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Abstract

Since 2009, as a result of the global financial and economic crisis, the health
expenditure in Organisation for Economic Co-operation and Development
(OECD) countries stopped a long term rising trend and has been stagnat-
ing or even falling in many countries. The crisis forced many governments
to promote challenging cuts in public expenditure. For instance, Portugal
agreed with the European Union, within an economic and financial adjust-
ment programme, to cut 15% on health costs between 2011 and 2013. In
this context, many countries promoted reforms in the health sector to in-
crease productivity and efficiency. In addition, in face of the complexity of
healthcare management problems, specially due to the strong uncertainty
inherent to this type of problems, healthcare decision makers need decision
support tools to reduce costs without impacting quality of care. In this
context, the field of operations research has an extensive set of techniques
that have been applied to healthcare management problems. In particular,
due to the high volume of resources assigned to the operating theater (OT),
the application of operations resources techniques to OT management prob-
lems has been an active research area. Nevertheless, it still presents well
known research gaps, among them, the lack of efficient and realistic elective
surgery scheduling methods. This thesis proposes a decision support system
(DSS) for the elective surgery scheduling problem and four progressive more
complex scheduling methods. The DSS tackles the issues of decision sup-
port, uncertainty reduction and surgery schedule optimization, through the
integration of data mining and optimization techniques. This system was
designed based on the needs of surgeons and hospital managers from a large
hospital in the north of Portugal. Regarding schedule optimization, the first
scheduling method, which is integrated into the DSS and is proposed to au-
tomate the process of generating new schedules, consists in a mixed integer
programming (MIP) model which uses a discrete representation of time. The
second method consists in a new MIP formulation using a continuous repre-
sentation of time that is able to find better solutions in a reduced amount of
time. The third method is composed of a genetic algorithm and a set of local
search procedures designed to tackle large scale problems. Finally, the last
method consists in a new multi-objective optimization approach based on
the integration between simulation and optimization to tackle a stochastic
version of the problem with multiple sources of uncertainty. This approach
is a proactive way to reduce the impact of uncertainty in the execution of
the schedules. The proposed DSS and new scheduling methods tackle an
important societal issue and are direct contributions to the scientific com-
munity, as they allow for increased productivity and efficiency in the elective
surgery scheduling processes.
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Resumo

Desde 2009, devido à crise crise económica e financeira mundial, os custos
com saúde nos páıses da Organização para a Cooperação e Desenvolvimento
Económico (OCDE) interromperam uma tendência longa de crescimento e
estagnaram ou até mesmo cáıram em muitos páıses. A crise forçou muitos
governos a promover duras medidas de controlo orçamental. Por exemplo,
Portugal acordou com a União Europeia, como parte do programa de ajus-
tamento económico e financeiro, reduzir 15% dos gastos em saúde entre 2011
e 2013. Neste contexto, muitos páıses foram incentivados a promover refor-
mas no setor da saúde para aumentar a produtividade e a eficiência. Além
disso, devido à complexidade dos problemas de gestão hospitalar, em espe-
cial por causa da forte incerteza a que estão sujeitos, os gestores necessitam
de ferramentas de apoio à decisão que lhes permitam reduzir os custos sem
comprometer a qualidade dos cuidados prestados à população. Neste sen-
tido, a área de investigação operacional (IO) contém um amplo conjunto de
técnicas que têm sido aplicadas a problemas de gestão no setor da saúde. Em
especial, devido ao grande volume de recursos atribúıdos ao bloco operatório
(BO), a aplicação de técnicas de IO à gestão de BOs tem sido uma área de
investigação bastante activa nos últimos anos. Apesar disso, a literatura de
IO aplicada à gestão de BOs ainda apresenta algumas lacunas, entre elas, a
falta de modelos eficientes e realistas para o escalonamento de cirurgias eleti-
vas. Esta tese propõe um sistema de apoio à decisão (SAD) para o escalon-
amento de cirurgias electivas nos hospitais portugueses e quatro métodos
de escalonamento alternativos, progressivamente mais complexos. O SAD
aborda as questões de apoio à decisão, redução da incerteza e optimização do
escalonamento cirúrgico através da combinação de técnicas de data mining
e optimização. Quanto aos métodos de escalonamento, o primeiro método,
que está integrado no SAD e é proposto para automatizar o processo de
criação de escalas, consiste num modelo de programação inteira mista (PIM
ou do inglês MIP) que usa uma representação discreta do tempo. O segundo
método consiste numa nova formulação do problema de PIM que usa uma
representação cont́ınua do tempo, permitindo assim obter melhores soluções
em menor tempo. O terceiro método é composto por um algoritmo genético
e um conjunto de procedimentos de melhoria local projectados para abor-
dar problemas de grande escala. Por fim, o quarto método consiste numa
nova abordagem multiobjectivo baseada na combinação de simulação e op-
timização para uma versão estocástica do problema. Esta abordagem é uma
abordagem proativa para reduzir o impacto da incerteza no resultado do
planeamento. Os métodos propostos nesta tese abordam um tema impor-
tante para a sociedade num momento de forte restrição orçamental. Além
disso, os novos métodos de escalonamento são contribuições originais para a
comunidade cient́ıfica pois preenchem lacunas espećıficas da literatura.
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Chapter 1

Introduction

1.1 Motivation

Since 2006, after the introduction of the System for Management of Patients

Waiting for Surgery (“Sistema Integrado de Gestão de Inscritos para Cirur-

gia” - SIGIC) program, Portugal has been successfully reducing the number

of patients waiting for a surgery, as well as the average waiting time. The

last report (ACSS, 2014) shows that by the end of 2013 the number of pa-

tients waiting for a surgery was 20.4% lower than in 2006. Also, the waiting

times by the end of 2013 were 58.9% lower than in 2006. These results can be

partially explained by gains in efficiency, even though they are substantially

driven by an expanded capacity. The government hired additional working

hours from surgeons working on public hospitals as well as funded surgeries

on private hospitals when the waiting time was close to exceed the limits

established by the program. As a result, the number of performed surgeries

by the end of 2013 achieved a remarkable growth of 57.6% in comparison to

2006.

The Portuguese National Health Service (NHS) has been challenged to deal

with an increasing demand for elective surgical services. The system expe-

1



Chapter 1

rienced a 42.5% increase in the annual number of new requests for elective

surgeries in the period between 2006 and 2013. Such increasing demand is a

result of an ageing population, which naturally demands more frequent and

intensive healthcare, as well as of better access of the population to surgical

treatments, due to an efficient transportation network. On the other hand,

the Eurozone financial crisis, which started in late 2008, particularly affected

Portugal, imposing tremendous challenges to reduce public expenditure. For

instance, the government agreed with the European Union to cut 15% (rela-

tive to 2010) on healthcare operational costs in the period between 2011 and

2013 (Ribeiro et al., 2011), which put special programs like SIGIC at serious

risk. In order to achieve this target reduction, the amount of extra hours

was cut in some hospitals and there was a fear that it could impact quality

of care (Escoval et al., 2012). In the end of 2013, the number of patients

which exceeded the maximum waiting time before treatment still reported a

high value, representing 12.8% of the total number of patients waiting for a

surgery (ACSS, 2014). In a scenario of increasing demand for elective surg-

eries and constrained healthcare budgets there is a clear need for promoting

productivity and efficiency in the utilization of resources, allowing hospitals

to reduce costs without impacting quality of care.

Operations research has been long helping healthcare institutions to improve

efficiency. In the last decade, the application of operations research meth-

ods to tackle healthcare problems has been an active research area (Hulshof

et al., 2012). In particular, the operating room management area has been

attracting large attention since the operating theater (OT) is considered

hospitals’ largest cost and revenue center. Its effective management impacts

several hospital Key Performance Indicators (KPIs), such as: number of

patients waiting for a surgery, mean waiting time, average length of stay

and case mix index. In the last few years, extensive literature reviews have

been dedicated to operating room management problems (Cardoen et al.,

2



1.1 Motivation

2010a; Guerriero and Guido, 2011; May et al., 2011). Such reviews usu-

ally classify the problems into three decision levels: strategic, tactical and

operational. Among them, the weekly scheduling of elective surgeries at

the operational decision level has been the subject of the most part of the

studies. This problem consists in assigning a surgery date, an operating

room and a starting time to a set of elective patients in the waiting list,

thus integrating two sub-problems: advance and allocation scheduling. The

first sub-problem consists in selecting the patients from the waiting list and

assigning a surgery date for them and the second consists in sequencing the

surgeries within each day.

However, the current literature on operations research methods for operating

room management presents some well-known research gaps. Two of the main

issues concern the high computational cost for solving detailed scheduling

problems and the low applicability of results. In order to tackle large size

instances researchers are forced to apply simplified models which either lead

to low quality or to unrealistic solutions. Both issues can contribute to a

reported low implementation rate (Brailsford and Vissers, 2011). One of the

main drivers of the high computational cost is the uncertainty inherent to

healthcare management problems. In the OT, this uncertainty may come

from multiple sources, such as: surgery times, emergency patients, staff

no-shows and equipment failures.

Computer simulation is considered one of the most suitable tools to tackle

uncertainty in healthcare problems (Guerriero and Guido, 2011). Its mod-

elling flexibility enables analysts to model problems that, due to its over-

whelming complexity, could not be modelled using analytical tools. One of

its main uses is to perform scenario analysis, a process of comparing the

estimated performance under uncertainty of a small number of alternatives,

in order to select the best option. However, in order to tackle a large num-

ber of alternatives, in which exhaustive search is not feasible, an automatic

3



Chapter 1

way of generating different alternatives is required. The combination be-

tween combinatorial optimization and computer simulation to automatize

the process of finding new alternative solutions to perform scenario analysis

gives birth to a new computer simulation field called simulation optimization

(Henderson and Nelson, 2006).

1.2 Research Objectives

Given the increasing demand for elective surgeries, constrained healthcare

budgets and the complexity of the operational elective surgery scheduling

problem, this thesis has the ultimate goal of proposing an advanced deci-

sion support system (DSS) for the elective surgery scheduling problem in

Portuguese hospitals. In order to accomplish this goal the work is guided

towards four main objectives. The workflow of this thesis is illustrated in

Figure 1.1.

Figure 1.1: Thesis workflow to reach the final objective

The first objective is to conduct a literature review on operating room

scheduling problems. The second, based on the literature review and on

a case study in a Portuguese hospital, is to propose an intelligent DSS com-

bining data mining and optimization features. The third and forth objec-
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tives aim to enhance the scheduling component of the DSS proposing more

advanced approaches in deterministic and stochastic settings, respectively.

The third objective focuses on providing more efficient scheduling methods

to tackle large size instances and the last on scheduling methods under un-

certainty. This workflow intends to come up with a DSS well suited for the

needs of the Portuguese operating room managers and at the same time

including advanced scheduling methods. In the process, this thesis aims

to expand the current body of knowledge about elective surgery scheduling

methods. The four main objectives and its respective specific objectives are

detailed below:

(1) Literature Review: To analyse the literature on operations research

for operating room management.

(1.1) To identify research gaps. This objective has the goal of iden-

tifying areas in which this thesis can contribute to the scientific

community. These areas encompass new problem settings or sit-

uations in which the existing solution approaches leave room for

improvement in terms of quality of solutions or computational

running time.

(1.2) To identify possible solution approaches. This objective aims to

detect alternative solution approaches for fulfilling the research

gaps identified in the previous topic. In particular, it aims to

study simulation optimization approaches for tackling operating

room scheduling problems under uncertainty, which is a known

research gap.

(2) Decision Support System: To propose an intelligent decision sup-

port system (DSS) to aid the elective surgery scheduling process in

Portuguese public hospitals. The accomplishment of this objective
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will bring a practical contribution for improving the low implementa-

tion rate of operations research projects in the healthcare sector as well

as for improving the performance of surgical services. It contributes

directly to the society in the sense that it reaches the end user.

(2.1) To analyse the DSS requirements: In order to achieve this ob-

jective the waiting list management and scheduling process in

Portuguese hospitals must be analysed and the decision support

system requirements must be defined. In order to improve us-

ability and applicability of results, the analysis must pay special

attention to issues concerning the user interface and integration

with hospital information systems.

(2.2) To design and develop an intelligent DSS: This objective concern

the actual development of the DSS. In order to achieve this end

a working version of the system must be presented.

(2.3) To propose a method for the estimation of surgery durations: The

estimation of surgery durations is a key input for the scheduling

model and is subject to high variability. In order to achieve this

objective a prediction method able to effectively reduce the devi-

ation between the predicted and the actual duration of surgeries

must be proposed.

(2.4) To develop an exact scheduling model for automating the con-

struction of operational surgery schedules in the DSS: Together

with the prediction of surgery durations this objective aims to

provide the intelligence of the system. In order to achieve this

goal a scheduling model aligned with the requirements identified

in item (2.1), in particular the rules of the Portuguese NHS, must

be derived.

(3) Efficient Scheduling Methods: To come up with more efficient schedul-
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ing methods for generating operational surgery schedules in determin-

istic settings. This objective aims to enhance the performance of the

scheduling model proposed in (2.4). In order to achieve this goal new

scheduling methods must be proposed and compared against the pre-

vious model. As the demand for elective surgeries has been increasing

the new methods should be designed to tackle large size instances.

(3.1) To propose an exact scheduling model: Exact models are impor-

tant as they are able to provide a proof of optimality.

(3.2) To propose a heuristic scheduling method: Heuristic solution ap-

proaches are important to tackle large size instances.

(3.3) To compare the alternative scheduling methods using instances

based on real data. In order to achieve this objective the results

of the two alternative scheduling methods must outperform the

results of the model proposed in (2.4), and extended in Chapter 3,

either in quality of solutions or computational time.

(4) Realistic Scheduling Methods: To propose scheduling methods for

generating more realistic (considering multiple sources of uncertainty)

operational surgery schedules in stochastic settings. Healthcare man-

agement problems are subject to strong uncertainty resulting in large

deviations between the initially planned and actually performed activ-

ities. In order to achieve this objective the proposed solution approach

must generate solutions that mitigate such deviations.

(4.1) To propose a multi-objective optimization method: Since the

elective surgery scheduling problem under uncertainty has multi-

ple and conflicting objectives, a multi-objective optimization ap-

proach is required to provide the decision maker a set of alterna-

tive solutions representing the trade-offs between the conflicting

objectives.
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(4.2) To propose a simulation model: The simulation model is used for

evaluating the performance of the alternative surgery schedules

under uncertainty.

(4.3) To propose an integrated simulation optimization approach: The

integration between simulation and optimization must be care-

fully designed because of the high computational cost of combin-

ing combinatorial and stochastic problems. In order to achieve

this goal the main issues concerning this integration must be iden-

tified and a solution must be proposed.

(4.4) To evaluate the performance of the proposed approach using in-

stances based on real data. In order to achieve this objective

the results of the proposed multi-objective simulation optimiza-

tion approach must be compared with the results obtained using

fixed planned slacks.

1.3 Thesis Summary

This thesis is organized in four core chapters, each one dedicated to one of the

main objectives. Chapters 3, 4 and 5 are written as scientific papers which

were submitted to international journals. Each paper has the contribution

of a team of researchers. In particular, the work presented in Chapter 3 was

developed within a research project funded by the Portuguese Foundation

for Science and Technology (FCT).

Chapter 2 contains a literature review to allow the reader to get a gen-

eral understanding of operating room management problems and possible

solution approaches. Regarding the problems, in order to study the influ-

ence of different decisions, all sub-problems across the three decision levels

(strategic, tactical and operational) are included in the review. Regarding

the solution approaches, the review focuses on meta-heuristics, computer
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simulation and simulation optimization as important methods for tackling

large size instances and problems under uncertainty. Each of the subsequent

chapters contains its own literature review section focused on the specific

topics addressed in each chapter.

Chapter 3 concerns the development of a decision support system for the

operating theater and the integration of a scheduling method, involving data

mining and optimization techniques. This study covers three main areas:

decision support, uncertainty reduction and surgery schedule optimization.

The first area includes the information system requirements with a special

focus on usability and integration issues. The second area describes the

data mining methods used for enhancing the prediction of surgery durations.

The third area describes the requirements for a basic scheduling model for

automating the generation of elective surgery schedules in the DSS. This

scheduling method is afterwards enhanced in Chapters 4 and 5 of this thesis.

Chapter 4 proposes two new scheduling methods for the DSS described in

Chapter 3. The first is an exact mixed integer programming (MIP) model

using a continuous representation of time and the second is a meta-heuristic

based on the biased random key genetic algorithm (BRKGA) framework. In

order to evaluate the performance of the proposed approaches, the results

of the MIP model using a continuous time representation are compared

against the results of the scheduling model used in Chapter 3, which uses

a discrete representation of time. Further, the results of the exact model

using a continuous representation of time are compared against the results

obtained using the heuristic approach.

Chapter 5 proposes an integrated simulation optimization approach for the

elective surgery scheduling problem under uncertainty. This chapter de-

scribes in detail both simulation and optimization modules of the integrated

solution approach as well as it explores the main issues concerning how to
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allocate the simulation budget (number of simulation replications). The

simulation module features a discrete-event simulation model including four

sources of uncertainty. The optimization module features a multi-objective

evolutionary algorithm based on the non-dominated sorting genetic algo-

rithm (NSGA-II) framework.

Finally, Chapter 6 presents the conclusions, main contributions of the thesis

and suggestions for future research.
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Literature Review

The goal of this literature review is twofold. On one hand, it aims to evaluate

the current body of knowledge on operating room planning and scheduling

in order to identify possible research gaps. On the other hand, it aims to

review state of the art simulation optimization approaches that could be

applied to operating room management problems, leading to potential re-

search opportunities. In order to do that, this section is organized into four

subsections, the first three cover operating room planning and scheduling,

computer simulation in healthcare and simulation optimization, while the

later presents the research gaps. For the sake of supporting the work devel-

oped in Chapter 5, the most popular random search procedures are described

in the context of simulation optimization. This literature review is based on

selected international journal papers and key conference proceedings, such

as annual meetings of the Association of European Operational Research So-

cieties (EURO) Working Group on Operational Research Applied to Health

Services (ORAHS) and the Winter Simulation Conference (WSC).
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2.1 Operating Room Planning and Scheduling

In the last few years, at least three extensive literature reviews on oper-

ating room management problems were published (Cardoen et al., 2010a;

Guerriero and Guido, 2011; May et al., 2011). This literature review shares

the same structure of these reviews, but highlights papers addressing uncer-

tainty on surgery scheduling and specific characteristics of the Portuguese

context. More recently, a comprehensive review of Operations Research

and Management Science (OR/MS) methods applied to healthcare prob-

lems highlights the relationship between different decisions and emphasizes

the need for integrated approaches (Hulshof et al., 2012). However, in or-

der to reduce complexity, authors usually breakdown problems into more

manageable sub-problems and develop specific approaches. The operating

room management field encompasses a variety of sub-problems, which au-

thors try to organize in different categories and decision levels. For instance,

May et al. (2011) organize operating room (OR) management problems into

eight categories: capacity planning; process re-engineering; surgical services

portfolio; procedure duration estimation; schedule construction; schedule ex-

ecution; monitoring; and control. However, a common way to organize the

literature in this area is to classify studies into three hierarchical decision

levels, namely: strategic, tactical and operational. This literature review

applies such classification.

2.1.1 Strategic Decision Level

The strategic decision level encompasses the case mix, resource allocation

and capacity planning problems. The case mix problem consists in defining

the mix and volume of patients treated by each surgical service or specific

surgeon over a given planning horizon. The mix of patients is based on clas-

sification schemes that cluster patients with similar resource requirements.
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Examples of such classification schemes are: the American Diagnosis Re-

lated Groups (DRG), Canadian Case Mix Groups (CMG) and Portuguese

“Grupos de Diagnósticos Homogéneos” (GDH). Solution approaches depend

on the nature of the institutions (public or private) and the funding mech-

anism in each country. In order to distinguish them, hospitals are classified

in two types: profit satisfiers and profit maximizers.

For instance, healthcare in Canada is provided by independent physicians-

entrepreneurs working with private non-profit hospitals. In this context,

Blake and Carter (2002) developed a goal programming approach to set case

mix and volume for physicians, allowing the hospital to achieve the break-

even point, while maximizing surgeon’s preferences in terms of case mix and

desired level of income. López et al. (2008) also used a goal programming

model, but for estimating the case mix included in the contract-program that

public hospitals subscribe with government in Spain. The model sets case

mix and volume for each surgical speciality while minimizing the deviation

between target and achieved values of main contract attributes, such as:

financing, number of discharges, average length of stay and case-mix index.

On the other hand, Ma and Demeulemeester (2012) assumed hospitals as

profit maximizers and proposed an integer linear programming model to

find the case mix that maximizes total financial contribution. In general,

case mix models are subject to demand (lower and upper bounds on the

estimated volume of each patient group) and resource constraints (number

of operating rooms and number of beds in each surgery ward).

In Portugal, the funding mechanism of public hospitals is based on a contract-

program (Santana, 2003), similar to the one used in Spain. This document

encompasses several production lines, such as: inpatient surgery and clinic,

outpatient surgery and clinic, emergencies, consultations, and Day-Hospital.

The amount of money a hospital receives by its surgical activity is a function
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of the number of discharges and the complexity of procedures performed by

the hospital. Such complexity is defined by the case-mix index, which is the

average of the complexity indexes associated to each patient group.

2.1.2 Tactical Decision Level

With the amount of OR time and capacity of resources defined at the up-

per level, the tactical decision level focuses on strategies to maximize OR

utilization. The strategies used at this level can be organized into three cat-

egories: block scheduling, open scheduling and modified-block scheduling.

The block scheduling system is the most used and requires the construction

of a Master Surgery Schedule (MSS). The MSS defines which time blocks

are reserved for which surgical speciality, as well as the time blocks available

for emergencies, and their respective opening hours. Figure 2.1 shows an

example of a Master Surgery Schedule in use at a Portuguese hospital. It

is basically a cyclic time-table that defines the operating rooms occupied by

each surgical speciality on each day of the week.

Figure 2.1: Example of a Master Surgery Schedule

Throughout the years, mathematical models to generate a MSS have become

more complex, in the sense they have started to consider multiple resources
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and tackle uncertainty more accurately. Blake and Donald (2002) aim to

minimize the difference between the target OR time defined by the case mix

planning and the actual assigned time in the master surgery schedule. It

is important to achieve target OR times in order to preserve case mix and

capacity planning efforts carried out on the strategic decision level. Beliën

and Demeulemeester (2007) tackle this issue as a demand constraint and

develop a number of models aiming to minimize the expected total bed

shortage with levelled resulting bed occupancy. van Oostrum et al. (2008)

not only intended to level the requirements for subsequent beds (ward and

intensive care unit (ICU)), but also to maximize operating room utilization.

Both authors emphasize the impact of operating room scheduling on bed

capacity and nursing staff requirements. Santibáñez et al. (2007) present an

innovative approach for surgical block scheduling in a system of hospitals.

The authors developed a flexible model with alternative objective functions.

One of them sets levelled bed utilization as a constraint and maximizes the

throughput of patients.

The basic resources considered to build a MSS are: the target operating

room time each speciality should get (demand) and the availability of op-

erating rooms (capacity). Blake and Donald (2002) consider two types of

operating rooms and the respective demand of each speciality. In this case,

the different types of operating rooms are used for modelling operating rooms

with specific equipment. Then, authors optimize surgery ward beds and ICU

beds. Recovery beds are not addressed at the tactical level, unless the model

integrates surgery scheduling. Such type of resource is normally addressed

in models on the operational level. Santibáñez et al. (2007) constrain their

model by the number of surgeons on each speciality, van Oostrum et al.

(2008) acknowledge the need of reserving capacity for urgencies and emer-

gencies in the MSS, but do not tackle this issue. Santibáñez et al. (2007)

consider emergencies as a separate speciality, which operates after the time
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designated for elective patients and use a single OR distinct from those used

by elective surgeries. An important constraint to take into account is the

planning horizon. It closely depends on the degree of flexibility each hospi-

tal has. On one hand, most authors agree that the master surgery schedule

should change as little as possible from week to week. On the other hand,

better results can be achieved by integrated approaches that change the

MSS as a function of the elective patient scheduling. For example, Tànfani

and Testi (2009) and Marques et al. (2012) developed integrated approaches

allowing both the number of blocks and the operating rooms assigned to

each surgical speciality to change every week.

The approaches used at the tactical decision level can be distinguished be-

tween deterministic and stochastic. Besides the predominance of determin-

istic models, researchers have been gradually adopting stochastic models. A

stochastic model usually evolves from a well-structured deterministic model.

Most of the aforementioned papers present a stochastic model preceded by a

successful deterministic one. Among the deterministic approaches, the prob-

lem is predominantly modelled as an integer programming problem. The

deterministic integer programming (IP) model is the base for a stochastic

one, as several authors modelled the problem as an IP model with proba-

bilistic constraints. Testi et al. (2007) formulated the problem as a chance

constrained stochastic model with probabilistic capacity constraints.

2.1.3 Operational Decision Level

The operational decision level can be organized in off-line (before execution)

and on-line (during schedule execution) scheduling. The off-line category

can be further distinguished between advance (surgery date) scheduling and

allocation (starting time) schedule. In spite of this clear distinction, some

studies address both steps in an integrated way. Moreover, inside each

category there is a clear distinction between deterministic and stochastic
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approaches.

2.1.3.1 Off-line

The off-line advance scheduling is the process of fixing a surgery date for

a patient. Studies in this category aim to minimize overtime or explore

the trade-off between the cost of opening operating rooms and the cost of

overbooking operating rooms. Since overtime occurs due to the stochastic

nature of the problem, stochastic models are predominant to address this

problem, although the approaches are slightly different. Such models are

highly dependent on available data, most of them focus on surgery duration

and some of them also address emergencies. Despite the characteristics of

the problem, to the best of our knowlodge, only a few studies have recently

addressed the allocation problem using a stochastic approach, Denton et al.

(2007); Fei et al. (2008b); Gul et al. (2011); Mancilla and Storer (2011); Lee

and Yih (2014). Studies addressing the stochastic elective surgery scheduling

problem usually do not include up and downstream resources and focus on

the number of operating rooms to open and on the method of assigning

surgeries to operating rooms. Lamiri et al. (2007) include patient related

constraints, such as a deadline to perform a given surgery.

The second step on the elective planning process is the sequencing of surg-

eries (defining its starting times). It is a step normally taken immediately

after advance scheduling on a two phase approach. Guinet and Chaabane

(2003) aim to minimize hospitalization costs, overtime and patient waiting

time. Riise and Burke (2011) add a quality of care measure and minimize

the waiting time for children in the morning. Jebali et al. (2006) distin-

guish between undertime and overtime and try to minimize both. Pham

and Klinkert (2008) minimize make-span (time to complete all operations),

as well as schedule all individual operations as early as possible. It is an
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unusual objective, as long as there are no cost savings in finishing cases

earlier.

Methods described above try to reduce the complexity of the problem ap-

proaching it on two separate phases. However, it can be tackled in an

integrated way. For instance, Marques et al. (2012) present an integrated

approach aiming to maximize OR utilization, while Conforti et al. (2010) de-

velop a multi-objective model encompassing four objectives: maximization

of the utilization of operating rooms, of the number of scheduled patients

with high priority and of the number of specialties preferences satisfied;

minimization of underutilization of specialties.

The off-line surgery scheduling problem, also known as surgical cases assign-

ment problem, is the main problem addressed in this thesis so that in depth

literature reviews are contained within each of the following chapters. Each

of the subsequent reviews focus on specific characteristics of the problem,

e.g. information systems, problem formulations and stochastic approaches.

2.1.3.2 On-line

The on-line scheduling category deals with the scheduling of add-on cases.

Emergency patients cannot be planned in advance and the surgery must

start immediately. Many studies report dedicated operating rooms for emer-

gencies. However, such strategy implies additional costs, not only because

the staff allocated to the emergency OR, but also because elective surg-

eries cannot use the OR allocated exclusively to emergencies. Lamiri et al.

(2007); Lamiri and Augusto (2008) consider that a random portion of the

OR-day capacity is used to serve emergency patients. Pham and Klinkert

(2008) model the elective case scheduling problem as an extension of the job

shop problem called multi-mode blocking job shop. The authors describe

the scheduling of emergency and urgent cases as a job insertion problem.
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To the best of our knowledge, it is the only effective model to schedule

add-on cases and reschedule previously booked surgeries. Moreover, many

authors address this issue reserving additional capacity, but does to pro-

vide any model to schedule new surgeries and re-schedule previously booked

surgeries. Min and Yih (2010) define the effective capacity for each surgical

block, which is calculated by subtracting emergency demand and turnaround

time from the planned block capacity.

2.2 Computer Simulation in Healthcare

Computer simulation is one of the most popular operations research tools

(Hong and Nelson, 2009). Moreover, it is considered one of the most suitable

tools to address healthcare management problems. According to Guerriero

and Guido (2011) it represents “the most reliable and efficient tool to handle

the complexity and the stochastic aspects” of healthcare problems. Brails-

ford et al. (2009) highlight “it is the ideal approach for addressing health-

care issues”. However, its effective implementation in healthcare is not as

widespread as it is in other areas, such as manufacturing and defence. In

order to overcome this problem, a strict collaboration with healthcare prac-

titioners to validate simulation models and gain buy-in and acceptance is

essential (Brailsford et al., 2009).

There are different approaches to implement a simulation project, such as:

discrete-event simulation (DES), system dynamics (SD), monte carlo simu-

lation and agent-based modelling (ABM). DES and SD are the most pop-

ular. Among them, DES is the most widely used simulation approach in

healthcare (Brailsford et al., 2009). It is a detailed, stochastic, patient level

approach. On the other hand, SD has a whole-system, strategic view. In

addition, Monte Carlo simulation and Agent-based modelling has also been

used in healthcare. Monte Carlo simulation is the oldest approach and has
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been applied to stochastic optimization (Goldsman et al., 2010). Agent-

based modelling is an emerging and promising approach. In fact, Siebers

et al. (2010) claim that DES is dead and Agent-based modelling is the future.

The modelling flexibility of DES is one of its main advantages. Brito and

Teixeira (2001) note that analytical procedures are unable to model complex

systems, leading to the development of computer simulation to overcome this

barrier. In particular, DES models are composed by a network of queues

for services in which individual entities flow around. For instance, patients

join waiting lists or queues for shared resources, such as: operating rooms,

recovery rooms and equipment. Moreover, entities have characteristics that

determine their pathway through the network, which are similar to individ-

ual patient characteristics, such as: surgical procedure, diseases and surgeon.

According to Brailsford et al. (2009) DES “can take account of randomness,

variability and uncertainty, as long as enough simulation runs are performed

to obtain statistically significant results”.

In order to model the uncertainty in processing times and patient arrivals

researchers have been using special probability distributions. In particu-

lar, lognormal distributions have been used to model surgery times (Strum

et al., 2000; Spangler et al., 2004). However, surgery times present a high

variability according to characteristics of the surgical procedures, surgical

team and group of patients (Li et al., 2009; Eijkemans et al., 2010). In this

context, advanced distribution fitting software can make simulation models

more valid (Law and McComas, 2011). Such tools are able to accurately

determine which probability distribution best represents the data.

2.3 Simulation Optimization

Computer simulation is used for analysing the performance of a given system

without using the actual system. In order to perform a simulation, the
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analyst must create a model of the system. This model is an abstraction

of a real system or process and is used to infer the real system’s behaviour

over time and on different scenarios. Each scenario is represented by a set of

input parameters configured by the analyst. The process of testing different

configurations of input parameters and observe the system’s behaviour is

called scenario analysis. Therefore, it is natural to search for the set of

parameters that optimizes system’s behaviour. However, when the number

of possible alternatives is too high and it is not possible to enumerate them

all, an optimization procedure is required. Simulation optimization is an

area of computer simulation which integrates optimization techniques into

simulation analysis.

Fu (1994) presents one of the earliest reviews of simulation optimization

techniques. Since then, the area has been gaining popularity motivated

by the advances in computer power and memory. Nowadays, simulation

optimization has become an active and fast growing research area, offering

the most exciting opportunities in the computer simulation field (Hong and

Nelson, 2009). Over the last decade, the evolution of simulation optimization

approaches has been well documented in regular papers presented at the

Winter Simulation Conference (Glover et al., 1999; Fu et al., 2000; Olafsson

and Kim, 2002; April et al., 2003; Fu et al., 2005, 2008; Hong and Nelson,

2009; Figueira and Almada-Lobo, 2014). Above all, Fu (2002) represents

the most significant study in the area.

There are two main challenges to design simulation optimization approaches:

efficiency and statistical validity. Such challenges are inherent to the stochas-

tic nature of the problem and exist because of estimation errors. For in-

stance, deterministic approaches require only one evaluation of the objec-

tive function to precisely estimate the performance of a given solution. On

the other hand, stochastic approaches require multiple simulation runs, be-

cause the output of a single simulation run is random. Therefore, efficiency
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and statistical validity are directly related with the number of simulation

runs performed. Figure 2.2 shows a basic simulation optimization approach

instantiated to the surgery scheduling problem. In this example, the opti-

mization box contains a search procedure to generate alternative solutions,

while the simulation box assesses the performance of each alternative solu-

tion using a simulation model.

Figure 2.2: Example of a simulation optimization approach

The number of simulation runs performed to estimate the performance of a

solution is called simulation cost and the total number of simulation runs

available to spend is called simulation budget. As long as the simulation

cost increases the statistical validity increases and efficiency decreases. In

this context, efficiency concerns how simulation optimization approaches

spend the simulation budget in order to improve statistical validity. This is

particularly relevant because of the high computational cost of performing

additional runs. Moreover, the efficiency of search procedures can also be

harmed by estimation errors. Therefore, efficient simulation allocation rules

are crucial to find good solutions for practical problems. Simulation opti-

1Post-anesthesia Care Unit
2Intensive Care Unit
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mization approaches are classified into three categories according to the size

and structure of the feasible region (Fu et al., 2008). Firstly, if the feasible

region is small, problems are classified as ranking and selection problems

(R&S). Next, if the feasible region is large and continuous, problems are

classified as continuous variable problems (COvS). Finally, if the feasible re-

gion is large and parameters are discrete, problems are classified as discrete

variable problems (DOvS). It is important to identify the problem within

one of these categories because there are specific approaches for each one of

them. For instance, surgery scheduling problems are modelled as discrete

variable problems. The following paragraphs provide a brief review of the

main approaches in each category. Hachicha et al. (2010) give an extensive

literature review on simulation optimization methods.

2.3.1 Ranking and Selection Problems

Firstly, ranking and selection problems, or multiple comparison problems,

consist in selecting the best design among a small set of alternatives. The

most popular approaches to tackle this problem are: ordinal optimization,

expected value of information (VIP), optimal computing budget allocation

(OCBA) (Chen and Lee, 2010) and indifference zone (IZ) (Hong and Nelson,

2005). OCBA aims to minimize the total simulation budget while achiev-

ing a desired optimization level. IZ allocates samples in order to provide a

guaranteed lower bound on the probability of correct selection (PCS). VIP

describes the evidence of correct selection with Bayesian posterior distri-

butions and allocates samples using decision theory tools to maximize the

expected value of information in those samples. For a review of ranking

and selection procedures see Kim and Nelson (2007). Branke et al. (2007)

conducted an extensive set of experiments to determine the most effective

selection procedures. The authors recommend the utilization of OCBA to

tackle discrete variable problems, as it showed to be the most efficient ap-
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proach.

2.3.2 Continuous Variable Problems

Next, continuous variable problems, or continuous optimization via simula-

tion problems (COvS), encompass problems in which feasible region presents

a continuous structure. Solution approaches in this category rely on gradient

estimators, taking advantage of the structure of the solution space to im-

prove algorithm’s efficiency. The most well-known approaches are Stochastic

gradient estimation (Fu, 2006), sample path optimization, stochastic ap-

proximation and sample average approximation (Kim et al., 2015). Such

approaches are based on direct estimation methods, and how the gradient

is obtained depends on how much knowledge of the simulation model the

algorithm has. Fu (2002) emphasizes that commercial simulation optimiza-

tion tools see simulation models as a black box and do not take advantage

of problems with structure.

Metamodel based approaches also benefit from the gradient, but are ob-

tained in a different way, involving methods such as: linear regression mod-

els, quadratic regression models and neural networks. The most well-known

approaches in this category are: Response Surface Methodology (RSM) and

Kriging-based metamodels. RSM tries to obtain a functional relationship

between the input variables and the output objective function. Once a

metamodel, also called, surrogate model, is obtained, the search can be

carried out with deterministic optimization procedures, since the output is

deterministic. The algorithm navigates the solution space using the surro-

gate model, saving costly simulation runs. Barton and Meckesheimer (2006)

present a review of metamodel-based simulation optimization approaches. Li

et al. (2008) present a multi-objective simulation optimization approach in

which a Kriging-based metamodel is embedded within a multi-objective ge-

netic algorithm. In this work, some of the alternative solutions are evaluated
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on-line using Kriging metamodels instead of the actual simulation model.

Fu (2002) notes that OptQuest, a leading optimization tool for commercial

simulation software, uses neural networks for screening out candidates likely

to be poor.

2.3.3 Discrete Variable Problems

Finally, discrete variable problems, or discrete optimization via simulation

problems, are the most comprehensive category and encompass problems

having a discrete search space. This category encompasses most health-

care planning and scheduling problems. Solution approaches in this cate-

gory cannot explore the structure of the feasible region and are based on

random search and metaheuristics adapted from deterministic optimiza-

tion. Such approaches include, but are not limited to: Evolutionary Al-

gorithms, Simulated Annealing, Tabu Search, Scatter Search, Nested Parti-

tions Method, Cross Entropy Method and COMPASS. They are the most

appropriate methods to tackle scheduling problems. However, there is a

distinction between them. While the first group comprehends solution ap-

proaches adapted from deterministic optimization, the second contains solu-

tions designed specifically to tackle simulation optimization problems. For

a complete review of simulation optimization approaches based on random

search and metaheuritics see Andradóttir (2006) and Olafsson (2006) re-

spectively.

Boesel et al. (2003) emphasize that methods adapted from deterministic op-

timization do not offer any performance guarantee and can be inefficient in

the presence of high variability. However, these methods are one of the most

practical approaches to simulation optimization and integrate most commer-

cial simulation optimization tools. Indeed, such methods must be integrated

with statistical ranking and selection frameworks in order to be able to per-

form well on a stochastic context. Lee et al. (2008) propose the integration
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of genetic algorithms and OCBA. Chen and Lee (2010) describe in detail the

integration of OCBA with different metaheuristics. Olafsson (2006) notes

that understanding how to account for simulation noise in metaheuristics

may improve their performance in practice.

On the other hand, a group of simulation optimization approaches was

specifically designed to simulation optimization problems. For instance,

the Convergent Optimization via Most Promising Area Stochastic Search

(COMPASS) (Hong and Nelson, 2009; Nelson, 2010) is one of them. This

algorithm is designed to be robust to simulation noise and has an integrated

simulation allocation rule (SAR) for enhanced efficiency. Also, an extended

version of the algorithm to tackle multi-objective problems was proposed

Lee et al. (2011). Likewise, the Industrial Strength COMPASS (ISC) is an

extended version of the original algorithm that aims to be competitive with

the best commercial software and still provides guarantees of convergence

(Xu et al., 2010).

2.4 Research Gaps

The current literature review reveals a mismatch between the characteris-

tics of the problems and the features included in most part of the solutions.

Problems are described as combinatorial, multi-objective, subject to strong

uncertainty and to the availability of multiple resources. However, most part

of the solutions is deterministic and considers only a limited number of ob-

jectives and constraints. Surgery scheduling approaches contain unrealistic

assumptions and focus on specific aspects of the problems in order to re-

duce complexity. This issue impacts which resources are taken into account

and how uncertainty is modeled. Few problems consider, for instance, the

characteristics and availability of the surgical team.

Regarding uncertainty, studies focus on elective scheduling, neglecting the
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impact of non-elective patients, as well as add-on cases, on surgery schedul-

ing. The approaches that address this issue consider only one source of

uncertainty. Uncertainty comes from two distinct sources: arrivals and

processing times. Patient arrivals are modelled using a single probability

distribution function and do not take seasonality and specific demand into

account. Stochastic processing times are used to model surgery durations

and deterministic values represent the processing times of all other steps

along the surgical process. For instance, the cleaning time is considered to

be fixed and equal to all surgical specialties. Stochastic optimization ap-

proaches are based on Monte Carlo Simulation and do not take the time

dimension into account.

The high computational cost prevents researchers to devise more complex

models. Efficiency is a main issue when designing a stochastic optimization

approach. There is a lack of approaches to tackle this specific issue on the

operating room management area. Statistical validity is compromised in

order to reduce the computational time. There is a need to bring the latest

techniques to reduce computational cost and ensure statistical validity from

the simulation optimization theory into the operating room management

area.

Regarding the type of decisions, there is a lack of studies focusing on case

mix planning on the strategic decision level as well as on-line scheduling on

the operational decision level. This gap on how to deal with emergencies

and add-on cases can compromise the results of all precedent results. This

issue becomes more important if we acknowledge that patients should be

scheduled more time in advance. It would be interesting to study the relation

between decisions on off-line and on-line phases of the operational decision

level.

This thesis approaches some of the gaps identified in the literature review.
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In particular, Chapter 4 tackles the high computational cost issue, devel-

oping efficient scheduling methods for tackling large scale problems. Chap-

ter 5 tackles the uncertainty issue, presenting a multi-objective approach to

surgery scheduling under uncertainty. This approach aims to devise more

realistic schedules, reducing the mismatch between the characteristics of the

problems and the features included in most part of the solutions. In addi-

tion, Chapter 3 tackles the issue of developing a decision support system in

order to allow the hospital managers and surgeons to make practical use of

the proposed scheduling methods. The hospital information systems avail-

able in Portuguese hospitals lack a decision support component. They are

used to register data for controlling purposes. They do not transform data

on valuable information to support decision making.
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An Intelligent Decision
Support System for the
Operating Theater: A Case
Study

Fabŕıcio Sperandio1, Carlos Gomes1, José Borges1, António Car-

valho Brito1, Bernardo Almada-Lobo1

Published in IEEE Transactions on Automation Science and En-
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Abstract From long to short term planning, decision processes inherent

to operating theater organization are often subject of empiricism, leading

to far from optimal results. Waiting lists for surgery have always been a

societal problem, which governments have been fighting with different man-

agement and operational stimulus plans. The current hospital information

systems available in Portuguese public hospitals lack a decision support sys-

tem component that could help achieve better planning solutions. Thus, an

intelligent decision support system has been developed, allowing the central-

1CEGI – INESC TEC, Faculdade de Engenharia, Universidade do Porto, Portugal
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ization and standardization of planning processes, improving the efficiency

of the operating theater and tackling the waiting lists for surgery fragile

situation. The intelligence of the system derives from data mining and

optimization techniques, which enhance surgery duration predictions and

operating rooms surgery schedules. Experimental results show significant

gains, reducing overtime, undertime, and better resource utilization.

Keywords Operating Theater, Planning, Intelligent Decision Support Sys-

tem

3.1 Introduction

As quality of life improves and societies live longer, health care organiza-

tions face significant increases in their demand. It is a vicious loop. Popula-

tion is ageing due to better health assistance, which is supported by costly

technological advances, and aged population requires increased care. These

factors increase health care costs and require better management of existing

resources. In this context, to maintain good service levels and patient satis-

faction, health care organizations are faced with two options: either expand

capacity or improve existing resources utilization. The former implies huge

capital investments and is therefore a difficult strategic decision. However,

improving processes and efficiency entails an organizational development set

of actions that can be performed more easily, involving less investment.

The operating theater is often considered the biggest budget consumer and

revenue center in a hospital. In addition, its performance has a severe im-

pact on society. Waiting lists for surgery are a critical issue that affect

many lives, hence being constantly battled by health care organizations and

governments.

In this chapter, motivated by a real world case, we present an intelligent

30



3.1 Introduction

decision support system for operating theater planning and scheduling, and

the performance improvement achieved with it. The system was designed for

two user profiles, surgeons and hospital managers, providing them a planning

framework for tactical and operational problems. The two main functions of

the system are: (i) to provide users the means to monitor and to measure the

performance of the operating theater; and (ii) to aid users devising better

planning alternatives by supporting the task of creating better plans with

data mining and optimization techniques.

Our work was integrated within a business process improvement project

that took place in a large Portuguese public hospital, allowing the team to

gain a fundamental understanding of the surgery scheduling process and the

corresponding user needs. The project introduced us to a reality with a

heterogeneous way of work across the different specialties and low guideline

compliance. These behaviors result from poor organizational monitoring

and lack of work flow standardization. To tackle this situation, we have

devised a system which helps to standardize the planning processes and to

control quality and productivity.

Surgery planning involves taking into account different activities that are to

be performed in a very uncertain environment. Such uncertainty leads to

frequent deviations between what was planned and what was in fact per-

formed. Several authors defend that the surgery schedule’s quality is mainly

determined by the accuracy of the surgery duration estimation (Dexter et al.,

1999). Thus, in order to reduce deviations, improving duration estimates

was sought in this work. Regarding surgery scheduling, we have formu-

lated a mathematical optimization model, which allows finding the optimal

allocation of patients to the available operating room shifts.

The novelty introduced in our work concerns the development of a decision

support system for the operating theater and the integration of a scheduling
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method, involving data mining and optimization techniques. The research

in this area has been extensive, however, to the best of our knowledge there

is no work connecting decision support, uncertainty reduction and surgery

schedule optimization.

Following this introduction, we present a literature review of the features

and problems addressed in this work. In Section 3.3 we provide a better

insight into the operating theater planning problems. The decision support

system, the techniques used and its implementation are briefly described in

Section 3.4 and final remarks will be given in Section 3.5.

3.2 Literature Review

Operating theater planning problems have been widely covered throughout

the literature (Cardoen et al., 2010a; Guerriero and Guido, 2011; Blake and

Carter, 1997) and it is a still growing field of research. The most preva-

lent scientific community in the operating room is the operations research

one, which typically studies scheduling problems. However, there is a gap

between theory and practice. A Swiss survey has shown that hospital man-

agers are not satisfied with the state of art of scheduling and Hospital Infor-

mation Systems (HIS) (Sieber and Leibundgut, 2002). Moreover, a recent

Portuguese study also criticizes the current HIS used in Portugal, stating

that they are functionally and technologically outdated (Gomes et al., 2009).

Operating theater planning is normally divided in three decision levels: (i)

operational, (ii) tactical and (iii) strategic. Our work is focused on the

first, which corresponds to the periodic (weekly) scheduling of patients to

the available operating rooms. The tactical and strategic decision levels

concern longer term decision of capacity definition and allocation to the

different surgical specialties (operating room timetable).
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The operational decision level can be organized in off-line (before execu-

tion) and on-line (during execution) scheduling. The off-line category can

be further distinguished between advance scheduling, when only the surgery

date is defined, and allocation scheduling, when the surgery is sequenced in

an operating room. Studies focused on off-line scheduling (Denton et al.,

2010; Lamiri et al., 2007; Fei et al., 2008a; Hans et al., 2008), aim to min-

imize overtime, maximize throughput or explore the trade-off between the

cost of opening and overbooking operating rooms. Most of these studies do

not include up or downstream resources, dealing just with operating rooms.

Lamiri et al. (2007) includes patient related constraints, as the deadline

to perform a given surgery; Guinet and Chaabane (2003) aim to minimize

hospitalization costs, overtime and patient waiting time; Riise and Burke

(2011) add a quality of care measure and minimize the waiting time for chil-

dren during mornings; Jebali et al. (2006) distinguish between undertime

and overtime and try to minimize both. On the other hand, the on-line

scheduling category deals with the scheduling of add-on cases (Lamiri et al.,

2007; Lamiri and Augusto, 2008; Pham and Klinkert, 2008; Min and Yih,

2010; Persson and Persson, 2010), such as emergency patients, who can not

be planned in advance and whose surgery must start as soon as possible.

Many studies report dedicated operating rooms for emergencies, however,

this strategy implies additional costs, due to staff allocation and mainte-

nance costs, moreover elective patients can not use these operating rooms.

Lamiri et al. (2007); Lamiri and Augusto (2008) consider a random portion

of the OR-day capacity to serve emergency patients; Pham and Klinkert

(2008) model the elective case scheduling problem as an extension of the

job shop problem called multi-mode blocking job shop. The authors then

describe the scheduling of emergency and urgent cases as a job insertion

problem; Min and Yih (2010) define the effective capacity for each surgical

block, which is calculated by subtracting emergency demand and turnaround
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time from the planned block capacity.

The surgical process is characterized by strong uncertainty (Dexter et al.,

1999), as different sources of variability emerge from the patient arrival to

his postoperative recovery. The surgery duration, including anesthesia and

surgical act, is the most studied in the literature. The factor that better

defines the duration of a surgery is the combination of surgical procedures

(Li et al., 2009). Other significant sources are the main surgeon performing

the procedure and his team, anesthesia type, risk class, patient age and

gender (Strum et al., 2000). Although those features can explain part of

the variability, they also present a major barrier due to the large variety of

procedures and the high number of surgeons in a hospital (Macario, 2009).

Researchers have been modeling surgical times targeting different manage-

ment decisions, but most studies aim to predict surgery duration before it

starts (off-line scheduling), others predict the time remaining during surgery

execution (on-line scheduling) (Dexter et al., 2009). Finally, another cluster

of research focuses on predicting the duration of a series of surgeries, aiming

to reduce overtime (Alvarez et al., 2010). However, not every management

decision requires an exact point estimate, authors recognize that because

the uncertain nature of surgical procedures, it is often better to know its

upper and lower bounds than a single estimate (Stepaniak et al., 2009).

With every model and solution method developed, there is a need to bring

them into practice and for that (intelligent) decision support systems have

the potential to deliver them to the user. The concept of decision support

systems can be summarized as information systems designed to support de-

cision making activities. Turban (1982) defines DSSs as interactive, flexible

and adaptable information systems proposing possible and better course of

actions to the decision maker, they aid decision agents to analyze their op-

tions and to find the best alternative among a wide solution space. These
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systems have long proved to be effective when applied to various domains

such as health (Jaspers et al., 2011), where two different applications should

be distinguished: (i) management DSS, oriented to organization control; and

(ii) clinical DSS. The latter concerns the executional level, where the goal is

to mitigate harmful and expensive medical mistakes and help clinical staff

to perform their jobs (Jao and Hier, 2010), for example, by providing more

accurate diagnoses or safety checklists. These are patient-oriented systems,

where the main objective is to improve the clinical work flow, guaranteeing

patient care and safety. Intelligent decision support systems move a step fur-

ther and integrate different techniques (e.g.: decision analysis through data

mining) to give these applications an intelligent behavior. Guerlain et al.

(2000) identify 7 characteristics of intelligent decision support systems: (i)

interactivity; (ii) event and change detection; (iii) representation aiding; (iv)

error detection and recovery; (v) information out of data; and (vi) predictive

capabilities. This kind of capabilities can be of extreme value to decision

agents and provide new decision models to any organization.

3.3 Operating Theater: Portuguese Case Study

According to a Swedish study (Bjornberg et al., 2009), Portugal ranked 21st

out of 33 European countries on providing health care services. This result

was mainly influenced by the long waiting time for treatments, where Por-

tugal ranked last. On the other hand, on electronic health services Portugal

ranked 1st, due to the early, but still in progress, adoption of a national

electronic health record (EHR).

In 2004, as an effort to fight the long waiting list for surgery, the Portuguese

government introduced a set of policies and guidelines focused on protect-

ing patients’ rights and health. The System for Management of Patients

Waiting for Surgery (Ministério da Saúde, 2011) introduced a set of waiting
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time limits according to the patients’ priorities. Hospitals are penalized in

case patients waiting time limit are exceeded. For example, a high prior-

ity patient may only wait for surgery 15 days while a normal patient sees

this period extended to 270. To avoid penalizations, existing resources must

be used efficiently and to achieve that, surgery schedules must be carefully

planned. However, we found that the current hospital information system

used in Portuguese public hospitals has limited capabilities to create opti-

mal surgery schedules or even to measure their quality. Decision making

processes within the surgery theater are often empiric and the available in-

formation systems lack a decision support component, which would help

achieving better results. We witnessed surgeons using different methods

to devise their planning, such as personal agendas, spreadsheets and online

calendars, reducing the level of centralization and integration within the hos-

pital to insignificant levels. Note that it is crucial to share this information

internally and with other departments, since operating theater resources are

shared among different specialties and people. We reported hundreds of sur-

gical cases being scheduled (inserted into the HIS) after the surgery itself,

creating a communication issue between the different departments and the

operating theater.

In general, surgeons are not very focused on operational performance and

have poor sensibility for optimization, sometimes they are not even aware of

how long their patients have been waiting. Even when they are estimating

the duration of a surgery they tend not to be very accurate. In fact, improv-

ing the accuracy of surgery duration predictions can play a major role in

increasing operating theater efficiency. When the duration of a surgery ex-

ceeds its prediction (overtime) there is a cascading effect delaying upcoming

surgeries, while when the duration is overestimated leading to an early finish

(undertime), valuable time is wasted idling, leading to operating room (OR)

underutilization. Our analysis has shown that 82.25% of surgeries performed
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in our case study between 2006 and 2010 had a relative duration deviation

of over 10% from their estimation. Table 3.1 summarizes the total sum of

undertime and overtime on surgeries performed in that period.

Table 3.1: Summary of overtime and undertime from 2006 to 2010

Total Time Number of Surgeries Average

Undertime 918.066 min 49.029 18,72 min

Overtime 2.092.461 min 33.575 62,32 min

In summary, we have observed in this hospital that there is room for im-

provement on surgery planning processes and resource management, there-

fore, benefiting from a decision support system to the operating theater.

3.4 Intelligent Decision Support System

The solution proposed to tackle the long waiting times for surgery is divided

into three vectors discussed in this section: (i) decision support system for

better information and resource management; (ii) a data mining model to

predict surgery durations; and (iii) a weekly elective patient scheduling op-

timization model. This approach was inspired on the work of Better et al.

(2007), who developed a problem solving framework integrating simulation,

data mining and optimization techniques.

The decision support system was developed following a user centered ap-

proach based on the traditional software engineering life cycle model. The

first task of identifying user needs and establishment of the requirements

specification was conducted through a series of workshops meant to char-

acterize the operating theater scheduling process and assess where it could

be improved. The workshops were not exclusively focused on the decision

support system development, but they were essential for understanding and

characterizing business processes, as well as to identify the strengths and

weaknesses of the current information systems. As a result of these series of
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workshops, a requirements specification document and a set of low resolu-

tion prototypes were produced, which were then presented and validated by

key users from the hospital staff. The first trials of the system were initially

deployed in two surgical specialties of the hospital as a pilot run.

Having worked closely with a hospital, many features incorporated were

requested by surgeons and others were designed to overcome problems de-

tected on the hospital information system currently in use. Another purpose

of the decision support system was to integrate data mining and optimiza-

tion techniques and deliver them to decision agents. The system developed

is divided in 3 main modules: (i) resource management; (ii) surgery planning

and scheduling; and (iii) performance measurement.

The resource management module is to be used by the operating theater

management personnel, grouping features required to define and allocate

existing resources (e.g. operating rooms, medical specialties, surgeons and

users of the system). The system enables not only the creation of weekly

surgery plans, but also the allocation of specialties to operating rooms (mas-

ter surgery schedule), related to the operating theater tactical decision level.

The surgery planning and scheduling module is the core of the decision sup-

port system and makes available a set of features to schedule surgeries. The

surgery scheduling interface supports the daily/weekly process of scheduling

surgeries and was created to be as functional and easy to use as possible.

This agenda shows the operating rooms available for a user’s specialty and

allows a weekly or daily perspective. The weekly view is an important fea-

ture, as it allows the visualization of an entire week operating room plan,

which was not available before. To support the surgery scheduling process,

we have integrated a data mining model that provides the user an esti-

mation of the surgery duration and an optimization model that gives an

optimal scheduling solution according to a given objective function. Fig-
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ure 3.1 depicts an operating room’s agenda and the system’s optimization

feature.

Here, the user may select different strategies to compute the schedule. Either

a dispatching rule that allocates patients on the basis of first in first out, or

a mathematical model that optimizes one of the three following objectives:

maximization of the number of surgeries, maximization of the OR utilization

or minimization of the waiting time.

Figure 3.1: Overview of the weekly surgery schedule for a certain operat-
ing room. In this particular example, each day corresponds to a different
surgical specialty and each block equals a surgery and includes the patient
identification, name and procedure

Regarding the patients’ waiting list management, two features were specially

welcomed by the surgeons: a color scheme that highlights patients accord-

ing to the time left relatively to the waiting time limit and the possibility of

filtering the waiting list by the estimated surgical procedure time duration.

The latter gives the means to rapidly identify a surgery adequate to fill a gap

in the planning horizon. Details about surgeries and patient information are

also easily accessed on the interface. Finally, a non-obtrusive notification

system was created providing alerts when operational restrictions are vio-

lated. For example, a notification is issued when the expected time duration
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for the planned surgeries exceeds the limits of the period allocated to the

corresponding specialty or when the scheduling violates patients’ priorities.

The third module concerns results evaluation through Key Performance In-

dicators (KPIs), enabling identification of anomalies and opportunities to

improve performance. A set of customized charts is provided, such as: op-

erating room/specialty utilization rate over time, the evolution of patient

waiting lists over time and the number of penalties due to violation of prior-

ities throughout time. These KPIs are embedded in interactive dashboards

that allow an exhaustive benchmark of performance of different surgeons,

specialties and the overall operating room.

According to Guerlain’s (2000) framework, this work fits in the intelligent

decision support system cluster, as it provides the dimensions discussed

on his work and goes further giving a scheduling automation feature. A

minimalist overview of the sequential workflow performed by this decision

support system is given in Figure 3.2.

Figure 3.2: Intelligent Decision Support System Process flow

The following subsections will briefly describe the techniques used to provide

the intelligent behavior into the system and some of the results achieved.

Two appendices were included, where these components are explored fur-

ther.
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3.4.1 Surgery Duration Estimation

While scheduling patients, surgeons have to estimate how long surgeries will

take in order to book the operating room in advance, as it is a shared re-

source. Estimating surgery duration has an important impact on the operat-

ing theater schedule and since surgeons’ estimates suffer from high deviation

(see Table 3.1).

The problem of surgery duration estimation has been widely studied and

it has been shown that the operation times can be modeled by lognormal

or normal distributions. Several works have reported that the distribu-

tion of surgical procedures time can be modeled by a log-normal distribu-

tion (Stepaniak et al., 2009). In Eijkemans et al. (2010) the authors con-

clude that a prediction model aimed at making predictions for individual

patients that includes detailed procedure codes and operation, team and

patient characteristics may be able to reduce shorter-than-predicted and

longer-than-predicted OR times by 12 and 25% respectively. Therefore, the

application of data mining techniques seems suitable to address this prob-

lem. Data mining concerns the automated discovery of patterns and rela-

tionships in data, also known as Knowledge Discovery in Databases (KDD).

These techniques work with big and high-dimensional datasets, used to pre-

dict future behavior by observing history. Patients and completed surgery

databases fit accurately within that description and provide a great source

of data to explore (see an example for surgery durations in Figure 3.3).

Experiments were conducted with regression, tree-based and neural network

algorithms while using bagging and boosting techniques or not. For our

datasets, the best overall performing algorithm was a regression-like model

that encompasses two algorithms to predict surgery durations: Bagging and

M5 Rules.

Bagging stands for bootstrap aggregating, it is an ensemble meta-algorithm
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to improve machine learning classification and regression models stability

and accuracy, by reducing variance and avoiding over-fitting. This technique

generates several versions of the predicting model and uses them to get

an aggregated, averaged, predictor. The different versions of the predictor

are made by replicating and perturbing the learning set, causing significant

changes in the predictors built (Breiman, 1996).

The predictor used, M5 Rules, is based on a decision list built from several

M5 model trees (Holmes et al., 1999). During the learning phase, in each

iteration a model tree is built and the best leaf (according to some heuristic)

is pruned into a rule. Instances covered by this rule are removed from the

dataset, so that the process is applied recursively to the remaining instances,

terminating when all instances are covered by one or more rules.

Figure 3.3: Surgery duration estimation (highlighted on the left window),
descriptive statistics and the distribution of the durations frequencies for a
surgical procedure

Our dataset was built using records from 2006 to 2011 and the last two

years of data were separated to validate our results. In Appendix 3.A the

structure of the dataset (data types and fields) is presented.

Experiments were conducted with several specialties and herein we report
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the results of two representative specialties. Experimental results were com-

pared against surgeon duration estimates of two surgical specialties: General

Surgery (GS) and Vascular Surgery (VS). Table 3.2 shows the results ob-

tained in terms of Mean Absolute Error (MAE), Mean Absolute Percentage

Error (MAPE) and Mean Squared Error (MSE).

Table 3.2: Comparison between surgeon estimates and data mining results

Surgeon Estimates Data Mining

Specialty MAE MAPE MSE MAE MAPE MSE

GS 70.12 38% 9336.49 47.93 32% 4784.67

VS 32.97 49% 2508.04 24.94 39% 1514.97

Both specialties watch a great improvement on the prediction accuracy. One

of the reasons for poor surgeon performance derives from the time period

granularity used (multiples of 10/15 minutes) as depicted in Figure 3.4. On

the other hand, Figure 3.5 plots the data mining predictions against the real

values, reinforcing that surgeon’s granularity presents a severe constraint to

fine tune schedules. Values below the diagonal line on each figure (optimal

predictions) represent surgeries that went overtime, while the others were

overestimated leading to operating room under-utilization.

From these results it is clear that there is a strong potential gain by reducing

the error in surgery estimation time with our method.

Figures 3.6 and 3.7 present two histograms that enable to compare the

distributions of the overestimation and underestimation times for the two

selected specialties. The results show that overestimation is more frequent

and that underestimation has more extreme values. These extreme values

probably correspond to cases in which the surgeon decides to cancel the

surgery after the first few minutes due to unexpected factors regarding the

patient condition.
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Figure 3.4: Surgeon’s scheduled duration vs. real duration
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Figure 3.5: Data Mining prediction vs. real duration
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Figure 3.6: Histogram comparing the distribution of underestimation and
overestimation times for General Surgery
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Figure 3.7: Histogram comparing the distribution of underestimation and
overestimation times for Vascular Surgery
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3.4.2 Optimization Model

Having surgery duration accurate predictions is the first step to devise better

schedules. However, there is still the need to find a combination of surgical

cases that respect a set of constraints and optimize the surgery plan. We

have modeled this problem as an advance scheduling problem, where we take

the patients from a surgical specialty and assign them to a certain day of a

week and operating room. Our approach is an adaptation of the multiple

knapsack problem, where each knapsack corresponds to a morning or after-

noon shift on an operating room in a given day. Although we formulate the

model as a single-objective problem, three different objective functions are

proposed and used in a row: (i) throughput maximization; (ii) utilization

maximization; or (iii) waiting time for surgery minimization (days removed

from the waiting list).

The model’s complete formulation is given in Appendix 3.B and it is solved

using CPLEX 12.2. ILOG Concert technology is used to make the bridge

between the solver engine and the decision support system. Since the model

only deals with elective patients (el—pat) and the problem is addressed

in a deterministic fashion (det), according to the framework proposed by

Cardoen et al. (2010b) our approach is described as:

(el — pat; date-time; iso — det — single; wait-through-util)

where iso means that the operating room is tackled in an isolated way,

without taking into consideration downstream and upstream resources.

Computational results for the maximization of one week’s number of surg-

eries are shown in Table 3.3. The first column corresponds to the surgical

specialty and columns 2 to 4 correspond to each objective function value.

Utilization rate is calculated disregarding clean-up times between surgeries
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and days removed concern the sum of waiting days for surgery of the sched-

uled patients, therefore removed from the waiting list. Extended results are

given on Appendix 3.B.

Table 3.3: Optimization results - maximizing throughput

Specialty No. Surgeries Utilization Days Removed

GS 43 76.26% 13684

VS 51 70.19% 5598

Comparing these results to reality would lead to a significant disparity to-

wards our results as they are greatly inflated. The operating theater bottle-

neck lies on the postoperative capacity, the reason to find average operating

room utilization rates below 50%. However, we believe the solutions pro-

vided by our model can be used as starting points to good planning solutions.

3.5 Conclusions

In summary, this chapter reports the development of a decision support

system intended to endorse the process of operating theater planning.

The solution presented is mainly directed to the effective management of

the operating theater, where data mining and optimization components are

added to allow for more efficient scheduling. To the best of our knowledge,

this work is the first to combine the aforementioned techniques to reduce

surgery uncertainty and to achieve a better utilization of the existing re-

sources through scheduling optimization within decision support systems.

The results shown, regarding both surgery scheduling and duration estima-

tion, are significantly better than the current reality and can provide the

end-user a great advantage when planning, compared to the methods used
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in the past. Extensions of the optimization model to include other upstream

and downstream resources shall be considered in the future, as well as the

development of a simulation component to better evaluate generated solu-

tions.
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Appendix

3.A Surgery Estimation

The data used was obtained from the patients and completed surgeries

databases from the hospital, covering about 90,000 surgeries between 2006

and 2011. From our experience, administrative staff and surgeons are prone

to data insertion errors, as we have observed several cases of simple and

quick surgeries lasting longer than 12 hours, resulting in the need of data

cleansing. We have adopted this procedure for the two specialties for which

the results are being reported since such cases were very infrequent (1.9%

for GS and 0.3% for VS) and therefore would not have a significant impact

in the prediction model. We stress, however, that in case of specialties such

as heart or neuron surgery this type of deviation could be natural.

Subsequently, data was divided, where the first 5 years of completed surg-

eries were used for building the meta-model and the remaining 2 for evalua-

tion. We have adopted a temporal split to mirror the real world scenario in

which the model is aimed at predicting the duration of future events from

past records.

A mixture of patient, surgeon and procedure information was included into

the dataset, resulting in a total of 36 variables. Table 3.4 provides a brief

description of these attributes according to their type and meaning.

The results have shown that the variables having stronger influence in the

model are the patient gender (#1), the patient’s age (#2), the surgery

priority (#3), the surgical procedure chosen (#11), the surgeon (#17) and

the time estimation given by the surgeon (#35). In the context of the

hospital all these variables are available at the time of surgery scheduling,

in particular, a surgeon is allocated in advance to a patient and he is asked

to provide an estimation of the surgery duration.
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Table 3.4: Variables used in the prediction model

# Type Description

1 Nominal Patient Gender

2 Numeric Patient Age

3 Ordinal Patient Priority

4 Numeric Patient Waiting Time for Surgery

5 Nominal Surgery Specialty Identification

6 Nominal Surgery Month

7 Nominal Surgery Weekday

8 Nominal Surgery Shift

9 Nominal Patient Diagnosed Disease

10 Numeric Number of Interventions to be Performed

11 Nominal Intervention Code 1

12 Nominal Intervention Code 2

13 Nominal Intervention Code 3

14 Numeric Number of Surgeries to Date

15 Numeric Number of Interventions to Date

16 Binary If the patient has undergone surgery on other
specialties

17 Nominal Surgeon Identification

18 Nominal Surgeon Gender

19 Numeric Number of times the surgeon has dealt with
this disease

20 Numeric Number of times the surgeon has performed
the main intervention

21 Binary If the patient has other diagnosis

22 Binary If the patient has any circulatory problem

23 Binary If the patient has diabetes or renal problems

24 Binary If the diagnosis is recidivist

25 Numeric Duration of the last similar surgery from this
surgeon

26 Numeric Average Duration of the main procedure of
this surgeon

27 Numeric Standard Deviation of the main procedure of
this surgeon

28 Numeric Average Main Procedure Duration

29 Numeric standard Deviation Main procedure duration

30 Numeric Average duration of the surgery act on this
combination of procedures

31 Numeric Median duration of the surgery act on this
combination of procedures

32 Numeric Average total surgery duration

33 Numeric Median total surgery duration

34 Numeric Number of records with this combination of
interventions

35 Numeric Scheduled time by the Surgeon

36 Numeric Surgery Real duration
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The WEKA data mining software (Hall et al., 2009) was used for the esti-

mation of surgery durations.

3.B Scheduling Model

The elective patient surgery advanced scheduling problem consists on select-

ing a sub set of surgeries from the waiting list and assigning them to specific

time blocks across the planning week. The time blocks are previously de-

fined and represent a period of time assigned to a surgical specialty on a

given OR and day of week. Table 3.5 summarizes the notation used in this

elective patient scheduling model.

Note that according to the parameter pi, a given patient i has a priority to

go under surgery proportional to the maximum number of days that he can

wait for surgery without the hospital being penalized. pi may take the value

of one, two or three, depending on whether i refers to a normal patient, a

high priority patient, or urgent patient.

Table 3.5: Variables used on the elective patient scheduling model

# Notations

N Set of Patients

R Set of Operating Rooms

S Set of Surgeons

D Days of the week

T Parts of the day (Morning or Afternoon)

si Patient i surgeon

di Patient i surgery estimated duration

wi Patient i waiting time

pi Patient i priority level

Ardt =1 in case operating room r is available in
day d and time t, =0 otherwise

Ssdt =1 in case surgeon s is available in day d and
time t, =0 otherwise

ct Clean up time constant

C Shift capacity constant

3.B.1 Decision Variables

xidrt =

{
1 if surgery i starts at period t on day d in room r,

0 otherwise.
(3.1)
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ysdrt =

{
1 if the surgeon s is assigned to period t on day d in room r,

0 otherwise.
(3.2)

3.B.2 Objective Functions

As mentioned before, there are three objective functions to be optimized.

The first concerns the maximization of the number of surgeries scheduled as

follows:

max f1 =
∑
i∈N

∑
d∈D

∑
r∈R

∑
t∈T

xidrt (3.3)

However, as more surgeries are performed, the utilization decreases since

there is the need to prepare and clean up the operating rooms before a

surgery, time we consider as waste. Thus, the following expression represents

the maximization of the mean utilization of the operating rooms over a week

span.

max f2 =

∑
i∈N

∑
d∈D

∑
r∈R

∑
t∈T xidrtdi

C
∑

d∈D
∑

r∈R
∑

t∈T Adrt
(3.4)

Lastly, there is also the desire to diminish the patient waiting times for

surgery. In order to do that we express the maximization of the waiting

time “removed” from the waiting lists. In other words, the summation of

the waiting times of scheduled patients. Since high priority patients wait

less and have more urgency on being operated, we have weighted the waiting

time with the patient’s priority level as follows:

max f3 =
∑
i∈N

∑
d∈D

∑
r∈R

∑
t∈T

xidrtwi10
pi (3.5)
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3.B.3 Constraints

The available capacity of the operating rooms in terms of time, must be

respected, no overtime is allowed, i.e.:

∑
i∈N

xidrt(di + ct) ≤ CAdrt,∀d ∈ D, r ∈ R, t ∈ T (3.6)

A patient can only be assigned to a room, day, part of the day, if the room

is available for his specialty. Such condition is guaranteed by expression 3.7:

xidrt ≤ Adrt, ∀i ∈ N, d ∈ D, r ∈ R, t ∈ T (3.7)

A surgery can only be scheduled if the surgeon in charge is available at the

time.

ysdrt ≤ Ssdt, ∀s ∈ S, d ∈ D, r ∈ R, t ∈ T (3.8)

In each day/shift, which represents a morning or afternoon, a surgeon can

be scheduled for at most one OR. In other words, surgeons can not move to

different operating rooms in the same working shift.

∑
r∈R

∑
t∈T

ysdrt ≤ 1, ∀s ∈ S, d ∈ D (3.9)

Since we do not allow surgeons to change operating rooms in a morning or

afternoon there must be a link between patients and surgeons, so that the

latter is also fixed to a shift on an operating room.

xidrtsi ≤ ysdrt,∀i ∈ N, d ∈ D, r ∈ R, t ∈ T (3.10)

The final requirement expresses the domains of the variables:
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ysdrt ∈ {0, 1}, xidrt ∈ {0, 1} (3.11)

3.B.4 Further Results

Table 3.6: Optimization results - maximizing utilization

Instance No. Surgeries Utilization Days Removed

GS 15 90.81% 4108

VS 23 87.65% 3003

Table 3.7: Optimizations results - minimizing waiting times (maximize days
removed considering patient’s priority)

Instance No. Surgeries Utilization Days Removed

GS 32 82.46% 18249

VS 45 75.63% 10477
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New Solution Approaches
for the Surgical Cases
Assignment Problem:
Mixed Integer
Programming vs. Biased
Random-key Genetic
Algorithm

Fabŕıcio Sperandio1, José Fernando Gonçalves2, José Borges1, Bernardo

Almada-Lobo1

Technical Report, 2014

Abstract This study addresses the surgical cases assignment problem (SCAP)

appearing at large hospitals. The problem consists in generating a weekly

surgery schedule assigning operating rooms (ORs), surgery dates and start-

ing times to elective surgeries in the surgical waiting list, hence integrating

1CEGI – INESC TEC, Faculdade de Engenharia, Universidade do Porto, Portugal
2LIAAD – INESC TEC, Faculdade de Economia, Universidade do Porto, Portugal
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advance and allocation scheduling. Admissible schedules are subject to sur-

geons and ORs capacity constraints as well as patient priority and waiting

time rules. Due to long waiting lists and the scarcity of ORs, our aim is

to maximize the number of scheduled surgeries as well as the utilization of

ORs. Two alternative solution approaches, one exact and one approximate,

are proposed and their respective results are compared. The first is based on

mixed integer programming (MIP). In this model the problem is formulated

as a scheduling problem with block synchronization using a continuous repre-

sentation of time, which contributes to maximizing the ORs utilization. The

MIP model is also compared with a model using a discrete representation

of time, which is similar to the model proposed in Chapter 3. The second is

a heuristic solution approach based on the biased random-key genetic algo-

rithm (BRKGA). This is a population based approach which uses a vector of

random numbers to represent each individual in the population and requires

a decoding procedure to translate them into valid surgery schedules. This

approach employs an efficient heuristic which keeps track of the resource

available times and is able to translate every vector into a high quality solu-

tion. The alternative solution methods are compared using instances based

on real data from a large hospital. Results show that the proposed MIP

model, using a continuous representation of time, outperforms in terms of

quality of solutions the model using a discrete representation of time in all

instances. In its turn, the BRKGA outperforms the MIP in terms of quality

of solutions in the majority of the test instances.

Keywords Surgery scheduling, Mixed integer programming, Genetic algo-

rithm
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4.1 Introduction

Healthcare expending continues to rise among OECD countries. In 2012,

the overall healthcare expenditure across these countries accounted for 9.3%

of GPD on average, higher than the 8.6% accounted before the global finan-

cial crisis of 2007–08 (OECD, 2014). Such rise is driven by an increasing

demand for healthcare services which in turn is influenced by factors like:

new and more expensive technology, ageing population and lifestyle issues

(e.g. obesity). In this scenario, healthcare managers face a tough chal-

lenge to improve quality and efficiency, while preserving the sustainability

of healthcare organizations. This paper is a contribution to the field of op-

erations research and to society, as it promotes the efficient utilization of a

core hospital resource, the operating theater (OT).

The OT accounts for up to 40% of hospital revenues and expenses (Gordon

et al., 1988; HFM, 2003), making it one of the hospital’s most important

facilities. Its expenses are driven by a high consumption of human and ma-

terial resources. Many surgeries are technically complex and require a range

of people to be in one place working in harmony, including one or more

surgeons, one or more anaesthetists, as well as special theatre nurses, assis-

tants and technicians (Commission, 2003). Mayer et al. (2008) emphasize

the importance of optimizing the utilization of such an expensive resource,

citing the average cost of running one OT in NHS Scotland (National Health

Service for Scotland) facilities to be £ 1.1 million per week. Furthermore,

its operation has a direct impact on many other upstream and downstream

resources. As a result, the OT is often called the heart of the hospital.

The literature on operations research applied to healthcare includes a high

volume of studies tackling operating room (OR) planning and scheduling

problems. The largest portion tackles problems in the operational decision

level. The surgery scheduling problem in the operational decision level con-
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sists in selecting patients from the surgical waiting lists and assigning ORs,

surgery dates and starting times to them usually over a one week plan-

ning horizon. Due to the complexity of the problem it is often decomposed

into two sub-problems: advance and allocation scheduling problems. The

advance problem consists in selecting patients from the waiting list and as-

signing surgery dates while the allocation problem consists in sequencing

the surgeries within each day. The majority of the studies tackle each of

these problems separately, although there is a trend to adopt integrated ap-

proaches. In this last case, in order to reduce the problem complexity, the

reported approaches use a discrete representation of time.

This study aims to propose a new modelling approach for the integrated

(advance and allocation) surgical cases assignment problem (SCAP) using

a continuous representation of time, thus providing a more accurate repre-

sentation of the problem and a potential higher resource utilization. The

modelling challenge is to propose an exact yet efficient mathematical for-

mulation of the problem. The proposed MIP model is inspired by efficient

formulations for the travelling salesman problem (TSP), making an analogy

between the cities of the TSP and the operating rooms a surgeon works in

a given shift. A surgeon is allowed to change between ORs during the same

day and working shift. This situation can increase utilization rates since

the surgeon’s turnover time, the time required for a surgeon to start a new

surgery in a different OR, is generally lower than the required cleaning time

between two consecutive surgeries in the same OR. In addition, this study

aims to propose an original heuristic solution method aiming to find near

optimal solutions within a reduced amount of time. The proposed approach

is based on the biased random-key genetic algorithm (BRKGA)(Gonçalves

and Resende, 2011) framework and on an efficient decoding procedure to

translate each individual in the population into a high quality schedule.

Finally, it aims to compare the two alternative approaches, a continuous
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MIP model and a heuristic based on the BRKGA, analysing the quality of

solutions and required computational times.

The performance of the proposed approaches is analysed from three different

perspectives. First, the new MIP model is compared with a modification of

the model presented in Chapter 3, which uses a discrete representation of

time. The modified model is described in the appendix of this chapter. Sec-

ond, the new MIP model is compared with the heuristic solution approach.

Finally, the quality of solutions found by the two proposed approaches along

the search progress is compared. All computational experiments were per-

formed over instances generated with real data from a large hospital.

The remainder of this chapter is organized as follows. Section 4.2 reviews ex-

isting approaches for the surgery scheduling problem. Section 4.3 describes

in detail the particular problem addressed in this paper. Section 4.4 intro-

duces the two proposed approaches: the exact MIP model and the heuristic

genetic algorithm. Section 4.5 describes the computational experiments de-

signed to compare both approaches and presents the results. Finally, the

last section highlights the main contributions of this paper and indicates

some areas for future work.

4.2 Literature Review

4.2.1 Problem Perspective

The management of surgical services entails several complex decision prob-

lems. These problems are often classified into three decision levels: strategic,

tactical and operational. The strategic level encompasses case mix and ca-

pacity planning problems. The first consists in determining the volume and

type of surgeries to be performed by each specialty in the long term (1 to

5 years). The second consists in determining the number and capacity of
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resources dedicated to surgical services as well as their allocation. In the

tactical decision level, two main different strategies are used: open schedul-

ing and block scheduling. In the open scheduling strategy ORs are occupied

by patients of any specialty. This strategy aims to maximize OR utilization

rates. On the other hand, the block scheduling strategy requires to solve

a master surgery scheduling (MSS) problem, which consists in determining

the ORs reserved for each specialty in each day of the week and working

shift. The resulting plan is a weekly timetable implemented in the medium

term (6 to 12 months). This is the most used strategy, mainly in large hos-

pitals where the use of a MSS is well established. Regarding the operational

problem, in the open strategy it encompasses all specialties together, while

in the block strategy it is subdivided among the specialties.

The problems arising in the operational decision level are classified into

off-line and on-line scheduling problems. The off-line problem consists in

selecting patients from the waiting lists and assigning ORs, surgery dates

and starting times over a short term planning horizon (typically 1-week).

The on-line problem consists in scheduling daily emergency and high prior-

ity cases as well as rescheduling previous elective cases. This study tackles

the off-line surgery scheduling problem at the operational decision level, also

known as surgical cases assignment problem. The reviewed papers target

deterministic versions of the problem only, since, in order to address uncer-

tainty a range of other solution approaches is required, which is out of the

scope of this study. For a comprehensive review of surgery planning and

scheduling problems see Cardoen et al. (2010a) and Guerriero and Guido

(2011). In this literature review, a selected set of papers addressing the

SCAP problem was reviewed from both problem perspective and solution

perspective and the main characteristics such as decisions, objectives, con-

straints etc, was reported in Table 4.1 and Table 4.2. The first table focuses

on the problem settings while the second on solution approaches.
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The SCAP problem can be further decomposed into two sub-problems: ad-

vance and allocation scheduling problems. As mentioned in the previous

section, the advance problem concerns the surgery dates while the alloca-

tion problem concerns the starting times. In most studies the OR assignment

is part of the advance problem, however, in Ozkarahan (1995) it is part of

the allocation problem with the advance problem consisting only in assign-

ing a surgery date. In addition, some studies combine other decisions, such

as: assigning available ORs (Roland et al., 2010; Fei et al., 2010), assigning

ORs to specialties (Marques et al., 2012, 2014) and assigning surgeons to

patients (Vijayakumar et al., 2013). Most studies tackle the advance and

allocation problems separately but there is a growing number of integrated

approaches.

The optimization objectives in SCAP problems are either related with re-

sources or patients. Regarding resources, the main objectives are: maximize

OR occupancy rates and minimize overtime and makespan. This last ob-

jective, along with the objective of minimizing the stay in recovery after

closure time, are closely related with minimizing overtime, so that one can

infer that even more studies aim to minimize overtime. It is worth noting

that this is planned overtime since all studies consider deterministic surgery

durations. In this case, there is often a trade-off between opening new ORs,

keeping patients waiting and incurring overtime costs. Concerning human

resources, Ogulata and Erol (2003) aim to balance the distribution of surg-

eries among surgeon groups and Meskens et al. (2013) aim to maximize the

affinities among members of the surgical team. The patient related objec-

tives include: maximizing the number of scheduled patients, minimizing the

patients waiting time and the costs of keeping patients in the hospital wait-

ing to be treated. In addition, Cardoen (2009); Cardoen et al. (2009) focus

on particular patient groups, such as: high priority patients, children and

patients with long travel distance. In spite of the aforementioned objectives,
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most approaches combine multiple objectives. This is most often achieved

through an aggregated objective function.

With regard to the constraints, they are either related to physical resources,

human resources or patients. In the first category, ORs are the main re-

source followed by post-anaesthesia care unit (PACU) and intensive care

unit (ICU). Pham and Klinkert (2008) also consider the preoperative hold-

ing unit (PHU). In addition, few studies consider the availability of surgical

materials, medical instruments and equipment. Also, Augusto et al. (2010)

consider the availability of transporters, since this resource may be a bot-

tleneck, mainly in the beginning of the day. Regarding human resources,

the main surgeon in charge is the main resource. Most studies consider the

surgeon’s availability and a few consider workload and overtime limits. Typ-

ically, this surgeon is assigned to the surgical case during the waiting list

registration phase. To the best of our knowledge, Vijayakumar et al. (2013)

is the only study to assign surgeons to surgical cases during the scheduling

phase. In addition, few papers have considered the other members of the

surgical team, such as anaesthetists and nurses. Regarding patients, studies

have considered constraints in the patient due date and admission date.

4.2.2 Solution Perspective

Regarding continuous and discrete representations of time, this literature

review reveals that most studies represent time as discrete intervals. Fifteen

minutes is the most common value used for the size of intervals in the com-

putational experiments presented in the papers included in this literature

review. Cardoen (2009); Cardoen et al. (2009) use a lower, 5 min intervals,

but these studies focus on the allocation problem only (sequencing patients

within a day), which is less complex than the integrated problem. The

majority of the approaches which use a continuous representation of time

tackle the allocation problem alone or decompose the overall problem into
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two sub-problems, each one approached independently. Zhong et al. (2014)

and Ozkarahan (1995) address the integrated problem considering time as

a continuous variable but use simple heuristics (longest processing time and

shortest processing time) to get an approximate solution. To the best of

our knowledge, Pham and Klinkert (2008) are the only to present an exact

model using a continuous representation of time. The authors propose an

extension of the job shop scheduling problem called multi-mode blocking job

shop and conclude that the model can obtain (good) feasible solutions for

only small to medium-sized instances. The integrated problem is known to

be hard to solve, resulting in long running times, so that an optimal solution

appears more as a reference solution important to evaluate the quality of

the heuristic.

The high complexity of the SCAP problem makes researchers apply effi-

cient search algorithms, relaxation approaches and search heuristics. Only

studies which decompose the overall problem into more manageable sub-

problems do not rely on approximation algorithms. Among the exact search

algorithms with proof of optimality we highlight: branch and bound, col-

umn generation, Dantzig–Wolfe decomposition, branch and price and the

Hungarian algorithm. In addition, Lagrangian relaxation is used to find

an approximate solution. Other solution methods applied to find approxi-

mate solutions are: iterated local search, genetic algorithms (GA) and tabu

search. Finally, researchers have considered constructive and improvement

heuristics.

Random-key genetic algorithms (RKGA) for solving sequencing problems

were introduced by Bean (1994). The biased random-key genetic algorithm,

proposed by Gonçalves and Resende (2011), is a slight modification of Bean’s

original method, differing in the way parents are selected for mating and how

mating is carried out. Gonçalves et al. (2014b) compared biased and un-

biased versions of RKGAs and concluded that the biased variant is faster.
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4.3 Problem Description

Heuristics based on BRKGAs and RKGAs have already been applied with

success on resource constrained project scheduling (Mendes et al., 2009;

Gonçalves and Resende, 2011), resource constrained multi-project schedul-

ing (Gonçalves et al., 2008) and job shop scheduling (Gonçalves et al., 2005)

problems, which are similar to the SCAP problem. A detailed description

of the BRKGA is provided in section 4.4.2.

4.3 Problem Description

The problem consists in assigning a surgery date, an operating room and a

starting time to a set of elective patients in the waiting list, thus integrating

advance and allocation scheduling. Each surgery of a patient has a pre-

assigned surgeon, latest surgery date and estimated surgery duration. The

objective is to maximize the number of scheduled surgeries as well as the

average OR utilization rate. These are conflicting objectives, as OR cleaning

times consume OR capacity and therefore are not considered to contribute

to utilization rates. On one hand, when one aims to maximize the number

of scheduled surgeries, shorter surgeries are preferred. On the other hand,

when one aims to maximize utilization rates, longer surgeries are preferred

instead, in order to avoid the setup time involved in cleaning activities.

The following items describe the restrictions imposed to admissible surgery

schedules.

1. OR cleaning time - Time after each surgery reserved for performing

OR cleaning protocol activities, in order to setup the OR for the next

event. The next surgery in the same OR can only start after the setup

operation (that occurs in between surgeries) is completed;

2. Surgeon turnover time - A surgeon is allowed to have scheduled surg-

eries in more than one OR in the same shift as long as an offset between
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4.3 Problem Description

two consecutive surgeries of the same surgeon is guaranteed. This off-

set is called turnover time and denotes the required time for a surgeon

to change from one OR to another after finishing a surgery;

3. OR time capacity - Each OR has a predefined time capacity on each

shift. Naturally, the summation of the scheduled surgeries durations

and setup times within each OR and shift must not exceed this pre-

defined capacity. Furthermore, as overtime is not allowed, a surgery

must not be scheduled to end after the OR closing time.

4. Surgeon availability and working limits - Each surgeon may be or may

be not available to operate in a given shift of a certain day. If a surgeon

is not available none of his/her patients must be scheduled for that

period. Moreover, surgeons are subject to working limit constraints in

terms of the number of working shifts for week. Supposing that these

working limits are not guarantee by the surgeon availability itself.

5. Patient priority and waiting time rules - Each patient in the elective

surgery waiting list has a predefined priority and a current waiting

time. In some countries, there are maximum waiting times established

for each priority level. Each surgery in the national health service

should respect these times. Moreover, there are maximum schedul-

ing times established for each priority, it means that when a patient

reaches the maximum scheduling time he must be scheduled, with the

surgery date subject to the maximum waiting time constraint.

67



Chapter 4

4.4 Methodology

4.4.1 Exact Solution Approach: Mixed Integer Program-
ming Model

The first approach is a mixed integer programming (MIP) model which uses

a continuous representation of time. The aim is to determine the scheduled

patient surgeries in a certain planning horizon, and the respected timings.

A surgeon is allowed to perform one or more surgeries within each period

of work. A period of work is the time between the start of the first surgery

and the end of the last consecutive surgery of surgeon in a shift and OR.

Once the surgeons’ periods of work are determined by the model, the start

and end times of each specific patient are assigned using a simple heuristic.

The following paragraphs describe the model in detail. The idea is to define

the sequence of surgeons in each OR avoiding potential overlaps between

periods of work of the same surgeon in different ORs. The model uses three

groups of decision variables: one to decide which patients to schedule in

each shift and OR; one to decide on the sequence of surgeons within each

shift and OR; and one to determine the start and end times of surgeons in

each shift and OR. It is assumed that each patient is waiting only for one

surgery and therefore hereafter the terms patient and surgery may be used

interchangeably.

We start by introducing the necessary notation:
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4.4 Methodology

Sets and indices

I set of patients (index i)

J set of working shifts (index j)

K set of operating rooms (index k)

Kj set of available ORs in shift j

S set of surgeons (index s)

Is set of patients of surgeon s (index i)

H set of weeks in the planning horizon (index h)

Jh set of working days in a given week h (index j)

Imaxsched set of patients with maximum scheduling time within the planning horizon

Imaxswait set of patients with maximum waiting time within the planning horizon

Parameters

di estimated duration of patient’s i surgery

si surgeon in charge of patient’s i surgery

maxi maximum waiting time of patient’s i surgery

cjk available capacity in shift j of OR k

ajs 1, if surgeon s is available in shift j; 0, otherwise

dayj day of shift j

α weight of the number of scheduled surgeries in the objective function

β weight of the average OR utilization rate in the objective function

γ best number of scheduled surgeries

δ best average OR utilization rate

ct OR cleaning time

tt surgeon turnover time

C total OR capacity

ms maximum number of shifts per week
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Decision variables

Xijk =

 1, if patient i is scheduled for shift j and OR k

0, otherwise

Yjkss′ =

 1, if surgeon s operates after surgeon s′ in shift j and OR k

0, otherwise

Zjks =

 1, if surgeon s is the first to operate in shift j and OR k

0, otherwise

Wjks =

 1, if surgeon s is the last to operate in shift j and OR k

0, otherwise

Vjkk′s =

 1, if surgeon s operates in OR k′ after operated in OR k in shift j

0, otherwise

µstart
jks = starting time of surgeon s in OR k and shift j

µend
jks = end time of surgeon s in OR k and shift j

Throughout the exposition, i denotes a patient, j denotes a shift, which is

a combination of a given day in the planning horizon and a working shift

(morning or afternoon), k denotes an operating room and s denotes a sur-

geon. The weights α and β define the search directions and are normalized,

i.e. α+ β = 1.

Regarding the decision variables, the binary variable X pertains to the pa-

tients and is used for selecting which patients are scheduled and assigned to

the respective shifts and ORs, the binary variables Y , Z, W and V relate

to the surgeons and are used for designating the sequence in which the sur-

geons work in a given shift and OR, and real variables µstart and µend keep

track of the start and end times of each surgeon in a given shift and OR.

It is assumed here that each surgeon can work at most one period of work

in each shift and OR. It is an assumption made by the authors in favour of

the efficiency of the model.
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4.4 Methodology

Objective function

Expression (4.1) denotes the objective function which maximizes the number

of scheduled surgeries and the average ORs utilization rate. However, as

these are competing goals, preferences for objectives are a priori declared

to form a weighted linear scalarizing function, used to aggregate several

objectives into a single one. The value of each objective is normalized based

on the maximum values both can take (γ and δ), to prevent the magnitude

of each measure to bias the final value of the function, yielding a non-

dimensional objective function value.

The objective function value must be minimized as the greater the number

of scheduled patients and the average OR utilization rate the lower the

function value.

min F = α ·
γ −

∑
i∈I

∑
j∈J

∑
k∈K Xijk

γ
+ β ·

δ −
∑

i∈I
∑

j∈J
∑

k∈K Xijk · di
C

δ
(4.1)

Constraints

Constraints are grouped into three categories, related to patients, to sur-

geons and to time periods. Inequality (4.2) prevents a patient from being

scheduled more than once. The surgeries’ due dates are defined according to

patients’ priority and waiting time rules defined in the waiting list manual.

Inequality (4.3) expresses the shifts capacity constraint. The summation of

all surgery durations and cleaning times in a given shift must be lower than

or equal to the capacity of the OR in this shift. These constraints also ensure

that each specialty uses only the ORs available to it according to the master

surgery schedule. The ORs with a capacity greater than zero are considered

available. Note that the model works with only a single specialty.
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∑
j∈J

∑
k∈K

Xijk ≤ 1,∀i ∈ I (4.2)

∑
i∈I

Xijk · (di + ct) ≤ cjk, ∀j ∈ J,∀k ∈ K (4.3)

Expression (4.4) states that surgeries with a maximum scheduling time lower

than the planning horizon must be scheduled. Expression (4.5) states that

surgeries with a maximum waiting time lower than the planning horizon

must be scheduled and inequality (4.6) states that the surgery day must

be lower than the maximum waiting time. In the model the maximum

scheduling times and maximum waiting times are defined in days relative

to the beginning of the planning horizon. The absolute values are defined

according to the patient’s priority and waiting time rules and can be find

in the waiting list manual (Ministério da Saúde, 2011). The aforementioned

constraints related specifically to the patients, as the other are related to

the surgeons.

∑
j∈J

∑
k∈K

Xijk = 1,∀i ∈ Imaxsched (4.4)

∑
j∈J

∑
k∈K

Xijk = 1,∀i ∈ Imaxwait (4.5)

∑
j∈J

∑
k∈K

Xijk · dayj ≤ maxi,∀i ∈ Imaxwait (4.6)

Thus, the following sets of constraints aims to determine the sequence of

surgeons working in each shift and OR. Expressions (4.7) and (4.8) define

the surgeons who are the first and the last to operate in each shift and OR,

respectively. Inequality (4.9) states that in one shift a surgeon must be

the first in at most one OR, otherwise there would be an overlap between

surgeries of this particular surgeon as all OR sessions start at the beginning

of the shift. Inequality (4.10) ensures that in every shift and OR, a sur-

geon is either the first one or comes after another surgeon in the sequence.
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4.4 Methodology

Similarly, according to expression (4.11), a surgeon is either the last one or

precedes another one. These two constraints ensure that a surgeon appears

only once in the sequence of each OR and shift, i.e. only one bucket of con-

secutive work. Expression (4.12) avoids circular references in the sequence

of surgeons. Finally, expression (4.13) is the flow equation, which specifies

the balance of the inflow and outflow of position for each of the surgeons.

It ensures consistency between expressions (4.10) and (4.11) ensuring that

there is a link (via variables Y ) between all the surgeons in the sequence.

∑
s∈S

Zjks = 1, ∀j ∈ J, ∀k ∈ K (4.7)

∑
s∈S

Wjks = 1, ∀j ∈ J, ∀k ∈ K (4.8)

∑
k∈K

Zjks ≤ 1,∀j ∈ J, ∀s ∈ S (4.9)

Zjks +
∑
s′∈S

Yjkss′ ≤ 1, ∀j ∈ J, ∀k ∈ K,∀s ∈ S (4.10)

Wjks +
∑
s′∈S

Yjks′s ≤ 1, ∀j ∈ J, ∀k ∈ K,∀s ∈ S (4.11)

Yjkss = 0, ∀j ∈ J, ∀k ∈ K,∀s ∈ S (4.12)

Zjks +
∑
s′∈S

Yjkss′ =Wjks +
∑
s′∈S

Yjks′s, ∀j ∈ J, ∀k ∈ K,∀s ∈ S (4.13)

The next set of constraints aims to assign the start and end times of each

surgeon in each shift and OR according to the scheduled patients (deter-

mined by variable X) and the sequence of surgeons (determined by variables

Y ,Z,W ,V ). Expression (4.14) enforces the starting time of the first surgeon

to take place at the beginning of the shift. Similarly, constraint (4.15) sets

the ending time of each surgeon on each shift and OR, taking into account

the starting time, the duration of all the surgeries performed by him and

the cleaning times to set up the OR. A surgeon’s finishing time is important

to check whether the surgeon can afterwards start a surgery in another OR.

Moreover, expression (4.16) declares that all end times must be within the

capacity (in time units) of the OR in that particular shift.
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µstart
jks ≤ cjk − (cjk · Zjks), ∀j ∈ J,∀k ∈ K, ∀s ∈ S (4.14)

µstart
jks +

∑
i∈Is

Xijk · di + (max{1,
∑
i∈Is

Xijk} − 1) · ct ≤ µend
jks , ∀j ∈ J,∀k ∈ K, ∀s ∈ S (4.15)

µend
jks ≤ cjk, ∀j ∈ J,∀k ∈ K, ∀s ∈ S (4.16)

Constraint (4.17) aims to eliminate any subtours in the sequence, preventing

the occurrence of two or more disconnected groups of surgeons, and guar-

anteeing that there is a link between all surgeons. The inequality implies

that if a surgeon s comes after another surgeon s′ then the end time of s′

(the previous), denoted by µendjks′ , must be lower than or equal to the start

time of s (the next), denoted by µstartjks . In other words, if one surgeon comes

after another, then the previous surgeon must end before the beginning of

the next.

µend
jks′ + (Yjkss′ − 1) · (C + ct) ≤ µstart

jks , ∀j ∈ J, ∀k ∈ K, ∀s ∈ S,∀s′ ∈ S (4.17)

The timings of each surgeon in different ORs must now be synchronized.

The following constraints aim to avoid overlaps between working periods of

a given surgeon in different ORs within the same shift. Expression (4.18)

states that if a surgeon s works in OR k after having worked in OR k′

in a given shift j, denoted by Vjkk′s, then the surgeon’s end time in OR

k′ (the previous) must be lower than the surgeon’s start time in OR k (the

next), denoted by µstartjks . In contrast, the inverse must also hold according to

expression (4.19), if a surgeon s does not work in OR k after having worked

in OR k′, denoted by Vjkk′s, then the surgeon’s start time in OR k′, denoted

by µstartjk′s , must be greater than or equal to the end of the surgeon’s working

period in OR k, denoted by µendjks . The two constraints work together, the

first validates the situation in which the surgeon works in a given OR after
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(a) Surgeon operates in OR A after OR
B

(b) Surgeon does not operate in OR A
after OR B

Figure 4.1: An illustrative example of the synchronization constraints

another and the second the situation in which he does not work, to determine

the working periods in parallel ORs avoiding overlaps.

µend
jk′s + tt ≤ µstart

jks + cjk · (1− Vjkk′s), ∀j ∈ J,∀k ∈ K, ∀k′ ∈ K, ∀s ∈ S (4.18)

µend
jks ≤ µstart

jk′s + cjk · Vjkk′s, ∀j ∈ J,∀k ∈ K, ∀k′ ∈ K, ∀s ∈ S (4.19)

Figure 4.1 shows an illustrative example to support the description of the

synchronization constraints. Let J = {1} be the set of shifts, K = {A,B}

be the set of ORs and S = {1} be the set of surgeons. Figure 4.1(a) shows

a case in which surgeon 1 operates in OR B after having operated in OR A,

therefore the surgeon’s start time in OR B must be greater than the surgeon’s

end time in OR A. Figure 4.1(b) shows the opposite, when surgeon 1 does

not work in OR B after having worked in OR A the surgeon’s start time in

OR A must be greater than the surgeon’s end time in OR B.

The next constraints link the sequence of surgeons to the scheduled surgeries.

Expression (4.20) states that if a patient i is scheduled in a shift j and OR

k then the surgeon responsible for this operation, denoted by si, must be

the first to operate or come after another surgeon. In contrast, inequality

(4.21) states that if a surgeon s does not have any scheduled patient in shift

j and OR k then he must not appear in the sequence. In this expression,
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M denotes a big number, greater than the highest possible value for the

summation of variables Z, W and Y for this particular surgeon.

Xijk ≤
∑
s′∈S

Yjksis′ + Zjks,∀i ∈ I, ∀j ∈ J, ∀k ∈ K(4.20)

Zjks +Wjks +
∑
s′∈S

(Yjkss′ + Yjks′s) ≤ min{1,
∑
i∈Is

Xijk} ·M,∀j ∈ J,∀k ∈ K, ∀s ∈ S(4.21)

The output of the model is the set of surgeries scheduled for each shift and

OR as well as the sequence of surgeons in each shift and OR and their

respective start and end times. In order to determine the starting time

of surgeries one must iterate over the sequence of surgeons from the first

surgeon in each shift and OR, through each surgeon after him, until the last.

Algorithm 1 shows the two functions used in this process. The procedure

starts by calling the function generateSchedule which iterates through all

shifts and ORs and if the OR is available, iterates through the set of surgeons

until it finds the first in the sequence. The next step (line 8), is to print the

list of patients of this surgeon, which consists in iterating through the list of

patients and for each of the surgeon’s patients scheduled for this particular

shift and OR, print its starting time. Note that the starting times of patients

are relative to the beginning of the surgeon working period, the starting time

of the first patient is equal to µstartjks and the starting time of the following is

equal to the duration of the previous plus the OR cleaning time. Next (line

16), the procedure verifies if the current surgeon is the last to operate and

in this case, it returns to the calling function, otherwise, it finds the next

surgeon in the sequence and calls function ListPatients again, recursively

(line 21).

Figure 4.2 shows a sample schedule generated by the proposed MIP model. It

is a weekly schedule for the Neurosurgery specialty. This schedule has 5 days,

2 shifts each day and 2 ORs. Both ORs are closed on Saturday afternoon.
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Algorithm 1: Algorithm for generating a schedule from a solution of
the MIP

1 function GenerateSchedule() begin
2 for all j in J do
3 for all k in K do
4 if cjk > 0 then
5 for all s in S do
6 if Zjks = 1 then
7 ListPatients(j,k,s)
8 break

9 function ListPatients(j, k, s)
10 begin
11 startTime ← µstartjks

12 for all i in I do
13 if si = s and Xijk = 1 then
14 PrintPatient(i,j,k,startTime)
15 startTime=startTime+di+ct

16 if Wjks′ = 1 then
17 return

18 else
19 for all s′ in S do
20 if Yjks′s = 1 then
21 ListPatients(j,k,s′)
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Figure 4.2: Sample Neurosurgery schedule generated by the MIP model

In the picture, each box represents a surgery, the different colors represent

different surgeons, and the numbers inside each box mean the surgeon Id

(between parenthesis) and start and end time of each surgery. The times are

relative to the start of the shift. This schedule has 56 scheduled surgeries

and 82.4% of average OR utilization rate taking into account an OR cleaning

time of 17 minutes after each surgery and no surgeon turnover time. In this

case, the turnover time, which is the required time for a surgeon to switch

between ORs, is included in surgery duration. It is worth noting that there

are situations in which a surgeon is able to start a new surgery in a different

OR before starting the next surgery in the same OR, therefore saving time

in which the surgeon would otherwise be idle. These situations are signed

with a circle.

4.4.2 Heuristic Solution Approach: Biased Random Key Ge-
netic Algorithm

4.4.2.1 General Genetic Algorithm Description

In this section, as an alternative to the exact approach proposed in the pre-

vious section, a heuristic approach based on the biased random-key genetic
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algorithm (Gonçalves and Resende, 2011) is proposed. Genetic algorithms

(Holland, 1975; Goldberg, 1989) are part of a group of nature inspired algo-

rithms based on the concept of natural selection, or survival of the fittest,

used to find near-optimal solutions for optimization problems. They are

population based algorithms which evolve a set of individuals over a num-

ber of generations. Each individual represents a solution for the optimization

problem, in our case a surgery schedule. Moreover, each individual has an

associated chromosome that encodes a solution. Chromosomes are strings of

genes and the value in each gene is an allele. In general, alleles take binary

or real values.

In random-key genetic algorithms (RKGAs) (Bean, 1994) each chromosome

is encoded as a vector of random-keys and each allele is a random number

between 0.0 and 1.0. Figure 4.3 shows a sample RKGA chromosome which

indirectly represents a surgery schedule. In this representation, each allele

is a random number corresponding to a patient in the waiting list. A decod-

ing procedure, or simply decoder, is required to translate each chromosome

into a solution in order to compute the associated performance metrics. In

our case, the performance metrics corresponds with the number of sched-

uled surgeries and the average OR utilization rate. It is worth mentioning

that the decoder efficiency plays an important role in the overall algorithm

performance as it consumes most of the computational time.

As population based heuristics, GAs evolve populations of solutions through

means of recombination and mutation. Recombination consists in selecting

two parents from the population and copying sequences of genes from both

of them into a new individual, a procedure called crossover. In particular,

the proposed GA uses a parametrized uniform crossover (Spears and Jong,

1991). On the other hand, mutation aims to introduce diversity into the

population and escape entrapment in local optima. In the case of RKGAs it

is achieved by generating completely new individuals, called mutants, and
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Figure 4.3: Sample chromosome indirectly representing a surgery schedule

introducing them into the populations.

RKGAs use an elitist strategy to evolve populations of solutions over gen-

erations. In this strategy, after decoding individuals and computing fitness

values (the associated performance metrics), the best individuals are labelled

as ELITE. These individuals remain in the population in the next generation

as a way to preserve good genes. The biased random-key genetic algorithm

differs from standard RKGA in the way individuals are selected for recom-

bination. In a BRKGA, instead of randomly selecting two individuals from

the entire population, each new individual is generated by combining one

individual from the ELITE part of the population and one from the NON-

ELITE part, or from the entire population. This increases the probability

of good individuals passing their characteristics to future generations.

BRKGAs are based on a generic metaheuristic framework. Figure 4.4 shows

an overview of the BRKGA optimization process. Note that this framework

makes a clear distinction between the problem dependent and independent

parts of the process. The problem independent part includes initialization,

selection, recombination and mutation procedures, which are similar among

other optimization problems. The problem dependent part encompasses

the decoding procedure. This procedure is crucial for the algorithm perfor-

mance, since it consumes a large portion of the overall computational time.

In this paper, we propose a procedure to decode a vector of random-keys

into a valid surgery schedule based on lists of available resource time slots.

This procedure is able to generate good schedules both in terms of number
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Figure 4.4: Flowchart of the BRKGA framework

of scheduled surgeries as in terms of average OR utilization rate.

Figure 4.5(a) shows a conceptual view of the decoding procedure. The idea

is to keep track of the resources availability periods. For instance, consider

two ORs (A and B), two surgeons (1 and 2) and a one week planning hori-

zon. In Figure 4.5(a), the highlighted areas denote the available periods of

each resource over the planning horizon. It is worth noting that OR B is

not available on Thursday and Friday, as well as the two surgeons have dis-

tinct available periods. These patterns are directly mapped from the master

surgery schedule, which denotes the ORs assigned to each specialty over the

week, and from the staff roster, which shows staff working shifts. On the

other hand, Figure 4.5(b) shows the same availability periods represented in

terms of data structures. The numbers within the cells represent the start

and end time of each period in minutes. In this case, lists of time periods

(start and end time) represented in minutes from the beginning of the plan-

ning horizon until the end. The decoder works using the chromosome of

random-keys to determine the scheduling sequence and the lists of available

periods to find a time in which both surgeon and OR are free. The following

paragraph describes the procedure in detail.

The following steps are used for decoding a vector of random-keys into a
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(a) Conceptual view of resource available
periods

(b) Lists used to implement the concept of
resource available periods

Figure 4.5: Resource available periods from two different perspectives: con-
ceptual and implementation

valid surgery schedule. The sequence of steps is illustrated in Figure 4.6.

1. Initialize available times - Creates the data structures to support

the procedure. It creates the lists of available periods, as illustrated in

Figure 4.5(b), for each OR and surgeon based on the pre-defined OR

capacity and surgeon availability;

2. Sort patients by random-keys - Sorts the chromosome by ascend-

ing order of the random-key in each gene. The resulting sorted vector

determines the sequence in which patients are evaluated in the next

step, e.g. patients with lower random-keys are evaluated first and

patients with higher are evaluated last;

3. Iterate patients - Evaluates each patient according to the sequence

encoded in the chromosome. If there are no more patients to evaluate,

then the procedure ends.

4. Find surgeon starting time - Searches the list of available periods

of the surgeon responsible for the current surgery and finds the first

period that fits the current surgery duration plus cleaning time. If

an available period is found, goes to step (5) to search for an OR,

otherwise returns to the previous step to evaluate the next patient,

because the current patient will not be scheduled due to a lack of time

of the responsible surgeon;
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5. Check available OR - Iterates through the list of available ORs and

searches for a time period that fits the current surgery duration plus

cleaning time with the surgery starting exactly at the starting time

of the surgeon available period defined in the previous step. If an

available time is found, the procedure goes to step (5.1) to schedule

the surgery, otherwise goes to step (6) to search for an available time

in the future;

5.1. Schedule surgery - Updates the output surgery schedule

with the current surgery, day, shift, OR and starting time;

5.2. Update available time - Updates the list of available

periods of the surgeon responsible for the current patient and the

selected OR. In the surgeon case, the surgery duration plus the

turnover time must be subtracted from the time period in which

the surgery was scheduled, meaning the surgeon is not available

at this time. In the case of the OR, it is the surgery duration

plus the cleaning time, meaning the selected OR is not available

from the beginning of the surgery until the end of the cleaning

time.

6. Find new starting time - Finds the first OR time period that fits

the surgery duration from the current surgeon available time until the

end of the planning horizon and returns to step (4) to find a new

surgeon available time from this point onwards.

The decoding procedure is able to translate every chromosome into a near

feasible solution. The restrictions related to patients’ priority and waiting

time rules as well as surgeons’ workload are not guaranteed. In order to

tackle this issue we calculate all the metrics associated with a schedule and

penalize the violations in the fitness function. Once we have a schedule as

a result of the decoding process we compute the following metrics: number

83



Chapter 4

Figure 4.6: Flowchart of the decoding procedure

of scheduled surgeries, average OR occupancy rate, number of violations

of surgery due date, number of violations of maximum scheduling date,

total deviation from the limit number of working shifts per week. The final

objective function is similar to the one used for the models in this chapter,

only with the additional terms for the waiting list’s violations and surgeon’s

workload. The decoder is not able to guarantee these problem constraints

are respected, therefore, we address them in the objective function. The

surgery’s due date is defined as a function of the patient’s maximum waiting

time (time between the day a patient enters the waiting list and the day

the surgery is performed) according to the Portuguese legislation and the

scheduling date is the maximum time a patient can be in the waiting list

without be scheduled for a surgery (time between the day a patient enters

the waiting list and the day a surgery date is assigned) (Ministério da Saúde,

2011).

4.4.2.2 Local Search and Chromosome Correction

A local search procedure is performed after the decoding procedure to fur-

ther enhance the quality of solutions. It uses the decoder supporting data

structures to find available time periods in the ORs and to try to switch

the surgeries scheduled immediately before and after such available periods
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by unscheduled surgeries with a larger size. For each available time period,

the procedure evaluates all possible movements (changing one surgery for

another), ranks them by the benefit (improvement of the objective function)

they provide and implement the change that improves the objective function

the most. The computational experiments show that these small changes are

effective in enhancing the quality of solutions. They enable the algorithm

to quickly improve the quality of solutions in particular cases, what would

require several generations in the standard evolution process.

After the local search, the chromosome associated with each solution in

the population is corrected to represent the actual order in which surgeries

are scheduled in the solution. Hence, the local search changes will not be

required in the next time the chromosome is evaluated.

4.5 Computational Experiments

4.5.1 Test Instances

Test instances are based on real data provided by a large hospital. There

are 10 different surgical specialties (vascular surgery, oral and maxillofacial

surgery, neurosurgery, ophthalmology, orthopaedics, urology, otorhinolaryn-

gology, general surgery 1, general surgery 2, general surgery 3) and 2 different

sets of 6 instances each for each specialty, summing up 120 instances. These

two sets differ in the total number of available ORs. The first contains in-

stances with the same number of ORs in use at the hospital (regular size

instances) and the second contains twice this number, simulating a larger

size hospital or a capacity expansion at the same hospital (large size in-

stances). Within each set, instances differ by the number of patients and

the length of the planning horizon.

Algorithm 2 illustrates the procedure used for generating the test instances.
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The sets of parameters used in this procedure are the following: SP =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, IS = {regular, large}, H = {1, 2}, CM = {2, 4, 6}.

In this list, SP represents the set of specialty identifiers, IS the set of in-

stance sizes, H the set of planning horizons (in weeks) and CM the set of ca-

pacity multipliers. The capacity multipliers are used for defining the number

of patients in each instance, according to the following steps of Algorithm 2.

First, the procedure starts by iterating through the set of specialties and

getting the time blocks associated with each specialty (a time block denotes

a working shift in an OR). This initial set of time blocks corresponds to a

standard instance (regular size and 1 week planning horizon). Second, the

algorithm iterates through the set of instance types and, in case of large size

instances, duplicates the number of time blocks. Third, it iterates through

the set of planning horizons and, in case of more than one week, generates

new time blocks for the additional weeks. Next, it iterates through the set

of capacity multipliers and multiplies each value by the total capacity of the

current time blocks, setting an auxiliary variable to represent the maximum

value for the sum of surgery durations in this instance. Finally, it iterates

through the set of patients in the waiting list, adding them to the current

instance and subtracting the auxiliary variable. Line 19 shows that when

the value of the auxiliary variable reaches zero, the procedure stops and the

current instance is ready.

Table 4.3 and Table 4.4 show the characteristics of the generated regular

and large size instances, respectively. In both cases the estimated duration

of surgeries is deterministic and based on median values of historical data.

The last two columns show the number of patients in each instance whose

maximum scheduling time or maximum total waiting time were reached or

are within the planning horizon. It is worth mentioning that some of the

instances were duplicated due to the lack of patients in the waiting list of

each specialty and were excluded from the final analysis, resulting in 96
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different instances.

Algorithm 2: Procedure used for generating the testing instances

1 function GenerateInstances(SP ,IS,H,CM)
2 begin
3 for sp ∈ SP do /* for each specialty */

4 SPtb ←− GetT imeBlocks(sp)
5 for is ∈ IS do /* for each set of instance types */

6 if is == large then
7 SPtb ←− DuplicateT imeBlocks(SPtb, is)

8 for h ∈ H do /* for each planning horizon */

9 if h > 1 then
10 SPtb ←− GenerateNewWeeks(SPtb, h)

11 for cm ∈ CM do /* for each capacity multiplier */

12 totalCapacity ←− GetTotalCapacity(SPtb) · cm
13 SPi ←−

GetPatientsSortedByPriorityAndWaitingT ime(sp)
14 for i ∈ SPi do /* for each patient in the waiting

list */

15 if totalCapacity > 0 then
16 AddPatientToInstance(i)
17 totalCapacity ←− totalCapacity − (di + ct)

18 else
19 break

4.5.2 Implementation Details

Both solution methods were coded in C++ and compiled using g++ (GCC)

4.4.7 20120313 (Red Hat 4.4.7-4) with “-O3” and “-fopenmp” compiler op-

tions. The exact models use the IBM ILOG CPLEX Optimization Studio

V12.4 libraries through the Concert Technology. Further, the GA is based on

the application programming interface (API) for the algorithmic framework

of biased random-key genetic algorithms, brkgaAPI, presented by Toso and

Resende (2014). All computation experiments are performed on machines

running Scientific Linux 6 (SL6) distribution and equipped with Intel Xeon

Processor E5-2650 CPUs (2 GHz). The number of parallel threads is limited
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Table 4.3: Regular size instances: problem instances generated based on
real data

Regular Size Instances
Specialty Planning

Hori-
zon

Capacity
Multi-
plier

No.
Pa-

tients

No.
Time

Blocks

No.
Sur-
geons

Avg.
Dura-
tion

Max.
Sched-

ule
Date

Max.
Surgery
Date

Instance
Group

1. Vascular surgery
1.1 1 2 91 9 15 53.74 74 22 1
1.2 1 4 214 9 15 43.52 77 22 1
1.3 1 6 346 9 15 39.22 77 22 3
1.4 2 2 214 18 15 43.52 102 23 1
1.5 2 4 473 18 15 37.79 102 23 3
1.6 2 6 721 18 17 36.95 102 23 3

2. Oral and maxillofacial surgery
2.1 1 2 32 3 11 47.69 1 0 1
2.2 1 4 75 3 12 38.17 1 0 1
2.3 1 6 115 3 13 36.78 1 0 1
2.4 2 2 75 6 12 38.17 2 0 1
2.5 2 4 165 6 14 33.19 2 0 1
2.6 2 6 179 6 14 33.83 2 0 1

3. Neurosurgery
3.1 1 2 96 18 10 118.91 39 20 1
3.2 1 4 179 18 15 124.34 39 20 1
3.3 1 6 268 18 16 123.52 39 20 1
3.4 2 2 179 36 15 124.34 46 24 2
3.5 2 4 286 36 16 122.67 46 24 4

4. Ophthalmology
4.1 1 2 299 24 34 26.59 1 0 3
4.4 2 2 299 48 34 26.59 1 1 4

5. Orthopaedics
5.1 1 2 143 22 27 90.76 134 133 1
5.2 1 4 282 22 29 92.34 273 272 3
5.3 1 6 416 22 33 94.19 407 380 3
5.4 2 2 282 44 29 92.34 274 272 4
5.5 2 4 558 44 33 93.45 487 393 4
5.6 2 6 861 44 35 90.38 487 393 4

6. Urology
6.1 1 2 93 12 20 73.37 43 17 1
6.2 1 4 206 12 20 63.73 43 17 1
6.3 1 6 287 12 21 62.86 43 17 3
6.4 2 2 206 24 20 63.73 50 17 1
6.5 2 4 287 24 21 62.86 50 17 3

7. Otolaryngology
7.1 1 2 87 9 14 56.22 16 1 1
7.2 1 4 170 9 16 57.89 16 1 1
7.3 1 6 253 9 16 58.36 16 1 1
7.4 2 2 170 18 16 57.89 20 2 1
7.5 2 4 335 18 16 58.80 20 2 3
7.6 2 6 448 18 16 58.20 20 2 3

8. General surgery 1
8.1 1 2 59 9 9 91.17 48 46 1
8.2 1 4 140 9 11 77.19 129 127 1
8.3 1 6 204 9 13 77.10 174 136 1
8.4 2 2 140 18 11 77.19 131 127 1
8.5 2 4 275 18 15 75.91 178 141 1
8.6 2 6 329 18 16 77.34 178 141 3

9. General surgery 2
9.1 1 2 65 8 8 70.51 31 17 1
9.2 1 4 129 8 8 69.69 31 17 1
9.3 1 6 192 8 8 70.33 31 17 1
9.4 2 2 129 16 8 69.69 41 21 1
9.5 2 4 214 16 8 69.12 41 21 1

10. General surgery 3
10.1 1 2 64 7 11 66.31 37 19 1
10.2 1 4 123 7 11 63.10 37 19 1
10.3 1 6 163 7 12 63.17 37 19 1
10.4 2 2 123 14 11 63.10 40 24 1
10.5 2 4 163 14 12 63.17 40 24 1
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Table 4.4: Large size instances: problem instances generated based on real
data

Large Size Instances
Specialty Planning

Hori-
zon

Capacity
Multi-
plier

Patients Time
Blocks

No.
Sur-
geons

Avg.
Dura-
tion

Max.
Sched-

ule
Date

Max.
Surgery
Date

Instance
Group

1. Vascular surgery
1.7 1 2 205 18 15 44.03 69 15 1
1.8 1 4 457 18 15 37.67 69 15 3
1.9 1 6 691 18 15 37.18 69 15 3
1.10 2 2 457 36 15 37.67 69 15 4
1.11 2 4 767 36 18 36.84 69 15 4

2. Oral and maxillofacial surgery
2.7 1 2 71 6 12 39.00 1 0 1
2.8 1 4 156 6 14 33.81 1 0 1
2.9 1 6 179 6 14 33.83 1 0 1
2.10 2 2 156 12 14 33.81 1 0 1
2.11 2 4 179 12 14 33.83 1 0 1

3. Neurosurgery
3.7 1 2 178 36 15 121.92 35 17 2
3.8 1 4 286 36 16 122.67 35 17 4
3.10 2 2 286 72 16 122.67 35 17 4

4. Ophthalmology
4.7 1 2 299 48 34 26.59 0 0 4
4.10 2 2 299 96 34 26.59 0 0 4

5. Orthopaedics
5.7 1 2 277 44 29 92.35 268 267 2
5.8 1 4 551 44 33 92.81 453 367 4
5.9 1 6 847 44 35 90.17 453 367 4
5.10 2 2 551 88 33 92.81 453 367 4
5.11 2 4 1153 88 37 87.95 453 367 4
5.12 2 6 1281 88 37 86.59 453 367 4

6. Urology
6.7 1 2 202 24 20 63.69 34 15 1
6.8 1 4 287 24 21 62.86 34 15 3
6.10 2 2 287 48 21 62.86 34 15 4

7. Otolaryngology
7.7 1 2 165 18 16 58.13 13 1 1
7.8 1 4 327 18 16 58.73 13 1 3
7.9 1 6 448 18 16 58.20 13 1 3
7.10 2 2 327 36 16 58.73 13 1 4
7.11 2 4 448 36 16 58.20 13 1 4

8. General surgery 1
8.7 1 2 138 18 11 73.86 126 125 1
8.8 1 4 268 18 15 76.41 168 130 1
8.9 1 6 329 18 16 77.34 168 130 3
8.10 2 2 268 36 15 76.41 168 130 2
8.11 2 4 329 36 16 77.34 168 130 4

9. General surgery 2
9.7 1 2 126 16 8 70.01 30 13 1
9.8 1 4 214 16 8 69.12 30 13 1
9.10 2 2 214 32 8 69.12 30 13 2

10. General surgery 3
10.7 1 2 120 14 11 63.32 32 17 1
10.8 1 4 163 14 12 63.17 32 17 1
10.10 2 2 163 28 12 63.17 32 17 2
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to 8 and the amount of RAM is limited to 16 GB. This configuration was

chosen to represent a standard server available in a hospital by the end of

2014. Additional computational experiments showed that the MIP benefits

from more memory. For instance, comparing the MIP limited to 8GB of

RAM with the MIP limited to 16GB of RAM, the latter obtained better

results in 38% of the instances, with a relative change of 3.9%.

4.5.3 Configuration of Parameters

4.5.3.1 General Parameters

The time limit of each computational experiment is 1 hour. The GA restarts

at most 30 times and each evolution runs for 2 min. In addition, the exact

models may also stop before the time limit if an optimal solution is found

or the memory size limit is reached. Through all the computational exper-

iments the cleaning time is set to 17 min and the surgeon turnover time is

set to 0 min. Also, the availability of operating rooms respects the hospital

master surgery schedule and surgeons are available at any time. In the dis-

crete model, the time within each shift is discretized in intervals of 15 min,

which is the most used value according to the literature review presented in

Section 4.2. Finally, the constraints concerning patients priority and wait-

ing time rules as well as surgeons workload are disabled. This configuration

makes the problem harder to solve as it expands the feasible region, helping

to evidence the differences among the alternative solution methods.

4.5.3.2 Genetic Algorithm Parameters

The BRKGA parameters were defined based on previous studies with the

algorithm and on extensive sensitivity analysis. First, sets of values for each

parameter were defined based on the recommended values found in previous

studies, such as Gonçalves et al. (2014b), Gonçalves et al. (2014a), Toso
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Table 4.5: Ranges of each tested GA parameter

Parameter Tested Sets

Population Size Multiplier 10, 20, 30, 40

Percentage of Elite Population 0.1, 0.15, 0.2, 0.25

Percentage of Mutants 0.15, 0.2, 0.25, 0.3

Probability of Crossover 0.7, 0.75, 0.8, 0.85

No. of Independent Populations 1, 2

No. of Generations until Exchange Best Individuals 50, 100

No. of Generations without improving until Restart 100, 200

Table 4.6: Characteristics of instance groups and best combination of values

Instance
Group

Percentage
of Instances

No. of
Patients

No. of Time
Blocks

Best Combination of Parameter Values

1 46% ≤ 283 ≤ 27 10, 0.25, 0.15, 0.7, 1, 100, 100

2 9% ≤ 283 > 27 20, 0.1, 0.3, 0.8, 2, 50, 200

3 17% > 283 ≤ 27 40 ,0.15, 0.15, 0.85, 1, 100, 200

4 28% > 283 > 27 10, 0.2, 0.2, 0.85, 2, 100, 200

and Resende (2014) and Gonçalves and Resende (2013). Table 4.5 shows

the pre-defined values for each parameter. Second, every combination of

these values was tested on four pilot instances. These instances represent

four different groups, based on the number of patients and the number

of time blocks. The criteria used for distinguishing the groups were the

average number of patients and the average number of time blocks. Table 4.6

shows the characteristics of these four different instance groups alongside

with the best combination of parameter values for each group of instances.

The last column lists the parameter values in the order they appear in

Table 4.5. The best configuration for each instance size was the one that,

among all combinations, minimized the objective function value and the

running time. It is worth noting that the population size is defined as a

multiple of the total number of patients. This approach showed good results

in the aforementioned studies enabling the algorithm to adjust according to

the instance size. The GA computation time can be adjusted using the

number of restarts parameter. In the computational tests, the parameter 30

produced the best results.
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4.5.4 Experimental Results

4.5.4.1 Continuous MIP model vs. Discrete IP model

Table 4.7 compares the performance of the proposed MIP model using a

continuous representation of time with an IP model using a discrete repre-

sentation using instances with regular size. The discrete model was able to

find an optimal solution for 56% of the instances with an average gap of 0.5%

compared to 12% of optimal solutions and 4.5% average gap obtained by

the continuous model. However, analysing the quality of solutions, results

show that the continuous model produces solutions with a lower objective

function value (better) for all the cases. On average, the objective func-

tion values of solutions found by the continuous model are 53% lower than

the ones found by the discrete model. The last column of Table 4.7 shows

the relative change obtained by dividing the difference between the objec-

tive function values of the continuous model and the discrete model by the

objective function values of the discrete model, used as reference. Even op-

timal solutions of the discrete model are inferior in quality compared to the

solutions found by the continuous model, showing that in fact the discrete

model is just an approximation of the real problem. It is worth nothing

that the quality of solutions increases with the number of patients in each

instance. This was expected because the optimization procedures have more

options to find better solutions.

Table 4.8 also compares models with discrete and continuous representations

of time but using larger instances with twice the capacity of those in Table

4.8. In these instances the discrete model found an optimal solution in 35%

of the cases, with an average gap of 1.8%. In comparison, the continuous

model found an optimal solution in 5% of the cases, with an average gap of

11%. This average gap is higher than the 4.5% obtained using regular size

instances. Also, the continuous model failed to obtain a feasible solution
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within the established time limit for 3 instances of Orthopaedics (#5.10,

#5.11, #5.12). For these instances the continuous model requires more than

16GB of RAM to find a feasible solution in 1 hour. However, for the other

instances, on average, the objective function values of the continuous model

are 61% lower than the ones of the discrete model. It means that, compared

to the IP model using a discrete representation of time, the proposed MIP

model using a continuous representation of time is able to find much better

solutions even for large instances.
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Table 4.7: Regular Instances: Comparison of mathematical models using discrete and con-
tinuous representation of time - Best solutions considering the No. of Scheduled Surgeries
and Average OR Occupancy Rate

Regular Size Instances

IP Model - discrete time representation MIP Model - continuous time representation

Instance Objective
Func-
tion

Value

No. of
Sched-
uled

Surgeries

Avg. OR
Occu-
pancy

Rate (%)

Status Gap
(%)

Running
Time
(s)

Objective
Func-
tion

Value

No. of
Sched-
uled

Surgeries

Avg. OR
Occu-
pancy

Rate (%)

Status Gap
(%)

Running
Time
(s)

Continuous
better
than

discrete?

Relative
Change

(%)

1. Vascular surgery

1.1 0.38814 35 64.0 Feasible 0.4 MAX 0.19077 61 64.6 Feasible 3.6 MAX Yes -50.8

1.2 0.38533 35 64.5 Feasible 0.4 MAX 0.16672 65 63.5 Feasible 6.7 2528 Yes -56.7

1.3 0.38304 35 64.9 Feasible 0.3 MAX 0.16443 65 63.9 Feasible 5.4 MAX Yes -57.1

1.4 0.38290 57 69.7 Optimal 0.0 258 0.15572 126 63.4 Feasible 4.4 MAX Yes -59.3

1.5 0.38107 57 70.0 Optimal 0.0 301 0.15435 126 63.7 Feasible 13.6 1387 Yes -59.5

1.6 0.37537 57 71.0 Optimal 0.0 3264 0.15279 126 63.9 Feasible 12.8 1571 Yes -59.3

2. Oral and maxillofacial surgery

2.1 0.52517 11 61.0 Optimal 0.0 0 0.33127 22 61.9 Optimal 0.0 1 Yes -36.9

2.2 0.51288 13 56.3 Optimal 0.0 0 0.30268 25 57.0 Optimal 0.0 6 Yes -41.0

2.3 0.51216 14 52.7 Optimal 0.0 0 0.28425 27 53.5 Optimal 0.0 2 Yes -44.5

2.4 0.47219 22 61.9 Optimal 0.0 0 0.24813 49 57.9 Optimal 0.0 58 Yes -47.5

2.5 0.46177 26 57.0 Optimal 0.0 5 0.22513 54 53.6 Feasible 2.0 2559 Yes -51.2

2.6 0.46070 26 57.2 Optimal 0.0 19 0.22513 54 53.6 Feasible 1.8 1791 Yes -51.1

3. Neurosurgery

3.1 0.29099 45 72.3 Feasible 1.4 MAX 0.13730 58 83.5 Feasible 6.5 1805 Yes -52.8

3.2 0.24645 52 71.0 Feasible 1.4 MAX 0.10848 63 81.9 Feasible 11.6 1340 Yes -56.0

3.3 0.23277 55 69.4 Optimal 0.0 889 0.09471 65 81.8 Feasible 9.8 1399 Yes -59.3

3.4 0.25809 88 73.2 Feasible 2.9 MAX 0.09775 114 83.7 Feasible 11.8 MAX Yes -62.1

3.5 0.23524 93 73.7 Feasible 5.1 MAX 0.07831 120 82.8 Feasible 18.6 MAX Yes -66.7

4. Ophthalmology

4.1 0.30701 126 51.9 Optimal 0.0 383 0.07795 206 57.5 Feasible 11.4 MAX Yes -74.6

4.4 0.10772 262 43.5 Feasible 4.3 MAX 0.00000 299 47.8 Optimal 0.0 551 Yes -100.0

5. Orthopaedics

5.1 0.43150 69 69.3 Optimal 0.0 148 0.31872 89 79.5 Feasible 1.5 MAX Yes -26.1

5.2 0.42051 87 61.3 Optimal 0.0 184 0.26792 117 73.5 Feasible 1.0 MAX Yes -36.3

5.3 0.41547 89 61.2 Optimal 0.0 387 0.24855 128 71.1 Feasible 1.1 MAX Yes -40.2

5.4 0.40204 145 67.8 Feasible 0.0 MAX 0.29367 177 78.3 Feasible 5.3 MAX Yes -27.0

5.5 0.39059 177 60.3 Optimal 0.0 2185 0.25298 221 72.7 Feasible 9.8 MAX Yes -35.2

5.6 0.37826 195 57.2 Feasible 0.3 MAX 0.22763 261 65.4 Feasible 18.4 MAX Yes -39.8

6. Urology

6.1 0.40588 47 61.6 Optimal 0.0 8 0.25025 64 72.7 Feasible 2.0 1393 Yes -38.3

6.2 0.37313 62 51.7 Optimal 0.0 25 0.18908 81 66.0 Feasible 2.8 MAX Yes -49.3

6.3 0.36107 65 50.7 Feasible 0.2 MAX 0.16863 87 63.4 Feasible 0.7 2461 Yes -53.3

Continued on next page
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Table 4.7 – Continued from previous page

Regular Size Instances

IP Model - discrete time representation MIP Model - continuous time representation

Instance Objective
Func-
tion

Value

No. of
Sched-
uled

Surgeries

Avg. OR
Occu-
pancy

Rate (%)

Status Gap
(%)

Running
Time
(s)

Objective
Func-
tion

Value

No. of
Sched-
uled

Surgeries

Avg. OR
Occu-
pancy

Rate (%)

Status Gap
(%)

Running
Time
(s)

Continuous
better
than

discrete?

Relative
Change

(%)

6.4 0.33289 109 55.6 Feasible 0.0 MAX 0.14872 140 70.4 Feasible 1.7 MAX Yes -55.3

6.5 0.31485 117 54.2 Feasible 0.0 MAX 0.12318 152 68.0 Feasible 3.2 MAX Yes -60.9

7. Otolaryngology

7.1 0.39939 33 65.0 Feasible 0.0 MAX 0.25039 47 73.9 Feasible 2.1 705 Yes -37.3

7.2 0.39892 32 66.3 Optimal 0.0 105 0.23113 52 71.1 Feasible 1.1 846 Yes -42.1

7.3 0.39837 32 66.4 Optimal 0.0 1965 0.20610 58 68.1 Feasible 1.9 731 Yes -48.3

7.4 0.33700 72 61.0 Optimal 0.0 4 0.17629 91 74.7 Feasible 5.4 1233 Yes -47.7

7.5 0.33672 72 61.1 Optimal 0.0 9 0.13880 105 71.0 Feasible 2.1 769 Yes -58.8

7.6 0.33510 72 61.3 Optimal 0.0 22 0.10984 116 68.0 Feasible 3.9 MAX Yes -67.2

8. General surgery 1

8.1 0.44153 27 68.8 Optimal 0.0 34 0.29224 42 76.4 Feasible 1.2 1552 Yes -33.8

8.2 0.41806 35 62.2 Optimal 0.0 13 0.20228 62 66.0 Feasible 0.5 MAX Yes -51.6

8.3 0.40811 36 62.7 Feasible 0.0 MAX 0.18951 65 64.3 Feasible 1.4 2103 Yes -53.6

8.4 0.42140 75 55.1 Feasible 0.0 MAX 0.23319 100 72.5 Feasible 0.5 814 Yes -44.7

8.5 0.39923 70 63.0 Optimal 0.0 533 0.17410 124 66.1 Feasible 1.1 1294 Yes -56.4

8.6 0.39288 73 62.0 Optimal 0.0 103 0.16420 128 65.0 Feasible 1.4 1394 Yes -58.2

9. General surgery 2

9.1 0.37361 27 67.1 Feasible 0.2 MAX 0.19961 40 75.1 Feasible 0.9 2312 Yes -46.6

9.2 0.34518 32 62.8 Optimal 0.0 2 0.17277 44 72.4 Feasible 0.7 857 Yes -49.9

9.3 0.33784 33 62.3 Optimal 0.0 8 0.17162 44 72.6 Feasible 6.7 1465 Yes -49.2

9.4 0.31254 55 67.1 Feasible 0.0 MAX 0.13241 79 75.3 Feasible 3.7 954 Yes -57.6

9.5 0.28666 66 60.9 Feasible 0.0 MAX 0.09825 88 72.5 Feasible 5.9 1076 Yes -65.7

10. General surgery 3

10.1 0.32482 27 59.3 Optimal 0.0 392 0.15395 33 76.1 Feasible 5.1 2707 Yes -52.6

10.2 0.29064 30 58.7 Feasible 0.3 MAX 0.11723 37 73.8 Optimal 0.0 43 Yes -59.7

10.3 0.28811 31 57.0 Feasible 0.2 MAX 0.10030 39 72.4 Feasible 1.5 MAX Yes -65.2

10.4 0.25573 54 60.1 Feasible 0.2 MAX 0.07230 66 76.4 Feasible 12.0 849 Yes -71.7

10.5 0.23182 57 60.6 Feasible 0.2 MAX 0.05246 70 75.1 Feasible 5.0 2984 Yes -77.4
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Table 4.8: Large Instances: Comparison of mathematical models using discrete and con-
tinuous representation of time - Best solutions considering the No. of Scheduled Surgeries
and Average OR Occupancy Rate

Large Size Instances

IP Model - discrete time representation MIP Model - continuous time representation

Instance Objective
Func-
tion

Value

No. of
Sched-
uled

Surgeries

Avg. OR
Occu-
pancy

Rate (%)

Status Gap
(%)

Running
Time
(s)

Objective
Func-
tion

Value

No. of
Sched-
uled

Surgeries

Avg. OR
Occu-
pancy

Rate (%)

Status Gap
(%)

Running
Time
(s)

Continuous
better
than

discrete?

Relative
Change

(%)

1. Vascular surgery

1.7 0.38290 57 69.7 Optimal 0.0 51 0.15572 126 63.4 Feasible 5.2 MAX Yes -59.3

1.8 0.38107 57 70.0 Optimal 0.0 3521 0.15279 126 63.9 Feasible 12.7 2072 Yes -59.9

1.9 0.37537 57 71.0 Feasible 0.0 MAX 0.15435 126 63.7 Feasible 13.6 1068 Yes -58.9

1.10 0.36373 138 56.1 Feasible 1.7 MAX 0.12122 241 62.7 Feasible 30.9 MAX Yes -66.7

1.11 0.34830 126 62.0 Feasible 0.3 MAX 0.10740 244 63.9 Feasible 29.0 MAX Yes -69.2

2. Oral and maxillofacial surgery

2.7 0.47219 22 61.9 Optimal 0.0 0 0.24813 49 57.9 Feasible 0.1 MAX Yes -47.5

2.8 0.46177 26 57.0 Optimal 0.0 7 0.22513 54 53.6 Feasible 1.8 MAX Yes -51.2

2.9 0.46070 26 57.2 Optimal 0.0 9 0.22513 54 53.6 Feasible 1.9 2141 Yes -51.1

2.10 0.41248 44 61.7 Feasible 0.2 MAX 0.17225 104 55.3 Feasible 0.4 MAX Yes -58.2

2.11 0.41154 44 61.9 Optimal 0.0 23 0.16837 106 54.4 Feasible 1.4 MAX Yes -59.1

3. Neurosurgery

3.7 0.26299 86 73.8 Feasible 5.1 MAX 0.10144 113 83.7 Feasible 15.0 MAX Yes -61.4

3.8 0.23953 92 73.6 Feasible 7.1 MAX 0.08393 118 83.2 Feasible 24.1 MAX Yes -65.0

3.10 0.24075 163 71.3 Feasible 3.0 MAX 0.10989 202 79.1 Feasible 67.7 MAX Yes -54.4

4. Ophthalmology

4.7 0.10472 263 43.6 Feasible 1.5 MAX 0.00000 299 47.8 Optimal 0.0 259 Yes -100.0

4.10 0.00000 299 23.9 Optimal 0.0 83 0.00000 299 23.9 Optimal 0.0 204 No -100.0

5. Orthopaedics

5.7 0.40208 145 67.7 Feasible 0.0 MAX 0.30693 174 76.7 Feasible 9.4 MAX Yes -23.7

5.8 0.39290 177 59.8 Feasible 0.6 MAX 0.24725 222 73.4 Feasible 7.7 MAX Yes -37.1

5.9 0.37768 196 57.0 Feasible 0.2 MAX 0.20615 262 69.1 Feasible 9.9 MAX Yes -45.4

5.10 0.40409 227 68.1 Feasible 14.8 MAX 0.28901 323 71.9 Feasible 27.4 MAX Yes -28.5

5.11 0.40409 227 68.1 Feasible 21.7 MAX 1.00000 nfs nfs nfs nfs MAX No 147.5

5.12 0.40409 227 68.1 Feasible 23.2 3547 1.00000 nfs nfs nfs nfs MAX No 147.5

6. Urology

6.7 0.33289 109 55.6 Feasible 0.0 MAX 0.15253 139 70.3 Feasible 4.1 MAX Yes -54.2

6.8 0.31485 117 54.2 Feasible 0.0 MAX 0.12318 152 68.0 Feasible 3.2 MAX Yes -60.9

6.10 0.24980 201 57.5 Feasible 1.6 MAX 0.09049 237 72.0 Feasible 34.0 MAX Yes -63.8

7. Otolaryngology

7.7 0.33700 72 61.0 Optimal 0.0 5 0.17809 91 74.4 Feasible 6.4 851 Yes -47.2

7.8 0.33672 72 61.1 Optimal 0.0 12 0.14022 105 70.7 Feasible 3.1 1299 Yes -58.4

7.9 0.33510 72 61.3 Optimal 0.0 22 0.10908 116 68.1 Feasible 3.3 MAX Yes -67.4

Continued on next page
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Table 4.8 – Continued from previous page

Large Size Instances

IP Model - discrete time representation MIP Model - continuous time representation

Instance Objective
Func-
tion

Value

No. of
Sched-
uled

Surgeries

Avg. OR
Occu-
pancy

Rate (%)

Status Gap
(%)

Running
Time
(s)

Objective
Func-
tion

Value

No. of
Sched-
uled

Surgeries

Avg. OR
Occu-
pancy

Rate (%)

Status Gap
(%)

Running
Time
(s)

Continuous
better
than

discrete?

Relative
Change

(%)

7.10 0.27136 150 58.8 Feasible 0.0 MAX 0.08965 186 74.0 Feasible 8.6 MAX Yes -67.0

7.11 0.26852 157 56.4 Feasible 0.0 MAX 0.07446 196 72.4 Feasible 15.7 MAX Yes -72.3

8. General surgery 1

8.7 0.42140 75 55.1 Feasible 0.0 MAX 0.23445 100 72.3 Feasible 1.0 1554 Yes -44.4

8.8 0.39923 70 63.0 Optimal 0.0 132 0.17535 124 65.8 Feasible 1.8 1953 Yes -56.1

8.9 0.39288 73 62.0 Optimal 0.0 247 0.16412 128 65.0 Feasible 1.4 1869 Yes -58.2

8.10 0.34611 152 54.6 Feasible 0.0 MAX 0.14376 195 73.2 Feasible 2.4 MAX Yes -58.5

8.11 0.33959 156 54.1 Optimal 0.0 3524 0.11882 211 70.9 Feasible 2.8 MAX Yes -65.0

9. General surgery 2

9.7 0.31254 55 67.1 Feasible 0.1 MAX 0.13241 79 75.3 Feasible 3.7 778 Yes -57.6

9.8 0.28666 66 60.9 Feasible 0.0 MAX 0.09856 88 72.5 Feasible 6.2 861 Yes -65.6

9.10 0.25254 115 64.3 Optimal 0.0 2475 0.06204 153 75.9 Feasible 8.1 1050 Yes -75.4

10. General surgery 3

10.7 0.25573 54 60.1 Feasible 0.1 MAX 0.07268 66 76.4 Feasible 12.5 1125 Yes -71.6

10.8 0.23182 57 60.6 Feasible 0.1 MAX 0.05799 69 75.3 Feasible 14.1 1165 Yes -75.0

10.10 0.23188 101 61.5 Feasible 1.3 MAX 0.03823 127 76.7 Feasible 32.6 3168 Yes -83.5

nfs = no feasible solution until the time limit
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4.5.4.2 Continuous MIP model vs. BRKGA heuristic

Table 4.9 compares the results of the MIP model using a continuous repre-

sentation of time with the results obtained using the BRKGA presented in

Section 4.4.2 for the regular size instances. The continuous model’s results

are repeated in this table to make the comparison easier. The GA found

a solution with lower objective function value under the specified stopping

criteria in 62% of the instances with 29% of the continuous MIP model.

However, the differences in quality of solutions between the two proposed

approaches are very small. In the instances in which the GA is better, the

relative improvement was only 1.1% against 2.6% for the instances in which

the continuous model was better. The GA has a better performance on

instances that require more memory, such as Orthopaedics #5.6. On the

other hand, the highest difference in favour of the exact model is in instances

Neurosurgery #3.5 and General surgery 3 #9.5. These instances are char-

acterized by a high number of parallel ORs, showing that the exact model

deals with this issue better than the BRKGA. The BRKGA decoder is able

to prevent overlaps but may leave some idle time between the surgeries,

what is difficult to improve only through crossover and mutation. A local

search procedure is required to eliminate the idle time.

The GA computation time can be adjusted using the number of restarts

parameter. In the computational tests, a value of 30 was used for the number

of restarts for producing the best results under the specified time limit.

The last column in Table 4.9 shows that many times the algorithm did not

improve after the first restarts. In this situation one can reduce the number

of restarts and save computational time.

Table 4.10 compares the proposed continuous model with the proposed

BRKGA heuristic using large size instances. In this instance set, each ap-

proach found 45% of solutions with lower objective function values. How-
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ever, among the solutions in which the GA obtained a better value, the

average improvement was 13% compared to 6% of the exact model. The

heuristic obtained better values in instances that the model requires more

memory, such as the largest instances of Orthopaedics in which the model

did not obtain any feasible solution. In its turn, the GA lost more compar-

isons among medium size instances, like the ones of General Surgery. These

instances are characterized by a relative low number of surgeons and large

surgery durations, which increases the chance of occurring overlaps. In this

case, the GA would benefit from a local search procedure to make small

improvements in the quality of solutions that are difficult to promote with

the GA alone.
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Table 4.9: Regular instances: MIP Model vs. GA Heuristic - Best solutions considering
No. of Scheduled Surgeries and Average OR Occupancy Rate

Regular Size Instances
MIP Model - continuous time Genetic Algorithm Comparison

Instance Objective
Func-
tion

Value

No. of
Sched-
uled

Patients

Avg. OR
Occu-
pancy

Rate (%)

Running
Time
(s)

Objective
Func-
tion

Value

No. of
Sched-
uled

Patients

Avg. OR
Occu-
pancy

Rate (%)

No. of
Restarts

No. of
Im-

prove-
ments

Last
Improve-

ment

Running
Time
(s)

GA better
than or
equal to
MIP?

Relative
Change

(%)

1. Vascular surgery
1.1 0.19077 61 64.6 MAX 0.19042 61 64.6 12 1 3 MAX Yes -0.2
1.2 0.16672 65 63.5 2528 0.16637 65 63.5 12 1 3 MAX Yes -0.2
1.3 0.16443 65 63.9 MAX 0.16421 65 63.9 12 1 3 MAX Yes -0.1
1.4 0.15572 126 63.4 MAX 0.15710 126 63.1 12 1 3 MAX No 0.9
1.5 0.15435 126 63.7 1387 0.15591 126 63.3 12 1 3 MAX No 1.0
1.6 0.15279 126 63.9 1571 0.15435 126 63.6 12 2 11 MAX No 1.0

2. Oral and maxillofacial surgery
2.1 0.33127 22 61.9 1 0.33111 22 61.9 12 1 3 MAX Yes 0.0
2.2 0.30268 25 57.0 6 0.30262 25 57.0 12 1 3 MAX Yes 0.0
2.3 0.28425 27 53.5 2 0.28419 27 53.5 12 1 3 MAX Yes 0.0
2.4 0.24813 49 57.9 58 0.24810 49 57.9 12 1 3 MAX Yes 0.0
2.5 0.22513 54 53.6 2559 0.22513 54 53.6 12 1 3 MAX Yes 0.0
2.6 0.22513 54 53.6 1791 0.22513 54 53.6 12 1 3 MAX Yes 0.0

3. Neurosurgery
3.1 0.13730 58 83.5 1805 0.13760 58 83.4 12 3 7 MAX No 0.2
3.2 0.10848 63 81.9 1340 0.11417 62 82.2 12 3 7 MAX No 5.2
3.3 0.09471 65 81.8 1399 0.10046 64 82.1 12 3 12 MAX No 6.1
3.4 0.09775 114 83.7 MAX 0.09570 115 83.3 12 4 6 MAX Yes -2.1
3.5 0.07831 120 82.8 MAX 0.08464 118 83.1 12 3 12 MAX No 8.1

4. Ophthalmology
4.1 0.07795 206 57.5 MAX 0.07781 210 56.3 12 2 4 MAX Yes -0.2
4.4 0.00000 299 47.8 551 0.00000 299 47.8 12 1 3 MAX Yes 0.0

5. Orthopaedics
5.1 0.31872 89 79.5 MAX 0.32105 89 79.0 12 3 10 MAX No 0.7
5.2 0.26792 117 73.5 MAX 0.27023 117 73.1 12 2 9 MAX No 0.9
5.3 0.24855 128 71.1 MAX 0.24996 128 70.8 12 3 8 MAX No 0.6
5.4 0.29367 177 78.3 MAX 0.29913 177 77.3 12 1 3 MAX No 1.9
5.5 0.25298 221 72.7 MAX 0.24983 225 72.0 12 3 9 MAX Yes -1.2
5.6 0.22763 261 65.4 MAX 0.20960 267 66.9 12 3 11 MAX Yes -7.9

6. Urology
6.1 0.25025 64 72.7 1393 0.24798 64 73.1 12 2 8 MAX Yes -0.9
6.2 0.18908 81 66.0 MAX 0.18574 82 65.6 12 1 3 MAX Yes -1.8
6.3 0.16863 87 63.4 2461 0.16837 87 63.5 12 1 3 MAX Yes -0.2
6.4 0.14872 140 70.4 MAX 0.15258 139 70.3 12 1 3 MAX No 2.6
6.5 0.12318 152 68.0 MAX 0.12251 153 67.6 12 4 7 MAX Yes -0.5

7. Otolaryngology
7.1 0.25039 47 73.9 705 0.24946 47 74.1 12 3 7 MAX Yes -0.4
7.2 0.23113 52 71.1 846 0.23032 52 71.2 12 3 9 MAX Yes -0.4
7.3 0.20610 58 68.1 731 0.20608 58 68.1 12 2 4 MAX Yes 0.0

Continued on next page
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Table 4.9 – Continued from previous page
Regular Size Instances

MIP Model - continuous time Genetic Algorithm Comparison
Instance Objective

Func-
tion

Value

No. of
Sched-
uled

Patients

Avg. OR
Occu-
pancy

Rate (%)

Running
Time
(s)

Objective
Func-
tion

Value

No. of
Sched-
uled

Patients

Avg. OR
Occu-
pancy

Rate (%)

No. of
Restarts

No. of
Im-

prove-
ments

Last
Improve-

ment

Running
Time
(s)

GA better
than or
equal to

MIP?

Relative
Change

(%)

7.4 0.17629 91 74.7 1233 0.17605 91 74.7 12 2 7 MAX Yes -0.1
7.5 0.13880 105 71.0 769 0.13830 105 71.1 12 3 10 MAX Yes -0.4
7.6 0.10984 116 68.0 MAX 0.10718 117 67.7 12 3 12 MAX Yes -2.4

8. General surgery 1
8.1 0.29224 42 76.4 1552 0.28979 42 76.9 12 1 3 MAX Yes -0.8
8.2 0.20228 62 66.0 MAX 0.20188 62 66.1 12 2 4 MAX Yes -0.2
8.3 0.18951 65 64.3 2103 0.19267 64 65.1 12 2 5 MAX No 1.7
8.4 0.23319 100 72.5 814 0.23241 100 72.7 12 4 11 MAX Yes -0.3
8.5 0.17410 124 66.1 1294 0.17440 124 66.0 12 3 10 MAX No 0.2
8.6 0.16420 128 65.0 1394 0.16434 128 65.0 12 6 12 MAX No 0.1

9. General surgery 2
9.1 0.19961 40 75.1 2312 0.19977 40 75.0 12 3 6 MAX No 0.1
9.2 0.17277 44 72.4 857 0.17911 43 73.1 12 3 12 MAX No 3.7
9.3 0.17162 44 72.6 1465 0.17162 44 72.6 12 2 11 MAX Yes 0.0
9.4 0.13241 79 75.3 954 0.13249 79 75.3 12 1 3 MAX No 0.1
9.5 0.09825 88 72.5 1076 0.09525 89 72.1 12 1 3 MAX Yes -3.0

10. General surgery 3
10.1 0.15395 33 76.1 2707 0.15374 33 76.1 12 1 3 MAX Yes -0.1
10.2 0.11723 37 73.8 43 0.11744 37 73.8 12 2 5 MAX No 0.2
10.3 0.10030 39 72.4 MAX 0.10897 38 73.0 12 1 3 MAX No 8.6
10.4 0.07230 66 76.4 849 0.06981 67 75.7 12 3 12 MAX Yes -3.4
10.5 0.05246 70 75.1 2984 0.05768 69 75.4 12 1 3 MAX No 9.9
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Table 4.10: Large instances: MIP Model vs. GA Heuristic - Best solutions considering No.
of Scheduled Surgeries and Average OR Occupancy Rate

Large Size Instances

MIP Model - continuous time Genetic Algorithm Comparison

Instance Objective
Func-
tion

Value

No. of
Sched-
uled

Patients

Avg. OR
Occu-
pancy

Rate (%)

Running
Time
(s)

Objective
Func-
tion

Value

No. of
Sched-
uled

Patients

Avg. OR
Occu-
pancy

Rate (%)

No. of
Restarts

No. of
Im-

prove-
ments

Last
Improve-

ment

Running
Time
(s)

GA better
than or
equal to
MIP?

Relative
Change

(%)

1. Vascular surgery

1.7 0.15572 126 63.4 MAX 0.15710 126 63.1 12 4 7 MAX No 0.9

1.8 0.15279 126 63.9 2072 0.15591 126 63.3 12 1 3 MAX No 2.0

1.9 0.15435 126 63.7 1068 0.15591 126 63.3 12 1 3 MAX No 1.0

1.10 0.12122 241 62.7 MAX 0.11734 243 62.6 12 3 10 MAX Yes -3.2

1.11 0.10740 244 63.9 MAX 0.12169 241 62.6 12 3 10 MAX No 13.3

2. Oral and maxillofacial surgery

2.7 0.24813 49 57.9 MAX 0.24810 49 57.9 12 1 3 MAX Yes 0.0

2.8 0.22513 54 53.6 MAX 0.22513 54 53.6 12 1 3 MAX No 0.0

2.9 0.22513 54 53.6 2141 0.22513 54 53.6 12 1 3 MAX No 0.0

2.10 0.17225 104 55.3 MAX 0.17208 104 55.3 12 2 6 MAX Yes -0.1

2.11 0.16837 106 54.4 MAX 0.16866 106 54.3 12 3 7 MAX No 0.2

3. Neurosurgery

3.7 0.10144 113 83.7 MAX 0.10352 114 82.5 12 3 5 MAX No 2.0

3.8 0.08393 118 83.2 MAX 0.08709 118 82.6 12 4 7 MAX No 3.8

3.10 0.10989 202 79.1 MAX 0.08713 209 80.3 12 2 4 MAX Yes -20.7

4. Ophthalmology

4.7 0.00000 299 47.8 259 0.00000 299 47.8 12 1 3 MAX No 0.0

4.10 0.00000 299 23.9 204 0.00000 299 23.9 12 1 3 MAX No 0.0

5. Orthopaedics

5.7 0.30693 174 76.7 MAX 0.30394 177 76.3 12 3 6 MAX Yes -1.0

5.8 0.24725 222 73.4 MAX 0.25842 223 71.0 12 3 8 MAX No 4.5

5.9 0.20615 262 69.1 MAX 0.21954 263 66.2 12 2 4 MAX No 6.5

5.10 0.28901 323 71.9 MAX 0.24426 345 76.1 12 2 9 MAX Yes -15.5

5.11 1.00000 nfs nfs MAX 0.16479 467 68.8 12 4 6 MAX Yes -83.5

5.12 1.00000 nfs nfs MAX 0.14881 488 68.0 12 2 6 MAX Yes -85.1

6. Urology

6.7 0.15253 139 70.3 MAX 0.15302 139 70.2 12 3 10 MAX No 0.3

6.8 0.12318 152 68.0 MAX 0.12565 152 67.6 12 4 11 MAX No 2.0

6.10 0.09049 237 72.0 MAX 0.08705 240 71.5 12 3 10 MAX Yes -3.8

7. Otolaryngology

7.7 0.17809 91 74.4 851 0.17634 91 74.7 12 2 6 MAX Yes -1.0

7.8 0.14022 105 70.7 1299 0.13894 105 70.9 12 2 4 MAX Yes -0.9

7.9 0.10908 116 68.1 MAX 0.11038 116 67.9 12 3 9 MAX No 1.2

Continued on next page
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Table 4.10 – Continued from previous page

Large Size Instances

MIP Model - continuous time Genetic Algorithm Comparison

Instance Objective
Func-
tion

Value

No. of
Sched-
uled

Patients

Avg. OR
Occu-
pancy

Rate (%)

Running
Time
(s)

Objective
Func-
tion

Value

No. of
Sched-
uled

Patients

Avg. OR
Occu-
pancy

Rate (%)

No. of
Restarts

No. of
Im-

prove-
ments

Last
Improve-

ment

Running
Time
(s)

GA better
than or
equal to

MIP?

Relative
Change

(%)

7.10 0.08965 186 74.0 MAX 0.10113 185 72.5 12 3 5 MAX No 12.8

7.11 0.07446 196 72.4 MAX 0.07438 198 71.6 12 4 10 MAX Yes -0.1

8. General surgery 1

8.7 0.23445 100 72.3 1554 0.23539 100 72.1 12 3 8 MAX No 0.4

8.8 0.17535 124 65.8 1953 0.17901 123 65.8 12 4 8 MAX No 2.1

8.9 0.16412 128 65.0 1869 0.16976 127 64.6 12 4 11 MAX No 3.4

8.10 0.14376 195 73.2 MAX 0.16538 192 70.5 12 7 12 MAX No 15.0

8.11 0.11882 211 70.9 MAX 0.14216 207 68.3 12 5 12 MAX No 19.6

9. General surgery 2

9.7 0.13241 79 75.3 778 0.13327 79 75.2 12 4 9 MAX No 0.7

9.8 0.09856 88 72.5 861 0.10011 88 72.2 12 2 11 MAX No 1.6

9.10 0.06204 153 75.9 1050 0.06893 152 75.2 12 6 11 MAX No 11.1

10. General surgery 3

10.7 0.07268 66 76.4 1125 0.07082 67 75.5 12 3 7 MAX Yes -2.6

10.8 0.05799 69 75.3 1165 0.05901 69 75.1 12 2 9 MAX No 1.8

10.10 0.03823 127 76.7 3168 0.05932 124 75.0 12 3 9 MAX No 55.2

nfs = no feasible solution until the time limit
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Table 4.11: Summary of the computational experiments

Regular size instances

Discrete
exact model

Continuous
exact model

Continuous
exact model

BRKGA
heuristic

Percentage of better solutions 0% 100% 29% 62%

Avg. relative difference in better
instances

- 53% 2.6% 1.1%

Large size instances

Discrete
exact model

Continuous
exact model

Continuous
exact model

BRKGA
heuristic

Percentage of better solutions 0% 100% 45% 45%

Avg. relative difference in better
instances

- 61% 13% 6%

Table 4.12: Percentage of better solutions by solution method in each in-
stance group

Instance Group Continuous exact
model (%)

BRKGA heuristic
(%)

1 22 65

2 50 50

3 59 41

4 45 40

Table 4.11 summarizes the results of the computational experiments based

on the percentage of better solutions that each alternative approach ob-

tained on each comparison and on the relative change between the objective

function values. The continuous model shows to be clearly better than the

discrete model as it found better solutions for all the instances. These so-

lutions are substantially better, 53% in regular size instances and 61% on

large size instances. In its turn, the heuristic found better solutions than the

continuous model for 62% of the regular size instances and 45% of the large

size instances. Surprisingly, the heuristic was able to find a higher propor-

tion of better solutions among smaller size instances. Table 4.12 shows the

proportion of better solutions obtained by the exact model and the heuristic

in each group of instances. The proportions are balanced, except the better

result of the heuristic in smaller instances.
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4.6 Discussion and Future Work

This chapter proposed two alternative solution methods for the integrated

SCAP: (1) an exact and (2) a heuristic. In the first case, our contribution is

a new formulation using a continuous representation of time. Compared to a

model using a discrete representation of time, which is an adaptation of the

model presented in Chapter 3, this new formulation found better solutions

for all instances. In comparison with the heuristic procedure proposed in this

paper it found better quality solutions for instances with a high number of

parallel ORs. It shows that the proposed exact formulation is very effective

in synchronizing the utilization of parallel resources. The downside of this

exact formulation is the required amount of memory. In the second case,

our contribution is an approximation method based on the biased random-

key genetic algorithm featuring an original decoding procedure as well as

additional local search procedures. The heuristic was able to obtain better

solutions than the continuous model in 62% of the regular size instances and

45% of the large size instances. Surprisingly, the results are better in small

size instances. The reason is that the GA is not able to make certain small

changes to enhance the quality of solutions. The implemented local search

procedures helped to improve most part of the solutions but have a limited

number of movements. Currently, these movements are able to increase the

utilization of ORs but not the number of scheduled surgeries.

In future work, the authors intend to enhance the performance of the heuris-

tic with the addition of new local search procedures. The implemented local

search procedures provide good results, enabling the GA to find better qual-

ity solutions in almost all instances. However, we implement only two simple

movements that change one surgery by another. New movements should be

implemented to change one scheduled surgery for multiple unscheduled ones.

Also, the problem of finding the best combination of parameters should be
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addressed to allow the GA to have a more uniform performance across differ-

ent instances. Furthermore, in what concerns different problem settings, we

intend to evaluate the performance of the proposed approaches in a rolling

horizon framework. In this case, additional constraints are required to mini-

mize the rescheduling of previously scheduled patients as well as to minimize

situations in which the sequence of the waiting list, determined by priority

and waiting time rules, is broken. This framework would allow to compare

the performance of alternative objective functions in the long term, to better

understand the impact of prioritizing the number of scheduled patients or

the average OR utilization rate.
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Appendix

4.A Exact Model Using a Discrete Representation
of Time

This section briefly describes the discrete model compared with the proposed

continuous model. The discrete model is described in detail in Chapter 3.

Similar models are also presented in Marques et al. (2012) and Guinet and

Chaabane (2003).

4.A.1 Sets and Indices

The sets and indices are equal to the ones presented in Section 4.4.1, except

for the introduction of a new set L to denote the intervals in which surgeries

are allowed to start in each working shift. These discrete intervals are a

result of the discretization of time and their size usually ranges from 10 min

to 1 hour, with the most used value being 15 min. Among the parameters

the only new entry is parameter n to denote the number of intervals in

each shift. This value is determined by dividing the capacity of ORs by the

selected size of interval, e.g. 360/15 = 24.

I set of patients (index i)

J set of working shifts in the planning horizon (index j)

K set of operating rooms (index k)

Kj set of available ORs in shifts j

S set of surgeons (index s)

Is set of patients of surgeon s (index i)

H set of weeks in the planning horizon (index h)

Jh set of days in a given week h (index j)

L set of intervals in each shift j (index l)

Imaxsched set of patients with maximum scheduling time within the planning horizon

Imaxswait set of patients with maximum waiting time within the planning horizon
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4.A.2 Parameters

di estimated duration in minutes of patient’s i surgery

si surgeon in charge of patient’s i surgery

maxi maximum waiting time of patient’s i surgery

cjk available capacity in shift j of OR k

ajs availability in shift j of surgeon s

dayj day of shift j

α weight of the number of scheduled surgeries in the objective function

β weight of the average OR utilization rate in the objective function

γ best number of scheduled surgeries

δ best average OR utilization rate

ct OR cleaning time

tt surgeon turnover time

C total OR capacity

ms maximum number of shifts per week

n number of intervals per shift

The discrete model has only one decision variable to represent the scheduled

patients. Variable Xijkl represents all at once the selected patient, day, shift,

OR and starting time. The objective function (4.23) is very similar to the

objective function of the continuous model. The only difference is that it

has one more cycle, through the set L, to determine the scheduled patients.

For a detailed description of the objective function used in the continuous

model see Section 4.4.1.

4.A.3 Decision Variables

Xijkl =

 1, if patient i is scheduled for shift j, OR k and period l

0, otherwise
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4.A.4 Objective Function

min F = α ·
γ −

∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈LXijkl

γ
(4.22)

+β ·
δ −

∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈LXijkl · di

C
δ

4.A.5 Constraints

The first set of constraints provide the basic structure of the model. In-

equality (4.23) prevents a patient from being scheduled more than once,

expression (4.24) restricts the scheduling of patients to the capacity of avail-

able shifts and ORs, and constraint (4.25) prevents surgeries from having a

scheduled end time greater than the surgical suite closing time.

∑
j∈J

∑
k∈K

∑
l∈L

Xijkl ≤ 1, ∀i ∈ I (4.23)

∑
l∈L

∑
i∈I

Xijkl · (di + ct) ≤ cjk, ∀j ∈ J, ∀k ∈ K (4.24)

∑
l∈L|l+di+ct≤n

∑
i∈I

Xijkl ≤ cjk, ∀j ∈ J, ∀k ∈ K (4.25)

(4.26)

Expression (4.27) states that surgeries with a maximum scheduling time

lower than the planning horizon must be scheduled. Expression (4.28) states

that surgeries with a maximum waiting time lower than the planning horizon

must be scheduled and inequality (4.29) states that the surgery day must

be lower than the maximum waiting time. These constraints are equal to

the ones used in the continuous model and are designed to respect patients’

priority and waiting time rules.
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∑
j∈J

∑
k∈K

Xijk = 1,∀i ∈ Imaxsched (4.27)

∑
j∈J

∑
k∈K

Xijk = 1,∀i ∈ Imaxwait (4.28)

∑
j∈J

∑
k∈K

Xijk · dayj ≤ maxi,∀i ∈ Imaxwait (4.29)

The next group prevents overlap of patients in the same room and the over-

lap of patients from the same surgeon in different rooms. It is worth men-

tioning that these constraints are not required in the proposed continuous

model. Thus, it is one of the main differences between the models. Con-

straint (4.30) prevents the overlap of surgeries in the same shift and OR also

ensuring the cleaning time after each surgery, while constraint (4.31) avoids

the overlap of patients of the same surgeon in different ORs in the same

shift observing surgeons’ turnover time.

∑
i∈I

∑
j′∈J|j′≥j−di+1−ct and j′≤j

Xij′kl ≤ 1, ∀j ∈ J, ∀k ∈ K, ∀l ∈ L (4.30)

∑
i∈Is

∑
k∈K

∑
l′∈L|l′≥0 and l′≥l−di+tt+1 and l′≤l and l′<n

Xijkl′ ≤ 1, ∀s ∈ S,∀j ∈ J (4.31)

Finally, the last set concerns surgeon availability and workload. Constraint

(4.32) restricts the scheduling of patients for a given surgeon to his/her

availability and constraint (4.33) constrains the surgeon’s workload in terms

of number of working shifts per week.

min{1,
∑
k∈K

∑
l∈L

∑
i∈Is

Xijkl} ≤ ajs, ∀j ∈ J,∀s ∈ S (4.32)

∑
j∈Jh

min{1,
∑
k∈K

∑
l∈L

∑
i∈Is

Xijkl} ≤ ms,∀s ∈ S,∀h ∈ H (4.33)
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Multi-objective Simulation
Optimization for Surgery
Scheduling under
Uncertainty

Fabŕıcio Sperandio1, José Borges1, Bernardo Almada-Lobo1

Technical Report, 2014

Abstract Surgical management processes are subject to high variability re-

sulting in significant deviations between intended and actual performance

of surgical plans. For instance, when surgeries take longer than predicted

or emergency patients arrive, it often results in overtime and possible can-

cellation of surgeries. In order to control such effects, the variability in

surgical processes should be embedded into scheduling models. This pa-

per proposes a Simulation Optimization (SO) approach to the stochastic

surgery scheduling problem. It integrates a multi-objective evolutionary al-

gorithm (MOEA) to search for alternative surgery schedules with a discrete-

event simulation (DES) model to estimate the schedule’s performance un-

1CEGI – INESC TEC, Faculdade de Engenharia, Universidade do Porto, Portugal
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der uncertainty. This multi-objective approach offers operating room (OR)

managers a set of schedules to choose from instead of only one as in most

stochastic approaches found in the literature. The aim is to devise schedules

maximizing the number of performed surgeries and average occupancy rate

as well as minimizing the number of cancellations and total overtime min-

utes. The schedule’s performance is estimated using a DES model featuring

four stochastic variables: surgery duration, emergencies, cancellations and

delays/advances starting the first surgery in each shift. The proposed ap-

proach is compared with a standard deterministic MOEA based on fixed

planned slacks. Moreover, the performance of each alternative configuration

is evaluated using a comprehensive methodology for performance assessment

of multi-objective stochastic optimizers. Experimental results show that SO

outperforms planned slacks in all tested instances. Therefore, generating

more realistic surgery schedules and offering decision makers more choices

to choose from.

Keywords Multi-objective, Simulation Optimization, Operating Room, Schedul-

ing, Uncertainty, Stochasticity

5.1 Introduction

Nowadays, healthcare managers are facing great challenges to preserve qual-

ity of care under a budget constrained scenario. On one hand, a set of

structural forces, such as an ageing population and the introduction of new

technologies, is driving a natural rise on healthcare costs. On the other

hand, the recent financial crisis is forcing abrupt and extensive cost contain-

ments (de la Maisonneuve and Martins, 2013). For instance, the average

healthcare expenditure among Organisation for Economic Co-operation and

Development (OECD) countries was rising steadily until 2010, when it fell

sharply, and until now did not recover its historical growth rates (OECD,
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2013). In this context, healthcare managers need intelligent decision support

tools to help them reduce costs without impacting quality of care.

Public administrations have been experiencing successive cuts on budgets.

For instance, the Portuguese government has agreed with the European

Commission to cut 30% on healthcare expenses on the period comprised be-

tween 2011 and 2013 (Ribeiro et al., 2011) and the budget for 2014 was 200

million Euro shorter than 2013. In this context, hospital care and specially

its surgical activity represent major opportunities for cost reduction. Hospi-

tals account for the largest share of national healthcare expenses. Likewise,

the OR represents the major source of revenue as well as the largest cost

center within a hospital. It is considered a core and expensive resource which

influences many other pre and post-operation processes.

Management of surgical services encompasses a number of complex decision

problems, such as: capacity planning, case mix planning, resource allocation,

surgery scheduling and staff scheduling problems. These problems share

three main characteristics which contribute to increase its complexity: a

large number of alternatives, multiple stakeholders with sometimes conflict-

ing objectives and high uncertainty. The first two characteristics have been

subject to an extensive number of studies in the field of operations research

applied to healthcare. However, the last characteristic has received consider-

ably less attention. For instance, Guerriero and Guido (2011) concluded that

the majority of published papers assume that processing times and recovery

times are known in advance. In addition, Cardoen et al. (2010a) highlighted

that only limited research has been applied to non-elective patient schedul-

ing. Such class of patients encompasses emergencies and high-priority cases

whose arrival is highly uncertain. In this context, how to deal with uncer-

tainty in OR management problems still represents an open challenge.

Uncertainty is an intrinsic characteristic of OR planning and scheduling
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problems related to the human nature of the activities performed. Accord-

ing to May et al. (2011) surgery scheduling is a challenging task because

“every detailed plan is almost certainly to deviate significantly from what

actually transpires in the course of a surgical day”. Nevertheless, taking

uncertainty into account requires more complex models and respectively

higher computational costs. This explains the trend of researchers to focus

on deterministic approaches (Cardoen et al., 2010a). However, it also re-

sults in unrealistic plans with low performance in practice compromising the

acceptance of optimization tools among doctors and hospital managers. For

instance, uncertainty in the actual surgery duration impacts OR occupancy

rates and patient waiting times. More specifically, if a surgery is shorter than

predicted, resources may not be ready to start the next one and OR becomes

idle resulting in low occupancy rates. On the other hand, if a surgery takes

longer than predicted, subsequent surgeries have to be postponed resulting

in patient waiting time, human resource’s (HR) overtime and ultimately in

cancelled surgeries.

Computer Simulation is considered the most suitable method to address

OR management problems under uncertainty (Guerriero and Guido, 2011).

It allows analysts to build more detailed models including relevant aspects

of the problem that are harder (or even impossible) to model with other

approaches. Furthermore, Simulation Optimization (SO) offers an exten-

sive set of methods for optimizing simulation models as well as for reducing

the required computational time. The growth of SO literature allied to a

low number of applications to OR planning and scheduling problems con-

figures a research opportunity. Solution approaches designed specifically for

SO problems are able to reduce the required computational cost exploring

statistical information of simulation samples.

This study proposes a multi-objective simulation optimization approach to

the surgery scheduling problem under uncertainty. This approach encom-
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passes an optimization component and a simulation component. The former

features a multi-objective evolutionary algorithm (MOEA) to find surgery

schedules which maximize the number of performed surgeries and the aver-

age OR occupancy rate as well as minimize the number of cancelled surgeries

and total overtime minutes. The latter features a Discrete-Event Simulation

model including four sources of uncertainty: surgery duration, emergencies,

cancellations and delays/advances starting the first surgery in each shift.

The contribution of this paper is three-fold. To the best of our knowledge,

it is the first multi-objective optimization approach to tackle the general

stochastic surgery scheduling problem. In this solution approach the OR

manager is provided a set of surgery schedules to choose from, illustrating

the trade-off between conflicting objectives. Moreover, it is the first ap-

proach to take into account four important sources of uncertainty arising in

a large Portuguese hospital and to model surgery duration considering its

main determinant attributes. Finally, it tackles scheduling and sequencing

decisions at once, allowing surgeons to change between ORs within the same

shift, which is a common assumption in the context of this study and allows

to improve OR occupancy rates.

Computational experiments are performed on instances built with real data

from a large Portuguese hospital. First, a deterministic version of the al-

gorithm is tested with alternative planned slacks. Second, the proposed

simulation optimization approach is evaluated with an alternative number

of replications. Finally, a comparison between the best configurations of

each approach is performed. The evaluations and comparisons are based on

a comprehensive methodology for performance assessment of multi-objective

optimizers including a combination of quality indicators and suitable statis-

tical tests to assess the statistical significance of the results.

The remainder of this paper is organized as follows: literature review, prob-
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lem description, solution approach, computational experiments, discussion

and future work. The first section reviews stochastic approaches to the

surgery scheduling problem. The solution approach section is split into two

subsections describing in detail the two components of the integrated solu-

tion: optimization and simulation. The computational experiments section

describes the experiments performed, the methodology applied to evaluate

them and their respective results. Finally, the last section summarizes the

study highlighting the strengths and weaknesses of the proposed approach

and pointing out areas for future work.

5.2 Literature Review

The management of surgical services encompasses a set of complex planning

and scheduling problems. In order to reduce such complexity researchers

classify problems into three decision levels: strategic, tactical and opera-

tional. In the strategic decision level, the case mix planning problem con-

sists in determining the number and type of surgeries to be performed by

each surgical specialty in the long term. In the tactical level, the master

surgery scheduling problem consists in building a weekly time-table deter-

mining the operating rooms (ORs) assigned to each specialty in each day of

week. Finally, in the operational level, the surgery scheduling problem con-

sists in selecting a sub-set of patients from the elective surgery waiting list

and determining a surgery date, OR and starting time for them. This review

focuses on stochastic approaches for the operational problem. For a com-

plete review on surgical management problems see Cardoen et al. (2010a),

Guerriero and Guido (2011) and May et al. (2011). Table 5.1 summarizes

the main characteristics of all papers that, to the best of out knowledge, ad-

dress the surgery scheduling problem under uncertainty. Papers are sorted

by sub-problem in order to group similar characteristics. A paper may only
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partially show a characteristic, which in these cases is explained in the fol-

lowing paragraphs.

The surgery scheduling problem at the operational decision level can be de-

composed into two sub-problems: advance and allocation scheduling prob-

lems. According to Table 5.1 these problems have been addressed separately.

The first columns show that the majority of the studies addressed the ad-

vance problem alone and only one has the integrated problem of advance and

allocation scheduling. In general, the advance scheduling problem consists

in selecting a sub-set of patients from the waiting list and assigning them

to a specific OR and day over a weekly planning horizon. However, there

are small variations of this sub-problem. For instance, Lamiri and Augusto

(2008); Lamiri et al. (2009) focus only on determining the set of elective

patients to be operated in each day, leaving the assignment of a specific

OR to a later stage. Moreover, in Hans et al. (2008) the set of patients

to be scheduled in a given week is pre-defined and no patient is postponed

for the next planning period. In its turn, the allocation scheduling problem

consists in sequencing the surgeries in each OR-day. Studies addressing this

problem usually consider multiple ORs. In contrast, Denton et al. (2007)

and Mancilla and Storer (2011) consider only a single OR. We propose to

integrate advance and allocation scheduling problems as well as consider

multiple ORs. Addressing both problems simultaneously leads to better so-

lutions to the overall problem as, assuming a surgeon is allowed to change

ORs during the same working shift, often the best solution to the allocation

problem requires changing the advance scheduling solution.

The main objective addressed in stochastic versions of the surgery schedul-

ing problem is to reduce the risk of overtime. Table 5.1 shows that 11 studies

take this objective explicitly into account. In contrast, Shylo et al. (2012)

and Addis et al. (2014) do not consider it in the objective function. However,

these studies rely on robust optimization, which guarantees acceptable levels
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5.2 Literature Review

of overtime. Other objectives are closely related to the specific sub-problem

being addressed. Studies addressing the advance scheduling problem focus

on minimizing patient-related costs. These costs are associated with patient

waiting time in the waiting list, urgency and tardiness (maximum waiting

time). In other words, such approaches aim to maximize the number of pa-

tients scheduled and establish an order among them. In addition, studies in

this category aim to maximize OR occupancy rates. Besides reducing over-

time, studies addressing specifically the allocation problem focus on reducing

waiting time in the process flow, synchronizing the utilization of resources.

Nevertheless, the perspective may be different, since a set of studies focus

on the patient (Denton et al., 2007; Gul et al., 2011) and another on clinical

resources (Batun et al., 2010; Lee and Yih, 2014; Mancilla and Storer, 2011).

We propose to take four objectives into account: (1) maximize the number

of performed surgeries, (2) maximize average OR occupancy rates, (3) min-

imize the number of cancelled surgeries and (4) minimize total minutes of

overtime. The third objective was not explicitly addressed by any of the

reviewed papers. It is often considered a result of excessive overtime. We

explicitly consider it an objective because “lack of OR time” is a common

reason for cancelling surgeries in the hospital under analysis and must be

controlled. Cancelled surgeries reduce patient quality of service, increase

hospital costs and impact subsequent elective schedules.

In studies addressing the advance scheduling problem only, time blocks are

the main resources. In general, in these studies, a time block consists in

a combination of OR and day. In contrast, Dexter and Macario (1999)

consider only surgeon block time, a combination between surgeon and day,

and Lamiri and Augusto (2008); Lamiri et al. (2009) consider only days of

the planning horizon. Also, Rachuba and Werners (2014) are the only to

consider two surgical blocks per room each day, i.e. morning and afternoon.

On the other hand, in studies addressing the allocation scheduling problem
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only, the bottleneck are ORs. In addition, Batun et al. (2010) consider the

intensive care unit (ICU), Lee and Yih (2014) address the post-anaesthesia

care unit (PACU) and Gul et al. (2011) look at pre/post-surgical resources

(waiting area and intake/recovery rooms). Hans et al. (2008) are the only

to consider additional OR personnel. Finally, regarding resources, only two

of the reviewed papers take surgeons explicitly into account (Dexter and

Macario, 1999; Batun et al., 2010). Papers that do not consider it require

general assumptions about the surgeon workload and availability. Often,

surgeons are pre-assigned to specific time blocks on a previous stage and

do not change rooms in the same day. We propose to consider surgeons

explicitly which allows a surgeon to work in more than one OR in the same

working shift. It helps to increase OR occupancy rates since surgeons are

available to start another surgery in a different OR without waiting for the

cleaning of the previous OR, as well as promote the productivity of the

surgeon.

Naturally, all reviewed papers include resource capacity constraints. In con-

trast, just a few include additional business logic constraints. Exceptions are

OR cleaning times and surgeon turnover times. Patient urgency and wait-

ing time limits are often addressed using penalties in the objective function.

Table 5.1 indicates the papers which address this issue in the objective func-

tion. In addition, Rachuba and Werners (2014) consider the first feasible

day for a surgery and limit the maximum amount of overtime. The first fea-

sible day derives from restrictions in the clinical pathway, which may include

pre-surgical analysis. Beyond constraints in the number and availability of

resources, we propose to limit surgeon daily and weekly workload as well as

consider a surgery due date which is determined by the patient urgency and

waiting time. These constraints are derived from the Portuguese legislation.

The variability in surgery durations is the main source of uncertainty taken

into account in the literature. Moreover, few papers take into account the
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OR-time occupied by emergencies and Min and Yih (2010) consider the

length of stay in the intensive case unit. It is worth mentioning that the ap-

proaches to model the behaviour of the stochastic variable representing the

uncertain surgery durations differs broadly. They vary from fitting probabil-

ity distributions to historical data (Min and Yih, 2010) and sampling directly

from historical data (Denton et al., 2007) to using uniform probability dis-

tributions with fixed parameters (Lamiri and Augusto, 2008; Lamiri et al.,

2009). In addition, Batun et al. (2010) decompose the surgery duration in

pre-incision, incision and post-incision and Shylo et al. (2012) consider the

distribution of the sum of durations only. Regarding how historical data is

grouped to be analysed, most approaches group it by surgical department.

For instance, Min and Yih (2010) highlight that in practice the surgery du-

ration depends on the surgery type, the surgeon and the patient. However,

the study assumes all surgeries in the same surgical department follow iden-

tical probability distributions, usually a log-normal one. In contrast, Hans

et al. (2008) cluster surgeries into 4 to 8 categories within each surgical de-

partment sharing the same mean and standard deviation. We propose to

take into account 4 sources of uncertainty and to model the behaviour of

surgery durations using its main predictive factors.

Concerning the solution approaches most papers rely on Stochastic Pro-

gramming. In particular, the formulation of two-stage problems and its

resolution by Monte Carlo sampling and the Sample Average Approxima-

tion method. In order to reduce the computational cost researchers have

been applying decomposition approaches such as Bender’s decomposition

(Mancilla and Storer, 2011) and the L-Shaped method (Batun et al., 2010).

In addition, solution approaches based on constructive and improvement

heuristics as well as meta-heuristics have been applied to solve real size

instances. Heuristic approaches usually explore statistical information on

the variability of surgery durations based on historical data. Finally, Shylo
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et al. (2012) propose a chance-constrained model to ensure acceptable levels

of overtime and Rachuba and Werners (2014) apply fuzzy sets to merge the

interests of different stakeholders. We propose an approach based on simu-

lation optimization combining a multi-objective evolutionary algorithm and

discrete-event simulation (DES).

Simulation optimization is an active research area within the Computer Sim-

ulation field and healthcare is one of the main application areas of Computer

Simulation. Guerriero and Guido (2011) highlight that due to its modelling

flexibility, Computer Simulation is the most reliable and efficient tool to ad-

dress the complexity and stochasticity that arises in healthcare management

problems. It has been successfully applied to perform scenario (what-if)

analysis. For instance, Azari-Rad et al. (2014) propose a DES model for

perioperative process improvement and Konrad et al. (2013) a DES model

targeting the emergency department (ED). However, this process considers

only a limited number of alternatives. When the number of alternatives

is high some sort of optimization procedure is required to search for the

best ones. The integration between Computer Simulation and optimization

tools have been given multiple names, e.g. Simulation-based Optimization

(Shapiro, 1996), Optimization via Simulation (Fu, 1994), Simulation Opti-

mization (Fu, 2002). In this paper we use the latter definition.

In simulation optimization, the optimization role is to search for alterna-

tive solutions to the underlying optimization problem and the simulation

role is to evaluate its performance under uncertainty. In the last decades,

several authors published literature reviews about simulation optimization

(Fu, 1994; Glover et al., 1999; Fu, 2002; April et al., 2003; Fu et al., 2005,

2008; Hong and Nelson, 2009; Figueira and Almada-Lobo, 2014), most of

them in the proceedings of the Winter Simulation Conference. For instance,

Fu (2002) presented an extensive literature review on the topic describing

the main solution approaches and discussing efficiency issues. The author

122



5.3 Problem Description

highlights that different from deterministic optimization, in simulation op-

timization the estimation cost is higher than the search cost - and discusses

the integration of statistical procedures to deal with the stochastic nature

of the problem. The referred estimation cost is determined by the number

of simulation replications performed to estimate the performance of each

alternative solution.

5.3 Problem Description

This paper focuses on the stochastic surgery scheduling problem at the oper-

ational decision level. The problem consists in selecting a sub-set of patients

from the elective surgery waiting list and assign a surgery date, operating

room and starting time for them. Thus, it integrates simultaneously ad-

vance and allocation scheduling problems. In addition, there is a problem of

assigning sufficient planned slack to each working shift to deal with unveiled

uncertainty.

In Portugal, the Integrated Management System of Registered Patients for

Surgery (“Sistema Integrado de Gestão de Inscritos para Cirurgia” - SIGIC)

(Ministério da Saúde, 2011) program was introduced in 2004 to tackle ex-

cessive waiting times. Once the need for an elective surgery is identified,

patients are added to the waiting list in their main hospitals and wait for

their surgeries to be scheduled. If the surgery is not scheduled within 75%

of the maximum waiting time according to each priority level the patient

is allowed to perform the surgery in another hospital, either in public or

private networks, and his origin hospital is responsible for paying the treat-

ment. Marques et al. (2012) present a deterministic approach for surgery

scheduling in Portuguese hospitals.

Surgery schedules are built for each surgical department on a weekly basis.

Every Thursday, the head of each surgical department is responsible for
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launching the schedule for the following week. The schedule is elaborated

manually, a task that consumes time that could be applied to perform clinical

activities or perform what-if-analysis to different plans. In fact, a decision

support system to support scheduling activities in Portuguese hospitals was

proposed in chapter 3. In order to illustrate the scheduling problem, Figure

5.1(a) shows a valid weekly schedule for a hypothetical surgical department.

The example schedule in Figure 5.1(a) shows a standard working week with

2 ORs in each day, designated by OR#1 and OR#2. The ORs operate

in two working shifts (morning and afternoon), with a time break between

them. Note that some ORs may be closed in specific shifts and days of

week. Hereafter, an open OR in a given shift and day of week is defined as a

time block. Moreover, in this example, scheduled surgeries are represented

as boxes inside each time block and numbers inside each box represent re-

spective surgery durations. The different graphic patterns indicate different

surgeons, the required cleaning time after each surgery is represented in

light gray and the empty space at the end of each time block represents the

planned slack (idle time).

(a) Weekly surgery schedule: planned (b) Weekly surgery schedule: executed

Figure 5.1: Impact of uncertainty in the weekly surgery schedule

Figure 5.1(b) shows the example schedule after its execution. In this example

the number inside each box represents actual surgery durations. It is worth

of note the impact of each source of uncertainty. The sign “1” indicates a
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surgery which took much longer than predicted resulting in overtime in this

shift. Sign “2” shows a delay on the starting time of the first surgery in the

morning resulting in OR underutilization. Sign “3” indicates OR time being

occupied by unexpected emergencies resulting in the cancellation of previ-

ously scheduled elective surgeries. Sign “4” indicates OR underutilization

as a consequence of cancelled elective surgeries. Since schedule performance

measures are affected by uncertainty our aim is to optimize the estimated

performance measures of the execution of the plan.

In summary, our goal is to optimize the following four objectives: (1) max-

imize the number of surgeries performed; (2) maximize the average OR oc-

cupancy rate; (3) minimize the number of surgeries cancelled; (4) minimize

the total overtime. Feasible surgery schedules are subject to the following

six families of constraints: (1) the duration of the surgeries (plus cleaning

times) within each time block must not exceed the time block’s length; (2)

a surgery must not be scheduled to end after OR closing time; (3) patient

priority and waiting time rules imposed by the Portuguese legislation must

not be violated; (4) a surgeon must not be scheduled to work for more than

a certain number of hours a day and a certain number of hours a week; (5)

lower bound on the time between consecutive surgeries in the same OR; (6)

lower bound on the time between consecutive surgeries of the same surgeon

in different ORs.

Finally, we assume that other human and material resources do not com-

promise the implementation of the proposed plans. For instance, the op-

erating rooms work with fixed nursing teams and the capacity of the post-

anaesthesia care unit and surgery wards are not a bottleneck.
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Figure 5.2: The Simulation Optimization loop

5.4 Solution Approach

The proposed solution approach encompasses optimization and simulation

modules. The optimization module aims to search for solutions to the prob-

lem, while the simulation module assesses the performance of each alter-

native solution under uncertainty. The former module features a multi-

objective evolutionary algorithm and the latter incorporates a discrete-event

simulation model. The integration between the two modules takes place in

the fitness evaluation function of the MOEA. In this step the simulation

model runs a pre-determined number of replications and the average per-

formance measures are calculated. Thus, simulation average performance

metrics become the optimization objectives. Figure 5.2 illustrates the inte-

gration between simulation and optimization.

5.4.1 Multi-Objective Evolutionary Algorithm

The optimization module implements a multi-objective evolutionary algo-

rithm. The actual algorithm is a customized version of the NSGA-II (Deb

et al., 2002) algorithm for multi-objective optimization. The NSGA-II im-

plements the concept of crowding distance, which is a measure of how close

an individual/solution is from its neighbours. Large average crowding dis-

tance will result in better diversity in the population. The algorithm is

a genetic algorithm (GA) which evolves a population of solutions towards
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the set of optimal Pareto solutions. This set comprises alternative surgery

schedules representing trade-offs between conflicting objectives. The follow-

ing paragraphs describe the encoding scheme and genetic operations. The

fitness evaluation is performed invoking the DES model.

The encoding scheme and respective decoding procedure are key determi-

nants of MOEA performance. We propose an encoding scheme based on a

vector of real variables and a two-phase decoding procedure to translate each

GA chromosome into a feasible solution. This encoding scheme is based on

the biased random-key genetic algorithm (BRKGA) proposed by Gonçalves

and Resende (2011). Preliminary results show that this approach outper-

forms approaches based on encoding schemes using binary variables, like the

one proposed by Conforti et al. (2010). In fact, GAs were originally designed

for unconstrained optimization problems, therefore they are more efficient

searching in the feasible solution space only.

Figure 5.3 illustrates an example GA chromosome representation using real

variables. For simplification purposes, in this figure as well as in Figure 5.4,

only the first 5 surgeries and the last one appear. Each individual in the

population represents a valid surgery scheduled and is associated to one of

these chromosomes. Each real variable is assigned a random number, known

as random key, ranging from 0 to 1. Furthermore, each chromosome is split

in two parts. The first part determines the sequence in which surgeries

are scheduled inside each time block, while the second part determines the

planned slack assigned to each time block. Each random number in the first

part of the chromosome corresponds to one surgery in the waiting list. Also,

each random number in the second part corresponds to one of the available

time blocks. A special decoding procedure translates each chromosome into

an admissible surgery schedule.

Figure 5.4 illustrates the decoding procedure. First, Figure 5.4(a) shows an
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Figure 5.3: An example GA chromosome representation based on real vari-
ables

example unordered input set of surgeries with associated surgeon, expected

duration and random number. The associated surgeon and expected surgery

duration are inputs of the problem, while the random numbers are assigned

every time a chromosome is created. In Portugal, the main surgeon in

charge is associated to the respective elective surgery at the moment of

the waiting list registration. Next, Figure 5.4(b) illustrates an important

step of the decoding procedure which consists in sorting the set of surgeries

by ascending order of random numbers: the order in which surgeries are

scheduled is determined. Next, Figure 5.4(c) shows the associated time

blocks and starting times assigned by the decoding procedure and Figure

5.4(d) illustrates the resulting surgery schedule. For simplicity, the example

schedule highlights only the first five surgeries. Moreover, it shows a solid

line at the end of each open time block. This line represents the maximum

end time for scheduled surgeries, resulting from multiplying the random

number associated with each time block in the chromosome by 60 (minutes)

- in practice the necessary slack per shift is not given more than one hour.

The space between this line and the end of the time block is the planned

slack. In summary, the decoding procedure consists in going through the

set of surgeries in ascending order of random numbers and schedule each

surgery in the next time block it fits (considering the planned slack). Time

blocks are sorted in ascending order of day of week, operating room and

working shift. The following paragraph describes the procedure in detail.

The algorithm to decode a chromosome into a feasible surgery schedule is

composed of two phases. The first phase generates schedules meeting all
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(a) Input set of surgeries with associated
random numbers

(b) Input set ordered by ascending order of
random numbers

(c) Time block and starting timed as-
signed according to the decoding proce-
dure

(d) Resulting example surgery schedule

Figure 5.4: An illustrative example of the decoding procedure

the requirements but the patient priority and waiting time rules, which are

tackled in the second phase. Algorithm 3 illustrates the complete decoding

procedure, which is described in high-level in the following lines and with

more detail about each function in the following paragraph. The first phase

encompasses lines 4-15 and the second lines 16-19. It starts by iterating

through the set of time blocks (line 5) and through the set of surgeries (line

7). If a surgery meets all the requirements to be scheduled in the current

time block (line 8), the schedule is confirmed (lines 9 to 13). Otherwise, the

inner loop breaks and another time block is evaluated (line 15). When all

the time blocks are evaluated the first phase is completed. Next, the second

phase consists in iterating through the set of surgeries and checking if each

surgery scheduled meets the respective patient priority and waiting time

rules (line 17). In case they do not meet, a new random number is generated

(line 18) which forces the surgery to be scheduled until its due date. In case

the schedule does not meet the waiting time rules, the procedure repeats

129



Chapter 5

the main loop and with the new random numbers the surgeries should be

assigned to feasible dates. On the other hand, if the solution meets all the

requirements, the procedure completes and returns a solution, otherwise the

main loop is repeated.

Algorithm 3: Procedure for decoding a chromosome encoded with
random keys into a feasible surgery schedule

Data: GA chromosome
Result: Feasible surgery schedule

1 begin
2 solution←− getInitialSolution(chromosome)
3 repeat
4 currentIndex←− 0
5 for i← 0 to nTimeBlocks do
6 startT ime←− 0
7 for j ← currentIndex to nSurgeries do
8 if timeBlockCapacity(i,j,solution) and

surgeonWorkload(i,j,solution) and
surgeonAvailability(i,j,solution) then

9 solution[j].timeBlock ←− i
10 solution[j].scheduled←− true
11 solution[j].startT ime←− startT ime
12 currentIndex←− currentIndex+ 1
13 startT ime←−

startT ime+ solution[i].duration+ cleaningT ime

14 else
15 break

16 for i← 0 to nSurgeries do
17 if not priorityAndWaitingTime(i, solution) then
18 solution[i].randomNumber ←−

newRandomNumber(i, solution)

19 until isFeasible(solution)
20 return solution

The getInitialSolution procedure gets the chromosome as an array of random

numbers and returns an initial solution. First, the procedure inserts one

surgery object in the solution array for each surgery in the chromosome.

Next, it sorts the solution array by the random numbers assigned to each

surgery. Initially, each surgery in the solution has the schedule property set

to false. The timeblockCapacity procedure checks if the current surgery does
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not exceed the capacity of the time block. The surgeonWorkload procedure

checks if the current surgery does not violate surgeons’ daily and weekly

workloads. The surgeonAvailability procedure checks if the same surgeon

is not scheduled to be working on another OR at the same time. If that

is the case, then the procedure delays the start of the current surgery until

the end of the previous one. The priorityAndWaitingTime procedure checks

if patient’s maximum schedule date is met. In other words, for instance,

if a patient must be scheduled until Tuesday and the procedure schedules

to Friday, or not schedule at all, it breaks the rule. In these cases, the

newRandomNumber procedure samples a new random number for these

patients. The new random number is sampled from 0 to the maximum

number of surgeries scheduled in the latest to avoid breaking the rule.

The crossover and mutation operators introduce diversity into the popula-

tions. Its impact is controlled by crossover and mutation rates parameters.

The proposed GA uses the simulated binary crossover (SBX) and polynomial

mutation operators. These operators were proposed by Deb et al. (2002) for

real-coded GAs.

5.4.2 Discrete-Event Simulation

The simulation module of the integrated solution approach implements a

stochastic Discrete-Event Simulation model. The model structure and be-

haviour are based on the Adevs (Nutaro, 2010) framework for fast discrete

event simulation. This framework was selected based on its performance,

flexibility and scalability. Indeed, performance is a key requirement of any

simulation optimization approach. Flexibility and scalability are also key

requirements to build complex OR models with different resources and com-

plex relationships among them. The stochasticity is modelled with 4 random

variables whose behaviour is based on historical data from a large Portuguese

hospital.
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Figure 5.5: A simple network model showing the three types of components
and the connections among them

The simulation model consists in a network of atomic models connected

through input and output ports enabling the exchange of messages among

them. Each atomic model implements the behaviour of a specific component

of the system. In this case, the proposed implementation uses three types of

components: Surgery, Resource and Time block. Figure 5.5 illustrates the

network with arrows representing the connection between the components.

It should be highlighted that the arrows are double-sided meaning that each

component sends output messages and receives input messages from the

components connected to it.

In our case, components of type Resource are used to model the behaviour

of surgeons and operating rooms, but can be extended to model other re-

sources. Moreover, each atomic model is a state machine, characterized by

a set of states and state transition functions. There are two types of state

transition functions: internal and external. Internal functions are called

when an internal event occurs, for instance, the end of a surgery. Exter-

nal functions are called when a component receives a message from another

component, for instance, at the end of a surgery the Surgery component
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Surgery Resource Time block

1. Pre-operative Queue Queue

2. Ready 1. Free

3. Requesting 2. Busy

4. Waiting

5. Working

6. Cleaning

7. Releasing

8. Post-operative

Table 5.2: Set of sequential states of each atomic model

sends a message to the Resource components to release them.

Table 5.2 lists the set of sequential states in each component. These states

change with the exchange of messages between the components. Initially,

the time block component has one surgery in the queue, the surgery is

on state ‘pre-operative’, and both resources are on state ‘free’. Next, the

time block component sends a message to the surgery component, which

makes the surgery change state to ‘requesting’ and send messages to the two

required resources (surgeon and operating room). Both resources receive the

messages, change state to ‘busy’ and send a message back to the surgery. The

surgery receives both messages, change state to ‘working’ and schedules the

next event to the end of the simulated surgery. When the scheduled event is

triggered, the surgery changes state to ‘releasing’ and sends messages to the

resources used to release them. Both resources receive the messages, change

state to ‘free’ and send a message back to the surgery. The surgery receives

the messages, changes state to ‘post-operative’ and sends a message to the

time block requesting another surgery.

Note that each surgery starts as soon as the required resources are available

(operating room and surgeon), assuming the other resources are ready. If

surgeries were started only after the scheduled time, the amount of overtime

and cancelled surgeries would be presumably much higher.

The stochastic behaviour of the simulation is modelled by 4 stochastic vari-

ables: (1) duration of surgical procedures; (2) cancelled surgeries; (3) total
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Source of uncertainty Attributes

Surgery duration specialty, combination of surgical procedures, main surgeon in charge

Emergencies specialty, operating room, day of week, working shift

Cancelled surgeries specialty

Delays/Advances specialty, working shift

Table 5.3: Attributes used for modelling the behaviour of stochastic variables

time (in minutes) occupied by emergencies; (4) delays/advances (in minutes)

on the start of the first surgery in each shift. Table 5.3 lists the attributes

used to query the database for historical data and model the behaviour of

each stochastic variable. The aim is to reduce variability, which benefits the

simulation optimization approach, and to create a more realistic simulation

model.

Simulation model performance measures are computed at the end of each

simulation based on the analysis of the simulated ending times of each

surgery. The computed performance measures become the fitness values

of each solution of the MOEA. The number of performed surgeries is the

number of scheduled surgeries with simulated starting times before the sur-

gical suite closing time. The number of cancelled surgeries represents the

number of scheduled surgeries with simulated starting times after the sur-

gical suite closing time (we assume that these surgeries are cancelled by

lack of OR time, which is common practice in the hospital under analysis).

The estimated occupancy rate is the sum of the simulated durations of each

performed surgery over the total time block’s capacity. Note that it does

not include turnover times. The total overtime is the difference between

surgery’s simulated ending time for each surgery that ends after surgical

suite’s closing time and the surgical suite’s closing time.
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5.5 Computational Experiments

5.5.1 Types of Experiments

This section describes the computational experiments, testing instances and

performance assessment methodology used for evaluating the proposed simu-

lation optimization approach. In summary, three sets of results are analysed:

the results of two computational experiments with different versions of the

MOEA and the comparison between them. The first experiment consists

in running a deterministic version of the MOEA with alternative planned

slacks. The second experiment consists in running the proposed simulation

optimization approach with alternative number of replications. Finally, the

comparison is made between the best configuration of each experiment.

The first experiment consists in running a deterministic version of the MOEA.

It is similar to standard deterministic approaches found in the literature.

Also, it shares the same encoding scheme and genetic operators with the

simulation optimization version, but aims at maximizing only two objec-

tives: the number of scheduled surgeries and the occupancy rate. During

the search, objective values are computed by an analytical function. The

other two objectives can only be estimated by means of simulation. The

search runs for 1 minute and then each solution is simulated 1000 times to

estimate the 4 performance measures with high confidence. At this point,

the objective values associated to each solution are the samples’ averages.

Moreover, three different planned slack configurations are tested: 0, 10%

and 20%. In the first configuration no planned slack is used. In the other

two a percentage of the time block’s total length is left empty (in the end)

to prevent overtime and cancelled surgeries in case of unexpected events.

The second experiment consists in running the proposed simulation opti-

mization approach with a varying number of simulation replications, in or-
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der to estimate the performance measures for each solution. Six alternative

configurations are evaluated, each with the following number of replications:

5, 25, 50, 75, 100 and 150. This experiment aims to evaluate the impact of

the number of replications in the algorithm’s performance and to determine

the configuration which provides the best performance under a fixed time

limit. All experiments run for 1 min and final non-dominated solutions are

simulated 1000 times.

After the two computational experiments, the best configurations of the

deterministic and the simulation optimization approaches are compared. It

enables us to determine the benefits of the proposed simulation optimization

approach over a standard deterministic approach. Both configurations run

for the same fixed amount of time (1 min). Thus, simulation optimization

should be much more efficient since its computational cost is higher and the

number generations performed is several times smaller.

Algorithm 4: Sequence of steps performed to assess the performance
of each alternative configuration

1 begin
2 for all specialties do
3 for all configurations do
4 for i← 0 to 30 do

// runs the MOEA for 1 min

5 runExperiment(1)
// simulates final non-dominated solutions 1000

times

6 simulateFinalParetoSet(1000)

7 normalizeObjectives()
8 computeEmpiricalAttainmentFunctions()
9 findReferencePoint()

10 computeHypervolumeIndicator()
11 findReferenceSet()
12 computeEpsilonIndicator()
13 computeRIndicator()
14 performKruskalWallisStatisticalTest()
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Table 5.4: Characteristics of the testing instances
Surgery duration

Surgical specialty # Patients # Surgeons # Procedures # Time
blocks

Avg.
Length

Std.
Dev.

Vascular surgery 115 13 4 9 60 29

Oral and maxillofa-
cial surgery

58 10 18 3 44 26

Neurosurgery 66 9 30 18 188 95

Ophthalmology 499 34 61 24 41 23

Orthopaedics 126 21 57 22 97 56

Urology 109 16 45 12 89 51

Otolaryngology 80 16 47 9 82 29

General surgery 1 49 9 27 9 172 101

General surgery 2 51 6 26 8 114 42

General surgery 3 48 7 10 7 117 50

5.5.2 Testing Instances

The computational experiments are performed over a set of 10 testing in-

stances built with real data from a large Portuguese hospital. Each instance

concerns a different surgical specialty and represents different testing set-

tings in terms of the size of the problem and the degree of uncertainty. Ta-

ble 5.4 describes the characteristics of the testing instances. Ophthalmology

and Vascular surgery are the most demanding instances.

The procedure to generate the instances consisted in consulting the surgical

waiting list on a given date and selecting patients from higher to lower

priority and waiting time until the sum of the expected surgery durations

reaches twice the capacity of the time blocks. Indeed, this is the procedure

suggested in the surgical waiting list’s manual (Ministério da Saúde, 2011).

5.5.3 Performance Assessment Methodology

The performance assessment methodology applied in the evaluation of re-

sults relies on the literature about performance assessment of stochastic

multi-objective optimizers, mainly on the studies presented by Knowles

et al. (2006) and Zitzler et al. (2003). The methodology uses the dominance

ranking approach, a combination of quality indicators, empirical attainment
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functions and the respective statistical testing procedures to assess the sta-

tistical significance of the results. The results of the different approaches are

evaluated in the following order: dominance ranking, quality indicators and

empirical attainment functions. Algorithm 4 shows the steps performed to

compute the performance measures for all specialties and alternative con-

figurations. Note that, for each configuration, the RunExperiment function

is called 30 times. This function runs the MOEA with each configuration’s

parameters for 1 minute. Next, to estimate performance measures with high

confidence, the solutions in the final Pareto approximation set are simulated

1000 times.

The dominance ranking approach consists in performing a non-dominated

sorting on the combined set of all approximation sets generated by one or

more alternative configurations being compared. Next, a statistical rank

test is applied to pairs of configurations to determine whether the ranks

associated to one of them are significantly lower than the ranks associated

to the other. This approach is able to determine the best configuration in

case one configuration is significantly better than another. However, if the

results of the statistical test are inconclusive, the remaining approaches are

applied.

Quality indicators are used to characterize further the differences between

the approximation sets. There is a variety of quality indicators, some of them

are compliant with the concept of Pareto dominance and some are not. In

this study we use only indicators in the former group, since these indicators

are designed to assess how close a Pareto front approximation is from the

Pareto optimal front. Moreover, different indicators are more sensible to

different features of the approximation sets, for instance: distance, diversity,

spread or cardinality. Therefore it is recommended to use a combination of

them to yield more sound results. We use three different quality indicators:

the Hypervolume indicator, the Epsilon indicator and the R2 indicator.
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The Hypervolume indicator considers the volume of the objective space dom-

inated by an approximation set. In other words, it measures the size of the

space covered by an approximation set. The Epsilon indicator gives the fac-

tor by which an approximation set is worse than other in all objectives. In

a single-objective case it refers to the ratio between the two objective values

represented by the two approximation sets. Intuitively, it represents how

much an approximation set A needs to translate/scale so that it covers the

reference set. Finally, the R2 indicator measures the difference in the mean

distance of an approximation set A to a reference set R, from an ideal point.

Empirical Attainment Functions (EAF) are used for visualizing the out-

comes of multiple runs of a given configuration. Due to the stochastic be-

haviour of the algorithm, different runs of the same configuration can yield

different results. Therefore, a plot illustrating the solutions generated by a

given configuration, or comparing the solutions generated by two alternative

configurations should take stochasticity into account. To compute the EAF

from non-dominated sets of 4 objective vectors, the algorithm developed by

Guerreiro (2011) is applied. Also, in order to plot 4 objectives, the parallel

coordinates plot is applied.

The Kruskal-Wallis test is used to assess the statistical significance of the

results. It compares sample indicator values of two alternative configurations

under the hypothesis that there is no statistical significance between them.

Considering a 95% significance level, if the test statistics (p-value) is lower

than 0.05 we reject the null hypothesis and accept the alternative hypothesis

that the first configuration is better than the second. To analyse the results

a set of matrices of configurations is used.

Figure 5.6 illustrates the assessment procedure showing the results of differ-

ent configurations of the deterministic approach applied to the Ophthalmol-

ogy specialty. In this example, configurations 1, 2 and 3 represent 0, 10%
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Figure 5.6: An illustrative example of the analysis of the performance as-
sessment measures

and 20% planned slack respectively. Matrices should be read from rows to

columns. For instance, the highlighted cell shows the result of comparing

configuration 2 with configuration 1 in the Epsilon indicator. In this case, as

the result of the statistical test (p-value) is lower than the 0.05, considering

this indicator and the predefined significance level, configuration 2 is better

than configuration 1. The results are inconclusive in the dominance rank-

ing approach and consistent in all quality indicators. The summary matrix

shows “yes” if the results of the quality indicators are all lower than 0.05

and “no” otherwise. Based on this, the question “Is configuration 2 better

than configuration 1?”, can be answered positively in this case.

Both approaches, planned slacks and simulation optimization, were imple-

mented in C++ and the computational experiments were carried out on

an Intel Xeon 3.00 GHz processor running version 6 of the Scientific Linux

operating system. Each experiment was limited to use a maximum of 10

processor cores.

5.5.4 Experimental Results

5.5.4.1 Deterministic Approach

Table 5.5 shows a summary of the statistical tests applied to quality indica-

tors across all specialties. It depicts the total number of “yes” in summary

tables like the one showed in the previous examples. The results show that

using some planned slack is better than using no planned slack. On one

hand, comparing configuration 1 with the other two, none of the statistical
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0 10% 20%

0 - 0 0

10% 8 - 2

20% 7 1 -

Table 5.5: Summary of the comparison of different configurations of the
deterministic approach

tests indicates that configuration 1 is better. On the other hand, comparing

2 with 1, in 8 out of 10 instances the tests indicate that 2 is better. Fur-

thermore, comparing 3 with 1, in 7 out of 10 instances 3 is better. Some

planned slack clearly helps to reduce the impact of uncertainty, decreasing

the number of cancelled surgeries and minutes of overtime.

Regarding the amount of planned slack the results are not clear. Configura-

tion 2 (10%) is better than 3 (20%) in 2 instances and 3 is better than 2 in

only 1 instance. The benefits of using a fixed planned slack start to decrease

as the amount of planned slack increases. In fact, as the empty space inside

each time block increases the number of scheduled surgeries as well as the

surgical suite occupancy rate decreases. The results seem to indicate that

the planned slack should not be fixed, but instead it should be adaptive and

take into account the uncertainty intrinsic to each instance.

5.5.4.2 Stochastic Simulation Optimization Approach

In the simulation optimization approach the different configurations rep-

resent alternative number of replications applied to estimate performance

measures for each solution during the optimization process. Table 5.6 sum-

marizes the results of the statistical tests performed over the quality indi-

cators data. Clearly, 5 replications are not enough to estimate performance

measures accurately. The first row shows that 5 replications are a better

option only in 2 instances, representing 4% of the total comparisons. Also,

in 80% of the total comparisons, it is beneficial to use a number of replica-

tions higher than 5. A low number of replications enables the algorithm to
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5 25 50 75 100 150 better

5 - 0 0 0 0 2 4%

25 10 - 2 3 4 4 46%

50 9 4 - 2 4 6 50%

75 8 3 0 - 4 6 42%

100 7 1 0 0 - 3 22%

150 6 1 1 0 0 - 16%

worse 80% 18% 6% 10% 24% 42%

Table 5.6: Summary of the comparison between different configurations of
the simulation optimization approach

perform a high number of generations under a fixed time limit. However,

the lack of precision in the estimates is unable to guide the algorithm to find

better solutions, resulting in poor quality solutions.

A too high number of replications is also not an appropriate choice. The last

row shows that using 150 replications is a better choice in 16% of the cases,

but most of them are comparisons with 5 replications (in 2 comparisons

only). The results also show that in 42% of the cases a number of repli-

cations lower than 150 is better. As the number of replications increases,

the accuracy also increases. However, the number of generations performed

under a fixed time limit decreases “exponentially”. Therefore, a number of

replications too high does not pay off as the algorithm does not run enough

generations to find good solutions.

When the number of replications is between 5 and 150 the aggregated re-

sults are not so clear and can be misleading. The results indicate that 50

replications are better than other options in 50% of the comparisons. How-

ever, it clearly depends on the characteristics of the instance, such as the

problem size and degree of uncertainty. For instance, Table 5.7 marks with

“X” the best configurations for each surgical specialty. In Urology and Gen-

eral surgery 1, 25 replications is clearly a better option. In contrast, other

instances show a few ties. On average, at a 95% significance level, the ap-

proach based on quality indicators produced 2.8 ties. In order to further

characterize the influence of the number of replications in the algorithm
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5 25 50 75 100 150

Vascular surgery X X X

Oral and maxillofacial surgery X X X X

Neurosurgery X X X

Ophthalmology X X X X X

Orthopaedics X X

Urology X

Otolaryngology X X

General surgery 1 X

General surgery 2 X X X

General surgery 3 X X X X

Table 5.7: Configurations in which it is not able to determine a better
configuration

performance it is necessary to analyse indicators data.

Figure 5.7 shows 3 box plots comparing indicator data in 3 alternative num-

ber of replications for the Vascular Surgery instance. It is not able to deter-

mine which one of them is a better option with the Kruskal–Wallis test at a

95% confidence level. It should be taken into account that in the indicator

values a lower value is better. The plots are consistent among the indicators.

In general, a lower number of replications, in this case 50, is able to generate

lower median indicator’s values. However, the variability is higher than in

the other configurations. Thus, in order to get more predictable results, a

higher number of replications is a better configuration.

(a) Epsilon indicator (b) Hypervolume indicator (c) R indicator

Figure 5.7: Descriptive statistics for the Vascular surgery’s indicators data

5.5.4.3 Comparison between the approaches

In order to identify differences in performance between the approaches as

well as to visualize the outcomes of multiple runs, Empirical Attainment

143



Chapter 5

Functions (EAFs) are applied. EAFs are able to determine attainment levels

(or super-levels) which are regions in the objective space with associated

probabilities of a single run of the MOEA generate a solution within it.

Figure 5.8 shows the points delimiting 3 of those regions with respective

probabilities of 1/3, 2/3 and 3/3. In this example, points delimiting regions

with lower probability appear lighter and with higher probability darker.

The lighter lines are better noticed on the edges of the axis (see signs “A” and

“B”), close to darker lines, meaning the algorithm has a high probability to

achieve good solutions. The data correspond to the deterministic approach

with 10% planned slack and the simulation optimization approach with 75

replications applied to Vascular Surgery.

(a) Deterministic approach (b) Simulation optimization approach

Figure 5.8: Points delimiting the attainment surfaces of multiple runs of the
MOEA for the Vascular Surgery department

Figure 5.8(a) shows that the deterministic approach generates solutions with

an excessive number of cancelled surgeries and overtime minutes. On the

other hand, Figure 5.8(b) shows that the simulation optimization approach

is able to generate solutions with a lower number of cancelled surgeries and

overtime minutes. Moreover, such solutions have high number of performed

surgeries and occupancy rate as well. Figure 5.9 highlights the best points

in each objective generated by each approach. Indeed, the simulation opti-
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mization approach yields the best (lowest) values regarding the number of

cancelled surgeries and overtime minutes.

(a) Deterministic approach (b) Simulation optimization approach

Figure 5.9: Best solutions in each objective for the Vascular Surgery depart-
ment

Similar results were obtained to other instances. For instance, Figure 5.10

shows the points delimiting attainment surfaces for the Ophthalmology de-

partment. It is a quite demanding instance type due to the short duration

of the surgeries and high variance. The deterministic approach with a 10%

planned slack generates a high number of cancelled surgeries as well as a high

amount of overtime. In contrast, the simulation optimization approach gen-

erated solutions with a reduced number of cancelled surgeries and overtime

minutes, while keeping high numbers of performed surgeries and occupancy

rates.

Figure 5.11 shows a set of matrices comparing the best configurations of

the deterministic MOEA with the best configurations of the simulation op-

timization approach based on the results of the Kruskal-Wallis statistical

testing procedure in three different quality indicators. These results indicate

that the simulation optimization approach is better than the deterministic

MOEA in the majority of the tested instances (80%). The proposed simu-

lation optimization approach did not reveal to be better for two instances
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(a) Deterministic approach (b) Simulation optimization approach

Figure 5.10: Points delimiting the attainment surfaces of multiple runs of
the MOEA for the Ophthalmology department

only: Orthopedics and General surgery 3. Preliminary results show that

these instances present better results with a different set of parameters than

the one used in the previous analysis (running time, number of replications

and maximum planned slack). For instance, Orthopedics indicates to re-

quire more computational time due to the size of the instance and its degree

of uncertainty. The best simulation optimization configuration outperforms

the best fixed planned slack when the algorithm runs for 5 minutes. In ad-

dition, General surgery 3 shows to require a higher maximum planned slack

as well as a higher number of replications. In this particular instance, the

SO approach improves as the number of replications increases and outper-

forms the deterministic approach when the number of replications reaches

250 and the maximum planned slack is equal to 20% of the time block size

(the highest value in the deterministic approach).

5.6 Discussion and Future Work

This paper presents a multi-objective simulation optimization approach for

the surgery scheduling problem under uncertainty. The aim is to generate
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Figure 5.11: Results of the Kruskal-Wallis test comparing runs of the deter-
ministic and simulation optimization versions of the MOEA with different
configurations
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surgery schedules able to maximize the number of performed surgeries and

occupancy rate, as well as to minimize the number of cancelled surgeries and

minutes of overtime. Schedule’s performance is evaluated using a simulation

model which takes into account 4 sources of uncertainty: surgery duration,

emergencies, cancellations and delays/advances. The proposed approach is

compared with a standard deterministic approach based on planned slacks, a

traditional way to tackle the problem. The performance assessment of both

approaches, as well as the comparison between them relies on a comprehen-

sive methodology for performance assessment of multi-objective optimizers.

The proposed approach outperforms the deterministic one in the majority

of cases. Planned slacks are effective in reducing the impact of uncertainty.

However, they also reduce the number of performed surgeries and occu-

pancy rate. On the other hand, the simulation optimization is not only able

to generate solutions with a high number of performed surgeries and occu-

pancy rate but also with low cancellations and overtime minutes. To achieve

these results the number of replications should be properly set according to

the characteristics of each instance. It should not be too low due to the

estimation noise, but should not be too high because of the estimation cost.

In future work, the idea of an adaptive number of replications could be

further explored. Moreover, the behaviour of each stochastic variable within

the simulation model could be characterized more precisely. For instance,

the surgery duration could take into account more characteristics of the

procedures being performed as well as of the patient and members of the

surgical team. It would help to reduce the variability among simulation

replications of the same surgery schedule contributing to reduce the required

number of replications. Finally, the proposed approach could be applied to

other surgery management problems, such as the master surgery scheduling

problem.
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Conclusions

6.1 Summary and conclusions

Based on identified research gaps and on the needs of hospital managers, this

thesis develops new methods and techniques for operating room management

problems. In particular, the work focuses on the elective surgery scheduling

problem at the operational decision level which is considered a complex and

challenging decision problem due to its combinatorial, multi-objective and

stochastic characteristics. It balances theory and practice contributing both

to scientific community as well as to society.

The methodological framework followed in the development of this thesis

allowed: (1) to create a solid base consisting of a literature review on oper-

ating room management problems and a series of workshops and interviews

with hospital managers; (2) to develop a decision support system to aid

the elective surgery scheduling process; and (3) to develop new and progres-

sively more complex scheduling methods to address large scale and stochastic

problems.

From a management perspective, the developed DSS represents a powerful

planning tool based on quantitative methods for decision making, in con-
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trast to ad hoc planning methods based on empiricism which still proliferate

in healthcare institutions. It is a must have requirement in order to benefit

from the overwhelming amount of data generated from modern informa-

tion systems. The development of the DSS represents a good example of

research linked to companies, or public institutions, as it was developed in

close collaboration with hospital managers and physicians. In addition, the

scheduling methods proposed in chapters 4 and 5 are examples of innovative

research, since both explored new solution methods which were not found

in the operating room management literature before.

According to chapter 2, the literature on operations research applied to op-

erating room management still presents some research gaps. In fact, there is

a mismatch between the characteristics of the problems and the features in-

cluded in the majority of the solutions. Problems are described as combina-

torial, multi-objective, subject to strong uncertainty and to the availability

of multiple resources. However, the majority of the solutions is deterministic

and considers only a limited number of objectives and constraints. Most of

these gaps are associated to the high computational cost required for tack-

ling complex scheduling problems. This issue forces researchers to apply

simplified approaches. The uncertainty inherent to healthcare management

problems is one of the main drivers of such high computational cost. There

are stochastic approaches to surgery scheduling problems, but most of them

rely on more traditional stochastic programming approaches, which lead to

high computational costs and are not suitable to address multi-objective

optimization problems.

Throughout the development of the decision support system (DSS) it became

evident that it can foster efficiency gains in the elective surgery planning pro-

cess. The complexity of the operating room management problems requires

a paradigm shift from decision processes based on the empirical experience

of the decision makers to decision processes based on quantitative decision
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support methods. Chapter 3 showed that regarding both surgery schedul-

ing and duration estimation, the results are significantly better than the

reality of surgical services and can provide the end-user a great advantage

when planning, compared to the traditional planning methods. In addition,

this method depends on the quality of the available data, so that hospital

managers should implement rigorous processes to collect high quality data.

The two new scheduling methods proposed in chapter 4 can generate far

better schedules (in terms of quality of solutions and required computa-

tional times) than the method proposed in chapter 3, which is commonly

found in the literature. In fact, the new scheduling methods are very com-

petitive and can generate high quality results. The results of the heuristic

approach depend heavily on the additional local search procedures applied

to each solution generated by the genetic algorithm. These approaches are

recommended in a scenario with low uncertainty. For instance, in ambu-

latory services, the operating rooms are dedicated exclusively for elective

cases and the surgery durations show low variability.

In general surgery services, where the surgical process is subject to strong

uncertainty, the simulation optimization approach proposed in chapter 5 is

preferable. This approach is more realistic as it takes into account four

sources of uncertainty and evaluates the quality of solutions based on the

estimated performance of the execution of the plans. It can effectively re-

duces the deviation between the planned and actual performance of surgery

schedules. As a result, it helps to control undesirable effects such as exces-

sive overtime and cancelled surgeries. However, such approach also depends

on the quality of the available data, as the prediction methods applied in

chapter 3.

In conclusion, the decision support system and the new scheduling methods

presented can improve the efficiency of surgical services. Therefore, they
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contribute to tackle an important societal issue. In order to take advan-

tage of these tools, the collaboration of physicians and hospital managers

is needed. In this sense, it is imperative to promote the application of op-

erations research tools in healthcare institutions. In addition, the proposed

methods represent original contributions to the scientific literature on op-

erations research applied to operating room management. These advances

can help researchers to bring innovations to society.

6.2 Contributions of the thesis

This thesis contributed to the field of operations research applied to oper-

ating room management, namely to elective surgery scheduling problems in

deterministic and stochastic settings. Innovative models were developed to

address practical issues, as described in the following topics that summarize

the main contributions of the thesis:

1. The decision support system presented in chapter 3: The solution pre-

sented is mainly directed to the effective management of the operating

theater, where data mining and optimization components are added to

allow for more efficient scheduling. To the best of our knowledge this

work is the first to combine the aforementioned techniques to reduce

surgery uncertainty and to achieve a better utilization of the exist-

ing resources through scheduling optimization within decision support

systems.

2. The exact model with a continuous representation of time presented

in chapter 4: This study proposed a new modelling approach for the

integrated (advance and allocation) surgery scheduling problem using

a continuous representation of time, thus providing a more accurate
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representation of the problem and potentially a higher resource uti-

lization.

3. The meta-heuristic and local search procedures presented in chapter 4:

This study proposed an original heuristic solution method aiming to

find near optimal solutions within a reduced amount of time. The

proposed approach is based on the biased random-key genetic algo-

rithm (BRKGA)(Gonçalves and Resende, 2011) framework and on an

efficient decoding procedure to translate each individual in the popu-

lation into a high quality schedule. The results of the computational

experiments emphasized the value of well tailored heuristics.

4. The simulation optimization framework presented in chapter 5: This

study proposed a multi-objective simulation optimization approach to

the surgery scheduling problem under uncertainty. To the best of

our knowledge, it is the first multi-objective optimization approach to

tackle the general stochastic surgery scheduling problem. In addition,

it is the first approach to take into account four important sources of

uncertainty arising in a large Portuguese hospital and to model surgery

duration considering its main determinant attributes.

6.3 Directions for future research

Throughout the development of this thesis additional studies were carried

out but were not published yet. In addition, the comprehensive research

of operating room scheduled problems generated other promising ideas that

were not developed. For instance, concerning deterministic scheduling meth-

ods, a constraint programming (CP) model was developed and demonstrated

good performance on preliminary computational experiments. In the future,

the performance of scheduling models based on CP needs to be compared
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against the scheduling models proposed in chapter 4. In addition, concern-

ing stochastic solution approaches, it is worth to compare the performance

of the approach proposed in chapter 5, based on a combination of a multi-

objective genetic algorithm with a discrete-event simulation model, against

more traditional models based on stochastic programming (SP).

Concerning new problem settings, the scheduling methods proposed in chap-

ter 4 should be evaluated in a rolling horizon scenario. This would require

small modifications of the problems, e.g. including the previously sched-

uled surgeries and an additional objective function term to minimize their

rescheduling. This approach would be closer to what happens in reality.

Furthermore, it would reduce the required time to generate a new schedule,

since only a small modification of a previous schedule would be required. In

a rolling horizon framework the impact of using different objective functions

can be evaluated. For instance, different objective functions aiming to max-

imize the number of scheduled surgeries, or to maximize the utilization of

ORs, or to minimize the under utilization of ORs (considering that ORs are

occupied during cleaning procedures). In addition, such framework would

help to assess the impact of additional SIGIC rules, such as the maximum

number of days a patient can be in the waiting list without being scheduled,

the minimum time between the date in which the patient is notified of the

surgery date and the actual surgery date, and the maximum distance in days

between the scheduling dates of two patients (to preserve the equity in the

waiting list).

The approach described in the previous paragraph consists in the on-line

surgery scheduling problem. According to the literature review presented

in chapter 2, it is one of the less studied operating room management prob-

lems. Therefore, it should be addressed in the future as an extension of the

scheduling methods presented in this thesis. In addition, OR management

problems on the tactical and strategic decision levels are also not as well

156



6.3 Directions for future research

addressed as the off-line problem on the operational level. These problems

should be addressed in the future in order to complement the decision sup-

port system. They have the potential to promote high efficiency gains and

usually imply less organizational changes with associated lower risks and

implementation costs than operational problems.

Concerning the solution approach proposed in chapter 3, more advanced

simulation allocation rules (SAR) may be evaluated in the future. The lit-

erature review on chapter 2 showed that they are an essential component of

simulation optimization approaches. In preliminary computational experi-

ments the optimal budget computing allocation (OCBA) approach showed

worse results than simple allocation rules. These results may be linked to

the cost of the ranking and selection procedure and the simulation cost. In

the particular case of chapter 5, the model runs very fast, but in the case

of larger instances or in the case of adding additional resources it may be

worth to try more advanced SAR rules.

Finally, in future work, the decision support system proposed in chapter

3 should be implemented in other hospitals. In order to achieve this goal

the top management of hospitals should be convinced of the benefits that

the application of operations research methods can bring to their organi-

zations. In addition, new hospital information systems should be designed

with integrated decision support models. May this thesis help to achieve

these goals.
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Revista Portuguesa de Saúde Pública, pages 93–118.
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