The *Leishmania TDR1* family-related gene: functional studies and evaluation of TDR1 recombinant protein as a vaccine against leishmaniasis

Ana Marta Franco da Silva

Dissertation thesis for the degree of Doctor of Philosophy in Pharmaceutical Sciences – Biochemistry submitted to the Faculty of Pharmacy, University of Porto

Supervisor: Professora Doutora Anabela Cordeiro da Silva - Faculdade de Farmácia da Universidade do Porto

Co-supervisor: Professor Graham H. Coombs - Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde

December 2011
É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.
AUTHOR’S DECLARATION

Under the terms of the Decree-Law nº 216/92, of October 13th, is hereby declared that the following original articles were prepared in the scope of this dissertation.

PUBLICATIONS

Articles in international peer-reviewed journals

Silva AM, Tavares J, Silvestre R, Ouaissi A, Coombs GH, Cordeiro-da-Silva A
Immunological role of *Leishmania infantum* Thiol Dependent Reductase. 1
Submitted for publication to Parasite Immunology

Silva AM, Cordeiro-da-Silva A, Coombs GH
Deletion of the *TDR1* gene provides evidence of variable ploidy in *Leishmania infantum*.
Submitted for publication to FEMS Microbiology Letters

Thiol Dependent Reductase 1 of *Leishmania* is implicated in the regulation of central metabolism via deglutathionylation.
Submitted for publication to Free Radical Biology & Medicine

Silva AM, Cordeiro-da-Silva A, Coombs GH
Metabolic variation during development in culture of *Leishmania donovani* promastigotes.

Fyfe PK, Westrop GD, **Silva AM**, Coombs GH, Hunter WN
Leishmania donovani TDR1, a unique trimeric glutathione transferase evolved by gene duplication then fusion.
To be submitted for publication
Under the terms of the Decree-Law nº 216/92, of October 13th, the author declares that he afforded a major contribution to the conceptual design and technical execution of the work, interpretation of the results and manuscript preparation of the published articles included in this dissertation.

The candidate performed the experimental work with a doctoral fellowship (FCT/ SFRH/ BD/28316/2006) supported by the “Fundação para a Ciência e a Tecnologia”, which also participate with grants to attend in international meetings and for the graphical execution of this thesis. The Faculty of Pharmacy of the University of Porto (Portugal), the Institute for Molecular and Cell Biology of the University of Porto (Portugal) and the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde (United Kindgom) provided the facilities and logistical supports.
À memória do meu pai,

João Costa Silva Júnior

“Eras um pouco de mim… Ficou o teu sorriso no que não esqueço, ficaste todo em mim. Pai. Nunca esquecerei.”

(In morreste-me, José Luis Peixoto)
ACKNOWLEDGMENTS

I would like to thank everyone who has contributed to the realization of this thesis.

First, I would like to thank my supervisor, Prof. Anabela Cordeiro da Silva for the opportunity given to work in her research group, which led a couple of years later to the start of this thesis project. Thanks for all the support, guidance, encouragement and trust throughout all the years.

I would like to extend my gratitude to my co-supervisor Professor Graham Coombs for giving me the opportunity to carry out the research for this thesis in his lab and learn from his vast scientific knowledge. Thanks for all the advice, encouragement and guidance.

To all members of the Parasite Disease Group, thanks for your friendship and motivation, in particular to Joana Tavares, Ricardo Silvestre and Nuno Santarém, for the warm welcome when I arrived to the group and also for your patience to teach me the way in the field of parasitology and immunology. Joana, I have no words to thank all you taught me, for your availability, even when it meant a few more hours in the lab and above all your friendship!

I have spent a good part of this work in Glasgow and I would like to thank all the members of Graham’s lab. Gareth for everything you taught me, for the patience to answer all my questions and advice. Roderick for your willingness to share ideas, your own work and your availability to hear about my work, even when was all about problems! A thank you also goes to Julien for the nice conversations not only about science and help with the metabolomics work. Thank you to former members Saskia, Ruben and Lesley.

I would like to thank Chris Carter for all the help with the animals experiments but above all for her enthusiasm about science and for the funny environment created in the BPU.

À minha família e amigos agradeço tudo o que consegui, sem o vosso apoio e carinho incondicional tudo teria sido muito mais difícil. Não posso deixar de mencionar em especial a minha avó, os meus tios que sempre cuidaram de mim com um carinho extraordinário e o meu Carlitos que sem saber é uma força especial! Todas as palavras...
são poucas para expressar a minha gratidão. Um especial obrigado à D. Gina e ao Sr. Alvarinho que incondicionalmente me apoiaram e acarinharam desde o primeiro momento. À memória do meu avô João, a tua humildade, sacrifício e generosidade ensinaram-me a ser melhor em todos os momentos.

À minha mãe a tua dedicação, força e coragem acompanharam-me durante todo este percurso. Esta tese só foi possível com o teu amor incondicional, todas as palavras são poucas para expressar o quanto te agradeço.

E finalmente, dedico esta tese a ti, Gil com quem partilhei todos os momentos da sua concretização, as frustrações, as angústias, as pequenas vitórias… O teu apoio incondicional, paciência, compreensão, disponibilidade e força permitiram-me chegar ao fim desta etapa…

“Ontem arriscaste mais
Do que uma simples coisa exigia
Deste-me a chave dos sonhos
O caos e a harmonia”

“The important thing in science is not so much to obtain new facts as to discover new ways of thinking about them” (Sir William Bragg)
ABSTRACT

Leishmaniasis is a vector-borne disease caused by protozoan parasites of the genus *Leishmania* that affects millions of people worldwide. The disease can assume different clinical forms depending on the infectious species and also on the immune status of the host. Visceral leishmaniasis, caused by the members of the *L. donovani* complex, is the most severe form of the disease and is fatal if left untreated. Currently there is no effective vaccine available and the chemotherapeutic treatment that exists is expensive, toxic and lacks efficacy; moreover, drug resistance has emerged as a serious problem. Thus novel therapies are urgently required and this will be aided through characterization of the factors involved in parasite survival and virulence.

Leishmania Thiol dependent reductase 1 (TDR1) is parasite-specific enzyme that presents some similarities with human omega glutathione-S-transferase, as demonstrated previously by its thiol transferase and dehydroascorbate reductase activities. This enzyme also catalyzes *in vitro* the conversion of pentavalent antimonials (SbV) into a trivalent form, an ability that could be important in the mechanism of action of this drug against *Leishmania*. Alternatively, it could be involved in drug resistance as reduction of SbV and conjugation with thiols is used by the parasite to extrude the drug out of the cell.

TDR1’s high similarity with a *T. cruzi* enzyme named Tc52 which had been previously reported as a virulence factor led us to analyze the effect of recombinant TDR1 on the immune response in the context of infection with *L. infantum* promastigotes. Balb/c immunization with recombinant TDR1 led to an increase in the CD8-T cell splenic population and decrease in IL-10 production, although the reduction in parasite burden was not sufficient to consider TDR1 as a good antigen to be used in vaccination approaches. Interesting was the finding of an increase in CD8-T cells induced by immunization with TDR1, since CD8-T cell activation and the formation of memory T cells plays an important role against parasitic diseases. These CD8-T cells presented increase expression of memory surface markers, potentially involved in the partial protection obtained at the chronic phase of infection.

In order to provide insights into the functional role of TDR1, attempts were made to delete the gene by homologous recombination in visceral *Leishmania* species (*L. infantum* and *L. donovani*). Unexpectedly, attempts to obtain the *L. donovani* null mutant after two rounds of gene deletion failed. *Leishmania* have been considered diploid organisms, although exceptions were reported and aneuploidy has arisen during attempts to delete essential...
genes or in drug-resistant cell lines. The fact that a null mutant was previously obtained in *L. major* after two rounds of gene knockout suggested that the gene was unlikely to be essential in *L. donovani*. Thus we proceeded to the disruption of a third copy of the gene and a null mutant in *L. donovani* was obtained in this way. *L. infantum* TDR1 null mutants were obtained both after 2 and 4 rounds of gene deletion, showing that the gene occurs in variable copy number within the same cloned population. TDR1 null mutant generation has provided more evidence that the *Leishmania* genome has plasticity in terms of ploidy and recently reported genome sequence data for different *Leishmania* species supports this finding. Deletion of TDR1 did not affect *L. donovani* and *L. infantum* parasites' virulence to macrophages. Further analysis of *L. donovani* null mutants revealed that the null mutants were not more susceptible to oxidative and nitrosative stress, although an increase in sensitivity to trivalent antimony and trivalent arsenite was observed, which could be related with TDR1 detoxification activities. Also, there were no changes in the susceptibility of intracellular parasites of the *TDR1* null mutant in macrophages to SbV when compared with the WT parasites. Thus, the results obtained did not support the role of TDR1 in drug activation or in the involvement in resistance to SbV.

Analysis of parasite's metabolome, a new approach to detect differences between *Leishmania* null mutants and the WT parent line, revealed few but striking differences in metabolite levels involved in energy and amino acid metabolism. This was interpreted as a metabolic re-configuration in the absence of TDR1, implying the enzyme in the regulation of metabolism through S-glutathionylation. Metabolic re-configuration has been reported in a wide range of organisms and occurs due to inhibition or activation of enzymes activity. S-glutationionylation, which occurs in response to oxidative stress or under physiological conditions as a regulatory mechanism, has not yet been reported in *Leishmania* although the effect of TDR1 deletion strongly suggests it existence. Furthermore, recombinant TDR1 has deglutathionylation activity towards protein and peptide substrates supporting the hypothesis postulated.

Overall, the results presented here provide information on the potential role of TDR1 in vivo, through the regulation of enzymes activities by S-glutathionylation. Moreover, TDR1 gene clearly shows that *Leishmania* copes well with aneuploidy; the challenge now is to understand how the parasite takes advantage of this genomic feature. Metabolomics analysis has shown to be an excellent tool for dissecting differences between mutant or natural lines of *Leishmania*.

Keywords: *Leishmania*, Thiol dependent reductase 1, CD8-T cells, aneuploidy, deglutathionylation
Resumo

A leishmaniose é uma doença parasitária causada por protozoários do gênero Leishmania. Esta patologia afeta milhões de pessoas em todo o mundo, e pode assumir diferentes formas clínicas, dependendo da espécie de Leishmania que infecta e do estado imunológico do hospedeiro. A leishmaniose visceral, causada por parasitas do complexo L. donovani, representa a forma mais severa da doença, letal se não tratada. Atualmente não existe uma vacina contra a leishmaniose humana e os medicamentos disponíveis são dispendiosos, tóxicos, carecem de eficácia e verifica-se um número crescente de casos de resistência aos mesmos.

A “Thiol dependent reductase 1 (TDR1)” é uma enzima específica do parasita Leishmania que apresenta algumas semelhanças com a proteína humana omega glutatona-S-transferase, tendo como atividades a redução do ácido dehidroascórbico e a transferência de tióis. Esta enzima também catalisa a conversão de compostos antimoniais pentavalentes (SbV) na sua forma trivalente, atividade que pode ser importante no mecanismo de acção deste medicamento contra o parasita ou estar envolvida na resistência ao mesmo, uma vez que a redução de SbV e posterior conjugação com tióis é usada pelo parasita como mecanismo de desintoxicação.

A homologia observada entre a TDR1 e a enzima de T. cruzi, designada Tc52, previamente considerada como um factor de virulência, conduziu à análise do efeito da proteína recombinante TDR1 (rTDR1) na resposta imunológica no contexto da infecção com formas promastigotas da L. infantum. A imunização de ratinhos Balb/c com rTDR1 induziu um aumento significativo no número das células T-CD8 do baço e uma diminuição na produção da citoquina IL-10 durante a fase crónica de infecção. No entanto a redução da carga parasitária não foi suficiente para considerar a TDR1 como um antigénio adequado para desenvolver uma vacina. Interessante foi o aumento das células T-CD8, uma vez que a activação destas e a formação de células T de memória desempenha um papel importante no controlo das doenças parasitárias. Verificou-se um aumento nos marcadores de superfície nas células T-CD8 característicos de células T centrais de memória, o que poderá ter contribuído para a protecção parcial obtida na fase crónica de infecção.

Com o objectivo de investigar a função da proteína TDR1 nas espécies de Leishmania viscerais (L. donovani e L. infantum) realizaram-se tentativas para remover os alelos que codificam para esta proteína através de recombinção homóloga. A remoção do gene não foi possível após duas rondas de transfecção. A Leishmania tem sido considerada
um organismo diplóide, apesar de terem sido já identificadas excepções e casos de aneuploidia detectados durante tentativas para eliminar genes essenciais ou em parasitas resistentes a medicamentos. O facto de um mutante nulo ter sido produzido anteriormente na *L. major*, sugeriu a possibilidade de o gene não ser essencial na *L. donovani*, dada a sua proximidade filogenética. Assim, procedemos a uma terceira ronda de transfecção na qual foi possível remover o último alelo do gene TDR1. No caso da *L. infantum*, os mutantes nulos foram obtidos após 2 e 4 rondas de transfecção, mostrando que o gene apresenta um número de cópias variável dentro da mesma população. Estes resultados fornecem evidências de que o genoma da *Leishmania* tem plasticidade em termos de ploidia, suportado pelos recentes dados obtidos na sequenciação do genoma de diferentes espécies de *Leishmania*. A remoção do gene TDR1 não afectou a capacidade dos parasitas para infectar macrófagos. Uma análise detalhada dos mutantes nulos na *L. donovani* revelou que a remoção do gene alterou a susceptibilidade a compostos antimoniais trivalentes e arsénicos trivalentes, o que pode estar relacionado com a capacidade de desintoxicação da TDR1. Também não foram detectadas alterações na susceptibilidade ao stress oxidativo/nitrosativo e aos SbV pela forma intracelular do mutante nulo. Assim, os resultados experimentais não suportam a função da TDR1 na activação dos SbV ou na resistência a estes compostos.

A análise do metaboloma dos mutantes nulos na *L. donovani* revelou importantes diferenças, nos níveis de metabolitos envolvidos na produção de energia e metabolismo de aminoácidos. Estas alterações foram interpretadas como uma re-configuração metabólica, na ausência da TDR1, implicando a enzima na regulação do metabolismo através da modificação pós-traducional designada de S-glutationação. A S-glutationação pode ocorrer em condições de stress oxidativo mas também em condições fisiológicas como um mecanismo de regulação, através da inibição ou activação de enzimas; esta modificação ainda não foi descrita na *Leishmania*, no entanto as alterações detectadas devido à remoção do gene TDR1 sugerem a sua existência. Além disso, rTDR1 é capaz de reverter a S-glutationação de diferentes substratos, proteínas e péptidos, suportando a hipótese acima descrita. Em suma, os resultados deste estudo fornecem informações sobre a potencial função da proteína TDR1 *in vivo*, como reguladora da actividade enzimática na célula através de S-glutationação. A análise do metaboloma mostrou ser uma excelente ferramenta para investigar as diferenças tanto entre linhas celulares mutantes como selvagens de *Leishmania*.

Palavras-chave: *Leishmania*, Thiol dependent reductase 1, células T-CD8, aneuploidia, glutationação.
Table of Contents

Author's Declaration ... iii
Acknowledgments .. vii
Abstract ... ix
Resumo .. xi
Table of Contents ... xiii
Index of Figures ... xv
Index of Tables ... xvii
Abbreviations List ... xix

Chapter 1 Leishmania spp. and Leishmaniasis

1.1 The *Leishmania* parasite .. 3
 1.1.1 History and taxonomy ... 3
 1.1.2 Morphology and ultrastructure .. 4
 1.1.3 Life cycle ... 6
 1.1.4 *Leishmania*-sand fly interactions ... 8
 1.1.5 Reservoirs and transmission modes .. 10
 1.1.6 Reproduction mode: clonality versus sexuality ... 11
1.2 Leishmaniasis ... 12
 1.2.1 Clinical manifestations .. 12
 1.2.2 Disease burden and geographical distribution .. 13
 1.2.3 Diagnosis .. 15
 1.2.4 Control strategies .. 16
 1.2.5 Antileishmanial drugs .. 16
 1.2.6 Vaccine development .. 19
1.3 *Leishmania*-host interactions .. 22

Chapter 2 Leishmania: From Genome to Metabolome

2.1 *Leishmania* “omics” .. 29
2.2 *Leishmania* genome: gene content and structure .. 29
2.3 Genomic features that contribute to *Leishmania* diversity and plasticity 31
2.4 Proteomics meets metabolomics: an integrative approach to understand *Leishmania*
 metabolism .. 38
2.5 *Leishmania* metabolome .. 41
CHAPTER 3 LEISHMANIA: THIOL METABOLISM AND ANTIOXIDANT DEFENSE 53
3.1 Thiol metabolism and antioxidant defense ... 55
3.2 Glutathione S-transferases .. 59
3.3 Thioredoxins and Glutaredoxins ... 61
3.4 Protein S-glutathionylation as a mechanism of regulation in various cellular processes ... 64
3.5 Thiol Dependent Reductase 1 .. 69

CHAPTER 4 OBJECTIVES AND RESULTS ... 73
4.1 Objectives .. 75
4.2 Immunological role of Leishmania infantum Thiol Dependent Reductase 1 77
4.3 Deletion of the TDR1 gene provides evidence of variable ploidy in Leishmania infantum ... 141
4.4 Thiol Dependent Reductase 1 of Leishmania is implicated in the regulation of central metabolism via deglutathionylation ... 159
4.5 Leishmania donovani TDR1, a unique trimeric glutathione transferase evolved by gene duplication then fusion ... 209
4.6 Metabolic variation during development in culture of Leishmania donovani promastigotes .. 231
4.7 Comparative metabolomic analyses of Leishmania donovani and Leishmania major reveal specificity in tryptophan metabolism ... 261

CHAPTER 5 DISCUSSION AND PERSPECTIVES ... 281

Bibliography ... 291
INDEX OF FIGURES

CHAPTER 1 *LEISHMANIA* SPP. AND *LEISHMANIASIS*

FIGURE 1.1 The main species of *Leishmania* that affect humans .. 3
FIGURE 1.2 Scanning electron microscope images of *Leishmania* main morphological forms: promastigotes and amastigote.. 4
FIGURE 1.3 Schematic representation of the main intracellular organelles from *Leishmania* promastigote (left) or amastigote (right) forms .. 5
FIGURE 1.4 The life cycle of *Leishmania* parasites .. 7
FIGURE 1.5 A blood-sucking phlebotomine sand fly ... 8
FIGURE 1.6 Main developmental forms of *Leishmania* promastigotes in the sand fly vector ... 10
FIGURE 1.7 Worldwide distribution of visceral (VL) and post kala-azar dermal (PKDL) leishmaniasis ... 14
FIGURE 1.8 Worldwide distribution of cutaneous (CL) and mucocutaneous (ML) leishmaniasis ... 14

CHAPTER 2 *LEISHMANIA*: FROM GENOME TO METABOLOME

FIGURE 2.1 Central carbon metabolism in *Leishmania*. ... 42

CHAPTER 3 *LEISHMANIA*: THIOL METABOLISM AND ANTIOXIDANT DEFENSE

FIGURE 3.1 Trypanothione-mediated detoxification of hydroperoxides in trypanosomatids. ... 56
FIGURE 3.2 Thiol metabolism in trypanosomatids .. 58
FIGURE 3.3 Thioredoxin and Glutaredoxin systems ... 61
FIGURE 3.4 Oxidation fates of protein cysteines ... 65
FIGURE 3.5 Potential mechanisms of protein S-glutathionylation .. 67
FIGURE 3.6 HEDS reduction by TDR1 ... 70
INDEX OF TABLES

CHAPTER 2 LEISHMANIA: FROM GENOME TO METABOLOME

TABLE 2.1 Summary of Leishmania genomes ... 30
TABLE 2.2 Summary of Leishmania chromosomes ... 36
Abbreviations List

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>amastigote antigen 2</td>
</tr>
<tr>
<td>ACR2</td>
<td>arsenate reductase 2</td>
</tr>
<tr>
<td>APx</td>
<td>ascorbate peroxidase</td>
</tr>
<tr>
<td>AsIII</td>
<td>arsenite</td>
</tr>
<tr>
<td>AsV</td>
<td>arsenate</td>
</tr>
<tr>
<td>CDNB</td>
<td>1-chloro-2,4-dinitrobenzene</td>
</tr>
<tr>
<td>CL</td>
<td>cutaneous leishmaniasis</td>
</tr>
<tr>
<td>CR1 or CR3</td>
<td>complement receptor 1 or 3</td>
</tr>
<tr>
<td>DAT</td>
<td>direct agglutination test</td>
</tr>
<tr>
<td>DC</td>
<td>dendritic cell</td>
</tr>
<tr>
<td>DHA</td>
<td>dehydroascorbate</td>
</tr>
<tr>
<td>DHAR</td>
<td>dehydroascorbate reductase</td>
</tr>
<tr>
<td>DHFR-TS</td>
<td>dihydrofolate-reductase thymidylate synthase</td>
</tr>
<tr>
<td>FML</td>
<td>fucose mannose ligand</td>
</tr>
<tr>
<td>GADPH</td>
<td>glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GIPL</td>
<td>glycosylinositolphospholipids</td>
</tr>
<tr>
<td>GPI</td>
<td>glycosylphosphatidylinositol</td>
</tr>
<tr>
<td>GR</td>
<td>glutathione reductase</td>
</tr>
<tr>
<td>Grx</td>
<td>glutaredoxin</td>
</tr>
<tr>
<td>GSH</td>
<td>reduced glutathione</td>
</tr>
<tr>
<td>GSNO</td>
<td>S-nitrosoglutathione</td>
</tr>
<tr>
<td>Gsp</td>
<td>mono-glutathionylspermidine</td>
</tr>
<tr>
<td>GSSG</td>
<td>oxidized glutathione</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione S-transferase</td>
</tr>
<tr>
<td>GSTO</td>
<td>omega glutathione S-transferase</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>hydrogen peroxide</td>
</tr>
<tr>
<td>H$_4$F</td>
<td>methyl-tetrahydrobiopterin</td>
</tr>
<tr>
<td>HASPB1</td>
<td>hydrophilic acylated surface protein B1</td>
</tr>
<tr>
<td>HEDS</td>
<td>2-hydroxyethylisulphide</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>HMG-CoA</td>
<td>3-hydroxy-3-methylglutaryl-CoA</td>
</tr>
<tr>
<td>IFAT</td>
<td>indirect fluorescent antibody test</td>
</tr>
<tr>
<td>IPC</td>
<td>inositolphosphorylceramide</td>
</tr>
</tbody>
</table>
kDNA kinetoplast
KMP-11 kinetoplastid membrane protein 11
LACK Leishmania homologue of receptor for activated C kinase
LC-MS liquid chromatography–mass spectrometry
LeIF Leishmania elongation and initiation factor
LmSTI1 Leishmania major homologue of the eukaryotic stress-inducible protein
LPG lipophosphoglycan
ML mucocutaneous leishmaniasis
MPL-SE monophosphoryl lipid A - stable emulsion
MVT multi-vesicular tubule (MVT)
NET neutrophil extracellular traps
NF-kβ nuclear factor -kappa
NO’ nitric oxid
nsGPx non-selenium glutathione peroxidase
O2− superoxide radical
OH’ hydroxyl radical
ONOO− peroxynitrite
OvSH ovothiol
PAPS phosphoadenylsulfate reductase
PC phosphatidylcholine
PE phosphatidylethanolamine
PEP phosphoenolpyruvate
PG phosphatidylglycerol
PI phosphatidylinositol
PKDL post-kala-azar dermal leishmaniasis
PL phospholipid
Plrx plasmoredoxin
PM peritrophic matrix
PPP pentose phosphate pathway
PS phosphatidylserine
PSA-2 parasite surface antigen 2
PSG promastigote secretory gel
PTM post-translational modification
PTR1 pterin reductase 1
PV parasitophorous vesicle
RNAi interference RNA
RNS reactive nitrogen species
xx
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RR</td>
<td>ribonucleotide reductase</td>
</tr>
<tr>
<td>SAM</td>
<td>S-adenosyl-methionine</td>
</tr>
<tr>
<td>Sb<sup>III</sup></td>
<td>trivalent antimonial</td>
</tr>
<tr>
<td>Sb<sup>V</sup></td>
<td>pentavalent antimonial</td>
</tr>
<tr>
<td>SIR2</td>
<td>silent information regulator 2</td>
</tr>
<tr>
<td>SL</td>
<td>sphingolipid</td>
</tr>
<tr>
<td>SNPs</td>
<td>single nucleotide polymorphisms</td>
</tr>
<tr>
<td>SO<sub>2</sub>H</td>
<td>sulfinic acid</td>
</tr>
<tr>
<td>SO<sub>3</sub>H</td>
<td>sulfonic acid</td>
</tr>
<tr>
<td>SOH</td>
<td>sulfenic acid</td>
</tr>
<tr>
<td>SSG</td>
<td>sodium stibogluconate</td>
</tr>
<tr>
<td>T(SH)<sub>2</sub></td>
<td>trypanothione</td>
</tr>
<tr>
<td>TCA</td>
<td>tricarboxylic acid</td>
</tr>
<tr>
<td>TDR1</td>
<td>thiol dependent reductase 1</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrosis factor</td>
</tr>
<tr>
<td>TR</td>
<td>thioredoxin reductase</td>
</tr>
<tr>
<td>Trx</td>
<td>thoredoxin</td>
</tr>
<tr>
<td>TryR</td>
<td>trypanothione reductase</td>
</tr>
<tr>
<td>TryS</td>
<td>trypanothione synthetase</td>
</tr>
<tr>
<td>TSA</td>
<td>thiol-specific-antioxidant</td>
</tr>
<tr>
<td>TXN</td>
<td>tryparedoxin</td>
</tr>
<tr>
<td>TXNPx</td>
<td>tryparedoxin peroxidase</td>
</tr>
<tr>
<td>UMSBP</td>
<td>universal minicircle sequence binding protein</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
<tr>
<td>VL</td>
<td>visceral leishmaniasis</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
CHAPTER 1

Leishmania spp. and *Leishmaniasis*
1. The *Leishmania* parasite

1.1 History and taxonomy

Leishmania parasite was first described in 1885 by Cunningham in India from a tissue taken from a sore called the Delhi boil, which at the time was thought to have fungal origin. Later, in 1898, Borovsky reported that the causative agent was a protozoan and described the anatomy of the organism. William Leishman and Charles Donovan were the first to attribute to the parasite the etiology of the disease, after independently discovering the parasite in the spleens of patients with kala azar, nowadays called visceral leishmaniasis. In 1904, the organism responsible for the disease was recognised as being protozoan in nature, named “Leishman-Donovan bodies” and received the taxonomic designation of *Leishmania donovani*. In 1924, John Sinton proposed the theory that the sand fly was the vector of the Kala-azar parasite, *L. donovani* and only later, Robert Knowles and scientists at the Calcutta School of Tropical Medicine gave evidence to support Sinton’s theory, by detection of *Leishmania* parasites in sand flies that had been fed on patients. The first experimental evidence of transmission of leishmaniasis by the bite of sand flies was by Shortt et al in 1931, who achieved the transmission of *L. donovani* to hamsters by the bite of *Phlebotomus argentipes*. Since then, *Leishmania* has been found to be a complex grouping of species, more than 20 species transmitted to humans by species of phlebotomine sandflies, which cause several diverse clinical manifestations. Currently there are two groups of *Leishmania* parasites, subgenera Leishmania and Vianna, classified based on which part of the sand fly gut is colonized by the parasite. This separation was also supported by DNA sequence-based phylogenetic analysis (Figure 1.1).

![Figure 1.1 The main species of *Leishmania* that affect humans (adapted from WHO).](image-url)
Members of the subgenus *Leishmania* undergo suprapylarian development taking place exclusively in the midgut and foregut of the vector whereas members of the subgenus Viannia also undergo a period of peripylarian development in the hindgut\(^5\), \(^7\).

1.1.2 Morphology and ultrastructure

Leishmania has a dimorphic life cycle and two main forms can be distinguished: an extracellular promastigote stage that develops within the digestive tract of sand flies and an intracellular amastigotes, which proliferate and multiply within the phagolysosome of mammalian macrophages. The promastigotes have a fusiform shape (5-15µM) while amastigote forms are smaller and present an ovoid shape (3-5µM); both forms possess a specialized invagination of the plasma membrane, named flagellar pocket, at the anterior end of the parasite that encloses the base of the flagellum that in amastigotes is greatly reduced or barely emergent\(^8\), the reason why amastigotes are non-motile forms (Figure 1.2).

Figure 1.2 Scanning electron microscope images of *Leishmania* main morphological forms: promastigotes and amastigote (adapted from Besteiro et al.\(^9\)).

In 1950s, a report by Chang has described the ultrastructure of *L. donovani* as follow: “The structure of the intracellular form of *Leishmania donovani* as seen by the light microscope consists of a nucleus and usually a rod-like kinetoplast within a homogeneous mass of cytoplasm, while the extracellular or culture form has, in addition to these structures, an anterior flagellum” and concluded “intra- and extracellular phases of the parasite possess the same basic structures”\(^10\). There are considerable variations between different species of kinetoplastids and even between different life cycle stages within a specie; ultrastructure features such as the overall dimension, flagellar morphology and position of kinetoplast (mitochondrial) and flagellar basal body relative position to the nucleus have been used to distinguish the different forms\(^11\). Nevertheless, research work through the years has shown that the different developmental stages can be distinguished from each other based also on their growth rates, nutritional requirements and the
regulated expression of surface proteins. Moreover, parasite differentiation is often marked by dramatic changes in the morphology and function of organelles in the secretory and endocytic pathways that regulate many of these processes. A schematic representation of the main intracellular organelles from promastigotes and amastigote forms (Figure 1.3) reveals differences between the two forms such as the absence of flagellum in the amastigote form and the presence of multi-vesicular tubule (MVT) lysosome or megasomes in the promastigotes and amastigote form, respectively.

Figure 1.3 Schematic representation of the main intracellular organelles from *Leishmania* promastigote (left) or amastigote (right) forms (adapted from Besteiro et al.).

Surface membrane of Kinetoplastids, including *Leishmania*, is divided into 3 morphological distinct subdomains: (i) the flagellum, (ii) the flagellar pocket and (iii) a pellicular plasma membrane, which surrounds the body of the cell and is attached to an array of subpeculiar microtubules that underlie the plasma membrane. The flagellum is responsible for parasite motility, but is also involved in the attachment of the parasite to the sand fly and may have a role in environmental sensing, as many nutrients and signaling proteins are targeted to the flagellar membrane. The single flagellum emerges from a deep invagination, named flagellar pocket, which is an important zone of interaction between the parasite and its environment because it is the only site in the cell for endocytosis and exocytosis being responsible for crucial exchanges such as uptake of
nutrients via receptor-mediated endocytosis15 for secretion of proteins into the extracellular medium, and for integration of membrane proteins into the cell surface12, 16, which is supported by the fact that the structure is surrounded by several organelles of the secretory and endocytic pathways13. Besides the flagellar pocket, \textit{Leishmania} contains other specialized organelles such as the kinetoplast and glycosomes.

The mitochondrial DNA is enclosed in an unusual structure known as the kinetoplast (kDNA), considered one of the unusual characteristic of trypanosomatids. kDNA is a network of thousands of catenated circular DNAs of two types, maxicircles and minicircles. There are several thousand minicircles, which range in size from about 0.5 to 2.5 kb (depending on the species), and a few dozen maxicircles, which usually vary between 20 and 40 kb17, 18. The maxicircles are structurally and functionally analogous to the mitochondrial DNA from higher eukaryotes, and they encode rRNAs and subunits of the respiratory complexes. Minicircles encode guide RNAs that modify the maxicircle transcripts by extensive uridylate insertion or deletion in a process known as RNA editing19.

Another unique feature of trypanosomatids is the compartmentalization of several important metabolic pathways, such as glycolysis, in organelles designated glycosomes20. Compartmentation of glycolytic enzymes in \textit{T. brucei} prevents the toxic accumulation of glycolysis metabolism intermediates, as the parasite lacks a feedback regulation of the early steps of glycolysis21. The sequestering of pathways of carbohydrate metabolism within the glycosomes may allow a rapid adaptation of parasites to new nutritional conditions during their life cycle20.

\section*{1.1.3 Life cycle}

The life cycle of \textit{Leishmania} alternates between a mammalian host and a phlebotomine sand fly (Figure 1.4). Phlebotomies sand flies are the vectors responsible for the transmission to mammalian hosts ranging from desert rats to humans22, who are often an accidental host. Female sand flies become infected when they feed on an infected host, as free amastigotes or amastigote-infected mononuclear cells are ingested along with the blood meal. Once in the vector, amastigotes will transform into motile and replicative forms called procyclic promastigotes. This development is triggered by a change in environmental conditions such as decrease in temperature and increase in pH7, 23. The \textit{Leishmania} procyclic promastigote will differentiate into the infective, non-dividing
metacyclic promastigote, a form characterized by a smaller body and a longer flagellum that undergo significant changes for a successful transmission to the mammalian host.

Figure 1.4 The life cycle of *Leishmania* parasites. *Leishmania* metacyclic promastigotes are delivered to the mammalian host through the bite of an infected sandfly (1) followed by the promastigote attachment to the macrophage. Once phagocytised by the macrophage (2), the parasite-containing phagosomes fuse with lysosomes, forming phagolysosomes, where the promastigotes forms differentiate into amastigotes (3), replicate (4), and are released by lysis of the infected macrophages (5), leading to infection of other cells (6). Following ingestion of the parasite by the sandfly during a bloodmeal (7), amastigotes differentiate into procyclic promastigotes (8), which then undergo several changes and develop into the infective metacyclic stage (9) (adapted from Kaye *et al.*24).

During another blood feeding, the sandfly regurgitates the metacyclic promastigotes, which are phagocytosed by macrophages or other cell types, such as neutrophils, dendritic cells or fibroblasts found in the local environment. Once inside the macrophage, the promastigotes undergo significant biochemical and metabolic changes, which result in
the intracellular aflagellate amastigote form, which can replicate within the macrophage parasitophorous vacuoles.

1.1.4 *Leishmania*-sand fly interactions

There are approximately 1000 species of sand flies, from which only 70 are proven or probable vectors of *Leishmania*\(^\text{25}\). *Leishmania* vectors are small insects of the order Diptera, subfamily Phlebotominae commonly called phlebotomie sand flies, with a body length of approximately 2−3 mm (Figure 1.5)\(^\text{26, 27}\). There are 3 features that make sand flies easy to recognize as described by Killick-Kendrick *et al.*: "when at rest, they characteristically hold their wings at an angle above the abdomen; they are hairy; and, when coming to engorge, they typically hop around on the host before settling down to bite."\(^\text{26}\). The activity of sand flies is crepuscular or nocturnal and diurnal resting places are comparatively cool and humid\(^\text{26, 28}\). Both male and females sand flies feed on natural sugar sources but only females also feed on blood which provides nutrition for the production of eggs\(^\text{26}\).

![Figure 1.5 A blood-sucking phlebotomine sand fly (adapted from Kato *et al.*\(^\text{27}\)).](image)

Many factors can account for the low number of sand fly species that participate in the transmission of leishmaniasis such as a different distribution from that of the reservoir host, inability to support the development of *Leishmania*. To be considered as a *Leishmania* vector, a sand fly must be anthropophilic, bite the reservoir host(s), infected in the nature with the same *Leishmania* as occurs in humans, support the growth of the parasite and be able to transmit the parasite by biting\(^\text{26}\). Thus *Leishmania* species are restricted to two genera of phlebotomie sand flies: *Phlebotomus*, divided into 12 subgenera, and *Lutzomyia*, divided into 25 subgenera and species groups\(^\text{26}\). The vectors can be further divided into specific or permissive considering the vector competence to
support the growth of only one or more species of *Leishmania*. Some phlebotomine species are considered specific as they can support the growth of only those species of *Leishmania* with which they are infected in nature, such as *Phlebotomus papatasi* and *Phlebotomus sergenti*; other species such as *Lutzomyia longipalpis* and *Phlebotomus argentipes* are permissive vectors since they are able to develop mature transmissible infections when infected with several *Leishmania* species. Vectorial competence is influenced mainly by 3 factors: parasite resistance to the action of digestive enzymes produced in the sand fly midgut, which may inhibit the early growth of parasites in the bloodmeal; the presence on the inner surface of the gut of the vector of the appropriate lipophosphoglycan-binding sites that match the lipophosphoglycan on the surface of the promastigotes, enabling them to attach to the inner surface of the sandfly gut and the complete development of the parasite to produce metacyclic promastigotes, the only form of the parasite that can survive in the vertebrate host. Besides the digestive enzymes, other potential barriers to the complete development of the parasite in the sand fly, such as, the peritrophic membrane (physical barrier to parasite migration out of the abdominal midgut), the excretion of the digested bloodmeal (may result in loss of infection from the gut) and the anatomy and physiology of the anterior gut (may prevent the forward movement of metacyclic promastigotes and their egestion during blood feeding) have likely forced the parasite to express specific molecules in order to survive in the sand fly.

In the sand fly, can be distinguished 4 major development forms: procyclic, nectomonad, leptomonad and metacyclic promastigotes. *Leishmania* development in the sand fly is often simplified to two main forms, procyclic and metacyclic, however promastigotes undergo a sequential transformation that is dependent on the nutrient availability and occurs as they migrate from the posterior midgut to the stomodeal valve. These different forms should be taken into account to understand promastigote cell biology and differentiation to the infective stage, metacyclics forms (metacyclogenesis). The time-dependent location of these distinct morphological forms of *Leishmania* promastigotes within the sand fly are shown in Figure 1.6. First, amastigotes differentiate into procyclic promastigotes, the replicative form that multiplies in the bloodmeal and is confined to the peritrophic matrix (PM); PM is produced by epithelial cells and lines the gut lumen of most insects, protecting against rough food particles and pathogens and composed of chitinous microfibrils, proteoglycans and proteins. Procyclic promastigotes will then differentiate into a non-dividing form, nectomonad promastigotes that are responsible for the infection establishment and anterior migration beyond the bloodmeal phase. As soon as nectomonads are released into the midgut lumen they attach between microvilli of epithelial cells to avoid elimination from the midgut during digestion. It was shown for *L.*
Leishmania spp. and Leishmaniasis

major that the abundant surface molecule lipophosphoglycan (LPG) specifically binds to the midgut galectin receptor PpGalec of the sand fly vector P. papatasi. Surface molecules such LPG and proteoglycans protect the parasite from the proteolytic activities of the blood-fed midgut besides being responsible for the attachment in order to maintain infection during excretion of the bloodmeal.

Figure 1.6 Main developmental forms of Leishmania promastigotes in the sand fly vector (adapted from Kamhawi et al.).

Nectomonads migrate towards the anterior midgut and differentiate into the shorter leptomonads, which go through the second round of multiplication in the insect host called the 'sugarmeal phase', leading to a massive infection of the anterior midgut. Leptomonads produce the promastigote secretory gel (PSG), a matrix structure composed mainly of filamentous proteophosphoglycan, which is thought to trigger metacyclogenesis and plays an important role in the transmission phase, being responsible for the 'blocked fly' effect. The transformation of leptomonads into non-dividing metacyclics occurs at the stomodeal valve, which separates the midgut from the foregut and the proboscis. Metacyclic forms are highly motile, present a small cell body compared to the elongated flagellum and are resistant to complement-mediated lysis. The other parasite form found at the stomodeal valve, the haptomonad, forms a parasite plug at the stomodeal valve.

1.1.5 Reservoirs and transmission modes

According to the source of human infection, leishmaniasis can be an anthroponosis, parasites essentially circulate between humans, or a zoonosis, in which the reservoir
hosts are wild animals and the parasites circulate essentially between those and the sand fly, humans being an accidental host. A reservoir is, from a practical point of view, a host that fulfills some attributes that favor the maintenance and dissemination of a given disease agent. Many mammals have been described as important reservoirs of *Leishmania*, including dogs, which are the main reservoir hosts of *L. infantum*, playing an important role in the epidemiology of zoonotic visceral leishmaniasis.

1.1.6 Reproduction mode: clonality versus sexuality

In eukaryotes, genetic exchange is crucial for adaptation to new environmental conditions. Since the discovery of *Leishmania* there has been a debate about how these parasites reproduce: clonality versus sexuality. For many years, the “clonal theory” has been accepted as the main mechanism of parasite reproduction. The ‘clonal theory’ of parasitic protozoa which suggests that offsprings are genetically identical to their parents has been based in several criteria (ex. fixed heterozygosity, absence of recombinant genotypes, deviation from Hardy-Weinberg expectations, widespread identical genotypes). The hypothesis of clonality does not rule out the possibility of occasional genetic recombination, but suggests that is not important enough to change the predominant pattern of clonal population structure. However, this theory was challenged over the years by the observation of interspecific, intraspecific hybrids, recombinant genotypes and by other studies based on molecular karyotype analysis and multilocus microsatellite typing that argued for a predominance of autogamy (a sexual reproductive mode where zygotes are produced by the fusion of two gametes that were produced by the same parental individual) or possible existence of selfing (a sexual reproductive mode where an individual self-fertilizes its own ovules with its own spermatozoids). The impossibility to obtain clear evidences to support sexuality in *Leishmania*, in part due to technical limitations as the low reliability of the genetic markers used, sampling or data interpretation allowed the clonal theory to persist and be accepted as the main mode of reproduction, with infrequent genetic recombination, until new evidences emerged from experimental data. Using transgenic *Leishmania* strains resistant to different selective drugs, Akopyants *et al* were able to isolate parasites from naturally infected sand fly that result from recombination between the two strains as they contain full genomic complements from both parents, but with kinetoplast DNA maxicircles from only one parent. The generation of a hybrid progeny occurred just in the sand fly vector and the parasites were transmitted to the mammalian host by sand fly bite. This study demonstrated for the first time that genetic exchange occurs during *Leishmania* promastigotes development in the sand fly vector. Although genetic exchange in *T. brucei*
has been demonstrated a long time ago57, a similar approach was used previously to show that genetic exchange in \textit{T. brucei} takes place in the salivary glands of the tsetse fly vector involving meiosis58, but the precise mechanism remains unknown. In order to understand the impact of genetic exchange in \textit{Leishmania} epidemiology it is necessary to gain more insights into the process such as when, where (in which part of sand fly gut) and the frequency of hybrids. It may not have much relevance in parasites with exponential growth in an ideal environment, but could become crucial when parasites face changes in the environment59 as it can potentiate a successful adaptation to new niches, vectors and hosts. A genetic exchange consequence is clearly shown by the fact that \textit{L. infantum}/\textit{L. major} hybrids were transmitted by sand fly vector \textit{Phlebotomus papatasi}, which is normally only competent to transmit \textit{L. major}60.

1.2 Leishmaniasis

1.2.1 Clinical manifestations

Clinical manifestations of \textit{Leishmania} infection range from self-healing cutaneous and mucocutaneous forms to visceral leishmaniasis, which is fatal if left untreated. The clinical outcome is mainly dependent on the infectious species, but other factors such as the host immune status also play a role3, 61. Leishmaniasis is classified based on symptomatology in 3 main forms as follows:

- **Visceral leishmaniasis**

 Visceral leishmaniasis (VL) is characterized by fever, weight loss, enlargement of the spleen and liver, anemia and this form of the disease is fatal if left untreated62. A frequent complication of VL is post-kala-azar dermal leishmaniasis (PKDL) characterized by a macular, maculo-papular or nodular rash, which are highly infectious as the nodular lesions may contain many parasites, being consider as potential reservoirs for anthroponotic VL62.

- **Cutaneous leishmaniasis**

 Cutaneous leishmaniasis (CL) is characterized by the presence of one or several ulcers or nodules in the skin, which heal spontaneously but cause disfiguring scars. Thus CL is not
a life-threatening condition however lesions can lead to significant disfigurement and disability⁶³, ⁶⁴.

- **Mucocutaneous leishmaniasis**

Mucocutaneous leishmaniasis (ML) is characterized by destructive ulcerations of the mucosa, which extend from the nose and mouth to the pharynx and larynx. These lesions are not self-healing and are usually caused by inadequate treatment of a primary CL lesion⁶⁴, ⁶⁵.

1.2.2 Disease burden and geographical distribution

Leishmaniasis is still one of the world’s most neglected diseases, widely dispersed, with transmission to humans in five continents (endemic in 98 countries or territories), affecting mainly developing countries; 350 million people are considered at risk of contracting the disease, with an estimated incidence of 2 million new cases per year. Leishmaniasis is associated with nearly 2.4 million disability-adjusted life years and 50,000 deaths annually, however this numbers may be underestimated mainly due failure to account for secondary effects, such as stigma and the economic effect on households and their treatment, that leads to millions of disable people⁶. Leishmaniasis is also found as an opportunistic disease associated with human immunodeficiency virus (HIV). *Leishmania–HIV* coinfection had been reported in 35 endemic countries, intensifying the burden of leishmaniasis by causing severe forms⁶. Depending on the geographic region the infection is acquired, leishmaniasis have traditionally been classified as “Old World” forms (Asia, Europe and Africa) and “New World” forms (Americas)⁶⁵.

Visceral leishmaniasis is caused by parasites of the *L. donovani* complex, *L. donovani* and *L. infantum* depending on the geographical area. There are an estimated 0.5 million new cases of VL, over 50,000 deaths each year and more than 90% of the cases are concentrated in Bangladesh, Brazil, Ethiopia, India, Nepal and the Sudan⁶ (Figure 1.7).
CL is endemic in more than 70 countries worldwide and up to 90% of cases occur in Afghanistan, Algeria, the Islamic Republic of Iran, Saudi Arabia and the Syrian Arab Republic and in Bolivia, Brazil, Colombia, Nicaragua and Peru⁶ (Figure 1.8). The distribution of ML is tightly linked to CL. CL is predominantly caused by *L. major* and *L. tropica*, while ML cases are mainly caused by *L. braziliensis* and *L. panamensis*.
1.2.3 Diagnosis

The diagnosis of leishmaniasis is considered a complex challenge due to the wide spectrum of clinical manifestations and also the difficulty to distinguish the condition from other diseases as many of the clinical signs is shared with malaria, schistosomiasis, tuberculosis or other systemic infections. Thus, Leishmania specific laboratory tests are required for diagnosis confirmation and can be grouped into 3 categories: (i) parasite detection; (ii) antibody-detection tests and (iii) antigen-detection tests\(^{67, 68}\).

(i) **Parasite detection**: demonstration of parasite in tissue samples by light microscopic examination, detection of parasite DNA in tissue samples by PCR. The commonly used method for diagnosing VL is the visualization of the amastigote form of the parasite by microscopy examination in tissues aspirates. This method is highly specific; however, sensitivity varies greatly depending on the source\(^{62, 69, 70}\). Detection of parasites in blood, serum or organs by PCR\(^{71, 72}\) offers several advantages over the microscope examination: it is highly specific and sensitive irrespective of species or genus, quick to perform, may allow host tissue quantification of parasites and is able to detect more asymptomatic infections\(^{73}\).

(ii) **Antibody-detection tests**: methods based on the presence of specific humoral response\(^{74}\). Serological tests based on indirect fluorescent antibody test (IFAT), enzyme linked immunosorbent assay (ELISA) and immunoblotting have shown high accuracy, but are not adapted to field settings. Thus to overcome that problem were specifically developed two tests for field use: direct agglutination test (DAT - based on antigen-antibody reaction) and the rK39 antigen-based immunochromatographic test (a rapid dipstick test based on the recombinant K39 protein)\(^{68, 75, 76}\). Although, high sensitivity and specificity were obtained\(^{77}\), both tests suffer from 2 limitations: specific antibodies remain detectable up to several years after cure so relapse cannot be reliably diagnosed and a significant proportion of healthy people living in endemic areas are positive\(^{76}\). Nevertheless, a phase III trial for diagnostics of VL in India have confirmed DAT and rK39 strip tests has an excellent diagnostic tool, with high sensitive and excellent specificity, being rK39 strip test most suitable for the diagnosis of VL in the field conditions as it is easier to perform than DAT\(^{78}\).

(iii) **Antigen-detection tests**: detection of parasite antigen in tissue, blood or urine samples, by detection of nonspecific or specific antileishmanial antibodies (immunoglobulin), or by assay for Leishmania-specific cell-mediated immunity \(^{67}\).
1. Leishmania spp. and Leishmaniasis

1.2.4 Control strategies

The lack of an effective human vaccine or chemotherapy limits the options to prevent leishmaniasis. Thus, control strategies include the elimination of reservoir populations and reduction or interruption of disease transmission through vector control.

Vector control methods available include chemicals, environmental management and personal protection, and although they can have a strong effect when use independently, sand fly control should involve more than one method; vector control “packages” should take into account parameters such as the species involved, habitats, host feeding preferences and resting sites among others. The efficacy of these measures was well demonstrated by almost disappearance of VL in the Indian subcontinent after a large-scale anti-malarial insecticide (dichloro-diphenyl-trichloroethane (DDT)) spraying campaigns implementation in the 1950s and 1960s; the disease quickly re-emerged when the spraying campaigns were discontinued. The main methods for controlling sandflies with insecticides are indoor residual spraying, spraying of resting sites, use of insecticide-impregnated materials such as bednets and curtains, and pyrethroid impregnated dog collars. Vector control through environmental management involves for example the relocation of human settlements away from sandfly habitats and physical modification of the habitats and personal protection measures, such as application of insect repellents on exposed skin and avoiding times of sand fly activity, should be used by people entering or living in highly endemic foci to avoid bites by sandfly vectors of leishmaniasis.

In the regions where the dog is the main reservoir, a canine vaccine would be the better solution as it would reduce this reservoir and interrupt transmission of Leishmania to humans. Treatment of infected dogs is not effective and canine treatment is performed with the same drugs used in humans increasing the risk of the emergence of drug resistant parasites; the deltamethrin-impregnated collars have been shown to be effective in reducing the risk of infection in dogs. Dog vaccination with Leishmune has shown positives results, with a good correlation in the decrease of both canine and human VL with the increase of the number of vaccinated dogs. Thus it is a promising tool to reduce parasite reservoir and protecting dogs.

1.2.5 Antileishmanial drugs

The lack of vaccines against human leishmaniasis implies that chemotherapy is the only way available to fight the disease. However, the current drugs are far from being
satisfactory with associated high costs and an alarming increase in drug resistance. Drug discovery and development has been mainly directed towards treatment of VL since this form of disease is fatal if left untreated. Pentavalent antimonials remain the first-line treatment in most parts of the world despite the requirement for long treatment duration, toxic effects and the development of resistance, particularly in the region of Bihar (India), where 60% of patients do not respond to the treatment. Miltefosine, different formulations of amphotericin B, paromomycin among others are available to use in addition to pentavalent antimonials. Combination therapy for VL is now seen as a way to increase treatment efficacy and tolerance, reduce treatment duration and cost, and reduce the probability of selection for drug resistant parasites. Studies have shown that treatment with oral miltefosine can be shortened when it is combined with single-dose liposomal amphotericin B.

Pentavalent antimonials

Pentavalent antimonials (SbV) are available in two formulations: meglumine antimoniate and sodium stibogluconate (SSG). The full mechanism of action of antimonials is not known but the drug inhibits the activity of the glycolytic and fatty acid oxidative pathways in amastigote forms. Antimonials are administered as a prodrug in pentavalent form, which needs to be reduced to its trivalent form (SbIII) in order to be active against the parasite. This reduction can either occur in the macrophage, in the amastigote, or both and it was shown to be catalyzed \textit{in vitro} by parasite-specific enzymes namely thiol dependent reductase 1 (TDR1) and arsenate reductase 2 (ACR2) or non-enzymatically by thiols. In antimonial-sensitive cell lines was observed an accumulation of the trivalent form, which is reduced in resistant cell lines. Resistance to antimonial drugs is thought to be multifactorial but one of the key factors is the concentration of active drug within the parasite, which can be modulated by decreased uptake and increased inactivation of the drug by the parasite. Inactivation can be achieved by the conjugation of SbIII with glutathione or trypanothione, leading to extrusion of the drug out of the cell. Indeed, an increase in total thiols and overexpression of associated enzymes are often observed in metal resistant \textit{Leishmania}. This leads to an imbalance in thiol homeostasis and a consequent accumulation of reactive oxygen species. The mode of action of pentavalent antimonials is also dependent on T-cell subsets and cytokines. SSG was found to inhibit protein tyrosine phosphatases, which leads to an increase in cytokine responses. Also treatment with meglumine antimoniate leads to an increase in the phagocytic capacity of monocytes and neutrophils, suggesting an important role of the host response in the activity of these drugs.
- **Amphotericin B**

Amphotericin B is available in four different formulations: amphotericin B deoxycholate, liposomal amphotericin, cholesterol dispersion amphotericin and lipid complex amphotericin. The primary target of this drug is membrane ergosterol, which constitute the major surface sterol in *Leishmania* in contrast with cholesterol in human cells. Thus, amphotericin B kills the parasite by destroying the surface membrane, without having to enter it. Given this, resistance to amphotericin B seems unlikely to occur as *Leishmania* parasites would need to generate a new biochemical pathway to replace surface ergosterol. A single-dose of liposomal amphotericin B was considered by the WHO appointed expert committee on control of leishmaniasis the best available therapy for anthroponotic VL in the Indian subcontinent as it is effective and is safer than any other treatment.

- **Pentamidine**

Pentamidine is a diationic drug that interferes with *Leishmania* DNA synthesis, leads to the condensation and disruption of the kinetoplast DNA core and promotes fragmentation of the mitochondrial membrane, killing the parasite. Pentamidine has been used with success to treat cutaneous leishmaniasis or ML in some regions of the New World with same efficacy as antimonials.

- **Paramomycin**

Paromomycin, is an aminoglycoside that inhibits protein synthesis and modifies membrane fluidity and permeability. Recently was shown that paromomycin drastically alters the accuracy of protein synthesis in *Leishmania*; defective proteins might cause deleterious effects on parasite survival. Paramomycin binds to the parasite ribosomal decoding site, modifying the codon-anticodon recognition process; the effectiveness against leishmaniasis is believed to be due to the ability of paramomycin to discriminate between ribosomes of *Leishmania* and mammalian cells. *L. donovani* promastigotes selected *in vitro* for paramomycin resistance showed reduced accumulation of drug and a significant reduction in the initial binding of drug to the cell surface. Paramomycin resistant cells retained sensitivity to other drugs indicating that if resistance emerge in the field other drugs can be used.
Miltefosine

Miltefosine (hexadecylphosphocholine) is an alkyl phospholipid which was first developed as an anticancer agent and the first orally administered drug for VL to be developed. Miltefosine induces an apoptosis-like death in *L. donovani* promastigotes and amastigotes\(^{109, 110}\). The mechanism of action involves interaction with lipids and in particular membrane lipids - phospholipids and sterols. Reduction in the membrane sterol content led to a reduction in miltefosine activity of 40%; Leishmania lipid rafts, microdomains enriched in sphingolipids, sterols, LPG and GP63\(^{111}\), are used as miltefosine reservoirs at the membrane level, contributing for the constant supply of the miltefosine transporter (LdMT), which is responsible for the internalization of the drug within the parasite\(^{112}\). *In vitro* resistance to miltefosine was shown to occur through decreased uptake or increased efflux of the drug; experimental mutations at LdMT and its specific beta subunit LdRos3, rendered the parasites less sensitive to miltefosine\(^{113, 114}\). Miltefosine resistance induces modifications in C-24 sterol alkylation and fatty acid elongation and saturation. These changes interfere with membrane fluidity and consequently affect drug-membrane interactions\(^{115}\), essential for an effective action of the drug.

1.2.6 Vaccine development

Studies on antileishmanial vaccine candidates have increased remarkably in the recent years, largely due to a better understanding of the mechanisms necessary to induce immunity and the availability of *Leishmania* genome sequences. Several vaccine formulations provided partial protection, however there is no fully effective vaccine against leishmaniasis. An ideal vaccine should meet several attributes such as safety, low cost, be effective against species causing CL and VL, induce CD8- and CD4-T cell responses and long-term immunological memory\(^{116}\). In addition, an effective vaccine should efficiently stimulate dendritic cells as they play a key role in inducing both humoral and cellular responses\(^{117}\). In the search for a vaccine against leishmaniasis have been used different strategies, including killed, live attenuated parasites, recombinant proteins or vaccines based on recombinant DNA among others\(^{118}\).

First generation vaccines

The administration of live virulent parasites, process known as Leishmaniazation constitute the first vaccine against Leishmania. This has been used for over 60 years in several countries, since 1940s but discontinued due to safety issues. In the 1970s and
1980s vaccine trials involving whole and killed parasites were conducted. Recent trials have used inactivated whole parasites, in some cases a mixture of strains, or in the presence of adjuvants but none of those demonstrated protection119. However, in Brazil similar vaccines have been used successful for immunotherapy of human CL, leading to the register of a first generation vaccine as an adjunct to antimony therapy120. The first generation vaccines also include the use of live attenuated parasites, which are infectious but not pathogenic, an important advantage over the vaccination with live or killed parasites116. The ability to manipulate \textit{Leishmania} genome to create genetically modified parasites by introducing or eliminating genes offered a new alternative to develop a vaccine against leishmaniasis. \textit{L. major} parasites lacking dhfr-ts- gene induced substantial protection against a virulent \textit{L. amazonensis} and \textit{L. major} infection in a murine model, although it failed to induce protective immunity in a primate model121-123. Immunization with \textit{L. major} parasites lacking the \textit{lpg2} gene yield different results depending on the susceptibility of the murine model used124-126. Deletion of one allele of \textit{SIR2} gene in \textit{L. infantum} affected the development of the intracellular amastigote stage and immunization of Balb/c mice with these mutants induced a high degree of protection against a virulent challenge127. Another example involves the disruption of \textit{L. donovani} centrin which also affects the growth of the amastigote stage of the parasite. Mice immunized with centrin null mutant showed early clearance of virulent parasite challenge associated with a significant increase in IFN-\gamma, IL-2, and TNF production by CD4+T cell population; sustained immunity and cross-protection against infection with \textit{L. braziliensis}, indicates that these live attenuated parasites are effective and a potentially candidate vaccine against VL as well as ML128. The use of live parasites is considered important for vaccination as it mimics the natural course of infection, although the possibility that the parasite may revert back to a virulent form or reactivation in immunosupressed individuals is a major concern limiting the use of live attenuated vaccines129. Also their large scale distribution represents a major concern.

Second generation vaccines

Second generation vaccines, such as parasite fractions, recombinant proteins or expression in heterologous microbial vector, represent a more feasible option than the first generation vaccines, as they can be produced in a large scale and responses elicited can be potentiated with the use of an adjuvant130, 131. Different approaches have been used to identify proteins potentially suitable to be tested as a vaccine candidate118; several \textit{Leishmania} proteins were selected including GP63, \textit{Leishmania} homologue of receptor for activated C kinase (LACK), parasite surface antigen 2 (PSA-2), fucose mannose ligand (FML), cysteine proteinase (CP)A and CPB, amastigote antigen 2 (A2), hydrophilic...
Leishmania spp. and Leishmaniasis

acylated surface protein B1 (HASPB1), kinetoplastid membrane protein 11 (KMP-11), *L. major* homologue of the eukaryotic thiol-specific-antioxidant (TSA), *L. major* homologue of the eukaryotic stress-inducible protein 1 (LmSTI1) *Leishmania* elongation and initiation factor (LeIF) among others, although only a few formulations have entered clinical or veterinary testing (reviewed by Nagill *et al.*118, Duthie *et al.*66, Kaye *et al.*132, Costa *et al.*133). Analysis of the overall results obtained with these antigens in vaccinations experiments revealed in some cases contradictory results that could be due to different eign-keys><key app="EN" db-id="eevzatx0madtrtoeadsections, challenge dose, adjuvants animal model. Also, failure to protect against the different forms of the disease was observed as in the case of LACK immunizations which failed to protect against VL134. Another issue with the use of recombinant proteins is that alone they induce weak T cell responses and only the addition of certain adjuvants leads to the generation of effective and durable T cell responses66.

Currently, there is only one defined vaccine against leishmaniasis entering phase II clinical testing in humans designated LEISH-F1 (also designated as Leish-111f)135, 136. LEISH-F1 is a fusion protein of three relatively conserved *Leishmania* proteins (TSA, LmSTI1 and LeIF) formulated with MPL-SE (monophosphoryl lipid A - stable emulsion)137. This vaccine candidate protects mice, hamsters, rhesus macaques137-140. In mice infected with *L. infantum*, LEISH-F1 + MPL-SE vaccine administration induced a strong humoral and T cell responses; a significant increase in CD4+ T cells producing IFN-γ, IL-2 and TNF was detected, indicative of a Th1-type immune response137. Recently was reported that LEISH-F1 + MPL-SE vaccine is safe and immunogenic in human healthy subjects with and without history of previous infection with *L. donovani*136. Moreover, the vaccine was considered safe and immunogenic against CL when administered alone140 or in conjugation with antimonials in human clinical trials135, 141. The effect of LEISH-F1 vaccine was also investigated in naturally exposed dogs. As dogs are a very important reservoir, a canine vaccine with the aim to prevent or treat the animals would have beneficial effects through the interruption of the transmission of *Leishmania* parasites to humans. However, vaccination with LEISH-F1 did not protected dogs in an extremely high *L. infantum* endemic region142. On the other hand, the administration of the fucose mannose ligand (FML)-vaccine induced high levels of protection, since only 8% of the vaccinated dogs showed mild signs of canine leishmaniasis after 2 year, while 33% of the non-vaccinated animals developed clinical or fatal disease associated with *L. donovani* infection143. This vaccine is commercially available since 2004 under the name of Leishmune82 and is considered a transmission blocking vaccine likely due to the fact that vaccinated dogs do not have parasites in their skin even when infected144 and antibodies raised against
Leishmume are able to block the parasite development in the sand fly rendering the vector non-infectious.

Third generation vaccines: DNA vaccines

DNA vaccines are an attractive alternative to conventional methods of vaccination due to several features that include the ability to elicit humoral and cellular immune responses, which can be modulated by the addition of adjuvants such as cytokines or CpG. Prime boosting strategies that involve priming with DNA and boosting with the respective recombinant protein or other antigen delivery systems have also been used, since heterologous prime-boost leads to a synergistic enhancement of immunity to the target antigen. DNA compared to recombinant protein vaccines present some advantages, largely due to stability and low cost of production. Moreover DNA vaccines may provide better protection as they can induce the expression of *Leishmania* antigens folded in its native conformation and normal posttranslational modifications to occur similar to natural infection and potentially with unaltered antigenicity. Induction of both humoral and cellular immune responses by DNA vaccines is due to the ability of DC to present the encoded antigen in the context of MHC class I and MHC class II (known as cross-priming) as they can be directly transfected with the plasmid or take up soluble proteins and debris from apoptotic transfected cells. Moreover has been suggested that this form of antigen delivery induces longer lasting immune responses. There are many reports involving vaccination with DNA encoding *Leishmania* antigens, some of them tested previously as recombinant proteins, including GP63, LACK, LmST11 and TSA, cysteine proteinases, ORFF among others with a wide range of success rate. Preclinical experience in other models of leishmaniasis with recombinant adenovirus, vaccinia virus and attenuated Salmonella suggest that these carriers should also be explored against VL.

1.3 Leishmania-host interactions

Intracellular parasitism poses substantial challenges and to be successful the parasites must be able to enter and/or invade the host cell and escape the mechanisms used by the host to clear the intracellular parasites, such as apoptosis, autophagy, production of oxidative and nitrosative species and recognition by Toll-like receptors. *Leishmania* parasites have adapted to colonize different host cells as a way to invade and evade the host immune response, taking advantage of the interaction between the different cells to establish and promote disease. Moreover, *Leishmania*-host interactions are even more
complex due to the diversity between the parasites themselves and the differences in human versus mouse host cell responses experimentally studied.

Leishmania infection of a mammalian host initiates after a sand fly bite, in which promastigotes are injected into the skin where the parasite uptake by phagocytic cells occurs. The sand fly inoculate has an active role in the modulation of immune response of the host to *Leishmania* and may have a role in the influx of potential host cells. Besides delivering a high number of parasites highly enriched in metacyclic promastigotes, the infective form of the parasite, was detected the presence of apoptotic parasites that through the production of TGF-β seems to mediate the silencing of phagocytes and lead to survival of viable parasites. In addition, the infectious inoculum also contains sand fly salivary components and parasite derived molecules such as the filamentous proteophosphoglycan (fPPG), which is a component of the promastigote secretory gel that blocks the anterior midgut of infected *Lutzomyia longipalpis* sand flies.

The earliest *Leishmania* interactions with the host take place in the whole blood as the sand fly bite create a hemorrhagic pool in the host skin for feeding. This first contact between *Leishmania* and the mammalian host induces tissue damage, a process that initiates a strong local inflammatory response and the recruitment of neutrophils and monocytes. Parasites react with natural antibodies and are opsonized by complement, binding to erythrocytes through complement receptor 1 (CR1) and after few minutes of infection transferred and internalized by neutrophils and monocytes. Several recent studies have highlighted and reviewed the role of neutrophils in the initial phase of *Leishmania* infection both as a safe target that protects *Leishmania* from the extracellular hostile environment before entering macrophages but also is an important player in the development and modulation of an immune response against the parasite. The neutrophils classical function is considered to be the capacity to phagocytose and kill microorganisms, contributing to the “first line of defense” against infectious agents. However, the role of neutrophils in *Leishmania* infection goes further as they have been established as early host cells for promastigotes and may also contribute to the development and modulation of immune response against the parasite through the release of chemokines and cytokines. *Leishmania* can transiently survive within neutrophils due to the development of protective mechanisms including the prevention of oxidative burst activation, avoiding the generation of toxic ROS and also the ability to be targeted to non-lytic compartment of neutrophils as reported for *L. donovani*.
Recruitment of neutrophils to the local of infection occurs as early as 30 min post infection and after 1 day of infection parasites localize mainly inside neutrophils. During the first week, the proportion of infected neutrophils drops and as parasites are released from apoptotic neutrophils they become localized in macrophages. The crucial role of neutrophils after sand fly transmission of *Leishmania* is also shown by reduction of local incidence of infection observed when this cell population was depleted, suggesting that parasite can hide in the neutrophil until the host cell apoptosis forces the parasite to infect a macrophage. On the other hand, passage through neutrophils can render the parasite more infective, as host recognition of phosphatidylserine (PS) on the surface of unicellular parasites is an important feature of the process and progression of infection.

Engulfment of apoptotic neutrophils by macrophages can have immunoregulatory or pathogenic roles. BALB/c neutrophils induce a biochemical cascade that deactivates macrophage through the production of TGF-β and increase growth of *L. major* in a manner dependent on PGE2 and TGF-β. In contrast resistant B6 mice interaction of dead neutrophils with macrophage promoted parasite killing. Susceptible Balb/c mice are also less efficient in mediating neutrophil apoptosis as these cells persist much longer in Balb/c than in the resistant B6 mice, suggesting an important role for neutrophil accumulation in the differences observed between the two species. Clearance of neutrophils can have a proinflammatory effect mediated by soluble factors and neutrophil elastase, which activate infected macrophages to eliminate *Leishmania* parasites via TLR4 signaling. Besides the role of neutrophils in the killing of parasites through the activation of macrophages, they have their own microbicidal mechanism such as the release of neutrophil extracellular traps (NETs), which are composed of DNA, histone proteins and antimicrobial peptides. Indeed, *L. amazonensis* induced NET release by human neutrophils in a parasite number- and dose-dependent manner, which in turn led to decrease in parasite viability; the disruption of neutrophil NETs interaction with
Leishmania led to an increase in parasite survival that supports the possible contribution of NETs in the decrease of parasite burden at the site of inoculation\(^{189}\). In contrast, another study have shown that \textit{L. donovani} is able to evade the microbicidal effect of NETs, a mechanism dependent on LPG biosynthesis as mutant parasites were highly susceptible to the antimicrobial activity of NETs. As the parasites are only trapped by NETs and not killed, it was proposed that these structures may contribute to the containment of \textit{L. donovani} promastigotes at the site of inoculation, facilitating their uptake by macrophages\(^{190}\).

Intradermal infection with \textit{L. infantum chagasi}, a visceralizing species, leads to the recruitment of neutrophils to the dermis even later after inoculation and parasites were trafficked through the neutrophils, suggesting that neutrophils may play a role in visceral leishmaniasis\(^{191}\). Also, neutrophils seem to have a crucial role during the first weeks of infection with \textit{L. donovani}, as mice in which neutrophils were selectively depleted have shown a significant increase in parasite burden in spleen and bone marrow\(^{172}\). Both studies highlight the importance of neutrophils in visceral leishmaniasis and how they may influence the development of a protective response.

\textit{Leishmania} spp. have also found a way to interfere and/or control neutrophils functions. The infectious inoculum is composed of non-apoptotic and apoptotic cells, the last ones shown to be necessary in the survival of non-apoptotic parasites that were rapidly killed if phagocytosed in the absence of apoptotic promastigotes. This is explained by the induction of higher levels of TGF-\(\beta\) and low levels of TNF-\(\alpha\) by apoptotic parasites than non-apoptotic cells, directly related with PS exposure on the parasite surface. The PS recognition is known to suppress phagocytic functions through the release of and down-regulation of TNF-\(\alpha\); TGF-\(\beta\) is likely involved in the silent entry of the parasite and survival in the neutrophils\(^{165}\). \textit{Leishmania} is also able to interfere with IFN-\(\gamma\) signaling in neutrophils, working as a potent inhibitor mechanism of the host cell activation\(^{174}\). Another strategy of survival used by \textit{Leishmania} is to delay apoptosis of neutrophils, since they are short-lived cells that undergo rapidly spontaneous apoptosis. Infection with \textit{L. major} led to an increase up to 2 days in life span of neutrophils revealing that the parasite can actively modulate the host apoptosis which will probably allow the parasite to adapt and survive before engulfment by macrophages\(^{186}\). Infected neutrophils secrete high levels of MIP-1\(\beta\) which attracts macrophages\(^{186}\), that due to the recognition of PS on the neutrophil surface will proceed to a “silent” clearance of apoptotic neutrophils, since ingestion of apoptotic cells does not result in the activation of antimicrobial effector functions. \textit{Leishmania}-infected neutrophils are able to deactivate the functions of macrophages as the amount of TGF-\(\beta\) secreted by macrophage following the uptake of infected neutrophils was higher...
than direct uptake of *L. major* promastigotes, with no significant release of TNF\(^{175}\). The ability of the *Leishmania* to survive and maintain infectivity in neutrophils seems to have a crucial role in the establishment of a productive infection in macrophages\(^ {174}\).

Although, in situ imaging has shown that most infected neutrophils release the parasites before being phagocytosed by macrophages and also that parasites numbers in the macrophages of mice did not change after neutrophil depletion\(^ {171}\). Thus, the contribution of parasites uptake by neutrophils to *Leishmania* infectivity is still controversial and not clear. Indeed reported work suggests that the effects of neutrophil depletion are mouse strain dependent\(^ {185}\).

Another type of cells may be involved in the initiation of a protective immune response directed to *Leishmania*, as infection with *L. major* induced the secretion of immunomodulatory mediators such as IL-12, IL-1 IL-4 and IL-6 by keratinocytes\(^ {192}\). There still some controversy in the role of DC during early infection, whether these cells are able to uptake the parasite\(^ {193-195}\). However, recent studies have shown using an intradermal infection model that dermal DCs, a sub-type of dendritic cells found on the dermis, are able to uptake *L. major* parasites shortly after infection\(^ {196}\). Both infected and non-infected dermal DCs became non-migratory at the inoculation site, suggesting that the inflammatory environment induces the change in dermal DC migratory behavior. However, 20h post-infection the number of parasite-containing dermal DC decreased, suggesting that infected dermal DC leave the dermis in order to migrate to draining lymph nodes\(^ {196}\), supporting previous studies which have shown that DC arrival in draining lymph nodes occurs around 24 hours post-infection\(^ {197}\).

Although *Leishmania* parasites can be found in different types of cells, the macrophage is considered the principal site of parasite proliferation and dissemination. Metacyclic promastigotes can be phagocytised indirectly by macrophages through the uptake of infected neutrophils as detailed above. Macrophages can also be directly phagocytised promastigotes that attach to the host cell via a receptor-mediated mechanism and are taken up via CR3-dependent mechanism, by which *Leishmania* is able to avoid complement mediated lysis. This occurs in part through the activity of *Leishmania* surface protease GP63, which cleaves host complement component C3b into iC3b, preventing complement mediated parasite lysis and, in addition the iC3b deposited on the promastigote surface promotes receptor-mediated uptake through CR1 and CR3\(^ {198, 199}\). Parasite phagocytosis by macrophage *in vitro* is rapid and can be completed within 10-20 minutes of parasite attachment, occurring similarly when performed by neutrophils or dermal DC\(^ {171, 196, 200}\).
CHAPTER 2

Leishmania: From Genome to Metabolome
2.1 Leishmania “omics”

Leishmania represents a very diverse group of organisms. In order to characterize *Leishmania* diversity, whole-genome sequencing, transcriptomic studies based on whole genome-based DNA arrays and global proteomic studies have already been carried out\(^\text{201}\). Surprisingly, the comparative genomic studies between *L. major*, *L. infantum* and *L. braziliensis* showed a highly conserved gene syntenic and a small number of species-specific genes\(^\text{202}\), despite an estimated divergence of 46-36 million years\(^\text{43}\). These findings were unexpected as they contrast with the major phenotypic differences caused by each species. Recently, new sequencing technologies allowed a more powerful study of different *Leishmania* species genomes demonstrating that the apparent genetic homogeneity contains features such as aneuploidy, expansion and contraction of genes in tandem arrays and episomes that contributes to genomic diversity and/or plasticity\(^\text{203, 204}\). Transcriptomic studies have been used to determine differences in gene expression between different species and life cycles or associated with drug resistance and clinical polymorphism. Although, due to the fact that regulation in *Leishmania* appears to occur at a post-transcriptional level it was found that the vast majority of the genes are constitutively expressed in all developmental stages and thus transcriptomics alone might not be useful to describe coordinate expression in *Leishmania*. On the other hand, proteomic studies have been useful in the identification of stage specific proteins and have reported a higher percentage of the predicted proteome as stage-specifically regulated at the translational or post-translational level contrary to the data obtained with transcriptomics\(^\text{201}\). Both genomic and proteomic approaches play a role in revealing differences between *Leishmania* species, but are limited in providing contextual and integrative information that is necessary to decipher the mechanisms of cellular function. Metabolites are key in linking together the web of complex interactions, cellular pathways, molecular participants and environmental stimuli. Metabolomics has gained increasing interest in drug discovery, disease diagnostics and treatment, as it allows the measure of metabolites fluctuation that can occur very quickly\(^\text{205}\) and is now being applied in parasite research\(^\text{206-209}\).

2.2 Leishmania genome: gene content and structure

The Leishmania genome is composed of nuclear and kinetoplast DNA, that constitute a unique feature of trypanosomatids. The *L. major* genome was the first to be sequenced\(^\text{210}\),
however before the whole-genome sequencing was completed previous studies have already revealed an unusual pattern of gene distribution, in which the genes are aligned in long arrays that appear to be transcribed as a single unit prior to trans-splicing and polyadenylation²¹¹. *L. major* Friendlin genome is 32.8 Mb in size with a karyotype of 36 chromosomes, with 8272 protein encoding genes, of which 36% can be ascribed with a putative function²¹⁰. Comparative genomic analysis of *L. major*, *L. infantum* and *L. braziliensis* showed a high degree of conserved synteny for more than 99% of the genes. Conservation within coding sequences is also high, with an average amino acid identity between *L. major* and *L. infantum* of 92% and between *L. braziliensis* and *L. infantum* or *L. major* of 77%²⁰². Despite a similar DNA content among all *Leishmania* species analyzed, differences were detected in the karyotype, confirming data previously observed by linkage group analysis²¹². *L. infantum* has a haploid content of 36 chromosomes as does *L. major*, while the New World species have 35 or 34 chromosomes, *L. braziliensis* and *L. mexicana* respectively²⁰². These differences are due to chromosome fusion events that in *L. braziliensis* involved chromosome 20 with 34 and in *L. mexicana* the chromosome 8 with 29, and 20 with 36²⁰³, ²⁰⁴. An update on *Leishmania* genomes obtained by recent genome re-sequencing projects, using the Illumina Genome Analyser platform and the iterative mapping algorithm iCORN²⁰⁴ is shown in Table 2.1.

Table 2.1 Summary of *Leishmania* genomes

<table>
<thead>
<tr>
<th></th>
<th>L. major</th>
<th>L. infantum</th>
<th>L. braziliensis</th>
<th>L. mexicana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Mb)</td>
<td>32.855</td>
<td>32.101</td>
<td>31.997</td>
<td>32.108</td>
</tr>
<tr>
<td>Chromosomes</td>
<td>36</td>
<td>36</td>
<td>35</td>
<td>34</td>
</tr>
<tr>
<td>GC%</td>
<td>59.7</td>
<td>59.6</td>
<td>57.8</td>
<td>59.7</td>
</tr>
<tr>
<td>Predicted protein coding genes</td>
<td>8412</td>
<td>8241</td>
<td>8357</td>
<td>8250</td>
</tr>
<tr>
<td>Predicted specific genes</td>
<td>14</td>
<td>19</td>
<td>67</td>
<td>2</td>
</tr>
</tbody>
</table>

(adapted from Rogers et al.²⁰⁴)

This together with new alignments allowed an update in the number of unique genes in each species (Table 2.1) that is even more restricted than the first data provided by the comparative genomic analysis of *L. major*, *L. infantum* and *L. braziliensis*²⁰². An interesting finding was that species-specific genes are conserved in isolates from within the same complex (*L. donovani* versus *L. infantum*) and between strains of the same species isolated from different or similar geographical locations²⁰⁴. The identification of specie-specific genes is thought to be crucial to determine the possible role of those in the variety of clinical outcomes caused by different *Leishmania* species, particularly the *L.*
donovani] genes required for visceral infection. Experimental approaches to identify the role of specie-specific genes have been mainly achieved through the generation of transgenic parasites, such as L. major parasites expressing L. donovani specific genes121. The A2 gene is an example of a L. donovani specific gene that encodes an amastigote-specific protein. A2 L. donovani deficient amastigotes were severely compromised in their ability to infect mice, indicating the requirement of A2 for survival in the mammalian host124, 125. Introduction of A2 gene into L. major by genetic transfection led to an increase of parasite survival in visceral organs, conferring a change in the virulence phenotype126. Furthermore, genome sequencing analysis revealed significant sequence diversity and structural variation at the A2 locus in L. donovani127, in contrast with the conservation observed at the same locus in L. major127, suggesting and re-enforcing the possible role of the gene in infection visceralization. Other examples of potentially interesting specie-specific genes are the cyclopropane fatty acyl phospholipid synthase (CFAS) gene present in L. infantum and L. braziliensis but not in L. major and the SEC14-like originally identified in L. infantum128, but which has now been identified also in L. mexicana129. CFAS orthologue in Mycobacterium tuberculosis has been shown to modify cell surface glycolipids and is associated with increased virulence and persistence127, while Sec14 cytosolic factor has been implicated in the release of secretory vesicles from the transgolgi network121. There were no differences in growth and in the ability to infect macrophages between SEC14-like null mutants and the L. infantum WT129. Other species-specific genes can result from insertions/deletions and sequence rearrangements that contribute to gene degeneration128 as demonstrated by the identification of Pfp1 gene, which is expressed in L. major, but present in L. infantum and L. braziliensis as a pseudogene130. Unexpected was the fact that genes ubiquitously present in different Leishmania species could also have a dramatic effect on parasite tropisms121. Zhang and co-workers found that the expression of L. donovani Li1040 ortholog gene in L. major, which does not belong to the group of specie-specific genes, dramatically increase L. major parasite numbers in the liver and spleen121. This finding highlight that the factors controlling tropism and virulence are not only related to the species-specific genes, but also to post-transcriptional regulation and gene polymorphisms.

2.3 Genomic features that contribute to Leishmania diversity and plasticity

Given the small number of species-specific genes identified, differential gene expression has been investigated as another potential explanation for disease phenotypic differences. DNA microarrays, of varying size and composition, have been used to determine the
global *Leishmania* gene expression, revealing that the vast majority of *Leishmania* genome is constitutively expressed and that only a limited number of genes, ranging from 0.2 to 5.7% depending on the microarray study, showed differential regulation when comparing promastigote and amastigote forms\(^{220-225}\). Analysis of *L. major* promastigotes and lesion-derived amastigotes gene expression showed that over 94% of the genes were expressed in both stages, with just 1.5% differential mRNA expression\(^{221}\). These results suggest that *Leishmania* is constitutively pre-adapted for survival and replication in different hosts, the constitutive expression of the genome being an advantage of adaptation to the different environments using an appropriate set of genes as necessary\(^{226}\). Comparison of *L. donovani* axenic and intracellular amastigotes revealed substantial differences in gene expression regulation, with 40% more genes up-regulated in axenic than in intracellular amastigotes and just 12% of the differential regulated genes were common to both amastigotes preparations\(^{225}\). Also for *L. major* the differences obtained when comparing promastigotes to axenic (3.5%) or lesion derived amastigotes (0.2%)\(^{220}\) point out that the axenic culture conditions may alter the amastigote transcriptomic abundance and that the importance of the host macrophage as a driving force to specific adaptations cannot be disregarded. Indeed, a quantitative proteomic analysis of axenic and splenic *L. donovani* amastigotes revealed important differences, such as in cell volume and nuclear size, A2 protein expression and parasite infectivity, between both amastigote sources\(^{227}\). Reduction in A2 expression in the hamster-derived amastigotes suggests that these parasites are adapted to survive under stress conditions, as the A2 protein has been considered a virulence factor required for *L. donovani* intracellular survival and resistance to stress\(^{215}\); this is in agreement with the hypothesis suggested by the results obtained when comparing mRNA levels of axenic and intracellular amastigotes, showing that the ones collected from the host are adapted to growth in different environments. This demonstrates that results obtained with axenic amastigotes should be carefully considered as they represent a host free system.

The constitutive expression of the *Leishmania* genome is consistent with the unusual gene organization detected in trypanosomatids. The *Leishmania* genome is organized into large polycistronic gene clusters, comprising of up to hundreds of genes, in the same 5′-3′ direction along the chromosome DNA strand\(^{210}\). These long arrays are transcribed into polycistronic RNA precursors and further processed into individual mRNAs with a 39-nt 5′ capped spliced leader sequence and a 3′ poly(A) tail generated from the polycistronic pre-mRNAs via 5′ trans-splicing and 3′ cleavage polyadenylation reactions\(^{228}\). Polycistronic transcription and the lack of RNA polymerase II promoters for protein-coding genes imply that most of the gene regulation occurs post-transcriptionally. Indeed, numerous
sequences located in the 3'UTRs were described as being involved in the control of mRNA stability and translation, even before the *Leishmania* genome sequence was available\(^2^{29-234}\). Advances in the discovery and characterization of these elements occurred due to the complete annotation of *L. major* genome\(^2^{210}\). Stage-specific post-transcriptional regulation is described as being mediated through specific regions (cis-elements) within 3'UTRs of mRNAs\(^2^{235}\). These elements are widely distributed in the 3'UTR and are classified as U-rich instability elements (UREs), short interspersed degenerated retroposons (SIDERs)\(^2^{236}\) and individual cis-elements\(^2^{237}\). SIDER elements represent the most abundant transposable elements characterized so far in trypanosomatid genomes; two functional distinct families were described in *Leishmania*: SIDER1, which is implicated in stage-specific translational control and SIDER2 that promotes mRNA destabilization. SIDER2 are cis-acting components of a regulatory pathway that generally down regulates gene expression to ensure rapid turnover of a specific subset of *Leishmania* mRNAs.

Rapid mRNA turnover may be a strategy that allows the parasite to easily adapt its pattern of protein synthesis to the different environments\(^2^{236}\). A well known example of stage-specific regulation in *Leishmania* through conserved elements in the 3'UTR is the amastin gene family, which is expressed preferentially in the mammalian stage\(^2^{238}\). Thus, *Leishmania* genome organization and regulation explains why limited stage-specific differences in mRNA levels are detected. In fact the weak correlation of protein expression with the corresponding mRNA levels, as reported in many other organisms\(^2^{239-241}\), confirm the importance of regulation of protein levels in *Leishmania* by mechanisms such as stage-specific translational control or protein stability. A combined proteomic and transcriptomic analysis of *L. infantum* parasites have confirmed the striking lack of correlation in promastigotes between mRNA and protein levels, while for amastigotes it was found to be over 50%\(^2^{242}\). Moreover, a higher number of promastigote- or amastigote-specific protein isoforms were found to be differentially regulated, respectively 6.1% and 12.4%, when comparing with the data obtained from mRNA levels, for which the fold changes observed were more modest than at a protein level. Furthermore, multiple protein spots were found for a single gene and also different isoforms of the same protein are detected as stage-specific, clearly suggesting that protein post-translational modifications occurs playing an essential role on the parasite adaptation to different environments, which might explain the considerable degree of discrepancies between transcriptomics and proteomics as well as the limited number of stage-specific genes. Many other proteomic studies with *L. infantum, L. donovani, L. mexicana* and *L. panamensis* have also highlighted differences between different life stages: there are subtle differences based on the identification of protein isoforms from the same gene, but
also major differences in protein expression, up- or down regulation of expression, with some being stage-specific\(^{221, 243-248}\).

Despite considering that different mechanisms of post-transcriptional and post-translational regulation are crucial for species-specific differences, it is still intriguing how an apparent genetic homogeneity between different *Leishmania* species due to the constitutive expression of the genome generates such enormous diversity in disease outcome. The recent re-sequencing genome projects have increased our knowledge about *Leishmania* genome structure and highlighted some features that can contribute for genome diversity and/or plasticity, the most notable being the chromosome copy number variation between *Leishmania* species and strains\(^{203, 204}\) changing the assumption until now accepted that the *Leishmania* genome was generally diploid\(^{249}\), since that only two exceptions had been reported in *L. major*, with the detection of triploidy and tetraploidy in chromosome 1\(^{250}\) and 31\(^{251}\), respectively. Thus it is clear that the emergence of new and powerful molecular technology will reveal important features of the genome that were likely to be masked by previous approaches, showing that evolutionary changes to reach an adaptive phenotype reflects changes in the karyotype such as gene rearrangement and chromosomal size variation\(^{251}\). Several studies, either associated with attempts to knockout essential genes\(^{252-254}\) or dealing with the mechanisms associated with drug resistance, have highlighted the plasticity of *Leishmania* genome\(^{255, 256}\). DNA microarrays have been used to screen for differentially expressed genes in *Leishmania* parasites selected *in vitro* for drug resistance and proven suitable to detect gene amplification events\(^{256-258}\). Overexpression of genes such as gamma-glutamylcysteine synthetase (GSH1), ABC transporter MRPA (PGPA), pterin reductase 1 (PTR1) and dihydrofolate-reductase thymidylate synthase (DHFR-TS) was found to be due to DNA amplification, a strategy that seems to be used by *Leishmania* parasites to increase expression of certain genes in order to survive under drug pressure\(^{258}\). Modulation of gene copy numbers and consequent up or down regulation of gene expression in resistant lines was described as involving gene deletion, extrachromosomal circular or linear amplicons and supernumerary chromosomes\(^{255, 256}\). Gene amplification has been described in drug resistant parasites selected *in vitro* for resistance to methotrexate (MTX), in which the target gene DHFR-TS or PTR1 were amplified as part of extrachromosomal circular or linear amplicons\(^{258-260}\); also *in vitro* selection of antimony resistance *L. infantum* parasites led to the generation of several supernumerary chromosomes and two haploid chromosomes\(^ {255, 256}\). Although, a clear pattern of aneuploidy was observed in *L. donovani* clinical lines, isolated from visceral leishmaniasis patients, it was not possible to establish a clear link between supernumerary chromosomes and drug resistance phenotypes\(^{203}\).
Clearly further work is needed to confirm the generation of aneuploidy with drug resistance emergence in clinical strains, however there are some indications that gene rearrangements and chromosome aneuploidy make part of the mechanisms used in response to drug pressure, demonstrating the plasticity of the *Leishmania* genome and how well these parasites cope with changes that include duplication or deletion of a whole chromosome. Most surprising is the fact that chromosome copy number variation does not occur only under drug pressure. It was revealed by the new sequencing genome projects that included the annotation of *L. mexicana* and *L. donovani* reference genomes for the first time and also the refined versions of *L. major*, *L. infantum* and *L. braziliensis*, to be a natural genetic feature of *Leishmania* species and apparently the major source of genomic diversity203, 204. Variation in chromosome organization and copy number is a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions261 This plasticity includes the types of genomic changes frequently observed with cancer cells, including chromosomal rearrangements, aneuploidy, and loss of heterozygosity. Aneuploidy in human cancer cells is very prevalent and increasingly common during the acquisition of drug resistance in cancer cells262, 263. Chromosome copy number variation was found in all *Leishmania* species and large differences were detected among the strains and species analyzed, as shown in Table 2.2.

The only supernumerary chromosome found to be common to all species was chromosome 31204, which has been previously identified as tetraploid in *L. major*56. Furthermore, identified in *L. mexicana* and *L. braziliensis* were chromosomes with an intermediate read depth, being neither disomic or trisomic, suggesting a mixture of ploidy in the cloned population as reported for seven chromosomes from individual *L. major* parasites by fluorescent in-situ hybridisation (FISH)264. Sterkers and co-workers have, for the first time, shown variable ploidy within the same *L. major* population suggesting that every chromosome was observed in at least two ploidy stages and also that chromosome ploidy distribution was variable among clones and strains264. This phenomenon, named chromosomal mosaicism, appeared to be constitutive and potentially responsible for the generation of phenotypic variability from genomic plasticity264. Suprisingly, was the observation that *L. braziliensis* strain M2904 is predominantly triploid contrary to what was observed for the other species, containing several tetrasomic chromosomes and six copies of chromosome 31204.
<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>No. chrs</th>
<th>Size (mb)$^{(1)}$</th>
<th>Size (mb)$^{(2)}$</th>
<th>Intermediate chrs</th>
<th>Trisomic chrs</th>
<th>Tetrasomic chrs or higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. major</td>
<td>Friedlin</td>
<td>36</td>
<td>32.8</td>
<td>67.8</td>
<td>-</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>L. major</td>
<td>LV39</td>
<td>36</td>
<td>32.8</td>
<td>70.8</td>
<td>-</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>L. infantum</td>
<td>JPCM5</td>
<td>36</td>
<td>32.1</td>
<td>72.8</td>
<td>-</td>
<td>6, 8, 9, 17, 22, 25, 33, 35</td>
<td>31</td>
</tr>
<tr>
<td>L. donovani</td>
<td>BPK206/0</td>
<td>36</td>
<td>32.1</td>
<td>72.5</td>
<td>1, 5, 6, 9, 11, 35</td>
<td>13, 15, 20, 23, 33</td>
<td>8, 31</td>
</tr>
<tr>
<td>L. donovani</td>
<td>LV9</td>
<td>36</td>
<td>32.1</td>
<td>66.5</td>
<td>2, 14</td>
<td>23, 31, 33</td>
<td>-</td>
</tr>
<tr>
<td>L. braziliensis</td>
<td>M2904</td>
<td>35</td>
<td>32.0</td>
<td>66.4</td>
<td>5, 14</td>
<td>29</td>
<td>16, 30</td>
</tr>
<tr>
<td>L. mexicana</td>
<td>U1103</td>
<td>34</td>
<td>32.1</td>
<td>67.8</td>
<td>2, 4, 6, 7, 8, 12, 14, 15, 17, 26, 27</td>
<td>5, 26</td>
<td>30</td>
</tr>
<tr>
<td>L. mexicana</td>
<td>M379</td>
<td>34</td>
<td>32.1</td>
<td>ND</td>
<td>12, 13</td>
<td>16</td>
<td>-</td>
</tr>
</tbody>
</table>

All chromosomes disomic unless indicated; Chrs, chromosomes; $^{(1)}$ sequenced, haploid; $^{(2)}$ adjusted for chromosome number (adapted from Rogers et al$^{[3]}$).
Chromosome ploidy variation was validated for LinJ36.0640 and LinJ31.3030 genes of *L. infantum* JPCM5 (MCAN/ES/98/LLM-887)\(^{204}\) by gene deletion, with no differences in growth or infectivity between the null mutants and wild type strains. As shown by the analysis of 17 strains of *L. donovani*, the pattern of aneuploidy is unique for each cell line, impossible to link a given pattern to sodium stibogluconate drug resistance, showing clearly that *Leishmania* genomic plasticity and diversity is a complex phenomenon. It’s noteworthy to mention the huge difference in the number of single nucleotide polymorphisms (SNPs) detected in *L. major* (297 SNPs) and *L. infantum* (629 SNPs) compared with *L. mexicana* (12531 SNPs) and *L. braziliensis* (44588 SNPs), revealing a remarkably high level of heterozygosity in *L. braziliensis*. SNPs are the most frequent variation in the human genome, which consist of single base-pair substitutions that occur within and outside genes\(^{265}\). As mentioned above, the recent genome sequence revealed that chromosome copy number variation is the major source of genomic diversity in *Leishmania*\(^{203, 204}\). Besides chromosome copy number variations, expansion and contraction of genes in tandem arrays also contributes to gene dosage differences\(^{203, 204}\). The total number of arrays and the number of gene copies in each array varied among species, with 56 protein-coding genes found to be multicopy in all 4 species studied: *L. major*, *L. infantum*, *L. donovani* and *L. braziliensis* and *L. mexicana*. Interesting was the fact that multicopy genes were found preferentially on disomic and not in supernumerary chromosomes\(^{204}\). The authors of the study suggested that disomic chromosomes containing genes in tandem array are not among those that underwent whole chromosome duplications due to the presence of a higher proportion of dose-sensitive genes\(^{204}\). As reported previously drug selection *in vitro* induced the amplification of genes as part of extrachromosomal amplicons\(^{265}\). Although the presence of episomal DNA corresponding to the amplification of the MAPK locus in *L. donovani* clinical lines, and the fact that more copies of the MAPK-locus were found in SSG-resistant lines, is evidence for *Leishmania* genomic plasticity and the potentially different mechanisms used to regulate gene dosage. Furthermore, it was shown that the gene dosage in the *L. donovani* reference line strongly correlates with transcription levels and thus the implications of this need to be evaluated at proteome and metabolome levels\(^{203}\).
2.4 Proteomics meets metabolomics: an integrative approach to understand *Leishmania* metabolism

In *Leishmania*, mRNA levels can be a misleading indication of the protein expression as parasite genome is constitutively expressed and consequently regulation of gene expression in these organisms is post-transcriptional\(^\text{266}\). Thus, mRNA stability, translation rate and post-translation modifications affecting protein function and stability contribute to gene expression modulation. Both changes in transcripts and protein levels are reflected in functionally relevant variation at a metabolite level, making the metabolome the closest “picture” of the phenotype\(^\text{201}\). Metabolic levels are tightly regulated and the uncloese of the complex *Leishmania* metabolic network and its associated dynamic will allow the determination of basic biological processes and to be relevant to understand the mechanisms underlying drug resistance, since drugs such as amphotericin B and miltefosine target metabolic processes, ergosterol biosynthesis and phospholipid metabolism, respectively\(^\text{267, 268}\). The annotation of the *Leishmania* genome together with several proteomic and biochemical studies on promastigotes and amastigote forms allowed the prediction of *Leishmania* metabolic potential and also the inference of a wide range of metabolic pathways\(^\text{269-271}\).

Proteomics analysis of *Leishmania* spp. have been used to identify stage-specific, immunogenic or secreted/excreted proteins, contributing to an understanding of the changes and/or adaptations underlying, for example, parasite differentiation or drug resistance. Moreover, proteomics has provided crucial data for the prediction of the metabolic pathways present in *Leishmania* spp. Several proteomic studies have been published, reporting the comparison between promastigote and axenic amastigote proteome profile, grown in *in vitro* conditions, which mimic the sand fly and phagolysosome environments, while others have been focused on the analysis of the proteome during differentiation\(^\text{221, 242-248, 272-279}\). All studies revealed differences in protein expression, up-or down- regulation and stage specific expression; however an interesting result was the fact that different protein spots were originated in the same gene, likely due to post-translational modifications (PTM) and consequent detection of different protein isoforms in the different *Leishmania* life stages. PTMs such as phosphorylation, methylation, acetylation and glycosylation are important regulators of protein function, stability and turnover rate\(^\text{280}\). In *Leishmania*, little information is available about PTMs, although recently proteomic approaches have been used to identify sites of PTM in promastigotes and amastigotes, with the aim of determining the changes that occur during
2. Leishmania: From Genome to Metabolome

axenic differentiation and also gain insight into the role of these modifications in the regulation of Leishmania development272, 281, 282. Both phosphorylation and methylation PTMs were more common latter than during the initial differentiation, and in the case of protein methylation, such modification was followed by an increase in protein abundance suggesting a role in protein stability. The notable increase in β-tubulin glycosylation observed 15h post differentiation signals support for the possible role of this modification in parasite cytoskeletal remodeling, since glycosylation of tubulin was reported to inhibit GTP-dependent polymerization281. Furthermore, Morales and co-workers have identified phosphoproteins implicated in stress and heat shock response, RNA/protein turnover, metabolism, and signalling. They have reported that in amastigotes relatively more proteins were phosphorylated compared to promastigotes, 4% and 2.6% of total protein content, respectively272. Phosphorylation appears to be extremely important in the regulation of Leishmania response to stress, as amastigotes phosphoproteins with increasing abundance were almost exclusively protein chaperones such as the HSP90 family member HSP83, various HSP70 family members and the stress induced protein ST11/HOP282, for which have been shown a largely constitutive expression, not induced by elevated temperatures across promastigotes and amastigotes stages245. The importance of chaperone phosphorylation in L. donovani viability was shown by mutation of ST11/HOP phosphorylation sites, since a “conditional” ST11 null mutant required the presence of a functional ST11/HOP copy when a mutated copy was added as an episome282. Thus, phosphorylation as well as other PTMs constitute an extremely important adaptation of Leishmania parasites to constitutive gene expression and absence of transcriptional regulation.

Proteome profiling comparison of promastigote and amastigote forms provide important information, as they represent two different life stages, although the search for differences in protein expression during parasite differentiation and preparation to infect the mammalian host is also of utmost interest. The most comprehensive analysis of protein expression was carried out across seven time points during in vitro differentiation of L. donovani promastigotes, in order to highlight how promastigotes retool themselves to survive and replicate as an amastigote245. This study, used a novel proteomics approach, in which peptides were labeled by the isobaric tags for the relative and absolute quantification (iTRAQ) method, allowing a coverage of 21% of the predicted Leishmania proteome, that resulted in the detection of 969 proteins at all time-points, grouped into an amastigote (289 proteins) and promastigote (310 proteins) specific cluster; major changes in protein abundance occurred at 10–15 h post differentiation signals245. Many enzymes of the major metabolic pathways were identified and analysis of their pattern provided a
comprehensive view of parasite metabolic and physiological adjustments during differentiation. Parasites down-regulate glycolysis and simultaneously up-regulate gluconeogenesis, in agreement with the scarce availability of glucose in the phagolysosome283 and the necessary production of sugars from glycerol and amino acids; also notorious is the parasite shift from glucose to fatty acid oxidation as the main source of metabolic energy, by the up-regulation of the majority of the enzymes involved in β-oxidation and down-regulated expression of acetyl-CoA carboxylase, the enzyme that synthesizes a key inhibitor of β-oxidation, 15h after differentiation. Also, enzymes involved in the tricarboxylic acid cycle, mitochondrial respiration and oxidative phosphorylation were up-regulated throughout differentiation, supporting the increase in metabolic energy production, that the authors of the study propose to be necessary to maintain amastigote pH homeostasis281.

The availability of the \textit{Leishmania} genome sequence and all the information gathered by transcriptomic, proteomic and biochemical studies allowed the construction of a database named LeishCyc, which describes \textit{L. major} genes, gene products, metabolites, their relationships and biochemical organization into metabolic pathways, providing a useful tool for integration of \textit{Leishmania} -omics data (transcriptomics, proteomics, metabolomics) in the context of metabolic pathways271.

Analysis of the metabolome, the total collection of metabolites in a cell provides a read-out of the metabolite levels in biological samples. Thus, metabolomics gives access to information that both genomics and proteomics do not cover, enabling the analysis of small molecules that reveal new insights into the molecular pathways underlying biological processes. Metabolomics have been applied to the discovery of new biomarkers and also to provide a “fingerprint” that allow the distinction between healthy and unhealthy cells284, considered as being an excellent tool in the discovery of metabolites and metabolic pathways central to biological regulation, with important applications in the study of disease including the regulation of disease. Metabolomics applied to parasites is now emerging due to availability of new and improved techniques for extraction and identification of metabolites. Some studies have examined the effect of parasite infection \textit{in vivo} by analysis of host biofluids in order to elucidate the metabolic modulation induced by the parasite and identify biomarkers for a variety of diseases caused by \textit{Schistosoma}, \textit{Trichinella} and \textit{Plasmodium}209, 285, 286. Other experiments have analyzed the parasite \textit{in vitro}, revealing important aspects of \textit{T. brucei} carbon metabolism287 or changes in metabolism that may be involved in the generation of \textit{Leishmania} drug resistance207.
2.5 *Leishmania* metabolome

During its digenetic life cycle, *Leishmania* alternates between the alimentary tract of the sandfly vector and the acidic phagolysosomes of mammalian macrophages. In order to survive in such different environments, *Leishmania* has adapted to exploit multiple carbon sources, possesses a complex transport and salvage pathways to acquire essential nutrients, for which lack the pathways of de novo synthesis, is able to synthesize metabolites involved in cellular oxidative defence, to modulate the host cell metabolic and signalling pathways for their own profit\(^{288, 289}\). As a promastigote, *Leishmania* experience nutrient-rich conditions in the digestive tract of the sand-fly either during digestion of the blood meal or sugar meal phase. Although, the parasite has to survive in a nutrient poor environment during the initial phagocytosis by the neutrophils and adapt to the poor content of sugars within the macrophage phagolysosome, where the nutrient composition is heavily dependent on the host immune and activation state of the host cell\(^{283}\).

The pathways of core metabolism in *Leishmania* occur between two organelles: glycosome and mithocondrion (Figure 2.1). Glycolysis, gluconeogenesis, pentose phosphate and succinate fermentation, that are involved in carbohydrate metabolism take place partially or exclusively in the glycosome while the tricarboxylic acid (TCA) cycle occurs in the mitochondria\(^{269, 290, 291}\).

Leishmania can use an amylase, many sugar kinases and a sucrose like protein for the digestion of plant starch and disaccharides, likely to be present in the nectar taken by sand flies\(^{269}\). Thus, *Leishmania* parasites are well adapted to develop in a glucose rich environment, a fact observed *in vitro* by the preference of glucose and other sugars as carbon sources by both promastigotes and axenic amastigotes\(^{292}\). Although, the sugar content in the phagolysosome, in which the amastigote form resides is likely to be scarce and the parasite have adapted to use other sources of carbon such as amino acids and fatty acids, *Leishmania* is still highly dependent on hexoses. Exogenous hexoses may be needed to sustain essential pathways such as the pentose phosphate pathway (PPP), RNA/DNA synthesis, N-glycosylation and myo-inositol synthesis\(^{293, 294}\). Hexose transporter-deficient *L. mexicana* mutants could not survive inside macrophages\(^{295}\). Also, fructose-1,6-bis-phosphatase (FBP) *L. major* mutants were able to infect but failed to generate normal lesions in mice, revealing the essential role of gluconeogenesis\(^{296}\).

Indeed, analysis of parasite proteome during *in vitro* differentiation has shown that glycolysis is down-regulated during late differentiation while gluconeogenesis enzymes expression was up-regulated. Co-localization and co-expression of gluconeogenic and glycolytic enzymes may allow the parasites to rapidly adapt to different environments.
Figure 2.1 Central carbon metabolism in *Leishmania*.

Boxed metabolites are end-products (in black) of metabolism; dotted arrows represent multiple step reactions. Abbreviations: Ala, alanine; Asp, aspartic acid; DHAP, dihydroxyacetone phosphate; Glc, glucose; Fru, fructose; Fru1,6BP, fructose-1,6-bisphosphate; GAP, glyceraldehyde-3-phosphate; G1,3P2, 1,3-biphosphoglycerate; GlcN, glucosamine; GlcNAc, N-acetyl-glucosamine; Glu, glutamic acid; Gln, glutamine; Man6P, mannose-6-phosphate; ManPc, Man1,4-cyclic-phosphate; Mann, mannogen oligomers (Manβ1-2Man)n; PGL, phosphogluconolactone; PG, phosphogluconate; PGA, phosphoglycerate; PEP, phosphoenolpyruvate; Pro, proline; SDL, S-D-lactoyl-conjugate. Enzymes: 1, hexokinase; 2, glucose-6-phosphate dehydrogenase, 3, 6-phosphogluconolactonase; 4, phosphoglucone isomerase; 5, phosphofructokinase; 6, fructose biphosphate aldolase; 7, triosephosphate isomerase; 8, glycerol-3-phosphate dehydrogenase; 9, glycerol kinase; 10, glyceraldehyde-3-phosphate dehydrogenase; 11,
phosphoglycerate kinase; 12, phosphoglycerate mutase; 13, enolase; 14, pyruvate kinase; 15, alanine aminotransferase; 16, pyruvate dehydrogenase; 17, citrate lyase; 18, aconitase; 19, isocitrate dehydrogenase; 20, glutamate dehydrogenase; 21, α-ketoglutarate dehydrogenase; 22, succinyl-CoA ligase; 23, succinate dehydrogenase; 24, fumarate hydratase; 25, malate dehydrogenase; 26, acetate-succinate CoA transferase; 27, malic enzyme; 28, acetyl-CoA synthetase; 29, phosphoenolpyruvate carboxykinase; 30, aspartate aminotransferase; 31, fructose-1,6-bis-phosphatase; 32, glucosamine-6-phosphate deaminase; 33, N-acetylglucosamine-6-phosphate deacetylase; 34, glutamine:Fru6P aminotransferase; 35, glucosamine-6-phosphate acetylase; 36, pyruvate phosphate dikinase; 37, NADH-dependent fumarate reductase; 38, glutamine synthetase; 39, FAD-dependent glycerol-3-phosphate dehydrogenase; 41, glyoxalase I; 42, glyoxalase II.

Recently, hexosamine uptake by amastigote was shown to be important, since parasites in which the enzyme responsible for the conversion of glucosamine to fructose-6-phosphate was deleted showed an attenuated virulence phenotype in mice. This study also suggests that hexosamine sugars may be more abundant in the host cell in the earlier stages of infection, while later other sugars will constitute the major source, probably due to an active gluconeogenesis pathway. However, amastigotes are able to accumulate a unique intracellular carbohydrate reserve material named mannogen, despite living in a sugar poor niche. Mannogen is composed of short chains of β1-2 linked mannose, accumulates exclusively in the cytosol and is degraded under sugar-limiting conditions, suggesting that due to this reserve of de novo synthesis or uptake of sugars not to be limiting for amastigotes growth. In L. mexicana promastigotes was detected the incorporation of glucose into mannogen at a similar rate as into the glycolytic intermediates, suggesting that excess of glucose/fructose-6-phosphate is converted to mannose-6-phosphate and GDP-Man.

The end-products of glucose catabolism in insect forms of trypanosomatids include succinate, pyruvate, acetate, alanine, ammonia, urea and lactate. Recently, a study using gas chromatography-mass spectrometry and 13C-NMR has shown that glucose is rapidly catabolized to CO₂, partially oxidized to succinate, acetate, alanine and also a low level of glutamate, consistent with the operation of a succinate fermentation pathway, the conversion of acetyl-CoA to acetate and substantial flux of glycolytic end-products into the TCA cycle. Acetate is produced by the mitochondrial enzyme acetate:succinyl-CoA transferase and alanine results of pyruvate transamination. Lactate is a metabolic end product of methylglyoxal, a toxic by-product of glycolysis.
detoxified via glyoxalase pathway; this pathway is composed of two enzymes that use T(SH)₂ as cofactor in contrast with the GSH-dependent enzymes present in mammalian cells. Succinate production occurs through the succinate fermentation pathway, in which succinate is produced from phosphoenolpyruvate (PEP) involving two glycosomal NADH-dependent oxidoreductases, malate dehydrogenase and fumarate reductase, providing a means for the re-oxidation of NADH produced in the glycosome by the glycolytic glyceraldehyde-3-phosphate dehydrogenase (GADPH), resulting in the synthesis of one ATP and two molecules of NAD⁺ for each PEP imported. Other pathways for regeneration of glycosomal ATP and NAD⁺ have been described including a glycerol-3-phosphate/dihydroxyacetone shuttle and reactions catalyzed by a glycerol-3-phosphate kinase, glycosomal isoforms of 3 phosphoglycerate kinase and/or a pyruvate dikinase. In T. brucei procyclic stages, succinate fermentation appears to be the major pathway for regenerating glycosomal pools of ATP/NAD⁺, being responsible for a tightly balanced consumption and production of NADH within the glycosomes necessary to maintain the organellar redox (NAD⁺/NADH) balance, while the other pathways are only activated in the case of succinate fermentation inhibition. In contrast with T. brucei, Leishmania succinate fermentation may not be only essential to maintain the glycosome redox balance but also have an important role in TCA cycle anaplerosis (replenishment of TCA cycle intermediates). The majority of the C4 dicarboxylic acids, such as malate and fumarate, generated during glycosomal succinate fermentation are subsequently used for TCA cycle anaplerosis, suggesting that metabolic fluxes in the glycosome and mitochondria are intimately linked. These findings are supported by previous observations that hexose uptake and catabolism is essential for amastigote survival in the mammalian host, despite the relatively high levels of amino acids in the phagolysosome, which can be used as the carbon source. Thus the hexose uptake may be needed to replenish the TCA cycle intermediates in order to sustain the synthesis of glutamate and related amino acids, such as proline and glutamine. Indeed, TCA cycle activity may increase markedly in the amastigote stages, likely exposed to low levels of glucose but relatively high levels of amino acids and lipids. Furthermore, TCA cycle enzymes activity is up-regulated during differentiation, likely a consequence of up-regulation in β-oxidation, already reported in vivo as Leishmania starts to use fatty acids as carbon source, which leads to an increase production of acetyl-CoA units handled by TCA cycle in the mitochondria and then the generated reducing equivalents oxidized by the mitochondrial respiratory chain. Mitochondrial function seems to be essential for Leishmania amastigote viability, as deletion of both alleles of the gene encoding a mitochondrial protein, named MIX was not achieved and just the deletion of one allele induced abnormalities in cell morphology, mitochondrial segregation and loss of virulence.
in mice; a similar phenotype was observed when MIX gene in T. brucei was targeted by RNAi. Another Leishmania mitochondrial protein (Ldp27) was shown to be important as gene deleted parasites have less cytochrome c oxidase activity and ATP synthesis and were less virulent both in human macrophages and in BALB/c mice.

Besides glycolysis, glucose is also metabolized via PPP, which is found in most cell types and provides the major source of NADPH for anabolic reactions and regeneration of antioxidant systems. The pathway also provides phosphorylated carbohydrate intermediates including ribulose-5-phosphate that is incorporated into nucleotides for biosynthesis of nucleic acids and nucleotide cofactors. PPP is also active in Leishmania species containing all enzymes of the classical pathway in promastigotes, the oxidative branch of PPP is compartmentalized inside glycosomes. Sugars such as ribose and erythrose are formed from glucose-6-phosphate via glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. It’s noteworthy to mention that \(^{13}\)C-glucose incorporation into the PPP intermediates has shown slower kinetics than the glycolytic intermediates, indicating a reduced flux into this pathway, but a simultaneous rapid labeling of several nucleotides supporting the crucial role of PPP pathway for nucleotide biosynthesis. The major product of the pathway is ribose-5-phosphate (R5P), however PPP is not the only source of R5P as this metabolite can also be produced from free ribose activated by phosphorylation with ribokinase or released from nucleosides through the action of nucleoside hydrolase, that has been shown to accumulate via a specific carrier-protein in Leishmania. PPP has an important role in defense against oxidative stress as shown by the fact that L. infantum mutants adapted to nitric oxide expressed high levels of the PPP enzyme 6-phosphogluconate dehydrogenase. Also a higher PPP oxidative branch enzymatic activity was detected in L. mexicana promastigotes when compared with insect forms of T. brucei proposed to be due to a higher demand of NADPH to counteract the oxidative stress suffered by Leishmania promastigotes in the initial phase of infection.

Proteomic and biochemical studies have suggested that Leishmania intracellular forms are able to use lipids as a carbon source for energy generation through the \(\beta\)-oxidation of fatty acids. The higher activity of enzymes that catalyze \(\beta\)-oxidation of fatty acids in L. mexicana amastigotes and protein up-regulation in this pathway during late differentiation of L. donovani parasites with simultaneously down-regulation of glycolysis, support the change in carbon sources as the parasite differentiate and colonize niches with different nutrient composition suggesting a more important role for fatty acid as a carbon source in intracellular amastigotes. Leishmania, as well as other
intracellular pathogens, can use fatty acids derived from complex host lipids, such as lipoproteins internalized by infected macrophages318, 319; lipid exchange between amastigote plasma membrane and the PV membrane may also occur, in a way that the host glycosphingolipids become intercalated into the amastigote membrane283, 320, 321. \textit{Leishmania} can also a in defined medium lacking lipid moieties, since it is able to synthesize fatty acids de novo. Indeed, as observed in \textit{T. brucei} and in \textit{T. cruzi}, \textit{L. major} encodes a type II FA synthase, however this does not seem to be the major pathway for fatty acid de novo synthesis. Trypanosomatids use a new mechanism involving endoplasmic reticulum-based elongases (ELOs) to make the bulk of their fatty acids, while other organisms use ELOs to make long chain fatty acids even longer318.

Phospholipids (PLs) account for ~70% of total cellular lipids in \textit{Leishmania} and are classified according to the “head group” as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS). \textit{Leishmania} parasites also synthesize low levels of phosphatidylglycerol (PG), cardiolipin and phosphatidic acid. The most abundant PL in \textit{Leishmania} is PC with unusually long and unsaturated fatty acid species322. PC function is not yet known, but their polyunsaturated fatty acid chains could modulate membrane physiology by reducing the melting point and confer resistance to host derived oxidants323. PI is found in the anchors of surface glycoconjugates including glycosylinositolphospholipids (GIPLs), glycosylphosphatidylinositol (GPI)-containing membrane proteins and lipophosphoglycan (LPG)324, 325. In \textit{Leishmania} it is not yet known if PS is synthesized by the parasite or acquired from the host, despite the presence of putative enzymes involved in PS metabolism. PS exposure on the outer surface of cells may trigger the removal of apoptotic cells by phagocytes326, 327. \textit{Leishmania} has been reported to mimic such PS exposure acting as a “deactivating” signal for host cells, used as a strategy of silent entry into the macrophage165, 328, 329. PLs as the major components of \textit{Leishmania} membranes are likely to be determinant in membrane permeability, fluidity and also have a profound impact in vesicular trafficking, nutrients acquisition through endocytosis and cell differentiation, which involves an extensive membrane remodeling. Furthermore, the fact that PLs diversity between \textit{Leishmania} and mammals is quite different has been explored as a drug target by the use of lysophospholipid analogs including miltefosine, edelfosine and ilmofosine330, 331. Miltefosine effects described in \textit{L. donovani} promastigotes include perturbations on lipid metabolism, specifically phospholipid content, fatty acid and sterol content332. Recently mitochondria and specifically the cytochrome c oxidase have been implicated as targets of miltefosine in \textit{L. donovani} promastigotes333.

46
The majority of spingolipids (SLs) in *Leishmania* belong to unglycosylated inositolphosphorylceramide (IPC) and ceramide. IPC are abundant, constituting nearly 10% of the total membrane phospholipids and are generated by the transfer of a phosphorylinositol headgroup from PI to ceramide, a process catalyzed by the IPC synthase, demonstrating that a functional SL pathway is present in these parasites. SLs are not required for growth of *Leishmania*, since parasites that completely lack SLs grew normally in logarithmic phase and were still able to make “lipid rafts”. However, deletion of *SPT2*, the gene that encodes the key de novo biosynthetic enzyme serine palmitoyltransferase subunit 2, resulted in parasites deficient in de novo SLs synthesis that once in the stationary phase were not able to differentiate into metacyclic forms. SLs are considered essential membrane components in all eukaryotes, mediating many signaling pathways including those key for apoptosis, growth and differentiation. However, in *Leishmania* the primary role of SLs appears to be the provision of ethanolamine, as ethanolamine supplementation was able to overcome the phenotype observed in the SL-deficient mutant parasites. Ethanolamine and choline are essential nutrients, and when available exogenously they can be salvaged by *Leishmania* via membrane transporters. Thus the significance of SL biosynthesis is likely to be stage-specific, being important in those stages in the sand fly that cannot rely upon salvaged ethanolamine. Indeed, amastigotes deficient in de novo SLs synthesis recovered from a mammalian host showed normal levels of IPC and thus amastigotes seems to be able to perform SLs salvage or use host lipids as precursors for synthesis of IPC. Interesting is also the fact that SLs may play an important role in the modulation of host responses, given that the increase in ceramide levels detected in *Leishmania*-infected macrophages *in vitro* leads to the suppression of NF-κB activation in host macrophages.

Besides PLs and SLs *Leishmania* lipid composition also includes sterols that play an important role in the structure and function of cellular membranes and are essential for parasite growth and viability, revealed by the effect of antifungal compounds which inhibit the reactions of sterol biosynthesis. In contrast with mammalian cells, *Leishmania* parasites synthesize ergosterol instead of cholesterol, being able to incorporate cholesterol either from an infected host or culture medium; cholesterol uptake was observed in miltefosine resistant parasites. Sterol biosynthesis in *Leishmania* parasites has received much attention as it may constitute a good drug target, due to the fact that parasites synthesize ergosterol derivatives instead of cholesterol as in mammalian cells. There are already some drugs reported to interfere with sterol biosynthesis, such as amphotericin B, atavaquone, synthetic quinuclidines and chalcones.
Moreover, sterols probably play a significant role in miltefosine action against the parasite, since membrane sterol depletion led to a decrease in drug susceptibility, suggesting that sterols can serve as a reservoir for miltefosine providing a constant supply to the respective transporter\(^{112}\). Drug effectiveness is mainly dependent on the interaction with the *Leishmania* membrane, thus it is clear that the ability of the parasite to change the lipid membrane composition inherent to its life cycle should be taken into consideration in the finding of new formulations.

Leishmania ability to synthesize amino acids is limited to nonessential ones plus threonine and methionine\(^{269}\). Cysteine can be produced either by de novo synthesis from serine or from homocysteine by the trans-sulfuration pathway\(^{349}\); aspartate and asparagine can be formed from oxaloacetate, while glycine can be formed from serine and alanine via transamination of pyruvate\(^{289}\). Methionine can be salvaged or synthesized by methionine synthase, which uses methyl- tetrahydrobiopterin (H\(_4\)F) and homocysteine to produce methionine and H\(_4\)F; methionine plays a crucial role as an essential amino acid and for formation of S-adenosylmethionine (SAM), which is required for methylation reactions and the synthesis of polyamines. Aromatic amino acids (phenylalanine, tyrosine or tryptophan), the branched amino acids (leucine, isoleucine or valine), lysine and histidine cannot be synthesized by *Leishmania*\(^{269}\). On the other hand, the *Leishmania* encodes several putative amino acid permeases. A high affinity arginine-specific transporter, named *LdAAP3* was the first permease to be identified in *L. donovani*\(^{350}\). Arginine is an essential amino acid in *Leishmania* parasites and must be taken up from the host as it is used not only for protein synthesis as well as the precursor for synthesis of polyamines\(^{269, 351}\). Arginine starvation resulted in the increase of both mRNA and *LdAAP3* protein levels, which were abrogated by supplementing amino acid-starved parasites with arginine. *LdAAP3* expression and activity increased whenever the cellular level of arginine decreased, suggesting that the parasites sense the intracellular level of arginine and adjust the transport to maintain homeostasis\(^{352}\). Recently, a lysine-specific transporter in *L. donovani* (*LdAAP7*) was also identified and shown to be essential given the impossibility to delete the gene, suggesting that this is the only lysine transporter in *L. donovani*\(^{353}\). *Leishmania* parasites also contain several peptidases that are likely to play an important role in degrading proteins taken up from the environment, some of them being up-regulated in the amastigote stage. Moreover, cysteine proteinases *L. mexicana* mutants are attenuated *in vivo*, consistent with a role in parasite nutrition\(^9\). The fact that amino acid uptake was shown to be increased in *L. mexicana* amastigotes\(^{292}\) and also the up-regulation of enzymes such as branched chain aminotransferase, alanine aminotransferase, glutamate dehydrogenase isoenzymes involved in the catabolism of certain amino acids (isoleucine, valine, alanine, glutamate, glycine) during
differentiation, give good indications of amino acid use as a carbon source, however there is no direct evidence for a dependency of amastigotes on amino acid catabolism in vivo, similar to the essential requirement for hexoses. Besides the use in protein biosynthesis, proline and glutamate may serve as important energy substrate for Leishmania. Proline is oxidized to glutamate, which will be incorporated into the TCA cycle, while leucine metabolized through 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) can be incorporated directly into Leishmania’s sterol biosynthetic pathway. A recent study by Saunders and co-workers using L. mexicana promastigotes has shown that only a limited number of amino acids such as aspartate and alanine were used as carbon sources, during in vitro culture. Also, several pathways of amino acid synthesis were repressed in the presence of exogenous amino acids, revealing that key enzymes involved in the amino acid biosynthesis are constitutively expressed but under tight control to ensure that exogenous nutrients are used first. Moreover, glutamate identified as the most abundant amino acid in promastigotes stages is internalized at a low rate under standard culture conditions, a fact that may be explained by the high rate of glutamate synthesis through the incorporation of aspartate and alanine into the TCA cycle, where major anabolic function is likely to be the synthesis of glutamate.

Purines and pyrimidines are essential to all living organisms, performing many vital functions such as nucleic acids (DNA and RNA) synthesis and ATP which serves as the major energy source within the cell to drive a number of biological processes. Leishmania parasites, like other trypanosomatids, need to acquire purines from the medium, as they are incapable of de novo purine synthesis. Thus, the parasite has evolved a number of unique purine salvage enzymes that enables it to scavenge host purines by interconversion and metabolism to phosphorylated nucleotides. The parasites only present one of the 10 enzymes, adenylosuccinate, required to make inosine monophosphate (IMP) from phosphoribosyl pyrophosphate that participates in purine salvage by converting IMP to adenine monophosphate (AMP). Purines, such as hypoxanthine and xanthine are essential for parasite growth and hence the need to add those to in vitro cultures; purine withdrawal from L. donovani promastigotes culture led to a dramatic and rapid increase of endogenous purine transport proteins and purine salvage componentes as well as to changes in the parasite morphology. It was established that L. donovani salvages purines primarily through hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and xanthine phosphoribosyltransferase (XPRT), genetic disruption of individual transporters had little impact on intracellular growth, suggesting a significant redundancy in the purine salvage; only deletion of both HGPRT and XPRT in the same cell line resulted in severely attenuated parasites in vivo. It is
noteworthy to mention, that a marked amplification and over-expression of the adenine phosphoribosyltransferase (APRT) gene was observed in the null mutant parasites recovered from animals, implying that APRT was capable of phosphoribosylating hypoxanthine and promote cell growth, despite being previously reported that it exclusively recognize adenine as a substrate. On the other hand, *Leishmania* is able to synthesize pyrimidines de novo from glutamine, bicarbonate and aspartate.

Other *Leishmania* metabolic requirements include, polyamines, such as putrescine, essential for *Leishmania* growth and survival as a precursor of spermidine that together with glutathione is the substrate for synthesis of T(SH)$_2$, an essential thiol that constitutes with trypanothione reductase the unique antioxidant system present in these parasites. Polyamine production is dependent on arginine, an essential amino acid that the parasite is not able to synthesize; disruption of the gene that encodes arginase, the initial enzyme in arginine catabolism led to severely restricted growth of intracellular amastigotes and growth of promastigotes only possible in the presence of ornithine, putrescine or spermidine, showing that amastigotes are dependent on the de novo polyamine biosynthesis as well as on the salvage of polyamines from the phagolysosome. A polyamine transporter with high affinity for putrescine and spermidine has been identified in *L. major*, and pentamidine, a drug used in the treatment of leishmaniasis, was shown to inhibit putrecine and spermidine transport. Moreover, deletion of the ornithine decarboxylase (ODC) gene in *L. donovani*, which encodes the enzyme that catalyzes the reaction of ornithine to putrescine, resulted in the generation of cells that can only survive in the presence of putrescine or spermidine and were not able to scavenge polyamines from the host in sufficient amounts to sustain an infection, confirming the essential role of polyamine biosynthesis. Thus, ODC has been validated as a drug target and the anti-*Leishmania* activity of DL-α-difluoromethylornithine (DFMO), a drug that irreversibly inactivates the *T. brucei* enzyme, was also shown to be effective in killing *Leishmania* parasites.

Leishmania parasites are auxotrophic for both folate and unconjugated pteridins and thus need to salvage these metabolites from the host; folates are acquired via active transport. DHFR-TS is a bifunctional enzyme that catalyzes the reduction of folate and biopterin to tetrahydroderivatives. The inability to delete DHFR-TS gene in *L. major*, led to the consideration that it as an essential gene and a potential good drug target. However, PTR1, an enzyme that can reduce both folates and unconjugated pterins can act as a metabolic bypass of DHFR-TS inhibition leading to the antifolate drugs inefficacy. PTR1 seems also to be essential to the parasite. *Leishmania* seems
well adapted to the lack of folate de novo synthesis as the parasites possess a reduced number of folate-dependent metabolic reactions, although the loss of several folate metabolic pathways results in attenuation or loss of virulence371.

Leishmania are also haem auxotrophs and need to obtain these molecules or precursors directly from the host378. The *Leishmania* genome possess homologues for the three last enzymes of haem pathway likely to be functional, since these parasites can grow in medium in which hemin is replaced by protoporphyrin IX377-379. Haem is present in trypanosomatids hemoproteins such as peroxidases, cytochromes P450, which are involved in the oxidative stress response, detoxification, synthesis of polyunsaturated fatty acids and sterol biosynthesis380-385. Also, the presence of a fully functional mitochondria in these parasites315, require haem for oxidative phosphorylation and other cellular processes382, 383, 386.

Overall, *Leishmania* parasites have been able to survive due to the nutritional complex environment that encounter in the different hosts, which seems to fulfill the parasite metabolic requirements. In order to efficiently use the potential carbon sources and essential nutrients available, the parasite has evolved numerous mechanisms for salvage and conversion of host molecules.
CHAPTER 3

LEISHMANIA: THIOL METABOLISM AND ANTIOXIDANT DEFENSE
3.1 Thiol metabolism and antioxidant defense

During metabolic activity of organisms, the imbalance between the production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) and antioxidants will lead to oxidative stress. To protect against it, cells have developed both enzymatic and non-enzymatic antioxidant defenses. Non-enzymatic defenses include ascorbate, glutathione (GSH) and polyamines among others, while catalase, superoxide dismutase, glutathione peroxidase belong to the enzymatic mechanisms that protect by directly scavenging toxic species converting them to less reactive species.

Contrary to other organisms, trypanosomatids lack genes for glutathione reductase (GR) and thioredoxin reductase (TR) as well as catalase and selenocysteine-containing glutathione peroxidases. Instead, these parasites possess a redox metabolism that is based on the low molecular mass dithiol trypanothione (N_1,N_8-bis(glutathionyl)spermidine, T(SH)$_2$) and trypanothione reductase (TryR). The unique T(SH)$_2$/TryR system is responsible for the maintenance of the intracellular thiol redox homeostasis similar to the GSH/GR and thioredoxin(Trx)/TR systems in eukaryotic cells. Besides kinetoplastids, T(SH)$_2$ and/or TryR also occur in some other protists. Trypanosomatids can cope successfully with the oxidative burst during host infection due to the well organized and complex T(SH)$_2$/TryR system, involved at least in three important biological functions: hydroperoxide detoxification, regulation of replication and DNA synthesis.

In addition to T(SH)$_2$, trypanosomatids contain three other major low molecular mass thiols: GSH, mono-glutathionylspermidine (Gsp) and ovothiol (OvSH); T(SH)$_2$ can spontaneously reduce GSH and OvSH. A significant amount of GSH is present as T(SH)$_2$, formed by the conjugation of two GSH molecules linked by the polyamine spermidine in a two step reaction catalyzed by trypanothione synthetase (TryS). Another enzyme thought to be involved in T(SH)$_2$ biosynthesis, glutathionylspermidine synthetase (GspS) was identified but proven not necessary. GspS as well as TryS has amidase activity, being able to cleave T(SH)$_2$, leading to the hypothesis that this activity may contribute to maintain a balance between GSH, Gsp, T(SH)$_2$ and spermidine. However, TryS amidase activity was shown not to be required for parasite viability while the synthetase activity is essential since T. brucei TryS conditional double knockout lost the ability to produce T(SH)$_2$ with simultaneous accumulation of GSH and were unable to infect mice, validating TryS as a drug target. Despite a quite similar redox potential, at a physiological pH T(SH)$_2$ it is more reactive than GSH. Both the dithiol character of T(SH)$_2$, which favors its ability as a reductant of intramolecular...
disulfides and lower pK values in T(SH)₂ compared to GSH coinciding with the intracellular pH of the parasites are responsible for the unique properties of T(SH)₂. It's still not understood why T(SH)₂ has evolved in trypanosomatids, however recently was shown that T(SH)₂ has a much higher capacity to neutralize toxic NO as it is able to sequester NO and iron in a free harmless dinitrosyl-iron complex, that in other organisms is found to be associated with glutathione S-transferases (GST). TryR, a flavoprotein oxidoreductase, plays an important role in the parasite redox state as it is responsible for keeping T(SH)₂ in the reduced form. As trypanosomatids lack GR, TryR is the only enzyme that connects the NADPH- and the thiol-based redox systems in these parasites. TryR is an essential enzyme as deletion of one allele was easily achieved but disruption of the second one was not possible or a genomic re-arrangement occurred to maintain a copy of the gene. Also down-regulation of TryR activity to 15% led to a significant impairment of parasite ability to regenerate T(SH)₂, but cells kept the capacity to metabolize H₂O₂. Although, parasites were not able to survive inside the activated macrophage. Thus TryR, already characterized in L. donovani, L. infantum and T. cruzi, is a promising target for Leishmania-specific drug design. Indeed, recent studies are an example of the efforts being made to obtain TryR inhibitors.

The reducing capacity of T(SH)₂ is strongly enhanced in the presence of tryparedoxins (TXNs), small dithiol redox proteins functional similar to glutaredoxins (Grxs) and Trxs. TXNs are oxidoreductases that in analogy with Grxs, are reduced by a low molecular mass thiol (T(SH)₂) and can reduce glutathione-mixed disulfides. Indeed T(SH)₂ and TXN have a central role in the thiol metabolism of trypanosomes taking part in parasite-specific cascades (Figure 3.1) that catalyze the reduction of hydroperoxides and ribonucleotides.

![Figure 3.1 Trypanothione-mediated detoxification of hydroperoxides in trypanosomatids.](image)

Figure 3.1 Trypanothione-mediated detoxification of hydroperoxides in trypanosomatids. Trypanothione reductase (TryR) regenerates trypanothione disulfide (TS₂) to trypanothione (T(SH)₂), which will reduce tryparedoxin (TXN). TXN will deliver...
electrons to tryparedoxin peroxidase (TXNPx) or non-selenium glutathione peroxidase like enzymes (nsGPx), which will then metabolize hydroperoxides (ROOH) to an alcohol (ROH). The subscripts red and ox refer to the redox state of the proteins, dithiol and disulfide, respectively (adapted from Krauth-Siegel et al. 364).

TXNs are specifically reduced by T(SH)₂. The reducing equivalents obtained from T(SH)₂ are transferred by TXNs to tryparedoxin peroxidases (TXNPxs) and also non-selenium glutathione peroxidase like enzymes (nsGPxs). Reduced TXN also delivers electrons to the ribonucleotide reductase (RR)³⁹², the universal minicircle sequence binding protein (UMSBP) involved in the initial step of replication of the kinetoplast ⁴¹⁷ and to a monothiol GRx (1-Cys Grx) ⁴¹⁸, ⁴¹⁹. Cytosolic TXN knock down in T. brucei resulted in impaired viability and increased sensitivity to hydroperoxides, demonstrating the essential role of cytosolic TXN and its pivotal function in the parasite defense against oxidative stress ⁴²⁰, while mitochondrial TXNs do not seem to be important for both T. brucei and L. infantum ⁴²¹, ⁴²². TXNPxs are 2-Cys peroxiredoxins that primarily detoxify H₂O₂ and a wide range of organic hydroperoxides. These enzymes are highly conserved and present in various Leishmania species ⁴²³, ⁴²⁴, with distinct subcellular localization, cytosolic and mitochondrial. Cytosolic TXNPx was demonstrated to be essential in T. brucei and L. infantum, while deletion of mitochondrial TXNPx in L. infantum yields a less virulent parasite but no obvious phenothype detected in T. brucei ³⁸⁶, ⁴²², ⁴²⁶. The nsGPxs differ from the selenoenzymes found in mammals and some other organisms as the active site selenocysteine has been replaced by a cysteine residue being functionally similar to TXNPxs ⁴¹³, ⁴¹⁴, ⁴²⁷. Besides, 2-Cys peroxiredoxins and nsGPxs the parasites possess a third family of enzymes involved in hydroperoxide detoxification, the ascorbate peroxidase (APx) ³⁸⁶. APx is a heme containing peroxidase first identified in L. major that localizes in the intermembrane of the mitochondrial inner membrane of the parasite ⁴²⁸. APx expression is up-regulated in the presence of increasing concentrations of H₂O₂ and deletion of the APx gene in L. major rendered the cells more sensitive to ROS in vitro, demonstrating the important role of APx in H₂O₂ detoxification ⁴²⁸, ⁴²⁹. However, the parasite seems to be able in part to compensate for the effect of APx deletion by increasing the expression of nsGPx and also TXNPx, suggesting a high degree of redundancy in ROS detoxifying mechanisms in Leishmania. On the other hand, the null mutant cells exhibit hyper virulence after infection with macrophages as well as inoculation into BALB/c mice, which may be explained by the higher numbers of metacyclics, suggesting a role of APx in the control of parasite differentiation and survival in macrophages ⁴²⁹.
Overall, cellular redox homeostasis is maintained by biosynthesis of $T(\text{SH})_2$, which is kept reduced by TryR, the enzyme that represents the only connection between the NADPH- and the thiol-based redox metabolism. Figure 3.2 gives an overview of parasite thiol metabolism and antioxidant defense. Contrary to other organisms no role has been attributed to GSH besides precursor of $T(\text{SH})_2$ and thus remains the doubt about the importance of the free GSH presence in cells that do not possess GR. Given this, it is crucial to understand the possible role of proteins such as TDR1, which contain motifs characteristics of Trx and GST families.

Figure 3.2 Thiol metabolism in trypanosomatids.

1-C-Grx1, a monothiol glutaredoxin; dSAM, decarboxylated S-adenosyl-L-methionine; dNTP, GSH1, γ-glutamylcysteine; GSH2, glutathione synthetase; GSSG, glutathione disulfide; GSH, glutathione; ODC, ornithine decarboxylase; Prx, 2-Cys-peroxiredoxins (also named TXNPX); Px, glutathione-peroxidase-type enzymes (also named nsGPx); RS$_2$, disulfide proteins; ROOH, hydroperoxides; ROH, alcohol; RR, ribonucleotide reductase Sp, spermidine; SpS, spermidine synthase; TryS, trypanothione synthetase, Trx, thioredoxin; TXN, tryparedoxin; TyrR, trypanothione reductase; T(SH)$_2$, trypanothione; TS$_2$, trypanothione disulfide; UMSBP, universal minicircle sequence binding protein; ISC, iron sulfur clusters; C, cytosol; K, kinetoplast; M, mitochondrion; N, nucleus. Proteins that were experimentally shown to be essential and dispensable for *T. brucei* are highlighted with black and light grey background, respectively (adapted from Krauth-Siegel et al.364).
3.2 Glutathione S-transferases

GSTs catalyze nucleophilic attack by reduced glutathione on non-polar compounds that contain an electrophilic carbon, nitrogen or sulphur atom. GSTs are versatile enzymes able to inactivate a wide range of exogenous toxic molecules, including naturally occurring compounds, industrial chemicals, drugs, herbicides, and pesticides; these phase II detoxification reactions produce generally less reactive and more polar compounds, which can be actively extruded from the cytosol430, 431. In addition, GSTs are also important in the detoxification of endogenous reactive species produced during oxidative stress, such as lipid hydroperoxides432 or reactive aldehydes433. In addition, GSTs can also serve as peroxidases, isomerases, thiol transferases or have a role in signalling processes. Therefore, GSTs are not solely detoxification enzymes and are also involved in other pathways such as leukotriene and prostaglandin biosynthesis and the catabolism of aromatic amino acids434. On the other hand, GSTs have been reported to be involved in the development of drug resistance towards chemotherapy agents, insecticides, herbicides, and microbial antibiotics, likely related to detoxification abilities431, 435. GSTs have been purified from a wide range of organisms and are classified into 3 major families according to their cellular localization: cytosolic, mitochondrial and microsomal (microsomal GSTs are also referred to as membrane associated proteins in eicosanoid and glutathione metabolism). All 3 families contain members that catalyze the conjugation of GSH with 1-chloro-2,4-dinitrobenzene (CDNB) and exhibit glutathione peroxidase activity towards cumene hydroperoxide431. Cytosolic GSTs are, generally, biologically active as dimers of subunits of 23-30 kDa and an average length of 200–250 amino acids434. There are seven classes of cytosolic GSTs recognized in mammalian species: alpha, mu, pi (GSTPi), sigma, theta, omega (GSTO) and zeta431. Other classes such as lambda and tau have been identified in other organisms436. Each monomer in GSTs has a catalytic active site with two domains: G-site, responsible for GSH binding and H-site, which binds hydrophobic substrates. The H-site or substrate binding site is more variable in structure and is largely formed from residues at the C-terminal; the G-site is highly conserved and composed of amino acid residues found in the N-terminal domain; different amino acids (tyrosine, serine or cysteine) according to the class allow conjugation or thiol transfer431. The tyrosine or serine hydroxyl group acts as a hydrogen bond donor to the thiol group of GSH, promoting the formation and stabilization of the highly reactive thiolate anion which is the target for nucleophilic attack of an electrophilic substrate. By site directed mutagenesis, the serine or tyrosine residues have proven catalytically essential in GSTs of different organisms434. GSTOs, unlike other GSTs, have a cysteine residue in their active site, which promotes the formation of mixed disulphides.
with glutathione rather than the formation of the thiolate anion. Therefore, GSTOs catalyze a range of thiol transferase and reduction reactions that are not catalyzed by members of other GST classes. This feature is also common to beta and lambda GSTs, dehydroascorbate reductases (DHARs), Grxs and chloride intracellular channel proteins. GSTOs have glutathione-dependent thiol transferase activity and can also catalyze dehydroascorbate (DHA) reduction, activities characteristics of Grxs. Besides the detoxification of exogenous compounds through the conjugation with GSH, GSTs are also responsible for the detoxification of products of oxidative stress. ROS such as superoxide radical (O$_2^{-}$), hydrogen peroxide (H$_2$O$_2$), hydroxyl radical (OH') and RNS such as nitric oxide (NO') and peroxynitrite (ONOO') radicals are extremely reactive being inevitably associated with toxicity, causing damage in various biological molecules: lipids (causing lipid peroxidation and membrane damage), DNA (causing DNA breaks), and proteins (oxidation of various amino acids and inactivation of essential enzymes). In several organisms, GSTs are up-regulated by exposure to pro-oxidants indicating that induction of GSTs is an evolutionarily conserved response of cells to oxidative stress. GST activity has been detected in parasitic nematodes, trematodes, ticks and malarial parasites and the identified GSTs assigned to the classes identified in mammalian cells based on the substrate specificity (in particular with the universal substrate CDNB) or sensitivity to inhibitors, such as bromosulphthalein, 1,2-dichloro-4-nitrobenzene, ethacrynic acid and cumene hydroperoxide among others. In helminths GSTs represent the major phase II detoxification system required for the parasite survival in the host, since these parasites contain very low levels of other detoxification enzymes such as catalase, superoxide dismutase and cytochrome P450, GST may provide the primary defense against electrophilic and oxidative damage. Therefore helminth GSTs have been proposed as a potential drug target or for a vaccine candidate’s development, as the enzyme differs in its primary amino acid sequence and gene structure from the host GST. GST activity has also been detected in all Plasmodium species studied so far as well as in all intraerythrocytic stages of the parasite. Plasmodium falciparum GST may be essential for parasite survival by protecting the parasite against oxidative stress and/or acting as a buffer for detoxification of heme-binding compounds in vivo. Moreover, P. falciparum possesses only one GST, which is highly abundant and its activity is increased in parasites resistant to chloroquine, an anti-malarial drug. Thus inhibition of P. falciparum GST, whose structure presents features distinctive of human GSTs, is expected to impair detoxification processes, enhance levels of cytotoxic peroxides among other effects, being considered as a highly promising target for anti-malarial drug development. No GST activity has been reported in Trypanosoma or Leishmania parasites, apart from TDR1 that contain domains of the GSTO and uses GSH.
as the reductant. Although, in L. major a protein named eEF1B, with trypanothione S-transferase activity, was able to catalyze the aromatic nucleophilic substitution reactions between T(SH)₂ and CDNB, in agreement with the redox system used by trypanosomatids, based on T(SH)₂ and TR³⁶⁴.

3.3 Thioredoxins and Glutaredoxins

The thioredoxins (Trxs) family is defined by a structural motif named the Trx fold, common to a variety of functionally different proteins as thiol-disulfide oxidoreductases, disulfide isomerases, glutathione S-transferases, thiol dependent peroxidases and chloride intracellular channels. The family of proteins with a Trx fold includes Trxs and Grxs, small ubiquitous proteins with conserved CysXXCys/Ser (CXXC/S) active sites, where X represents various amino acids. Both are able to regulate several processes through reduction of disulfide bridges in target proteins in a reaction taking place in two steps: the N-terminal thiol of the CXXC motif attacks the disulfide bridge of the target protein, releasing a free thiol and forming a disulfide bridge with the second Cys of the target. Then the C terminal thiol of the CXXC motif breaks the Trx-target disulfide bridge, releasing the reduced target and oxidized redoxin protein. The midpoint redox potential differs between Trxs and Grxs, being close to -300mV for Trx and -200mV for Grx. In the cytosol and mitochondria, Trxs are reduced via NADPH and an NADPH-dependent thioredoxin reductase (TR) and Grxs via NADPH-dependent GR and GSH as shown in Figure 3.3.

![Figure 3.3 Thioredoxin and Glutaredoxin systems](image)

Figure 3.3 Thioredoxin and Glutaredoxin systems. Thioredoxin (Trx) and glutaredoxin (Grx) are reduced by NADPH-dependent enzymes, thioredoxin reductase (TR) and glutathione reductase (GR) respectively. Both Trx and Grx can serve as electron donors for metabolic enzymes, represented by P, being P(SH)₂ a reduced form and PS₂ an oxidized form (adapted from Ghezzi et al.⁴⁶⁵)
The first Trx was originally discovered in *Escherichia coli* as an electron donor for RR, an enzyme required for DNA synthesis and later the identification of a glutathione dependent reductase able to restore the growth of *E. coli* in a mutant lacking Trx led to the discovery of Grx. Trxs are ubiquitous proteins, with molecular weight around 10-12 kDa, present in all forms of life. Mammalian cells contain two Trxs, one cytosolic (Trx1) and another localized in the mitochondria (Trx2); *E. coli* and yeast also contain two Trxs each and plants contain a variety of Trxs with highly specialized functions. For example, *Arabidopsis thaliana* possesses multiple Trxs isoforms, and in vitro experiments have shown that some of them exhibit substrate specificity, suggesting that multiple Trxs may serve as a backup measure to cope with redox stress, it being likely that some cellular processes use preferentially one Trx. Trxs are essential cofactors for DNA synthesis, sulfur assimilation and several antioxidant enzymes, such as peroxiredoxins, arsenate reductases and methionine sulfoxide reductase. Trxs regulate the activity of several transcription factors, such as NF-κB in mammals and OxyR in *E. coli*, and enzymes involved in different metabolic pathways. Grxs, also called thiol transferases, are small, GSH-dependent oxidoreductases with low molecular weights ranging from 9-15 kDa, which play a crucial role in biological processes such as regulation of transcription factors, protecting cells from oxidative stress and catalyzing reversible protein S-glutathionylation. Based on the active site sequence, Grxs are divided into two categories: dithiol and monothiol. Dithiol Grxs have the characteristic Cys-Pro-Tyr-Cys active site motif, while monothiol Grxs lack the C-terminal active site thiol in its Cys-Gly-Phe-Ser active site but contains all structural and functional elements to bind and utilize GSH as a substrate. Dithiol glutaredoxins catalyze GSH-dependent reduction of disulfide bonds using either a monothiol or dithiol mechanism. Protein disulfides are reduced by a dithiol mechanism requiring both active cysteines while mixed disulfides between GSH and proteins or low molecular mass thiols are mainly reduced by a monothiol mechanism that involves only the more N-terminal redox active Cys. Versatility of Grxs includes the reduction of a compound devoid of thiol groups, DHA, which results from the oxidation of ascorbate. Ascorbate can be regenerated by a variety of oxidoreductases including Grxs, protein disulfide isomerase, but not Trxs, through mechanisms similar to the monothiol and dithiol reactions. All organisms have an individual set of Grxs isoforms that occur in the cytosol, mitochondria, or nucleus of different cells. For example, *E. coli* contains four Grxs, two dithiols (Grx1, Grx2 and Grx3) and one monothiol (Grx4) Grxs. In *Sacharomyces cerevisiae* were descried seven Grxs and human cells contain four Grxs. In plants, Grxs constitute a rapidly growing family at least when the identification is based on sequence similarity; in *Arabidopsis* there are about 50 genes encoding Grxs or Grx-like proteins, suggesting considerable functional
Grxs diversity in these organisms481. \textit{E. coli} Grx1 can serve as electron donors for metabolic enzymes such as RR and phosphoadenylsulfate reductase (PAPS) and is also active in monothiol mechanism reactions. Despite structural similarity to Grx1, Grx3, the most abundant in the cell, is not efficient in the reduction of the same substrates; although genetic mutations in Grx3 led to an increase in the reduction activity thought to be due to an improved affinity for RR482. Grx2 is an unusual thiol Grx as it is structural similar to GSTs family of proteins and lacks activity as hydrogen donors for RR483. The monothiol Grx4 does not exhibit classical Grx activity, but can be reduced by TR484. In mammalians Grx1, which is localized in the cytosol with small amounts in the nucleus, is a functional homologue of \textit{E. coli} Grx1, while a modification in the active site of mammalian Grx2 enables the protein to receive electrons from GR485. Moreover, Grx2 is also able to coordinate an iron sulfur cluster and may play a role in iron–sulfur cluster assembly/biogenesis, activity also detected in chloroplastic Grxs486-489. Grxs are highly conserved in all organisms, although in malaria parasites besides the presence of a classical Grx and a glutaredoxin-like protein, which shares similarities with PICOT-HD-containing proteins490, was also identified a novel functional redox active protein, named Plasmoredoxin (Plrx). Plrx was found exclusively in malaria parasites and is a member of the thioredoxin superfamily able to provide electrons for RR, an activity detected both in Trxs and Grxs491.

All trypanosomatids organisms lack GR and thioredoxin reductase, as their redox metabolism is based on T(SH)\textsubscript{2} and TR364. The T(SH)\textsubscript{2} system has been shown to deliver the reducing equivalents for the synthesis of DNA precursors by RR392 as well as the detoxification of hydroperoxides catalyzed by 2-Cys-peroxiredoxins and the glutathione peroxidase-type enzymes, which in these parasites act as trypanothione-dependent tryparedoxin peroxidases394, 413, 414, 416, 420, 427, 492. Despite the absence of TR, trypanosomes encode a thioredoxin gene, which results in very low protein levels and thus it may be compensated by tryparedoxins, present in the cell in much higher concentrations493, 494. \textit{Trypanosoma brucei} possesses three genes for monothiol Grxs and two genes for dithiol Grxs. The three monothiol Grxs occur in both life stages, with the highest levels found in the stationary phase and distinct cellular functions. One of the monothiol Grxs, named 1-C-Grx1 is an abundant protein with a mitochondrial localization, able to form an iron-sulfur center using GSH as the non protein-ligand and thus may play an essential role in the iron and redox homeostasis of the parasite416, 495; the dithiol Grx1 also coordinates iron-sulfur clusters496, as shown for other Grxs, human Grx2 and poplar Grx1C1489, 497. \textit{T. brucei} Grx1 is a cytosolic protein that efficiently catalyzes the reduction of protein-GSH mixed disulfides; Grx1 can supply electrons for reduction of RR, while
Grx2 was able to reduce insulin disulfide, indicating that the two oxidoreductases have a high specificity toward distinct protein disulfides. On the other hand, Grx2 occurs in the mitochondrial intermembrane space and seems to be essential for procyclic parasites, as RNA interference against Grx2 resulted in growth retardation. T. brucei Grx1 and Grx2 were able to catalyze the reduction of GSSH by T(SH)$_2$, suggesting a participation of those in the trypanothione metabolism. Thus besides a T(SH)$_2$ precursor GSH, in the absence of a GR, it may be involved in protein glutathionylation or as a reducing agent of Grxs. Indeed, recently was also identified a dithiol Grx in T. cruzi, which showed a typical thioltransferase activity and in vitro assays suggested a possible role in reduction of glutathione disulfide as well as in deglutathionylation of target proteins. L. infantum, L. mexicana and L. braziliensis genomes revealed the presence of genes encoding two putative monothiol Grx, 1 putative Grx and one putative Grx-like protein; in L. major was detected an extra gene encoding for a putative monothiol Grx. However, none of those was yet characterized. TDR1 is the only protein characterized in Leishmania that contains an active site characteristic of Grxs and the thioltransferase activity typical of this family of proteins.

3.4 Protein S-glutathionylation as a mechanism of regulation in various cellular processes

All living organisms are exposed to various oxidants, resulting from their own metabolism or generated under oxidative stress. The levels of ROS and RNS in a cell are normally tightly regulated by antioxidant defense mechanisms. In a situation of oxidative stress, when ROS and/or RNS concentrations exceed the antioxidant capacity of the cell, cellular homeostasis is affected leading to disruption of redox signaling and/or molecular damage. ROS and/or RNS can cause specific, reversible or irreversible oxidative modifications on sensitive proteins, which may interfere with function of the oxidized protein.

Proteins can undergo different types of oxidation including carbonylation (introduction of a carbonyl group into proteins by oxidation of amino acid side chains such as lysine, arginine, histidine), oxidation of aromatic amino acids to various hydroxy derivatives and oxidation of methionine and cysteine to sulfoxides or sulfones. Methionine and cysteine residues are particularly sensitive to oxidation by almost all forms of ROS. The thiol groups of Cys residues within the proteins act as redox-sensitive switches, as they are particularly susceptible to oxidative modifications and undergo various reversible and irreversible redox alterations as shown in Figure 3.4. The vast majority of Cys residues,
in a reducing environment, remain almost completely protonated at a physiological pH and unlikely to be reactive with ROS/RNS. The Cys residues present in redox-sensitive proteins exist as thiolate anions at neutral pH, due to a lower pKa value that results from charge interactions with neighboring positively charged amino acids, therefore being more vulnerable to oxidation501. Thus the thiolate anion of redox-sensitive Cys residues can undergo a diverse spectrum of oxidative modifications. Sequential oxidation of Cys thiols yields sulfenic (–SOH), sulfinic (–SO\textsubscript{2}H), or sulfonic (–SO\textsubscript{3}H) acid derivatives. Reaction of protein thiols with low-molecular weight thiols such as GSH can yield mixed disulfides. Alternatively, oxidation by ROS and RNS can result in a disulfide bridge forming between two thiols either within a protein chain or between protein chains502.

![Figure 3.4 Oxidation fates of protein cysteines.](image)

Figure 3.4 Oxidation fates of protein cysteines. Protein thiols, particularly low pKa cysteines, upon reaction with H\textsubscript{2}O\textsubscript{2} form a sulfenic acid (SOH), which can react with a second cysteine resulting in intramolecular or intermolecular protein disulfide. SOH can also react with GSH (pink circle) to form a disulfide (S-glutathionylation). The irreversible sulfinic (SO\textsubscript{2}H) and sulfonic (SO\textsubscript{3}H) acids result from further reactions of SOH with H\textsubscript{2}O\textsubscript{2}. In the absence of a second cysteine or GSH, the amide nitrogen of the neighbouring residue can attack the SOH to form a sulfonamide (adapted from Paulsen et al.500).

Oxidation to sulfinic and sulfonic acid are irreversible and thus other means of oxidation named S-thiolation, such as the formation of mixed disulfides may prevent thiols over-oxidation and either protects and/or also modulates protein function. It’s noteworthy that the Cys residue does not necessarily need to be part of the active site of the protein to alter its function, since modification of thiols may also cause conformational changes that
alter protein activity or even interaction with other proteins. As GSH represents the major thiol in almost all organisms, with the exception of Trypanosomatids, protein S-glutathionylation (the covalent addition of glutathione to cysteine residues on target proteins) represents the most abundant form of reversible thiol modification; S-cysteinylation also occurs but the availability of free cysteine in the cell is much lower than GSH and thus this type of modification occurs at a lower rate than S-glutathionylation. The reversible nature of S-glutathionylation and the fact that it occurs during oxidative stress but also under physiological conditions make it an important regulatory mechanism of biological processes. In addition, S-glutathionylation may also serve as a storage form of GSH, which otherwise would be rapidly extruded from the cell under oxidative conditions. S-glutathionylation is a dynamic process that can occur through several reactions: direct interaction between partially oxidized (activated) protein sulphydryls (thiyl radical, sulfenic acid or protein S-nitrosothiol) and GSH; thiol/disulfide exchange reactions between protein thiols and GSSG or S-glutathionylated proteins; reaction between protein thiols and intermediate S-nitrosothiols such as S-nitrosoglutathione (GSNO), which is able to modify protein sulphydryl groups by both protein S-nitrosation and S-glutathionylation and direct interaction between a free protein cysteinyl residue and GSH triggered by oxidants. Also, glutathionylated proteins can result from the reaction catalyzed by Grx between the thiyl radical of GSH (formed by reaction with hydroxyl radicals) and proteins. Indeed, intracellular GSSG concentrations would need to change 100-fold, due to the redox potential of most cysteine residues, to induce S-glutathionylation through thiol exchange mechanism and thus unlikely to occur intracellularly. However, the role of Grx seems to be primarily in the catalysis of protein deglutathionylation (S-glutathionylation reverse reaction). Human GSTPi was reported to catalyse S-glutathionylation reactions, for which contribute the high expression levels detected in many drug resistant tumours, not related to detoxification as GSTPi has a modest activity with of a number of identified substrates, particularly anticancer drugs.

To consider protein glutathionylation as a regulatory mechanism it was proposed that S-glutathionylation must change the protein activity and function in the cell, occur in intact cells in response to a physiological stimulus, occur at physiological GSH:GSSG ratios, and exhibit rapid and efficient mechanisms of specificity towards certain cysteine residues, and reversibility of protein-SSG.
3. Leishmania: Thiol Metabolism and Antioxidant Defense

Figure 3.5 Potential mechanisms of protein S-glutathionylation. Modification of cysteine residues to protein–SSG mixed disulide can occur through several mechanisms: (1) thiol-disulfide exchange; (2) sulfenic acid intermediates; (3) sulfenylamide intermediates; (4) thyl radical intermediates; (5) thiosulfinate intermediates; (6) S-nitrosyl intermediates (adapted from Mieyal et al.506).

Many proteins involved in a wide range of biological processes have been identified as potentially regulated by reversible S-glutathionylation, either inhibited or activated. However, the exact mechanism or importance of this type of modification in vivo remains unclear. Detection of S-glutathionylation targets have been reported in a wide range of organisms including animals, plants, fungi, and bacteria, through the analysis of purified proteins in vitro or large-scale proteomic studies. Two major strategies have been used to detect glutathionylated proteins: labeled GSH, which allows the detection of GSH adducts on S-thiolated proteins and anti-GSH antibodies or thiol alkylation after deglutathionylation by Grxs509. Other approach have been the identification of Trx- or Grx-interacting proteins through the use of mutant Trx or Grx immobilized in a resin that are able to catch target proteins as a mixed disulfide intermediate510-512. The putative target proteins are involved in many processes, including redox homeostasis, nitrogen, sulfur and carbon metabolisms, protein biosynthesis and protein folding476, 502, 511-519. Several metabolic enzymes were reported has susceptible to S-glutathionylation. The glycolitic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which plays a primary role in energy production, is inactivated by S-gluathionylation520-522. Other enzymes such as ketoglutarate dehydrogenase523, aldolase and triose phosphate isomerase can undergo S-glutathionylation both in human cells and plants516, 524 suggesting an important role for this oxidative modification in the modulation of energy production. In E.coli, cobalamin-
independent methionine synthase, the enzyme that catalyses the final step of methionine biosynthesis is also inactivated by S-glutationylation during oxidative stress525. S-glutationylation also plays a role in cell signaling, being involved in the regulation of the kinase activity of protein tyrosine phosphatase 1B (PTP1B) in response to oxidative stress526, 527, among others; interferon regulatory factor 3 (IRF3) is an example of the crucial role of S-glutathionylation in the control of cell signaling pathways. IRF3 is an essential transcriptional regulator of the interferon genes and is S-glutathionylated in non infected cells, but after viral infection IRF3 undergoes deglutathionylation necessary for transcriptional activation of the interferon genes528. Activation of the NF-\kappa B pathway is also dependent on the redox state of the cell as the transcription factor NF-\kappa B is a target for oxidative inactivation by S-glutathionylation529. S-glutathionylation also plays a role in the regulation of redox homeostasis as shown by the inhibition of human and plants Trxs. In chloroplasts only f-type of Trxs (Trxf's) are required for activation of Calvin-cycle enzymes. Thus inactivation of Trxf will affect the activity of other enzymes such as NADP-malate dehydrogenase and GAPDH, which is strongly decreased when Trxf's are glutathionylated. As Trxf's are involved in the regulation of carbon-fixation enzymes by light, S-glutathionylation may constitute a mechanism of regulation of photosynthetic metabolism under oxidative stress530. Also, S-glutathionylation of human Trx abolished its enzymatic activity as insulin disulfide reductase in the presence of NADPH and TR suggesting that the redox state of the cell can regulate Trx functions reversibly through thiol-disulfide exchange reactions531. Concerning the detection of glutathionylated proteins in parasites, the malaria parasite \textit{P. falciparum} has also been reported to have proteins redox regulated through S-glutathionylation being targeted by Trx, Grx and Plrx511, 532, 533. Proteins involved in antioxidant defense (peroxiredoxins) were identified specifically as potential Trx targets and proteins involved in carbohydrate metabolism were also found to interact with Trx, Grx and Plrx proteins511. Among the identified targets of protein S-glutathionylation in \textit{P. falciparum}, as observed in other organisms, both GADPH and pyruvate kinase were reversible inhibited by S-glutathionylation and not only Grx1 but also Trx1 and Plrx were able to efficiently catalyze protein deglutathionylation532. In the case of trypanosomatids, there are no reports of glutathionylation of \textit{Leishmania} proteins, although the related organism \textit{Trypanosoma} uses GSH for the glutathionylation of thiol redox proteins as shown by the specific and reversible glutathionylation of Grx1, Trx and glutathione peroxidase type tryparedoxin peroxidase III of \textit{T. brucei}419. In addition in \textit{T. cruzi} was also identified a dithiol Grx with typical thioltransferase activity that may be involved in the reduction of glutathione disulfide as well as in deglutathionylation of target proteins498. These data suggest that free GSH in these parasites that do not possess a
GR may have other roles beside being a trypanothione precursor, such as protein glutathionylation and deglutathionylation or as a reducing agent of Grxs364.

Interesting is the fact that S-glutathionylation occurs not only in response to oxidative stress but was demonstrated through the detection of glutathionylated proteins under physiological conditions517, 534. For example, constitutive S-glutathionylation has been shown in hemoglobin in red blood cells535, 536 and actin in human fibroblasts and epidermal cells537, 538. Another example is \textit{P. falciparum} GAPDH protein glutathionylation which occurs in the presence of low concentration of GSH, likely to reflect physiological conditions419, 532.

The reverse reaction called deglutathionylation consists of the removal of the GSH moiety from protein mixed disulfides and can be efficiently catalyzed by Grx or Trx via a dithiol exchange mechanism, once the intracellular redox balance has been restored470, 539-541. Human sulfiredoxin has also been reported to catalyze deglutathionylation of a number of distinct proteins in response to oxidative and/or nitrosative stress, such as actin and PTP1B542. It has been shown that Grxs are very efficient glutathionyl mixed disulfide reductases, whereas Trxs are more specific for reduction of protein disulfide bonds and much less efficient than Grxs to catalyze deglutathionylation reactions543, 544. \textit{C. reinhardtii} isocitrate lyase can be inactivated by glutathionylation and reactivated by Grx, while Trx does not appear to regulate protein activity541. Identification of S-glutathionylated proteins is based on the enzymatic reduction of S-glutathionylated proteins by Grx. Grx activity is often measured using the artificial substrate 2-hydroxyethyldisulphide (HEDS) or through deglutathionylation of radiolabeled protein-GSH mixed disulfides545, 546. More recently was developed a new real-time fluorescence-based method for measuring the deglutathionylation activity of Grxs using a glutathionylated peptide as a substrate, which measures the formation of the deglutathionylated product rather than indirectly the consumption of NADPH as in the classical HEDS assay547.

3.5 Thiol Dependent Reductase 1

TDR1 is a parasite-specific enzyme, first identified in \textit{L. major}, with an unusual two domain nature, where the N-terminal domain contains a CXXC motif characteristic of Grxs and Trxs, while the C-terminal active site is characteristic of GSTO; the protein is functional as a trimer90. TDR1 possesses thioltransferase and DHAR enzymatic activities, shown by the ability of using GSH as an electron donor to reduce HEDS (Figure 3.6) and DHA, respectively, with specific activities significantly higher than those reported for the
human GSTO90. Although, the conjugation of GSH with the generic GST substrate CDNB occurred at a low rate and no activities were detected with other GST substrates90. CDNB is a good substrate for all other classes of GSTs, which are able to catalyze the conjugation of free radicals, metals and other electrophilic compounds with GSH and play a major role in the detoxification of many reactive metabolites. Human GSTO instead has activities similar to Grxs, with thioltransferase activity being the most prominent437.

Figure 3.6 HEDS reduction by TDR1. Reactions involved in the thioltransferase in vitro assay using the artificial substrate HEDS. TDR1 is able to transfer electrons to 2-hydroxyethyl disulfide HEDS after glutathione (GSH) oxidation. Glutathione reductase (GR) is used to regenerate glutathione disulfide (GSSG) to GSH. The subscripts “red” and “ox” refer to the redox state of the proteins, dithiol and disulfide, respectively.

In addition, TDR1 is able to reduce the antileishmanial drug pentavalent antimonial (SbV) to a trivalent form (SbIII), the active form against \textit{Leishmania} intracellular amastigotes. Spontaneous conversion of pentavalent antimonials in the presence of GSH has been reported to occur \textit{in vitro}548, 549, however the rate of the reaction is much lower than when catalyzed by TDR1, suggesting a role for the enzyme in the anti-leishmanial activity of antimonial drugs90. Although, generally accepted that amastigotes are the susceptible form of the parasite to antimonials550, 551, it is not yet known if activation occurs within the parasite or outside, leading to the question whether the TDR1 role in drug activation is biologically relevant. The fact that TDR1 levels of expression are 10-fold higher in the amastigotes90 plus the observation that the conditions found within the phagolysosome, in which \textit{Leishmania} resides (acidic p\text{H} and elevated temperature), favour this conversion support the hypothesis of a role in the activation of antimonials; however it can also, instead, play a part in the detoxification of the drug90, consistent with the finding of several products of stibogluconate in \textit{L. donovani} amastigotes552. Besides antimonial reduction, it has also been suggested that TDR1 may play a role in the detoxification of arsenic, due to its similarity with the arsenate reductases90. As observed for SbV, arsenate (AsV) can also be reduced to arsenite (AsIII) nonenzymatically, although the process is too slow to be physiologically significant and, so organisms use enzymes that catalyze AsV reduction553.
Arsenical resistant *Leishmania* strains are frequently cross-resistant to antimonials, justified by the fact that these compounds are related metalloids. This is supported by the identification and characterization of an arsenate reductase in *L. major*, namely ACR2, capable of reducing SbV to SbIII, that when over-expressed leads to an increase in susceptibility to sodium stibogluconate (SSG)91.

TDR1 is conserved among *Leishmania* spp. and have also been characterized in *L. donovani* and *L. infantum*, with 100% homology between this two species and levels of thiol trasferase activity similar to those obtained with *L. major* enzyme (Silva et al, unpublished results). Moreover, a protein similar to TDR1 was identified on the related parasite *T.cruzi*, named Tc52, with an overall identity of 45.7%; the putative active-site residues of the two proteins are identical in the N-terminal domains (CPFC) but differ in the C-terminal domain, which contains the CPF motif similar to GSTO in TDR1 but in Tc52 the cysteine residue is replaced by a serine. Both possess thioltransferase activity and DHAR activity90, 554. In *Leishmania*, GST activity was not detectable, but a related trypanothione S-transferase activity was observed, *L. major* eEF1B was able to catalyze the aromatic nucleophilic substitution reactions between T(SH)\textsubscript{2} and CDNB461, which correlates with the fact that *Leishmania* parasites rely on the T(SH)\textsubscript{2}/TR system and lack GR and thioredoxin reductase364. Thus, given the data available on TDR1, Denton and co-workers have suggested the possibility that the two domains of TDR1 could function together as electron donor and reductase, providing Grx-like activities for *Leishmania*90.
CHAPTER 4

OBJECTIVES AND RESULTS
4.1 Objectives

The identification and characterization of a parasite-specific enzyme, named TDR1, in *L. major* by Denton et al.\(^9^0\) with interesting similarity to an enzyme known as Tc52 of the related parasite *T. cruzi* which had previously been reported as an important factor in the modulation of the host immune response to infection with *T. cruzi* \(^554-557\), prompted this study. It had as main aims the objectives of determining whether TDR1 has a similar effect during *Leishmania* infection as Tc52 does during infection with *T. cruzi* and assessing the potential of the protein in vaccination approaches. An additional interesting aspect of TDR1 is that it possesses an intriguing two domain nature, with motifs characteristic of Grx and GSTO proteins\(^9^0\). This feature, added to the fact that TDR1 shows high conservation within the different *Leishmania* species and has the ability to catalyze the reduction of pentavalent antimonials which is necessary for effective action of the drug against the parasite, suggested an interesting and important role for the enzyme in the parasite. In order to provide insights into the role of TDR1 in visceral *Leishmania* species (*L. infantum* and *L. donovani*), we investigated the essentiality of the gene for parasite survival and virulence through the generation and characterization, including the use of untargeted metabolomics analysis, of TDR1 null mutants.

The experimental results obtained in this study are organized in 6 sections within this thesis as follows:

4.2 Characterization of TDR1 expression, localization of TDR1 in *L. infantum*, and evaluation of the immune response induced by recombinant TDR1 in the context of *L. infantum* infection using a murine model;

4.3 Generation of a TDR1 null mutant in *L. infantum*;

4.4 Elucidation of the role of TDR1 in *L. donovani*, through the generation of a null mutant and characterization of the generated cell lines in the context of oxidative stress, drug resistance and redox regulation;

4.5 Determination of the structure of *L. donovani* TDR1;
4. Objectives and Results

4.6 Analysis of the changes that occur at the metabolome level during *L. donovani* wild-type promastigote growth from logarithmic to stationary phase of *in vitro* culture, using an untargeted metabolomics approach;

4.7 Evaluation of potential differences between visceral (*L. donovani*) and cutaneous (*L. major*) *Leishmania* species through an untargeted metabolomics analysis.
4.2 Immunological role of *Leishmania infantum* Thiol Dependent Reductase 1

The need to develop an effective vaccine against leishmaniasis to prevent the 2 million new cases each year led to the search for antigens able to elicit protection against infection with *Leishmania*. In this study we have evaluated the immune response induced by a recombinant parasite-specific protein of *L. infantum*, Thiol dependent reductase 1 (rTDR1) as well as the ability of this antigen to protect against experimental challenge using a murine model. rTDR1 immunization led to an expansion of CD8-T cell population and a decrease in IL-10 production. However, immunization with rTDR1 did not elicit high levels of protection, despite the maintenance of a significant decrease in IL-10 production. Nevertheless, immunization with rTDR1 induced an increase in CD8-T cell number during the chronic phase of infection, suggesting the generation of memory CD8-T cells. Indeed, analysis of CD8-T cells from rTDR1 immunized mice showed an increase in cells with characteristics of central memory T cells, while no differences were observed in the CD4-T cells from the same animals. Thus, the expansion of CD8-T cell induced by immunization with rTDR1 although insufficient to protect Balb/c mice, highlighted the potential importance of these cells in a vaccination strategy.

Under revision for publication in *Parasite Immunology*
4. Objectives and Results
4. Objectives and Results

Immunological role of* Leishmania infantum* Thiol Dependent Reductase 1

Ana Marta Silva^{a,b,c}, Joana Tavares^{a,b}, Ricardo Silvestre^a, Ali Ouaissi^d, Graham H Coombs^c and Anabela Cordeiro-da-Silva^{a,b}*

^a IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal;
^b Laboratório de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, R. Aníbal Cunha n.º 164, 4050-047 Porto, Portugal;
^c Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
^d INSERM, UMR CNRS 5235, Université de Montpellier 2, Bât 24 - CC 107, Pl. Eugène Bataillon, 34095 Montpellier Cx 5, France

* Corresponding author. Mailing address: Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. Phone: +351 226 074 900. Fax: +351 226 099 157. E-mail: cordeiro@ibmc.up.pt

Short title: TDR1 of* Leishmania* infantum

Keywords: Visceral leishmaniasis, *Leishmania infantum*, TDR1, CD8-T cells, memory T-cells

Summary

The need to develop an effective vaccine against leishmaniasis to prevent the 2 million new cases each year led to the search for antigens able to elicit protection against infection with *Leishmania*.

In this study we have evaluated the immune response induced by a recombinant parasite-specific protein of *L. infantum*, Thiol dependent reductase 1 (rTDR1) as well as the ability of this antigen to protect against experimental challenge using a murine model. rTDR1 immunization led to an expansion of CD8-T cell population and a decrease in IL-10 production. However, immunization with rTDR1 did not elicit high levels of protection,
4. Objectives and Results

despite the maintenance of a significant decrease in IL-10 production. Nevertheless, immunization with rTDR1 induced an increase in CD8-T cell number during the chronic phase of infection, suggesting the generation of memory CD8-T cells. Indeed, analysis of CD8-T cells from rTDR1 immunized mice showed an increase in cells with characteristics of central memory T cells, while no differences were observed in the CD4-T cells from the same animals. Thus, the expansion of CD8-T cell induced by immunization with rTDR1 although insufficient to protect Balb/c mice, highlighted the potential importance of these cells in a vaccination strategy.

1. Introduction

The leishmaniasis remain a major public health problem with 350 million people at risk worldwide and 2 million estimated new cases every year in 88 countries. Clinical manifestations of *Leishmania* infection range from self-healing cutaneous (CL) and mucocutaneous (MCL) forms to visceral leishmaniasis (VL) which, if left untreated, is fatal\(^1\). Leishmaniasis is also found as an opportunistic disease associated with human immunodeficiency virus (HIV). HIV infection increases the risk of developing active VL by between 100 and 2320 times\(^2\). Unfortunately, there is no effective vaccine against this parasite, thus control of disease relies on chemotherapy. However, there are limitations in the use of available drugs due to high cost, toxicity, long courses of treatment and, in particular, the emergence of drug resistance\(^3\). The clinical outcome of infection is determined by a combination of several factors including parasite pathogenicity, determined by the *Leishmania* species, and the host’s immune status\(^4\).

In order to discover new therapeutic or preventative measures to control the disease, it is necessary to dissect the factors involved in the parasite-host interactions. *Leishmania* is able to modulate the immune response, facilitating the invasion and establishment of infection\(^5\). Recently, Silverman and co-workers described a new exosome-based mechanism for the release of *Leishmania* proteins into the host’s cytoplasm\(^6\). Previously, a wide range of *Leishmania* proteins including GP63\(^7\), A2\(^8\), cysteine proteinases\(^9\) and CRK3\(^10\) have been implicated in the survival of the parasite in the mammalian host and consequently considered virulence factors\(^11\). Recombinant proteins of *Leishmania* such as LACK\(^12\), HASPB1\(^13\) and LeIF\(^14\) have been assayed for their immunogenicity and protective potential in murine models; they elicited different degrees of protection. So far, despite many antigens being identified as vaccine candidates only the LEISH-F1+MPL-SE polyprotein vaccine seems promising; this was considered safe and immunogenic against
CL when administered alone or in conjugation with antimonials in human clinical trials. Protection against challenge with *L. infantum* in Leish-F1+MPL-SE-immunized animals appears to be associated with a Th1-type immune response. Moreover, Leish-F1+MPL-SE protective effect against *L. major* is also associated with memory cells that are capable of antigen-specific restimulation for at least 6 months.

An ideal vaccine against leishmaniasis should be able to elicit long-lasting immunity. This involves the generation of CD4-T and CD8-T effector and memory T cells, which depends on the strength and duration of antigenic stimulation. CD4-T cells mediate their effector functions through the production of IFN-γ and IL-4, while CD8-T cells response involve both cytokine production and cytolytic mechanisms. Moreover, expansion of T cell populations in the context of infection will lead to an increase of antigen-specific T cells that ultimately result in the formation of T cell memory. Maintenance of protective T cell memory against leishmaniasis has been difficult to achieve, despite different vaccination strategies being used including live attenuated parasites, recombinant antigens and DNA vaccines. Zaph et al. established that CD4- memory T cells provide effective and long-lasting protection against *L. major* infection, involving two population’s of effector and central memory T cells. This study also showed that central memory T cells do not require the presence of the parasite to maintain the pool of memory cells. CD4-T cells are critical for the development of CD8-T-cell memory. Host protection against *Leishmania* infection has been reported to be associated with CD8-T cells. CD8-T cells are required for resistance to re-infection, as shown by the enhanced levels of IFN-γ released during a memory response to *L. major* by antigen-specific CD8-T cells from the lymph nodes and spleen cells of immune re-infected mice.

The current study was undertaken to investigate the role of *L. infantum* Thiol dependent reductase 1 (TDR1) in the parasite-host interaction. TDR1 was first identified in *L. major* as a parasite-specific enzyme by Denton and co-workers. This enzyme has some similarities to human omega-GST, including its thiol transferase and dehydroascorbate reductase activities. This is an interesting feature given the fact that *Leishmania* parasites do not possess the classical redox system based on glutathione and rely on the trypanothione system for protection against oxidant damage and toxic heavy metals. Alignment of the predicted amino acid sequences also revealed a considerable identity (45.7%) between TDR1 and a *T. cruzi* protein named Tc52 and very high identity (95%) with *L. infantum*, which could suggest an important and conserved role for this protein. Tc52 is an excreted/secreted protein of *T. cruzi* which has been reported to be important in modulation of the mammalian host’s immune response by the suppression of T cell...
proliferation33. Moreover, Tc52 targeted gene deletion gave evidence for a crucial importance of this protein in the survival and virulence of \textit{T. cruzi}34. Similarly to TDR1, Tc52 also possesses thiol transferase and dehydroascorbate reductase enzymatic activity35. Thus, in this study we have evaluated the immune response induced by recombinant TDR1 when administered to Balb/c mice as well as the ability to induce protection against challenge with virulent \textit{L. infantum} promastigotes. The data showed that recombinant TDR1 of \textit{L. infantum} only elicited partial protection against chronic \textit{Leishmania} infection, despite a decrease in IL-10 production and expansion in CD8-T cells with characteristics of central memory T cells.

2. Materials and Methods

2.1. \textit{Leishmania} parasites

\textit{Leishmania infantum} (clone MHOM/MA/67/ITMAP263) promastigotes were grown at 27°C in RPMI complete medium (RPMI 1640, BioWhittaker) supplemented with 10\% (\textit{v/v}) heat inactivated fetal bovine serum (FBS, Gibco), 2 mM L-glutamine (Sigma), 20 mM Hepes (Gibco), 100 U/ml penicillin and 100 mg/ml streptomycin (BioWhittaker). Cultures were set up initially at a concentration of 1 x106 parasites/ml and sub-passaged every 5 days.

To obtain promastigotes in the different phases of growth, parasites were first synchronized by five daily passages of 1x106 parasites/ml and then harvested at days 1 (early log phase), 2 (late log phase) and 6 (stationary phase). Axenic amastigotes were grown at 37°C with 5\% CO\textsubscript{2} in MAA/20 medium. MAA/20 consists of modified medium 199 (GIBCO) with Hank's balanced salt supplemented with 0.5\% trypto-casein (Oxoid), 15 mM D-glucose (Sigma), 5 mM L-glutamine, 4 mM NaHCO\textsubscript{3} (Sigma), 0.023 mM bovine hemin (Fluka), and 25 mM Hepes to a final pH of 5.8 and supplemented with 20\% (\textit{v/v}) FBS36. The differentiation process was initiated by incubation of stationary phase promastigotes in MAA/20 medium at 37°C with 5\% CO\textsubscript{2}. Parasites were harvested after 1, 3, 5, 10, 24, 48 and 72 h of incubation.

2.2. Cloning and purification of TDR1

The \textit{L. infantum} TDR1 was PCR amplified using \textit{L. infantum} genomic DNA as template and the following forward (5\prime-GCCATATGGCCGCCCAGCTAAAGCTATACGTG-3\prime) and reverse (5\prime-GATCTAGATTACCGCTCTGGCCCTCCGTTGACGC-3\prime) primers containing \textit{NdeI} and \textit{XbaI} restriction sites (underlined), respectively. Amplification conditions were as follows: 94°C, 2 min; 30 cycles of 94°C, 15 sec; 55°C, 30 sec; 72°C, 90
sec and 72°C, 10 min. The PCR product (1349bp) was cloned into pGEM-T Easy vector (Promega). All the transformants were identified by restriction analysis and one of the clones chosen to be confirmed by sequencing (Eurofins MWG Operon). The insert was excised by digestion with \textit{NdeI}-XbaI (New England Biolabs) and sub-cloned into the \textit{Escherichia coli} expression vector pET28a⁺ in frame with an amino-terminal six-histidine tag (pET28a⁺ \textit{TDR1}). Briefly, 500 ml cultures of recombinant \textit{E. coli} BL21 (DE3) were induced to express TDR1 by the addition of 2 mM of isopropyl β-D-thiogalactoside (IPTG), overnight at 15°C. The induced culture was harvested and resuspended in 20 mM Tris/500 mM NaCl, pH 7.9 (Buffer A) containing 10 mM imidazole. The cells were lysed by sonication and the resulting suspension was centrifuged at 15000 x g for 30 min at 4 °C to remove cell debris. The clear supernatant containing soluble protein was applied on to a pre-equilibrated nickel-nitrilotriacetic acid (Ni-NTA) column (Qiagen). The column was washed with Buffer A containing 60 mM imidazole to remove the non-binding proteins and the His-tagged recombinant protein was eluted with Buffer A containing 250 mM of imidazole. After purification, the eluted fractions were pooled and buffer-exchanged into 20 mM Tris, 250 mM NaCl, pH 7.9 using a PD10 desalting column (GE Healthcare) and stored at -80°C. The recombinant protein was designated rTDR1. To eliminate endotoxins, the recombinant protein was passed through an EndoTrap®red column (Profos, Germany) following manufacturer’s instructions. Polyclonal antiserum against TDR1 was generated in mice by intraperitoneal (i.p.) injection of recombinant protein in incomplete Freund’s adjuvant.

\section*{2.3. Immunofluorescence analysis of sub-cellular location of TDR1}

\textit{L. infantum} promastigotes and axenic amastigotes were pelleted by centrifugation at 1500 x g for 10 min, washed with phosphate buffered saline (PBS) and fixed to slides in a PBS solution containing 4% paraformaldehyde, for 20 min at room temperature. Fixed parasites were permeabilised with 0.1% (v/v) Triton X-100 in PBS. Slides were washed several times with PBS and blocked in PBS containing 1% bovine serum albumin (PBS-BSA) for 30 min at room temperature. Incubation with the anti-TDR1 mouse serum (1:100 in PBS-BSA) was made in a humid chamber, for 1 h at room temperature. After several washes in PBS, slides were blocked once more in PBS-BSA for 15 min at room temperature. Alexa Fluor® 488 goat anti-mouse IgG (Molecular Probes) diluted 1:100 in PBS-BSA was used as secondary antibody. Washed parasites were mounted in Vectashield (Vector Laboratories) and analyzed with a fluorescent microscope (Axioskop-Carl Zeiss, Germany) at 1000x magnification. A negative control with parasites treated only with secondary antibody was used.
2.4. Digitonin fractionation
Promastigote fractionation was done according to Häusler et al. Aliquots of 5x10⁷ cells (~100 μg of total protein), resuspended in 1.125 ml of 25 mM Tris pH 7.5, 0.6 M sucrose, 1 mM DTT, 1 mM EDTA and a cocktail of protease inhibitors, were permeabilized with 125 μl of pre-diluted digitonin (Calbiochem) to final concentrations of 0-10 mg of digitonin per mg of cellular protein. Upon incubation at 37ºC for 2 min, the samples were mixed in a vortex and centrifuged at 12000 x g at 4ºC for 10 min. Protein in the supernatants were concentrated by trichloroacetic acid precipitation and supernatant and pellet fractions corresponding to 1.125 x 10⁷ ml promastigotes were run in SDS-PAGE and analyzed by Western Blot.

2.5. SDS-PAGE and Western Blot analysis
Lysates of L. infantum promastigotes and amastigotes were prepared by freeze-thaw lysis of parasite pellets. Insoluble cellular debris was removed by centrifugation at 12000 x g for 20 min at 4ºC, the proteins separated by SDS-PAGE (12%) and blotted to nitrocellulose for Western Blot analysis. Western blots were probed with a polyclonal mouse anti-TDR1 and goat anti-mouse IgG peroxidase-conjugated (SouthernBiotech) used as the secondary antibody. Antibodies raised against L. infantum cTXNPx and mTXNPx sera were used as control. Development was performed with an ECL detection system (Amersham).

2.6. Immunization and challenge infection
Balb/c mice were obtained from Charles River (Spain) and maintained at the animal facilities of the Instituto de Biologia Molecular e Celular (IBMC, Porto, Portugal). Mice were kept six per cage and allowed food and water ad libitum.
Balb/c mice (3 animals per group) were inoculated three times i.p. at 1 week intervals either with 25 μg of rTDR1 or just PBS. Two weeks after the last immunization, spleen and sera were collected. Additional groups were immunized following the scheme described above and two weeks after the last boost challenged i.p. with 10⁸ L. infantum promastigotes in PBS. Mice were bled and sacrificed at 2, 5, 7 and 9 weeks post-infection and spleen, liver and sera were collected. The spleen from each individual mouse was gently dissected to obtain single cell suspensions for cell population and cytokine production analysis. Splenocytes were washed and resuspended in RPMI complete medium to a concentration of 10⁷ cells/ml. Mice groups were designated as follows: TDR1, immunized with rTDR1; PBS, injected with PBS; TDR1 INF, immunized with TDR1 and infected; INF, injected with PBS and infected.
2.7. Assessment of parasite load
Parasite quantification in the spleen and liver was performed by limiting dilution as previously described\(^38\). Briefly, organs were removed, homogenised and resuspended in RPMI medium. Two-fold serial dilutions were prepared in flat bottom 96-well microtiter plates (Immune Plate Maxisorp; Nunc). After incubation for 15 days at 27ºC, plates were examined and the positive (presence of motile parasites) and negative (absence of motile parasites) wells were determined using an inverted microscope. The number of parasites per gram of organ (parasite load) was calculated as follows: parasite load = [(geometric mean of reciprocal titer from each quadruplicate cell culture/weight of homogenized organ) x reciprocal fraction of the homogenized organ inoculated into the first well].

2.8. Flow cytometry analysis
A total of 10⁶ splenocytes resuspended in PBS supplemented with 10% (v/v) FBS were distributed into a 96-well microtiter culture plate and washed with PBS-2% FBS. For spleen cell population determinations, cells were incubated with saturating concentrations of fluorescein isothiocyanate (FITC)-conjugated rat anti-mouse CD8 (Ly-2) monoclonal antibody, FITC-conjugated rat anti-mouse CD4 (L3T4) from BD Pharmingen or FITC-conjugated goat anti-mouse IgM from Southern Biotechnology. After 30 min incubation on ice, the cells were washed three times with PBS-2% FBS and examined in a FACSCalibur (Becton Dickinson) using propidium iodide 0.25 \(\mu\)g/ml (BD Pharmingen) for cell death exclusion. For phenotypic characterization of spleen cells, CD8 and CD4 subsets were double stained with phycoerythrin (PE)-conjugated rat anti-mouse CD44 (clone IM7, BD Pharmingen) and APC-conjugated rat anti-mouse CD62L (clone MEL-14, BD Pharmingen). Data files were analyzed using FlowJo software (Tree Star, Inc.).

2.9. Cytokine ELISAs
Spleen cells were seeded at a density of 2×10⁵ cells/well in the presence of rTDR1 (10 \(\mu\)g/ml), concanavaline A (Con A, 6 \(\mu\)g/ml) or medium alone. Plates were incubated for 24h (for detection of IL-2), 48 h (for detection of IL-10 and IL-4) or 72 h (for detection of IFN-\(\gamma\)) at 37ºC in 5% CO\(_2\). The IFN-\(\gamma\), IL-10 and IL-4 production in supernatants of splenocyte cultures was measured by two-site sandwich enzyme-linked immunosorbent assay (ELISA), as previously described\(^39\)

2.10. Detection of specific rTDR1 antibodies
Serum samples from animals immunized with rTDR1 were analyzed by ELISA for specific IgG and IgG1, IgG2a, IgG2b subclasses to rTDR1 2 weeks after the last boost and also 2, 5, 7 and 9 weeks post-infection, as previously described\(^40\).
2.11. Statistical analysis
Statistical analysis was performed using Student’s T test. A p value smaller than 0.05 ($p<0.05$) was considered significant. GraphPad Prism 4 was used for plotting the graphs.

The *L. infantum* TDR1 sequence was submitted to the NCBI sequence database under the accession number JF767498.

3. Results

3.1. Molecular cloning, expression and purification of *L. infantum* TDR1
L. infantum TDR1 is predicted to encode a protein with a theoretical molecular weight of 49.9 kDa. Fig. 1 shows the *Li*TDR1 amino acid sequence and compares it with *Lm*TDR1 and *Tc*52. The sequence analysis revealed that *Li*TDR1 shares a high identity with *Lm*TDR1 (95.8%), as predicted by Denton and co-workers\(^3\). Moreover, *Li*TDR1 shares with *Tc*52 the putative active site positioned in the N-terminal region while the CPF motif, characteristic of omega GSTs, occurring in the C-terminal region of the *Leishmania* proteins is absent from *Tc*52. The CXXC sequence, where X represent any amino acid, is also characteristic of glutaredoxins\(^4\).
4. Objectives and Results

Figure 1. Amino acid alignment of *L. infantum* TDR1, *L. major* TDR1 and *T. cruzi* Tc52. The amino acid sequences of *L. infantum* TDR1 and *L. major* TDR1 (EBI accession no. AJ582069) were aligned and compared with *T. cruzi* Tc52 (EBI accession no. Q26950). Alignment was performed with AlignX (VectorNTI, Invitrogen). Identical amino acids in all sequences are shaded in black, identical amino acids in the *Leishmania* sequences are shaded in dark grey and light grey indicates similarity between amino acids. The putative active-sites are underlined.

In order to obtain TDR1 as a recombinant protein, *TDR1* was cloned into pET28a+ and expressed in *E. coli* with a N-terminal 6x Histidine-tag. As shown in Fig. 2, rTDR1 is a highly soluble recombinant protein with a yield of approximately 20 mg per liter of *E. coli* culture.
4. Objectives and Results

Figure 2. Expression and purification of *L. infantum* TDR1 in *E. coli*. Protein samples were separated in 12% SDS-PAGE gel followed by Coomassie staining. Molecular mass standards (lane 1), lysate (lane 2) and supernatant (lane 3) of *E. coli* expressing recombinant protein; flow-through (lane 4); washes with Buffer A 60 mM imidazole (lanes 5 and 6) and purified recombinant protein eluted with Buffer A 250 mM imidazole (lanes 7 - 10). Estimated molecular masses and recombinant protein (arrowed) are indicated on the left and right, respectively.

3.2. *L. infantum* TDR1 is constitutively expressed and is present in the cytosol of both parasite stages

To analyze the protein expression throughout the life cycle of *L. infantum*, promastigotes were synchronized to obtain the cells in different developmental stages (early log, late log and stationary phase of *in vitro* cultures), as well as differentiated into amastigotes. As shown in Fig. 3A, TDR1 expression is up-regulated in the axenic amastigote form and kept constant during exponential growth of promastigote stage.

Figure 3. Expression of TDR1 throughout *L. infantum* development. (A) Western Blot analysis of TDR1 expression in total protein extracts from early log (lane 1), late log (lane...
2) and stationary phase (lane 3) promastigotes and from axenic amastigotes (lane 4) using anti-TDR1 polyclonal antibody. (C) Western Blot analysis of TDR1 expression in total protein extracts resulting from differentiation of promastigotes into amastigotes. Expression was analyzed, using anti-TDR1 polyclonal antibody, 1, 3, 5, 10, 24, 48 and 72 h after initiation of incubation of promastigotes in MAA/20 medium at 37°C. Coomassie blue staining of identical gel run in parallel (B, D) is shown as a loading control. Estimated molecular masses and TDR1 protein (arrowed) are indicated on the left and right, respectively.

This result was also confirmed by FACS analysis (Fig. S1 in supporting information). Furthermore, TDR1 expression increased in response to the temperature elevation and acidic pH in MAA/20 medium (Fig. 3C). The protein expression increased continuously until full differentiation to the amastigote form (Fig. 3C).

In order to gain insight into the localization of TDR1 in *L. infantum*, an immunofluorescence assay was performed with both promastigote and axenic amastigote forms (Fig. 4A). Immunostaining revealed a cytosolic localization with a punctate morphology. Cell fractionation by digitonin titration was carried out to further check the protein localization. Increasing concentrations of digitonin will permeabilise the different cellular membranes with the release of the proteins present in each cellular compartment. Release of mitochondrial and cytosolic contents was monitored using a mitochondrial (*Li*mTXNPx) and cytosolic (*Li*cTXNPx) tryparedoxin peroxidases, respectively. As shown in Fig. 4B, TDR1 was released at very low concentrations of digitonin (0.1-0.5 mg digitonin/mg protein) in agreement with a cytosolic localization observed by immunofluorescence.
Figure 4. Sub-cellular localization of TDR1 in *L. infantum* promastigotes and axenic amastigotes. (A) Early log, late log, stationary phase promastigotes and axenic amastigotes were stained by immunofluorescence with mouse anti-TDR1 polyclonal antibody. A second antibody Alexa Fluor-488 goat anti-mouse IgG was used to detect the immune complex. Parasites were analyzed under a fluorescent microscope (Axioskop-Carl Zeiss, Germany) at 1000× magnification. (B) Western blot analysis, using anti-TDR1 polyclonal antibody, of supernatant (S) and pellet (P) fractions resulting from promastigotes permeabilisation with increasing concentrations of digitonin. Anti-cTXNPx and anti-mTXNPx were used as cytosolic and mitochondrial markers, respectively.
Given the fact that TDR1 has high homology with Tc52, an excreted/secreted protein from *T. cruzi*[^33^], we assessed the possibility of *L. infantum* TDR1 belong to the group of excreted/secreted molecules. TDR1 secretion was evaluated by immunoprecipitation of [^{35}S] methionine-labelled *L. infantum* promastigotes and axenic amastigotes antigens after pulse chase experiments, using anti-TDR1 antibodies. We found that the protein is released by promastigotes and axenic amastigotes into the culture medium at low levels (Fig. S2 in supporting information). Moreover, TDR1 was detected in vesicles purified from spent medium of *L. infantum* promastigote cultures, revealing the possible release of the protein by an exosome-based mechanism (N. Santarém et al., unpublished data).

3.3. TDR1 immunization leads to an increase in B and CD8-T cell numbers and a marked increase in specific IgG1 production

The effect of TDR1 on the immune response was investigated in Balb/c mice after administration of rTDR1. Two weeks after the last immunization, spleen cells were used to analyze the humoral and cellular responses. As shown in Fig. 5A, immunization with rTDR1 led to a significant increase in the total number of B cells (*p*=0.006) and CD8-T cells (*p*=0.0009). As a control Balb/c mice were immunized with two other *Leishmania* recombinant proteins, namely tryparedoxin 1 (TXN1) and mTXNPx, which were produced following the same procedure used to obtain rTDR1. Both TXN1 and mTXNPx are involved in *Leishmania* hydroperoxide metabolism[^42^] and TXN1 has been reported to up-regulate IL-10 secretion through activation of B cells[^43^]. There were no differences in the numbers of CD8-T cell population between mice only injected with PBS and mice immunized with rTXN1 or rmTXNPx (Fig. S3 in supporting information), suggesting that TDR1 induces specifically CD8-T cells expansion in vivo. Increase in B cell numbers induced both by rTDR1 and mTXNPx immunization could be related with polyclonal B cell activation reported to occur in response to *Leishmania* infection, although analysis of polyclonal antibodies against for example whale skeletal muscle type II myoglobin (Myo) and native double-stranded DNA (DNA) in the sera of TDR1- or rmTXNPx-immunized Balb/c mice did not confirm it as were detected very low levels similar to the ones observed in the control animals. *In vitro* experiments showed no significant increase in CD69 surface expression, an early activation marker, by B or T cells in response to treatment with rTDR1. The latter suggest that TDR1 may need to be processed and presented *in vivo* to have an effect on the immune response.

In order to examine the *in vivo* effect of TDR1 on the cytokine production, splenocytes of rTDR1-immunized or PBS-injected Balb/c mice were stimulated with rTDR1 or Con A. Cell supernatants were collected and production of IFN-γ (Fig. 5B), IL-10 (Fig. 5C), IL-2 and
IL-4 (Fig. S4 in supporting information) were measured by ELISA. No significant differences were observed in the cytokines production from cells cultured in the presence or absence of rTDR1. However, spleen cells from TDR1 immunized mice stimulated with Con A showed a significant decrease in the IL-10 production ($p=0.0073$) when compared with cells from PBS-injected mice. This resulted in an increase in the IFN-γ/IL-10 ratio in the rTDR1 immunized mice (52) when compared with PBS-injected mice (39). Immunization of Balb/c mice with rTXN1 used as control did not induce any significant change in IL-10 production by spleen cells stimulated ex-vivo with Con A (data not shown).

Figure 5. Cellular and humoral immune responses induced by immunization with rTDR1. Balb/c mice were immunized i.p. with 25 µg of rTDR1 three times with an interval of one week between each injection. The control group received PBS injections. Two weeks after the last immunization, the mice were sacrificed and spleens recovered. (A) Spleen cells were analyzed by flow cytometry to determine the percentage of B cells, CD4- and CD8-T cells. The number of each cell subpopulation was calculated based on the total viable cells determined by trypan blue exclusion and the percentage of cell bound to the specific cell marker (anti-CD4, anti-CD8, anti-µ). Cytokine production was quantified in the supernatant of spleen cells cultures by ELISA. Spleen cells (2.5×10^5) were stimulated with rTDR1 protein (10 µg/ml) or Con A (6 µg/ml) for 48 and 72 h for
quantification of IL-10 (C) and INF-γ (B) production, respectively. (D) Sera obtained from PBS- or TDR1-immunized mice were used to determine the levels of TDR1-specific IgM, IgG, IgG1, IgG2a, IgG2b and IgG3 by ELISA. The sera were diluted 1/100 in PBS-1% gelatin. The data represent the mean and standard deviations of three animals analyzed individually and are representative of three experiments carried out independently. Statistically significant differences between TDR1 and PBS groups are indicated ** $p<0.01$, *** $p<0.001$.

To evaluate the humoral response induced by TDR1 immunization, the levels of TDR1-specific isotypes in the sera of rTDR1 or PBS immunized mice were determined by ELISA. Fig. 5D shows that sera from rTDR1 immunized mice contained elevated levels of TDR1-specific IgG, with predominant IgG1 antibody isotype. Previously the IgG2a/IgG1 ratio has been used as a predictive measure for Th1 and Th2 responses since IgG2a levels are dependent on IFN-γ and IgG1 levels correlate with IL-4. Based on the humoral response, rTDR1 immunization induced high levels of IgG1 compared with IgG2a revealing a tendency toward Th2 response, with a TDR1-specific IgG2a/IgG1 ratio of 0.37.

3.4. Expansion of CD8-T cells and decrease in IL-10 production elicited by rTDR1 immunization was insufficient to protect Balb/c mice against *L. infantum* infection

In order to investigate the effect of rTDR1 immunization to elicit protection against leishmaniasis, rTDR1 immunized mice were challenged with *L. infantum* promastigotes. The parasite load in the spleen and liver was evaluated by limiting dilution at 2, 5, 7 and 9 weeks post-infection. Fig. 6A shows that animals immunized with rTDR1 presented a lower parasite load in the spleen compared with PBS immunized animals during experimental infection, except for 2 weeks after infection. Significant differences were observed at 7 ($p=0.023$) and 9 weeks ($p=0.002$) post-infection. No significant differences were detected in the liver parasite load between the groups used in this study (Fig. 6B). An attempt to improve the protection levels induced by rTDR1 immunization using CpG as an adjuvant or protein delivery as a DNA vaccine proved unsuccessful (data not shown).
4. Objectives and Results

Figure 6. Parasite load in the spleen (A) and liver (B) of Balb/c mice immunized with rTDR1 after challenge with *L. infantum* promastigotes. Groups of mice were immunized i.p. with 25 µg rTDR1 (TDR1) or with PBS and challenged with 1x10⁸ *L. infantum* promastigotes and groups designated as TDR1 INF (immunized and infected) and INF (infected). Limiting dilution analysis was performed 2, 5, 7 and 9 weeks after infection on the cells isolated from the spleen and liver of each individual mouse and cultured in quadruplicate for 2 weeks at 27°C. The cultures were then assessed microscopically for *L. infantum* viable parasites. The data represent the mean and standard deviations of three animals analyzed individually and are representative of three experiments carried out independently. Statistically significant differences between TDR1 INF and INF groups are indicated *p<0.05, **p<0.01.

Analysis of rTDR1-specific IgG isotypes in the sera of rTDR1 immunized mice during the course of experimental infection (Fig. 7) revealed the maintenance of high levels of specific IgG1 over IgG2a, as observed when analysing the humoral response after immunization with rTDR1. Sera from animals receiving PBS were essentially negative for TDR1-specific immunoglobulins.

Figure 7. Levels of TDR1-specific antibodies in sera from Balb/c mice immunized with rTDR1 and infected with *L. infantum* promastigotes. (A) Levels of TDR1-specific
IgG, IgG1, IgG2a and IgG2b were determined by ELISA during *L. infantum* infection (2, 5, 7, and 9 weeks) in sera from Balb/c mice immunized with rTDR1. The sera were diluted 1/100 in PBS-1% gelatin. (B) Ratio between TDR1-specific IgG2a and IgG1 levels at 2, 5, 7 and 9 weeks post-infection. The data represent the mean and standard deviations of three animals analyzed individually and are representative of three experiments carried out independently.

Although rTDR1 immunization was only able to induce a small degree of protection, the cellular response of immunized and infected mice was assessed to determine whether the protection levels achieved resulted from a cell-mediated process. Production of IFN-γ, IL-10 and IL-4 was determined by ELISA after *ex-vivo* stimulation of spleen cells with rTDR1 or Con A. There was no significant difference in the profiles of IFN-γ and IL-4 production between rTDR1 immunized and infected mice and control group during the course of *Leishmania* infection (Fig. 8A and 8C).

Figure 8. Cytokine production by spleen lymphocytes from Balb/c mice immunized with rTDR1 and challenged with *L. infantum* promastigotes. Spleen cells from Balb/c mice immunized with rTDR1 (TDR1) or PBS and challenged with 1×10^8 *L. infantum* promastigotes (groups designated as TDR1 INF (immunized and infected) and INF (infected)), were recovered at 2, 5, 7 and 9 weeks post-infection. Cells were stimulated
with 6 µg/ml of Con A for 72 h to determine INF-γ production (A) and for 48 h to determine IL-10 (B) and IL-4 (C) production by ELISA. (D) Ratio of INF-γ/IL-10 production by spleen cells stimulated with 6 µg/ml of Con A at 2, 5, 7 and 9 post-infection. The data represent the mean and standard deviations of three animals analyzed individually and are representative of three experiments carried out independently. Statistically significant differences between TDR1 INF and INF groups are indicated * p<0.05, ** p<0.01.

In contrast, a significant decrease in the production of IL-10 was observed in the case of spleen cells from rTDR1-immunized and infected mice at 7 (p=0.038) and 9 (p=0.0056) weeks post-infection upon their ex-vivo stimulation with Con A compared with the controls (Fig. 8B). This fact contributes to the increase in the ratio of IFN-γ/IL-10 in the rTDR1 immunized mice at 7 (30) and 9 weeks (48) post-infection while in the PBS immunized mice it remains at comparable levels (15 at 7 weeks and 16 at 9 weeks) during the course of infection (Fig. 8D). In Leishmania infection, IL-10 limits the magnitude of the immune response by inhibiting APC functions, such as IFN-γ secretion, which are essential for the parasite clearance. Moreover, IL-10 produced by T regulatory cells has been shown to play an important role in disease chronicity, thus the decrease in IL-10 production may contribute to the reduction in the parasite load observed at 7 and 9 weeks post-infection in Balb/c immunized with rTDR1 but was not enough to induce high levels of protection.

As reported above, rTDR1 immunization induced an increase of splenic B cells and CD8-T cells. To investigate if the same occur in the context of Leishmania infection, spleen cell populations obtained from immunized mice challenged with L. infantum promastigotes were analyzed by flow cytometry. As shown in Table 1, two weeks post-infection spleens from mice immunized with rTDR1 show a significant increase in the number of CD8-T cells (p=0.003) when compared with the control. This is also observed at 9 weeks after infection (p=0.008), confirming the maintenance of an increase in the CD8-T cell population even in the context of Leishmania infection.

CD8-T cells upon antigenic stimulation up-regulate the expression of granzymes, perforin, IFN-γ secretion and become cytolytic, leading to the death of infected cells. Thus, we tested the cytolytic capacity of spleen cells from mice immunized with rTDR1 or PBS and challenged with L. infantum. Spleen cells were stimulated ex-vivo with rTDR1 or Leishmania antigens and then put in contact with macrophage infected cells to determine the percentage of death induced in the infected population. No differences were observed between the control and the immunized mice, therefore the CD8-T cells number increase in the mice immunized with TDR1 do not seem to be involved in the death of infected cells.
by a cytotoxic mechanism (Fig. S5 in supporting information). The maintenance of increased numbers of CD8-T cells in mice immunized with rTDR1 even in a chronic phase of the disease led us to hypothesize the generation of T cell memory induced by rTDR1 immunization.

Table 1. Analysis of spleen cell populations from Balb/c mice immunized with rTDR1 and challenged with L. infantum promastigotes

<table>
<thead>
<tr>
<th>Week</th>
<th>TDR1 Treatment</th>
<th>CD4 (x10^7)</th>
<th>CD8 (x10^7)</th>
<th>B (x10^7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>1.732 ± 0.063</td>
<td>0.684 ± 0.033</td>
<td>3.392 ± 0.028</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>2.327 ± 0.039</td>
<td>1.008 ± 0.043**</td>
<td>3.772 ± 0.114</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>2.397 ± 0.028</td>
<td>1.220 ± 0.055</td>
<td>3.303 ± 0.218</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>2.388 ± 0.099</td>
<td>1.267 ± 0.039</td>
<td>3.998 ± 0.316</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>1.920 ± 0.097</td>
<td>0.777 ± 0.101</td>
<td>4.307 ± 0.496</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>2.017 ± 0.034</td>
<td>1.146 ± 0.170</td>
<td>4.012 ± 0.106</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>2.944 ± 0.420</td>
<td>0.990 ± 0.060</td>
<td>4.224 ± 0.541</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>2.942 ± 0.590</td>
<td>1.422 ± 0.023**</td>
<td>5.287 ± 0.118</td>
</tr>
</tbody>
</table>

The percentage of B cells, CD4- and CD8-T cells were determined by flow cytometry analysis in the spleen of Balb/c mice immunized with rTDR1 (TDR1) or with PBS 2, 5, 7 and 9 weeks post-infection. The number of each cell subpopulation was calculated based on the total viable cells determined by trypan blue exclusion and the percentage of cell bound to the specific cell marker (anti-CD4, anti-CD8, anti-µ). The data represent the mean and standard deviation of three animals analyzed individually and are representative of three experiments carried out independently. Statistically significant differences between TDR1 and PBS groups are indicated ** P<0.01.

In order to characterize T cells after immunization and challenge with L. infantum, spleen cells were labeled with antibodies that recognized T cell expression markers - allowing the distinction of different subsets of memory T cells. CD44, a surface protein required for lymphocyte extravasation to inflammatory sites48, and CD62L, a lymph node homing receptor49, were used since up-regulation of these markers is a hallmark of memory T cells. The combination of surface staining for CD44 and CD62L separates between two functionally distinct memory cell subsets, central memory T cells (CD44^{high} and CD62L^{high}) and effector memory T cells (CD44^{high} and CD62L^{low}). The stained splenocytes were analyzed by flow cytometry, and only CD8-T or CD4-T cells are shown in the analyses.
(Fig. 9A). Analysis of spleen cells from TDR1-immunized mice 9 weeks post-infection revealed a significant difference in the CD8$^+$ central memory subset with an increase in the percentage of CD8$^+$CD44$^{\text{high}}$CD62L$^{\text{high}}$ cells ($p=0.0085$) when compared with splenocytes from PBS-immunized mice (Fig. 9B). CD4-T cells did not show any changes in the percentage of cells in the central memory subset when comparing the 2 groups analyzed (Fig. 9C).

Figure 9. Representative three-color FACS contour plots of splenocytes. CD4$^+$ and CD8$^+$-gated cells were analyzed for CD44 and CD62L expression and the percentages for each subset are shown (A). Percentages of total spleen CD8- (B) and CD4- (C) T cells were obtained for CD44$^{\text{high}}$CD62L$^{\text{low}}$, CD44$^{\text{high}}$CD62L$^{\text{high}}$, CD44$^{\text{low}}$CD62L$^{\text{low}}$, CD44$^{\text{low}}$CD62L$^{\text{high}}$ subsets as
Objectives and Results

Spleens from rTDR1- or PBS-immunized Balb/c mice were harvested 9 weeks post-infection (groups designated as TDR1 INF (immunized and infected) and INF (infected)), and splenocytes stained with CD8 or CD4 monoclonal antibodies plus CD44 and CD62L. Results shown are representative of two experiments carried out independently. Statistically significant differences between TDR1 INF and INF groups are indicated * \(p<0.05 \), ** \(p<0.01 \).

Memory cell phenotype was checked during the course of infection with *L. infantum* based in the expression of high levels of CD62L on CD44\(^{\text{high}}\)CD8\(^{+}\) and CD62L on CD44\(^{\text{high}}\)CD4\(^{+}\) as shown in Table 2. Spleen cells from TDR1-immunized mice showed a significant increase in the percentage of CD62L\(^{\text{high}}\) on CD44\(^{\text{high}}\)CD8\(^{+}\) cells \((p=0.005) \), the central memory subset, only at 9 weeks post-infection. Altogether, these observations suggest that generation of central memory T cells may be induced by TDR1 in the context of *Leishmania* infection, however not in a significant magnitude which could result in higher levels of protection against *Leishmania* infection.

Table 2. Expression of memory markers on splenic CD8\(^{+}\) and CD4\(^{+}\) T cells before and after challenge of rTDR1-immunized Balb/c mice with *L. infantum* promastigotes

<table>
<thead>
<tr>
<th>week</th>
<th>treatment</th>
<th>% CD62L(^{\text{hi}})</th>
<th>CD44(^{\text{hi}})CD8(^{+})</th>
<th>CD44(^{\text{hi}})CD4(^{+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PBS</td>
<td>53.61 ± 3.62</td>
<td>47.48 ± 4.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDR1</td>
<td>49.67 ± 7.75</td>
<td>51.48 ± 0.72</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PBS</td>
<td>52.27 ± 7.50</td>
<td>42.39 ± 3.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDR1 INF</td>
<td>54.83 ± 1.59</td>
<td>44.56 ± 5.75</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>INF</td>
<td>48.02 ± 3.27</td>
<td>44.09 ± 5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDR1 INF</td>
<td>47.33 ± 7.08</td>
<td>45.69 ± 8.0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>INF</td>
<td>49.06 ± 3.5</td>
<td>58.89 ± 7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDR1 INF</td>
<td>60.27 ± 2.38**</td>
<td>61.22 ± 1.6</td>
<td></td>
</tr>
</tbody>
</table>

The results shown are percentage ± standard deviation of CD62L\(^{\text{high}}\) on CD44\(^{\text{high}}\)CD8\(^{+}\) and CD62L\(^{\text{high}}\) on CD44\(^{\text{high}}\)CD4\(^{+}\) cells. Spleen cell suspensions from each mouse harvested before (0) or 1, 7 and 9 weeks post-infection were individually stained with CD8 or CD4 monoclonal antibodies plus CD44 and CD62L. Groups used were named as follow: TDR1-immunized mice before (TDR1) and after infection (TDR1 INF) and PBS-immunized before (PBS) and after infection (INF). Results shown are representative of two experiments carried out independently. Statistically significant differences between TDR1 INF and INF groups are indicated ** \(p<0.01 \).
4. Discussion

Leishmania have efficiently developed measures to survive in the sand fly and also inside the mammalian host, where the conditions are hostile. Among the different mechanisms is the secretion/excretion or release of molecules important in the initial steps of infection as well as in the manipulation of the hosts' immune responses. The search for parasite antigens able to induce a protective immune response in the mammalian host has lead to the identification of proteins that may constitute putative vaccine candidates\(^7\)\(^\text{10}\), \(^13\), \(^14\). The characterization of proteins involved in the parasite-host interactions has also contributed to understanding the biology of the parasite and its metabolic needs inside its hosts.

In this study, we characterized the immune response to a *L. infantum* recombinant protein named Thiol Dependent Reductase 1 (TDR1). The interesting feature of this protein that prompted our study was the observation of a high identity between *L. major* TDR1 and *Tc52\(^3\)\(^1\). *Tc52* has been previously demonstrated to be a virulence factor of *T. cruzi* and disruption of one allele of the gene encoding Tc52 resulted in a mutant which gave attenuated disease in mice\(^3\)\(^4\). We confirmed that TDR1 is highly conserved between *Leishmania* species and that *L. infantum* TDR1 is highly homologous with TDR1 of *L. major*. This observation was not unexpected as previous studies have shown a highly conserved gene content and synteny across the *Leishmania* genus\(^5\)\(^0\). The expression profile of TDR1 in *L. infantum* showed an increase expression in the amastigote stage, suggesting a role of TDR1 in adaptation to the mammalian host. Immunostaining analysis revealed that TDR1 is cytosolic in both stages of *Leishmania* parasites. However, we detected TDR1 in the spent medium of both promatigote and amastigote cultures and this could be relevant to the protein role in the parasite-host interaction. TDR1 protein lacks an N-terminal signal sequence that could facilitate secretion but it is known that the parasite has alternative pathways of secretion or release of molecules important for a successful infection\(^6\), \(^5\)\(^1\). Such exosomes may explain the presence of many proteins with known intracellular functions in the spent medium of *Leishmania* cells, a finding reported through applying a proteomic analysis\(^5\)\(^2\), \(^5\)\(^3\).

Several *Leishmania* antigens have been used as vaccine candidates, with considerable differences in the parasite load reduction obtained. The outcome of leishmaniasis is dependent on the type of immune response generated. In visceral leishmaniasis, caused by *L. infantum* or *L. donovani* species, the Th1/Th2 dichotomy is not as important to the outcome of the disease in murine models as it is for *L. major* infection. Th1 responses are suppressed by IL-10 and TGF-β, contrary to what is described in the case of *L. major*.
where infection is promoted by the expansion of Th2 cells producing IL-4, IL-10 and IL-13 [54].

In this study, the ability of rTDR1 to induce protection against challenge with *L. infantum* in susceptible Balb/c mice was evaluated. Partial protection in the spleen was observed in mice immunized with rTDR1 whereas no difference was detected in the liver parasite load. Despite the partial protection obtained with rTDR1 immunization, two significant differences should be highlighted: the decrease in IL-10 and increase in CD8-T cell population with characteristics of central memory cells observed in a chronic phase of the disease. IL-10 decrease after *ex-vivo* stimulation of spleen cells with Con A was observed after immunization with rTDR1 but also in the context of rTDR1 immunization and infection with *L. infantum*. IL-10 is a regulatory cytokine that in visceral leishmaniasis has been described as a key factor in immunosuppression. This was shown by the enhanced resistance to *L. donovani* infection observed in IL-10 deficient mice [55]. Increase in IFN-γ/IL-10 ratio in the context of *L. infantum* infection has been shown to allow an effective clearance of the parasite [40]. Also, *Leishmania* chronic infection is associated with expansion or accumulation of IL-10 producing regulatory T cells (Tregs). In cutaneous leishmaniasis naturally, Tregs modulate the development of effector responses and prevent complete elimination of the parasite. Nevertheless, in active cases of human visceral leishmaniasis Tregs did not accumulate at the site of infection, being disease progression-associated with IL-10 production by splenic CD4+CD25+ (Tr1 cells) [46]. Tr1 cells are a second type of regulatory T cells that are generated following exposure to antigen [45]. In the case of TDR1 immunization, the decrease in IL-10 only occurs in a chronic phase of the disease and is not accompanied by an IFN-γ increase that could account for enhancing the protection levels, since IFN-γ is required for protection against visceral leishmaniasis. It is possible to hypothesize that in Balb/c mice immunized with rTDR1 the decrease in IL-10 was due to a decrease in Tregs or Tr1 cells accumulation. CD8-T cells can be responsible for the suppression of regulatory CD4-T cells detrimental effects. Martin and co-workers have shown that CD8-T cells can work as contra-Treg, however these CD8-T cells are susceptible to IL-10-induced apoptosis and were unable to keep Treg in check 21 days after infection with *L. donovani* [56]. Therefore, this last observation does not support our data since the IL-10 decrease was observed in a later stage of infection. On the other hand, rTDR1 immunization induced an increase in CD8-T cells, to which we could attribute the contra-Treg role, however these did not show an increase ability to kill infected cells through cytotoxic mechanisms *in vitro* when compared with control cells.

Although, immunization with rTDR1 did not induce high levels of protection, the decrease in parasite load observed in a chronic phase of *L. infantum* infection after Balb/c can be
due to CD8-T cells, in particular to the generation or maintenance of memory T cells. After exposure to *Leishmania* antigens, there is a strong clonal expansion of antigen-specific CD8-T cells needed to control the infection and that will determine the magnitude of the memory response. However, *Leishmania* is able to evade the attack from CD8-T cells by suppressing their expansion and effector function inducing functional exhaustion and cell death. This was confirmed when *in vivo* B7-H1 blockade during chronic *L. donovani* infection increased survival of dysfunctional CD8-T cell leading to a significant reduction in the splenic parasite burden26. The rTDR1 immunization that led to an increase in CD8+ central memory T cells 9 weeks post-infection may be due to the ability of TDR1 to induce a greater CD8-T cells expansion to generate memory cells or to maintain the memory T cell population. This possibility should be further explored by determination of cytokines, such as IL-7 and IL-15, which are essential for long term-maintenance of CD8-T cell population and also through adoptive transfer of CD8-T cell population into naive recipient mice to evaluate the levels of protection induced.

The role of antibodies during *Leishmania* infection has been controversial, however recent work have shown that IgG1 can be detrimental to an infected host contributing to disease progression. Mice lacking IgG1 are more resistant to *L. mexicana*, developing earlier and stronger IgG2a and IgG3 responses57. The inability to obtain higher protection levels when using rTDR1 immunization in the context of *L. infantum* infection may be related with the high levels of TDR1-specific IgG1 detected in all experiments performed.

In summary, our study with rTDR1 from *L. infantum* has shown the ability of this antigen to induce expansion of CD8-T cells, decrease in IL-10 production, although not enough to confer high levels of protection against infection in Balb/c mice. Nevertheless, the induction of CD8-T cells with characteristics of central memory T cells highlights the importance of these cells in a vaccination strategy against leishmaniasis.

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia (FCT) project number PTDC/CVT/65047/2006 and AMS is supported by FCT grant SFRH/BD/28316/2006. RS is supported by Programa Ciência 2008 from FCT. The authors have no competing interests.
References

4. Objectives and Results

Supporting Information

Material and Methods

Flow cytometry determinations
L. infantum promastigotes and axenic amastigotes were washed twice in PBS-BSA and permeabilized before incubation for 30 min at 4°C with mouse anti-*L/TDR1* serum. After two washes with PBS–BSA, the parasites were incubated for 30 min at 4°C with Alexa Fluor®-488 goat anti-mouse IgG (Molecular Probes). Labelled parasites were washed twice and resuspended in PBS–BSA followed by analysis in a FACSCalibur (Becton Dickinson).

Immunoprecipitation
L. infantum promastigotes and axenic amastigotes were incubated in methionine-free medium (Sigma) at 27°C or 37°C, respectively. After 1h, the parasites were washed twice at 2000 x g for 5min and resuspended in medium containing 6.25µl of 500 µCi [³⁵S] methionine (Amersham) per ml. After 1h incubation as above, the parasites were washed two times and resuspended in RPMI complete medium or MAA/20 medium. Aliquots of 1mL were harvested by centrifugation at 3 or 6h, the pellet was subjected to lysis for 1h at 4°C and the supernatant incubated for 3 h at 4°C with serum against TDR1 or pre-immune serum. The immunocomplexes were captured by the addition of 100 µl protein G sepharose (Sigma), overnight at 4°C. After incubation the protein G sepharose was collected by centrifugation, washed, resuspended in 2x SDS sample buffer and incubated 1h at 56°C. The beads were collected by centrifugation and supernatant subjected to SDS-PAGE analysis. After running, the gel was fixed, dried and exposed to X-ray film for 2 days at -80°C.
In vitro cytotoxicity assays

In vitro cytotoxicity assay was performed by flow cytometry using a LIVE/DEAD cell-mediated cytotoxicity kit (Molecular Probes) according to the manufacturer’s protocol. Spleen cells were stimulated with 50µg/ml of soluble *Leishmania* antigens (SLA) for 7 days (effector cells); as target cells were used J774 macrophages infected with *L. infantum*. Briefly, effector cells were incubated for 4h with 3,3-dioctadecyloxacarbocyanine (DIOC₁₈) target cells at different effector/target (E/T) cell ratios (5:1, 20:1 and 50:1) in the presence of propidium iodide. Cells were analyzed in a FACSCalibur (Becton Dickinson). The percentage of specific lysis was calculated as follows: \[\frac{\text{dead target cells}}{\text{all target cells}} \times 100 + \left(\frac{\text{dead target cells}}{\text{all target cells}} \right)_{\text{effectors}} - \left(\frac{\text{dead target cells}}{\text{all target cells}} \right)_{\text{effectors}} \times 100. \]
4. Objectives and Results

Figure S1. Flow cytometry analysis of TDR1 expression in *L. infantum* promastigotes and axenic amastigotes. *L. infantum* parasites were incubated with mouse anti-TDR1 polyclonal antibody and Alexa Fluor®-488 goat anti-mouse IgG was used as secondary antibody (TDR1). Parasites labeled just with secondary antibody were used as control (Control). TDR1 labelled parasites: early log phase promastigotes (1), late log phase promastigotes (2), stationary phase promastigotes (3) and axenic amastigotes (4); Control labelled parasites: early log phase promastigotes (5), late log phase promastigotes (6), stationary phase promastigotes (7) and axenic amastigotes (8). The results are representative of two experiments carried out independently.
Figure S2. Identification of *L. infantum* TDR1 as an excreted/secreted antigen. *L. infantum* promastigotes (A) or axenic amastigotes (B) were metabolically labelled with [*35S*] methionine for 3h and 6h, respectively. TDR1 protein from parasite lysate (L) or supernatant (S) was immunoprecipitated with a specific antibody (T) and the immunocomplexes were analyzed by 10% SDS-PAGE, followed by autoradiography of the dried gels. A pre-immune serum (P) was used as control. Estimated molecular masses and TDR1 protein (arrowed) are indicated on the left and right, respectively.
Figure S3. Splenic cell populations in Balb/c mice immunized either with (A) rTXN or (B) rmTXNPx. Balb/c mice were immunized i.p. with rTXN1 or rTXNPx three times with an interval of one week between each injection. The control group received PBS injections. Two weeks after the last immunization, the mice were sacrificed and spleens recovered. Spleen cells were analyzed by flow cytometry to determine the percentage of B cells, CD4- and CD8-T cells. The number of each cell subpopulation was calculated based on the total viable cells determined by trypan blue exclusion and the percentage of cell bound to the specific cell marker (anti-CD4, anti-CD8, anti-µ). The data represent the mean and standard deviations of three animals analyzed individually. Statistically significant differences between TDR1 and PBS groups are indicated * p<0.05.
Figure S4. IL-2 and IL-4 cytokine production induced by immunization with rTDR1.

Balb/c mice were immunized i.p. with 25µg of rTDR1 three times with an interval of one week between each injection. The control group received PBS injections. Two weeks after the last immunization the mice were sacrificed and spleen recovered. Cytokine production was quantified in the supernatant of spleen cells cultures by ELISA. Spleen cells (2.5x10^5) were stimulated with rTDR1 protein (10µg/ml) or ConA (6µg/ml) during 24 and 48h for quantification of IL-2 (A) and IL-4 (B) production, respectively. The data represent the mean and standard deviations of three animals analyzed individually and are representative of three experiments carried out independently.
Figure S5. *In vitro* cytotoxicity of spleen cells from *L. infantum* rTDR1 immunized and infected mice. Lysis of *L. infantum*-infected J774 macrophages (target cells) by SLA stimulated splenocytes (effector cells) isolated from infected (INF) or rTDR1-immunized infected (TDR1 INF) Balb/c mice 9 weeks post-infection with *L. infantum*. Effector cells were incubated with target cells at different effector/target cells ratio (E/T) - 5:1, 20:1 and 50:1. The data represent the mean and standard deviations of three animals analyzed individually.
4. Objectives and Results

DNA vaccine encoding TDR1 do not protect Balb/c mice from infection with *Leishmania infantum*

Abstract

Parasitic protozoa, such as *Leishmania* spp., are responsible for several medically important tropical diseases, like visceral leishmaniasis, considered an important health problem that affects millions of people worldwide. Due to drug inefficacy and increase resistance is urgent to develop new vaccine candidates. DNA vaccination seems to be a promising tool and may offer a new alternative for the control of infectious diseases, once it is able to induce a complete immune response against the encoded antigen. Previously, we have shown that a *Leishmania* enzyme named Thiol Dependent Reductase 1 (TDR1) in the context of infection could induce some protection, through the increase of CD8-T cells population and decrease in IL-10 production, despite the high production of specific IgG1 that correlates with a Th2 profile. In order to enhance the levels of protection induced by TDR1, particularly the cellular response, we have produced a DNA vaccine encoding TDR1 protein (pVAX1-TDR1). Intramuscular immunization of Balb/c mice with pVAX1-TDR1 was able to induce a high production of specific IgG2a that was maintained 2, 5 and 9 weeks after infection with *L. infantum* promastigotes. However, no protection was observed in mice immunized with the DNA vaccine. Prime-boost vaccination with the recombinant protein led to a lower IgG2a/IgG1 ratio due to an increase in IgG1 specific production and didn’t induce protection at 5 and 9 weeks after *L. infantum* infection, lacking as before the induction of a cellular response. Delivery of TDR1 as a DNA vaccine did not improve the protection observed after administration of the recombinant protein. This highlights the fact that not all DNA vaccines will lead to successful results, due to several factors such as the encoding gene, the plasmid backbone and the route of delivery necessary to obtain the activation of the immune response and consequent protection.

Unpublished results
4. Objectives and Results

Introduction

Leishmaniasis is a disease caused by the protozoan parasites of the genus Leishmania. More than 20 species of *Leishmania* are responsible for complex clinical manifestations, which range from self-healing cutaneous ulcers to fatal visceral disease (22). The clinical outcome depends mainly on the infecting specie: cutaneous leishmaniasis (CL) is caused by infection with *L. major*, *L. braziliensis* among others whereas visceral leishmaniasis (VL) caused by infection with species from the *L. donovani* complex (8, 34). Leishmaniasis remains a major public health problem making part of the neglected tropical diseases (14), with 350 million people at risk worldwide and 2 million estimated new cases every year in 88 countries (22). CL predominates in Latin America, central Asia and north Africa (34) while 90% of the world’s VL occurs in India, Bangladesh, Nepal, Sudan and Brazil (8). Moreover, leishmaniasis is complicated by human immunodeficiency virus (HIV) co-infection, which increases the risk of developing active VL by between 100 and 2320 times (1). There is still no effective vaccine for use in humans against leishmaniasis and the drugs available (36) are costly, toxic, limited and increase in drug resistance has been reported (11). Currently, a licensed vaccine, named Leishmune, based on fucose-mannose ligand antigen, present on the surface of the parasite throughout parasite life cycle, plus a saponin adjuvant is being used against canine visceral leishmaniasis. This vaccine is considered a transmission blocking vaccine since antibodies raised against Leishmune are able to block the parasite development in the sand fly rendering the vector non-infectious (4, 35).

Studies on antileishmanial vaccine candidates have increased remarkably in the recent years, largely due to a better understanding of the mechanisms necessary to induce immunity and the availability of *Leishmania* genome sequences. Several vaccine formulations provided partial protection, however there is no fully effective vaccine against leishmaniasis. An ideal vaccine should meet several attributes such as safety, low cost, be effective against species causing CL and VL, induce CD8-T and CD4-T cell responses and long-term immunological memory (23). In addition, an effective vaccine should efficiently stimulate dendritic cells (DC) as they play a key role in inducing both humoral and cellular responses (47). In the search for a vaccine against leishmaniasis have been used different strategies, including killed, live attenuated parasites, recombinant proteins or DNA vaccination among others (reviewed in (29)).

Live attenuated vaccines are considered a good strategy as the use of parasites that are infectious but not pathogenic closely mimics a natural infection (38), which may lead to parasite persistence that seems to be important for an effective protective response (21,
Examples of two successful live attenuated vaccines in murine models are *L. infantum* Sir2-deficient (40) and *L. donovani* centrin null mutants (37) parasites, protection correlated with an increase in the IFN-γ/IL-10 ratio. However, vaccination with genetically modified parasites should be used carefully because the attenuated parasites may revert back to a virulent form.

Several *Leishmania* antigens have been tested as possible vaccine candidates, chosen based in the protein expression, localization and involvement in parasite survival. These include LACK (27), HASPB1 (41), PSA-2 (18) among many others, administered alone or with adjuvants (reviewed in (29)) such as CpG (20, 46) , IL-12 (16, 41) or encapsulated in liposomes (2, 3, 28). Vaccination with recombinant proteins led to a variety of protection levels through the induction of a Th1 response involving the generation of specific INF-γ producing CD4-T and CD8-T cells. Although necessary for protection the Th1 response may not be sufficient to induce protection against *Leishmania* challenge. Leish-F1+MPL-SE consists of three recombinant *Leishmania* proteins (TSA, LmSTI1 and LeIF), together with the adjuvant monophosphoryl lipid and squalene in a stable emulsion (MPL-SE) (10). Leish-F1+MPL-SE was considered safe and immunogenic against CL when administered alone (48) or in conjugation with antimonials in human clinical trials (25, 30). In recent study was reported that LEISH-F1 + MPL-SE vaccine is safe and immunogenic in healthy subjects with and without history of previous infection with *L. donovani* (7).

DNA vaccines are an attractive alternative to conventional methods of vaccination due to several features that include the ability to elicit humoral and cellular immune responses, which can be modulated by the addition of adjuvants such as cytokines or CpG (28, 39). Prime boosting strategies that involve priming with DNA and boosting with the respective recombinant protein or other antigen delivery systems have also been used (12, 26, 33, 45), since heterologous prime-boost leads to a synergistic enhancement of immunity to the target antigen (49). DNA compared to recombinant protein vaccines present some advantages, largely due to stability and low cost of production. Moreover DNA vaccines may provide better protection as they can induce the expression of *Leishmania* antigens folded in its native conformation and normal posttranslational modifications to occur similar to natural infection and potentially with unaltered antigenecity (39). Induction of both humoral and cellular immune responses by DNA vaccines is due to the ability of DC to present the encoded antigen in the context of MHC class I and MHC class II (known as cross-priming) as they can be directly transfected with the plasmid or take up soluble proteins and debris from apoptotic transfected cells (47). Moreover has been suggested that this form of antigen delivery induces longer lasting immune responses (15). There are many reports involving vaccination with DNA encoding *Leishmania* antigens, some of
them tested previously as recombinant proteins, including GP63 (50), LACK (16, 43), LmST11 and TSA (6), cysteine proteinases (32), ORFF (44) among others with a wide range of success rate (13, 29).

In this study we have evaluated the potential of TDR1 to protect Balb/c mice against leishmaniasis when delivered as a DNA vaccine or used in a heterologous prime-boost strategy. Previously we have shown that mice immunized with recombinant TDR1 were partial protected against infection with *L. infantum* promastigotes (Silva et al, unpublished data). Thus, in order to enhance the protection levels induced by recombinant protein against *Leishmania* infection, Balb/c mice were immunized with a plasmid DNA encoding TDR1. Despite, the induction of high levels of specific IgG’s neither DNA vaccination alone or combined with the recombinant protein were able to protect Balb/c mice against *Leishmania* infection.

Material and Methods

Leishmania parasites

Leishmania infantum (clone MHOM/MA/67/ITMAP263) promastigotes were grown at 27°C in RPMI medium (BioWhittaker) supplemented with 10% (v/v) heat inactivated fetal bovine serum (FBS, Gibco), 2 mM L-glutamine (Sigma), 20 mM Hepes (Gibco), 100 U/ml penicillin and 100 mg/ml streptomycin (BioWhittaker). Cultures were set up initially at a concentration of 1 x10^6 parasites/ml and sub-passaged every 5 days.

Plasmid constructs and DNA preparation

The *L. infantum* TDR1 gene was PCR amplified using *L. infantum* genomic DNA as template and the following forward (5’-CGAAGCTTAATATGGCCGCGCGCGCTAAAGCTATACGTC-3’) and reverse (5’-GATCTAGATTACCCGCTCTGGGCCCGCTCGTTGACGC-3’) primers containing HindIII and XbaI restriction sites (underlined), respectively. Cycling conditions were as follows: 94°C, 2 min; 30 cycles of 94°C, 15 sec; 55°C, 30 sec; 72°C, 90 sec and 72°C, 10 min. The PCR product (1368 bp) was cloned into pGEM-Teasy vector (Promega). All the transformants were identified by restriction analysis and one of the clones chosen to be confirmed by sequencing (Eurofins MWG Operon). The insert was excised by digestion with HindIII-XbaI (New England Biolabs) and sub-cloned into pVAX1 vector, resulting the construct pVAX1-TDR1, under the control of CMV promoter, inserted downstream of a kozak consensus sequence and in frame with an initiation codon. The DH5α *E. coli* strain was used as a host during cloning experiments and to propagate the plasmid. All the transformants were identified by
restriction analysis. Plasmid DNA was purified using Endofree Plasmid Megakit (Quiagen) according to the commercial protocol. DNA concentration was estimated in a Qubit fluorometer with Quant-IT DNA Assay Kit (Invitrogen).

In vitro expression of pVAX1-TDR1 in L929 cells

L929 cells were transfected with 5 µg of pVAX1-TDR1 or with the empty plasmid (pVAX1) using the TransFast Transfection reagent (Promega) according to the manufacturer's protocol. Briefly, 2.5 x 10⁵ cells were seeded on 6-well plates in RPMI medium (BioWhittaker) supplemented with 10% FBS (Gibco), 2 mM L-glutamine (Sigma) and 20 mM Heps (Gibco), the DNA/TransFast reagent mixture added and cells incubated at 37ºC, 5% CO₂. Seventy two hours after transfection the cells were washed with phosphate buffered saline (PBS) and fixed in a PBS solution containing 4% paraformaldehyde, for 20 min at room temperature. After permeabilisation with 0.1% (v/v) Triton X-100 in PBS, cells were washed several times with PBS and blocked in PBS containing 1% bovine serum albumin (PBS-BSA) for 30 min at room temperature. Incubation with a polyclonal mouse anti-TDR1 (1:100 in PBS-BSA) was made in a humid chamber, for 1 h at room temperature. After several washes in PBS, cells were incubated with a secondary antibody, Alexa Fluor® 488 goat anti-mouse IgG (Molecular Probes) diluted 1:100 in PBS-BSA. Washed cells were mounted in Vectashield (Vector Laboratories) and analyzed with a fluorescent microscope (Axioskop-Carl Zeiss, Germany) at 1000x magnification.

For detection of TDR1 expression by western blot, seventy two hours after transfection L929 cells were harvested, washed two times with ice-cold PBS and lysed by the addition of 50 mM Tris/HCl pH 8.0, 0.25% (v/v) Triton X-100, 20% (v/v) glycerol, 2 mM EDTA, 10 µM E-64, 400 µM 1,10-phenanthroline, 2 µM pepstatin A and 1 mM PMSF. Insoluble cellular debris was removed by centrifugation at 12000 x g for 20 min at 4ºC, proteins separated by SDS-PAGE (12%) and blotted to nitrocellulose for Western Blot analysis. Western blots were probed with a polyclonal mouse anti-TDR1 and goat anti-mouse IgG peroxidase-conjugated (Southern Biotech) used as the secondary antibody. Development was performed with an ECL detection system (Amersham).

Cloning, expression and purification of recombinant TDR1

The *L. infantum* TDR1 was PCR amplified using *L. infantum* genomic DNA as template and the following forward (5’GCCATATGCGCAGCCCGGCGCCTAAAGCTATACG-3’) and reverse (5’GATCTAGATTACCGCTCTGGGCCCTCCGTTGACGC-3’) primers containing Ndel and Xbal restriction sites (underlined), respectively. Amplification conditions were as follows: 94ºC, 2 min; 30 cycles of 94ºC, 15 sec; 55ºC, 30 sec; 72ºC, 90 sec and 72ºC, 10 min. The PCR product (1349bp) was cloned into pGEM-T Easy vector
(Promega). All the transformants were identified by restriction analysis and one of the clones chosen to be confirmed by sequencing (Eurofins MWG Operon). The insert was excised by digestion with NdeI-XbaI (New England Biolabs) and sub-cloned into the Escherichia coli expression vector pET28a+ in frame with an amino-terminal six-histidine tag (pET28a+ TDR1). Briefly, 500 ml cultures of recombinant E. coli BL21 (DE3) were induced to express TDR1 by the addition of 2 mM of isopropyl β-D-thiogalactoside (IPTG), overnight at 15°C. The induced culture was harvested and resuspended in 20 mM Tris/500 mM NaCl, pH 7.9 (Buffer A) containing 10 mM imidazole. The cells were lysed by sonication and the resulting suspension was centrifuged at 15000 x g for 30 min at 4 °C to remove cell debris. The clear supernatant containing soluble protein was applied on to a pre-equilibrated nickel-nitrilotriacetic acid (Ni-NTA) column (Qiagen). The column was washed with Buffer A containing 60 mM imidazole to remove the non-binding proteins and the His-tagged recombinant protein was eluted with Buffer A containing 250 mM of imidazole. After purification, the eluted fractions were pooled and buffer-exchanged into 20 mM Tris, 250 mM NaCl, pH 7.9 using a PD10 desalting column (GE Healthcare) and stored at -80°C. The recombinant protein was designated rTDR1. To eliminate endotoxins, the recombinant protein was passed through an EndoTrap®red column (Profos, Germany) following manufacturer’s instructions. Polyclonal antiserum against TDR1 was generated in mice by intraperitoneal (i.p.) injection of recombinant protein in incomplete Freund’s adjuvant.

Immunization of mice and parasite challenge

Balb/c mice were obtained from Charles River (Spain) and maintained at the animal facilities of the Instituto de Biologia Molecular e Celular (IBMC, Porto, Portugal). Mice were kept six per cage and allowed food and water ad libitum.

Balb/c mice (8 or 9 animals/group and in the case of mock control 3 animals/group) were immunized with DNA or DNA plus rTDR1 as follow: a) three times intramuscularly (i.m.) at 2 weeks intervals with 100 µg of pVAX1-TDR1 or pVAX1 (mock control); b) two times intramuscularly (i.m.) at 2 weeks intervals with 100 µg of pVAX1-TDR1 or pVAX1; c) two times intramuscularly (i.m.) at 2 weeks intervals with 100 µg of pVAX1-TDR1 or pVAX1 plus 25 µg of rTDR1 2 weeks after the last DNA boost. Two weeks after the last immunization, mice were challenged i.p. with 10⁸ L. infantum promastigotes in PBS. Mice immunized as described in a) were bled and sacrificed 2 weeks post infection and mice immunized as described in b) and c) were bled and sacrificed at 5 and 9 weeks post-infection; spleen, liver and sera were collected. The spleen from each individual mouse was gently dissected to obtain single cell suspensions for cell population and cytokine
production analysis. Splenocytes were washed and resuspended in RPMI complete medium to a concentration of 10^7 cells/ml.

Evaluation of parasite burden

Parasite quantification in the spleen and liver was performed by limiting dilution as previously described (5). Briefly, organs were removed, homogenised and resuspended in RPMI medium. Two-fold serial dilutions were prepared in flat bottom 96-well microtiter plates (Immune Plate Maxisorp; Nunc). After incubation for 15 days at 27ºC, plates were examined and the positive (presence of motile parasites) and negative (absence of motile parasites) wells were determined using an inverted microscope. The number of parasites per gram of organ (parasite load) was calculated as follows: parasite load = [(geometric mean of reciprocal titer from each quadruplicate cell culture/weight of homogenized organ) x reciprocal fraction of the homogenized organ inoculated into the first well].

Flow cytometry analysis

A total of 10^6 splenocytes resuspended in PBS supplemented with 10% (v/v) FBS were distributed into a 96-well microtiter culture plate and washed with PBS-2% FBS. For spleen cell population determinations, cells were incubated with saturating concentrations of fluorescein isothiocyanate (FITC)-conjugated rat anti-mouse CD8 (Ly-2) monoclonal antibody, FITC-conjugated rat anti-mouse CD4 (L3T4) from BD Pharmingen, FITC-conjugated goat anti-mouse IgM from Southern Biotechnology and phycoerythrin (PE)-conjugated rat anti-mouse MAC-1. After 30 min incubation on ice, the cells were washed three times with PBS-2% FBS and examined in a FACSCalibur (Becton Dickinson) using propidium iodide 0.25 μg/ml (BD Pharmingen) for cell death exclusion.

Cytokine ELISAs

Spleen cells were seeded at a density of 2×10^5 cells/well in the presence of rTDR1 (10 μg/ml), concanavalin A (Con A, 6 μg/ml) or medium alone. Plates were incubated for 48 h (for detection of IL-10 and IL-4) or 72 h (for detection of INF-γ) at 37ºC in 5% CO₂. The IFN-γ, IL-12p40 and IL-10 production in supernatants of splenocyte cultures was measured by two-site sandwich enzyme-linked immunosorbent assay (ELISA). Immunosorbent ninety-six-well flat-bottom microtiter plates (Immune Plate Maxisorp, Nunc) were coated overnight at 4º C with unlabeled rat antibodies to the cytokines: IFN-γ (R4-6A2 cell line), IL-12p40 (BVD4-1D11 cell line) and IL-10 (JES5-2A5 cell line) in carbonate buffer (pH 8.2). The plates were washed with PBS containing 0.1% Tween 20 (PBS-T) and blocked with PBS–1% BSA (200 μl/well) for 2 h at room temperature. The plates were incubated with serial dilutions of each supernatant for 2 h at room
temperature. After being washed with PBS-T, the plates were incubated for 1 h at room temperature with biotinylated rat antibodies (BD Pharmingen) to the following cytokines: IFN-γ (XMG1.2 cell line), IL-12p40 (JES6-5H4 cell line) and IL-10 (SXC-1 cell line). After a subsequent wash with PBS-T, the plates were incubated for 1 h at room temperature with streptavidin-peroxidase (Sigma) and developed with o-phenylenediamine (OPD, Sigma) in citrate buffer (0.1 M citrate acid and 0.2 M Na₂HPO₄, pH 5.4) The optical densities were recorded at 450 nm. The concentration of specific interleukins was determined by comparison with a standard curve generated with different recombinant interleukins: rIFN-γ; rIL-12; and rIL10 (R&D Systems).

Detection of specific rTDR1 antibody response
Serum samples from animals immunized with pVAX1-TDR1 or pVAX1-TDR1 plus rTDR1 were analyzed by ELISA for TDR1-specific IgG, IgG1 and IgG2a subclasses before each immunization or challenge with L. infantum promastigotes and 2, 5, and 9 weeks post-infection. Ninety-six-well flat-bottom microtiters plates (microtiter immunoplates, Greiner Bioscience) were coated with rTDR1 (5 µg/ml) in carbonate buffer (pH 8.5) and incubated overnight at 4º C. The plates were washed with PBS-T and blocked with PBS-1% gelatin (200 µl/well) for 1 h at room temperature. The plates were incubated with 1/100 dilutions of each serum sample in triplicate for 1 h at 37ºC. After being washed with PBS-T, the plates were incubated for 30 min at room temperature with peroxidase-labeled goat anti-mouse immunoglobulin isotypes (anti-IgG, anti-IgG1, anti-IgG2a and anti-IgG2b) and developed with OPD (Sigma) in citrate buffer. Reactions were stopped with 3 M HCl and the absorbance was measured at 492 nm in an automatic ELISA reader.

Statistical analysis
Statistical analysis was performed using Student’s T test. A p value smaller than 0.05 (p<0.05) was considered significant. GraphPad Prism 4 was used for plotting the graphs.

Results

Construction of DNA vaccine and transient expression in L929 cells

We have already shown that Leishmania TDR1 recombinant protein is able to induce partial protection in Balb/c mice challenged with L. infantum (Silva et al, unpublished data). In order to improve the protection levels we tested the administration of TDR1 in a DNA format, as an alternative mean of antigen delivery. TDR1 gene was sub-cloned into
the eukaryotic expression vector pVAX1 for expression under the control of a strong cytomegalovirus (CMV) promoter (Fig. 1). To assess the expression of TDR1 in mammalian cells, L929 cells were transiently transfected with pVAX1-TDR1 or with the empty vector (pVAX1) as a control and after 72h protein expression was evaluated by immunofluorescence (Fig. 2) and western blot (data not shown). Despite a low transfection efficacy was possible to detect L929 cells expressing TDR1, which shows that the plasmid leads to the correct expression of the protein in mammalian cells.

Figure 1. DNA vaccine construction. (A) Schematic representation of pVAX1-TDR1 plasmid. The restriction sites used to sub-clone TDR1 gene into pVAX1 were HindIII and XbaI. DNA vaccine transcription unit comprises of a CMV promoter (human cytomegalovirus immediate-early promoter), TDR1 gene and a polyadenylation signal sequence (BGH pA, bovine growth hormone polyadenylation signal). A bacterial origin of replication (pUC ori) and an antibiotic resistance gene (Kan, kanamycin) are also incorporated in the vector backbone to allow growth and selection of the plasmid in bacteria (15). (B) pVAX1-TDR1 plasmid analysis by double digest with HindIII and XbaI. The samples were analysed in a 0.8% agarose gel and stained with ethidium bromide: 1Kb plus DNA ladder (lane 1) and pVAX1-TDR1 plasmid (lane 2). DNA fragment identity and size (in kilobase pairs) are indicated on the right and left, respectively.
4. Objectives and Results

Figure 2. Transient expression of TDR1 gene in L929 cells.
L929 cells transiently transfected with 5 µg of pVAX1-TDR1 or with empty vector (pVAX1) were stained by immunofluorescence with anti-TDR1 polyclonal antibody. A second antibody Alexa-Fluor-488 goat anti-mouse IgG was used to detect the immune complex. Parasites were analyzed under a fluorescent microscope (Axioskop-Carl Zeiss, Germany) at 1000x magnification.

Humoral response induced by DNA vaccination before and after challenge with L. infantum promastigotes.

Antigen-specific immune response induced by DNA vaccination was used as a measure to monitorize the immunization efficacy, thus humoral responses were examined during immunization and after infection. First, we choose to immunize intramuscularly Balb/c mice three times with DNA before challenge (Fig. 3A), to evaluate if the third boost was necessary to induce a strong immune response, as in previous studies different protocols of immunization were used varying also the route of administration and the interval between the immunizations. Serum samples to evaluate the response induced by the 1st,
2nd and 3rd immunizations with DNA were collected and TDR1-specific IgG, IgG1 and IgG2a antibodies levels determined for each animal by ELISA. Fig. 3B-E shows the isotype profile obtained during immunization and also 2 weeks after infection. It is particular relevant the fact that for some animals after the second immunization was not detected the production of TDR1-specific antibodies (Fig. 3B-C) and in the case of animal 1 that was just detected after infection (Fig. 3D-E). This variability can be linked with the route and protocol of administration that can result in low and variable expression of the injected gene and influence the vaccination outcome, despite the high amount of DNA used to immunize mice. After the 2nd DNA immunization, 3 mice out of 6 showed high levels of TDR1-specific antibodies, with a high predominance of IgG2a levels, which suggests the induction of a Th1 response normally judged by the IgG2a/IgG1 ratio. IgG2a/IgG1 ratio has been used as a predictive measure for Th1 and Th2 responses since IgG2a levels are dependent on IFN-γ and IgG1 levels correlate with IL-4 (42). Induction of high levels of IgG2a is not unexpected since DNA vaccines have an intrinsic adjuvant effect because of the presence of immune stimulatory CpG motifs. Unmethylated CpG dinucleotides in bacterial DNA or synthetic oligonucleotides (ODNs) cause B cell proliferation and preferentially elicit a Th1 type immune response by stimulating production of IL-12 and IFN-γ (17, 24).

The humoral response induced after the 3rd immunization was similar to the levels obtained after the 2nd boost, at least in the animals that already showed high levels of antibodies, suggesting that 2 immunizations with DNA should be enough to trigger an immune response due to TDR1 production. Accordingly to the humoral response observed during immunization in the analysis of further experiments mice were grouped into responders (R) and non-responders (NR), NR being mice for which is not detected the production of TDR1-specific antibodies. Infection with *L. infantum* leads to a switch in the specific-IgG production, since IgG2a predominance fades out in sera collected from mice 2 weeks after infection, while a large increase in the levels of IgG1 specific antibodies is detected leading to a decrease in IgG2a/IgG1 to levels near 1(Table 1).
4. Objectives and Results

Figure 3. Analysis of specific humoral response induced by pVAX1-TDR1 immunization in Balb/c mice before and after challenge with *L. infantum* promastigotes. (A) pVAX1-TDR1 vaccination scheme. Mice were immunized 3 times intramuscularly (i. m.) with 100 µg of pVAX1-TDR1 and control groups with the 100 µg of pVAX1 or with the correspondent volume of PBS. Mice were bled 2 weeks after first (B), second (C), third (D) immunizations and challenge with 1x10^8 *L. infantum* promastigotes (E). A serum from each mouse immunized with pVAX1-TDR1 (1-6) was tested individually at each time point by ELISA for IgG, IgG1 and IgG2a specific TDR1 antibodies production; sera from control groups showed no reactivity (data not shown).
Table 1 – Specific IgG2a and IgG1 responses in immunized mice before and after challenge

<table>
<thead>
<tr>
<th>Mice identification</th>
<th>IgG2a/IgG1</th>
<th>weeks after immunization</th>
<th>weeks after infection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1.3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>5.8</td>
<td>3.7</td>
<td>4.7</td>
</tr>
<tr>
<td>5</td>
<td>10.7</td>
<td>3.9</td>
<td>2.1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>8.2</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Mice were immunized as described in Material and Methods. IgG2a/IgG1 levels represent the ratio of the absorbance at 490nm of specific antibodies for each animal (1-6) 2 weeks after the 1st, 2nd, 3rd DNA immunization and after infection with *L. infantum* promastigotes.

DNA vaccination failed to confer protection against *L. infantum* infection

To test the ability of immunization with a plasmid encoding TDR1 to protect Balb/c mice against *Leishmania* infection, mice were immunized with pVAX1-TDR1 and challenged two weeks after the last boost. No differences were detected both in splenic and hepatic parasite load between vaccinated animals and control groups (pVAX1 or PBS) (Fig. 4).

![Figure 4](image-url)
Figure 4. Parasite load in the spleen and liver of Balb/c mice immunized with pVAX1-TDR1 determined 2 weeks after challenge with *L. infantum* promastigotes. Mice were immunized 3 times intramuscularly (i.m.) with 100 µg of pVAX1-TDR1...
control groups with 100 µg of pVAX1 or with the correspondent volume of PBS followed by challenge with 1×10^8 *L. infantum* promastigotes. Limiting dilution analysis was performed 2 weeks after infection on the cells isolated from the spleen and liver of each individual mouse and cultured in quadruplicate for 2 weeks at 27º C. The cultures were then assessed microscopically for *L. infantum* viable parasites.

Nevertheless, we have reported before that rTDR1 protein is able to elicit partial protection in a chronic stage of *Leishmania* infection (Silva et al, submitted), thus we have assessed the ability of DNA vaccination to induce protection after longer periods of infection, 5 and 9 weeks after challenge with *L. infantum* promastigotes. Prime-boost vaccination regimens which includes the immunization with the DNA plasmid and boost with the recombinant protein are usually used to improve DNA vaccine immunogenicity, as DNA vaccination induces a strong Th1 immune response and thus is attractive as a priming strategy (19). In our study, we have performed in parallel the immunization with DNA and also the prime-boost vaccination, in which after two immunizations with the DNA vaccine, Balb/c mice were boosted with rTDR1 protein (Fig. 5A). However, 5 weeks post-infection, both vaccination regimens pVAX1-*TDR1* (Fig. 5B) or pVAX1-*TDR1*+rTDR1 (Fig. 5C) failed to protect Balb/c mice against *L. infantum* infection, as there was no differences in splenic and hepatic parasite load between vaccinated and control groups, with exception of one animal from the DNA vaccine group (NR) that presents a considerable decrease in splenic parasite load and no parasites were detected in the liver.

Analysis of humoral response during immunization and after challenge (Fig. 6) reveals that as in the first experiment (Fig. 3) there are animals that do not produce TDR1-specific antibodies (Fig. 6A-B, E-F) and two weeks after the first DNA immunization was just detected the production of IgG2a specific antibodies, which increase in the second boost (Fig. 6B). Again, before infection the IgG2a/IgG1 ratio is higher than 5 weeks after the challenge (Fig. 6D), showing that infection with *Leishmania* leads to a change in the immunoglobulins profile, with a large increase in IgG1, thought to be detrimental for the infection resolution (9). In the case of animal 11 from the group vaccinated only with pVAX1-*TDR1* that showed a high level of protection, production of specific antibodies was only detected after infection, with IgG2a/IgG1 ratio levels near 1. However, other animals considered also as non-responders (animals 8, 9 and 10) even after infection did not produce TDR1-specific antibodies. Animals from the prime-boost regimen showed also high levels of IgG2a during immunization, sustained after the boost with the recombinant protein (Fig. 6F); nevertheless, immunization with rTDR1 led to an increase in IgG1 production to similar or higher levels than those observed for IgG2a (Fig. 6E). Figs. 6C
and 6G show the levels of TDR1-specific antibodies after infection induced by both vaccinations regimens. It is noteworthy to mention that one immunization with rTDR1 was enough to induce production of specific antibodies, since in animals considered as non-responders (animals 4, 8, 10 and 12) was only detected the production of specific antibodies after rTDR1 immunization and just 1 animal out of 4 presented higher levels of IgG2a than IgG1. In fact, we have already reported that immunization of Balb/c mice with rTDR1 induces preferentially the production of IgG1 with low levels of IgG2a specific antibodies (Silva et al, submitted).

Figure 5. DNA vaccination or prime-boost regimen with pVAX1-TDR1 do not protect Balb/c mice against *L. infantum* at 5 weeks post-infection. (A) DNA (pVAX1-
TDR1) and prime-boost (pVAX1-TDR1+rTDR1) vaccination schemes. Mice were immunized i.m. twice with 100 µg of plasmid DNA followed by challenge with 1x10^8 L. infantum promastigotes or after the second DNA immunization boosted with 25µg of rTDR1 and 2 weeks later challenged with L. infantum promastigotes. Mice were grouped into non-responders (NR) or responders (R) taking into account the specific-TDR1 response produced during DNA immunization. Spleen and liver parasite load of immunized pVAX1-TDR1 (B) or pVAX1-TDR1+rTDR1 (C) Balb/c mice 5 weeks after infection with L. infantum was determined by limiting dilution assay. Limiting dilution analysis was performed on cells isolated from the spleen and liver of each individual mouse and cultured in quadruplicate for 2 weeks at 27º C. The cultures were then assessed microscopically for L. infantum viable parasites.

Indeed, a high level of IgG2a specific antibodies per se do not necessarily correlates with protection as animals with higher levels of IgG2a/IgG1 ratio than animal 11 were not protected. The differences observed could be potentially explained by the cellular immune response. Analysis of splenic cell populations (CD8- and CD4-T cells, B cells and macrophages) did not reveal any differences in cell number (Table 2).

Spleen cells from vaccinated animals, either with pVAX1-TDR1 or pVAX1-TDR1+rTDR1, included in the responders group, stimulated ex-vivo with rTDR1 produced higher amounts of IFN-γ than animals immunized with the empty vector (Fig. 7A-B). IL-10 levels were very low or undetectable although, in the case of pVAX1-TDR1 immunization spleen cells from the control group when stimulated with rTDR1 produced higher levels of IL-10 than those from the vaccinated groups (Fig. 7C); no differences were observed in the IL-10 levels in the groups from the prime-boost regimen, except when cells were stimulated with ConA (Fig. 7D) and a similar profile among the different groups was observed in the levels of IL-12 with higher production by cells stimulated with rTDR1 than with SLA (Fig. 7E-F). Analysis of splenic parasite load 9 weeks post challenge with Leishmania, using the same immunization strategies described above (Fig. 8A) showed that DNA vaccination was not effective in protecting Balb/c mice from infection. Nevertheless, DNA vaccination strategy seems slightly better that the prime boost regimen (Fig. 8B), although it is evident a high variability among the animals in the pVAX1-TDR1(R); there was no differences in liver parasite load. The immunoglobulins profile 9 weeks after infection was similar to the one observed in the earlier time point of infection analyzed, with IgG2a/IgG1 ratio around 1 in the prime boost regimen but higher in the DNA vaccination alone (Fig. 9); once again were detected animals that did not produce TDR1 antibodies, suggesting lower or no protein production at all. Given the fact that the protection was not achieved, parameters such as the cytokine production were not determined.
4. Objectives and Results

Figure 6. DNA vaccine elicits higher levels of IgG2a-specific TDR1 antibodies which decrease after rTDR1 immunization or *Leishmania* infection. Kinetics of specific isotype profile of antibody induced by immunization with pVAX1-TDR1 (left panel) or pVAX1-TDR1+rTDR1 (right panel) after first (2 weeks) and second (4 weeks) immunizations, rTDR1 boost (6 weeks) and 5 weeks after challenge with *L. infantum* (9 or
11 weeks after first DNA immunization for the DNA vaccination or prime boost regimen, respectively). Left panel: animals 4, 5, 6 and 7 were included in pVAX1-TDR1(R) group and 8, 9, 10 and 11 in pVAX1-TDR1(NR) group; right panel: animals 5, 6, 7, 9 and 11 were included in pVAX1-TDR1(R) group and 4, 8, 10 and 12 in pVAX1-TDR1(NR) group. The sera from each individually mice collected during vaccination was used to monitorize the production of TDR1 specific IgG1 (A,E) and IgG2a (B,F) antibodies and 5 weeks after challenge (C, G). Ratio between TDR1-specific IgG2a and IgG1 levels during vaccination and 5 weeks post-infection (D, H).

Table 2- Analysis of immunized Balb/c mice spleen cell populations 5 weeks post-infection with L. infantum promastigotes

<table>
<thead>
<tr>
<th></th>
<th>CD4</th>
<th>CD8</th>
<th>B</th>
<th>MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>pVAX1-TDR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVAX1</td>
<td>2.85 ± 0.304</td>
<td>1.03 ± 0.052</td>
<td>5.13 ± 0.358</td>
<td>0.309 ± 0.030</td>
</tr>
<tr>
<td>pVAX1-TDR1(R)</td>
<td>2.56 ± 0.314</td>
<td>1.02 ± 0.156</td>
<td>5.11 ± 0.548</td>
<td>0.328 ± 0.044</td>
</tr>
<tr>
<td>pVAX1-TDR1(NR)</td>
<td>2.28 ± 0.494</td>
<td>1.03 ± 0.250</td>
<td>4.94 ± 0.648</td>
<td>0.266 ± 0.029</td>
</tr>
<tr>
<td>pVAX1-TDR1 + rTDR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pVAX1 + rTDR1</td>
<td>2.17 ± 0.150</td>
<td>0.779 ± 0.032</td>
<td>3.71 ± 0.260</td>
<td>0.376 ± 0.022</td>
</tr>
<tr>
<td>pVAX1-TDR1(R) + rTDR1</td>
<td>2.08 ± 0.227</td>
<td>0.809 ± 0.091</td>
<td>4.12 ± 0.247</td>
<td>0.497 ± 0.056</td>
</tr>
<tr>
<td>pVAX1-TDR1(NR) + rTDR1</td>
<td>1.88 ± 0.139</td>
<td>0.751 ± 0.011</td>
<td>3.40 ± 0.574</td>
<td>0.372 ± 0.055</td>
</tr>
</tbody>
</table>

Mice were immunized as described in Material and Methods. Five weeks after infection with L. infantum promastigotes, spleens from Balb/c mice immunized with pVAX1-TDR1, pVAX1-TDR1 plus rTDR1 or pVAX1 were removed and single cell suspensions of each stained with monoclonal antibodies and analyzed on a FACScalibur flow cytometer. SD, standard deviation.
Figure 7. Cytokine production by spleen cells from Balb/c mice immunized with pVAX1-TDR1 (left panel) or pVAX1-TDR1+rTDR1 (right panel) 5 weeks after infection with *L. infantum*. Mice were immunized i.m. twice with 100 µg of plasmid DNA followed by challenge with 1×10^8 *L. infantum* promastigotes or after the second DNA immunization boosted with 25µg of rTDR1 and 2 weeks later challenged with *L. infantum* promastigotes. Five weeks post-infection mice were sacrificed and cells isolated from each individual mouse were stimulated with ConA (6µg/ml), rTDR1 (10µg/ml) and soluble *Leishmania* antigens (SLA) (10µg/ml) for quantification of INF-γ (A, B) production during 72 h, and for 48 h for quantification of IL-10 (C, D) and IL-12p40 (E, F) production. The data represent the mean ± SD of triplicate samples of three mice analyzed independently. Statistically significant differences between pVAX1-TDR1 or pVAX1-TDR1+rTDR1 and pVAX1 groups are * $p<0.05$, ** $p<0.01$, *** $p<0.001$.
4. Objectives and Results

Figure 8. Parasite load in the spleen and liver of Balb/c mice immunized with pVAX1-TDR1 determined 9 weeks after challenge with L. infantum promastigotes.

(A) DNA (pVAX1-TDR1) and prime-boost (pVAX1-TDR1+rTDR1) vaccination schemes. Mice were immunized i.m. twice with 100 µg of pVAX1-TDR1 and control groups with 100 µg of pVAX1 followed by challenge with 1x10^8 L. infantum promastigotes. Spleen parasite load of immunized pVAX1-TDR1 (B) or pVAX1-TDR1+rTDR1 (C) Balb/c mice 9 weeks after infection with L. infantum was determined by limiting dilution assay. Mice were grouped into non-responders (NR) or responders (R) taking into account the specific-TDR1 response produced during DNA immunization. Limiting dilution analysis was performed on cells isolated from the spleen of each individual mouse and cultured in quadruplicate for 2 weeks at 27°C. The cultures were then assessed microscopically for L. infantum viable parasites.
Figure 9. TDR1 specific immunoglobulin’s profile of Balb/c mice immunized with pVAX1-TDR1 or pVAX1-TDR1+rTDR1 9 weeks after infection with *L. infantum* promastigotes. Mice were immunized i.m. twice with 100 µg of pVAX1-TDR1 (A), 100 µg of pVAX1-TDR1+rTDR1 (B) or pVAX1 (control group) followed by challenge with 1×10^8 *L. infantum* promastigotes. Sera from each individually mice (1-3, control group; 4-12, vaccinated group (4-7, R and 8-12, NR)) collected 9 weeks after challenge was tested individually for IgG, IgG1 and IgG2a specific TDR1 antibodies production.
Conclusion

In this study, we have evaluated the ability of a TDR1 based DNA vaccine to elicit protection against *Leishmania* infection. Previously, we have shown that recombinant TDR1 is able to induce partial protection. The results presented here clearly show that the immunization with a DNA vaccine encoding TDR1 does not confer protection against challenge with *L. infantum* promastigotes, an unexpected outcome since many studies using this strategy have proven to be successful (reviewed in (29)). This demonstrates that different strategies based on the same antigen leads to different results, although DNA vaccines due to its characteristics are generally accepted to give better results. DNA vaccination failure may be attributed to other factors rather than the potency of the encoded antigen such as number of immunizations, immunization route and low levels of DNA uptake and/or *in vivo* transfection.

References

30. **Nascimento, E., D. F. Fernandes, E. P. Vieira, A. Campos-Neto, J. A. Ashman, F. P. Alves, R. N. Coler, L. Y. Bogatzki, S. J. Kahn, A. M. Beckmann, S. O. Pine, K. D. Cowgill, S. G. Reed, and F. M. Piazza.** A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine when used in...

4.3 Deletion of the *TDR1* gene provides evidence of variable ploidy in *Leishmania infantum*

The occurrence of aneuploidy in *Leishmania* has been widely documented as a response to attempts to delete essential genes or overcome drug pressure, but naturally occurring and variable (‘mosaic’) aneuploidy has been realized only recently. Here we show that the *TDR1* gene of *L. infantum*, of which there is just one in the haploid genome, occurs in variable copy number suggestive of both diploid and tetraploid cells within the same cloned population. Two rounds of transfection were sufficient to generate a null mutant for *TDR1* but other cloned transfectants required four rounds of transfection to achieve the same. This clear demonstration of variation of gene copy number within a cloned line has implications for understanding the biology of *Leishmania*.

Submitted for publication to *FEMS Microbiology Letters*
Deletion of the \textit{TDR1} gene provides evidence of variable ploidy in \textit{Leishmania infantum}

Ana Marta Silva1,2,3, Anabela Cordeiro-da-Silva2,3 and Graham H. Coombs1*

1Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
2Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
3Laboratório de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, R. Aníbal Cunha n.o 164, 4050-047 Porto, Portugal

*Corresponding author: E-mail: graham.coombs@strath.ac.uk; Tel. +44 141 548 2155; Fax +44 141 552 2562

Running title: \textit{Leishmania infantum} TDR1 aneuploidy.

Keywords: \textit{Leishmania infantum}, variable ploidy, tetraploidy.

Abstract

The occurrence of aneuploidy in \textit{Leishmania} has been widely documented as a response to attempts to delete essential genes or overcome drug pressure, but naturally occurring and variable (‘mosaic’) aneuploidy has been realized only recently. Here we show that the \textit{TDR1} gene of \textit{L. infantum}, of which there is just one in the haploid genome, occurs in variable copy number suggestive of both diploid and tetraploid cells within the same cloned population. Two rounds of transfection were sufficient to generate a null mutant for \textit{TDR1} but other cloned transfectants required four rounds of transfection to achieve the same. This clear demonstration of variation of gene copy number within a cloned line has implications for understanding the biology of \textit{Leishmania}.
Introduction

Leishmaniasis is still one of the world’s most neglected diseases and novel therapies are urgently required (WHO, 2010). One avenue in drug discovery is the identification of essential genes encoding ‘druggable’ target proteins (Handman, et al., 2008). A mechanism for demonstrating gene essentiality is targeted gene replacement, an extremely powerful method that allows investigation of the role of a gene and its encoded protein by a loss of function strategy (Beverley, 2003). Leishmania have in the past been considered to be diploid organisms generally (Cruz & Beverley, 1990), although aneuploidy has been known to occur naturally, established examples being chromosome 1 trisomy (Sunkin, et al., 2000) and chromosome 31 tetrasomy (Akopyants, et al., 2009) in L. major, and has frequently arisen during attempts to delete essential genes and been interpreted as chromosome reorganization occurring to ensure retention of the gene (Cruz, et al., 1993, Mottram, et al., 1996, Ilgoutz, et al., 1999, Dubessay, et al., 2002, Martinez-Calvillo, et al., 2005, Vergnes, et al., 2005, Mukherjee, et al., 2009, Murta, et al., 2009, Romao, et al., 2009). In these cases, additional evidence for gene essentiality can be provided through the generation of a ‘conditional’ null mutant in the presence of an extrachromosomal (also known as episomal) copy of the gene (Cruz, et al., 1993, Mottram, et al., 1996, Ilgoutz, et al., 1999, Vergnes, et al., 2005, Mukherjee, et al., 2009, Murta, et al., 2009, Romao, et al., 2009), which is used to prove that under these circumstances the endogenous locus can be deleted and so is not refractory to genetic manipulation. Recently, however, it was reported that the ploidy of Leishmania was less constant with the concept of mosaicism, with cells in a population having different ploidy, being postulated (Sterkers, et al., 2010). Moreover, detailed genome analyses using the latest technologies have revealed that the ploidy of different lines of Leishmania species are not the same, with individual chromosomes being apparently diploid in one line and triploid or tetraploid in others (Downing, et al., 2011, Rogers, et al., 2011).

We report here variation in ploidy between cells in a population of L. infantum. The overall study aimed to define the precise role of an enzyme called thiol dependent reductase 1 (TDR1), which is trypanosomatid-specific and first identified in L. major (Denton, et al., 2004). Our approach was to investigate the function of TDR1 in L. infantum via generation of null mutants for the gene encoding it (TDR1). We have been able to generate a null mutant with just two rounds of transfection, but also have isolated clones that required four rounds of transfection to achieve deletion of all gene alleles. Thus this approach has shown that within a cloned line there can be variable ploidy in a gene, even one that is
non-essential, but also that the ploidy cannot be super-variable in that gene deletions using differing numbers of allele deletions were possible.

Materials and methods

Leishmania parasites

Leishmania infantum promastigotes (clone MHOM/MA/67/ITMAP-263) were grown at 26°C in RPMI 1640 (PAA Laboratories) supplemented with 20 mM Hepes, 2 mM L-glutamine, 100U mL⁻¹ penicillin, 100 mg mL⁻¹ streptomycin (PAA Laboratories) and 10% (v/v) heat inactivated fetal calf serum (FCS, PAA Laboratories). Cultures were set up initially at 2.5 x 10⁵ parasite mL⁻¹ and sub-passaged every 6 days.

Transfection constructs

To generate the constructs for deletion of *L. infantum TDR1* by homologous recombination, the 3’ and 5’ untranslated regions (UTR) of *TDR1* were PCR amplified using the primers P1 and P2 or P3 and P4, respectively, (Table 1) and *L. infantum* genomic DNA as template, which was isolated from *L. infantum* promastigotes as described previously (Medina-Acosta & Cross, 1993). Each resulting PCR product (1.0Kb) was cloned directly at the T/A cloning site of pGEM-T Easy (Promega). The 5’UTR was digested with *Hind*III and *Sal*I and cloned into the corresponding sites of plmcpb-hyg (Mottram, et al., 1996), yielding pldtdr1-hyg5’, followed by the 3’UTR ligated to the *Sma*I and *Bgl*II sites of pldtdr1-hyg5’ to give pldtdr1-hyg5’3’ (construct 1). The hygromycin phosphotransferase resistance gene (*HYG*) was replaced either with bleomycin (*BLE*), streptothricin acetyltransferase (*SAT*), blasticidin deaminase (*BLA*) resistance genes by digestion with *Spe*I-*Bam*HI and ligation to the *Spe*I and *Bam*HI sites of pldtdr1-hyg5’3’ yielding construct 2, 3 and 4, respectively. Before transfection, constructs 1-4 were linearised with *Hind*III and *Bgl*II restriction enzymes.

For complementation studies, the *TDR1* open reading frame (ORF) was cloned into the pRIB vector for chromosomal integration (Misslitz, et al., 2000) or into pXG, an episomal vector (Ha, et al., 1996). The *TDR1* ORF was PCR amplified using P5 and P6 or P7 and P8, respectively (Table 1) and *L. infantum* genomic DNA as template. The resulting PCR products were sub-cloned into pGEM-T Easy (Promega) and confirmed by sequencing analysis before cloning into *Cla*I- and *Age*I-digested pRIB or *Bam*HI- and *Sma*I-digested pXG. The integration cassette from the pRIB plasmid containing the *TDR1* ORF was released by digestion with *Pac*I and *Pmel* before transfection.
4. Objectives and Results

Table 1 – Primers used in this study

P1	3’UTR TDR1	5’ -CCC GGAGGCTGCAGGGGATCGAGGTG- 3’
P2	3’UTR TDR1	5’ -AGATCTGGGGAGGGGAATGTAGCTCTGAGGTG- 3’
P3	5’UTR TDR1	5’ -AAAGTTTGTAGCGGTGTTTACTACGCGATCGAGGTG- 3’
P4	5’UTR TDR1	5’ - GTGCCACCCTCGACGCCACGCAGGCTACCTACGAGGTG- 3’
P5	TDR1	5’ -GATCCATATGGCGCGCGTGCTAAAGCTAC- 3’
P6	TDR1	5’ -CTACGATTTACCCGCTCTGCCCCTCCGTTG- 3’
P7	TDR1	5’ -GACCCGGGATGCGCCCGCGCCGGCTAAAGCTAC- 3’
P8	TDR1	5’ -CTGGATACCTTACCCGCTCTGCCCCTCCGTTG- 3’

For each oligonucleotide the restriction sites included are underlined; UTR, untranslated region.

Transfection and selection of *L. infantum* promastigotes

Late logarithmic phase promastigotes were resuspended at 5 x 10^7 cells mL^-1 in nucleofector solution (Amaga nucleofector kit, Lonza). 100 µl of cell suspension was either mixed with 10 µg of linearized or circular DNA or 10 µl of water as control and electroporated in a disposable cuvette using an Amaga electroporation device (Lonza). Cells were immediately transferred to RPMI medium supplemented with 20% (v/v) FCS and 24 h later the antibiotic required for transfectant selection added as follows: hygromycin B (Sigma) at 50 µg mL^-1; phleomycin (Jena Bioscience) at 40 µg mL^-1; nourseothricin (Jena Bioscience) at 50 µg mL^-1; neomycin (G418, Sigma) at 50 µg mL^-1 and puromycin (Calbiochem) at 100 µg mL^-1.

Southern blot analyses

To verify the correct integration events, genomic DNA from wild type (WT) and mutant *L. infantum* promastigotes was analyzed by Southern blot. Briefly, 2 µg DNA were digested with XhoI, SalI or NotI, electrophoresed through a 0.7% or 0.8% agarose gel and blotted onto Hybond-N+ membrane (Amersham Bioscience). The 3’UTR of *TDR1* generated from genomic DNA by PCR with primers P1 and P2 was labelled with the AlkPhos Direct Labelling kit (Amersham Bioscience) and used to probe the blot. After overnight hybridization at 55°C, the blot was washed, drained and developed using CDP-Star Detection reagent and Hyperfilm ECL (Amersham Biosciences) according to the manufacturer's instructions.
Western blot analyses

L. infantum promastigotes were lysed by the addition of 0.25 M sucrose, 0.25% (v/v) Triton X-100, 10 mM EDTA, 10 μM E-64, 2 mM 1,10-phenanthroline, 4 μM pepstatin A and 1 mM PMSF. Insoluble cellular debris was removed by centrifugation at 12000 x g for 20 min at 4°C, proteins separated by SDS-PAGE (12%) and blotted to nitrocellulose for Western blot analysis. Western blots were probed with polyclonal sheep anti-TDR1 serum or, as a loading control, rabbit anti-CS (cysteine synthase) and rabbit anti-sheep or goat anti-rabbit secondary antibodies coupled to peroxidase (Pierce) followed by chemiluminescence using ECL detection system (Pierce).

Results and Discussion

In order to elucidate the role of TDR1 in *L. infantum*, we attempted to generate null mutants for *TDR1*, a single copy gene, using homologous gene replacement. Most gene deletions reported previously with *Leishmania* species required just two rounds of gene replacement, which is consistent with the organism being diploid, although aneuploidy has been reported (Sunkin, *et al.*, 2000, Akopyants, *et al.*, 2009).

Southern blot analysis of XhoI-digested genomic DNA of selected clones after the first round of transfection confirmed the successful deletion of a first allele of *TDR1* and integration of the *HYG* selectable marker (to give TDR1/tdr1). The two hybridizing bands detected (1.71 and 4.27 kb) with the 3’UTR *TDR1* probe represented, respectively, the endogenous *TDR1* (WT) gene and the correct integration of the *HYG* replacement cassette (Fig. 1B, lanes 1 and 2). The TDR1/tdr1 clone was then transfected with either construct 2 or 3 (Fig. 1A) with the aim of deleting the remaining WT allele. Deletion of the second and remaining allele of the *TDR1* gene was confirmed by Southern blot analysis, the hybridizing band of 3.60 kb corresponding to the replacement of the remaining WT allele of the gene by the *BLE* cassette, showing that a null mutant (Δtdr1) had been obtained (Fig. 1B, lane 3). Western blot analysis confirmed the deletion of the gene by the absence of TDR1 protein expression in Δtdr1 (Fig. 2A, lane 1). To be able to have definitive evidence that any phenotypic differences between the WT parasite and the Δtdr1 null mutant were directly related to the gene deletion, Δtdr1 was complemented either with a ribosomal or an episomal *Leishmania* expression vector containing the *TDR1* ORF. Analysis of both generated lines by western blot showed successful re-expression of TDR1 in the null mutant (Fig. 2A). We selected two clones resulting from independent
transfections in the case of ∆tdr1[pXG\textit{TDR1}] (Fig. 2A, lanes 5 and 6) and independent selection post-transfection in the case of ∆tdr1::\textit{P}\textsubscript{\textit{RRNA}}\textit{TDR1} clones (Fig. 2A, lanes 8 and 9); each have similar levels of TDR1 expression.

Figure 1 – Targeted replacement of the \textit{TDR1} gene of \textit{L. infantum} reveals variable ploidy (A) Schematic representation of the \textit{TDR1} locus and the constructs used to replace the gene alleles and to provide episomal expression of \textit{TDR1}. Expected sizes of the \textit{XhoI}, \textit{SalI} and \textit{NotI} fragments revealed by Southern blot analysis are shown. UTR,
untranslated region; \textit{DHFR}, dihydrofolate reductase gene; \textit{HYG}, hygromycin phosphotransferase gene; \textit{BLE}, bleomycin acetyltransferase gene; \textit{SAT}, streptothricin acetyltransferase gene; \textit{BLA}, blasticidin deaminase gene; \textit{NEO}, neomycin phosphotransferase gene. (B) Southern blot analysis of genomic DNA digested with \textit{XhoI}, separated on a 0.8\% agarose gel and blotted onto a nylon membrane. DNA from the wild type \textit{L. infantum} (WT, lane 1), a single allele replacement clone (\textit{TDR1/tdr1}, lane 2), the \textit{TDR1} null mutant (\textit{\Delta tdr1}, lane 3) and a double allele replacement clone that still has present the WT gene (\textit{TDR1/tdr1/tdr1}, lane 4). (C) Southern blot analysis of genomic DNA digested with \textit{NotI} and \textit{SalI}, separated on a 0.7\% agarose gel and blotted onto a nylon membrane. DNA from the WT (lane 1), WT[pXG \textit{TDR1}] (to allow the distinction of the gene in the episome from the other expected bands, lane 2), \textit{TDR1/tdr1} (lane 3), a single allele replacement clone transfected with episomal construct (\textit{TDR1/tdr1/pXG TDR1}], lane 4), clones that resulted from transfection of \textit{TDR1/tdr1} [pXG \textit{TDR1}] with construct 2, in which the WT gene is still present (\textit{TDR1/tdr1/tdr1/pXG TDR1}], lanes 5, 6 and 7). (D) Southern blot analysis of genomic DNA digested with \textit{XhoI}, separated on a 0.8\% agarose gel and blotted onto a nylon membrane. DNA from the WT (lane 1), \textit{TDR1/tdr1} (lane 2), \textit{TDR1/tdr1/tdr1} (lane 3); a triple allele replacement clone, that resulted from transfection of \textit{TDR1/tdr1/tdr1} with construct 2, in which the WT gene is still present (\textit{TDR1/tdr1/tdr1/tdr1/pXG TDR1}], lanes 4, 5 and 6). (E) Southern blot analysis of genomic DNA digested with \textit{XhoI}, separated on a 0.8\% agarose gel and blotted onto a nylon membrane. DNA from the WT (lane 1), \textit{TDR1/tdr1/tdr1/tdr1} (lane 2) and the \textit{\Delta tdr1} obtained after 4 rounds of transfection (lane 3). Membranes were hybridized with an alkaline phosphatase-labeled DNA probe comprising the 3'UTR of the \textit{TDR1} gene. The positions of the molecular size markers (kb) and identity of the bands are shown on the left and on the right, respectively. The box below summarizes which genes are present. \textit{TDR1epi} refers to the gene present in the episomal construct.

Although we were able to generate a \textit{TDR1} null mutant as detailed above, we did obtain just the one null mutant clone. In this, the \textit{TDR1} alleles were replaced by the \textit{HYG} and \textit{BLE} resistance genes. All of the clones resistant to hygromycin and nourseothricin still had the WT gene present in the genome, despite the correct integration of \textit{SAT} and \textit{HYG} replacement cassettes (Fig. 1B, lane 4). The successful replacement of two alleles of the endogenous gene by resistance markers being accompanied by retention of a copy of the WT gene has been reported on multiple occasions in attempts to target essential genes in \textit{Leishmania}, the mechanisms involved in retaining the WT gene are uncertain although changes in chromosome ploidy, translocation of a chromosomal segment to another chromosome, and intrachromosomal tandem duplication have been reported (Cruz, et al.,
1993, Mottram, et al., 1996, Dumas, et al., 1997, Martinez-Calvillo, et al., 2005, Mukherjee, et al., 2011). As we wished to have more than one null mutant clone, and as a further approach to obtaining null mutants to cover the possibility that the gene may be hard to delete due to its importance, we transfected TDR1/tdr1 with a plasmid carrying TDR1 for episomal expression (Fig. 1A, episomal construct) before the second round of transfection aimed at endogenous gene replacement using the BLE construct (Fig. 1A, construct 2). This strategy has been commonly applied successfully when attempting to delete essential genes, with the second allele of the endogenous gene being easily deleted after such complementation with an extrachromosomal gene copy (Cruz, et al., 1993, Mottram, et al., 1996, Ilgoutz, et al., 1999, Vergnes, et al., 2005, Mukherjee, et al., 2009, Murta, et al., 2009, Romao, et al., 2009). Southern blot analysis of SalI and NotI-digested genomic DNA of clones subsequently selected resulted in detection of the episomal construct itself (8.14 kb) and a new hybridizing band of 3.60 kb, corresponding to the integration of the BLE cassette (Fig. 1C, lanes 5, 6 and 7). This confirmed the successful replacement of the second endogenous TDR1 allele. However, the selected clones still had the WT gene as well as the episomal copy and western blot analysis confirmed the overexpression of TDR1 by the episomal plasmid in the generated lines (Fig. 2B, lanes 4 and 5). This result was an indication that TDR1 is a potential case of aneuploidy and clearly raised the possibility of variable ploidy within the L. infantum cloned population.

Occurrence of aneuploidy in Leishmania has frequently been reported, but it has usually emerged as described above in response to attempts to knockout essential genes (Cruz, et al., 1993, Mottram, et al., 1996, Ilgoutz, et al., 1999, Vergnes, et al., 2005, Mukherjee, et al., 2009, Murta, et al., 2009, Romao, et al., 2009) or to drug pressure (Grondin, et al., 1996, Ubeda, et al., 2008, Leprohon, et al., 2009). However, the fact that we had generated a TDR1 null mutant in L. infantum after just two rounds of transfection, albeit getting just a single clone, and the findings that TDR1 null mutants of L. major were obtained after just two rounds of transfection (J. McGregor and G.H. Coombs, unpublished data) whereas the TDR1 gene in L. donovani required three rounds of transfection to generate null mutant clones (which are viable although they show a phenotype, A.M. Silva, G.D. Westrop, S. Müller, A. Cordeiro-da-Silva and G.H. Coombs, submitted), made us consider that TDR1 was unlikely to be essential for L. infantum. The recent reports of naturally occurring aneuploidy in Leishmania, especially L. donovani, suggested to us that aneuploidy at the TDR1 locus may be a natural genomic feature of the L. infantum line used in this study. Moreover, Sterkers and co-workers had recently reported that every chromosome was observed in at least two ploidy stages in a
population and that chromosome ploidy distribution was variable among clones and strains; a phenomenon that they named mosaicism and postulated could might explain the genomic plasticity observed in *Leishmania* (Sterkers, *et al.*, 2010). Thus in order to determine whether this was the case in the *L. infantum* line used in this study, we attempted to delete the remaining TDR1 allele(s) in one of the clones obtained after two rounds of transfection with constructs 1 and 3 that still had a WT TDR1 allele present. In a third round of transfection we found that TDR1 gene replacement by the BLE cassette was effected, as clearly shown in hybridization studies with the 3'UTR TDR1 probe, but an endogenous TDR1 allele also remained intact as the 1.7 kb genomic XhoI fragment was still present in the triple targeted mutants (Fig. 1D, lanes 4, 5 and 6). Western blot analysis of the clones generated after three rounds of transfection confirmed the presence of the gene by protein expression (Fig. 2B, lanes 7 and 8). This suggested the presence of more than three copies of the TDR1 gene.

With the concept that this inability to generate a TDR1 null mutant in *L. infantum* after 3 rounds of transfection was due to the presence of a fourth allele of the gene, construct 4, containing BLA (Fig. 1A), was used to transfected the clone in which three TDR1 alleles have been replaced by HYG, SAT and BLE cassettes (Fig. 1D). Of the multiple clones selected and analyzed by PCR, just two were negative for TDR1 and subsequent Southern blot analysis of one of these revealed the correct integration of BLA replacement cassette and the successful deletion of a fourth and final TDR1 allele (Fig. 1E, lane 3), also confirmed by the absence of TDR1 expression (Fig. 2C, lane 3), and so confirmation of null mutant status.

Phenotypic analyses of promastigotes of the two ∆tdr1 null mutants, one generated after two rounds of transfection and one after four, revealed no substantive differences from the WT, confirming that TDR1 is not essential to *L. infantum* promastigotes (data not shown). We have recently shown that TDR1 apparently plays a part in redox regulation through glutathionylation/deglutathionylation of key enzymes of *L. donovani* (A.M. Silva, G.D. Westrop, S. Müller, A. Cordeiro-da-Silva and G.H. Coombs, submitted), it remains for investigation whether TDR1 plays the same role in *L. infantum*. All of the data for *L. infantum, L. donovani* and *L. major*, however, confirm that TDR1 is not essential to promastigotes.
4. Objectives and Results

Figure 2 – TDR1 expression in the cell lines generated after targeted gene replacement. Western blot analysis of cell lysate from stationary phase promastigotes of (A) Δtdr1 generated after two rounds of tranfection (lanes 1 and 7), WT (lanes 2 and 4), TDR1/tdr1 (lane 3), the episomal add-back (Δtdr1[pXG>TDR1], lanes 5 and 6) and the ribosomal add-back (Δtdr1::PRRNATDR1, lanes 8 and 9); (B) WT (lane 1), TDR1/tdr1 (lane 2), TDR1/tdr1[pXG>TDR1] (lane 3), TDR1/tdr1/tdr1[pXG>TDR1] (lanes 4 and 5), TDR1/tdr1/tdr1 (lane 6) and TDR1/tdr1/tdr1/tdr1 (lanes 7 and 8). (C) WT (lane 1), TDR1/tdr1/tdr1/tdr1 (lane 2), Δtdr1 generated after four rounds of transfection (lane 3), the episomal add-back (Δtdr1[pXG>TDR1], lane 4). Cell extracts were separated using 12% SDS-PAGE and immunoblotted with polyclonal sheep anti-TDR1 serum. Anti-serum raised in rabbit against cysteine synthase (CS) was used to confirm equivalent protein loading; molecular masses are indicated on the left (kDa) and identity of the bands is shown on the right.

Thus our results show that we generated TDR1 null mutant parasites from cells with different ploidy at the TDR1 locus even though they were in the same L. infantum cloned population. This leads us to conclude the TDR1 locus in L. infantum is diploid in at least some cells but tetraploid in others. These findings of the existence of supernumerary TDR1 alleles in L. infantum and apparent variable ploidy within the same population are consistent with the finding of mosaic ploidy in L. major using FISH analysis (Sterkers, et al., 2010) and the data arising from the analyses, just reported, of the genome structures.
of different *Leishmania* species and lines; the application of new sequence technology that allows read depth coverage across all the *Leishmania* chromosomes revealed ploidy variation (Downing, *et al*., 2011, Rogers, *et al*., 2011). These recent studies report the existence of supernumerary chromosomes in *Leishmania*, differences in chromosome copy number variations between species and strains, and also that the variation is chromosome specific with stable disomy, stable tetrasomy or variable ploidy. In addition, Rogers and co-workers were able to validate the chromosome copy number through the generation of LinJ.36.0640 and LinJ.31.3030 null mutants, genes which reside in disomic and tetrasomic chromosomes, respectively (Rogers, *et al*., 2011). These findings together point to chromosome copy number variations as a major source of genomic diversity (Downing, *et al*., 2011, Rogers, *et al*., 2011). Interestingly, Rogers and co-workers have also found chromosomes with “intermediate” read depth, being neither disomic or trisomic in *L. mexicana*, *L. braziliensis* and *L. donovani*, potentially due to a mixture of individual cells within a population with monosomic, disomic and trisomic chromosomes. This situation is similar to the chromosome copy number mosaicism in a population as previous described for *L. major* by (Sterkers, *et al*., 2010). In these studies, all *L. donovani* lines and *L. infantum* JPCM5 (MCAN/ES/98/LLM-887), a different line from the one used in this study, had chromosome 33, on which *TDR1* resides, among the supernumerary chromosomes. The data that we have generated with *L. donovani* (MHOM/NP/03/BPK206/0clone10) (A.M. Silva, G.D. Westrop, S. Müller, A. Cordeiro-da-Silva and G.H. Coombs, submitted) and now with *L. infantum* in this study provide additional evidence for the variability between species and lines, but also, importantly, within a population of *L. infantum*. Our findings are consistent with aneuploidy of *TDR1* being due to variation in chromosome copy number. Although genes can reside on extrachromosomal DNA in *Leishmania*, this seems to occur as a mechanism of maintaining essential genes (Mottram, *et al*., 1996, Genest, *et al*., 2005), which is clearly not the case with *TDR1* as we were able to delete it.

The findings in this study reiterate the occurrence of natural genomic plasticity in *Leishmania* species and importantly have shown that there is variation even within a cloned population. This includes non-essential genes such as *TDR1*. Our findings support the concept of mosaic aneuploidy as described by Sterkers *et al*. (2010), but also show that the ploidy cannot be super-variable within cells because in that case gene deletions such as we have achieved would not be possible. Clearly *Leishmania* cope well with aneuploidy, and it seems likely that it provides a mechanism to generate the diversity that allows the parasite to survive and take advantage of the different host environments. It also has implications for many experimental studies on the parasites and, in particular, in
deciding upon essentiality of genes and so their suitability for inclusion in drug discovery programmes.

Acknowledgements

The study was supported by Fundação para a Ciência e Tecnologia (FCT) project number PTDC/CVT/65047/2006 and AMS is supported by FCT grant SFRH/BD/28316/2006. We thank Gareth Westrop and Roderick Williams (Strathclyde) for helpful technical suggestions and discussions.

References

4. Objectives and Results
4.4 Thiol Dependent Reductase 1 of *Leishmania* is implicated in the regulation of central metabolism via de glutathionylation

Thiol Dependent Reductase 1 (TDR1) of *Leishmania donovani* is a parasite-specific enzyme with a two domain structure, comprising glutaredoxin and omega-glutathione-S-transferase motifs, that has thiol transferase and dehydroascorbate reductase activities *in vitro*. In order to provide insight into the role of TDR1 in *Leishmania* parasites, a TDR1 null mutant (Δtdr1) was generated. Three rounds of transfection were required, revealing that the gene locus is triploid; providing more evidence that the genome of *L. donovani* has plasticity in terms of ploidy. *Leishmania* virulence or susceptibility to oxidative/nitrosative stress was little affected by TDR1 deletion, although an increased sensitivity to trivalent antimony and trivalent arsenite was observed. Analysis of parasite’s metabolome revealed few but striking differences between Δtdr1 and the wild type parent line, notably in the levels of metabolites related to energy and amino acid metabolism (glycerol-3-phosphate, proline, argininosuccinic acid and S-adenosylhomocysteine). This metabolic re-configuration in Δtdr1 implicates TDR1 in regulation through S-glutathionylation of key enzymes, an hypothesis supported by the demonstration that recombinant TDR1 has de glutathionylation activity towards protein and peptide substrates. The data also confirm that metabolic profiling of gene-deletion mutants is a method that allows detailed dissection of a protein’s function.

Submitted for publication to *Free Radical Biology & Medicine*
4. Objectives and Results

Thiol Dependent Reductase 1 of *Leishmania* is Implicated in the Regulation of Central Metabolism via Deglutathionylation

Ana Marta Silva¹²³, Gareth D. Westrop¹, Sylke Müller⁴, Anabela Cordeiro-da-Silva²³ and Graham H. Coombs¹*

¹Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; E-mails: graham.coombs@strath.ac.uk; gareth.westrop@strath.ac.uk; amsilva@ibmc.up.pt
²Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; E-mail: cordeiro@ibmc.up.pt
³Laboratório de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, R. Aníbal Cunha n.º 164, 4050-047 Porto, Portugal;
⁴Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK. E-mail: sylke.muller@glasgow.ac.uk

*Corresponding author: E-mail: graham.coombs@strath.ac.uk; Tel. +44 141 548 2155; Fax +44 141 552 2562

Abbreviations: Grx, glutaredoxin; GSH, glutathione; GST, glutathione-S-transferases; GSTO, omega class GST; HEDS, 2-hydroxyethyl disulfide; HPLC, high performance liquid chromatography; LC-MS, liquid chromatography mass spectrometry; ´NO, nitric oxide; O₂⁻, superoxide radical; ONOO⁻, peroxynitrite; ORF, open reading frame; PBS, phosphate buffered saline; ppm, parts per million; RNS, reactive nitrogen species; ROS, reactive oxygen species; Sb³⁺, trivalent antimonial; Sb⁵⁺, pentavalent antimonial; SIN-1, 3-morpholinosydnonimine.HCL; SD, standard deviation; SDS, sodium dodecyl sulfate; SNAP, S-nitroso-N-acetylpenicillamine; SSG, sodium stibogluconate; TDR1, thiol dependent reductase 1; Trx, thioredoxin; (T(SH)₂), trypanothione; UTR, untranslated region.
Abstract

Thiol Dependent Reductase 1 (TDR1) of *Leishmania donovani* is a parasite-specific enzyme with a two domain structure, comprising glutaredoxin and omega-glutathione-S-transferase motifs, that has thiol transferase and dehydroascorbate reductase activities *in vitro*. In order to provide insight into the role of TDR1 in *Leishmania* parasites, a TDR1 null mutant (Δtdr1) was generated. Three rounds of transfection were required, revealing that the gene locus is triploid; providing more evidence that the genome of *L. donovani* has plasticity in terms of ploidy. *Leishmania* virulence or susceptibility to oxidative/nitrosative stress was little affected by TDR1 deletion, although an increased sensitivity to trivalent antimony and trivalent arsenite was observed. Analysis of parasite’s metabolome revealed few but striking differences between Δtdr1 and the wild type parent line, notably in the levels of metabolites related to energy and amino acid metabolism (glycerol-3-phosphate, proline, argininosuccinic acid and S-adenosylhomocysteine). This metabolic re-configuration in Δtdr1 implicates TDR1 in regulation through S-glutathionylation of key enzymes, an hypothesis supported by the demonstration that recombinant TDR1 has deglutathionylation activity towards protein and peptide substrates. The data also confirm that metabolic profiling of gene-deletion mutants is a method that allows detailed dissection of a protein’s function.

Keywords: parasite, *Leishmania*, promastigote, thiol dependent reductase, glutaredoxin, glutathione S-transferase, deglutathionylation, redox regulation.

Introduction

Leishmania is a protozoan parasite that encounters a variety of different environments during its life cycle involving sand fly and mammalian hosts, living within macrophages in the latter. It is thus exposed to a series of variations in temperature and pH, reactive oxygen (ROS) and nitrogen species (RNS), and the availability of nutrients and oxygen [1]. To survive and multiply *Leishmania* has evolved multiple strategies, including adopting various morphological forms which are also, at least in part, metabolically distinct [2-4] and contain a variety of antioxidant proteins [5-8]. Rather little is known on how these changes are regulated, although clearly this is of vital importance to the parasite. Thus we undertook this study with the aim of determining whether thiol dependent reductase 1 (TDR1), an unusual trypanosomatid-specific enzyme with similarities to glutaredoxins and glutathione S-transferases, has roles both in countering redox stresses and in the molecular mechanisms of metabolic regulation in *Leishmania*. We anticipated that the
insights obtained could underpin the development of future improved therapies against infections caused by *Leishmania*.

TDR1, a trypanosomatid-specific enzyme first identified in *L. major* [9], possesses thiol transferase and dehydroascorbate reductase enzymatic activities and is present in both promastigotes and amastigotes of *Leishmania*. The enzyme is functional as a trimer of a protein with an intriguing two domain nature, with the N-terminal domain containing a CysXXCys (CXXC) motif characteristic of glutaredoxin (Grx) and thioredoxin (Trx), while the C-terminal active site is characteristic of omega glutathione-S-transferase (GSTO) [9]. TDR1 is able to reduce pentavalent antimonials such as sodium stibogluconate (SSG) to a trivalent form *in vitro*, suggesting that it may play a part in the antileishmanial activity of antimonial drugs and could account for the parasite-specificity of these drugs [9]. Although, the physiological function of TDR1 is unclear, its very unusual structure suggests some specific role.

Glutaredoxins (Grxs), members of the Trx superfamily, are small molecular mass, glutathione (GSH)-dependent oxidoreductases that play an important part in a cell’s defense against oxidative stress and maintenance of redox homeostasis [10]; most cells have a specialized set of glutaredoxin isoforms located in various cellular compartments and with distinct roles [11-14]. Grxs can have either one or two active site cysteines - being classified as dithiol (with a CXXC motif) and monothiol (CXXS) Grxs, respectively. Grxs reduce both low molecular weight and protein disulfides using a dithiol mechanism, while the reduction of mixed disulfides and glutathionylated proteins occur by a monothiol mechanism [15]. However, all the dithiol Grxs known are also able to catalyze monothiol reactions - showing the versatility of these proteins, based on the affinity for the GSH moiety [15]. Grxs have been implicated in a wide range of biological processes, including the reversible S-glutathionylation of proteins [10]. S-glutathionylation can be promoted by oxidative stress and through the protection of sensitive thiols of proteins is a means of avoiding irreversible modification of a protein’s function; it may also serve as a storage mechanism for GSH, which otherwise would be extruded from the cell [16]. However, S-glutathionylation also occurs under physiological conditions as a mechanism of regulating the activity of proteins [16-18]. It can lead to inhibition or activation of an enzyme’s activity and the so-called redox regulation of many proteins is achieved via this post-translational modification. Deglutathionylation, removing the GSH moiety from the protein mixed disulfide, reverses the change [16]. We hypothesized that TDR1, with its Grx-like domain, may be responsible for S-glutathionylation or/and deglutathionylation of enzymes in *Leishmania* and so have an important role in regulating metabolism. *Leishmania* rely on
the trypanothione (T(SH)$_2$)/trypanothione reductase system unique to trypanosomatids and lack glutathione reductase and thioredoxin reductase [19], which has prompted the suggestion that GSH may have little function in the organism apart from as a precursor of trypanothione [19]. Our hypothesis, if correct, would mean that there is indeed at least one specific role for GSH per se.

The C-terminal domain of TDR1 has an active site more similar to that present in GSTO [9]. The omega class of GSTs is functionally distinct from the other classes of GST despite maintenance of the characteristic GST fold. Human GSTO has very low activity with 1-chloro-2,4-dinitrobenzene (CDNB)[20]. This is a good substrate for all other classes of GSTs, which are able to catalyze the conjugation of free radicals, metals and other electrophilic compounds with GSH and play a major role in the detoxification of many reactive metabolites. Human GSTO instead has activities similar to Grxs, with thiol transferase activity being the most prominent [20]. TDR1 has similarities to human GSTO in its activity profile, although the thioltransferase activity is greater and the glutathione-S-transferase activity with CDNB is lower [9]. Interestingly, there is a report of a GSTO being able to carry out de glutathionylation [21] and also another class of GST (GST-P) having glutathionylation activity [22]. Thus our hypothesis incorporates the likelihood that the two domains of TDR1 complement each other in providing Grx-like activities for Leishmania, but the unique two domain arrangement and trimeric functional protein suggests some adaptation specific for functions in the parasite. A protein similar to TDR1 occurs in another trypanosomatid, Trypanosoma cruzi. This has an activity profile very similar to TDR1, although it has substitutions in the active site in the C-terminal domain [23].

To test our hypothesis on the function of TDR1 in Leishmania, we applied a gene knockout strategy that allows analysis of the effect of a deletion of the gene of interest on the biology of parasite, including its virulence to its host. As a key part of our analyses of the phenotype of the null mutant parasite, we have applied a metabolomics approach to dissect the effect of the TDR1 gene deletion at a metabolic level. The study of the metabolome is an emerging field, mainly due to the fact that better procedures for obtaining reliable high resolution data now are available [24-31]. This technology has great potential in highlighting phenotypic differences between lines and so the possibility of identifying biomarkers for diagnosis and drug therapy [32]. This current study has confirmed the potential of metabolomics technologies in such analyses and has provided data that support our hypothesis that TDR1 plays a role in regulating the activity of enzymes in Leishmania. This idea has been further supported by our demonstration that TDR1 catalyses the de glutathionylation of protein-GSH mixed disulfides in vitro. Thus
deglutathionylation involving TDR1 may be an important mechanism of enzyme regulation in *Leishmania*.

Material and methods

Leishmania parasites

Leishmania donovani (MHOM/NP/03/BPK206/0clone10) promastigotes had been cloned from an isolate from a visceral leishmaniasis patient sensitive to pentavalent antimonials in Nepal, as described by Rijal and co-workers [33]. Promastigotes were grown on modified Eagle’s medium (designated HOMEM medium, Invitrogen) supplemented with 20% (v/v) heat inactivated fetal calf serum (FCS, PAA Laboratories) at 26°C. Cultures were set up initially at a density of 2.5 x 10^5 parasites/ml and sub-passaged every 6 days.

Plasmid constructs for targeted gene replacement

Genomic DNA was isolated from *L. donovani* promastigotes as described previously [34]. The 5' untranslated region (5'UTR) of *LdTDR1* (LdBPK_330260.1) (hereafter designated as *TDR1*) was PCR amplified using the following forward (P1) and reverse (P2) primers and *L. donovani* genomic DNA as template. P1 (5'-**AAGCTTTGTAGCTGTGGAAG**-3') contains a *Hind*III restriction site (underlined). P2 (5'-**GTCGAC**CCTCGAGACGGGAGACGTGGCTGCTATTTTG-3') contains a *Sal*I restriction site (underlined). The design of the primers was based on the *L. infantum* genome sequence available (http://www.genedb.org). The resulting PCR product (1.0 kb) was cloned directly at the T/A cloning site of pGEM-T Easy (Promega). The 5'UTR was digested with *Hind*III and *Sal*I and cloned into the corresponding sites of plmcpb-hyg [35], yielding pldtdr1-hyg5'. The 3'untranslated region (3'UTR) of *TDR1* (1.0 kb) was obtained by the same procedure used for the 5'UTR with the following forward (P3) and reverse (P4) primers. P3 (5'-**CCCCGGAGGTGTCGAGGGGATCGACGT**TG-3') contains a *Sma*I restriction site (underlined). P4 (5'-**AGATCTGAGGAGGAGGAATGTAGTAGTCCTCCTGTC**CGT-3') contains a *Bgl*II restriction site (underlined). The 3'UTR was excised from pGEM-T Easy after digestion with *Sal*I-*Hind*III and ligated to the *Sal*I and *Hind*III sites of pldtdr1-hyg5' to give pldtdr1-hyg5'3' (construct 1). The hygromycin phosphotransferase resistance gene (*HYG*) was replaced either with bleomycin (*BLE*) or streptothricin acetyltransferase (*SAT*) resistance genes by digestion with *Spe*I-*Bam*HI and ligated to the *Spe*I and *Bam*HI sites of pldtdr1-hyg5'3' yielding pldtdr1-bleo5'3' (construct 2) and pldtdr1-sat5'3' (construct 3), respectively. The *HYG*-, *BLE*- and *SAT*-containing *TDR1* gene replacement cassettes were excised from the plasmids by *Hind*III-*Bgl*II digestion prior to transfection. For the re-
expression experiments, the \textit{TDR1} ORF was cloned into the pRIB vector for chromosomal integration into a ribosomal RNA locus, where the gene is expressed under the control of the rRNA promoter [36]. In addition, \textit{TDR1} was expressed from the episomal vector pXG [37]. The \textit{TDR1} ORF was PCR-amplified using the primers P5 (5’-GACCCGGGATGGCCCGCGCGTAAAGCTATAC-3’) and P6 (5’-CTGGATCCTTACCGCTCGGCCCCTCCGTG-3’) (for the episomal add-back) or the primers P7 (5’-GATCCATATGGCCCGCGCGCTAAAGCTATAC-3’) and P8 (5’-CTACCGGTACCCGCTCTGGGCCCTCCGTG-3’) (for the ribosomal add-back) and \textit{L. donovani} genomic DNA as template (restrictions sites for \textit{SmaI}, \textit{BamHI}, \textit{ClaI} and \textit{AgeI}, respectively, are underlined). The PCR products were cloned into pGEM-T Easy before excising fragments for subcloning into expression vectors. The episomal add-back plasmid was constructed by cloning the \textit{SmaI}-\textit{BamHI}-cut \textit{TDR1} ORF into pXG [37] and the ribosomal add-back plasmid was obtained by cloning the \textit{ClaI}-\textit{AgeI}-cut \textit{TDR1} ORF into pRIB [36], yielding pXG-\textit{TDR1} and pRIB-\textit{TDR1}, respectively. The integration cassette from pRIB-\textit{TDR1} was excised by digestion with \textit{PacI} and \textit{Pmel} before transfection. All PCR-generated products were verified by sequencing (Eurofins MWG Operon) and correct orientation of the cloned fragments was checked by restriction enzyme digests.

\textbf{Transfection and selection of \textit{L. donovani} promastigotes}

For transfection, late logarithmic phase promastigotes were resuspended at 5 x 10^7 cells/ml in nucleofector solution (Amaza nucleofector kit, Lonza). 100 µl of cell suspension was either mixed with 10 µg of DNA or 10 µl of water as control and electroporated in a disposable cuvette using an Amaza electroporation device (Lonza). Cells were immediately transferred to HOMEM medium supplemented with 20% (v/v) FCS and 24 h later the antibiotic required for transfectant selection added as follows: hygromycin B (Sigma) at 50 µg/ml; phleomycin (Jena Bioscience) at 20 µg/ml; nourseothricin (Jena BioScience) at 50 µg/ml; neomycin (G418, Sigma) at 50 µg/ml and puromycin (Calbiochem) at 100 µg/ml. The \textit{TDR1} null mutant was constructed by sequential removal of \textit{TDR1} alleles by homologous recombination using the three gene replacement cassettes (Fig. 1A). Transfection with construct 1 or 3 was performed as described above and recombinants were cloned by serial dilution in 96-well plates in medium containing 50 µg/ml of hygromycin B or 50 µg/ml of nourseothricin. Genomic DNA isolated from these cloned parasites was used in Southern blot analyses to confirm the loss of one allele of \textit{TDR1} and replacement by the hygromycin phosphotransferase or streptomycin acetyltransferase resistance cassettes. One clone with the hygromycin phosphotransferase resistance gene was subjected to transfection with construct 2, selected with 50 µg/ml of hygromycin B plus 20 µg/ml of phleomycin and checked for the
replacement of the second allele by the bleomycin resistance cassette. Construct 3 was used to replace the third allele of the \(TDR1\) gene and clones resulting from the third round of transfection were selected in 50 \(\mu\)g/ml of hygromycin B, 20 \(\mu\)g/ml of phleomycin and 50 \(\mu\)g/ml of nourseothricin. The clones (designated \(\Delta tdr1\)) were analyzed for the complete removal of \(TDR1\) by Southern blot analysis. Complementation of one \(\Delta tdr1\) clone was achieved by transfection of parasites either with pXG-\(TDR1\) (episomal add-back) or pRIB-\(TDR1\) (ribosomal add-back) constructs, selected with 50 \(\mu\)g/ml of G418 or 100 \(\mu\)g/ml of puromycin, respectively, and protein expression assessed by western blot analysis.

Southern blot analysis
To verify the correct integration events, genomic DNA from wild type and mutant \(L.\ donovani\) promastigotes was analyzed by Southern blot. Briefly, 2 \(\mu\)g DNA were digested with \(Xho\)I, electrophoresed through a 0.8% agarose gel and blotted onto Hybond-N+ membrane (Amersham Bioscience). The 3’UTR of \(TDR1\) generated from genomic DNA by PCR with primers P3 and P4 was labelled with the AlkPhos Direct Labelling kit (Amersham Bioscience) and used to probe the blot. After overnight hybridization at 55ºC, the blot was washed, drained and developed using CDP-Star Detection reagent and Hyperfilm ECL (Amersham Biosciences) according to the manufacturer’s instructions.

Western blot analysis
\(L.\ donovani\) promastigotes were lysed by the addition of 0.25 M sucrose, 0.25% (v/v) Triton X-100, 10 mM EDTA, 10 \(\mu\)M E-64, 2 mM 1,10-phenanthroline, 4 \(\mu\)M pepstatin A and 1 mM PMSF. Insoluble cellular debris was removed by centrifugation at 12000 x g for 20 min at 4ºC, proteins separated by SDS-PAGE (12%) and blotted to nitrocellulose for Western blot analysis. Western blots were probed with polyclonal sheep anti-\(TDR1\) serum or, as a loading control, rabbit anti-\(LdCS\) (\(L.\ donovani\) cysteine synthase) and rabbit anti-sheep or goat anti-rabbit secondary antibodies coupled to peroxidase (Pierce) followed by chemiluminescence using ECL detection system (Pierce).

In vitro promastigote susceptibility assays
The susceptibility of \(L.\ donovani\) promastigotes to oxidative/nitrosative stress and metals was assessed by an Alamar Blue assay, as previously described [38] with slight modifications. Briefly, promastigotes were diluted in medium to 2 \(\times\) 10^6 parasites/ml and 100 \(\mu\)l of suspension was incubated with 100 \(\mu\)l of S-Nitroso-N-acetylpenicillamine (SNAP, Biomol; up to 2000 \(\mu\)M), hydrogen peroxide (\(H_2O_2\), Sigma; up to 4000 \(\mu\)M), potassium antimonyl tartrate (\(Sb^{III}\), Sigma; up to 1000 \(\mu\)g/ml), sodium arsenite (\(As^{III}\), Sigma; up to 5 mM), cadmium chloride (\(Cd^{II}\), Sigma; up to 5 mM), copper sulfate (\(Cu^{IV}\), Fisher Scientific;
up to 5 mM) or 3-morpholinosydnonimine HCL (SIN-1, Biomol; up to 20 mM), dispensed in quadruplicate into 96-well flat-bottom plates at 26°C, and incubated for 72 h (or, with SIN-1, 1 h). After incubation, 20 µl of sterile resazurin solution (0.0125% resazurin salt (Sigma) in phosphate buffered saline) was added to each well and plates were further incubated for 18 h. The fluorescence was then measured using 550 nm excitation and 595 nm emission wavelengths. IC$_{50}$ values were determined using GraFit 5 data analysis software (Erithacus Software).

Intracellular thiol measurement by HPLC
The quantification of thiols was carried out as previously described [39] using an HPLC method involving the conversion of thiols to fluorescent derivatives by reaction with monobromobimane, a fluorescent dye.

In vitro macrophage infections
Peritoneal macrophages obtained from BALB/c mice were cultured in RPMI medium with 20% (v/v) FCS at 2 x 104 cells/well in 24-well plates. After overnight incubation at 37°C with 5% CO$_2$, non-adherent cells were removed and macrophages were incubated with stationary phase *L. donovani* promastigotes at a parasite/macrophage ratio of 5:1. After 2 h of infection, non-internalized parasites were washed off, replaced with fresh RPMI medium with 20% (v/v) FCS and incubated at 37°C with 5% CO$_2$ for up to 3 days. Cells were fixed with 100% methanol, stained with Giemsa stain (VWR BDH Prolabo) and the parasite infections of the macrophages were assessed at 0, 24 and 72 h post-infection. Sensitivity of the intracellular parasites to sodium stibogluconate (SSG) was determined using peritoneal macrophages infected with *L. donovani* promastigotes using a promastigote/macrophage ratio of 10:1 (to maximize infection rates). After 24 h of incubation at 37°C with 5% CO$_2$, non-internalized parasites were washed off and the medium replaced with fresh RPMI medium with 20% (v/v) FCS containing varying concentrations of SSG: 0, 9.5, 19, 38, 75 and 150 µg/ml. After 3 days of incubation at 37°C with 5% CO$_2$, cells were fixed with 100% methanol, stained with Giemsa stain and the percentage of infected macrophages was determined. Results were normalized, taking as 100% the infection rate in the absence of SSG treatment. All assays were performed in triplicate for each time point or condition tested.

In vivo infections and assessment of parasite load
Age-matched female BALB/c mice in-house bred at University of Strathclyde and commercially obtained Golden Syrian hamsters (*Mesocricetus auratus*; Harlan Laboratories, U.K.) were used in this study. All animal procedures were undertaken in
adherence to experimental guidelines and procedures approved by The Home Office of the UK government. All work was covered by Home Office Project Licence PPL60/3929 entitled ‘Mechanism of control of parasite infection’. All animal protocols received ethical approval from the University of Strathclyde Ethics Committee.

BALB/c mice (3 animals per group) were infected by intravenous injection (tail vein) with 2 x 10^7 L. donovani promastigotes in 200 µl of PBS. Two and six weeks post-infection, spleen and liver were removed and each organ was gently homogenised and resuspended in RPMI medium to obtain single cell suspensions for parasite load assessment. Golden Syrian hamsters were infected by intravenous injection (tongue vein) with 2 x 10^7 L. donovani promastigotes in 200 µl of PBS and sacrificed 3 months later. The spleen from each individual hamster was gently homogenized and resuspended in RPMI medium to obtain single cell suspensions for parasite load assessment.

Quantification of the parasite load in the spleens and livers was performed by limiting dilution as previously described [40]. Two-fold serial dilutions of the parasite suspensions were prepared in flat-bottomed 96-well microtiter plates. After incubation for 15 days at 26°C, plates were examined and the positive (presence of motile parasites) and negative (absence of motile parasites) wells were determined using an inverted microscope. The number of parasites per gram of organ (parasite load) was calculated as follows: parasite load = [(geometric mean of reciprocal titer from each quadruplicate cell culture/weight of homogenized organ) x reciprocal fraction of the homogenized organ inoculated into the first well].

Leishmania extracts for metabolite analysis

L. donovani promastigote cultures were initiated at 2.5 x 10^5 cells/ml in four replicate 10 ml cultures in order to obtain cell samples from four independently growing cultures (biological replicates). Promastigotes from each culture were harvested at days 5 and 6 for protein estimation (for normalizing the metabolite data) and metabolite extraction. The metabolite extraction was performed as previously described [28]. Briefly, promastigotes quenching was performed in a dry ice/ethanol bath with rapid temperature decrease to 2°C and then immediate transfer to ice. Two aliquots of 4 x 10^7 cells were taken from each culture flask (technical replicates). After centrifugation at 12000 g for 10 min at 4°C, the supernatant (designated the spent medium) was removed and stored on ice. Cell pellets were washed three times in 1 ml of PBS at 4°C by centrifugation at 12000 g for 10 min at 4°C. For cell disruption and metabolite extraction, cell pellets were resuspended in 200 µl cold chloroform/methanol/water (20/60/20, v/v/v) and incubated 1 h in a
Thermomixer(1400 rpm, 4°C). After centrifugation at 12000 g for 10 min at 4°C, the supernatant containing the extracted metabolites was recovered and stored at -70°C until analysed. To 75 µl of spent medium was added 300 µl of cold chloroform/methanol (20/60, v/v) followed by incubation for 1 h on ice. After centrifugation at 12000 g for 10 min at 4°C, the supernatant was recovered and stored at -70°C until analysed.

Liquid chromatography mass spectrometry (LC-MS) analysis and data processing

LC-MS analysis and data processing was carried out generally as described by t’Kindt and co-workers [28, 29] also applying subsequently improved analysis software [41]. Provisional identification of metabolites was carried out using a mass accuracy difference of up to 2 ppm (parts per million) and taking into account retention times. The identity of metabolites of interest was confirmed by co-elution with pure standards. The standards used to confirm identities of metabolites in this study are listed in Table S1. Intensity level ratios were used to compare the different cell lines, with the following criteria being applied for differences to be considered of interest and potentially due to TDR1 gene deletion: (i) there was at least a 2-fold difference between the WT and Δtdr1; (ii) there was at least a 2-fold difference between the Δtdr1 and the episomal add-back line; (iii) there was a statistically significant difference (p<0.01) between the cell lines being compared. The data are expressed as intensity per 25 µg cell protein.

Recombinant protein expression and purification

The *L. donovani* TDR1 (LdTDR1) and the *L. infantum* dithiol glutaredoxin (LiGRX1) genes were amplified from genomic DNA by PCR and cloned into the vector pET15b (Novagen) which was modified to incorporate a tobacco etch virus protease site in place of the thrombin site in the N-terminal His-Tag [42]. Forward (5’-GCCATATGGCGCCGCAGCG CTAAAGCTATACGTG-3’) and reverse primers (5’-CTGGATCC TTACCCGCTCTGGGCC CTCCGTTG-3’) containing NdeI and BamHI restriction sites (underlined), respectively, were used to clone LdTDR1 and primers (5’-GCCATATGCTCTCCAGCGCCGCTCTGTATTCTAT CG-3’ and 5’-ATCCTCGAGTTACGCAAGCTTCCAGCCAGCCAG-3’) containing NdeI and XhoI restriction sites (underlined) were used to clone LiGRX1. Nucleotide sequencing confirmed that the LdTDR1 is identical to the *L. infantum* TDR1 (LinJ.33.0260), making suitable the comparison between LdTDR1 and LiGRX1 recombinant proteins. The LiGRX1 (LinJ.27.0670) is homologous to the *T. brucei* GRX1 (Tb11.47.0012) characterized previously by Ceylan and co-workers [11]. Both LdTDR1 and LiGRX1 were expressed in *E. coli* strain BL21/DE3 for 16 h at 15°C, following induction with 1 mM isopropyl-β-D-thiogalactopyranoside. The recombinant proteins (hereafter designated TDR1 and GRX1) from 250 ml cultures were purified to more than 90% homogeneity
using nickel nitrilotriacetate (Ni-NTA) agarose (QIAGEN) columns. Cells were harvested by centrifugation and resuspended in 5 ml of buffer A (50 mM sodium phosphate buffer, 300 mM NaCl, pH 8.0) containing 10 mM imidazole. Cell lysates were prepared by sonication and cleared by centrifugation at 13,000 x g for 30 minutes at 4ºC. The soluble fraction was applied to a 1 ml Ni-NTA column equilibrated with buffer A containing 10 mM imidazole. After washing with 10 ml of buffer A containing 20 mM imidazole, the N-terminally His-tagged protein was eluted with 250 mM imidazole in buffer A. Fractions containing TDR1 were pooled and buffer exchanged against 25 mM Tris HCl pH 8.0 containing 250 mM NaCl using a PD-10 column (GE Healthcare) and stored at -80ºC, whereas GRX1 fractions were stored at 4ºC without further treatment for up to 1 month. 20 mg of TDR1 and 7 mg of GRX1 were obtained from 250 ml cultures.

Assays for determining deglutathionylation activity

Deglutathionylation activities of *Ld*TDR1 and *Li*GRX1 were measured using glutathionylated bovine serum albumin (BSA-SG) and a synthetic glutathionylated peptide (Peptide-SG) as substrates.

To prepare BSA-SG, the BSA (Sigma) was reduced, denatured and then glutathionylated by incubation with GSH in the presence of an oxidizing agent as previously described by Cheng *et al.*[43]. Briefly, BSA (10 mg/ml) in 50 mM Tris-HCl, 200 mM NaCl, pH 7.5 containing 0.1 % (v/v) SDS and 5 mM DTT was heated for 2 min at 100ºC; the SDS and DTT were removed using a PD-10 column (GE Healthcare) equilibrated with 50 mM Tris-HCl, 200 mM NaCl, pH 7.5. The reduced and denatured BSA was then mixed with 1 mM GSH and 100 mM H₂O₂ and incubated for 15 min at 30ºC before passing through a PD-10 column as described above. The protein concentration was determined by measuring the absorbance at 280 nm and the total thiol content was quantified using a 5,5’-dithiobis-2-nitrobenzoic acid assay [44]. The reduced and denatured BSA typically contained 7 cysteine thiols per molecule whereas only 0.4 thiols were detected after oxidation. This shows that the BSA-SG contains a maximum of 7 or 8 glutathionylated cysteine residues per molecule but other types of cysteine oxidation are also possible including disulfide bond formation. Reduction or deglutathionylation of the BSA-SG was assayed in 200 µl of 50 mM Tris-HCL, 5 mM EDTA, pH 7.0 containing 200 µM NADPH, 2 U/ml glutathione reductase (GR), 1 mM GSH and 120 nM TDR1 or 1.7 µM GRX1. The assay mixture was pre-incubated for 5 min at 30ºC before starting the reaction by addition of 30 µM of BSA-SG. Deglutathionylation activity was quantified by measuring the decrease in absorbance at 340 nm due to NADPH oxidation. Specific activities were expressed as µmol/min/mg protein and represent the means ± standard deviation of three independent experiments.
A peptide with a sequence SQLWCLSNN with a GSH residue linked to the cysteine residue by a disulfide bond, as used previously in deglutathionylation assays [45, 46], was obtained from Peptide Protein Research Ltd. The glutathionylated peptide (Peptide-SG) was used to quantify de-glutathionylation in a coupled assay with GR as described by Bonilla et al. [46]. The assay was carried out in 200 µl of 50 mM Tris-HCl, pH 7.0 containing 5 mM EDTA, 200 µM NADPH, 2 U/ml GR, 250 µM GSH and 100 nM TDR1 or 50 nM GRX1. The assay components were incubated for 5 min at 30ºC before starting the reaction by addition of Peptide-SG to a final concentration of 100 µM. Deglutathionylation activity was quantified by measuring the decrease in absorbance at 340 nm due to NADPH oxidation. The K_m of TDR1 for Peptide-SG was determined with a fixed concentration of GSH (250 µM) and 50-600 µM Peptide-SG. The K_m of GRX1 was determined with 250 µM GSH and 2.5-200 µM Peptide-SG.

Statistical analyses

Statistical analysis was performed using Student’s T test: a p value smaller than 0.05 ($p<0.05$) was considered significant; SPSS Statistics software (IBM) was used to perform principal component analysis; GraphPad Prism 4 was used for plotting the graphs and VisuMap software (VisuMap Technologies Inc.) was used to visualize the data as heatmaps.

Results

Generation of mutants lacking TDR1

To investigate the role of TDR1 in *L. donovani*, we created a null mutant (designated Δtdr1) by homologous gene replacement. Targeted gene replacement is a powerful method that has enabled the deletion of many *Leishmania* genes after two rounds of knockout as most *Leishmania* species are predominantly diploid [47], although recent findings have revealed quite extensive aneuploidy especially in *L. donovani* [48, 49]. Fig. 1A shows the constructs used to replace the TDR1 alleles in *L. donovani* by the hygromycin phosphotransferase (*HYG*), bleomycin acetyltransferase (*BLE*) or streptothricin acetyltransferase (*SAT*) genes flanked at the 5’ and 3’ ends with the 5’ and 3’ UTRs of the TDR1 gene. After two rounds of transfection, two alleles of the TDR1 gene had been replaced by the selection constructs. However, Southern blot analysis, using the 3’ UTR of TDR1 as the probe, showed that the wild type (WT) gene was still present in the genome of these parasite clones (Fig. 1B, lane 3) - which were thus designated TDR1/tdr1/tdr1. Several attempts to obtain a null mutant after two rounds of transfection
were made, but in all cases they resulted in the generation of parasites in which the WT gene remained. TDR1 null mutants of L. major had been obtained after just two rounds of transfection, showing that the gene is not essential for this related species (J.C. McGregor and G.H. Coombs, unpublished results). We reasoned, therefore, that, as L. major and L. donovani are relatively closely related, TDR1 is unlikely to be essential for L. donovani. Thus, we hypothesized that the impossibility of deleting the TDR1 gene from L. donovani after two rounds of transfection was due to triploidy of the TDR1 gene. After a third round of transfection using the SAT construct, we obtained parasites able to grow in the presence of all three of the selection drugs and Southern blot analysis confirmed the deletion of a third copy of the TDR1 gene (Fig. 1B, lane 4) and so the generation of a null mutant (∆tdr1).

Loss of TDR1 expression in ∆tdr1 was confirmed by western blot analysis using anti-TDR1 antibody (Fig. 1C, lane 3). To aid in the identification of phenotypic differences between the WT parasite and the ∆tdr1 null mutant that directly related to loss of the gene, the null mutant was complemented either with an episomal or a ribosomal Leishmania expression vector containing TDR1 and these complemented (add-back) lines were termed ∆tdr1[pXG]TDR1 and ∆tdr1::PrrnaTDR1, respectively. Analysis of both lines by western blot showed successful re-expression of TDR1 in the null mutant (Fig. 1C, lanes 4 and 5). These findings on the generation of the TDR1 null mutant of L. donovani provide strong evidence that this isolate of L. donovani is triploid at the TDR1 locus. Deletion of TDR1 did not affect the growth of promastigotes in vitro, as the growth rates of the WT parasites and the various mutants generated were all similar (Fig. 1D). Thus TDR1 is not essential for viability of L. donovani promastigotes.
Figure 1. Targeted replacement of the TDR1 gene of *L. donovani*. (A) Schematic representation of the TDR1 locus and the constructs used to replace the gene copies. Expected sizes of the XhoI fragments revealed by Southern blot analysis are shown. UTR, untranslated region; DHFR, dihydrofolate reductase gene; HYG, hygromycin phosphotransferase gene; BLE, bleomycin acetyltransferase gene; SAT, streptothricin acetyltransferase gene. (B) Southern blot analysis of genomic DNA digested with XhoI, separated on a 0.8% agarose gel and blotted onto a nylon membrane. The membrane was hybridized with an alkaline phosphatase-labeled DNA probe comprising the 3'UTR of
the \(TDR1 \) gene. DNA was from the wild type \(L. \) \textit{donovani} (WT, lane 1), a single allele replacement clone (\(TDR1/TDR1/tdr1 \), lane 2; a clone with the \(SAT \) replacement is shown to clarify the genes in \(\Delta tdr1 \), lane 4), a two allele replacement clone (\(TDR1/tdr1/tdr1 \), lane 3) and the \(TDR1 \) null mutant (\(\Delta tdr1 \), lane 4); the positions of the molecular size markers (kb) and identity of the bands are shown on the left and on the right, respectively. The box below summarizes which genes are present. (C) Western blot analysis of cell lysate from stationary phase promastigotes of WT (lane 1), \(TDR1/tdr1/tdr1 \) (lane 2), \(\Delta tdr1 \) (lane 3), ribosomal add-back line (\(\Delta tdr1::P_{RRNA}TDR1 \), lane 4) and episomal add-back line (\(\Delta tdr1[pXG \ TDR1] \), lane 5). Cell extracts were separated using 12% SDS-PAGE and immunoblotted with polyclonal sheep anti-TDR1 serum. Anti-serum raised in rabbit against cysteine synthase (CS) was used to confirm equivalent protein loading; molecular masses are indicated on the left (kDa) and identity of the bands is shown on the right. (D) The effect of \(TDR1 \) disruption on the \textit{in vitro} growth as promastigotes of \(L. \) \textit{donovani} WT, \(TDR1/tdr1/tdr1 \), \(\Delta tdr1 \), \(\Delta tdr1::P_{RRNA}TDR1 \) and \(\Delta tdr1[pXG \ TDR1] \). Cultures were seeded at \(2.5 \times 10^5 \) parasites/ml and counted daily. Log base 10-transformed cell density is shown.

\(\Delta tdr1[pXG \ TDR1] \) were grown in the presence of 50 µg/ml G418.

Deletion of \(TDR1 \) renders \(L. \) \textit{donovani} promastigotes more sensitive to trivalent arsenite and trivalent antimony but not reactive oxygen and nitrogen species

\textit{Leishmania} parasites are exposed to a variety of reactive oxygen and nitrogen species (ROS and RNS) - from their own metabolism and from the oxidative burst generated during phagocytosis by their host macrophage that includes superoxide (\(O_2^{-} \)), \(H_2O_2 \), hydroxyl radical (‘OH), nitric oxide (‘NO) and peroxynitrite (ONOO\(^{-}\)) (reviewed in [8]). \textit{Leishmania} rely on an antioxidant defense system mainly based on trypanothione [19], which is able to suppress macrophage responses [50]. To investigate whether \(TDR1 \) may also play a role in protection against oxidative and nitrosative stress, we used \(H_2O_2 \), SNAP and SIN-1 as reagents that induce stress of a different nature and potentially mimic those to which \textit{Leishmania} is naturally exposed. SNAP releases ‘NO under physiological conditions while SIN-1 induces mixed oxidative/nitrosative stress by the generation of both \(O_2^{-} \) and ‘NO that spontaneously form ONOO\(^{-}\). Promastigotes were exposed to different concentrations of \(H_2O_2 \) SNAP or SIN-1 and their viability assessed by an Alamar Blue assay. The data generated (Table 1) show all of the lines were similarly susceptible to the oxidative/nitrosative stresses induced.
Table 1. Susceptibility of *L. donovani* promastigotes to oxidative/nitrosative stresses

<table>
<thead>
<tr>
<th>Parasite line</th>
<th>H₂O₂ IC₅₀ ± SD (μM)</th>
<th>SNAP IC₅₀ ± SD (μM)</th>
<th>SIN-1 IC₅₀ ± SD (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>477 ± 62</td>
<td>68 ± 12</td>
<td>871 ± 182</td>
</tr>
<tr>
<td>Δtdr1/tdr1/tdr1</td>
<td>468 ± 76</td>
<td>41 ± 4</td>
<td>878 ± 183</td>
</tr>
<tr>
<td>Δtdr1</td>
<td>446 ± 42</td>
<td>46 ± 13</td>
<td>904 ± 170</td>
</tr>
<tr>
<td>Δtdr1::PRRNA TDR1</td>
<td>482 ± 110</td>
<td>47 ± 9</td>
<td>899 ± 154</td>
</tr>
<tr>
<td>Δtdr1[pXG TDR1]</td>
<td>601 ± 73</td>
<td>42 ± 7</td>
<td>837 ± 137</td>
</tr>
</tbody>
</table>

IC₅₀ represents the concentration of hydrogen peroxide (H₂O₂), S-Nitroso-N-acetylpenicillamine (SNAP) or 3-morpholinosydnonimine.HCl (SIN-1) that inhibited by 50% the growth of the wild type (WT), *TDR1* null mutant (Δtdr1), ribosomal add-back (Δtdr1::PRRNA TDR1) and episomal add-back (Δtdr1[pXG TDR1]) lines. Each value is a mean ± standard deviation (SD) of three independent experiments. GraFit 5 software was used to calculate the IC₅₀ values.

The susceptibility of the *L. donovani* promastigotes to metal compounds that can have a direct effect through the induction of DNA damage, GSH depletion, and binding to protein sulphydryl groups or an indirect one by the generation of ROS and RNS [51] was also tested (Table 2). Statistically significant differences were observed between the susceptibility of WT parasites and Δtdr1 to Sb³⁺ or As³⁺, but not to Cd²⁺ or Cu⁴⁺. It is noteworthy that the episomal add-back returned the susceptibility to WT levels, whereas the ribosomal add-back line was similarly susceptible as Δtdr1 itself.

The activity of TDR1 involves the use of glutathione as a reducing agent [9] and so it appeared possible that the greater susceptibility of the null mutant to metal compounds could reflect an interference with the mechanisms for thiol homeostasis. In order to evaluate the effect of TDR1 deletion on the parasite’s thiol pool, GSH, T[SH]₂ and cysteine levels were measured by HPLC for WT, Δtdr1 and Δtdr1[pXG TDR1] promastigotes from different days of growth in vitro. No significant differences between lines were observed on any of days 4-6 of growth (data not shown).
4. Objectives and Results

Table 2. TDR1 null mutants display increased susceptibility to trivalent antimony and trivalent arsenite

<table>
<thead>
<tr>
<th>Parasite line</th>
<th>Sb$^{\text{III}}$ ± SD (µg/ml)</th>
<th>As$^{\text{III}}$ ± SD (µg/ml)</th>
<th>Cd$^{\text{II}}$ ± SD (µg/ml)</th>
<th>Cu$^{\text{IV}}$ ± SD (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>70 ± 8</td>
<td>234 ± 15</td>
<td>239 ± 37</td>
<td>194 ± 41</td>
</tr>
<tr>
<td>TDR1/tdr1/tdr1</td>
<td>79 ± 7</td>
<td>198 ± 22</td>
<td>218 ± 24</td>
<td>153 ± 20</td>
</tr>
<tr>
<td>∆tdr1</td>
<td>37 ± 9**</td>
<td>169 ± 5*</td>
<td>161 ± 54</td>
<td>121 ± 3</td>
</tr>
<tr>
<td>∆tdr1::PRRNA TDR1</td>
<td>45 ± 7*</td>
<td>136 ± 75</td>
<td>140 ± 50</td>
<td>120 ± 24</td>
</tr>
<tr>
<td>∆tdr1[pXG TDR1]</td>
<td>77 ± 14</td>
<td>366 ± 78</td>
<td>228 ± 12</td>
<td>154 ± 26</td>
</tr>
</tbody>
</table>

IC$_{50}$ represents the concentration of potassium antimony tartrate (Sb$^{\text{III}}$), sodium arsenite (As$^{\text{III}}$), cadmium chloride (Cd$^{\text{II}}$) or copper sulfate (Cu$^{\text{IV}}$) that inhibited by 50% the growth of the wild type (WT), TDR1 null mutant (Δtdr1), ribosomal add-back (Δtdr1::PRRNA TDR1) and episomal add-back (∆tdr1[pXG TDR1]) lines. Each value is a mean ± standard deviation (SD) of three independent experiments. GraFit 5 software was used to calculate the IC$_{50}$ values. Statistically significant differences between WT and Δtdr1 or WT and ∆tdr1::PRRNA TDR1 lines are indicated: * p<0.05, ** p<0.01.

TDR1 deletion does not affect virulence to macrophages in vitro and to mice

Stationary phase promastigotes of the different cell lines were assessed for their ability to infect and survive in peritoneal macrophages in vitro. The extent of macrophage infection was determined at 0, 24 and 72 h post exposure to promastigotes (Fig. 2A). There was a decrease in the number of macrophages infected by the null mutant by 72 h, although this was not statistically significant when compared with the WT (p = 0.064), and there was no difference in the number of parasites per infected macrophage (data not shown).

The ability of promastigotes of the various lines to cause infection in BALB/c mice and in hamsters was investigated. All infected, and no differences were observed for the parasite loads in the spleen and liver between the WT and null mutant parasites in either host (data not shown).

TDR1 does not seem to be involved in susceptibility to pentavalent antimonials

Pentavalent antimonials (Sb$^{\text{V}}$) are pro-drugs that need to be reduced to trivalent antimonials (Sb$^{\text{III}}$) in order to be toxic to Leishmania. TDR1 is able to reduce Sb$^{\text{V}}$ to Sb$^{\text{III}}$ in vitro [9] and therefore it was postulated to have a role in susceptibility of the parasites to
SbV. The reduction of SbV could, however, also work in favor of the parasite, as the SbIII form of the drug is readily extruded from the cell when conjugated with thiols [52]. Thus TDR1 could potentially have a role in drug susceptibility or drug resistance. In order to investigate whether TDR1 plays a part in determining the susceptibility of Leishmania to SbV, the relative susceptibility of the WT, Δtdr1 and the episomal add-back line in macrophages to SbV was analysed (Fig. 2B). No statistically significant differences between the Δtdr1 and WT lines were observed. Interestingly, the add-back line appeared slightly less susceptible to SbV, although there was no statistically significant difference compared with WT.

Figure 2. Infectivity to macrophages in vitro of L. donovani Δtdr1 promastigotes and susceptibility to sodium stibogluconate. (A) L. donovani WT, Δtdr1 and Δtdr1[pXG TDR1] stationary phase promastigotes were used to infect peritoneal macrophages at a ratio of 5:1. After 2 h of infection, non-internalized parasites were washed off, replaced with fresh medium and incubated at 37°C. Macrophage infection was determined at 0, 24 and 72 h post-infection. Each value is a mean ± standard deviation from three replicates and is representative of two independent experiments. (B) Stationary phase promastigotes were used to infect peritoneal macrophages at a ratio of 10:1 and incubated for 24 h. Non-internalized parasites were then washed off and replaced with fresh medium containing varying concentrations of sodium stibogluconate (SSG): 0, 9.5, 19, 38, 75 and 150 µg/ml. After 3 days of incubation, the percentage of infected macrophages was determined and the results normalized - taking as 100% the number of infected macrophages in the cultures not treated with SSG. Each value is a mean ± standard deviation from three replicates. Statistically significant differences between Δtdr1 and Δtdr1[pXG TDR1] groups are indicated: * p<0.05.
Analyses of the effect of TDR1 deletion on the parasite’s metabolome

To obtain insights into the role of TDR1 in the metabolism of *L. donovani*, we adopted a global metabolomics approach to identify differences between the metabolomes of WT and Δtdr1 promastigotes. We applied stringent conditions in experimental design, in selecting metabolite differences and confirming the identity of metabolites of interest (see methods section), including the requirement that differences between WT and Δtdr1 needed to be complemented in an add-back line.

As a means of ensuring that observed phenotypic changes between WT and Δtdr1 are the result of the gene deletion alone, we generated two add-back cell lines with the re-expression of TDR1 being from different loci (as described in the methods). Presence of the appropriate protein as analysed by western blot is usually taken as successful complementation of gene deletion, although the literature indicates that full complementation of phenotypic differences is not always observed [53-56]. In this study, we compared the metabolic profile of each add-back cell line with the metabolomes of the WT and Δtdr1 lines to analyse the effectiveness of the two methods of complementation to recover the WT metabolome phenotype. The ribosomal add-back (Δtdr1::PRRNA,TDR1) did not result in reversion of metabolites to levels observed in the WT line as shown in Fig. 3. Principal component analysis (PCA) is an unsupervised clustering technique that allows the reduction of the data into two dimensions (principal component 1 and principal component 2), which capture and enable visualization of data variability [57]. The PCA analysis shows that replicates samples from Δtdr1::PRRNA,TDR1 and Δtdr1 cluster closely together, indicating a very similar metabolic profile, but removed from the WT which clearly demonstrates the separation between these two mutant cell lines and the WT line. In contrast, the episomal add-back (Δtdr1[pXG{TDR1}]) did result in recovery to the WT levels for most metabolites (being very similar with respect to principal component 1 which accounts for 57.1% of total variance), with there only being variation in the second principal component which accounts for just 17.3% of the total variance. Thus surprisingly, as expression of TDR1 was similar in both add-backs as determined by western blot analysis (Fig. 1C), the ribosomal add-back did not recover any of the metabolite levels that differed by 2-fold between Δtdr1 and WT promastigotes, whereas the episomal add-back was effective in all except 18% of the metabolites (Table S2). The ribosomal add-back, as an integrative construct, is generally expected to lead to stable and consistent expression of the protein and so be more reliable than complementation using episomal expression, but our data show unambiguously that this is not the case with our mutant lines. Given these results, we only used the episomal add-back line in the remainder of the analyses (as indicated in the datasets themselves).
Figure 3. Episomal complementation of Δtdr1 is more effective than with an integrative construct. Principal component analysis of all metabolites identified by LC-MS in cell extracts from L. donovani WT, Δtdr1, Δtdr1::P_RRNA TDR1 and Δtdr1[pXG TDR1] promastigotes on day 5 of growth in vitro. Principal component 1 and principal component 2 explain 57.1% and 17.3% of the total variance, respectively.

In order to obtain meaningful data, it is important to have an indication of the relative intracellular concentrations of metabolites in the different lines. Thus it is necessary to take into account changes in cell size that occur during the life cycle of Leishmania (such as between different forms of promastigotes that occur in the in vitro cultures – procyclic promastigotes and metacyclic promastigotes) and also any changes induced by the genetic manipulations. A simple approximate correlate of cell size is protein content and we have shown in a previous study that a significant decrease in protein content occurs as L. donovani WT promastigotes progress into stationary phase [4]; this correlates with metacyclogenesis being initiated in late log phase and resulting in the metacyclic promastigotes that are characterized by a smaller body size [58]. To ensure that differences in the sizes of WT and Δtdr1 would not have an impact in the metabolome analysis and comparison, we checked for differences in protein content between these cell lines after 5 and 6 days in culture. As expected and observed previously [4] there was a decrease in protein content between the two time points, however there were no significant differences between the protein content of the WT and Δtdr1 promastigotes. To enable comparison of the metabolomes of promastigotes on days 5 and 6 of in vitro culture, we have expressed the data on metabolite levels per cell protein (rather than cell number), as we have reported previously [4].
In order to obtain an extensive metabolic profile of each cell line, promastigote cultures of *L. donovani* WT, Δtdr1 and Δtdr1[pXGTDR1] were set up and harvested at 5 days, which corresponds to the transition between logarithmic and stationary phases of growth, and at stationary phase (6 days) when the number of mammal-infective metacyclic promastigotes are high. The experiments were performed based on four biological replicates per cell line to obtain representative data; also during the cell processing from each culture two samples (designated technical replicates) were taken to control for variation due to technical factors. Analysis of the data for identification of metabolites was carried out using a mass accuracy difference of up to 2 part per million (ppm). The initial identification of the metabolites was carried out based on the database of metabolites detailed by t’Kindt and co-workers [28, 29]. After manual verification of the metabolites initially identified by the software using LeishCyc database [59], we had a total of 363 and 378 putative metabolites for the day 5 and day 6 samples, respectively. The main comparison between WT and Δtdr1 cell extracts was performed based on the ratio of the signal intensity for each metabolite identified with the LeishCyc database. The intensities of the majority of metabolites identified were unaffected by *TDR1* gene deletion, with only about 10% of metabolites differing at least by 2-fold between the WT and Δtdr1 (Fig. 4). The putative compounds identified belong to a wide range of metabolic pathways, with lipids and amino acids and their derivatives being those identified in highest numbers (Fig. 5). A general overview of the metabolites within central metabolic pathways that were putatively detected is shown in Fig. S1. The full list of putatively identified metabolites at days 5 and 6 are detailed in Tables S3 and S4 of Supplementary Material. A comparative analysis of the levels of the metabolites identified in WT, Δtdr1 and Δtdr1[pXGTDR1] promastigotes on days 5 and 6 of *in vitro* growth is shown in Fig. 5. This highlights that there were more differences between Δtdr1 and WT promastigotes on day 5 as some of the most prominent differences observed between the extracts on day 5 were not present by day 6. It is noteworthy that, in agreement with the PCA data (Fig. 3), there was a very good complementation of the metabolite levels by the episomal add-back, as verified by the values obtained for the ratio (WT/Δtdr1[pXGTDR1]) being between 0.5 and 2 for almost all putatively identified metabolites (Tables S3 and S4).
4. Objectives and Results

Figure 4. TDR1 deletion leads to few changes at a metabolic level. Differences detected between the levels of intracellular metabolites in *L. donovani* WT and Δtdr1 on days 5 (A) and 6 (B). Following a logarithmic transformation (base 2) the average signal intensity ratios of Δtdr1/WT for all identified metabolites are plotted. The dotted lines represent the fold-change cut-off used in this study for a given metabolite profile being considered to be different between WT and Δtdr1: log₂ (metabolite intensity ratio) below -1 or above 1 indicates a 2-fold difference between the cell lines compared. The metabolites differing in intensity by at least 2-fold between WT and Δtdr1 on days 5 and 6 represented 10.4% and 10.5%, respectively, of all metabolites identified.
Figure 5. Comparative levels of all intracellular metabolites identified in *L. donovani* WT, ∆tdr1 and ∆tdr1[pXG TDR1] promastigotes. The heatmap was generated using log base 2-transformed fold-changes determined by the average signal intensity ratios of ∆tdr1/WT (A), ∆tdr1/∆tdr1[pXG TDR1] (B) and WT/∆tdr1[pXG TDR1] (C) for all metabolites detected. Metabolites are ordered by compound category shown on the left and log values of measurements are color coded as indicated in the scale on the right of the heatmap, from green to red.

The criteria that we have used in this study to define whether detected differences in intensity levels of a metabolite between the cells lines is of interest are that both ratios ∆tdr1/WT and ∆tdr1/∆tdr1[pXG TDR1] show greater than 2-fold differences and that these are statistical significant (*p*<0.01); thus we have concentrated on the metabolite changes for which recovery by the episomal add-back was achieved. Moreover, we have only...
included in the following analysis metabolites whose identity has been confirmed by using standards. Metabolites identified in the data for days 5 and 6 of growth that fulfilled these conditions are shown in Fig. 6. Proline, 2-ketoisocaproate, indolelactate, deoxycytidine, argininosuccinic acid and CDP-choline were significantly different on both days. Some metabolites differed only on one day: histidine, glycerol-3-phosphate and S-adenosylhomocysteine are metabolites for which the fold change between the Δtdr1 mutant and WT became lower than 2 on day 6, whilst mevalonate is not shown on day 5 because the ratio Δtdr1/Δtdr1[pXG TDR1] is lower than 2 - thus that recovery by the episomal add-back was not to the level required for inclusion. The identity of metabolites in Fig. 6 was confirmed by co-elution with standards. Some metabolites fulfilling the criteria of being >2-fold and significantly different between the WT and Δtdr1 were excluded from Fig. 6 as we have been unable to confirm their putative identification by co-elution with standards. These include proline betaine, 10-pentadecenal, valerylglycine, 8-amino-7-oxo-nonanoic acid, and 4alpha,14alpha-dimethyl-24-methylene-cholest-7,(11)-dien-3beta-ol.

We also investigated the metabolite changes in the culture medium, as metabolite uptake and release are part of the overall metabolic events occurring. Just a few metabolite levels differed significantly between the spent media for WT and Δtdr1 parasites after 6 days of growth in vitro (Fig. 7 and Table S5). Only a few met the criteria applied for being meaningfully different between the Δtdr1 and WT lines (Fig. 7C). Interestingly, the extracellular proline levels were decreased with Δtdr1 compared with the WT, as were the intracellular levels (Fig. 6). Also, 2-ketoisocaproate levels were increased in the null mutant spent medium relatively to the WT spent medium; the concentrations also increased intracellularly. The other significant differences (aspartic acid and glutamic acid) were not mirrored by intracellular changes that fulfilled our criteria for inclusion as being significant.
4. Objectives and Results

Figure 6. Intracellular metabolites at different levels in *L. donovani* WT and Δtdr1 promastigotes. *L. donovani* WT, Δtdr1 and Δtdr1[pXG TDR1] were harvested after 5 and 6 days of growth *in vitro* and cell extracts analyzed by LC-MS. Following a logarithmic transformation (base 2), the average signal intensity ratios of Δtdr1/WT, Δtdr1/Δtdr1[pXG TDR1] and WT/Δtdr1[pXG TDR1] for metabolites at interestingly different levels identified on day 5 (A) and day 6 (B) were plotted. Dotted lines represent the adopted cut-off for significant changes in a given metabolite profile: log₂ (metabolite intensity ratio) below -1 or above 1 indicates a 2-fold difference between the cell lines compared. All metabolites shown were statistically significant different between Δtdr1 and WT or Δtdr1[pXG TDR1] and their identities were confirmed by co-elution with the respective standard. The metabolites are ordered according to mass.
4. Objectives and Results

Figure 7. Changes in extracellular metabolite profile due to TDR1 gene deletion. (A) Differences detected between the levels of all metabolites identified in the spent culture media of L. donovani WT and Δtdr1 promastigotes on day 6 of growth in vitro. Following a logarithmic transformation (base 2), the average signal intensity ratios of Δtdr1/WT for all metabolites was plotted. The metabolites differing at least by 2-fold between the WT and Δtdr1 on day 6 represented 9.3% of the all of the metabolites identified. (B) Comparison of levels of all extracellular metabolites detected in the spent media of L. donovani WT, Δtdr1 and Δtdr1[pXG TDR1] promastigotes on day 6 of growth in vitro. The heatmap was generated using log base 2-transformed average signal intensity ratios of Δtdr1/WT (a), Δtdr1/Δtdr1[pXG TDR1] (b) and WT/Δtdr1[pXG TDR1] (c) for all metabolites identified using 2 ppm cut-off. Metabolites are ordered by compound category shown on the left and log values of measurements are color-coded as indicated in the scale on the right of the
4. Objectives and Results

heatmap, from green to red. (C) Metabolites identified at significant different levels in the spent media of WT and \(\Delta tdr1 \) on day 6. Following a logarithmic transformation (base 2), the average signal intensity ratios of \(\Delta tdr1/WT \), \(\Delta tdr1/\Delta tdr1[pXG TDR1] \) and \(WT/\Delta tdr1[pXG TDR1] \) were plotted. Dotted lines in A and C represent the adopted cut-off for significant changes in a given metabolite profile: \(\log_2 \) (metabolite intensity ratio) below -1 or above 1 indicates a 2-fold difference between the cell lines compared. All metabolites shown in C were statistically significant different between \(\Delta tdr1 \) and WT or \(\Delta tdr1[pXG TDR1] \) and their identities were confirmed by co-elution with the respective standard. The metabolites are ordered according to mass.

Recombinant TDR1 has deglutathionylation activity towards protein and peptide substrates

In order to investigate whether the changes observed in \(\Delta tdr1 \) parasites at a metabolome level could reflect TDR1 having a role in regulation of enzymes via glutathionylation, we evaluated the ability of TDR1 to catalyze protein deglutathionylation. TDR1 and GRX1 were purified as recombinant N-terminally His-tagged proteins and confirmed to catalyse the deglutathionylation of a small molecule mixed-disulfide in the 2-hydroxyethyl disulfide (HEDS) assay (data not shown) with specific activities that were comparable to those reported for *L. major* TDR1 [9] and *T. brucei* GRX1 [11]. To determine whether TDR1 and GRX1 can also use protein-GSH mixed disulfides as a substrate, BSA was glutathionylated chemically by reduction and denaturation followed oxidation in the presence of GSH. The specific activity of TDR1 in reducing the glutathionylated BSA (BSA-SG) was 3.1 ± 0.7 µmol/min/mg, which was similar to that obtained with GRX1 (1.6 ± 0.4 µmol/min/mg). Kinetic analysis of the protein deglutathionylation reaction was performed using a peptide with the sequence SQLWCLSN, synthesised with a GSH linked to the cysteine residue by a disulfide bond (Peptide-SG). Peltoniemi and co-workers used this glutathionylated peptide in a fluorescence assay, exploiting the observation that the disulfide bond quenches the fluorescence of the adjacent tryptophan residue [45]. However, in this study it was more convenient to measure peptide deglutathionylation in a coupled assay with GR as described by [46]. Table 3 shows a comparison of the kinetic parameters obtained with TDR1 and GRX1 in this study, as well as published data for the *E. coli* GRX1 with the same substrate (Peptide-SG) [45] and for *T. brucei* Grxs (GRX1 and GRX2) with glutathionylated tryparedoxin-dependent peroxiredoxin protein (TXNPx-SG) as a substrate [11]. The \(K_m \) for the Peptide-SG was 40-fold higher for TDR1 than for GRX1, but the turnover of the glutathionylated peptide by TDR1 was also higher. Interestingly, similar differences in these kinetic parameters were observed when *T. brucei* GRX1 and GRX2 were compared [11]. The \(k_{cat} \) value obtained with TDR1 in the peptide
4. Objectives and Results

deglutathionylation was comparable to published values for different glutaredoxins with glutathionylated proteins or peptides as substrates [11, 45, 60]. The catalytic efficiency (k_{cat}/K_m) of GRX1 in reducing peptide-SG is similar to that of its homolog $T.\ brucei$ GRX1 with TXNPx-SG as a substrate, whereas the catalytic efficiency of TDR1 in this assay is more similar to that of $T.\ brucei$ GRX2.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Substrate</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>K_m (µM)</th>
<th>k_{cat}/K_m (M$^{-1}$s$^{-1}$)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ld TDR1</td>
<td>Peptide-SG</td>
<td>6.5 ± 1.7</td>
<td>433 ± 175</td>
<td>1.5×10^4</td>
<td>this study</td>
</tr>
<tr>
<td>Li GRX1</td>
<td>Peptide-SG</td>
<td>1.0 ± 0.1</td>
<td>7.6 ± 0.2</td>
<td>1.3×10^5</td>
<td>this study</td>
</tr>
<tr>
<td>Eco GRX1</td>
<td>Peptide-SG</td>
<td>4.4</td>
<td>7.8</td>
<td>5.1×10^5</td>
<td>[45]</td>
</tr>
<tr>
<td>Tb GRX1</td>
<td>TXNPx-SG</td>
<td>1.5</td>
<td>21</td>
<td>6.9×10^4</td>
<td>[11]</td>
</tr>
<tr>
<td>Tb GRX2</td>
<td>TXNPx-SG</td>
<td>1.0</td>
<td>269</td>
<td>3.8×10^3</td>
<td>[11]</td>
</tr>
</tbody>
</table>

Results for $L.\ donovani$ TDR1 ($LdTDR1$) and $L.\ infantum$ GRX1 ($LiGRX1$) are the means of 2 independent experiments (± 0.5 range). Enzymes: EcoGRX1, $E.\ coli$ glutaredoxin type 1; TbGRX1, $T.\ brucei$ glutaredoxin type 1; TbGRX2, $T.\ brucei$ glutaredoxin type 2. $T.\ brucei$ GRX1 is the homolog of $LiGRX1$. TbGRX2 has the active site motif CQFC and only 25% amino acid identity with TbGRX1 [11]. The $Leishmania$ homolog of GRX2 has only one cysteine in the active site (CQFS). Substrates: Peptide-SG, SQLWCLSNS with GSH linked to the cysteine by a disulfide bond; TXNPx-SG, glutathionylated $T.\ brucei$ tryparedoxin-dependent peroxiredoxin.

Discussion

In order to gain insights into the role of TDR1 in $Leishmania$, we have generated a TDR1 null mutant using $L.\ donovani$ promastigotes. To obtain the null mutant it was necessary to perform three rounds of transfection, because of the presence of three copies of the gene. Although an unexpected finding, recently published studies using new and refined methods to sequence $Leishmania$ genomes from different species have shown that chromosome copy number variation seems to be widespread and a potential contributor for $Leishmania$ genetic plasticity and diversity [48, 49]. $Leishmania$ has been considered to be predominantly diploid [47], with the exception of chromosome 1 trisomy [61] and
chromosome 31 tetrasomy in *L. major* [62]. Many previous reports of the emergence of aneuploid parasites have been associated with attempts to knockout essential genes [63-65] or in response to drug pressure [66]. Thus our finding of aneuploidy that was not brought about by genetic manipulation or drug pressure but is a genomic feature of the *L. donovani* strain used is unusual but may reflect a situation occurring more commonly than reported to date, certainly our finding supports the recently published genome sequencing data [48, 49]. It is important to note that the aneuploidy is not a feature of the whole genome in this line – we were able to generate a null mutant for cysteine synthase, after just two rounds of transfection (L. McCaig, G.H. Coombs and S. Müller, unpublished results); thus triploidy and diploidy can clearly occur simultaneously in one cell. Sterkers and co-workers [67] described a mechanism that might explain the genomic plasticity observed in *Leishmania*. Their data suggested that every chromosome was observed in at least two ploidy stages and also chromosome ploidy distribution was variable among clones and strains. This phenomenon, named chromosomal mosaicism, appeared to be constitutive and potentially responsible for the generation of phenotypic variability from genomic plasticity. Such mosaicism would raise many questions and have implications for the methodology that could be used to study *Leishmania*, as it would make it difficult to predict the variability in chromosome copy number. The subsequent findings from genome sequencing [48, 49] provide clear evidence of aneuploidy, especially in *L. donovani*. However, the fact that gene null mutants can be obtained, albeit in this study requiring three gene deletion events, suggests that the genome is not very variable within a population; if it was one would expect there always to remain parasites with an endogenous copy of the gene. Thus the data available show convincingly that gene copy number varies, but the frequency and rate of change remains to be determined. Such gene dose fluctuation may provide significant adaptive advantage to the parasite in coping with different environments, including drug pressure, and may be crucial in facilitating the development of resistance to antiparasite drugs.

The two domain structure of TDR1, with motifs characteristics of Grxs and GSTO, and the ability of the recombinant protein to use GSH as an electron donor to reduce dehydroascorbate (DHA) and HEDS, an artificial substrate generally used to measure de glutathionylation activity of Grx [9], suggested a possible role of TDR1 in regulation of redox-sensitive proteins within the parasite and so an active part in antioxidant defense during the parasite’s multi-environment life cycle. Thus, we challenged the *TDR1* null mutant (Δtdr1) to different compounds known to induce oxidative and nitrosative stress. No evidence was obtained for the greater susceptibility of the mutant than WT to these stressers, which does not support the suggestion that TDR1 has an involvement in
4. Objectives and Results

protection of the parasite against this type of stress. Importantly, however, several other
Leishmania proteins, including ascorbate peroxidase [6] and peroxiredoxins [5], have
been reported to be central players in the regulation of ROS content in the parasite. For
instance, recently Wyllie and co-workers demonstrated that *L. donovani* antimony-
resistant field isolates have higher levels of tryparedoxin and tryparedoxin peroxidase
than antimony-sensitive isolates, which could comprise an enhanced antioxidant defense
in the parasite from the oxidative stress induced by exposure to the antimonial drug
[7]. Thus as many enzymes appear to be involved in protecting *Leishmania* from
oxidative/nitrosative stress during its life cycle (reviewed in [8]), those stresses generated
in the different environments and also due to drug pressure, there is probably significant
redundancy between them. Therefore although the deletion of *TDR1* did not lead to a
change in the overall susceptibility of the living parasite to such stressers, this should not
be interpreted as confirmation that the enzyme plays no part in protection against
oxidative/nitrosative stress – it may play a part together with others. Analyses of the
parasite’s intracellular thiols also showed that these were not significantly affected by
deletion of *TDR1*, which is consistent with the parasites being able to cope without TDR1
in combating many challenges. This conclusion was reiterated by the finding that *TDR1*
null mutant promastigotes were able to infect macrophages *in vitro* and animals as well as
the WT line. These results show that TDR1 is not vital for these processes and that,
whatever role it does play, TDR1 clearly it is not essential.

The null mutant promastigotes were more susceptible than WT parasites to trivalent
antimony and arsenite (Table 2). This is consistent with TDR1 having a role in drug
detoxification, which has been implicated in drug resistance [52, 68]. Resistance to
antimonial drugs is thought to be multifactorial but one of the key factors is the
concentration of active drug (the trivalent form SbIII) within the parasite, which can be
modulated by decreased uptake and increased inactivation of the drug by the parasite.
Inactivation can be achieved by the conjugation of SbIII with glutathione or trypanothione,
leading to extrusion of the drug out of the cell [52]. On the other hand, SbIII leads to an
imbalance in thiol homeostasis and a consequent accumulation of reactive oxygen
species [69, 70]. As our evidence is that the presence of TDR1 is not essential for
protecting the cell against oxidative stress, at least in the conditions tested, it is possible
that the greater sensitivity of the *TDR1* null mutant parasites to trivalent antimonials could
be explained by TDR1 being involved in the extrusion of the toxic metal out of the cell.
TDR1 is able to convert the clinically used pentavalent antimonial drugs (SbV) to a
trivalent form (SbIII) *in vitro* [9], a reduction that is necessary for the effective action of the
drug against *Leishmania* as SbIII is the form that is toxic to the cells. This conversion of
SbV to SbIII is thought to occur only in amastigotes, which explains why promastigotes are not susceptible to SbV [71]. It is important to note that SbV reduction has also been shown to be effected non-enzymatically by thiols, however the reduction is much faster when catalyzed by TDR1 [9]. However, neither of these possibilities, that TDR1 could be involved in antimonial activation or resistance to the compounds, were supported by the finding that there was no change in susceptibility to SbV of the TDR1 null mutant compared with the wild type line when they were intracellular in macrophages (Fig. 2B). Thus the sensitivity of ∆tdr1 promastigotes to the metals suggests that the trivalent metals mediate their toxicity in a way different from SSG and one which is countered by TDR1.

These data confirmed that the absence of TDR1 had some impact upon the parasite and thus we used a metabolomics approach in further attempts to elucidate the physiological role of TDR1 in Leishmania. The differences that we have detected between the metabolic status of ∆tdr1 and the WT parasite have allowed the construction of a novel hypothesis on the involvement of TDR1 in Leishmania and provided some evidence to support it. Metabolomics is a developing technology that has not yet been applied extensively to Leishmania or other parasites although this is now happening [4, 25, 29, 31]. We based our procedures upon published protocols [28, 41] that have been validated and used strict criteria for inclusion of data, as detailed in the Materials and Methods and Results sections. This approach yielded data consistent with there being relatively few large differences between the metabolomes of the null mutant and wild type lines (Fig. 4) and it is those metabolites that differed greatly and for which we confirmed their identity with standards on which we have concentrated in developing ideas on the role of TDR1.

One incidental finding from our study may be of widespread significance for all studies involving gene deletion approaches. This was that the two add-back lines generated as controls gave very different results. Only the episomal add-back line complemented to a large extent the changes observed between the null mutant and WT lines, the integrated add-back failing to do so. This finding was surprising, as both add-back approaches generated lines expressing a level of TDR1 protein, as analysed by western blot (Fig. 1C), similar to that in the WT parent. Our interpretation of these results is that the TDR1 in the integrated complementation line is not appropriately active. The generally accepted criteria for a satisfactorily complemented line is the presence of a protein band, we suggest that this should be reconsidered and that the presence of such a band is insufficient information on which to judge success of complementation. Comparing the metabolome would seem to be far more informative and a reliable analytical method. The literature contains many examples of complementation (as judged by protein presence) not
restoring well phenotypic changes resulting from gene deletion [53-56]; our data offer an explanation for this.

TDR1 gene deletion led to changes in the levels of putative metabolites known to participate in a variety of metabolic pathways, many of these are shown in Fig. S1 of Supplementary Material. This pictorial representation reiterates that the levels of many putative metabolites were not greatly affected, even when in a pathway in which some detected metabolites did differ. This is a reflection that the fluxes through pathways are controlled at various key steps. The figure also serves as reminder that many metabolites were not detected in our analysis. Nevertheless, some distinct differences in confirmed metabolite levels were discovered (Fig. 6). The variety of changes resulting from TDR1 deletion could reflect the involvement of TDR1 in multiple processes in the cell, but it could also be indicative of a primary effect and then several secondary effects resulting from the primary change. The main challenge in analyzing metabolomics data is to integrate all the changes found from a biological point of view.

Several of the metabolites which changed greatly, both within the cells (Fig. 6) and also in some cases in the spent medium (Fig. 7), were in the area of amino acid and energy metabolism. Leishmania are known to be able to use amino acids, especially proline, as energy substrates, although sugar oxidation via glycolysis is also important [3, 30, 72] as is hexosamine use [73]. Thus the decreased levels of proline, aspartic acid and glutamic acid in the medium and proline intracellularly in the mutant with the concomitant increase in intracellular levels of glycerol-3-phosphate could be interpreted as a switch from glycolysis to amino acid utilization as energy source. How could TDR1 deletion lead to such metabolic re-configuration? These changes in levels of metabolites related with energy metabolism, which can be read as a consequence of a change in the carbon source used to generate energy, cannot be interpreted as an adaptation in response to availability as the TDR1 null mutant and wild type promastigotes were both grown in medium rich in sugars and amino acids. However, they could reflect a blockage in the pathway responsible for the use of a given energy source; thus the build up of glycerol-3-phosphate could result from a block towards the final steps in the glycolytic pathway, glycerol-3-phosphate being generated as a means of maintaining redox balance.

Regulation of energy metabolism in other organisms involves protein modification, including S-glutathionylation in which GSH combines reversibly with a specific protein cysteinyl group to form a mixed disulfide [16, 17, 74, 75]. S-glutathionylation can occur in the presence of ROS and RNS and is mediated by the formation of reactive thiol
derivatives of GSH and the protein cysteiny l group such as sulfenates, thiyl radicals and nitrosothiols [15]. This modification results in protein-specific functional changes, that can protect a protein’s sensitive thiol from irreversible oxidation during oxidative stress but can also occur under physiological conditions as a regulatory mechanism of enzyme activities [16] S-glutathionylation is reversed and therefore regulated by deglutathionylation catalysed by Grxs [15]. Many enzymes have been identified as being susceptible to this type of modification which can lead to activation or inhibition [76] and this so called ‘redox regulation’ is increasingly being implicated as an important mechanism of regulation of metabolism.

Metabolic re-configuration occurs in many organisms as a response to oxidative stress, often through redirection of metabolic flux from glycolysis to the pentose phosphate pathway generating NADPH [77]. Oxygen tension has also been implicated in the regulation of intermediary metabolism in L. major, with an increase in glycerol formation and decrease in glucose consumption being associated with anaerobic conditions [78]. Post-translational modification of proteins in Leishmania certainly occurs [79]. Leishmania has the enzyme capacity to use S-glutathionylation for redox regulation, encoding two glutaredoxins and other thiol-disulfide oxidoreductases including Trx and tryparedoxin [19]. Like the Grxs, TDR1 uses GSH as a substrate for the reduction of the mixed disulfide formed between GSH and HEDS [9, 11]. Moreover, we found that recombinant TDR1 is able to reduce glutathionylated protein and peptide substrates in vitro (Table 3). The BSA-SG was prepared by an established method [43] and although the structure of the substrate was not determined experimentally, BSA-SG is a known substrate of the T. brucei GRX1 and other glutaredoxins [11, 60]. The activity of TDR1 detected with BSA-SG is therefore likely to represent deglutathionylation of a protein mixed disulfide rather than the reduction of a protein disulfide. This is further supported by the observation that TDR1 has no protein disulfide reductase activity with insulin as a substrate (G.D. Westrop and G.H. Coombs, unpublished results). The k_{cat}/K_m of TDR1 with the peptide substrate was found to be 10-fold lower than that obtained with recombinant Leishmania GRX1. However, turnover by TDR1 was 5-fold higher, indicating that TDR1 can efficiently catalyse deglutathionylation but has a low affinity for binding this particular peptide. These results provide proof in-principle that TDR1 could function as a deglutathionylating enzyme and its apparent increase in substrate specificity compared with Leishmania glutaredoxin is consistent with a regulatory role for the protein. The T. brucei glutaredoxins, GRX1 and GRX2, were similarly reported to have different specificities for a glutathionylated peroxiredoxin protein [11]. Also GRX1 and GRX2 from Chlamydomonas reinhardtii have been shown to catalyze deglutathionylation at different rates depending
on the protein substrate [14], suggesting a certain degree of substrate specificity among Grxs that may be crucial for the regulation of cellular processes. There are no previous reports on glutathionylation of *Leishmania* proteins, although the related organism *Trypanosoma* uses glutathione for the glutathionylation of thiol redox proteins [80]. The malaria parasite *Plasmodium falciparum* has also been reported to have proteins redox regulated through being targeted by Trx and Grx [81, 82]. Proteins involved in antioxidant defense (peroxiredoxins) were identified specifically as potential Trx targets and proteins involved in carbohydrate metabolism were also found to interact with Trx, Grx and plasmoredoxin (Plrx) proteins [82]. However, TDR1 reduction of other proteins such as Trx or tryparedoxin seems unlikely as TDR1 is unable to act as an electron donor for tryparedoxin in an insulin reduction assay (G.D. Westrop and G.H. Coombs, unpublished results). Thus we interpret our findings to indicate that TDR1 has a regulatory role through deglutathionylating key target enzymes, the identity of these, for which TDR1 presumably has a relatively high affinity and specificity, remain to be elucidated.

Could such an action of TDR1 explain the data obtained in this study? Most of the enzymes involved in glycolysis are sulfhydryl proteins sensitive to redox regulation and have been reported, through proteomic approaches in bacteria, plants and mammalian cells, as Trx and/or Grx targets [75, 76, 82-87]. S-glutathionylation leads to the inhibition of several glycolytic enzymes, notably glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [74] and triose phosphate isomerase [17]. Our findings are consistent with TDR1 playing a role in maintaining the activity of glycolytic enzymes towards the end of glycolysis. Pyruvate kinase is known to be glutathionylated in the presence of high concentrations of GSSG and the enzyme of *Plasmodium falciparum* can be enzymatically deglutathionylated by *PfTrx1*, *PfGrx1*, and *PfPlrx*. The same was also observed with *PfGAPDH* [81, 82]. Fig. 8 outlines the hypothesis arising from this study and other reports; it shows enzymes potentially under regulation through glutathionylation and the levels of metabolites in some of the pathways in the WT, Δtdr1 and add-back line.
Figure 8. Schematic representation of central carbon metabolism in *Leishmania* promastigotes. Intensity/25 µg cell protein levels (x 10^5) are shown for intracellular metabolites identified in WT, \(\Delta tdr1 \) and \(\Delta tdr1[pXG\text{TDR1}] \) promastigotes on day 5 of culture *in vitro* and culture medium from the same day (the latter shown outside the large dotted box); metabolites within solid boxes represent metabolites for which at least a 2-
fold difference between WT and \(\Delta tdr1 \) was observed. Grey boxes represent enzymes putatively or experimentally identified in other parasites as targets of S-glutathionylation modification; dashed arrows represent multiple enzymatic steps; dashed boxes represent pathways linked with the ones described. Abbreviations: Glc, glucose; Fru, fructose; Fru1,6BP, fructose-1,6-bisphosphate; GlcN, glucosamine; GlcNAc, N-acetyl-glucosamine; DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde-3-phosphate; G1,3P2, 1,3-biphosphoglycerate; PGA, phosphoglycerate; PEP, phosphoenolpyruvate; Ala, alanine; Glu, glutamic acid; Gln, glutamine; Asp, aspartic acid; Pro, proline. Enzymes: 1, hexokinase; 2, phosphoglucose isomerase; 3, phosphofructokinase; 4, fructose biphosphate aldolase; 5, triosephosphate isomerase; 6, glycerol-3-phosphate dehydrogenase; 7, glycerol kinase; 8, glyceraldehyde-3-phosphate dehydrogenase; 9, pyruvate kinase; 10, alanine aminotransferase; 11, pyruvate dehydrogenase; 12, acetate-succinate CoA transferase; 13, glutamate dehydrogenase; 14, glutamine synthetase; 15, acetyl-CoA synthethase; 16, malate dehydrogenase; 17, malic enzyme; 18, phosphoenolpyruvate carboxykinase; 19, aspartate aminotransferase; 20, pyruvate phosphate dikinase; 21, fumarate hydratase; 22, NADH-dependent fumarate reductase; 23, fructose-1,6-bis-phosphatase; 24, glucosamine-6-phosphate deaminase; 25, N-acetylglucosamine-6-phosphate deacetylase.

A similar involvement in regulating enzyme activity through S-glutathionylation/deglutathionylation could also explain some of the other metabolic changes observed. Argininosuccinic acid is synthesized from citrulline and aspartic acid as part of the urea cycle in mammals. Despite the presence of several genes for enzymes of the urea cycle, \textit{Leishmania} do not seem to have a functional cycle since it lacks the genes coding for ornithine carbamoyl transferase and argininosuccinate lyase [88]. Argininosuccinate synthase, the enzyme that catalyzes the synthesis of argininosuccinic acid from citrulline and aspartic acid, has been reported to be regulated by Trx or/and Grx in photosynthetic organisms [85-87]. Inactivation or inhibition of argininosuccinate synthase due to lack of deglutathionylation in \(\Delta tdr1 \) could explain the decrease in argininosuccinic acid levels observed in the \textit{TDR1} null mutant. Such control would suggest some important as yet undiscovered role for argininosuccinic acid in \textit{Leishmania} metabolism. An alternative possibility is that the greater use of amino acids due to the purposed metabolic re-configuration in \(\Delta tdr1 \) would lead to less availability of aspartic acid for this reaction, and consequent decrease in argininosuccinic acid levels.

Another interesting change in the \textit{TDR1} null mutant was the increase in the intracellular levels of S-adenosylhomocysteine (SAH). This is converted to homocysteine and
adenosine by S-adenosylhomocysteine hydrolase (SAHH), a crucial enzyme of S-adenosylmethionine (SAM) metabolism as it prevents the accumulation of this toxic metabolite. SAHH is tightly regulated and is, similarly to methionine synthase and SAM synthase (two other enzymes involved in SAM metabolism), susceptible to redox regulation in, for example, plants and algae [85, 87, 89]. In *P. falciparum*, SAHH has been shown to interact with Grx and Trx [82]. Thus S-glutathionylation is a potential mechanism of SAHH regulation, and the increase in the levels of SAH that we found in *Δtdr1* could reflect a lack of deglutathionylation of SAHH by TDR1.

Other of the changes found with the *TDR1* null mutant could also be rationalized in a similar way, through TDR1 being involved, directly or indirectly, in regulating enzyme activities via deglutathionylation, although further analyses are required to understand fully the mechanisms involved.

Conclusions

This study has revealed new insights into how metabolism in *Leishmania* may be regulated via glutathionylation and how TDR1 appears to play a key role in this through its deglutathionylation activity. Deletion of TDR1 resulted in specific changes in central energy metabolism and also amino acid metabolism. The null mutant lines were also more sensitive to metal-induced stress. The unusual structure and parasite-specificity of TDR1 suggests that it has particular roles and investigating these further is likely to yield new detailed information on mechanisms by which metabolism is regulated in *Leishmania*, which could be a determinant in the search for better drugs or even be targeted in drug discovery.

Acknowledgements

We thank: Lesley McCaig (Glasgow) for generating the mutant with two *TDR1* gene alleles deleted and for obtaining the sheep anti-*Ld* TDR1 and rabbit anti-*Ld* CS sera; Malcolm McConville and colleagues (Melbourne) for excellent guidance on the methods of sample preparation for the metabolomics analyses; Ruben t’Kindt (ITM, Antwerp, and Strathclyde) for assistance with the sample preparation method for the metabolomics analyses; Dave G Watson and Alex Zhang (Strathclyde) for help with the LC-MS technology; and Chris Carter (Strathclyde) for carrying out the animal experiments. The
study was supported by Fundação para a Ciência e Tecnologia (FCT) project number PTDC/CVT/65047/2006 and AMS is supported by FCT grant SFRH/BD/28316/2006. This work was supported by the Wellcome Trust [WT061173MA-SM]. The Wellcome Trust Centre for Molecular Parasitology is supported by core funding from the Wellcome Trust [085349].

References

4. Objectives and Results

Phanerochaete chrysosporium: S-glutathionyl-p-hydroquinone reductase belongs to a new structural class. *J Biol Chem* **286:**9162-9173; 2010.

4. Objectives and Results

4. Objectives and Results

Figure S1. Schematic representation of the changes in metabolite levels resulting from *TDR1* deletion in *L. donovani*. 100 of the metabolites putatively identified in day 5.
cell lysates are represented; each is color-coded indicating whether the level differed between WT and \(\Delta tdr1\) promastigotes (green lower in \(\Delta tdr1\), red higher in \(\Delta tdr1\)).

Table S1. The standards used to verify the identity of metabolites in this study. The identity of all of the listed metabolites was confirmed for the extracts of \(L.\ donovani\) analysed in this study.

Table S2. Comparison of metabolic profiles resulting from different complementation strategies. Metabolites identified below 1 ppm in day 5 samples of each of \(L.\ donovani\) WT, \(\Delta tdr1\), \(\Delta tdr1::PRRNA\) TDR1 and \(\Delta tdr1[pXGTDR1]\) are listed in mass order. For each metabolite the following information is shown: ionisation mode; detected mass; retention time (min); putative metabolite identification; ppm deviation between detected mass and theoretical mass of the putative metabolite identified; signal intensity in each sample; average signal in each cell line; standard deviation in each cell line; ratio of average signal intensity between the different cell lines; Student’s T test \(\Delta tdr1\) versus WT, \(\Delta tdr1\) versus \(\Delta tdr1::PRRNA\) TDR1, \(\Delta tdr1\) versus \(\Delta tdr1[pXGTDR1]\); p value < 0.01 \(\Delta tdr1\) versus WT, \(\Delta tdr1\) versus \(\Delta tdr1::PRRNA\) TDR1, \(\Delta tdr1\) versus \(\Delta tdr1[pXGTDR1]\) indicating whether or not there was a statistically significant difference; decision on whether or not the compound was significantly changed in level based on a two-fold or higher average difference in signal intensity and statistical significant (p<0.01) between \(\Delta tdr1\)/WT, \(\Delta tdr1\)/\(\Delta tdr1::PRRNA\) TDR1, \(\Delta tdr1\)/\(\Delta tdr1[pXGTDR1]\); compound category.

Table S3. Metabolites identified in day 5 samples of \(L.\ donovani\) WT, \(\Delta tdr1\) and \(\Delta tdr1[pXGTDR1]\). For each compound the following information is shown: ionisation mode; detected mass; retention time (min); putative metabolite identification; ppm deviation between detected mass and theoretical mass of the putative metabolite identified; signal intensity in each sample; average signal in each cell line; standard deviation in each cell line; ratio of average signal intensity between the different cell lines; Student’s T test \(\Delta tdr1\) versus WT, \(\Delta tdr1\) versus \(\Delta tdr1[pXGTDR1]\); p value < 0.01 \(\Delta tdr1\) versus WT, \(\Delta tdr1\) versus \(\Delta tdr1[pXGTDR1]\) indicating whether or not there was a statistically significant difference; decision on whether or not the compound was significantly changed in level based on a two-fold or higher average difference in signal intensity and statistical significant (p<0.01) between \(\Delta tdr1\)/WT, \(\Delta tdr1\)/\(\Delta tdr1[pXGTDR1]\); compound category.

Table S4. Metabolites identified in day 6 samples of \(L.\ donovani\) WT, \(\Delta tdr1\) and \(\Delta tdr1[pXGTDR1]\). The data presented are as described for Table S2.
Table S5. Metabolites identified in day 6 samples of spent media from cultures of *L. donovani* WT, \(\Delta tdr1\) and \(\Delta tdr1[\text{pXG TDR1}]\). The data presented are as described for Table S2.

Tables S1 to S5 are available in the electronic version of the thesis.
4.5 *Leishmania donovani* TDR1, a unique trimeric glutathione transferase evolved by gene duplication then fusion

Thiol-dependent reductase 1 (TDR1) occurs only in the trypanosomatid parasites *Trypanosoma cruzi* and *Leishmania* and is thought to contribute to activation of antimonial pro-drugs used to treat leishmaniasis. Our structure of *L. donovani* TDR1 reveals a unique trimer of subunits each containing two glutathione-S-transferase (GST) domains. The similarities of individual domains, and comparisons with GST classes, suggest that TDR1 evolved by gene duplication, diversification and gene fusion; an event unknown until now in the GST protein superfamily.

To be submitted
Leishmania donovani TDR1, a unique trimeric glutathione transferase evolved by gene duplication then fusion

Paul K. Fyfe, Gareth D. Westrop*, Ana Marta Silva*, Graham H. Coombs* and William N. Hunter*

Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, DD1 5EH, United Kingdom and *Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, United Kingdom.

*Correspondence e-mail: w.n.hunter@dundee.ac.uk

Abstract

Thiol-dependent reductase 1 (TDR1) occurs only in the trypanosomatid parasites *Trypanosoma cruzi* and *Leishmania* and is thought to contribute to activation of antimonial pro-drugs used to treat leishmaniasis. Our structure of *L. donovani* TDR1 reveals a unique trimer of subunits each containing two glutathione-S-transferase (GST) domains. The similarities of individual domains, and comparisons with GST classes, suggest that TDR1 evolved by gene duplication, diversification and gene fusion; an event unknown until now in the GST protein superfamily.

The kinetoplastida parasites *Leishmania sp.* and *Trypanosoma cruzi* proliferate intracellularly within humans and cause the widespread neglected tropical diseases leishmaniasis and Chagas Disease. Each parasite is characterized by the presence of a trimeric thiol reductase protein known as TDR1 (the *T. cruzi* enzyme has been called Tc52), apparently involved, in the case of *Leishmania*, in redox regulation and perhaps mediating the parasite’s susceptibility to the antimonial pro-drugs Pentostam and Glucantime (Denton et al., 2004; Silva AM, Westrop GW, Müller S, Cordeiro-da-Silva A and Coombs GH, submitted). Therapeutic activity depends on reduction of the relatively inert pentavalent metalloid to the more toxic trivalent species. This reduction occurs slowly in the presence of low molecular mass thiols such as glutathione (GSH) or the
trypanosomatid specific polyamine conjugate of GSH called trypanothione in vitro, especially at low pH such as found in the parasitophorous vacuole in which *Leishmania* resides (Ferreira *et al.*, 2003; Yan *et al.*, 2003). TDR1 catalyses this reduction by acting on a metalloid glutathione complex and it has been postulated that it thus mediates the key activation of the pro-drug (Denton *et al.*, 2004). The reaction might be considered as a de-glutathionylation of an Sb(V)-glutathione adduct during which reduction to Sb(III) occurs and thus is a side-activity of the TDR1’s perceived main intracellular function of redox regulation via de-glutathionylation of target enzymes (Silva AM, Westrop GW, Müller S, Cordeiro-da-Silva A and Coombs GH, submitted).

The structure of the enzyme from *L. donovani* (*LdTDR1*), determined by single-wavelength anomalous dispersion on a SeMet derivative and refined to 2.3 Å resolution (Supp. material, Table 1), reveals a new class of trimeric GST. The asymmetric unit consists of a homotrimer with *D*₃ symmetry, total mass approximately 150 kDa (Figure 1A). A few residues, 1-3 in subunit A, 1-4 and 445-450 in subunit B, C1-2 in subunit C are omitted from the model due to poor electron density. A high degree of non-crystallographic symmetry is evident (r.m.s.d. of subunit A with B, 0.24 Å; B with C, 0.30 Å; A with C, 0.29 Å) therefore subunit A is detailed, unless stated otherwise.

The TDR1 subunit contains two similar domains (domain I residues 1-219 and domain II 231-450; Figure 1B & C), linked by a short section of ten residues. The domains share a sequence identity of 30% and 199 Cα positions overlay with an r.m.s.d of 1.8 Å. Both TDR1 domains are closely related to the Ω and τ class glutathione-S-transferases (Board *et al.*, 2000; Thom *et al.*, 2002; Axarli *et al.*, 2009). The interface between the domains is primarily hydrophobic and of some 680 Å², or ~6 % of the surface area of each domain.

Cytosolic GST subunits consist of an N-terminal thioredoxin-like sub-domain and a C-terminal α-helical sub-domain (Figure 1C). Superimposition of the thioredoxin-like domains (residues 6-78 and 232-301) from a subunit reveals a sequence identity of 39 % and r.m.s.d. 0.95 Å. A larger divergence is noted between the α-helical sub-domains with an additional short helix (α4) present in the N-terminal domain. Superimposing the core of these sub-domains (residues 95-209 with 319-434) reveals a sequence identity of about 25% and r.m.s.d. on Cα atoms of almost 2 Å. This value is strongly influenced by differences in α5-α6 of domain I compared to the related α16-α17 of domain II. The short link between α5-α6 in domain I contributes to the interface between the two domains in a
subunit; the same region in domain II is, however, exposed to solvent far removed from any domain:domain interactions.

Figure 1. The structure of *Ld*TDR1. **A**. The trimer with glutathione shown in stick format. The position of one of the GST-like dimers is indicated by the dotted circle; **B**. TDR1 subunit A, coloured by domain; **C**. Domain I and domain II separated and presented in the same orientation. The thioredoxin-like and helical sub-domains are indicated. Glutathione is depicted as VDW spheres colour coded: C yellow, N blue, O red, S green. The position of the G- and H-sites are labeled.

The trimeric quaternary structure of TDR1 differs from the dimeric cytosolic GST enzymes (Oakley, 2005). Each *Ld*TDR1 subunit is constructed from two GST-like domains (Figure 1). The closest structurally related molecule is τ-GST from *Glycine max* (Protein Data Bank (PDB) code 3FHS, Axarli *et al.*, 2007). Comparison of the *Ld*TDR1 trimer against the 3FHS model reveals a typical GST-dimeric structure is formed, with each subunit contributing one domain to form a dimer with the alternate GST-domain from the neighboring subunit (Figure 1A). The trimer presents three GST-like dimers generated through inter- rather than intra-subunit interactions.
The domain I – II subunit interface regions have an average surface accessible area (ASA) of 1030 Å², or ~5% of the total ASA of a subunit. This is towards the lower end of the range (~1000 Å² to ~1700 Å²) found in GSTs. Hydrogen bonds are made between the side chain of Lys189 to the backbone carbonyls of Ala141 and Ala142; Tyr321 OH and the backbone amide of Phe69, the Asn329 and Arg52 side chains and there are also salt bridges involving Glu322 - Arg66 and Glu358 - Arg52.

TDR1 lacks the N-terminal extension widely observed in τ and Ω GST classes (Board et al., 2000). However, one τ and Ω class specific feature (Thom et al., 2002) present in TDR1 is a F-F-G-G motif in the α17 – α18 loop on domain II. In domain I the phenylalanine residues are replaced by tyrosines and the glycines are replaced by a cysteine aspartate combination. This is the case in all three Leishmania TDR1 sequences as well as Tc52 from T. cruzi. In domain I this loop is solvent exposed on the surface of a subunit whereas in domain II it contributes significantly to the subunit:subunit interface.

Each subunit contains two glutathione binding or G-sites (Suppl. Figure S1) and nearby, about 10 Å distant, ligand or substrate binding sites that in GSTs are predominantly hydrophobic and usually termed the H-site (Figure 1C). The sites are designated G-I/H-I and G-II/H-II within TDR1 domains I and II, respectively. G-I and G-II binding sites contain four distinctive, highly conserved GST family features related to substrate binding. Firstly, a cis-proline (Pro56, Pro281) occurs in an α – β loop and supports the formation of a hydrogen bond from the backbone of the neighboring valine (Val55, Val280) to the cysteinyl moiety of glutathione (Dirr, et al., 1994). Secondly, Ramachandran outliers Glu70 and Glu293 form hydrogen bonds to bind the glutathione γ-glutamyl moiety. Mutation of this highly conserved glutamate has a profoundly deleterious effect on activity and stability of GSTs (Allocati et al., 2002; Winayanyuwattikun & Ketterman, 2004). The active site cysteines (Cys14, Cys240) at the N-terminus of an α-helix interact with the glutathione thiol and the helix dipole is expected to enhance cysteine nucleophilicity (Kortemme & Creighton, 1995). Finally the phenylalanine in the C-P-F-C active site motif stacks over the aliphatic backbone of the glutamyl moiety of GSH. A large hydrophobic residue always occupies this position, contributing van der Waals interactions to stabilize the complex.

Although the G-I and G-II sites and interactions formed with glutathione are highly conserved, there are distinctive features (Suppl. Figure S2, S3). In both substrate binding sites the cysteinyln moiety forms mixed thiol-disulfide species with the active site cysteines
(Cys14 in G-I; Cys240 in G-II). The C-P-F-C motif in G-I mirrors that found in glutaredoxin and thioredoxin, with the proline crucial to ensure the proper alignment of three thiols from GSH, Cys14 and Cys17, such that the latter is available to stabilize the Cys14 thiolate. In subunit B, there is a mixed thiol-disulfide formed between Cys14 and Cys17 but in the other subunits the sulfur atoms of Cys14 and Cys17 are 3.4 Å and 3.6 Å apart. In G-II Cys17 is replaced by Val243 so the mixed disulfide configuration is not possible.

In the G-I site, hydrogen bonds occur between glutathione and Val55, Glu70, Arg39 and Ser71. Similar associations are noted in the G-II site involving Val280, Glu293 Ser294. Other than the cysteine to valine change in the G-II site compared to G-I, the alterations are restricted to the region in the pocket responsible for binding the glycyl moiety of glutathione. Here a hydrogen bond with the main chain of an arginine (Arg39) in G-I is replaced by a hydrogen bond to Gln267 NE2 in G-II. The position of Arg39 in G-I corresponds to His265 in G-II, while the position of Gln267 important in G-II is Glu41 in G-I.

In most GSTs the glutathione binding site is a relatively open cleft but in TDR1, as in Ω and τ-GSTs, the presence of an α-helix (α12 results in a smaller, partially occluded H-site the entrance of which is about 6.5 Å in diameter (Suppl. Figure S4). The pocket is partially formed by the almost ubiquitous Pro-Phe (often Tyr) motif following on from the active site cysteine. The H-I pocket is reduced in size due to the presence of His114 and Tyr215 at the base of the cleft, the side chains of which are linked by a hydrogen bond (data not shown).

In the H-II pocket, Met338 and Ile440 replace His114 and Tyr215, respectively, resulting in a different shape and the loss of a hydrogen bond linking two helical sections together may allow α20 to adopt a configuration giving rise to a more open cavity (Suppl. Figure S5). The H-II site, which is guarded by Pro241, Met338, Ile342, Arg443 and His439, extends 6 Å in one direction, nearly 10Å in another with a depth of some 14 Å away from the GSH thiol. Neither H-I nor H-II fit the hydrophobic descriptor, due to the presence of basic residues (His, Arg). The electrostatic properties of the pocket suggest that the natural substrates of TDR1 are acidic rather than hydrophobic.

The C-terminal domain G-II site, carries the dehydroascorbate reductase (DHAR) activity and treatment with iodoacetamide confirms that cysteine is important for the DHAR activity (Denton et al., 2004). However, treatment of TDR1 with sodium arsenite or potassium antimonyl tartrate does not reduce DHAR activity – these reagents would be
expected to block the two cysteines found in the C-P-F-C motif of G-I, but not the C-P-F-V motif of G-II. The C-terminal domain was also cloned and expressed, and shown to carry DHAR activity.

The LdTDR1 domains were treated as a single GST for sequence comparisons, large-scale alignments and tree calculations (Figure 2B). The introduction of L. mexicana and L. infantum TDR1 sequences along with Tc52 indicates two new branches in the GST phylogenetic tree, which correspond to a separation of domain I from domain II. That these two groupings are then more closely related to one another suggests the origin of TDR1/Tc52 is a gene duplication followed by a gene fusion event. Diversification has likely occurred after gene duplication leading to C-X-X-C motif in one domain and a C-X-X-S motif in the other. There is no other example where such a combination of events has occurred in a GST. Multiplication of the gene encoding GSTs has frequently occurred but not allied to a fusion. A fortuitous consequence of LdTDR1 evolution is the presence of an activating agent that supports the successful deployment of antimonial pro-drugs.

Figure 2A. Sequence alignment of domain I and domain II from L. donovani TDR1. Secondary structure elements are identified by cyan arrows for β-strands and yellow cylinders for α-helices, and labeled. Selected residues involved in binding glutathione are indicated by purple, for domain I, and green, for domain II, stars. Strictly conserved residues are encased in black, acidic residues in red and basic in blue. The alignment was performed using MUSCLE and the figure produced with ALINE. The purple and green stars mark residues from domain I and II respectively that interact with glutathione.
4. Objectives and Results

Figure 2B. Circular cladogram of GST family members. All marked assignments taken from database entries. TDR1 and Tc52 are considered as domains I and II for the analysis. Alignments were prepared using MUSCLE and the tree calculated through average distance using BLOSUM62 in Jalview. The branch carrying TDR1 and Tc52 is coloured red.

Acknowledgements
Funded by The Wellcome trust (grants 083481 and 082596) and with support from the Diamond Light Source synchrotron. AMS is supported by Fundação para a Ciência e Tecnologia (FCT) grant SFRH/BD/28316/2006 (project number PTDC/CVT/65047/2006). We thank Tom Eadsforth for discussions.
References

4. Objectives and Results

Sample preparation and crystallization

The *L. donovani* TDR1 gene was cloned into pET15bTEV to add a tobacco etch virus (TEV) protease cleavable histidine tag as an aid for purification of the recombinant protein (LdTDR1). A selenomethionine (SeMet) derivative was prepared in the methionine auxotroph *Escherichia coli* strain B834 (DE3), using selenomethionine medium (Molecular Dimensions, UK), supplemented with 40 mg mL⁻¹ selenomethionine. A purification protocol commonly used in our laboratory was applied (Dawson *et al.*, 2008). In summary, the first stage involved nickel affinity chromatography with a 5 mL Ni-NTA column (Qiagen). A linear concentration gradient was applied to elute the product, which was then incubated for two hours with His-tagged TEV protease at 30 °C, before dialysis at room temperature against 20 mM Tris-HCl, pH 7.8, 150 mM for one hour. The resulting mixture was applied to the Ni-NTA column, which bound the cleaved His-tag, the protease and uncleaved LdTDR1. The LdTDR1, from which the His-tag had been cleaved, was in the flow-through. Fractions were analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and those containing LdTDR1 were pooled. The protein was further purified by size exclusion chromatography using a calibrated Superdex 200 26/60 column (GE Healthcare) equilibrated with 20 mM Tris-HCl, 150 mM NaCl pH 7.8. This final purification stage also indicated that LdTDR1 formed a stable trimer in solution (data not shown). The high level of LdTDR1 purity was confirmed by SDS-PAGE and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The latter technique also confirmed full incorporation of SeMet. The sample was dialyzed into 10 mM HEPES pH 7.8, 50 mM NaCl then concentrated using a Vivaspin 20 (Sartorius) to provide a stock solution for crystallization. A theoretical extinction coefficient of 56185 M⁻¹ cm⁻¹ at 280 nm, was used to estimate protein concentration (*PROTPARAM*, Gasteiger *et al.*, 2005); the theoretical mass of one subunit of the SeMet derivative is 50872 Da.

LdTDR1 was crystallized at 20 °C by the hanging drop vapor diffusion method using 0.75 μL of protein solution at a concentration of 5 mg mL⁻¹ containing 1 mM glutathione, mixed with 0.75 μL of reservoir containing 12 % polyethylene glycol (PEG) 8000, 0.1 M HEPES buffer pH 7.0, 8 % (v/v) ethylene glycol. Monoclinic rods, with approximate dimensions of 1.0 x 0.2 x 0.2 mm, grew over 1-2 days. The concentration of PEG 8000 and ethylene
glycol in the mother liquor provided sufficient cryo-protection that crystals could be placed in a stream of cold N₂ gas directly and characterized in-house using a Rigaku HF007 rotating anode X-ray generator coupled to an RAXIS IV⁺⁺ image plate detector. The crystals were monoclinic in space group C2 with unit cell lengths \(a = 197.5 \), \(b = 58.4 \), \(c = 160.4 \) Å with \(\beta = 111.8^\circ \). Crystals were stored in liquid N₂ for data collection at a synchrotron. Attempts to obtain crystals of the apo-form, and of complexes with glutathionylspermidine or trypanothione were unsuccessful.

X-ray data collection, processing, structure solution and refinement

Single-wavelength anomalous diffraction (SAD) data were measured from a SeMet derivative on beam line I02 of the Diamond Light Source using an ADSC Q315 CCD detector. Data were indexed and integrated using MOSFLM (Leslie, 2006) and scaled using SCALA (Evans, 2006). The SAD data were collected near the Se K-absorption edge \(f' \) maximum, determined using X-ray Absorption Near Edge Structure spectroscopy. Initial phases were obtained by SAD-phasing within the CCP4 pipeline CRANK (Ness et al., 2004; Pannu et al., 2011). Substructure detection and refinement were performed using AFRO (Pannu, unpublished), CRUNCH2 (de Graff et al., 2001) and BP3 (Pannu et al., 2003), and identified the positions of all 39 selenium atoms present. The initial figure-of-merit was 0.49. Hand determination followed by density modification was performed using SOLOMON (Abrahams & Leslie, 1996) with an estimated solvent content of 55 %, and this improved the figure-of-merit to 0.71. Automated map interpretation with BUCCANEER (Cowtan, 2006) produced a partial model consisting of 1335 residues in 15 polypeptide chains giving an \(R_{\text{work}} \) and \(R_{\text{free}} \) values of 33.5 % and 36.9 % respectively. The model was then extended in COOT (Emsley & Cowtan, 2004).

Refinement was performed in REFMAC5 (Murshudov et al., 1997) utilizing Translation/Libration/Screw refinement (Winn et al., 2000), and alternated with rounds of electron and difference density map inspection and model manipulation together with ligand incorporation using COOT. Non-crystallographic symmetry (NCS) restraints were not employed. MOLPROBITY (Chen et al., 2010) was used to investigate model geometry in combination with the validation tools provided in COOT. Crystallographic statistics are presented in Table 1. Analyses of surface areas and interactions were made using the PISA server (Krissinel & Henrick, 2007) and figures were prepared with PyMOL (DeLano, 2002). Amino acid sequence alignments were carried out using the program MUSCLE (Edgar, 2004) and structural superimposition performed with SSM (Krissinel & Henrick, 2004). The PDBBeFold server (http://www.ebi.ac.uk/msd-srv/ssm; Krissinel & Henrick (2004)) was used to performing a search of the protein structural database.
Table S1. Crystallographic statistics

Data Collection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>C2</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.9795 Å</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
</tr>
<tr>
<td>a, b, c, (Å)</td>
<td>197.5, 58.4, 160.4 111.8</td>
</tr>
<tr>
<td>β (°)</td>
<td></td>
</tr>
<tr>
<td>Resolution Range (Å)</td>
<td>29.8 – 2.3</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>74,464</td>
</tr>
<tr>
<td>Completeness (%)<sup>a</sup></td>
<td>97.9 (98.7)</td>
</tr>
<tr>
<td><l/s(l)></td>
<td>12.6 (3.9)</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>4.0 (4.2)</td>
</tr>
<tr>
<td>R<sub>merge</sub> (%)<sup>b</sup></td>
<td>5.9 (25.9)</td>
</tr>
</tbody>
</table>

Refinement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution Range (Å)</td>
<td>30.0 – 2.3</td>
</tr>
<tr>
<td>No. of used reflections</td>
<td>70,625</td>
</tr>
<tr>
<td>R<sub>work</sub>, R<sub>free</sub></td>
<td>14.9, 20.8</td>
</tr>
<tr>
<td>Protein atoms</td>
<td>11,011</td>
</tr>
<tr>
<td>Glutathione / ethylene glycol / water</td>
<td>6, 15, 1165</td>
</tr>
<tr>
<td>R.m.s. deviations from ideal geometry</td>
<td></td>
</tr>
<tr>
<td>bond lengths (Å)</td>
<td>0.015</td>
</tr>
<tr>
<td>bond angles (°)</td>
<td>1.418</td>
</tr>
<tr>
<td>Thermal parameters (Å<sup>2</sup>)</td>
<td></td>
</tr>
<tr>
<td>Wilson B</td>
<td>42.9</td>
</tr>
<tr>
<td>Mean B</td>
<td></td>
</tr>
<tr>
<td>subunit A, B, C</td>
<td>55.2 / 60.5 / 55.9</td>
</tr>
<tr>
<td>GSH, water, ethylene glycol</td>
<td>46.8 / 60.2 / 72.7</td>
</tr>
<tr>
<td>Ramachandran plot (%)</td>
<td>98.3 / 1.2 / 0.5</td>
</tr>
<tr>
<td>favoured/allowed</td>
<td></td>
</tr>
</tbody>
</table>

^a Values in parentheses refer to the highest resolution bin of width approx. 0.1 Å; ^b R_{merge} = \(\frac{\sum h \sum i |(h,i) - <l(h)> \sum h \sum l(h,l)|}{\sum h \sum i |F_o| \sum h \sum l |F_c|} \).
^c R_{work} = \(\frac{\sum hkl |F_o| - |F_c|}{\sum hkl |F_o|} \).
^d R_{free} is the same as R_{work} except calculated using 5% of the data that are not included in any refinement calculations.
Figure S1. Stereoview comparison of TDR1 inter-subunit (A-C) dimer with the dimer formed by the closest structurally related tau class GST dimer (PDB code: 3FHS21). The polypeptide trace of 3FHS is shown in dark grey, superimposed on domain I from subunit A (purple) and domain II from subunit C (green), which generate the TDR1 GST-like dimer. The bound glutathione molecules are depicted sticks colored with yellow C atoms for the TDR1 model, grey for the 3FHS model.
Figure S2. Stereoview images of the two glutathione binding sites within subunit A.
A. G-I - the domain I glutathione binding site; B. G-II - the domain II binding site. Atomic positions are color coded: N blue, O red, S green, C grey for the ligands and yellow for the protein. Water molecules are shown as cyan spheres. Dotted lines represent potential hydrogen bonding interactions. Glutathione has been modeled as a 50:50 mixture of reduced and oxidized forms.
Figure S3. The electrostatic properties of the G-I and G-II binding sites. TDR1 is depicted as van der Waals surface colored with blue representing positive charge, red negative and grey neutral. Although many structural features are conserved between the two glutathione binding sites are distinct with G-II displaying a much greater basic character than G-I.
Figure S4. Stereoimage showing an overlay of the hydrophobic (H-sites) from domain I (H-I, green) and domain II (H-II, orange) from subunit A. The Cys-Pro-Phe motif is conserved in both near the GSH binding site, but there is conservation in the H-site itself. The H-I pocket is restricted by the positioning of Tyr215 and His114 and with the movement of α12 to narrow the pocket.
4. Objectives and Results

Supplemental References

4.6 Metabolic variation during development in culture of *Leishmania donovani* promastigotes

The genome sequencing of several *Leishmania* species has provided immense amounts of data and allowed the prediction of the metabolic pathways potentially operating. Subsequent genetic and proteomic studies have identified stage-specific proteins and putative virulence factors but many aspects of the metabolic adaptations of *Leishmania* remain to be elucidated. In this study, we have used an untargeted metabolomics approach to analyze changes in the metabolite profile as promastigotes of *L. donovani* develop during *in vitro* cultures from logarithmic to stationary phase. The results show that the metabolomes of promastigotes on days 3-6 of culture differ significantly from each other, consistent with there being distinct developmental changes. Most notable were the structural changes in glycerophospholipids and increase in the abundance of sphingolipids and glycerolipids as cells progress from logarithmic to stationary phase.

Metabolic Variation during Development in Culture of Leishmania donovani Promastigotes

Ana Marta Silva1,2,3, Anabela Cordeiro-da-Silva2,3, Graham H. Coombs1*

1 Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom, 2 Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal, 3 Laboratório de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal

Abstract

The genome sequencing of several Leishmania species has provided immense amounts of data and allowed the prediction of the metabolic pathways potentially operating. Subsequent genetic and proteomic studies have identified stage-specific proteins and putative virulence factors but many aspects of the metabolic adaptations of Leishmania remain to be elucidated. In this study, we have used an untargeted metabolomics approach to analyze changes in the metabolite profile as promastigotes of L. donovani develop during in vitro cultures from logarithmic to stationary phase. The results show that the metabolomes of promastigotes on days 3–6 of culture differ significantly from each other, consistent with there being distinct developmental changes. Most notable were the structural changes in glycerophospholipids and increase in the abundance of sphingolipids and glycerolipids as cells progress from logarithmic to stationary phase.

Introduction

Leishmaniasis remains one of the major infectious diseases with 350 million people at risk in 88 countries worldwide and 2 million estimated new cases every year [1]. The lack of effective chemotherapy and emergence of drug resistance (reviewed in [2]) highlights the need for an improved knowledge of the parasite’s cell biology to discover peculiarities that could potentially be explored as drug targets.

The Leishmania life cycle involves several developmental stages and alternates between sand fly and mammalian hosts. A major developmental difference is the occurrence as intracellular amastigotes in mammalian macrophages and as extracellular promastigotes in the sand fly. However, multiple forms of promastigotes have been identified based on morphology, location, infectivity, growth rate, ability to divide, and specific features such as expression of surface molecules [3–8]. It is believed that the parasite’s occurrence in different developmental forms is a mechanism whereby it adapts to survive and persist in the various environmental conditions in which it is confronted with variations in temperature, pH, nutrient and oxygen availability and exposure to reactive oxygen (ROS) and nitrogen species [9]. Despite the extensive investigations on various features of Leishmania over many years and the recent pioneering application of metabolomics technologies to studies on the parasite [10–13], particularly the elucidation of ways in which amastigotes differ from promastigotes [13–16], currently relatively little is known about the detail of the metabolic variation that happens during this developmental sequence in the sand fly.

The developmental sequence in the sand fly vector, which terminates in transformation to the metacyclic form infective to a mammalian host, appears to be mimicked, at least in part, during growth axenically in vitro; this comprises multiplication of procyclic promastigote forms and then differentiation to the metacyclic form, a process known as metacyclogenesis which is accompanied by morphological changes, including reduction in size of the cell body and a relatively longer flagellum, and some known biochemical changes such as lipophosphoglycan (LPG) and surface protein expression [5–7,17–20]. Thus the in vitro system provides an opportunity to investigate the metabolome changes that accompany and perhaps underpin the developmental sequence of the promastigote. In the present study, we have applied state-of-the-art metabolomics approaches to analyse the changes in the metabolome of promastigotes of Leishmania donovani during culture in vitro. The results show that there is distinct variation in the metabolome, especially in the lipid composition.

Methods

Leishmania parasites

Leishmania donovani (MHOM/NP/03/BPK206/0clone10) promastigotes had been cloned from an isolate from a visceral leishmaniasis patient sensitive to pentavalent antimonials in Nepal, as described by Rijal and co-workers [21]. Promastigotes were grown on modified Eagle’s medium (designated HOMEM medium, Invitrogen) supplemented with 20% (v/v) heat inactivated fetal calf serum (FCS, PAA Laboratories) at 26°C. Cultures were set up initially at a density of 2.5 × 10⁵ parasites/ml and sub-passaged every 6 days.

Leishmania extracts for metabolite analysis

L. donovani promastigote cultures were initiated at 2.5 × 10⁵ cells/ml in 16 × 10 ml cultures in order to obtain cell samples from four
Author Summary

Leishmania infections are considered neglected tropical diseases as the parasites affect millions of people worldwide but there are limited research efforts aimed at obtaining vaccines and new drugs. *Leishmania* has a digenetic life cycle alternating between promastigote forms, which develop in the sand-fly, the vector of the disease, and an amastigote form, which grows in mammals after being bitten by an infected sand-fly. *In vitro* studies with the promastigote forms are routinely used to gain insights about the parasite’s cell biology. Little is known about how the different promastigote forms are metabolically adapted to their particular micro-environment in the host or how they are pre-adapted metabolically for infecting a mammal, thus we have undertaken a study of the metabolite profile of *L. donovani* promastigotes in order to gain an understanding of the changes that occur during promastigote development. The analysis has revealed that the changes in promastigotes’ metabolome between days 3 and 6 take place in a progressive manner; however major differences were observed when comparing the promastigotes on days 3 and 6. An increase in lipid abundance as promastigote development occurred was notable and is likely to reflect remodelling of the parasite’s surface in readiness for infecting a mammal.

Independently growing cultures (biological replicates) on each day. Promastigotes from each culture were harvested at days 3, 4, 5 and 6 for metabolite extraction. The metabolite extraction was performed as previously described [11]. Briefly, promastigotes quenching was performed in a dry ice/ethanol bath with rapid temperature decrease to 2°C and then immediate transfer to ice. Two aliquots of 4 ×10^6 cells were taken from each culture flask (technical replicates). Cell pellets were obtained by centrifugation at 12000 g for 10 min at 4°C, and washed 3 times in 1 ml of PBS. For cell disruption and metabolite extraction, cell pellets were resuspended in 200 μl cold chloroform/methanol/water (20/60/20, v/v/v) and incubated for 1 h in a Thermomixer (1400 rpm, 4°C). After centrifugation at 12000 g for 10 min at 4°C, the supernatant containing the extracted metabolites was recovered and stored at −70°C until analysed.

Liquid chromatography mass spectrometry (LC-MS) analysis and data processing

LC-MS analysis and data processing was done as described by t’Kindt and co-workers [11,12]. Metabolite level comparisons between the time points analyzed (after 3, 4, 5 and 6 days of *in vitro* growth) were performed based on the ratio between the intensity on each day and the mean intensity level for the 4 day period. The following criteria were applied to assign differences in metabolite levels among the time points analyzed as being potentially interesting and so worthy of inclusion in the full analysis: (i) there was at least a 2-fold difference between at least one of the time points when compared with the mean intensity level; and (ii) there was a statistically significant difference (p<0.05) between the time points being compared. The data are expressed as intensity per cell protein (rather than per cell number), thus facilitating meaningful comparison of the metabolite levels in cells of differing volume. This method of normalization has significant effects, for instance the general decreases in metabolic intensity when expressed per cell number that were observed between promastigotes on day 3 and day 6 were almost abolished when data were expressed as intensity/mg cell protein. Indeed the summed total of the metabolic intensities normalized

Statistical analysis

Statistical analysis was performed using Analysis of Variance (ANOVA), which allowed the simultaneous comparison of all time point analyzed: a p value smaller than 0.05 (p<0.05) was considered significant; SPSS Statistics software (IBM) was used to perform principal component analysis; GraphPad Prism 4 was used for plotting the graphs and VisuMap software (VisuMap Technologies Inc.) was used to visualise the data as heatmaps.

Results

In order to obtain detailed information about the metabolic changes that occur during the development of promastigotes under defined conditions in vitro, we have applied an untargeted metabolomics approach. Promastigotes were collected after 3, 4, 5 and 6 days of *in vitro* growth (thus including different proportions of various promastigote forms, including procyclic promastigotes which dominate during logarithmic growth and the non-dividing metacyclic forms that start to be formed at late stages of logarithmic phase) and analyzed by LC-MS. We used four parallel cultures (designated biological replicates) to obtain representative data and during the cell processing from each culture two samples were taken (designated technical replicates) to control for variation due to technical factors. Analysis of a parasite’s metabolome needs to take into account the changes in cell volume that occur during development and growth. Measurement of the protein content of the cells showed that transformation to the metacyclic form at late logarithmic phase of growth was accompanied by a decrease in protein content, which is thought to correlate with the decrease in cell size (Figure 1). There was a great difference in protein content between the cells on days 3 and 6 (p<0.0028) but also a significant difference between the cells on days 3 and 4 (p<0.025) and days 5 and 6 (p<0.034). To assure that the metabolome analysis of the parasite would reflect the changes observed in cell size, we have expressed the data as intensity per cell protein (rather than per cell number), thus facilitating meaningful comparison of the metabolite levels in cells of differing volume. This method of normalization had significant effects, for instance the general decreases in metabolite intensity when expressed per cell number that were observed between promastigotes on day 3 and day 6 were almost abolished when data were expressed as intensity/mg cell protein. Indeed the summed total of the metabolic intensities normalized

![Figure 1. Relationship between protein content and cell density during in vitro growth of *L. donovani* promastigotes.](https://example.com/image.png)
to cell protein were relatively constant over the four days whereas when expressed as intensity/cell number it declined 33% on day 6. We believe that this method of taking into account the changes in cell size during growth is currently optimal and provides a means of generating data that are meaningful and can be interpreted with confidence.

In order to understand better the metabolic fluctuations as the promastigotes developed over the four days, we compared the profiles of metabolites levels (Figures 2A and 3). The analysis shown in Figure 2A (in which the metabolic intensity level on each day is compared with the mean level over the 4 day period) highlights that, of the total metabolites identified, the levels of the majority remained rather similar throughout although 26.9% differed by at least 2-fold on one of the days when compared with the mean. The day 3 levels were the most different from the others (22% being at least 2-fold different from the center-mean for the period analyzed) and with just some metabolites differing greatly at other times. This is consistent with there being a progressive change in many metabolite levels over the four day period.

However, comparison between the metabolic intensities on days 3 and 6 revealed that 48.4% of all the metabolites identified differed by more than 2-fold (Figure 2B), suggesting a significant difference in metabolic profile between promastigote populations in logarithmic (mainly procyclic promastigotes) and stationary phases (containing many metacyclic promastigotes).

The metabolic profile was also analysed by principal component analysis (PCA). PCA is an unsupervised clustering technique that allows the reduction of the data into two dimensions (principal component 1 [PC1] and principal component 2 [PC2]), which capture and enable visualization of data variability; this method is generally applied to large sets of data, such as those resulting from microarray or metabolomic analyses, as a way of obtaining a summary or overview of all samples, to find clusters and trends, and to identify the outliers. It is recommended as a starting point for analysis of multivariate data [22]. The PCA score plots (Figure 4) of the LC-MS data show clearly the identification of four distinct clusters, each one corresponding to one of the groups of samples analyzed on a particular day of growth. PC1 and PC2 account for more than 81% of the variables which shows the clear metabolic differences between the samples. Moreover, the tight clustering within each group indicates good reproducibility. The data in Figure 4 show that promastigotes on days 4 and 5 are aligned closely with each other indicating that they have a similar metabolic profile that is clearly distinguished from those on days 3 and 6 (which explains 59.0% of total variance given by the second principal component). These data are consistent with there being metabolic changes as the promastigotes develop from procyclic promastigotes to metacyclic promastigotes, and the relatively large number of metabolites that differ in levels significantly between days 3 and 6.

The identity of the metabolites was carried out based on the databases detailed by t’Kindt and co-workers [11,12]. We were able to identify 368 putative metabolites (267 at <1 parts per million [ppm] deviation and 101 at 1–2 ppm deviation level). The compounds identified belong to a wide range of metabolic pathways and include amino acids, nucleosides, carbohydrates, fatty acyls, sterols and glycerophospholipids among others, as shown in Figure 3. The full list of putatively identified metabolites at days 3, 4, 5 and 6 at below 1 ppm and between 1–2 ppm deviation are provided in Tables S1 and S2 of supplementary data, respectively. The majority of the metabolites remained at a relatively constant level. Indeed, the overall sum of intensities of the identified metabolites in the samples from the different days show that there is little apparent variation in the total metabolome identified, with the only difference being between day 3 and day 4 (Figure S1); clearly, however, such data have to be used with caution as not all of the parasite’s metabolites are included in the dataset and the method is not fully quantitative. There were, however, some apparent variations within each group of metabolites (Figure S2). Lipids, in general, increased substantially from day 3 to day 6. Carbohydrates and nucleosides similarly apparently increase in abundance, whereas other groups of metabolites including amino acids and derivatives, organic acids and alcohols remain at relatively constant levels.

All metabolites that differed from the mean for the 4-day period by at least a 2-fold on one or more days and were statistically different between the time points analyzed (p<0.05) are represented in heatmap format to visualize the main changes that occur during transformation of promastigotes in logarithmic phase to those in stationary phase (Figure 5) and the intensity levels are provided on Table S3. This group (97 in total, 26% of the total number of metabolites putatively identified) includes metabolites representative of all of the compound categories shown in Figure 3 with the exception of organic acids and alcohols. It was possible to distinguish five general patterns by which metabolites fluctuated during the 4-day period analyzed (Figure S3 and Table S3). The levels of some metabolites continually increased from day 3 to day 6 (pattern 1, 74% of the 97 varying metabolites), while the opposite happened with others (pattern 3, 9%). Other metabolites showed peak levels on days 4 or 5 which then declined (pattern 2, 9%), while others decreased from day 3 to day 4 and then increased (pattern 4, 2%). Some metabolites had a fluctuating profile showing an increase followed by a decrease and then another increase (pattern 5, 6%).

A more detailed analysis of each of the categories of metabolites suggests specific variation potentially related with the cell stage. For instance, analysis of structural properties of the fatty acyl side chains of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) lipids revealed that there was an increased abundance of the PC lipids with lower unsaturated fatty acyl chains as the promastigotes developed from day 3 to day 6 (Figure 6 and S4 in supplementary data); this seems also to happen in PE lipids, but less so than with PC lipids. These data suggest that there are changes in the composition of membranes with development from procyclic to metacyclic promastigotes. Another class of metabolites showing striking differences depending on the cell stage were the sphingolipids (SLs). In Leishmania, SLs are not essential for growth but they are for differentiation, probably due to the high demand in vesicular trafficking required for parasite remodeling [23]. The abundance of these metabolites in general increased on day 5 and greatly on day 6, such that for some of the SLs identified, such as N-(eicosanoyl)-sphinganine, N-(hexadecanoyl)-sphinganine and heptadecasphinganine, the day 6 intensity amounted to more than 70% of the total amount detected over the four days (Figure 7A). A similar situation was seen with some of the identified glycerolipids, with the diacylgycerol putatively identified as DAG(42:3) being especially increased on day 6 (Figure 7B). The abundance of sterols, prenol lipids and fatty acyl metabolites generally increased during growth and thus were more abundant on days 5 and 6, although there were exceptions such as N-[11Z-eicosanoyl]-ethanolamine and N-[11Z,14Z-eicosanoyl]-ethanolamine (Figures S5 and S6).

In contrast to the lipids, amino acids and derivatives in general did not differ greatly during the four day period, although some were less abundant on day 6 (proline, glutamate-semialdehde, homocysteine, carnitine and cystathionine among others) while others were increased (for example N-butrylglucose, lysine,
Figure 2. Overview of intracellular metabolite levels in *L. donovani* promastigotes during *in vitro* growth. (A) Relative levels of intracellular metabolites in *L. donovani* promastigotes detected from day 3 to day 6. Metabolite intensity levels on each day were compared with the mean level over the 4-day period. Following a logarithmic transformation (base 2), the relative level of each metabolite was plotted. Dotted lines
Valerylglycine, acetyl-lysine, and N-acetyl-arginine) (Table S3 and Figure S7). A higher abundance of carbohydrates, such as maltose among others, was observed as cells reach stationary phase (Table S3 and Figure S8). The intensity variation for hypoxanthine and xanthine over the 4 days had a clearly distinct pattern from the other nucleosides or nucleoside conjugates, with a large increase in the abundance of these metabolites on day 6, while, for example, cytosine and deoxycytidine decreased in abundance on day 6 (Table S3 and Figure S9). The great increase in the abundance of hypoxanthine and xanthine at day 6 is responsible for the large change observed in the overall abundance of all metabolites included in this group (Figure S2); the overall abundance of this group was relatively unchanged over the 4 day period of analysis if these two metabolites were not included. None of the metabolites included in the organic acids group accomplish the criteria defined, despite, for example, the statistically significant difference observed in the levels of mevalonate on day 6 (Figure S10). A marked decrease in abundance on day 6 was also observed for 5-methyl-THF, dihydrobiopterin and N-acetylputrescine (Table S3 and Figure S11).
Discussion

Leishmania promastigotes development in the sand fly includes a wide range of modifications in order to prepare the parasite for transmission to a mammalian host. The number of distinct developmental stages that occur is uncertain for although many have been named and identified based on morphology [3,4] most have not been sufficiently characterized to be certain that they are truly distinct developmental stages. As expected, in vitro we were able to observe various morphological forms of *L. donovani* promastigotes but the major clear difference was the appearance of small morphs as the culture reached stationary phase, when metacyclic forms are predominant. This reflects the remodeling of cell shape during life cycle transitions and involved a decrease in protein content (Figure 1). This was taken into consideration in analyzing the metabolite dataset and indeed the data were normalized to protein content as a means of taking into account changes in cell size.

Analysis of metabolome during in vitro growth of promastigotes revealed that whereas the overall metabolite abundance remained relatively constant there were variations in the levels of individual metabolites, suggesting that parasite differentiation from procyclic to metacyclic forms takes place in a progressive manner and involves changes in certain individual or groups of metabolites. This study reinforces the idea that there are multiple forms of promastigotes that are adapted differently at the metabolic level, presumably reflecting the differing challenges that they face naturally in the sand fly. It has been postulated previously from studies on morphology of *Leishmania* promastigotes in sand flies and in vitro cultures that the parasite undergoes similar developmental transitions in vitro as occur in the sand fly host [24], despite the absence of the host pressure. This has been interpreted as the parasite being genetically pre-adapted to survive in the sand fly. The biochemical changes that accompany these morphological/developmental changes are not fully known, although some characteristics of the metacyclic promastigote of *L. major* have been reported. Differentiation to the infective metacyclic promastigote form involves modifications in LPG structure [6,25], which have been shown to occur both in vitro culture and during in vivo development in the sand fly [26]. HASPB and SHERP are stage-specific proteins present in the infective stages, with SHERP being exclusively present in the metacyclic forms; the stage-specific expression of both has been observed in vitro as well as during the development in the vector [8]. Other surface molecules, including the metallopeptidase GP63, also undergo changes in expression pattern as the promastigotes development progresses [27]. The LPG modifications are essential for parasite infectivity and occur in vitro and in vivo demonstrating that in the absence of the host this essential processes still occurs; these findings are suggestive that other changes similarly also occur in vitro and the data of our current study show that indeed this is the case.

Metacyclogenesis is marked by a great increase in membrane trafficking and remodeling [28] and previous studies have shown that the organization of *Leishmania* membrane differs between procyclic and metacyclic promastigotes, in part due to the distribution of LPG into lipid rafts during differentiation [29]. Phospholipids (PLs) account for ~70% of total cellular lipids in *Leishmania*, with PC, the most abundant glycerophospholipid, predominantly present in a diacyl form [30] with unusually long and unsaturated fatty acid species [31]. These properties, the acyl length and degree of unsaturation, may play an important role in the fluidity of *Leishmania* membrane, thus they are likely to be regulated throughout parasite development in its hosts. Indeed, our data show that promastigote phospholipid composition changed remarkably in terms of the unsaturation levels observed in the fatty acid chains, in particular of PC lipids. Promastigotes in stationary phase (day 6) presented a higher abundance of PC lipids with lower levels of unsaturation than those observed on day 3 (Figure 6), revealing a shift towards lower unsaturation of PC lipids and consequently a decrease in membrane fluidity with metacyclic promastigote generation. These observed changes in membrane

Figure 4. *L. donovani* promastigote development is accompanied by significant changes in the metabolome. Principal component analysis of all metabolites identified by LC-MS in cell extracts from *L. donovani* promastigotes harvested on days 3, 4, 5 and 6 of in vitro growth; each datapoint corresponds to the analysis of one biological replicate. Principal component 1 and principal component 2 explain 59.0% and 22.3% of the total variance, respectively.

doi:10.1371/journal.pntd.0001451.g004
Metabolome of Leishmania Promastigotes

- amines
- amino acids and amino acids conjugates
- carbohydrates and carbohydrate conjugates
- fatty acyls
- glycerolipids
- glycerophospholipids
- heterocyclic molecules
- ketones and aldehydes
- nucleosides and nucleoside conjugates
- others
- SL and sphingoid bases
- sterol and prenol lipids
- vitamins and cofactors
fluidity may be a mechanism whereby the parasite becomes pre-adapted for survival upon infecting a mammalian host, at which time it is confronted by a dramatic increase in temperature. Thus perhaps the change in membrane composition enables the parasite to maintain an appropriate membrane fluidity even at higher temperatures encountered. It is well known that the well-being of organisms is dependent upon the maintenance of optimal level of membrane fluidity [32]. In yeast, changes in the degree of unsaturation of fatty acids has been reported as a response to changes in the environmental temperature and complements other mechanisms such as modifications in fatty acid chain length, branching and cellular fatty acid content [33]. A recent study by Turk and co-workers [34] have related membrane fluidity to the adaptation level of different yeast strains to environmental stresses and to their growth temperature range, demonstrating that plasma-membrane fluidity can be used as an indicator of fitness for survival in extreme environments [34]. Changes in membrane fluidity in plants was also suggested to be crucial in sensing and influencing gene expression during temperatures fluctuations [35]. Alterations in membrane fluidity have been associated with the occurrence of drug resistance in Leishmania; it is thought that membrane lipid composition may influence drug-membrane interactions and interfere with drug uptake by the amastigotes residing in the mammalian host [36–38]. Indeed, comparison of promastigotes derived from clinical L. donovani isolates with different antimonal sensitivity has shown a shift towards higher unsaturation of PC lipids in drug-resistant clones, suggesting an increase in membrane fluidity that may be related to the changes in uptake ability observed in the drug-resistant cell lines [12].

Another group of lipids that notably increased in abundance during L. donovani promastigotes development in vitro were the SLs (Figure 7A). SLs are not required for growth of Leishmania, since parasites that completely lack SLs grew normally in logarithmic phase and were still able to make “lipid rafts”. However, deletion of sp2-, the gene that encodes the key de novo biosynthetic enzyme serine palmitoyltransferase subunit 2, resulted in parasites deficient in de novo SLs synthesis that once in the stationary phase were not able to differentiate into metacyclic forms [23]. The increase in SLs during stationary phase we have found in this study is consistent with the requirement of these metabolites for differentiation to metacyclic forms. SLs are considered essential membrane components in all eukaryotes, mediating many signaling pathways including those key for apoptosis, growth and differentiation [39]. However, in Leishmania the primary role of SLs appears to be the provision of ethanolamine, as ethanolamine supplementation was able to overcome the phenotype observed in the SL-deficient mutant parasites [40]. Ethanolamine and choline are essential nutrients, and when available exogenously they can be salvaged by Leishmania via membrane transporters [41,42]. Thus the significance of SL biosynthesis is likely to be stage-specific, being important in those stages in the sand fly that cannot rely upon salvaged ethanolamine. Indeed, amastigotes deficient in de novo SLs synthesis recovered from a mammalian host showed normal levels of inositolphosphoryl ceramide (IPC) and thus amastigotes seems to be able to perform SLs salvage [43].

Glycerolipids, represented by diacylglycerols (DAG) and triacylglycerols (TAG), also increased in abundance as L. donovani promastigote development progressed (Figure 7B). PC and PE lipids are synthesized by conjugation of a lipid anchor such as DAG with either CDP-choline or CDP-ethanolamine, the last step of the in de novo biosynthesis of phospholipids (the Kennedy pathway) [44]. Thus the observed increase in neutral lipids correlates well with the changes observed in Leishmania membrane lipid composition during promastigote development.

Sterol and prenol lipids also increased with time in culture, although the changes during L. donovani promastigotes development were not so accentuated as for SLs and glycerolipids. Sterols are the target of the important antileishmanial drug amphotericin B [36] and they may also play a significant role in the activity of mifepristone against the parasite, as sterol depletion led to a decrease in susceptibility [45]. Effectiveness of these drugs is mainly dependent on their interaction with the Leishmania membrane, thus it is clear that the ability of the parasite to change its lipid membrane composition, which occurs inherent during its life cycle, should be taken into consideration when considering new drug formulations.

Leishmania parasites are auxotrophic for many amino acids and must scavenge essential amino acids from their hosts. Besides the use in protein biosynthesis, some amino acids, notably proline, can be used as major energy sources [46]. Recently, Saunders and co-workers have reported that aspartate, alanine and glutamate are internalized by L. mexicana promastigotes and incorporated into the TCA cycle, revealing the importance of this pathway in glutamate, glutamine and proline synthesis and demonstrating that the TCA cycle in Leishmania is not only a catabolic pathway [47]. One notable feature in the levels of amino acids and amino acid conjugates during growth of promastigotes in vitro was a large increase in metabolites of fatty acids named acyl glycines (valerylglcyline, tiglyglycine, N-butyrylglycine). Increases in levels of acyl glycines in higher eukaryotes is associated with mitochondrial energy metabolism disorders, indeed the measurement of these metabolites is used as a diagnostic tool. Glycine conjugation is considered to be an important detoxification system, preventing the accumulation of acyl-CoA esters in several inherited metabolic disorders of humans [48]. Moreover, valerylglcyline was found to be increased in urine of Plasmodium vivax-infected individuals, which indicates an alteration in the fatty acid metabolism during infection [49]. These changes in acylglycines abundance during promastigote development could reflect changes in mitochondrial metabolism, but caution needs to be exercised as increased levels of this group of compounds was also found in drug-resistant parasites [12] and also in genetically manipulated mutants (A.M. Silva et al., unpublished results) – which indicates that the levels of these metabolites may be disturbed in a variety of situations.

Leishmania also take up from their environment other essential nutrients, such as purines and growth factors. Biotin and folate uptake has been shown to decrease when promastigote have entered stationary phase [50], which is consistent with our findings that there was a decrease in abundance of 5-methyl-THF and dihydrobiopterin in L. donovani promastigotes at day 6 of in vitro growth. Indeed, low levels of tetrahydrobiopterin were associated.
with increased differentiation of *L. major* into the infective metacyclic form and thus postulated to be an important factor controlling this process [51]. *Leishmania* parasites are not able to synthesize purines de novo and need to acquire either nucleosides or nucleobases [52]. Hypoxanthine uptake by *L. major* promastigotes is greatly reduced in stationary phase compared with logarithmic growth phase. This was shown to correlate with down-regulation of expression of the NT3 permease as promastigotes reach stationary phase [53] and it was reasoned that these changes reflected the fact that at this stage the population is mainly composed of non-dividing cells, the metacyclic promastigotes, that do not require purines for mitosis. Our findings of an increase in the levels of hypoxanthine and xanthine at day 6 of *L. donovani* promastigotes in vitro growth
Figure 7. Stage specific increase of sphingolipids and glycerolipids abundance during *L. donovani* promastigotes development in vitro. (A) Sphingolipids and sphingoid base and (B) glycerolipid metabolites abundance is represented for each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity on each of the 4 days analysed. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in the Supporting Information. DAG, diacylglycerol; TAG, triacylglycerol.

doi:10.1371/journal.pntd.0001451.g007
explain why less uptake is required at this stage. Moreover, one can speculate that these higher levels in the metacyclic forms are beneficial in enabling the subsequent differentiation events after infection of a mammal, a transition phase that occurs in the parasitophorous vacuole of a macrophage where availability of some nutrients may be limiting [34,35].

Overall the results of this study have provided convincing data that promastigotes of Leishmania at different stages of culture in vitro differ from each other significantly in terms of the composition of their metabolome, whereas the total metabolic abundance appears to remain relatively constant as the promastigotes develop from day 3 to day 6. The study has provided insights into the overall changes that occur, which adds to the many previous reports on changes in individual metabolites, groups of metabolites and enzymatic reactions involved in metabolite production (see, for example, [16,46,56–58]). Our data are consistent in particular with previous findings obtained using other approaches, such as changes observed in the content of sphingolipids and other lipids that may contribute to successful parasite survival in the mammalian host [23,37]. These changes observed undoubtedly reflect adaptations to differing conditions that Leishmania encounters in its two hosts, but the full understanding of how these adaptations function require additional data on the environments themselves (the detailed content of the parasitophorous vacuole in a macrophage and the intestinal tract of the sand fly, and how these change with time, are largely unknown) as well as more complete analyses of metabolism of individual promastigote forms and if possible integration of the generated data with those arising from other –omics approaches. However, understanding the variation in metabolism of promastigotes will be informative in elucidating more fully the metabolic capabilities of Leishmania and hopefully highlight unusual features that can be exploited in novel approaches to designing therapies.

Supporting Information

Figure S1 Overall metabolite levels remain similar during L. donovani promastigotes development in vitro. Sum of total metabolic intensities from L. donovani promastigotes identified by LC-MS analysis at days 3, 4, 5 or 6 of in vitro growth. (PDF)

Figure S2 Overall metabolite levels for each compound category during L. donovani promastigotes development in vitro. Sum of total metabolic intensities from L. donovani promastigotes identified by LC-MS analysis at days 3, 4, 5 or 6 of in vitro growth grouped by compound categories. (PDF)

Figure S3 Patterns of metabolite variation in level during L. donovani promastigote in vitro growth from day 3 to day 6. Analysis of L. donovani promastigotes metabolome at day 3, 4, 5 and 6 allowed the distinction of 5 patterns (1–5) based on the metabolic profile for each metabolite that differed in intensity by 2-fold or more from the mean levels in at least one of the time points analyzed (a total of 97 metabolites). The relative level of each metabolite is shown, following logarithmic transformation [base 2]; log2(x)/log2(5.6) below −1 or above 1 indicates a 2-fold change; x: time point analyzed (day 3, 4, 5 or 6). (A) Pattern 1 (74% of all metabolites considered) and (C) pattern 3 (9%) include metabolites that increased or decreased, respectively, continuously during all the whole period analyzed; (B) pattern 2 (9%) includes metabolites which had peak levels on days 4 or 5 but which then declined; (D) pattern 4 (2%) metabolite levels decreased from day 3 to day 4 and then increased and (E) pattern 5 (6%) include metabolites that showed an increase followed by a decrease and then another increase.

Figure S4 Glycerophospholipids abundance during L. donovani promastigotes development in vitro. Glycerophospholipids abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. (PDF)

Figure S5 Sterol and prenol lipids abundance during L. donovani promastigotes development in vitro. Sterol and prenol lipids abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2. (PDF)

Figure S6 Fatty acyls abundance during L. donovani promastigotes development in vitro. Fatty acyls abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2. (PDF)

Figure S7 Amino acids and amino acids conjugates abundance during L. donovani promastigotes development in vitro. Amino acids and amino acids conjugates abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2. (PDF)

Figure S8 Carbohydrates and carbohydrate conjugates abundance during L. donovani promastigotes development in vitro. Carbohydrates and carbohydrate conjugates abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2. (PDF)

Figure S9 Nucleosides and nucleoside conjugates abundance during L. donovani promastigotes development in vitro. Nucleosides and nucleoside conjugate metabolites abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2. (PDF)

Figure S10 Organic acids abundance during L. donovani promastigotes development in vitro. Organic acids abundance is represented for each metabolite on each day as a
percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2.

PDF

Figure S11 Vitamins and cofactors, ketones and aldehydes, heterocyclic molecules, amines and alcohols abundance during L. donovani promastigotes development in vitro. Vitamins and cofactors, ketones and aldehydes, heterocyclic molecules, amines and alcohols abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2.

Table S1 Metabolites identified below 1 ppm deviation in samples of L. donovani promastigotes from day 3 to day 6 of in vitro growth. For each compound the following information is shown: ionisation (ESI) mode; detected mass; retention time (min); putative metabolite identification; ppm deviation between detected mass and theoretical mass of the putative metabolite identified; intensity per 25 μg cell protein for each sample; average intensity per 25 μg cell protein in each time-point analyzed (3D, 4D, 5D or 6D); standard deviation in each time point analyzed; log2 base 2 of ratio of average signal intensity in each time point against the mean intensity level during the 4 day period; F test statistics and p values obtained by analysis of variance (ANOVA), indicating whether or not there was a statistically significant difference between the time points analyzed; decision on whether or not the compound was significantly changed in level based on a two-fold or higher average difference in signal intensity in at least one of the time points analyzed and statistical significance (p<0.05); compound category.

Table S2 Metabolites identified between 1–2 ppm deviation in samples of L. donovani promastigotes from day 3 to day 6 of in vitro growth. The data presented are as described for Table S1.

Table S3 Intensity levels of metabolites that differ significantly during L. donovani promastigote development in vitro. Metabolites are ordered by compound category; for each metabolite is shown the average intensity per 25 μg cell protein at days 3, 4, 5 and 6 and the respective metabolic profile pattern (analysis shown in Figure S2). Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Table S1 and S2.

PDF

Acknowledgments

We thank: Malcolm McConville and colleagues (Melbourne) for excellent guidance on the methods of sample preparation for the metabolomics analyses; Ruben t’Kindt (TM, Antwerp, and Strathclyde) for assistance with the sample preparation method for the metabolomics analyses; Dave G. Watson and Alex Zhang (Strathclyde) for help with the LC-MS technology.

Author Contributions

Conceived and designed the experiments: AMS AGC. Performed the experiments: AMS. Analyzed the data: AMS AGC. Wrote the paper: AMS AGC.
Figure S1. Overall metabolite levels remain similar during *L. donovani* promastigotes development *in vitro*. Sum of total metabolite intensities from *L. donovani* promastigotes identified by LC-MS analysis at days 3, 4, 5 or 6 of *in vitro* growth.
Figure S2. Overall metabolite levels for each compound category during *L. donovani* promastigotes development *in vitro*. Sum of total metabolite intensities from *L. donovani* promastigotes identified by LC-MS analysis at days 3, 4, 5 or 6 of *in vitro* growth grouped by compound categories.
Figure S3. Patterns of metabolite variation in level during *L. donovani* promastigote *in vitro* growth from day 3 to day 6. Analysis of *L. donovani* promastigotes metabolome at day 3, 4, 5 and 6 allowed the distinction of 5 patterns (1-5) based on the metabolic profile for each metabolite that differed in intensity by 2-fold or more from the mean levels in at least one of the time points analyzed (a total of 97 metabolites). The relative level of each metabolite is shown, following logarithmic transformation (base 2); log₂ (x/\(\bar{X}_{3-6}\)) below -1 or above 1 indicates a 2-fold change; x, time point analyzed (day 3, 4, 5 or 6). (A) Pattern 1 (74% of all metabolites considered) and (C) pattern 3 (9%) include metabolites that increased or decreased, respectively, continuously during all the whole period analyzed; (B) pattern 2 (9%) include metabolites which had peak levels on days 4 or 5 but which then declined; (D) pattern 4 (2%) metabolite levels decreased from day 3 to day 4 and then increased and (E) pattern 5 (6%) include metabolites that showed an increase followed by a decrease and then another increase.
Figure S4. Glycerophospholipids abundance during *L. donovani* promastigotes development *in vitro*. Glycerophospholipids abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis.
Figure S5. Sterol and prenol lipids abundance during *L. donovani* promastigotes development *in vitro*. Sterol and prenol lipids abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2.
4. Objectives and Results

Figure S6. Fatty acyls abundance during *L. donovani* promastigotes development *in vitro*. Fatty acyls abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2.
Figure S7. Amino acids and amino acid conjugates abundance during L. donovani promastigotes development in vitro. Amino acids and amino acid conjugates abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2.
Figure S8. Carbohydrates and carbohydrate conjugates abundance during *L. donovani* promastigotes development *in vitro*. Carbohydrates and carbohydrate conjugates abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2.
Figure S9. Nucleosides and nucleoside conjugates abundance during *L. donovani* promastigotes development *in vitro*. Nucleosides and nucleoside conjugate metabolites abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2.
Figure S10. Organic acids abundance during *L. donovani* promastigotes development *in vitro*. Organic acids abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2.
Figure S11. Vitamins and cofactors, ketones and aldehydes, heterocyclic molecules, amines and alcohols abundance during *L. donovani* promastigotes development *in vitro*. Vitamins and cofactors, ketones and aldehydes, heterocyclic molecules, amines and alcohols abundance is represented for each metabolite on each day as a percentage of the total abundance detected, which comprises the sum of the total metabolite intensity during the 4-day period of analysis. Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Tables S1 and S2.
4. Objectives and Results

Table S1 – Metabolites identified below 1 ppm deviation in samples of *L. donovani* promastigotes from day 3 to day 6 of *in vitro* growth. For each compound the following information is shown: ionisation (ESI) mode; detected mass; retention time (min); putative metabolite identification; ppm deviation between detected mass and theoretical mass of the putative metabolite identified; intensity per 25 µg cell protein for each sample; average intensity per 25 µg cell protein in each time-point analyzed (3D, 4D, 5D or 6D); standard deviation in each time point analyzed; log base 2 of ratio of the average signal intensity in each time point against the mean intensity level during the 4 day period; F test statistics and p values obtained by analysis of variance (ANOVA), indicating whether or not there was a statistically significant difference between the time points analyzed; decision on whether or not the compound was significantly changed in level based on a two-fold or higher average difference in signal intensity in at least one of the time points analyzed and statistical significance (*p*<0.05); compound category.

Table S2 – Metabolites identified between 1-2 ppm deviation in samples of *L. donovani* promastigotes from day 3 to day 6 of *in vitro* growth. The data presented are as described for Table S1.

Tables S1 and S2 are available in the electronic version of the thesis.
Table S3 – Intensity levels of metabolites that differ significantly during *L. donovani* promastigote development in vitro

<table>
<thead>
<tr>
<th>Metabolites</th>
<th>Average intensity per 25µg cell protein</th>
<th>day 3</th>
<th>day 4</th>
<th>day 5</th>
<th>day 6</th>
<th>pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>amines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-acetylputrescine</td>
<td></td>
<td>2.53E+05</td>
<td>3.69E+05</td>
<td>1.42E+06</td>
<td>2.42E+05</td>
<td>2</td>
</tr>
<tr>
<td>amino acids and amino acids conjugates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>proline</td>
<td></td>
<td>2.95E+08</td>
<td>3.07E+08</td>
<td>2.45E+08</td>
<td>1.10E+08</td>
<td>2</td>
</tr>
<tr>
<td>2-amino-3-oxobutanoic acid*</td>
<td></td>
<td>2.29E+05</td>
<td>3.69E+05</td>
<td>5.77E+05</td>
<td>6.99E+05</td>
<td>1</td>
</tr>
<tr>
<td>glutamate-semialdehyde</td>
<td></td>
<td>1.36E+07</td>
<td>1.09E+07</td>
<td>8.36E+06</td>
<td>1.89E+06</td>
<td>3</td>
</tr>
<tr>
<td>homocysteine</td>
<td></td>
<td>2.56E+05</td>
<td>2.26E+05</td>
<td>1.18E+05</td>
<td>7.34E+04</td>
<td>3</td>
</tr>
<tr>
<td>N-butyrylglycine</td>
<td></td>
<td>1.28E+05</td>
<td>4.13E+05</td>
<td>1.11E+05</td>
<td>5.04E+06</td>
<td>1</td>
</tr>
<tr>
<td>lysine</td>
<td></td>
<td>5.54E+06</td>
<td>1.31E+07</td>
<td>2.01E+07</td>
<td>2.75E+07</td>
<td>1</td>
</tr>
<tr>
<td>tiglylglycine*</td>
<td></td>
<td>7.76E+04</td>
<td>1.70E+05</td>
<td>2.41E+05</td>
<td>6.00E+05</td>
<td>1</td>
</tr>
<tr>
<td>valerylglycine</td>
<td></td>
<td>1.64E+05</td>
<td>7.21E+05</td>
<td>2.16E+06</td>
<td>8.90E+06</td>
<td>1</td>
</tr>
<tr>
<td>carnitine</td>
<td></td>
<td>1.89E+06</td>
<td>1.16E+06</td>
<td>7.44E+05</td>
<td>4.24E+05</td>
<td>3</td>
</tr>
<tr>
<td>N-acetylleucine*</td>
<td></td>
<td>8.48E+04</td>
<td>1.97E+05</td>
<td>3.19E+05</td>
<td>6.26E+05</td>
<td>1</td>
</tr>
<tr>
<td>acetyl-lysine*</td>
<td></td>
<td>1.37E+05</td>
<td>2.11E+05</td>
<td>3.01E+05</td>
<td>9.75E+05</td>
<td>1</td>
</tr>
<tr>
<td>N-acetyl-arginine</td>
<td></td>
<td>7.16E+04</td>
<td>9.36E+04</td>
<td>2.82E+05</td>
<td>6.45E+05</td>
<td>1</td>
</tr>
<tr>
<td>cystathionine</td>
<td></td>
<td>7.54E+07</td>
<td>6.69E+07</td>
<td>3.76E+07</td>
<td>2.15E+07</td>
<td>3</td>
</tr>
<tr>
<td>prolylhydroxyproline</td>
<td></td>
<td>3.64E+06</td>
<td>9.33E+05</td>
<td>4.89E+05</td>
<td>4.28E+05</td>
<td>3</td>
</tr>
<tr>
<td>malonylcardnine</td>
<td></td>
<td>3.10E+05</td>
<td>3.29E+05</td>
<td>3.02E+05</td>
<td>1.33E+05</td>
<td>2</td>
</tr>
<tr>
<td>aspartyl-aspartic acid</td>
<td></td>
<td>2.44E+05</td>
<td>4.27E+05</td>
<td>6.60E+05</td>
<td>1.08E+06</td>
<td>1</td>
</tr>
<tr>
<td>aspartyl-phenylalanine</td>
<td></td>
<td>1.20E+07</td>
<td>9.04E+06</td>
<td>5.29E+06</td>
<td>3.64E+06</td>
<td>3</td>
</tr>
<tr>
<td>glutathione disulfide</td>
<td></td>
<td>4.47E+04</td>
<td>5.03E+04</td>
<td>7.74E+04</td>
<td>1.74E+05</td>
<td>1</td>
</tr>
<tr>
<td>trypanothione</td>
<td></td>
<td>1.32E+06</td>
<td>1.25E+06</td>
<td>2.09E+06</td>
<td>2.55E+05</td>
<td>2</td>
</tr>
<tr>
<td>carbohydrates and carbohydrate conjugates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trehalose*</td>
<td></td>
<td>4.18E+04</td>
<td>5.29E+04</td>
<td>1.18E+05</td>
<td>1.87E+05</td>
<td>1</td>
</tr>
<tr>
<td>maltotriose</td>
<td></td>
<td>1.30E+05</td>
<td>2.21E+05</td>
<td>4.06E+05</td>
<td>8.18E+05</td>
<td>1</td>
</tr>
<tr>
<td>maltotetrose*</td>
<td></td>
<td>2.15E+05</td>
<td>3.97E+05</td>
<td>7.31E+05</td>
<td>1.50E+06</td>
<td>1</td>
</tr>
<tr>
<td>maltopentoase*</td>
<td></td>
<td>5.27E+05</td>
<td>9.24E+05</td>
<td>1.61E+06</td>
<td>3.84E+06</td>
<td>1</td>
</tr>
<tr>
<td>maltohexaose</td>
<td></td>
<td>7.40E+04</td>
<td>1.46E+05</td>
<td>2.78E+05</td>
<td>5.75E+05</td>
<td>1</td>
</tr>
<tr>
<td>fatty acyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-pentadecenal</td>
<td></td>
<td>8.05E+05</td>
<td>1.99E+06</td>
<td>3.95E+06</td>
<td>5.07E+06</td>
<td>1</td>
</tr>
<tr>
<td>9, 12, 15-octadecatrienal*</td>
<td></td>
<td>4.12E+05</td>
<td>7.24E+05</td>
<td>7.89E+05</td>
<td>1.40E+06</td>
<td>1</td>
</tr>
<tr>
<td>aminohexadecanoic acid</td>
<td></td>
<td>1.24E+06</td>
<td>3.28E+06</td>
<td>4.95E+06</td>
<td>6.42E+06</td>
<td>1</td>
</tr>
<tr>
<td>linoleic acid</td>
<td></td>
<td>4.13E+05</td>
<td>6.35E+05</td>
<td>8.33E+05</td>
<td>1.42E+06</td>
<td>1</td>
</tr>
<tr>
<td>N-(11Z, 14Z-eicosadienoyl)-ethanolamine</td>
<td></td>
<td>1.25E+06</td>
<td>2.24E+06</td>
<td>3.32E+05</td>
<td>1.66E+06</td>
<td>5</td>
</tr>
<tr>
<td>N-(11Z-eicosanooyl)-ethanolamine</td>
<td></td>
<td>4.26E+05</td>
<td>6.65E+05</td>
<td>1.71E+05</td>
<td>5.46E+05</td>
<td>5</td>
</tr>
<tr>
<td>glycerolipids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAG(36:5)</td>
<td></td>
<td>2.75E+05</td>
<td>6.27E+05</td>
<td>9.69E+05</td>
<td>1.49E+06</td>
<td>1</td>
</tr>
<tr>
<td>DAG(36:4)</td>
<td></td>
<td>2.41E+05</td>
<td>6.16E+05</td>
<td>1.10E+06</td>
<td>2.08E+06</td>
<td>1</td>
</tr>
<tr>
<td>DAG(36:3)</td>
<td></td>
<td>2.01E+05</td>
<td>4.02E+05</td>
<td>6.79E+05</td>
<td>1.24E+06</td>
<td>1</td>
</tr>
<tr>
<td>DAG(42:3)*</td>
<td></td>
<td>2.07E+05</td>
<td>1.87E+05</td>
<td>2.28E+05</td>
<td>3.74E+06</td>
<td>4</td>
</tr>
<tr>
<td>DAG(46:7)</td>
<td></td>
<td>1.18E+06</td>
<td>3.49E+06</td>
<td>5.64E+06</td>
<td>7.39E+06</td>
<td>1</td>
</tr>
<tr>
<td>TAG(54:7)</td>
<td></td>
<td>9.96E+04</td>
<td>1.76E+05</td>
<td>2.99E+05</td>
<td>5.63E+05</td>
<td>1</td>
</tr>
<tr>
<td>TAG(54:6)</td>
<td></td>
<td>9.75E+04</td>
<td>2.42E+05</td>
<td>2.75E+05</td>
<td>5.33E+05</td>
<td>1</td>
</tr>
<tr>
<td>TAG(54:5)</td>
<td></td>
<td>1.05E+05</td>
<td>1.34E+05</td>
<td>2.41E+05</td>
<td>4.09E+05</td>
<td>1</td>
</tr>
</tbody>
</table>
Average intensity per 25µg cell protein

<table>
<thead>
<tr>
<th>glycerophospholipids</th>
<th>day 3</th>
<th>day 4</th>
<th>day 5</th>
<th>day 6</th>
<th>pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPC(14:1)</td>
<td>1.63E+05</td>
<td>3.07E+05</td>
<td>3.41E+05</td>
<td>5.07E+05</td>
<td>1</td>
</tr>
<tr>
<td>lysoPE(18:2/1)</td>
<td>5.44E+05</td>
<td>1.00E+06</td>
<td>1.29E+06</td>
<td>2.60E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPE(18:1/1)</td>
<td>4.08E+05</td>
<td>6.25E+05</td>
<td>8.82E+05</td>
<td>1.96E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPP(20:0/2)</td>
<td>1.08E+05</td>
<td>2.45E+05</td>
<td>1.83E+05</td>
<td>3.76E+05</td>
<td>5</td>
</tr>
<tr>
<td>GPC(17:0/1)</td>
<td>1.35E+05</td>
<td>2.05E+05</td>
<td>3.70E+05</td>
<td>8.45E+05</td>
<td>1</td>
</tr>
<tr>
<td>GPC(18:3/1)</td>
<td>1.80E+06</td>
<td>3.66E+06</td>
<td>4.16E+06</td>
<td>7.79E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPC(18:2/-1)</td>
<td>2.57E+06</td>
<td>9.45E+06</td>
<td>1.41E+07</td>
<td>3.00E+07</td>
<td>1</td>
</tr>
<tr>
<td>GPC(18:1/-1)</td>
<td>1.03E+06</td>
<td>1.96E+06</td>
<td>4.49E+06</td>
<td>1.22E+07</td>
<td>1</td>
</tr>
<tr>
<td>GPC(18:0/1)</td>
<td>2.37E+06</td>
<td>3.32E+06</td>
<td>5.71E+06</td>
<td>1.58E+07</td>
<td>1</td>
</tr>
<tr>
<td>lysoPC(20:3/1)</td>
<td>4.60E+05</td>
<td>9.64E+05</td>
<td>1.44E+06</td>
<td>2.59E+06</td>
<td>1</td>
</tr>
<tr>
<td>lysoPC(20:2/1)</td>
<td>2.17E+05</td>
<td>8.20E+05</td>
<td>1.52E+06</td>
<td>3.65E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPC(22:5/1)</td>
<td>1.60E+06</td>
<td>2.76E+06</td>
<td>3.20E+06</td>
<td>5.78E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPE(18:2/-1)</td>
<td>7.03E+05</td>
<td>1.28E+06</td>
<td>2.15E+06</td>
<td>6.64E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPC(32:3/1)</td>
<td>5.42E+06</td>
<td>1.17E+07</td>
<td>1.58E+07</td>
<td>2.41E+07</td>
<td>1</td>
</tr>
<tr>
<td>GPC(32:1/1)/*</td>
<td>7.21E+06</td>
<td>1.48E+07</td>
<td>1.86E+07</td>
<td>2.55E+07</td>
<td>1</td>
</tr>
<tr>
<td>GPC(34:2/4)/*</td>
<td>7.73E+06</td>
<td>2.72E+06</td>
<td>1.47E+06</td>
<td>8.56E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPC(34:3/1)/*</td>
<td>1.94E+06</td>
<td>3.61E+06</td>
<td>5.38E+06</td>
<td>9.75E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPC(34:1)/*</td>
<td>1.81E+06</td>
<td>4.36E+06</td>
<td>6.10E+06</td>
<td>9.81E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPC(34:1/2)</td>
<td>4.93E+04</td>
<td>9.19E+04</td>
<td>1.56E+05</td>
<td>2.73E+05</td>
<td>1</td>
</tr>
<tr>
<td>GPC(36:3/1)</td>
<td>8.31E+05</td>
<td>1.36E+06</td>
<td>2.05E+06</td>
<td>3.16E+06</td>
<td>1</td>
</tr>
<tr>
<td>DMGPE(36:2/2)/*</td>
<td>3.04E+06</td>
<td>7.00E+06</td>
<td>1.02E+07</td>
<td>1.38E+07</td>
<td>1</td>
</tr>
<tr>
<td>GPE(38:1/2)/*</td>
<td>7.82E+05</td>
<td>1.12E+06</td>
<td>1.93E+06</td>
<td>2.91E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPC(36:7/2)</td>
<td>1.77E+07</td>
<td>8.26E+06</td>
<td>3.54E+06</td>
<td>1.61E+06</td>
<td>3</td>
</tr>
<tr>
<td>GPC(36:2/2)</td>
<td>3.92E+07</td>
<td>8.97E+07</td>
<td>1.31E+08</td>
<td>1.80E+08</td>
<td>1</td>
</tr>
<tr>
<td>GPC(36:1/2)</td>
<td>7.42E+06</td>
<td>1.42E+07</td>
<td>2.57E+07</td>
<td>4.08E+07</td>
<td>1</td>
</tr>
<tr>
<td>GPC(37:2/2)/*</td>
<td>4.74E+05</td>
<td>1.07E+06</td>
<td>1.59E+06</td>
<td>2.52E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPT(36:1/2)</td>
<td>1.11E+06</td>
<td>2.89E+06</td>
<td>2.61E+06</td>
<td>3.58E+06</td>
<td>5</td>
</tr>
<tr>
<td>GPC(38:2/2)</td>
<td>1.46E+06</td>
<td>3.34E+06</td>
<td>6.01E+06</td>
<td>9.48E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPC(40:10/2)</td>
<td>1.61E+07</td>
<td>6.25E+06</td>
<td>2.41E+06</td>
<td>1.31E+06</td>
<td>3</td>
</tr>
<tr>
<td>GPC(42:3)</td>
<td>2.29E+05</td>
<td>3.68E+05</td>
<td>5.41E+05</td>
<td>7.63E+05</td>
<td>1</td>
</tr>
<tr>
<td>GPC(42:0/2)</td>
<td>1.61E+05</td>
<td>7.04E+04</td>
<td>1.37E+05</td>
<td>2.74E+05</td>
<td>4</td>
</tr>
<tr>
<td>GPC(44:2/2)</td>
<td>3.37E+05</td>
<td>1.17E+06</td>
<td>1.90E+06</td>
<td>2.36E+06</td>
<td>1</td>
</tr>
<tr>
<td>GPC(46:2/2)</td>
<td>8.51E+04</td>
<td>1.72E+05</td>
<td>3.58E+05</td>
<td>4.09E+05</td>
<td>1</td>
</tr>
</tbody>
</table>

heterocyclic molecules

- indolelactate
 - 2.40E+05
- dihydrobiopterin
 - 1.61E+06

ketones and aldehydes

- aminoacetone*/
 - 6.33E+05

nucleosides and nucleoside conjugates

- cytosine
 - 4.23E+05
- hypoxanthine
 - 1.97E+05
- deoxycytidine
 - 2.58E+05

others

- diphosphate
 - 2.29E+05
- N-methylpelletierine
 - 6.41E+04
4. Objectives and Results

<table>
<thead>
<tr>
<th>Metabolites</th>
<th>Average intensity per 25µg cell protein</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>sphingolipids and sphingoid bases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-deoxy-sphinganine</td>
<td>7.66E+05</td>
<td>1.78E+06</td>
</tr>
<tr>
<td>heptadecasphinganine</td>
<td>2.03E+05</td>
<td>3.77E+05</td>
</tr>
<tr>
<td>dehydro sphinganine</td>
<td>5.47E+05</td>
<td>1.62E+06</td>
</tr>
<tr>
<td>SP(2-amino-14, 16-dimethyloctadecan-3-ol)</td>
<td>1.97E+05</td>
<td>3.43E+05</td>
</tr>
<tr>
<td>4-hydroxysphinganine</td>
<td>1.54E+05</td>
<td>4.09E+05</td>
</tr>
<tr>
<td>N, N-dimethylsphing-4-enine</td>
<td>1.66E+05</td>
<td>4.56E+05</td>
</tr>
<tr>
<td>SP(2S-dimethylaminoctadecane-1, 3R-diol)</td>
<td>9.15E+05</td>
<td>1.77E+06</td>
</tr>
<tr>
<td>N-(hexadecanoyl)-sphing-4-enine</td>
<td>4.60E+06</td>
<td>1.08E+07</td>
</tr>
<tr>
<td>N-(hexadecanoyl)-4S-hydroxysphinganine</td>
<td>1.99E+06</td>
<td>6.10E+06</td>
</tr>
<tr>
<td>N-(octadecanoyl)-sphing-4-enine</td>
<td>1.41E+05</td>
<td>4.74E+05</td>
</tr>
<tr>
<td>sterol and prenol lipids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>retinol acetate*</td>
<td>3.05E+05</td>
<td>4.31E+05</td>
</tr>
<tr>
<td>(5Z, 7E)-(1S, 3R)-23, 24-dinor-9, 10-seco…*</td>
<td>2.00E+05</td>
<td>3.37E+05</td>
</tr>
<tr>
<td>dehydro squalene</td>
<td>4.84E+05</td>
<td>9.31E+05</td>
</tr>
<tr>
<td>epoxysqualene*</td>
<td>2.21E+05</td>
<td>3.80E+05</td>
</tr>
<tr>
<td>30,32-dihydroxy-2b-methyl-bishomohopane</td>
<td>1.40E+05</td>
<td>8.12E+05</td>
</tr>
<tr>
<td>vitamins and cofactors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-methyl-THF</td>
<td>1.31E+05</td>
<td>4.47E+05</td>
</tr>
</tbody>
</table>

Metabolites are ordered by compound category; for each metabolite is shown the average intensity per 25 µg cell protein at days 3, 4, 5 and 6 and the respective metabolic profile pattern (analysis shown in Figure S2). Metabolites labelled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in Table S1 and S2.
4.7 Comparative metabolomic analyses of *Leishmania donovani* and *Leishmania major* reveal specificity in tryptophan metabolism

We have undertaken a comparative analysis of the metabolomes of promastigotes of *L. donovani* and *L. major*, species that cause visceral and cutaneous leishmaniasis, respectively. 30.7% of the identified metabolites differed between the two species, although the overall abundance of all identified metabolites was similar. Large differences were detected in some amino acids, peptides and amines, as well as with some lipids. A particularly notable finding was the differing utilization of tryptophan. The data provide clear evidence on the value of metabolomics in detecting species-specific metabolic features of *Leishmania*, thus application of this technology should aid in obtaining a better understanding of the parasite’s cell biology and also contribute to novel drug and vaccine discovery.

Unpublished results
Comparative metabolomic analyses of *Leishmania donovani* and *Leishmania major* reveal specificity in tryptophan metabolism

Ana Marta Silva¹,²,³, Anabela Cordeiro-da-Silva²,³ and Graham H. Coombs¹*

¹Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
²Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal;
³Laboratório de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, R. Aníbal Cunha n.º 164, 4050-047 Porto, Portugal;

*Corresponding author: E-mail: graham.coombs@strath.ac.uk

Short title: Metabolome of *Leishmania* species

Keywords: parasite, *Leishmania*, promastigote, metabolome, tryptophan

Abbreviations: SD, standard deviation; LC-MS, liquid chromatography mass spectrometry; ppm, parts per million; Sm, spent medium; Cm, culture medium;

Abstract

We have undertaken a comparative analysis of the metabolomes of promastigotes of *L. donovani* and *L. major*, species that cause visceral and cutaneous leishmaniasis, respectively. 30.7% of the identified metabolites differed between the two species, although the overall abundance of all identified metabolites was similar. Large differences were detected in some amino acids, peptides and amines, as well as with some lipids. A particularly notable finding was the differing utilization of tryptophan. The data provide clear evidence on the value of metabolomics in detecting species-specific metabolic features of *Leishmania*, thus application of this technology should aid in obtaining a better understanding of the parasite’s cell biology and also contribute to novel drug and vaccine discovery.
Introduction

Leishmaniasis, caused by the protozoan parasite *Leishmania*, is an important global health problem with an estimated 2 million new cases annually and some 350 million people at risk worldwide [1]. More than 20 different *Leishmania* species can cause disease [2], which ranges from self-healing cutaneous lesions to fatal visceral infections [1]. The clinical outcome of *Leishmania* infection is mainly dependent on the infecting species, but other factors such as the host immune status also play a role [2-4]. Visceral leishmaniasis is caused by *L. donovani* complex parasites while species resulting in cutaneous leishmaniasis include *L. major*, *L. tropica* and *L. mexicana*; *L. braziliensis* and *L. panamensis* are examples of species that can cause the especially debilitating condition known as mucocutaneous leishmaniasis [5]. Although the characteristics of the various forms of leishmaniasis are well known, the mechanisms underlying the differing clinical outcomes resulting from infections with the various species are not well understood. The pathogenicity of *Leishmania* is thought to be mainly determined by the parasite species itself, thus understanding how species differ at the metabolic level should provide insights into not only the innate biological variation between species but also how each is adapted for its own niche within its host.

Comparative genomics analysis of different *Leishmania* species has revealed strong conservation of gene content and synteny, with relatively few species-specific genes among *L. major*, *L. braziliensis* and *L. infantum* [6] even though the species have clear biological differences. Recent new sequencing technology has greatly facilitated the analyses of the *L. donovani* and *L. mexicana* genomes [7,8]; simultaneously details of the reference genomes of *L. major*, *L. braziliensis* and *L. infantum* were also refined [8]. These new data confirm the very small number of species-specific genes [7,8], as described before [6]. It was anticipated that discovery of species-specific genes would provide a key understanding of the differing ability of species to infect and survive in different tissues and hosts and the differing pathogenicity. A2 is one example of a species-specific gene that is required for *L. donovani* visceral infection in mice [9] and which, upon introduction into *L. major*, did impart some properties with respect to tissue tropism [10]. However, the results so far suggest that the phenotypic differences between the various species must be brought about through differential regulation of gene expression and protein function rather than simply the possession of different genes. Whilst genomics has a major role to play in revealing differences between the genomes of *Leishmania* species, it is limited in providing contextual and integrative information that is necessary to decipher the mechanisms of cellular function. In contrast, metabolites are
key in linking together the web of complex interactions, cellular pathways, molecular participants and environmental stimuli. Thus studies on the metabolomes of the various species should aid greatly in gaining an understanding of the adaptations of the individual species. The advent of improved methods for detecting and identifying metabolites has meant that the technology of ‘metabolomics’ now allows the measurement at high resolution of a cell’s metabolites. Thus it is being applied increasingly in drug discovery, disease diagnostics and treatment [11] and is now also beginning to be applied in research on parasites [12-15]. In this study, we have used an untargeted metabolomics approach to compare promastigotes of *L. donovani* and *L. major*. The data presented show that indeed there are some large differences in the levels of individual metabolites in the two species, whereas there is a high similarity between the two species in the overall metabolite profile.

Material and Methods

Leishmania parasites

L. donovani (MHOM/NP/03/BPK206/0clone10) and *L. major* (MHOM/IL/80/Friedlin) were used in this study. *L. donovani* promastigotes had been cloned from an isolate from a visceral leishmaniasis patient sensitive to pentavalent antimonials in Nepal, as described by Rijal and co-workers [16]. *L. donovani* and *L. major* promastigotes were grown in modified Eagle’s medium (designated HOMEM medium, Invitrogen) supplemented with 20% or 10% (v/v) heat inactivated fetal calf serum (PAA Laboratories) and at 26°C or 27°C, respectively. Cultures were set up initially at a concentration of 2.5×10^5 parasites/ml and *L. donovani* was sub-passaged every 6 days, while *L. major* was sub-passaged every 7 days.

Leishmania extracts for metabolite analysis

Promastigotes cultures were initiated at 2.5×10^5 cells/ml in 4 x 10 ml cultures in order to obtain cell samples from four independently growing cultures (biological replicates). Promastigotes from each culture were harvested at day 5 for metabolite extraction. The metabolite extraction was performed as previously described [12]. Briefly, promastigotes quenching was performed in a dry ice/ethanol bath with rapid temperature decrease to 2°C and then immediate transfer to ice. Two aliquots of 4×10^7 cells were taken from each culture flask (technical replicates). After centrifugation at 12000 g for 10 min at 4°C, the supernatant (designated the spent medium) was removed and stored on ice. Cell pellets were washed 3 times in 1 ml of PBS at 4°C by centrifugation at 12000 g for 10 min at 4°C.
For cell disruption and metabolite extraction, cell pellets were resuspended in 200 µl cold chloroform/methanol/water (20/60/20, v/v/v) and incubated 1 h in a Thermomixer (1400 rpm, 4°C). After centrifugation at 12000 g for 10 min at 4°C, the supernatant containing the extracted metabolites was recovered and stored at -70°C until analysed. To 75 µl of spent medium was added 300 µl of cold chloroform/methanol (20/60, v/v) followed by incubation for 1 h on ice. After centrifugation at 12000 g for 10 min at 4°C, the supernatant was recovered and stored at -70°C until analysed.

Liquid chromatography mass spectrometry (LC-MS) analysis and data processing

LC-MS analysis and data processing was done as described by t’Kindt and co-workers [12,13] except that the intensity levels of each identified peak were normalized against the protein content of the cells used in order to take into account the differing cell volumes. Intensity level ratios were used to compare the different cell lines, with the following criteria being applied for differences to be considered of interest: (i) there was at least a 2-fold difference between the *L. donovani* and *L. major*; (ii) there was a statistically significant difference (p<0.05) between the cell lines being compared. The metabolite data are expressed as intensity per 25 µg cell protein.

Statistical analysis

Statistical analysis was performed using Student’s T test: a *p* value smaller than 0.05 (*p*<0.05) was considered significant; GraphPad Prism 4 was used for plotting the graphs.

Results and Discussion

L. donovani and *L. major* cause leishmaniasis with different clinical manifestations, visceral and cutaneous, and associated pathology [4]. Some distinct differences between the two species are known, for instance the lipophosphoglycan on the surface of the promastigotes is species-specific and is thought to account for differences in the attachment to sand fly midgut and play a role in the transmission to the mammalian host [17,18]. However, genomic and transcriptomic analyses have not yet provided explanations for the distinct species-specific biology of the two species [6,19]. Thus we undertook this study in the anticipation that identification of differences between the metabolomes of the species would provide greater insights into the individual characteristics of each. The results have yielded some key details on metabolic differences between the species which start to provide a framework for understanding how each is adapted for its particular biological niche.
In analyzing the intracellular metabolites of *L. donovani* and *L. major* promastigotes after 5 days of *in vitro* culture, the metabolite intensity levels resulting from the LC-MS analysis were normalized against the protein content of the cells as this clearly differed between the two species (Table 1) reflecting differences in cell volumes.

Table 1 – Comparison between *L. major* and *L. donovani* protein content and cell density at day 5 of *in vitro* growth

<table>
<thead>
<tr>
<th></th>
<th>Cell density (× 10^7/ml)</th>
<th>Protein content (mg/10^8 cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. donovani</td>
<td>3.39 ± 0.138</td>
<td>0.371 ± 0.0023</td>
</tr>
<tr>
<td>L. major</td>
<td>3.94 ± 0.147 **</td>
<td>0.284 ± 0.0017 ***</td>
</tr>
</tbody>
</table>

L. donovani and *L. major* cell lines were seeded at 2.5 x 10^5 parasites/ml, counted daily and harvested at day 5. Protein content was determined by the Lowry method. Each value is a mean ± standard deviation from four cultures. Statistically significant differences between cell lines are indicated: ** p<0.01, *** p<0.001.

Analysis of the intracellular metabolites of *L. donovani* and *L. major* lead to the putative identification of 208 metabolites (147 at <1 ppm deviation and 61 at 1-2 ppm deviation), of which 9 were only detected in one species. Fig. 1 shows the comparative intensity ratio between *L. donovani* and *L. major* for each metabolite putatively identified; 68 metabolites (34.2% of the total number of metabolites identified in both species) differed in intensity at least 2-fold between *L. donovani* and *L. major*, although the overall intensities in the two species was similar (1.33 x 10^9 and 1.46 x10^9, respectively).
4. Objectives and Results

Figure 1. Overview of intracellular metabolite levels comparison between *L. donovani* and *L. major* promastigotes. *L. donovani* and *L. major* promastigotes were harvested after 5 days of *in vitro* growth and cell extracts analyzed by LC-MS. All metabolites within the 2 ppm cut-off are included and following a logarithmic transformation (base 2) the average signal intensity ratios of *L. donovani* / *L. major* for all metabolites were plotted. Dotted lines represent the fold-change cut-off in this study for a given metabolite profile being considered to be significantly different between *L. donovani* and *L. major*: log₂ (metabolite intensity ratio) below -1 or above 1 indicates a 2-fold change between cell lines compared. The metabolites differing at least by 2-fold between *L. donovani* and *L. major* promastigotes were 34.2% of the metabolites identified.

Metabolites from a wide range of categories were detected, with glycerophospholipids and amino acids being the most represented, followed by sterols and prenol lipids, fatty acyls and carbohydrates (Fig. 2). Glycerolipids is the only group of compounds for which the overall intensity differs remarkably between *L. donovani* and *L. major* promastigotes (4-fold higher in *L. major*) (Fig. S1). The full list of putatively identified metabolites are provided in Tables S1 and S2.
In analyzing the differences between *L. donovani* and *L. major*, we concentrated upon the metabolites that differed by at least 2-fold between the two species and for which a statistical significant difference (p<0.05) was observed. From a total of 61 metabolites that met these criteria (30.7% of all the metabolites identified in both species), 67.2% were due to a higher abundance in *L. donovani*. The two categories of compounds most represented in this group of metabolites were glycerophospholipids and amino acids (Fig. 3).

Figure 2. Distribution of the identified intracellular metabolites by compound category. *L. donovani* and *L. major* promastigotes were harvested after 5 days of *in vitro* growth and cell extracts analyzed by LC-MS. All identified intracellular metabolites were grouped by compound category. For each category compound is indicated the % of compounds identified.

Figure 3. Metabolites significant different between *L. donovani* and *L. major*. *L. donovani* and *L. major* promastigotes were harvested after 5 days of *in vitro* growth and
4. Objectives and Results

cell extracts analyzed by LC-MS. Differences between *L. donovani* and *L. major* promastigotes were based on average intensity per 25 μg cell protein ratios between the two cell lines, with a 2-fold difference being required for inclusion in the dataset.

The significant differences observed between *L. donovani* and *L. major* are detailed in Fig. 4. Large differences were found between the two species in the abundance of some lipids, amino acids and derivatives. All glycerophospholipids identified as differing between the two species were present in higher levels in *L. donovani*, while the majority of significant metabolites identified as sterol or prenol lipids were detected in higher levels in *L. major*. Some of the most interesting differences detected concern amino acids and their metabolites. For example, proline, arginine and tryptophan were detected in higher levels in *L. major* than in *L. donovani* while homoserine, glutamine, aspartic acid and numerous aspartyl peptides were more abundant in *L. donovani*. Intracellular proline levels were higher in *L. major* than in *L. donovani*, the reverse being the case for glutamine; but there were no differences in the intracellular levels of glutamate (Fig. 4). Related to this, it was found that the levels of glutamic acid in the spent media were remarkably lower for *L. major* than for *L. donovani* (Table 2). Recent data for *L. mexicana* promastigotes suggest that glutamate uptake is minimal under standard *in vitro* culture conditions; the same study also suggested that the internalized glutamic acid is primary used for anabolic than catabolic functions as a precursor of other amino acids such as proline and glutamine [20]. Proline, however, can also be oxidized to glutamic acid and used as an energy substrates in *Leishmania* [21]. Thus our study has demonstrated clearly that there are some distinct species differences in amino acid metabolism and this suggests that further analysis should be undertaken to understand fully the subtlety of the species-specific metabolism of proline and glutamate. The higher levels of intracellular arginine and ornithine detected in *L. major* when compared to *L. donovani* (Fig. 4) may reflect differences in polyamines requirements and/or a higher rate of polyamines production in *L. major*. Arginine, as a polyamine biosynthesis precursor, is an essential amino acid [22] and *Leishmania* needs to acquire it from the medium. The finding that *L. major* promastigotes uptake more arginine from the culture medium than do *L. donovani* promastigotes (Table 2) is consistent with the higher intracellular levels of arginine and ornithine and also a potential difference in the production of polyamines and trypanothione.
Figure 4. Intracellular metabolites with significantly different profiles between *L. donovani* and *L. major* promastigotes. The average signal intensity ratio of *L. donovani* / *L. major* for metabolites at significantly different levels identified using 1 ppm deviation.
cut-off (A) or identified between 1 to 2 ppm deviation (B) were plotted following a logarithmic transformation (base 2). Metabolites labeled with * represent peaks with multiple potential identifications, for which just one is shown in this figure but the full list is given in the Supporting Information. Dotted lines represent the adopted cut-off for significant changes in a given metabolite profile: \(\log_2 \) (metabolite intensity ratio) below -1 or above 1 indicates a 2-fold change between the cell lines compared. All metabolites shown were statistically significant different between \(L. \) donovani and \(L. \) major.

Table 2 - Comparison of metabolites levels detected both in spent medium and culture medium of \(L. \) donovani and \(L. \) major promastigotes at day 5 of \textit{in vitro} growth

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Cm</th>
<th>Sm</th>
<th>(\log_2) (Sm/Cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>glutamine</td>
<td>5.01E+06</td>
<td>5.34E+06</td>
<td>-0.70</td>
</tr>
<tr>
<td>glutamic acid</td>
<td>2.62E+06</td>
<td>1.95E+06</td>
<td>-1.82</td>
</tr>
<tr>
<td>arginine</td>
<td>8.99E+06</td>
<td>9.10E+06</td>
<td>-0.43</td>
</tr>
<tr>
<td>tryptophan</td>
<td>4.51E+06</td>
<td>4.49E+06</td>
<td>-0.39</td>
</tr>
</tbody>
</table>

\(L. \) donovani and \(L. \) major cell lines were seeded at 2.5x10^5 parasites/ml and 5 days after \textit{in vitro} growth spent culture medium (Sm) was harvested and analyzed by LC-MS. The data are the intensities obtained from the 5 µl samples of extracted supernant analyses as described in Material and Methods. Metabolite levels detected in Sm were compared with intensity levels detected in the initial culture medium (Cm); \(\log_2 \) (Sm/Cm) below -1 or above 1 indicates a 2-fold change between the samples compared.

Another interesting observation was the facts that \(L. \) major promastigotes had higher amounts of intracellular tryptophan and, remarkably, there was 180-fold lower level of this amino acid in the spent culture medium (Sm) of \(L. \) major compared with that of \(L. \) donovani (Table 2 and Fig. 5). Comparison with the culture medium (Cm) itself shows that tryptophan appears to be taken up extensively by \(L. \) major but not at all by \(L. \) donovani. Tryptophan is an essential amino acid in mammals but little is known about its metabolism in \textit{Leishmania}. It was reported that it is not used as a carbon energy source by \(L. \) donovani but that it is catabolised to indole-3-lactate [23], the latter pathway was also predicted from the genome analysis of \(L. \) major [21]. Indole-3-lactate levels were, however, very similar in \(L. \) major and \(L. \) donovani and also in their Sm (Fig. 5). Another major catabolic route for tryptophan in some cells is via kynurenine to generate kynurenic
acid, anthranilate or NAD [24,25]. However, these metabolites also were at similar levels in the two species and their Sm. Indeed, a recent report has shown that *L. infantum* is a NAD⁺ auxotroph and relies on the environmental supply of exogenous precursors to synthesize NAD⁺ by a salvage pathway [26]. They showed that the parasite cannot perform de novo synthesis and that addition of exogenous tryptophan had no effect on the intracellular NAD⁺ content [26]. Our data, however, showing different metabolic patterns for *L. donovani* and *L. major* (Table 2 and Fig. 5) reveal some marked differences in the uptake or release of the metabolites by the two species. Most dramatic is the finding that the tryptophan levels in the Sm of *L. major* were about 240-fold lower than in the initial culture medium, while no significant changes were detected for *L. donovani* (1.3-fold lower). Thus there was a remarkable uptake of tryptophan by *L. major* promastigotes. These two metabolites were also higher in *L. major* cell extracts compared with those of *L. donovani* (Fig. 4). Furthermore, differences between the lines were found for metabolites that potentially are produced from tryptophan (Fig. 5), suggesting possible differences in the route used by the parasites to metabolize this amino acid. Kynurenine and anthranilate were present in lower levels in *L. major* Sm while indole-3-lactate and kynurenic acid were at greater levels in *L. major* Sm (Fig. 5). These data strongly suggest that there are species differences in this area of metabolism with *L. major* having greater metabolic capacity than *L. donovani* or *L. infantum*, however further analysis is required to obtain a full understanding of this variation.

Overall the differences in the amino acids levels in *L. donovani* and *L. major* presumably reflect the differing metabolism of the species, but this also will be affected by the conditions. Snapshot data such as those obtained in this study always have to be interpreted carefully and the recent demonstration that de novo synthesis of serine, glycine and proline was repressed in the presence of exogenous amino acids provides a good example of the complex interplay that exists [20]. However, the data that we have generated so far provide a framework within which to conduct the further studies.

Another interesting difference detected between the two species in this analysis is the higher abundance of aspartyl dipeptides in *L. donovani* than in *L. major* (Fig. 4). The explanation for this is unclear, but it seems likely that they result from the activity of dipeptidases about which little is known currently but presumably they may be important components of the hydrolysis of proteins and the differing levels between the two species suggest that these are not identical in the two species.
4. Objectives and Results

Figure 5. Comparison of tryptophan and derivative metabolite levels between *L. donovani* and *L. major* promastigotes. *L. donovani* and *L. major* promastigotes were harvested after 5 days of *in vitro* growth and cell extracts (E) or spent media (Sm) analyzed by LC-MS; initial culture medium (Cm) was also analyzed by LC-MS. Intensity levels of tryptophan and derivatives (indole-3-lactate, kynurenine, anthranilate, NAD, kynurenic acid) are shown. Graphs within boxes represent metabolites for which at least a 2-fold difference between *L. donovani* and *L. major* was observed. Key: dotted line, multiple steps; dotted arrow, not reported in *Leishmania*; values above the bars correspond to the average intensity ratio between *L. donovani* and *L. major* following logarithmic transformation (base 2) for E, Sm or Cm. Data are means from four biological replicates ± standard deviation.

Much of the current knowledge about *Leishmania* metabolic pathways has been inferred from the genome sequences and is based on what occurs in other organisms, so it is necessary to obtain experimental evidences to confirm the functioning of the described pathways or gain insights into possible new ones. This study is a step towards this goal.
although further analyses, especially involving amastigotes, are required in order to discover all of the crucial components of each *Leishmania* species that lead to the distinctive clinical outcomes.

Acknowledgments

We thank: Malcolm McConville and colleagues (Melbourne) for excellent guidance on the methods of sample preparation for the metabolomics analyses; Ruben t’Kindt (ITM, Antwerp, and Strathclyde) for assistance with the sample preparation method for the metabolomics analyses; Dave G Watson and Alex Zhang (Strathclyde) for help with the LC-MS technology. The study was supported by Fundação para a Ciência e Tecnologia (FCT) project number PTDC/CVT/65047/2006 and AMS is supported by FCT grant SFRH/BD/28316/2006.

References

Supporting Information

Figure S1. Overall intracellular metabolite levels for each compound category in *L. donovani* and *L. major* promastigotes. Sum of total intracellular metabolite intensities from *L. donovani* and *L. major* promastigotes identified by LC-MS analysis at day 5 of *in vitro* growth grouped by compound categories: vitamins and cofactors, sterol and prenol lipids, sphingolipids (SL) and sphingoid bases, organic acids, nucleosides and nucleoside conjugates, ketones and aldehydes, heterocyclic molecules, glycerophospholipids, glycerolipids, fatty acyls, carbohydrates and carbohydrate conjugates, amino acids and amino acid conjugates.
Table S1 – Metabolites identified below 1 ppm deviation in samples of *L. donovani* and *L. major* promastigotes at day 5 of *in vitro* growth. For each compound the following information is shown: ionisation (ESI) mode; detected mass; retention time (min); putative metabolite identification; ppm deviation between detected mass and theoretical mass of the putative metabolite identified; intensity per 25 µg cell protein for each sample; average intensity per 25 µg cell protein in each cell line; standard deviation in each cell line; ratio of average intensity per 25 µg cell protein between the different cell lines; Student’s T test *L. donovani* versus *L. major* indicating whether or not there was a statistically significant difference; decision on whether or not the compound was significantly changed in level based on a two-fold or higher average difference in signal intensity and statistical significant (*p*<0.05) between *L. donovani* and *L. major*; compound category.

Table S2 – Metabolites identified between 1-2 ppm deviation in samples of *L. donovani* and *L. major* promastigotes at day 5 of *in vitro* growth. The data presented are as described for Table S1.

Tables S1 and S2 are available in the electronic version of the thesis.
Leishmaniasis, a vector-borne parasitic disease that affects millions of people, mainly the world’s poorest ones, is considered a neglected tropical disease, together with other infections such as Chagas disease and schistosomiasis. The fact that the number of annual deaths does not mirror the impact in the populations is the main reason why neglected tropical diseases have been neglected as important public health threats. Although, taking into account that this group of diseases elicits chronic morbidity without causing death, leading to millions of disabled people, the level of importance is equivalent to other diseases such as malaria or HIV/AIDS. The lack of economic opportunity offered by neglected tropical diseases to multinational pharmaceutical companies, as the diseases occur almost exclusively in developing countries, has contributed to the slow progress in the development of new diagnostic tools, drugs and vaccines that could lead ultimately to the eradication of the diseases. Thus as an aid to tackling these devastating diseases, researchers have embarked on the study of the parasites’ cell biology and evaluation of the strategies and requirements necessary for the parasites to invade successfully, survive and persist inside mammalian hosts.

In the recent years many progresses have been achieved in Leishmania research, both due to the annotation of the genome sequence of different Leishmania species and the development of tools such as proteomics and metabolomics and the application of these to the study of the parasite. The primary goal underlying the comparison of Leishmania genomes has been the search for species-specific genes that could explain the differences in the clinical outcome induced by visceral and cutaneous species. Surprisingly, however, just a few species-specific genes were identified, highlighting the fact that Leishmania parasites possess other means such as regulation of protein expression by post-translational modifications that are crucial for adaptation to different environments during its life cycle. In addition, the recent genome analyses describe other ways by which Leishmania species can differ rather than by the absence or presence of certain genes. Variations in chromosome copy number or gene dosage are potential contributors for Leishmania genetic plasticity and diversity. Leishmania genome plasticity had been previously experienced during attempts to delete essential genes or in drug resistance strains, but aneuploidy was recently reported as a natural genomic feature in different Leishmania species. As the parasite regulates protein expression mainly at post-transcriptional levels, proteomics should provide insights into the mechanisms of differentiation, virulence and drug resistance. Indeed, proteomics analysis has been used to compare the protein expression profiles of different Leishmania developmental stages, to investigate protein secretion, to carry out serum protein profiling during visceral leishmaniasis, to
identify novel antigens for development of new diagnostic tools and vaccines and to investigate the changes in protein expression in attenuated or drug-resistant cell lines. However, the methods need to be developed further since using the current ones results in membrane proteins being under-represented and the lack of sensitivity leads to the over-representation of the most abundant proteins. Metabolomics, now seen as an emergent area in the study of parasites, mainly due to the development of new methods and use of better technology, has been quite extensively applied to study other diseases, such as cancer, with the aim of identifying disease biomarkers for establishing preventative or therapeutic approaches. Since the interaction between metabolites and specific targets is dynamic, an integrated analysis of metabolomics and other -omics may provide an excellent opportunity to detect changes not possible to determine when studying just one component of the cell by itself. It is thought that metabolomics approaches will allow the detection of subtle changes in the cell biology of the parasite that are crucial for its adaptation and survival but that would not be detected by other means. Although, the challenges posed by an integrative analysis are enormous, mainly due to the high flux and rapid turnover of metabolites, the potential of this kind of approach for improving the understanding of *Leishmania* cell biology are also huge, since it is expected to provide a "real time picture" of "what is happening" in a cell under different situations.

On the other hand, recent advances in understanding the parasite-host interaction have elucidated the role of different cells and molecules of the immune system during the early phase of *Leishmania* infection, this is particularly important as the nature of the early parasite-host interactions will influence the parasite-specific adaptive immune responses and ultimately the outcome of the disease (reviewed by Kaye P. and Scott P.). Furthermore, the generation of transgenic parasites expressing firefly luciferase and/or fluorescent proteins have expanded the capacity to detect and quantify the parasite in different experimental situations, in particularly the *in vivo* imaging of the transgenic parasites in a live host, which can be used to screen potential chemotherapy drugs and vaccines. Vaccines formulations comprising the whole live, killed, attenuated or genetically modified parasites and also recombinant proteins have been evaluated, alone or in the presence of adjuvants and using different delivery systems. Even though considerable progresses in the understanding of the mechanisms involved in protective immunity have been made, the lack of correlation between vaccine efficacy in the mouse model and humans is still a major problem. Experimental vaccines have frequently failed to confer significant protection against natural exposure in people, suggesting that the parameters considered such as the generation of Th1 responses and the reduction of
lesion size and/or parasite number following mice infection may not necessarily mimic the requirements for protection against natural transmission in humans.

Advances in the understanding of *Leishmania* cell biology and the nature of the parasite-host interactions have been great in recent years, nevertheless there is no human vaccine currently available and chemotherapy is far from being satisfactory, with associated high costs and an alarming increase in drug resistance84-86.

In this study were used different approaches to gain insights into the role of TDR1 in visceral species of *Leishmania*, *L. infantum* and *L. donovani*. TDR1, first identified in *L. major*, shows high conservation within the different *Leishmania* species, suggestive of an important role in the parasite. TDR1 possesses an unusual two domain nature with active sites characteristic of Grx and GSTO and is able to use GSH as the reductant to catalyze thiol transferase and dehydroascorbate reductase activities. The enzyme was implicated in the activation of pentavalent antimonials by its reduction to the toxic form, although this was not shown to occur *in vivo*90. Indeed, analysis of TDR1 gene expression in *L. braziliensis* and *L. guanyensis* parasites isolated from patients with different antimonial treatment outcomes showed no differences in the expression levels576, although this result should be interpreted with caution as mRNA levels often do not mirror protein expression in *Leishmania*. Another enzyme identified in *L. major*, an arsenate reductase known as ACR2, was reported to be involved also in pentavalent antimonial reduction and expression in *L. infantum* promastigotes led to an increase in the sensitivity of intracellular amastigotes to the drug91. The ability to reduce pentavalent antimonials clearly could only be a side-activity of TDR1’s main role in the cell. There is high similarity between TDR1 and a *T. cruzi* enzyme named Tc52, which was previously reported as an excreted/secreted protein able to modulate the host’s immune response to infection and consequently considered a virulence factor555, 577. Moreover, deletion of both Tc52 alleles was not possible showing the essentiality of the gene for parasite survival578. These findings led us to investigate whether TDR1 could have a similar role in *Leishmania* parasites, through the evaluation of the immune response induced by the recombinant protein and its potential to elicit protection in Balb/c mice from infection with *L. infantum* promastigotes. In addition, in order to get definitive data on the role of TDR1 in visceral *Leishmania* species (*L. infantum* and *L. donovani*), we attempted to generate TDR1 null mutants by homologous recombination, a strategy commonly used to delete *Leishmania* genes249 to study their role. This is the most common approach with this parasite, as interference RNA (RNAi) does not operate in these parasites, apart from *L. braziliensis*, due to the lack of RNAi machinery579.
As reported previously for *L. major*\(^{90}\), TDR1 expression in *L. infantum* parasites is higher in the amastigote forms, which could indicate a specific role for the protein in the intracellular stage of the parasite [Chapter 4, section 4.2]. Moreover, we have detected TDR1 in *L. infantum* promastigotes and amastigotes spent medium, which could suggest a role for TDR1 in the interaction with the host. Recently was shown that *Leishmania* release exosomes which contain a surprisingly large number of proteins from a wide range of cellular pathways\(^{279}\) and thus TDR1 may be included in these structures although it was not found in the study\(^ {279}\). Balb/c immunization with rTDR1 led to an increase in CD8-T cell splenic population and a decrease in IL-10 production in the chronic phase of infection; however this was not sufficient to elicit high levels of protection. The high levels of IgG1 in the serum of rTDR1-immunized mice suggest a dominance of Th2 response, resulting in weak protection against infection, although the role of antibodies in *Leishmania* infection is still controversial. In many cases, purified antigens are weak immunogens and the immune response generated is not of a sufficient magnitude to confer immunity. We have attempted to enhance the levels of protection induced by TDR1 through the use of an adjuvant, CpG, and a DNA vaccine encoding the protein, which lead to the expression of *Leishmania* antigens folded in its native conformation, potentially with unaltered antigenicity, stimulating both cellular and humoral immune responses due to the ability of DC to present the encoded antigen in the context of MHC class I and MHC class II\(^{117}, 147\). However, neither immunization of rTDR1 in the presence of CpG or delivery as a DNA vaccine improved the levels of protection obtained with the protein alone [Chapter 4, section 4.2]. Clearly TDR1 does not have a significant effect on the immune response to infection as that observed for *T.cruzi* Tc52, whose similarity led us to perform this study, showing that it has a different role in the parasite and host-parasite interaction.

The generation of viable *L. infantum* and *L. donovani* TDR1 null mutants has shown that the gene is not essential in either species [Chapter 4, sections 4.3 and 4.4] and highlighted a “new reality” in the genomic plasticity and diversity of *Leishmania* parasites, which clearly demonstrates the existence of aneuploidy as a natural genomic feature more common than reported previously; indeed the *Leishmania* genome has been considered to be predominantly diploid. Deletion of *L. donovani* TDR1 was only achieved after 3 rounds of transfection due to the presence of three copies of the gene, while *L. infantum* TDR1 null mutants were obtained after 2 and 4 rounds, suggesting variable ploidy in the *L. infantum* population. Previous studies have reported aneuploidy during attempts to delete genes by homologous recombination, described as a strategy used by *Leishmania* parasites to maintain essential genes\(^{252-254}\); clearly not the case of TDR1 gene; with exceptions of *L. major* chromosome 1 trisomy\(^ {250}\) and chromosome 31
tetraploidy. Leishmania genomic plasticity through chromosome copy number variation as a natural genomic feature was not suggested until Sterkers and co-workers described a phenomenon, named chromosomal moisacism, in which every chromosome was observed in at least 2 ploidy states. Subsequently, genome sequence analysis of L. donovani and L. braziliensis as well as new refined versions of L. major, L. infantum and L. braziliensis genomes, using improved technologies, allowed the detection of genomic features not described in the previous genome sequence analysis and provided evidence for natural aneuploidy. The consequences of chromosome and gene copy number variations are not yet fully understood, but this feature of the Leishmania genome shows that evolution is driven by large structural changes, which are generally detrimental for other organisms. Clearly this is not so for Leishmania, which copes well with aneuploidy and presumably takes advantage from it. This unusual variation is not only observed between species but also among strains and is likely to be important in the ability of Leishmania to cause disease and also be involved in drug resistance.

Generation of the L. donovani TDR1 null mutant and respective add-back cell lines, necessary to control for any phenotypic changes not due to the gene deletion, allowed the analysis of L. donovani phenotype in the absence of TDR1 [Chapter 4, section 4.4]. Based on TDR1 in vitro activities and similarities to GSTO, a natural approach was to test the susceptibility of TDR1 null mutant parasites to oxidative and nitrosative stress as well as to metal-related compounds. GSTs play a key role in the detoxification of a wide range of toxic molecules, including products resulting from oxidative stress as well as exogenous products such drugs, through the conjugation with GSH. In order to survive, Leishmania parasites need to cope with the macrophage oxidative burst, thus it could be predicted that an enzyme with such characteristics as TDR1 would play an important role in the parasite’s survival against this. However, TDR1’s similarity with GSTO lead us to predict that TDR1 may have another role in the cell, as this class of GSTs possess characteristics of Grxs. Indeed, TDR1 null mutants did not show an increase in susceptibility to oxidative and nitrosative stress, demonstrating that TDR1 is not involved in the parasite’s defense against this kind of stresser. In fact this result was not unexpected since the parasite has a wide range of proteins, such as tryparedoxins, tryparedoxin peroxidase, trypanothione S-transferase, ascorbate peroxidase, and also low molecular mass thiols, which have a crucial role in the parasite antioxidant defense. Although, TDR1 null mutants were more sensitivity to trivalent antimony and trivalent arsenite than the WT parent cell line, which could suggest an involvement of TDR1 in drug detoxification, no differences were detected in the susceptibility of Leishmania infected
macrophages to treatment with SSG and thus the results did not support the role of TDR1 in drug reduction and activation nor as a detoxifying enzyme.

The opportunity to evaluate the changes induced by TDR1 deletion in L. donovani promastigotes through the use of an untargeted metabolomics approach facilitated the detection of changes that suggested TDR1’s involvement in the redox regulation of enzymes. As mentioned above, untargeted metabolomics provides a “real time picture” of the cell and thus changes that would not be detect by other techniques or not considered as a hypothesis are likely to be identified. This is particularly relevant to situations in which major phenotypic differences are not observed after gene deletion due to the fact that the cell is able to cope with the subtle changes and the approach has a lot to offer in understanding how cells adapt to different challenges.

Analyses of the TDR1 null mutant metabolome revealed few but specific changes in the levels of metabolites participating in Leishmania energy and amino acid metabolism, consistent with a possible role of TDR1 in enzyme redox regulation. In other organisms, metabolic reconfiguration has been attributed to the inactivation of enzymes through S-glutathionylation, a post-translational modification which is promoted and readily reversed by Grxs and GSTs. S-glutathionylation induces functional changes in target proteins, either activation or inhibition, leading to alteration of cellular pathways in response to oxidative stress. Moreover, S-glutathionylation can occur under physiological conditions as a redox-regulatory mechanism. The use of protein post-translational modifications by Leishmania parasites fits well with the fact that the parasite seems genetically pre-adapted to the different life stages, supported by the high degree of genome conservation and synteny between the different Leishmania species and the identification of few species-specific genes despite the distinct clinical outcomes. Rosenzweig and co-workers have reported the use of post-translational modifications such as phosphorylation and methylation during L. donovani differentiation. Thus, it seems entirely feasible that the parasite uses S-glutathionylation to regulate the expression of certain enzymes, depending on the environmental conditions, as a mechanism to cope with changes in nutrient availability, temperature and pH among others, and to survive successfully in different hosts. Although S-glutathionylation has been extensively reported to occur in mammals, plants, yeast, green algae, and also in P. falciparum and T. brucei, the effect of S-glutathionylation on enzyme activity and subsequently cellular function in vivo remains to be elucidated and this type of modification has not yet been reported in Leishmania. Indeed, we were able to add experimental support to our metabolomics driven hypothesis, by the demonstration
that TDR1 is able to catalyse the reduction of glutathionylated protein and peptide substrates in vitro. Although, TDR1 can efficiently catalyze deglutathionylation, the low affinity for the peptide used in this study compared with Leishmania Grx1, suggests substrate specificity and thus the involvement of TDR1 in the regulation of specific enzymes, a characteristic already reported for T. brucei and Chlamydomonas reinhardtii Grxs. This may explain why many organisms have a specialized set of glutaredoxin isoforms located in various cellular compartments and with distinct roles.

The fact that the TDR1 null mutant was able to infect macrophages in vitro and mice as well as the WT parent line shows that the gene is not essential for parasite virulence and survival, even though changes at a metabolome level were detected. Indeed, the growth conditions used for the L. donovani TDR1 null mutant (a rich medium, where both glucose and amino acids are abundant) may have masked the effect of gene deletion, and the metabolic re-configuration that we discovered as an adaptation mechanism for survival may not be possible in the natural Leishmania environment, when glucose or amino acids are scarce.

Throughout the development of the work presented in this thesis, metabolomics analysis applied to Leishmania parasites undertook an enormous evolution which involved improvements in the experimental protocols enabling the extraction of Leishmania promastigotes metabolites, together with the increase in sensitivity and resolution of LC-MS and also the development of software to help in the identification of Leishmania metabolites. Despite not initially being part of the thesis work plan, the opportunity to apply this new methodology to characterize the TDR1 null mutants, as described above, brought clear advantages to the study. Thus, we have carried out the characterization of L. donovani WT promastigotes development in vitro [Chapter 4, section 4.6] as well as a comparison between a visceral (L. donovani) and a cutaneous (L. major) Leishmania species [Chapter 4, section 4.7] at a metabolome level, although the latter is still work in progress.

Analysis of L. donovani promastigotes during in vitro growth, particularly following the changes that occur as the parasite differentiates from procyclic (logarithmic phase) to metacyclic forms (stationary phase), should provide valuable information on the requirements for the development of Leishmania infective forms and consequently lead to a better understanding of the mechanisms underlying a successful differentiation into the intracellular amastigote forms. Indeed, we were able to show that the metabolome of L. donovani promastigotes undergo significant changes, supporting the existence of different
5. Discussion and Perspectives

developmental promastigotes stages590, related with adaptations to the nutrient availability and also metacyclogenesis, which includes some known biochemical changes such as lipophosphoglycan and surface protein expression, vital for a successful transmission to the mammalian host17, 591-594. Promastigotes in logarithmic phase were significantly distinct from stationary phase parasites reflecting, as expected, two different populations from active to non-dividing cells. Parasite remodelling was highlighted by the significant structural changes observed in glycerophospholipids and increase in sphingolipids, already shown to be essential for parasite differentiation335. Furthermore, it was possible to link some of metabolome data with previous results obtained either through genomic or proteomic analysis, increasing our knowledge about the changes underlying promastigotes development. The data that were obtained clearly support the concept of studying \textit{Leishmania} and other parasites through the use of an -omics integrative approach.

Overall, the study detailed in this thesis has generated important information about the potential role of TDR1 \textit{in vivo} and also the application of new metabolomes approaches to characterize \textit{Leishmania} null mutants as well as different developmental stages of the parasite.

Following this work, further investigation should address the importance of TDR1 as a deglutathionylating enzyme \textit{in vivo}, through the identification of TDR1-specific target proteins and the effect of TDR1 on the target proteins' activities. This will elucidate whether \textit{Leishmania} employs S-glutathionylation for regulatory or protection purposes. This has not yet been reported for \textit{Leishmania}, but has been reported to occur in a wide range of organisms including \textit{P. falciparum} and \textit{T. brucei} parasites. Such analyses would also be likely to prove a new role for the considerable levels of free glutathione that occur in trypanosomatids. These organisms differ from others in possessing trypanothione as their main low molecular weight thiol. This leads to the inevitable question, yet to be resolved, of whether trypanothione can form a mixed-disulfide bridge with an accessible free thiol on a protein, protecting specific cysteine residues from irreversible oxidation, or modulating protein activities.

Undoubtedly a better understanding of how the parasite regulates many cellular processes through the use of post-translational modifications such as S-glutathionylation will lead to a rethink of the ways in which we can challenge the parasite through exploiting new drug targets.

32. Kamhawi S, Modi GB, Pimenta PF, Rowton E, Sacks DL. The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled
36. Rogers ME, Chance ML, Bates PA. The role of promastigote secretory gel in the origin and transmission of the infective stage of *Leishmania mexicana* by the sandfly Lutzomyia longipalpis. Parasitology 2002 May;124(Pt 5):495-507.
38. Dantas-Torres F. The role of dogs as reservoirs of *Leishmania* parasites, with emphasis on *Leishmania* (*Leishmania*) *infantum* and *Leishmania* (*Viannia*) braziliensis. Vet Parasitol 2007 Nov 10;149(3-4):139-46.

53. Rougeron V, De Meeus T, Kako Ouraga S, Hide M, Banuls AL. "Everything you always wanted to know about sex (but were afraid to ask)" in *Leishmania* after two decades of laboratory and field analyses. PLoS Pathog 2010;6(8).

123. Amaral VF, Teva A, Oliveira-Neto MP, Silva AJ, Pereira MS, Cupolillo E, et al. Study of the safety, immunogenicity and efficacy of attenuated and killed *Leishmania*

137. Coler RN, Goto Y, Bogatzki L, Raman V, Reed SG. Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells. Infect Immun 2007 Sep;75(9):4648-54.

221. Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR. Genomic and proteomic expression analysis of *Leishmania* promastigote and amastigote life stages: the

360. Boitz JM, Ullman B. Amplification of adenine phosphoribosyltransferase suppresses the conditionally lethal growth and virulence phenotype of *Leishmania*.

Bibliography

413. Wilkinson SR, Meyer DJ, Taylor MC, Bromley EV, Miles MA, Kelly JM. The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin. J Biol Chem 2002 May 10;277(19):17062-71.

