were added. Therefore, a total of 5 algorithms can
be tested. With regards to execution, the program is called from the command line and requires a
number of input parameters including the path of the image dataset, the method being tested and
the parameter settings. This software represents a valuable contribution of this thesis.

In relation to the strategy for testing these algorithms, the three datasets used in the previous
study were also applied. Each method was then compared with the Bag-of-Features model in
terms of performance, complexity and computational time.

In the following sections, implementation details and test results will be presented for each
algorithm. In the end, a summary and some conclusions will be drawn from the results obtained.

4.2 Fisher Vectors

Fisher Vectors (FV) offer a more complete representation of the local features extracted from the
images. The idea behind the FV is fitting a Gaussian Mixture Model (GMM) to a sampled portion
of the data and then computing the statistics that relate the log-likelihood of all the data collected

1The source code of this project can be found in the link: https://github.com/marianafza/ImageClustering
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and the fitted GMM. The statistics are computed for the distribution of keypoints in an image and
refer to the weights, the means and the covariance matrixes that would make the GMM fit the data
better. Therefore, the main difference between the BoF model and the FV is that the BOV only
counts the number of local descriptors assigned to each region with the centers being the visual
words, whereas the FV computes higher order statistics.

To illustrate the idea behind the FVs, consider Figure 4.1. The local descriptors extracted
from the image are represented in the feature space together with the visual words w1, . . . ,w4.
The BoF model calculates the number of keypoints that fall into the region of the visual words.
However, that does not give any information concerning the distribution of the keypoints in each
region. Therefore, the FV attempts to add, for example, information concerning the mean of the
keypoints (Figure 4.1a) and the covariance matrixes (Figure 4.1b). More information concerning
the mathematical equations and the algorithm for computing the fisher vectors can be found in
Section 2.4.2.2.

(a) Mean of the keypoints. (b) Standard deviation of the keypoints.

Figure 4.1: Illustration about the way the BOF works and how the idea behind the FV attemps to
add higher level information concerning the distribution of keypoints: the mean of the keypoints
(a) and the standard deviation of the keypoints (b). Extracted from [140].

Usually, the dimensionality reduction method PCA (Section 2.4.1.4.2), which attemps to cre-
ate uncorrelated features, is applied to the local descriptors obtained. This step is important given
that the FV assumes that the local descriptors are independent, due to the diagonal approximation
of covariance matrices of the GMM. For this reason, PCA was also used in this study. The number
of PCA components has to be less than the original number of features. For instance, if the SIFT
descriptor is used, the number of components can be any number less than 128.

Compared to the dimensionality of the BoF representation, which is N - the number of visual
words, the FV has a dimensionality of K(2D+ 1), where K is the number of Gaussians in the
GMM and D is the dimensionality of the features extracted from the images. This value can be
computed as the sum of the features obtained from the FV’s components, which are the gradient
with respect to the GMM’s:

• weights: one for each Gaussian in the GMM and represents the importance of that Gaussian
in the overall distribution. Therefore, the number of features is K.
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• means: each Gaussian has a dimensionality of D, so KD values are required for the means.

• standard deviations: as it is assumed that the covariance matrixes are diagonal, the dimen-
sionality is also given by KD.

The following sections present the results of this method on the public datasets used previously
varying some key parameters of the algorithm including the keypoint detectors and descriptors,
the number of PCA components, the number of Gaussians for the GMM and the influence of
the different components of the FVs. Finally, its performance will be compared against the BoF
model.

4.2.1 Impact of the Keypoint Detectors and Descriptors

In order to assess the impact of the keypoint detection and description algorithms for the perfor-
mance of the FV method, a number of tests were applied. For these tests, the other parameters
remained constant. The number of Gaussians was chosen to be 1, 3 and 5 for the Coil-20, Natural
and Urban and Event datasets, respectively. Moreover, the descriptors were reduced to 64 PCA
components, except for the BRIEF and ORB descriptors (which have an original size of 32). The
results are presented in Figure 4.2. Both the ARI index and the NMI score are presented in the
charts.

(a) Coil-20 dataset (b) Natural and Urban dataset

(c) Event dataset

Figure 4.2: Results of the FV method using different algorithms for keypoint detection and de-
scription applied to the three datasets tested.
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For the Coil-20 dataset, five combinations of detectors and descriptors were tested: FAST
with FREAK, SIFT with SIFT, SURF with SURF, FAST with BRIEF and ORB with ORB. The
performance measures for this dataset indicate that the best detectors and descriptors are FAST
with FREAK, SIFT with SIFT and SURF with SURF with approximately 75% ARI and 90%
NMI.

In relation to the Natural and Urban dataset, and given the good results obtained by using
the SIFT descriptor in the last chapter, all the combinations of detectors were tested with this
descriptor. Additionally, the FAST with FREAK combination was also used. The results clearly
indicate that the STAR detector with the SIFT descriptor provide the highest performance for this
dataset with an ARI of about 45% and a NMI score of over 50%.

Lasly, with regards to the most complex dataset, the Event dataset, which was tested using a
number of different combinations of detectors and descriptors. The results show that the best rep-
resentation is also achieved using the STAR detector with the SIFT descriptor, with approximately
28% ARI and 35% NMI score.

Similarly to what was observed using the BoF model, the keypoint detector and descriptor
largely influence the results for the FV. Based on the results presented here and for the BoF model,
it can be concluded that the STAR detector combined with the SIFT descriptor produces a repre-
sentation which is highly effective in terms of clustering performance for both these approaches.

4.2.2 Impact of the Use of PCA and Number of Components

Previously, it was referred that the PCA was a key step for the FV method due to the fact that it
intends to obtain independent features. The importance of the step is now tested by comparing
the image clustering results with and without PCA. The tests performed here assumed a number
of Gaussians of 3 for all the datasets. Additionally, only one of the descriptors and detectors was
chosen for each dataset. Therefore, FAST with FREAK was selected for the Coil-20 dataset and
STAR with SIFT was selected for both the Natural and Urban and the Events datasets. In this
section, only the NMI score is presented, for simplicity.

Without the use of PCA, the NMI score for the Coil-20 dataset was 22,2%. As for the Natural
and Urban dataset, the NMI score was 37,4%. Finally, the FV obtained a NMI score of 24,4%
for the Event dataset without using PCA. These results will be compared with the ones achieved
using PCA.

Next, PCA was applied to the image descriptors. The number of PCA components were varied
from 16 to 128. The results can be found in Figure 4.6. Also, since the FV obtained by the FREAK
descriptor has dimensionality of 64, another descriptor was also tested to achieve the maximum of
128 PCA components.

First, by comparing the results with and without the use of PCA, it can be concluded that, as
expected, this transformation is an essential step for the FV model.

In relation to the number of PCA components, for the Coil-20 dataset and the Natural and
Urban dataset, it can be seen that the score tends to increase with the number of PCA components
until a certain value, where the improvement becomes less significant (less than 3% change). For
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(a) Coil-20 dataset (b) Natural and Urban dataset

(c) Event dataset

Figure 4.3: Results of the FV method applied to the three datasets, for different numbers of PCA
components.

this reason, the ideal number of PCA components should be chosen as the "elbow" of the graph.
With regards to the Coil-20 dataset using the SIFT descriptor, this value would 96. Similarly, for
the Natural and Urban dataset, the "elbow" would probably be located at 48 PCA components.

However, the performance does not always increase with the number of PCA components.
The results for the Event dataset indicate that the number of PCA features does not significantly
influence the performance of the FV given that the variations in performance were less than 3%
by using 16 to 112 features.

4.2.3 Impact of the Number of Gaussians in the GMM

One of the most important parameters of the FV is the number of Gaussians used in the mixture
model K. In the work that introduced the FV [90], the authors tested up to a thousand Gaussians.
However, due to the limited computational power available, it was impossible to use more than 20
Gaussians. For the all the datasets, a 64-dim PCA was used. The results are presented in Figure
4.4.

In relation to the Coil-20 dataset, the results indicate that there is significant improvement
in performance by using up to 5 Gaussians, which corresponds to a 645-dim FV. After that, the
results stabilize.
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(a) Coil-20 dataset (b) Natural and Urban dataset

(c) Event dataset

Figure 4.4: Results of the FV method applied to the three datasets for different numbers of Gaus-
sians.

Surprisingly, for the Natural and Urban dataset, increasing the number of Gaussians tends to
decrease the performance. Because of the fact that it is a scene dataset as opposed to an object
dataset, the use of more Gaussians might result in an overfitting of the Gaussians on the sampled
amount of data used to fit the GMM. Nonetheless, these results were not at all expected considering
the results presented in [90].

In contract, for the Event dataset, the performance increased linearly from 1 to 20 Gaussians.
Probably this trend would have continued for higher number of Gaussians, however, this was not
tested due to computational limitations.

4.2.4 Impact of the Different FV Components

As discussed previously, the FV is composed by three parts, the gradient w.r.t the weights, means
and standard deviations of the Gaussians of the GMM. In this section, the influence of each of
these components is evaluated separately and combined with other components. The results are
presented in Figure 4.5. For simplicity, only the Coil-20 dataset was used.

The results reveal that the least important component is the mixture weights, which does not
provided significantly discriminative representation for clustering (30% NMI compared to over
90% for the Coil-20 dataset). It was also shown that individually, the means provide the best
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Figure 4.5: Results of the FV method applied to the Coil-20 dataset, for different combinations of
the FV components.

representation. Moreover, the addition or not of the weights to the FV does not seem to change
the result. Consequently, this component could be excluded from the FV representation to reduce
complexity.

4.2.5 Comparison with the Bag-of-Features Model

According to the results of the tests performed in this section, compared to the BoF model, the
FV provides significant improvements in terms of performance. Nonetheless, the complexity of
the algorithm and the computational time are increased. The best results achieved for the three
datasets considered for both methods are presented in Table 4.1.

Table 4.1: Best results for image clustering obtained using FV for each dataset including the
parameters and the performance indexes.

Datasets Detector Descriptor K PCA-dim Clustering
Algorithm

Distance
Measure

FV
ARI

BoF
ARI

FV
NMI

BoF
NMI

Coil-20 FAST FREAK 10 64 BIRCH Correlation 91.6% 67.2% 97,3% 85.3%
Natural and Urban STAR SIFT 3 112 K-Means Euclidean 45.1% 34.2% 52.9% 46.0%

Event STAR SIFT 20 64 K-Means Euclidean 35.7% 19.2% 39.1% 27.1%

The results show a very impressive increase in the performance for all of the datasets tested,
from the most simple to the most complex one. The largest improvement was obtained for the
Coil-20 dataset with 24.4% increase in percentage difference of the ARI and 12,0% in the NMI
score. In relation to the Natural and Urban dataset, a 10.1% difference improvement was obtained
in the ARI and 6.9% in the NMI score. Finally, the best ARI and NMI scores for the Event dataset
using FV were 35.7% and 39.1% compared to 19.2% and 27.1% obtained with the BoF model.
Interestingly, the improvements were higher for the ARI than for the NMI index in all the datasets.

Overall it can be concluded that the FV adds a great amount of useful information to the
representation of an image for the purpose of clustering. However, in order to achieve those good
results, PCA needs to be applied to the descriptors obtained from the images. This helps create
independent features and at the same time reduces the dimensionality of the FV representation.
Another important parameter is the number of Gaussians to use in the GMM. In the majority of
the datasets, the performance increased with this parameter. However, there is a very significant
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amount of computational cost that comes with having to compute an increased number of statistics
for each image. Lastly, the most important component that is responsible for the discriminative
power of the FV are the gradient w.r.t. the means.

4.3 Spatial Pyramid Matching

One of the characteristics of the BoF model is that is ignores the spacial location of the local
descriptors extracted from the images. Although this can be an advantage, in some cases this
information could be essential to distinguish scenes. For this reason, SPM was created (Section
2.4.2.3). The idea of SPM is to create different spatial levels (pyramid) from 0 to L with increasing
number of regions and for each level. Then, for each region, a histogram of frequency of visual
words is computed. For example, if a SPM of 2 levels is selected, a normal BoF histogram is
computed, then, the image is divided into four regions and a separate histogram is computed for
each region. After that, the histograms are concatenated to create the SPM representation. Thus,
the dimensionality of the feature vectors is M ÂL

l=0 4l = M 1
3(4

L+1�1).
The number of regions is always a power of 4 given that each region is always divided into

four regions in the next level of the pyramid. In this implementation, for computational efficiency,
first the image is divided into the maximum number of regions according to the number of levels
selected and the histograms are computed from the highest to the lowest level. Since the regions
need to be concatenated for computing the histograms of the level immediately lower, a transfer
8⇥8 matrix T (i, j) was constructed. Given a row i and column j of the region, this matrix gives the
order to which that region’s descriptors should be stored in a list. In this way, once the histograms
of that level are computed, the next regions are given by concatenating the four adjacent regions in
the vector (1 to 4, 5 to 8, etc). Figure 4.6 shows the transfer matrix. The colors indicate the levels:
blue is level 0, yellow is level 1, red is level 2 and finally the cells of the matrix are level 3.

Figure 4.6: Transfer matrix that relates the row and column of the regions to the index in which
its descriptors should be stored in a list.
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4.3.1 Impact of the Number of Pyramid Levels and Comparison with the Bag-of-
Features Model

Next, the results of the evaluation of the SPM algorithm using different number of levels will
be presented. For these tests, the Coil-20 dataset was not considered because the images have a
black background which would result in some regions having only black keypoints. In terms of
the local descriptors algorithms, for the Natural and Urban dataset, the RANDOM detector with
the SIFT descriptor was used and for the Event dataset, RANDOM with SURF due to the good
results obtained using BoF. Additionally, for the Natural and Urban dataset, 128 keypoints were
extracted and for the Event dataset, 512 keypoints were extracted.

The most important parameter to be chosen when applying SPM to a dataset is the number
of levels of the pyramid. This parameter influences the computational cost of the algorithm as
well as the dimensionality of the feature vector obtained for each image. The results of the tests
performed can be found in table 4.2. Note that using only 1 level is equivalent to the BoF model.

Table 4.2: Results of the SPM for the Natural and Urban dataset and the Event dataset with
different values of the number of levels of pyramid considered.

Natural and Urban Event
# Levels ARI NMI ARI NMI
1 (BoF) 17,9% 27,5% 19,0% 26,7%

2 18,1% 28,4% 17,4% 26,3%
3 14,1% 24,8% 14,2% 21,7%
4 9,3 % 17,2% 6,8% 14,8%

In the work of [93], in which SPM was applied to image classification, the maximum number
of levels in which improvements were found was 3. Here, there was only a slight improvement
by using 2 levels in the Natural and Urban dataset. After 2 levels, the performance decreased
significantly. In relation to the Event dataset, there was no improvement at all by applying the
SPM over using the BoF model. Although these results are disappointing, they can possibly
be explained by the fact that the increased information obtained by considering the location of
the local description is overpowered by the increase in the dimensionality of the feature vectors.
Additionally, the results reported in [93] refer to image classification which is a different problem
than image clustering.

4.4 Bag-of-Colors

The majority of the works related to image classification, image retrieval and image clustering
ignore color information. The Bag-of-Colors (BoC) model attempts to, therefore, explore this
information in a similar fashion as the the BoF explores local descriptors.

First, each image is transformed from the RGB color space to the L*a*b color space. Then, it
is brokendown into n regions. For each region, the color histograms are computed and the most
frequent color vector is stored. This is called the color signature of an image. The next steps are
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identical to the BoF model and include the learning of the codebook which is called color palette
and the histogram computation. In the end, each image is represented by a histogram of color
palette frequencies. In order to illustrate the process of extracting the color signatures from the
images, refer to Figure 4.7 which shows the process of extracting the signature color of one region
of the image.

Figure 4.7: Illustration of the method of extracting color features for the BoC representation.

In order to assess the performance of the BoC method, the Natural and Urban dataset and the
Event dataset were used. Unfortunately the Coil-20 dataset was not suited since the images are
grayscale. In the following sections, the results obtained will be presented and compared to the
BoF.

4.4.1 Impact of the Number of Regions and the Color Palette Size

The most important parameters to be chosen for the BoC method are the number of colors extracted
from each image and the size of the color palette. These parameters are equivalent to the number
of patches or keypoints and the size of the codebook in the BoF method.

For both datasets, the Mini-Batch algorithm was used to obtain the color palette from the color
signatures obtained from the images and for the final clustering algorithm, the K-Means clustering
algorithm was applied. The results are presented in Table 4.3. For simplicity, only the NMI score
is presented in the table.

As expected from the results for the BoF model in 3.4.1.2, in general, the performance in-
creases with the number of colors extracted from the images. Also, for the Event dataset, there is
an increase in performance with the size of the color palette until 64 colors, when the performance
starts to decrease. Therefore, for the datasets considered, the best choice for the size of the palette
is 256 for the Natural and Urban dataset and 64 for the Event dataset.



4.5 Bag-of-Features+Colors 99

Table 4.3: NMI score of the application of the BoC method to the two color datasets varying the
number of colors extracted from each image and the size of the color palette.

Natural Event
Size of the color palette Size of the color palette

#colors 36 64 128 256 36 64 128 256
16 15,4% 16,5% 16,7% 16,1% 21,0% 21,2% 20,6% 16,4%
25 16,4% 17,3% 17,5% 18,1% 23,2% 24,1% 22,5% 19,1%
36 17,1% 18,1% 18,3% 17,7% 23,6% 24,1% 22,7% 20,9%
64 17,2% 17,8% 18,2% 18,3% 24,1% 23,9% 23,7% 23,7%

128 18,1% 18,4% 18,5% 18,6% 24,4% 24,5% 24,0% 23,8%

Surprisingly, by comparing the results from both datasets, it can be seen that the performance
of the BoC is significantly higher for the Event dataset than for the Natural and Urban dataset,
which never occurred with previous algorithms tested. This exemplifies how the choice of method
to use is highly influenced by the dataset.

4.4.2 Comparison with the Bag-of-Features Model

For the Natural and Urban dataset, the BoC is clearly inferior to the BoF model, which achieves
a maximum NMI score of 41% compared to the 14.1% obtained using the BoC. In contrast, the
results for the Event are similar to those obtained using the BoF model (in the order of 25%).

Overall, it is clear that extracting only color features from the images does not yield a very
informative representation for clustering. However, it could be used to complement other feature
representation such as the BoF. This approach will be explored in the next section.

4.5 Bag-of-Features+Colors

Finally, the last method implemented was the combination of the BoF with the BoC, which we
named Bag-of-Features+Colors (BoF+C), aiming at obtaining information from both local de-
scriptors and colors. A similar approach was presented in [95] using local color descriptors. How-
ever, in this work, we chose to use the global color representation as introduced in the last section.
Therefore, the BoF+C is implemented by simply concatenating the histograms obtained from the
BoF and the BoC into a bigger and more complete histogram, resulting in a larger dimensionality.
Figure 4.8 illustrates the process used for this method.
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Figure 4.8: Illustration of the BoF+C method, which is the combination of the representations
from the BoF and the BoC models. In this example the size of the codebook of the BoF model is
100 and the size of the color palette for the BoC model is 36.

The results obtained for this method are presented 4.4 using two different configurations of
parameters for the number of colors extracted per image and the size of the color palette. These
parameters were selected considering the results of the BoC model in the previous section. Sim-
ilarly to the case of the BoC model, only the two color datasets were used. Additionally, the
equivalent performance measures for the BoF model is presented in the table.

Table 4.4: Results of the BoF+C for the Natural and Urban dataset and the Event dataset with
different local feature detection and description algorithms.

Natural and Urban Event
number of

colors
color palette

size ARI NMI number of
colors

color palette
size ARI NMI

36 128 34,0% 46,7% 36 64 19,5% 29,8%
128 256 37,3% 51,0% 128 256 19,2% 29,6%

BoF 34,2% 46,0% BoF 19,2% 27,1%

4.5.1 Comparison with the Bag-of-Features Model

Compared to the performance of the BoF model (last row of Table 4.4), the BoFC presented an
increase in performance difference (approximately 3% for the ARI and 5% for the NMI score
of the Natural and Urban dataset, and 3% for the NMI of the Event dataset). This is justified
by the addition of color information to the BoF representation. Therefore, this proves that color
should not be ignored and can successfully be used combined with other methods to achieve more
complete representations of the images.
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4.6 Discussion

In this section, four alternatives or extensions to the BoF were tested: the Fisher Vectors (FV),
Spatial Pyramid Matching (SPM), Bag-of-Colors (BoC) and Bag-of-Features+Colors (BoF+C).
Also, for each of the methods, different parameters were varied to evaluate their impact.

For both the FV and the BoF+C, improved performance was achieved. However, the improve-
ments were much higher for the for FV than for the BoF+C. In relation to the FV method, the PCA
was shown to be an indispensable step. Additionally, the number of Gaussians in the GMM have
shown to highly influence the performance for the majority of the datasets tested. Color is used,
in the BoF+C method, to complement the information obtained from the local descriptors. The
results indicate that these higher dimensional feature vectors provide better discriminative power.

For one of the datasets, the BoC obtained only slightly worse results than the BoF, which is
positive since it only uses color information. The performance of the BoC almost always increased
with the number of colors extracted from the images. Unfortunately, for the datasets tested, SPM
did not bring significant improvements and as the number of levels increased, the performance
decreased. This might indicate that this method is not suited for the problem of image cluster or
for the datasets considered.

Overall, for the purpose of image clustering, the BoF, the FV and the BoF+C provide the best
results for the public datasets tested. For this reason, they were applied to the mining of images
shared in the social networks presented in the following chapter.
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Chapter 5

Study 3: Evaluation on Twitter Images

5.1 Introduction

In this chapter, instead of using images from public datasets, the algorithms will be tested with
images extracted from Twitter. These images usually contain highly complex content with many
objects and backgrounds. This makes the clustering task much more difficult than with the other
three datasets tested until this point. Additionally, the images from the public datasets were anno-
tated (there were labels indicating the classes each image belonged to). When dealing with images
shared online, more specifically, on the social networks, this is not the case. However, most of the
images come with some text, but in relation to the content presented in the image, the text is likely
to contain useless or even misleading information. Thus, without a "ground truth" it is impossible
to assess the performance of the algorithms. For this reason, user evaluation was performed.

When dealing with unclassified images, another issue is that the number of clusters is not
known and is highly subjective. Thus, the only option is to use clustering algorithms that do
not require the number of clusters as an input parameter. Consequently, and considering that
the Hierarchical Clustering and DBSCAN obtained poor results in the previous studies, another
clustering algorithm was implemented. This algorithm has many advantages which are discussed
in Section 5.5.

For the first part of this study, the acquisition of the images will be described, including how
the images were extracted from Twitter and the filtering steps necessary. Then, the dataset used
will be described and justified. Then, the user evaluation procedure will be detailed. Finally, the
results will be presented.

5.2 Image Acquisition Module

Several steps need to be applied in order to be able to successfully download images shared by
users on Twitter. Figure 5.3 shows the procedure. First, a software called SocialBus was used to
connect to the Twitter Streaming API, which provided the online data. This software is responsible
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for extracting, filtering and storing the data, in this case, the tweets. Then, the images need to be
downloaded and filtered before finally storing them.

Figure 5.1: Illustration of the steps performed for the image acquisition module.

In the next sections, the SocialBus project will be described, the structure of a tweet and how
it is filtered will be discussed. Finally, the download and filtering of the images will be covered.

5.2.1 SocialBus

As mentioned before, the data for this study was acquired through a Twitter crawler called Social-
Bus [16], which is a project being developed at the Faculty of Engineering of the University of
Porto. It is developed in Java and uses the Twitter Streaming API.

In order to obtain data from Twitter, an authorized access needs to be setup. For this, a Twitter
user needs to register a new application. Next, an access token file needs to be obtained and will
serve as an authentication for the application.

In terms of the practical implementation, SocialBus is downloadable as Eclipse projects. The
projects used in this thesis were: socialbus-parent, socialbus-core, socialbus-twitter-consumer
and socialbus-twitter-oauth. To be able to run the socialbus-twitter-consumer project, a number of
important parameters (configuration files) need to be specified [141]:

• config: main configurations including server connection and storage (database).

• oauth: access tokens obtained in the authorization step mentioned before.

• filter: filter configurations including type of filter (KEYWORD, GEOLOCATION or
USERS) and filter text file with the topics, locations or users to filter.

5.2.2 Filtering the Tweets

The tweets extracted from the API have a JSON format. JSON (JavaScript Object Notation) [142]
is format that uses human-readable text to transmit data objects consisting of attribute–value pairs.
A Tweet has a very complex structure and contains information about the text shared (at most 140
characters), hashtags, geolocation (if enabled by the user), time tweeted, user identification and
profile, retweet info, media and others.
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Twitter users can share media content, more specifically images directly by uploading an image
file together with a Tweet. The image is stored in a url which is located in the JSON file under the
field media_url which is inside extended_entities filed. Listing 5.1 presents some important fields
of a Tweet with shared media. If the Tweet had no shared image attached to it, there would be no
extended_entities field.

Listing 5.1: Structure of a Tweet with media

1 {
2 " _ i d " : {
3 " $o id " : " 556 f 0d1 c 300442 ad b f d e 89 e 4 "
4 } ,
5 " r e t w e e t e d " : f a l s e ,
6 " l a n g " : " en " ,
7 " e x t e n d e d _ e n t i t i e s " : {
8 " media " : [
9 {

10 " i d " : 606103089712480257 ,
11 " m e d i a _ u r l _ h t t p s " : " h t t p s : / / pbs . twimg . com / media / CGlPjH�UQAEC_rA

. j p g " ,
12 " m e d i a _ u r l " : " h t t p : / / pbs . twimg . com / media / CGlPjH�UQAEC_rA . j p g " ,
13 " e x p a n d e d _ u r l " : " h t t p : / / t w i t t e r . com / j a c k i e 90272 / s t a t u s / 60610309

0211586048 / pho to / 1 " ,
14 }
15 ]
16 } ,
17 " t imestamp_ms " : " 1433341212214 " ,
18 " t e x t " : " Pre�s c h o o l F r a n c o p h i l e and t h e i r p a r e n t s : P a r i s�Chien i s 1

o f 10 p i c t u r e books s e t i n P a r i s on h t t p : / / t . co / 2FBZZZdN8u h t t p :
/ / t . co / 1 ifDnavTqL " ,

19 } ,
20 " u s e r " : {
21 " l o c a t i o n " : " l . a . " ,
22 " l a n g " : " en " ,
23 " i d " : 367209090 ,
24 " f o l l o w e r s _ c o u n t " : 81 ,
25 " p r o f i l e _ i m a g e _ u r l _ h t t p s " : " h t t p s : / / pbs . twimg . com / p r o f i l e _ i m a g e s / 59

9989924037726210 / gRfmV9QE_normal . j p g " ,
26 " f r i e n d s _ c o u n t " : 236 ,
27 }
28 }

Therefore, in order to filter only Tweets with media content, the program has to check if the
extended_entities field is present in a Tweet.

There is also another way to share images on Twitter, which is to publish a photograph on
Instagram and choose to share it on Twitter. As mentioned before, Instagram is a very popular
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media driven social network. For this reason, the tweets containing Instagram links were also
filtered. Listing 5.2 shows some of the most important fields of a tweet that has an Instagram
link. The url for the image content is present in the expanded_url field which is inside the entities
field. Therefore, to filter those Tweets, it is necessary to check if the url field contains the words
Instagram.com.

Listing 5.2: Structure of a Tweet with an Instagram link

1 {
2 " _ i d " : {
3 " $o id " : " 557218 c 0 e f 8696 aa 38d3 a 0 a 3 "
4 } ,
5 " r e t w e e t e d " : f a l s e ,
6 " l a n g " : " en " ,
7 " t e x t " : " Yay i t ’ s h e r e ! ! #Bombay ’ s b e s t t i m e s ! ! Time f o r a #monsoon #

r i d e ! # t r i p # r a i n s # e p i c h t t p s : / / t . co / LdhfJRODeb " ,
8 " e n t i t i e s " : {
9 " t r e n d s " : [ ] ,

10 " symbols " : [ ] ,
11 " u r l s " : [
12 {
13 " e x p a n d e d _ u r l " : " h t t p s : / / i n s t a g r a m . com / p / 3kCU1jw7xP / " ,
14 " d i s p l a y _ u r l " : " i n s t a g r a m . com / p / 3kCU1jw7xP / " ,
15 " u r l " : " h t t p s : / / t . co / LdhfJRODeb "
16 }
17 ] ,
18 } ,
19 " u s e r " : {
20 " l o c a t i o n " : " Mumbai " ,
21 " l a n g " : " en " ,
22 " i d " : 600839170 ,
23 " f o l l o w e r s _ c o u n t " : 96 ,
24 " f r i e n d s _ c o u n t " : 239 ,
25 }
26 }

Additionally, two other types of filtering were performed before storing the tweets. The first
one was to remove tweets that are retweets as they represent duplicated data. This is done by
analyzing the retweeted field (which can be either true or false). The last was to consider only
tweets in English, and therefore, only tweets with the field lang set to en where considered.

In order to store the Tweets obtained in the previous step, the database MongoDB [143] was
used, which is the one used in the SocialBus project. It is a NoSQL database and has the advantage
of working with JSON-like formats which is the format the Tweets are obtained.
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5.2.3 Downloading and Filtering the Images

After storing the data in the database, the next step is to obtain the image content. This was
implemented offline in a Python script. First, a connection to the database needs to be done. Then
all the entries in the database are scanned for the media fields, for either the images shared directly
on Twitter or the ones via Instagram. Next, the images where downloaded. Finally, some images
where removed due to three reasons:

• Size: small images, with dimensions less than 200 pixels per side or 90.000 in pixel total
were removed due to quality issues.

• Content: since the goal was to analyze natural images (photographs), there was an attempt
to eliminate unnatural images.

• Repetitions: images from links that were already used where removed to avoid duplicated
content.

In relation to the filtering of unnatural images, a simple algorithm was developed and imple-
mented. It basically explores the fact that the histograms of the natural images are different in
shape compared to the unnatural images. Figure 5.2 shows the grayscale histogram of 2 images.
One of them is a natural image and the other is unnatural. It can be seen that the natural image
has a much softer histogram shape than the unnatural which is mostly composed by peaks. This
phenomenon can be explained by the fact that the unnatural images usually do not have a great
number of different colors. For example, it is clear that the example image has only 3 major colors.

Algorithm 3 Unnatural Image Detector
Input: Grayscale histogram of the image hist, width w and height h of the image
Output: Boolean unnaturalImage

1: thres1 0.01wh
2: thres2 0.6
3: empty 0
4: for i = 1 to 255 do
5: if hist[i] < thres then
6: empty empty+1
7: end if
8: end for
9: if empty > thres2 then

10: unnaturalImage True
11: else
12: unnaturalImage False
13: end if

The presence of the peaks on the gray level distribution of the unnatural images leads to most
of the histogram being empty. Hence, it is possible to evaluate the emptiness of the histograms
and make a decision based on that. Algorithm 3 presents the solution proposed.
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(a) Natural image. (b) Unnatural image.

(c) Natural image histogram. (d) Unnatural image histogram.

Figure 5.2: Examples of grayscale histograms of natural and unnatural images.

This algorithm depends on two thresholds that can be varied. The values presented in the
algorithm were found as the most appropriate for the images obtained from Twitter. Additionally,
although this procedure does not detect successfully all the unnatural images, it still provided good
results given its simplicity.

5.3 Twitter Dataset

After many visual inspections of the images shared directly to Twitter, it was seen that a substantial
amount of them did not have good quality and were used for marketing purposes. In contrast, the
images from Instagram were high quality and most of them were personal photographs. Since
these are the images this study was aiming for, it was decided that the dataset should only contain
images from Instagram. Nonetheless, we will still refer to them as the Twitter dataset.

The dataset contains 1000 images, which were extracted from 5 to 6 of June of 2015. A
keyword filter was applied with the words "trip" and "weekend" (since June 6 was a Saturday).
Hence, they contain, for instance, scenes of people traveling, landscapes and food. Additionally,
the images are squared and were resized to 400 ⇥ 400 pixels. Figure 5.3 shows examples of
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images from this dataset. It is relevant to note that no manual selection was performed on the
images.

Figure 5.3: Examples of images from the dataset extracted from Twitter/Instagram.

5.4 User Evaluation

As mentioned before, the images do not have a label indicating their class. For this reason, it would
be impossible to compare the algorithms implemented. The solution was to create a webpage that
would allow the general public to help annotate the dataset by evaluating the content of the images.
Therefore, the approach selected was to ask the users to compare pairs of images, in relation to
their similarity. The interpretation of similarity here is obviously very subjective but for reference
they were told that similar images shared similar concepts, scenes or context.

Hence, in total, there are 500,000 different pairs of images in the dataset. Consequently, it was
not realistic to expect to obtain that many answers from the public. However, it is likely that a
rough performance estimate of the algorithms can be achieved with only a portion of those pairs
of images. Therefore, we aimed at 1% of those combinations, which is equal to 5,000 answers. In
a few hours, we were able to achieve a total of 5,674 answers, in which roughly 20% were "yes"
and 80% were "no" w.r.t image similarity.

The implementation of the website was done in JavaServer Pages (JSP) and Java servlet [144].
JSP is a tool to create dynamic webpages and it is based on HTML. On the other hand, just like
PHP, Java servlet is a Java programming language that extends the capabilities of the webserver to
responde to requests. The combination of those technologies allow the creation of fully operational
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websites. The servlet container used was Apache TomCat [145], which is an open-source web
server that runs Java code.

Figure 5.4 shows a screenshot of the webpage developed for the user evaluation procedure.
Each time a user enters the webpage, a pair of images is selected, at random, from the dataset and
is shown. The user is told to decide if the images are similar or not and the decision made is stored
in a text file in the server together with the identification of the images. After that, the process is
repeated, until the user leaves the page. For guidance, at the top left corner of the webpage, the
overall number of pairs of images evaluated (by all users) and the goal number are shown. Finally,
at the bottom of the page, more information about the instructions and the project are presented.

Figure 5.4: User Evaluation website of the dataset obtained from Twitter.

After the answers are obtained, the Adjusted Rand Index (Section 2.2.3.1) was used as the
validity index of the algorithms implemented, given that it evaluates the decisions the algorithms
makes on the pairs of images which compose the dataset. However, due to the fact that in this case,
only 1% of the pairs of images were evaluated, the full ARI is not able to be computed. However,
considering the pairs that were evaluated, an estimate of the ARI can be calculated using the same
mathematical expression in Equation 2.26. As the values obtained are estimates, there is an error
associated with it, other than the usual errors due to the non-deterministic nature of the algorithms.
For that reason, and in order to try to quantify it, the ARI was computed for one of the public image
datasets, the Event dataset, in the same way, using only 1% of the pairs of images. The absolute
average value of the error, in relation to the full ARI was 0.6%. Therefore, for the purpose of this
analysis, this error is not very significant.

Additionally, an individual classification was also considered. This classification was per-
formed by a volunteer, which split the whole dataset into groups of related images and outliers.
Therefore, there are two different perspectives on the manual classification of images, which can
be compared. The public evaluation will be refer to as the group evaluation and the other as the
individual evaluation.
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During the tests of the algorithms using the dataset collected from Twitter, in order to be
able to assess if the algorithms were obtaining efficient representation in terms of obtaining low
distances between images that appeared to be similar and large distances to the ones that were not
similar, the idea of using a graph representation was created. Given that the approach of using
graphs was already explored in related work detailed in Section 2.7, another clustering approach
was implemented. This method will be presented next.

5.5 Community Detection for Image Clustering

Similarly to the relationships between users in a social network, the relation between images can
also be represented as a graph. The nodes of the graph are the images and the edges’ weights
are the dissimilarity between the images. The dissimilarity between the images can be obtained
from the distance matrix which is a N by N matrix that contains the distance measures between the
feature vectors of the images. For the construction of the distance matrix, any distance measure can
be used (Section 2.2.1.1), from the Euclidean distance to the inverse correlation (1� correlation).

Given that the distance matrix relates every image to every other image in the dataset, each
image would be connected to the others in the graph (which is called a complete graph). Therefore,
in order to reduce the number of edges of the graph, the maximum number of edges per image
is reduced to a 20. Those edges are chosen as the ones with the lowest values which represents
the 20 closest images. Additionally, to filter out the edges even more, in order to achieve a more
compact representation of the dataset, the edges with weights higher than the median of all the
weights are excluded. This step reduces the number of edges to half, keeping only the strongest
connections. It is important to note that after this step, some images are likely to be represented as
a separate node. In this case, they are said to be outliers. This follows the same strategy used in
the work of [123], described in Section 2.7.

Figure 5.5 illustrates a graph of images in which the filtering step has been applied. As can
be seen in the figure, some images are connected to each other and others are not. The weights of
the edges have illustrative values from 1 to 3 to indicate the level of dissimilarity found between
them. Also, one of the images is isolated from the others, becoming an outlier.

Now, after obtaining the final graph that represents the dataset, the goal is to discover clusters
or communities of images. In graph theory, this is the problem of community detection. One of
the algorithms for this purpose it the Louvain algorithm for community detection, introduced in
Section 2.1.4. It is implemented in the python-louvain [146] package and works by building an
hierarchical structure. This makes it very efficient in terms of computational time. This algorithm
was applied to the graph obtained from the previous edge filtering steps and generates the best par-
tition in terms of modularity, which is a measure of the density of the links inside the communities
in relation to the links between communities.

Therefore, this whole procedure is equivalent to using a clustering algorithm on the feature rep-
resentation obtained for each image. However, it has the advantage of not requiring the knowledge
of the number of clusters or the requirement of any parameter since it computes the best partition
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Figure 5.5: Example of a graph representation of images. The edge weights are for illustrative
perpose only and represent the dissimilarity between the images.

to achieve maximum of an objective function. Additionally, the process is highly intuitive and
relatively easy to visualize.

5.6 Results

In this section, the results of the application of the best performing algorithms for image repre-
sentation and clustering from the previous studies with public datasets will be presented. The
algorithms that were tested were the BoF, the FV and the BoFC. Both the individual and the
group evaluation were be considered. As mentioned before, the ARI is the index responsible for
evaluating the performance of the algorithms.

For all the models, two final clustering algorithms were considered: hierarchical clustering
(HIERAR2) and community detection (COMM). DBSCAN was not considered since its results
were very poor compared to the other algorithms. Also, the hierarchical clustering algorithm re-
quires constant update of the threshold parameter, which is responsible for determining the clusters
from the hierarchical structure. For this reason, the community detection approach was preferred
and tested more extensively. When using the community detection clustering algorithm, the cor-
relation measure was used to compute the dissimilarities between feature vectors. On the other
hand, the cosine dissimilarity measure was used for the hierarchical clustering algorithm.

For the BoF model, the image description algorithms tested were the RANDOM detector with
the SIFT descriptor, the RANDOM detector with the SURF descriptor and the STAR detector
with the SIFT descriptor. Apart from that, the size of the codebook was also varied. In relation
to the FV method, the number of Gaussians (K) and the number of PCA components were varied.
Finally, for the Bag-of-Features+Colors, the number of colors extracted from each image and the
number of colors of the palette were changed.
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The results, for both the individual and group evaluations are presented in Table 5.1.

Table 5.1: Results of the application of the best three methods for image representation and clus-
tering to the dataset extracted from Twitter.

Bag-of-Features
Image Description Codebook Size Clustering Algorithm Individual ARI Group ARI
RANDOM + SIFT 300 HIERAR2 7,3% 10,2%
RANDOM + SIFT 300 COMM 10,7% 10,1%
RANDOM + SIFT 500 COMM 13,6% 10,5%
RANDOM + SIFT 1000 COMM 13,9% 11,9%
RANDOM + SIFT 2000 COMM 13,9 9,8%
RANDOM + SURF 300 COMM 2,1% 1,6%

STAR + SIFT 300 COMM 6,4% 7,1%
Fisher Vectors

Number of Gaussians (K) PCA components Clustering Algorithm Individual ARI Group ARI
1 48 HIERAR2 9,1% 8,2%
1 48 COMM 11,2% 8,7%
1 64 COMM 9,5% 9,3%
5 48 COMM 9,1% 6,8%
5 64 COMM 7,9% 6,7%
10 48 COMM 7,5% 6,4%
10 64 COMM 6,8% 6,2%

Bag-of-Feature-Colors
Number of Colors Size of Color Palette Clustering Algorithm Individual ARI Group ARI

64 64 COMM 13,4% 11,1%
64 256 COMM 9,5% 9,6%
128 64 COMM 13,2% 12,6%
128 256 COMM 10,5% 10,6%

Overall, the ARI for the individual evaluation was higher than for the group evaluation. This
might come from the fact that different people had different perspectives when considering the
similarity of the images, and therefore, there might not have been a very consistent pattern. Also,
it is important to consider the possibility of mistakes or users who did not answer according to the
instructions.

In relation to the BoF, the best detector and descriptor for this dataset was the RANDOM de-
tector and SIFT descriptor, which achieves a maximum ARI of 13,9% for the individual evaluation
and 11,9% for the group evaluation. In general, the performance increased until a certain point
with the number of visual words. The community detection algorithm was a very good choice
since no tuning of parameters are required and it achieves very good results.

Unlike for the public datasets, the FV performed worse than the BoF. The best result was
11,2% for the individual evaluation and 9,3% for the group evaluation. Interestingly, the highest
results for the FV method was achieved using only 1 Gaussian (K = 1).

Finally, the BoF+C achieved a best result of 13,4% for the individual evaluation and 12,6%
for the group evaluation by extracting 64 colors and using a 64 size color palette for the individual
and 128 colors and a 256 size color palette for the group. These results are similar to the BoF
model. and therefore, the addition of color information did not successfully improve the results.
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The reason behind this is probably due to the nature of the dataset, given that the images had very
mixed colors, unlike the public scene datasets, where there were color patterns or trends associated
to each class.

5.7 Presentation of the Clusters

After obtaining the clusters, it is important to consider a strategy to visualize and present the out-
come. Some approaches that had been implemented in previous works were discussed in Section
2.6. However, following the idea of using graph theory and community detection as one of the
alternative clustering algorithms, a much simpler strategy was implemented. In Section 2.1.5, the
problem of finding the most influential nodes in a network was addressed, in which one of the
approaches was to use centrality-based methods to score the nodes. One of these measures is
closeness centrality. The node with the highest closeness centrality means that it has the smallest
distances to all other nodes. For this reason, the approach implemented for visualization of the
clusters obtained by the algorithms was to find the most central node (image) for each community
(cluster). This methodology follows the three steps below:

1. Obtain the feature vectors of each image using the algorithms implemented (BoF, SPM,
Fisher, etc).

2. Obtain the communities using the community detection approach described in Section 5.5.

3. For each community, compute the most central node according to the closeness-centrality
score.

In the end, each cluster can be represented by a single image, for summarization and visual-
ization purposes.

Figure 5.6 presents examples of images from three clusters obtained by one of the algorithms
and their central images. It can be seen that each cluster presents images with different concepts:
cluster 1 shows mostly images from landscapes, cluster 2 shows images of food and drink and
cluster 3 of people. However, not all the images in the same cluster present similar content when
manually analyzing them, as can be also seen the the figure.
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(a) Cluster 1

(b) Cluster 2

(c) Cluster 3

Figure 5.6: Examples of images from three clusters obtained (bottom) and their central image
(top).



116 Study 3: Evaluation on Twitter Images

5.8 Discussion

In this chapter, the knowledge about the algorithms for image representation were put to the test
in a real dataset composed by images shared on Twitter. In order to do so, first, the software
SocialBus was used to obtain the tweets and store them in a database. After that, the images
were downloaded and filtered, to remove unsuited images. After that, the visual representation
and clustering modules were applied using different methods evaluated in the previous chapters
for public image datasets. However, the Twitter images do not have any labels and therefore,
it is impossible to use external clustering validity indexes, such as the ARI and the NMI score.
Therefore, to overcome this issue, a user evaluation was conducted. This user evaluation was
twofold: a group evaluation, where 1% of the total number of pairs of images were evaluated as
similar or not, and a individual evaluation of the whole dataset by slitting it into groups or outliers.
With this information, it was possible to assess the performance of the algorithms on the Twitter
dataset.

The results were positive, considering the complexity of the dataset, in which no image was
manually filtered. The best performance for the individual evaluation was obtained by the BoF
with an ARI of 13,9% and the highest ARI for the group evaluation was achieved by using the
BoFC with an ARI of 12,6%. These results clearly demonstrate that the algorithms are able to
distinguish patterns in the content of the images. As expected, these results were lower than the
ones obtained using the public image datasets, which were more simple in their content and in the
groups presented.



Chapter 6

Conclusions

6.1 Conclusions

A few years ago, scientists were concerned with providing means of producing, storing and sharing
data in a large scale. Today, almost everyone in the world has access to a mobile phone or a
computer with Internet connection and is connected through social media. This means that people
now have the ability to easily create and share content which accounts for the huge amount of
information shared everyday online, whether it is in the form of text, image or video. For these
reasons, the concern today is how to process this content in order to obtain useful information. The
opportunities and applications of this type of analytics are endless and would definitely benefit
society.

This work aimed to study and evaluate the performance of some popular algorithms for im-
age representation for the purpose of clustering images, which is the task of obtaining groups of
related images. The final goal was to apply these methods to the photographs shared on the social
networks. If this could be successfully accomplished, it would be possible to visualize and sum-
marize the enormous amount of visual data produced everyday by millions of people around the
world.

The first step consisted on the study of concepts related to this topic including social network
analytics, data mining and image representation. This also involved searching for related work on
the subject in order to obtain knowledge on the most recent techniques and methods developed.

After these introductory chapters, the development of this thesis was divided into three stud-
ies. In Study 1, the most widely used model for image classification and clustering, the Bag-
of-Features, was extensively evaluated using three public image datasets, considering different
choices for all the steps involved. Next, Study 2 was concerned about the implementation and
evaluation of alternative or extensions to the Bag-of-Features model. Similarly to the previous
study, only public image datasets were used. Finally, Study 3 introduced the extraction of con-
tent from the social networks (Twitter and Instagram) and the application of the algorithms tested
before to these contents.

117
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The contributions of this thesis include the development and implementation of Python scripts
for the testing of five different methods for image clustering, which is openly available on Github,
the implementation of a community detection-based clustering strategy for the images and the
extensive evaluation of all the algorithms and parameter settings involved.

From the first and second study, it can be concluded that the Bag-of-Features, the Fisher Vec-
tors and the Bag-of-Features+Colors are able to obtain good results for simple image datasets like
the Coil-20 dataset and the Natural and Urban dataset. However, they are unable to obtain the same
level of performance for more complex datasets like the Event dataset. For the public datasets, the
best performing algorithm was found to be the Fisher Vectors, which provided a more informative
representation of the distribution of keypoints in each image.

In relation to the final study, where the images used where obtained from the social networks
without any manual filtering, the results indicate that the algorithms are able to distinguish patterns
in the content of the images. However, as expected, these results were worse than the ones obtained
using the public image datasets. Nonetheless, considering the low correlation among the images,
the results were considered positive.

Overall, we feel that this work has shown that more complex approaches need to be developed
in order to be able to successfully process the huge amount of information shared by social me-
dia users. These approaches will probably require an extensive learning process, similar to how
humans learn from a very young age.

6.2 Future Work

In relation to future work, some suggested tasks are:

• The development of a visualization tool or analysis of how the methods are working, for
instance, the representation of the visual words obtained, the histograms and other compo-
nents of the methods implemented.

• The development of real-time modules for image description for the purpose of extracting
clusters in an online fashion, as it receives new images, instead of first extracting the images,
and them computing the clusters offline.

• The integration of this work with the project TweeProfiles. This would allow the addition
of a visual content analysis to the project which currently only uses text content from the
Tweets.

• The use of fuzzy clustering algorithms for clustering the images. This would allow one
image to be part of many clusters, given that an image can have more than one concept.

• The application of segmentation techniques to distinguish the object or focus of the image
and the background in order to compute separate descriptors and features for each and com-
pare them to other images. The reason for this is that, usually the images contain a central
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object (a person, animal, etc) and a background. Therefore, the object could be compared
with the objects of different images and the background with the backgrounds of different
images to obtain a more faithful representation.
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