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Abstract 

Modern medicine has been widely using imaging as a fundamental tool to aid 

in diagnosis procedures, monitoring the evolution of pathologies and the planning of 

treatments and surgeries. Myocardial perfusion is commonly studied through the 

evaluation of the left ventricular function using stress-rest gated myocardial 

perfusion single photon emission computed tomography (SPECT). SPECT provides a 

suitable identification of the myocardial region, facilitating both the identification 

and localization of perfusion abnormalities. A suitable performance of semi- or full 

automated methods for intra- or inter-modality registration and automated methods 

for computer quantification of LV functional abnormalities can minimize inter- and 

intra-observer variability and increase the reproducibility, which have an important 

role in risk stratification and selection of the best treatment strategy. 

Here, computational techniques of medical image analysis, mainly of image 

registration, are integrated in a computational solution to automatically compute a 

set of features from myocardial perfusion SPECT images and use them to statistical 

analysis and classification of patient exams as from a healthy patient or with an 

associated disease. The image registration algorithms used, including the 

transformation, similarity measure, optimization and interpolation algorithms, will 

be described and discussed, as well as the computational processing, analysis and 

classification techniques employed. Experimental results will be presented and 

discussed.  

Keywords: Image registration, image processing and analysis, image segmentation, 

image classification, myocardial perfusion SPECT images.  
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Resumo 

A medicina moderna tem vindo a utilizar a imagiologia como uma ferramenta 

fundamental no apoio aos procedimentos de diagnóstico, monitorização da evolução 

de patologias e planeamento de tratamentos e cirurgias. A perfusão do miocárdio é 

comummente estudada através da avaliação da função do ventrículo esquerdo (VE) 

usando a tomografia computorizada por emissão de um único fotão (SPECT) com 

acoplamento ao sinal electrocardiográfico em estado de esforço físico e de repouso. 

A SPECT permite identificar a região do miocárdio, facilitando a identificação e 

localização de anormalidades de perfusão. Uma performance adequada de métodos 

semi ou completamente automáticos para o alinhamento inter- e intra-modalidades, 

e também de métodos automatizados para a quantificação computorizada das 

anormalidaes funcionais do VE, podem minimizar a variabilidade intra- e inter-

observador, aumentando a reprodutibilidade que é fundamental para a 

estratificação do erro e selecção da melhor estratégia de tratamento.  

Nesta dissertação, técnicas computacionais de análise de imagem médica, 

principalmente de alinhamento de imagem, são integradas numa solução 

computacional que automaticamente calcula um conjunto de características de 

imagens SPECT de perfusão do miocárdio. Estas são utilizadas para análise 

estatística e classificação dos pacientes como estando associados a pacientes 

saudáveis ou com doenças cardíacas associadas.  

Palavra-chave: Alinhamento de imagem, processamento e análise de imagem, 

segmentação de imagem, classificação de imagem, imagens SPECT de perfusão do 

miocárdio. 
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Chapter 1  

Introduction 

1.1. Motivation & Goals 

Modern medicine has been widely using imaging as a fundamental tool to aid 

in diagnosis procedures, monitoring the development of disease and planning 

treatment or even surgeries. Thus, it became a key element to support medical 

decision making through non-invasive procedures. In the last years, deep researches 

and developments have been increasing lead to a higher number of information types 

that can be acquired from such diagnostic tool. 

Image registration computer techniques enable the integration of different 

medical image modalities and the easier detection of changes between images 

acquired from different points of view, different acquisition times or even with 

subject atlas to attain prior anatomic or functional information. It stresses changes 

in size, shape or image intensity over time, and relates both preoperative image and 

surgical plans to the physical reality of patients during intervention and aligns 

patient’s anatomy to a standardized atlas. 

Techniques of image registration aim the establishment of spatial 

correspondence with the goal of find the optimal transformation that best aligns the 

structures of interest in the input images. The minimization of an error measure, or 

of a cost function, is the goal of these techniques. Additionally, an optimization 

algorithm is needed to find the most suitable transformation, and an interpolator is 

employed to resample the features into the new registered space. 
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The application of image registration techniques in nuclear medicine includes 

correlative image interpretation, attenuation correction, scatter correction, 

correction for limited resolution and improvement of the reconstruction accuracy in 

emission tomography. These techniques also have been used in the co-registration of 

serial functional studies, for the transformation to standard spaces for their 

comparison with both normal studies and data from other modalities, in conformal 

radiotherapy treatment planning and functionally guided procedures. Besides, have 

been improving the interpretation of several functional studies based on static 

images, including brain, breast, chest, liver, kidneys and colon images, or on the 

motion analysis as in cardiac and lung studies. 

Myocardial perfusion is commonly studied through the evaluation of the left 

ventricular function using stress-rest gated myocardial perfusion single photon 

emission computed tomography (SPECT). SPECT provides a suitable identification of 

the myocardial region, facilitating both the localization and definition of perfusion 

abnormalities [2]. The automated computer quantification of LV functional 

abnormalities can minimize inter- and intra-observer variability and increase the 

reproducibility, which have an important role in risk stratification and selection of 

the best treatment strategy. With such computational solution, the prevalence and 

clinical predictors of both myocardial ischemia and infarct in suspicious patients can 

be easier assessed. 

Motivated by the potentialities of the application of computational 

techniques on stress-rest gated myocardial perfusion SPECT images referred above 

and their application, the goal of this dissertation consists of developing a 

computational solution to automatically compute a set of features from myocardial 

perfusion SPECT images and use them to statistical analysis and classification of 

patient’s exams as from a healthy patient or with an associated disease. 

1.2. Organization 

This dissertation is divided into the following chapters: 

 

2. Gated Myocardial Perfusion SPECT Images 

The second chapter describes SPECT imaging modality, describing the 

radiotracers commonly used, detectors and related image reconstruction algorithms. 
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Its main advantages and problems are referred, as well as clinical applications. 

Therefore, general principles of myocardial perfusion gated SPECT are exposed. 

 

3. Medical Image Registration 

In this chapter, medical image registration is presented through a state-of-

the-art by the study and description of its methodologies and respective 

classification, as well as the main types of transformations, similarity measures, 

optimization and interpolation techniques involved in the process. 

 

4. Image processing, segmentation and quantitative analysis 

Computational image techniques employed in this experimental 

implementation are described. 

 

5. Experimental implementation 

The computational solution developed to automatically segment, analyze and 

classify the images as from subjects with myocardial perfusion associated diseases or 

not is described. Experimental results will be also presented and discussed. 

 

6. Final considerations 

Final conclusions and future works will be described in this last chapter. 

1.3. Contributions 

This dissertation presents a deep study and bibliographic revision of scientific 

literature in medical image registration and its applications on nuclear medicine 

images, specifically in gated myocardial perfusion SPECT images. The main 

contribution is the development of a template myocardial perfusion SPECT image 

and its coronary artery mapping, enabling the computation of mean geometric 

dimensions in healthy patients. Thus, image classification is reached through 

registration of the patient’s images under study with the template myocardial 

perfusion SPECT and comparison of related geometric dimensions. 
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Chapter 2  

Gated Myocardial Perfusion SPECT 

Images 

Nuclear image modalities have been widely used in healthcare diagnostic 

since it provides a physiological diagnose through the use of radiotracers to map 

metabolism and fluid flow on tissues or organs. Unlike other imaging techniques, 

emission tomography modalities assess both the perfusion and metabolic activity, 

even if there are no changes from the structural point of view. It is commonly used 

as a diagnose complement in oncology, cardiology and neuropsychiatric disorders. 

The enhancement of digital medical image acquisition and analysis, such as 

higher spatial and temporal resolutions, is actually the hot topic of medical imaging 

modalities. However, image analysis cannot be properly achieved without the 

development or better integration of different registration methods. They enable the 

integration of different medical image modalities, such as Positron Emission 

Tomography (PET), Single Photon Emission Computed Tomography (SPECT), 

Computerized Tomography (CT)  and Magnetic Resonance Imaging (MRI), through the 

detection of differences between images acquired from different points of view, 

different time acquisition or even different subject atlas, to obtain anatomic and 

functional information that reflects  completely  the condition  of the patient,  

providing a more complete information for supporting medical diagnosis. 

The combined evaluation of myocardial perfusion and left ventricular 

function within a single study is carried out through electrocardiographically gated 

myocardial perfusion SPECT (GSPECT). This technique has been improving through 
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image processing and quantification, since it enhances diagnostic and prognostic 

capability of myocardial perfusion imaging. Furthermore, computation image 

techniques improve incremental information over the perfusion data and enables 

myocardial viability assessment and sequential follow-up after therapy. 

In this chapter, SPECT imaging modality will be described, namely the 

radiotracers employed, detectors, image data acquisition, image reconstruction and 

algorithms in 2D and 3D, such as the common sources of degradation factors that 

minimize the quality of the images acquired and its corrections. Hybrid systems with 

molecular modalities commercially available and their applications are also 

reviewed. Its application as GSPECT is explored, namely general principles, clinical 

protocols and image analysis currently employed. 

2.1. Single Photon Emission Computed Tomography 

Single photon emission computed tomography is a nuclear image modality 

that uses radioactive tracers, to measure and evaluate both the perfusion and 

metabolic processes of the individual or object under study. SPECT studies are based 

on electronic detection of photons, by an Anger gamma camera, administered by 

intravenous injection into the human body, generating three-dimensional images of 

the radiopharmaceutical distribution [1]. 

The development of 3-D algorithms was fundamental to the evolution of 

SPECT till nowadays. Without improvements of the Anger camera with a rotating 

collimator attachment and the optimization of reconstruction algorithms or 

interactive methods, it would not be possible to improve the low contrast 

characteristic of the blurred SPECT images.  

High-speed digital computer systems for acquisition and display of dynamic 

processes in the body such as the development of high-speed dynamic radionuclides, 

dual- and triple-camera contributed to an efficient molecular imaging modality. 

SPECT uses time as an additional coordinate, by collecting different information as a 

function of time and translating this into spatial information [2]. Accordingly, it is a 

valuable diagnostic imaging modality [3]. 
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2.1.1. Radiotracers 

Respecting single photon emitting radiopharmaceuticals, it must be 

considered the wide availability of the radioligands as a relative ease of labeling, 

which is based on the consumption of oxygen. Thus, SPECT has the ability of 

detecting and monitoring biological and pathophysiological processes, using 

radiolabeled peptides and drugs [4].  

The radiotracers commonly used can be classified into the following groups: 

 Radiolabeled molecular imaging probes (RMIPs) are highly specific 

radiolabeled. They allow visualization, characterization and 

measurement of biological processes in living systems, but must be 

design and chosen depending on the organ of study. Furthermore, they 

are classified based on their utility and nature of application, resulting 

in radiolabeled drug substance, radioligands [5], pathway marker and 

biomarkers. 

 Peptides and proteins enable finding radiolabeled monoclonal 

antibodies (MAbs). Their specifically binding forms an antigen-antibody 

complex, 99mTc-labeled monoclonal antibodies, sulesomab, annexin V 

and radiolabeled peptides. 

 Hypoxia imaging and cell labeling are also used, but in fewer 

applications [6].  

Table 2.1. synthetizes the main radionuclides employed in SPECT studies and 

their most relevant characteristics. 

Table 2.1 Commonly used single photon emitting radionuclides (adapted from [6]). 

Radionuclide Half-life Energy Mode of decay 

Tc-99m 6.92h 142keV 
Isometric Transition 

(100%) 

I-131 8.03 days 364keV Beta-minus (100%) 

I-123 13.22h 159keV Electron Capture (100%) 

In-111 2.80days 171,245keV Electron Capture (100%) 

 

These radiopharmaceuticals contain long-lived radioisotopes emitting gamma 

rays that decay through an isometric transition, i.e. a nuclear de-excitation resulting 
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in the emission of a gamma ray or an electron by the process of internal conversion. 

The radioisotopes are metastable, characterized by relative long lifetimes, making 

them appropriate for in vivo imaging. 

2.1.2. Detectors 

Since it is a radionuclide imaging technology, the key elements in SPECT are 

(1) a highly specific biomarker, with sensitive characteristics to properly study the 

molecular or cellular phenomenon, and (2) an imaging device, consisting of a 

radiation detector with specific performance to localize the activity distribution 

within the human body [7–9].  

A gamma camera consists of a collimator, a scintillation crystal that 

efficiently collects the scintillation of light and distributes it among a number of 

photo-multiplier tubes (PTMs). Then, the Anger gamma camera consists of a gamma 

ray position sensitive detector with crystal scintillators having position circuitry and 

energy determination [6].  

The detection principle of gamma radiation is the same as PET, but the 

collimation principle is different [8]. SPECT collimators are mechanical structures 

made of high-Z material [10], which enhances the absorption of the oblique gamma 

rays, allowing the passage of radiation through the collimator openings. A centroid 

algorithm determines the interaction position of the gamma ray within the crystal 

[11]. 

Detectors geometries varies within parallel hole, pinhole, converging and 

diverging with various hole geometries [11]. Their design include rotating gamma 

camera, stationary detector or interchangeable multi-hole collimators [6]. However, 

it depends on the camera trademarks specifications. Figure 2.1 presents different 

configurations of gamma camera detectors. 

Dedicated sodium iodide detector cardiac camera, dedicated upright and 

semi-reclining cardiac camera, cardiocentric, cardio-focused collimation, art 

detector geometry with rotating slit-hole collimation, multiple scanning parallel-hole 

collimators, multi-pinhole collimation such as solid-state detectors, indirect and 

direct solid-state detectors are some of the innovations in gamma cameras lately 

[12–14]. 
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Figure 2.1. Different configuration of detectors in gamma camera: single head (a), two orthogonal 
heads (b), two opposed heads (c), three heads (d), four heads (e) and multiple small-FOV scintillation 
detectors [11]. 

2.1.3. Deterioration factors and corrections 

Attenuation, scatter and resolution effects, as well as motion artifacts, are 

the main degradation factors of this imaging modality.  

Attenuation is the most important factor of influence in spatial resolution, so 

the attenuation coefficients within the patient must be known, whose map is usually 

incorporated into an iterative algorithm. Besides the application of attenuation 

correction algorithms, the use of hybrid systems using a CT scanner enables lower 

image noise at the attenuation map, due to the less noise of CT image, faster 

acquisition and higher flux [15]. Furthermore, it is not influenced by cross-talk from 

SPECT radionuclides. However, its higher resolution implies fewer accuracy of the 

attenuation compensation [16]. Precision and noise of the attenuation correction 

also depends on both the emission and transmission statistics. Both transmission and 

emission noise and attenuation coefficients propagate into the images and the 

attenuation coefficients derived from the transmission image increase bias and noise 

as source decays. It is required transmission sources to be replaced frequently to 

maintain transmission statistics properly. This allows noise propagation at minimum 

values and ensure that the emission contamination do not overwhelm the 

transmission counts [17]. Another way to apply attenuation correction is the use of 

algorithms capable of removing the cross-contamination between the emission and 

transmission photons, whose simultaneous acquisition of emission and transmission 

data eliminate the misregistration between SPECT data and attenuation maps [16]. 
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The distance-dependent attenuation can also be eliminated through the acquisition 

of projection scans for a complete rotation of the detector head, combining the 

measurement of opposing projections. 

The Compton and Rayleigh (coherent) scattering are also common problems 

and depend on the energy of the emitted photons, making the photon to be 

deflected from its initial trajectory but still being detected from another detector or 

even never detected. It varies with the composition of the material through which 

the photons are travelling. Scattering compensation can be made without correction 

through minimizing the amount of scatter, modifying attenuation correction, 

filtering, or based on measurements, as dual and triple energy window corrections or 

even spectral models [10]. Other solutions are based on modeling the scatter 

distribution, using analytical models based on Klein-Nishina scatter equations [18], 

transmission-dependent convolution subtraction, object shape or slab-derived 

scatter estimation and reconstruction-based scatter correction including 

incorporation of fast Monte-Carlo scatter estimation. Incorporating multiple energy 

windows using multi-radionuclide SPECT and multi-energy radionuclides are also 

valuable scatter corrections [10].  

Sensitivity is dependent on the material used and the thickness of the crystal, 

as well as on both geometry and material of mechanical collimation, which means 

that the scintillator’s stopping power will be increased with the use of long crystals, 

as well as the number of detected events [11].  

The dead-time losses and pile-up effects, processing electronics and systems’ 

detectors cause underestimation of counts and can be compensated through 

mathematical models based on a count rate measurements covering the anticipated 

activity levels [11]. 

Respiratory, cardiac and patient motion effects can be compensated with a 

number of gated acquisitions realized for every breathing or cardiac cycle, producing 

a reconstructed image corresponding to a specific time frame of the cycle [11]. 

Note that a routine quality control of SPECT instrumentation is fundamental 

to detect changes in performance from a baseline condition, including a 

comprehensive suite of individual measurements to ensure adequate sensitivity to 

detect detrimental changes. So, it should not be burdensome; it reflects the clinical 
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use of the system, emphasizes measurements about system stability and reflects the 

system state adequacy for clinical use [19]. 

2.1.4. Image reconstruction algorithms 

Image reconstruction in tomographic radionuclide-based systems consists on 

measured estimation of the integral of radiotracer distribution to produce a volume 

representation of the radiotracer distribution inside the patient’s body. 

The acquired data is organized as a number of counts along each LOR, which 

is the radial extension of the collimator hole across the field-of-view (FOV) in SPECT 

systems. For each projection, a 2D matrix contains the number of counts of every 

LOR at each angular view, called sinogram. Then, it is used as input for 

reconstruction algorithms in order to generate the final image [12]. 

 Filtered Backprojection (FBP) has been used as an analytical reconstruction 

algorithm that models the measurement of radiotracer distribution calculated 

analytically, backprojecting and filtering homogenously each LOR. On the other 

hand, statistical iterative techniques solve many problems of diagnostic quality and 

quantitative accuracy compensating the inaccuracies introduced to the image, which 

is not possible with analytic approaches [20]. Iterative methods start with an 

estimation of the tracer distribution and compute the forward-projection, comparing 

calculated and measured projections; then, the image is updated according to the 

differences found. Maximum-Likelihood Expectation Maximization (MLEM) [21] and 

such as Ordered Subset Expectation Maximization (OSEM) are the most widely used 

iterative algorithms [22]. 

Wide Beam Reconstruction (WBR), an iterative and automatic algorithm, is a 

noise compensation technique that suppresses noise and enhances the signal-to-noise 

ratio through modeling the statistical characteristics of both emission process and 

detected data, counting for the Poisson distribution.  This algorithm regularizes the 

likelihood objective function adding a Gaussian component. While the application of 

Gaussian components results in suppressed high-frequency components, Poisson 

components application results in the recovery of high-frequency signal. Then, the 

balance between them is adaptively and automatically determined according to the 

data analysis and desired smoothness [12]. 
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There are other methods as Maximum A Posteriori (MAP) that suppresses the 

impact of noise, using a modified One Step Late (OSL) algorithm, with a Green prior 

optimized for each clinical protocol and for both gated and attenuation corrected 

image, and a Median root prior as last iteration [12]. More iterative algorithms 

commonly used are Algebraic Reconstruction Techniques (ART), Multiplicative ART 

(MART) and Weighted Least-Squares Conjugate Gradient (WLS-CG) [23]. 

Accordingly, an adequate filter, such as the cut-off frequency, is fundamental 

to obtain the optimal resolution and noise level in reconstructed images. The 

blurring effect can also be reduced with modeled edge penetration [24] and parallax 

errors in the reconstruction scheme [6]. 

2.1.5. Spatial Resolution 

The spatial resolution of gamma cameras can achieve a sub-millimeter range, 

being even possible sub-half millimeters when it is used a specialized dedicated 

multi-pinhole geometry. Furthermore, it is improved with the application of a 

distance function of the object from the aperture and its distance from the detector 

surface, by minimizing the aperture size and specialized collimator geometry [6]. 

However, this causes the reduction of both detection efficiency, partially tackled by 

increasing the number of holes, and image field of view, such as insufficient data 

acquisition. Besides, given SPECT collimation is geometrical, spatial resolution 

depends on the distance between the source and the detector head, leading to 

distortions in the image if the process of reconstruction is not taken into account. 

This can be minimized with the use of reconstruction algorithms as descriptions of 

the resolution degradation based on measurements [11].  

Consequently to a limited spatial resolution, a partial volume effect appears 

corresponding to the bias introduced on the estimation of the radiotracer 

concentration and depends on the size and shape of the object, such as the relative 

radiotracer concentration with respect to the surroundings. It can be minimized with 

a large object’s size and its compensation is needed when the acquisition of 

quantitative information about the radiotracer distribution is wanted [11]. 
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2.1.6. SPECT Multimodalities 

Molecular SPECT imaging provides functional images with high spatial 

resolution but anatomical correlation. SPECT/MRI, SPECT-optical devices and 

SPECT/CT are used to extract more biological information with the same spatial and 

temporal framework, such as higher anatomical image resolution [25]. Thus, image 

fusion from different imaging modalities can aid in the decision making process, once 

it enables a better localization and definition of organs and lesions such as improves 

the precision of surgical biopsies, as exemplified in Figure 2.2. 

A considerable work has been done on the development of algorithms for the 

co-registration of anatomical and functional images, making them more robust and 

accurate, providing accurate registration, which can be feature-based or volume–

based. Those algorithms are fundamental to avoid misregistration due to patient 

motion and breathing artifacts, such as the fact that the acquisition of SPECT and CT 

or MRI data must be sequential. 

 

Figure 2.2. Detection of liver abnormalities using CT (on the left), SPECT (on the middle) and fused 
SPECT/CT (on the right) [25]. 

In SPECT/CT multimodality, there are scattering problems, truncation and 

beam hardening artifacts. Additionally, there are also misregistration between the 

emission and transmission in data, resulting on incorrect matching of the attenuation 

map to the emission data. It is also due to sagging of the emission table, as well as 

respiratory, cardiac and patient motion. To minimize the table sagging effect, the 

SPECT/CT systems employ a dual-table configuration whose patient pallet is a low 

attenuation carbon fiber tabletop, sited on the top of a second lower table, more 

rigid [16]. 

Respiratory and cardiac motions are more complicated to solve. It is 

fundamental SPECT/CT systems use a co-registration program to ensure correct 

alignment, associated with a quality control (QC) program to allow the re-alignment 

of different modalities images in manual or semiautomatic mode [21]. Quantifying 
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coronary artery calcium, evaluating the patency of vascular and coronary arteries 

and assessing myocardial perfusion, such as viability in one clinical setting, are some 

of the multiple applications where SPECT/CT has been applied, but it is necessary to 

become more available in the market, requiring lower costs [16].  

In the last few years, integrated SPECT/CT systems have been widely used 

but MRI presents specific advantages compared with CT, such as lack of ionizing 

radiation, high soft-tissue contrast and sensitivity to tissue alterations evidenced by 

specific imaging sequences. However, using SPECT followed by MRI in clinical 

applications is a complicated task [26], once it requires transferring the patient to 

another system table and inherently separated dual-modality scans, followed by 

image fusion. Then, there are potential sources of misalignment due to uncontrolled 

movements and displacements of tissues and organs. Multiple anesthesia sessions are 

needed when SPECT and MRI devices are located in separate places, involving higher 

risks to the patient due to different biologic responses to anesthesia. 

Attempting to compensate these problems, there are studies using SPECT 

followed by low spatial resolution MRI and also SPECT/MRI performed at very high 

magnetic fields to achieve high anatomic resolution, benefiting from a higher signal-

to-noise ratio but it leads to field susceptibility artifacts and prevents closer 

proximity of SPECT scanner [27]. Hence, it is needed to minimize technical 

limitations of SPECT/MRI dual imaging, such as enhance registration methods [28]. 

Prototypes are being constructed to allow the minimization of all these problems, for 

applying dual modalities in clinical application, besides the many applications in pre-

clinical applications [29–31]. 

Wherefore, integrated SPECT systems enable a direct correlation of anatomic 

and functional information resulting in a better definition and localization of 

scintigraphic findings [32]. 

2.1.7. Pre- and Clinical Applications 

Preclinical models are valuable SPECT applications [33–35], having a great 

scope for noninvasively studies on dynamic biological processes at molecular and 

cellular levels. Through the assess of biological effects of drug candidates and the 

capability of following the development of certain diseases, molecular imaging plays 

an important role in the implementation of relevant animal therapeutic models in 
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vitro, such as cardiovascular imaging, imaging stem cells, oncologic applications  [36, 

37], neuroimaging applications [38–45] and drug discovery, using small-animal 

imaging [30, 31, 46, 47].  

The preclinical application in SPECT leads to consequent applications in 

clinical cases, usually the same areas as PET. There are several reported cases study 

is scientific literature [48–50]. In oncology, it permits the detection of tumors at an 

early stage, since it is capable of detecting and analyzing the development state of 

cancer [4, 36, 51–53]. In cardiology, it allows the assessment of myocardial viability 

in coronary patients, allowing a more accurate selection of patients for 

revascularization procedures [54, 55], through the evaluation of myocardial 

perfusion [56–61]. In neurological and psychiatric disorders, SPECT has an important 

role in the study of Parkinson's disease [57–64], Alzheimer [39, 70–73],  epilepsy [74], 

brain dementia [71]  and movement disorders [69, 75–77]. 

Given the relevance of myocardial perfusion SPECT studies in this 

dissertation, general principles are next exposed, concerning radiotracers, image 

acquisition, image analysis and several diagnosis applications. 

2.2. Myocardial Perfusion SPECT Study 

The combined evaluation of myocardial perfusion and left ventricular 

function within a single study is carried out through electrocardiographically GSPECT, 

since it allows the quantification of degree and extent of the LV functional 

abnormalities [78]. However, it is not suitable for accurate RV function measurement 

because it is not properly visualized on the perfusion images. 

This technique enables the quantitative or semi-quantitative assessment of 

the LV function simultaneously with the evaluation of the LV perfusion, which aid in 

the diagnosis, assessment of the risk and prognosis, determination of the myocardial 

viability and evaluation of the functional recovery after the revascularization 

procedure in patients with known or suspected coronary information over the 

perfusion data [79].  

Similarly to SPECT clinical protocols exposed above, GSPECT studies require 

the injection of a perfusion tracer that is taken up by the myocardium. Delineation 

of the epicardial and endocardial edges on the perfusion image provides the 

definition of the LV myocardium and LV cavity [80]. LV function is based on the 
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quantitation of the changes in the LV volume, excursion of the endocardium and 

brightening of the myocardium from the end-diastolic image to the end-systolic 

image.  

Besides there are more 𝛾-camera imaging techniques available to measure 

the ventricular function, namely, first-pass radionuclide angiography (FPRNA) and 

equilibrium gated radionuclide angiography (ERNA), several factors contributed to 

the consistent growth of GSPECT popularity. It is simple and provides functional 

status information of a hypoperfused or normally perfused area. 90mTc-labeled 

perfusion tracers present favorable kinetics and consequently flexible acquisition 

protocols. Acquisition and processing time have shortened significantly due to 

continued improvements of multidetector  𝛾-cameras. Computers and automation of 

computation image techniques has made SPECT a simple, practical and user friendly 

technique in clinical settings [81]. 

2.2.1. General principles 

A 𝛾-camera records the photons at multiple projection angles around the 

subject along 180º or 360º degrees. At each of the projection angles, one static 

image is acquired during an ungated image acquisition. Several dynamic images 

spanning the length of the cardiac cycle are acquired at equal intervals during ECG 

gated acquisition. This principle is illustrated in Figure 2.3. The number of frames 

can vary. An increased number of frames provides better temporal resolution, but 

each frame requires shorter duration and consequently the acquisition has to be 

prolonged to collect adequate counts. 

A proper quality GSPECT study can only be achieved with an adequate count 

density, which is reached through gated data acquisition over many cardiac cycles. 

However, they may have different duration causing mix of counts from adjacent 

frames, known as temporal blurring, and compromise the quality of the study. 

Thereby, a range of acceptable beats or acceptance window, known as tolerance, is 

defined; it is expressed as the percentage of the mean R-R interval. 



 

 

ANALYSIS OF GATED MYOCARDIAL PERFUSION SPECT IMAGES USING COMPUTATIONAL IMAGE REGISTRATION TECHNIQUES 

17 

 

Figure 2.3. Principle of ECG-gated acquisition. Each cardiac cycle is represented by the R-R interval, 
divided into 8 frames of equal duration (A). Over multiple cardiac cycles, image data from each frame 
are acquired (B). Each data set represents a specific phase of cardiac cycle, which provides a volume 
curve representing endocardial volume for each of 8 frames (C). ED:end-diastole; ES: end-systole [79]. 

2.2.2. Radiotracers and clinical protocols 

Usually, the radiotracers administered are 99mTc-sestamibi and 99mTc-

tetrofosmin, since they have a short half-life without associated increase in the 

radiation burden and allow a higher dose results, with better count statistics in the 

images. Consequently, there are associated with lower statistical error and better 

image quality [82]. 

The clinical protocols employed can be a same-day or separate-day protocol, 

both illustrated in Fig. 2.4. Usually, stress study is gated as part of a low-dose 

rest/high-dose stress 99mTc or a rest 201TI/stress 99mTc sequence [83]. 

 

Figure 2.4. Myocardial perfusion imaging can be gated either using stress-rest (A) or rest-stress 
sequence(B), with 99mTc [79]. 
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The perfusion pattern reflects the myocardial distribution of the tracer at the 

time of injection, representing the LV function at the time of acquisition. Depending 

on the health condition of the patient, post-stress gated images represent stress 

perfusion and rest function in healthy patient or patients with previous myocardial 

infarction, and a reduced function during the post-stress acquisition compared with 

the resting basal function in patients with severe ischemia. The standard GSPECT 

acquisition is generally completed within 20-30minutes. For viability assessment, the 

protocols consist of to inject the tracer at rest and gated acquisition is performed 

during infusion of an inotropic agent [79].  

Patients with severe arrhythmia, such as atrial fibrillation, frequent 

premature ectopic beats and heart block should not perform GSPECT studies, i.e. 

patients whose heartbeat can be affected.  

2.2.3. Image acquisition and reconstruction 

Image acquisition is similar to a standard perfusion SPECT acquisition, but it is 

increased by the use of a 3-lead ECG that allows the mechanism for gating, providing 

the R wave. Its detection actives the gating device, that sends a signal to the 

acquisition computer, starting the acquisition. The frames are summed together, 

reconstructed and displayed in standard vertical long-axis, horizontal long-axis and 

short axis slices for perfusion analysis (see Fig. 2.5.). However, functional analysis 

requires raw data to be reconstructed frame by frame. Before reconstruction, it is 

fundamental to check raw projection data for potential sources of error and 

artifacts, since they propagate and compromise the accuracy of the measurements. 

2.2.4. Image analysis  

The definition of the normal limits and criteria for abnormalities are crucial 

for optimal interpretation [84], since visual analysis requires the reader to be 

familiar with the pattern of the normal LV contraction in different segments of the 

LV. An atlas is available in scientific literature, providing the reader with both image 

recognition and understanding of the basis for myocardial perfusion SPECT images 

interpretation [85]. Furthermore, the proper delineation of endocardial contour 

provides higher accuracy, but the edge detection is often inaccurate in patient with 

severe perfusion, large aneurysmal dilation, and significant structural distortion [86]. 

Accuracy is also affected in patients with a smaller heart [87–89].  
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 (a) 

      

 (b)  

 

  

 

The use of computer techniques provides objective quantitative assessment in 

interpreting these studies [85–88]. There are commercially available software 

packages to analyze the reconstructed gated dataset, as QGS and Emory Cardiac 

Toolbox, developed at Cedars-Sinai Medical Center and Emory University, 

respectively [79, 86]. They provide LV volumes and LVEF measurements, both 

displayed on a segmental, circumferential model of the LV with each segment 

representing a particular region of the LV. Measurement of LV diastolic indices and 

LV mass are currently being developed. 

The polar map approach is used for both representation of the patient’s LV 

myocardial perfusion distribution and identification of hypoperfused segments. It 

consists of synthetizing the 3-dimensional maximal LV count distribution onto a 

single 2-dimensional polar map. The count distribution at the base of the LV 

corresponds to the intensity at the periphery and the count at the apex to the center 

of the polar map. Then, the patient’s 3D LV myocardial perfusion tracer uptake ratio 

is compared with a statistically determined lower limit of normal LV volumes or LVEF 

[84], based on mean normal distribution and corresponding regional standard 

deviation (SD), allowing hypoperfusion detection. The extent of hypoperfusion is 

shown by a blackout or extent polar map, whose normalized counts of LV segments 

that fall below the lower limit of normal pattern are deemed to be hypoperfused 

[90]. Figure 2.6(a) illustrates the polar map approach. 

Figure 2.5. (a) From left to right, short axis, horizontal long axis and vertical long axis (adapted from 

[214]) and (b) correspondent myocardial perfusion SPECT slices, for perfusion analysis. 
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The artery coronary mapping, used in visual assessment of perfusion, results 

from the division of the left ventricle into a variable number of segments. Usually, 

myocardial perfusion studies are displayed using 17 or 20 segments. The 20-

segmented model, which is used in the experimental implementation presented in 

Chapter 5, divides the myocardial perfusion region into basal, mid-cavity and apical 

thirds, including 2 segments for the apical cap. This approach results in a 30% 

contribution from the base, 30% from the mid-cavity and 40% from the apex and 

apical cap [91]. The assignment of segments to coronary arterial territories is 

directly related with the coronary artery blood supply. As illustrated by Figure 

2.6(b), segments 1, 2, 3, 7, 8, 13, 14, 19 and 20 are assigned to the left anterior 

descending coronary artery distribution; segments 4, 9, 10, 15 and 16 are assigned to 

the right coronary artery; segments 5, 6, 11, 12, 17 and 18 are assigned to the left 

circumflex artery [91]. 

(a)   (b)  

Figure 2.6. (a) Polar map representing LV normal perfusion distributions using Emory Cardiac Toolbox, 
for a stress sestamibi with attenuation correction. Regional tracer uptakes varies (adapted from [90]) 

(b) 20-segment model for apical, mid-cavity and basal locations of short axis, and long axis (from left to 
right) [78]. 

Quantitative programs have reduced subjectivity and demonstrated excellent 

inter- and intra-observer reproducibility, but repeatability on the same subject is 

affected by several factors, namely acquisition, data processing, quantification and 

physiologic variation [78, 94]. Besides, those software packages presents data that 

are not sufficiently intuitive to image analysis, since both statistical and visual 

information presented always require high professional experience from the clinical 

expert. 

2.2.5. Clinical applications 

Evaluation of myocardial perfusion GSPECT studies in patients with CAD 

provides additional information that cannot be obtained by perfusion imaging alone. 

While a normal perfusion study carries an excellent prognostic value, an abnormally 

low LVEF in the same patient may alert the physician for other comorbidities [81]. 

Nonischemic and ischemic dilated cardiomyopathy can be differentiated through 
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combined perfusion-function analysis. A common application is to classify a fixed 

perfusion defect as a soft-tissue attenuation artifact or an infarct. 

Assessment of severity, risk stratification and prognosis [58, 95, 96], 

predicting future cardiac events after myocardial infarction, myocardial viability and 

follow-up after revascularization also benefits from GSPECT [90], due to its 

reproducibility and repeatability, objectiveness and extensively validation [98]. 

However, adequate patient selection, quality control, identification of technical 

limitations and application in appropriate clinical situations are important 

prerequisites for its optimal utilization. 

Digital nuclear cardiology images coupled with the tremendous advances in 

computer hardware and software facilitates the development of total automatic 

image analysis for quantification of relevant parameters and computer-assisted 

decision support [99], as well as multidimensional and multimodality display.  

2.3. Conclusions 

Despite the satisfactory resolution and quality of images, research is ongoing, 

focused on developing better instrumentation and new software for improved 

performance, to reduce costs and make system more user-friendly. High technology 

prices and both technical and operational complexities serve as a barrier to expand 

the access to specialists and patients. Thus, despite the immense potential of this 

technology, these disadvantages require a clear definition of imaging modalities, 

usefulness in several fields of medicine. 

In the last two decades, the greatest changes have been improving spatial 

resolution by decreasing the crystal size and there was also a significant progress in 

image quality by combining 3D reconstruction algorithms and attenuation correction, 

to enhance temporal resolution capabilities and get a maximum artifact-free imaging 

modalities, such as from dual-tracers imaging and the use of specialized collimators. 

Co-registration with images from complementary modalities has been employed in 

nuclear medicine, acting as an adjunct to interpret functional nuclear medicine 

images, as well as offers the ability to overcome some intrinsic limitations.  

Multimodalities have been widely used in clinical environment and already 

had a valuable outcome on clinical oncology practice and cancer treatment. 

SPECT/CT systems applications are increasing slower due to its high cost. Although, 
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nuclear medicine can only benefit from such evolving integration, in which image 

registration plays a central role. 

Due to the functional diagnosis that molecular imaging provides, SPECT will 

maintain its applications in clinical diagnosis, assessment of response to treatment 

and delivery of targeted therapies, namely in nuclear cardiac applications as 

myocardial perfusion GSPECT studies. Automatic analysis, quantitation and proper 

display algorithms for the assessment of perfusion and function from myocardial 

perfusion SPECT have been developed and demonstrated to run successfully in the 

vast majority of patients [81, 94]. Here, image registration plays a central role, since 

it permits the comparison of single scans with a normal database and the recognition 

of deficiencies in myocardial perfusion [100]. 
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Chapter 3  

 

Medical Image Registration 

Modern medicine has been widely using imaging as a fundamental tool to assist 

diagnosis procedures, monitoring the evolution of pathologies and the planning of 

treatments and surgeries. However, the enhancement of digital medical images and 

its efficient analysis cannot be completely achieved without suitable semi- or full 

automated methods for image registration [101].  

Computer techniques of image registration enable the fusion of different medical 

image modalities and the easier detection of changes between images acquired from 

different points of view, at different acquisition times or even against with atlas that 

includes anatomical and functional information. This task of image analysis can also 

stress changes in size, shape or image intensity over time, relate preoperative 

images and surgical planned outcomes [102] with the physical world during 

interventions and align patients with standardized atlas [103]. 

The aim of image registration techniques is to find the optimal transformation 

that best aligns the structures of interest in the input images. For this, the 

techniques establish the spatial correspondence among features in the images or 

minimize an error measure, or of a cost function. Additionally, optimization 

algorithms are usually needed to find the most suitable geometrical transformations 

and interpolators are employed to resample the images into the registered space.  
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Applications of image registration techniques in nuclear medicine include 

correlative image interpretation, attenuation correction, scatter correction, 

correction for limited resolution and improvement of the reconstruction accuracy in 

emission tomography. These techniques have also been used in the co-registration of 

functional studies, for the transformation of the images to standard spaces for their 

comparison against both normal cases and data from other modalities, in conformal 

radiotherapy treatment planning and in functionally guided procedures. Besides, 

such methods have been used to improve the interpretation of several functional 

studies based on static images, including brain, breast, chest, liver, kidneys and 

colon images, or to assist motion analysis as in cardiac and lung studies.  

There have been previous reviews concerning medical image registration in 

general [73, 104–109], medical image classification [110], mutual-information-based 

registration methods [106], unsupervised registration methods [111], non-rigid image 

registration [112, 113], image registration for nuclear medicine images [100], image 

registration techniques for specific organs as breast [114], brain [115, 116] and 

cardiac images [117].   

In this chapter, registration methods classification from several authors is 

reviewed. Then, techniques of image registration in general are described, namely 

geometric transforms, similarity measures, optimizers and interpolators. Finally, the 

main nuclear medicine images applications are referred. 

3.1. Registration methods: classification  

Depending on the authors, different image registration techniques 

classification criteria can be found in scientific literature. Image registration 

methods were classified into four categories: point methods, edge methods, moment 

methods and “similarity criterion optimization” methods [118]. On the other hand, it 

was proposed a classification based on: data dimensionality, origin of image 

properties, domain of the transformation, elasticity of the transformations, tightness 

of property coupling, parameter determination and type of interaction (interactive, 

semi-automatic and automatic) [110]. Still, registration techniques were divided 

into: stereotactic frame systems, point methods, curve and surface methods, 

moment and principal axes methods, correlation methods, interactive methods, and 

atlas methods [118]. 
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The registration methods can also be classified according to the subjects and 

the image modalities involved. Hence, intra-subject and intra-modality applications 

refers to the image registration of the same subject in images acquired using the 

same imaging modality. Intra-subject and inter-modality registration concerns the 

image registration between images of the same subject but acquired using different 

imaging modalities, which is a common case that involves PET and SPECT images 

[119]. Inter-subject and intra-modality registration consists of aligning images of 

different subjects but acquired by the same imaging modality. Finally, inter-subject 

and inter-modality is related to the alignment of images from different subjects and 

acquired by different imaging modalities. 

Table 3.1 depicts the classification of medical image registration methods 

[104], which takes into account data dimensionality, nature of the registration basis, 

both nature and domain of the transformation, type of interaction, optimization 

procedure, imaging modalities, subject and object involved. 

Registration techniques based on voxel intensity are known as intensity 

based, while those based on the geometrical structures extracted from the images as 

feature or geometrical based. Furthermore, frequency or Fourier based registration 

techniques uses the image in the frequency domain or its Fourier transform 

properties. Feature space information or techniques based on the amount of image 

information are another classification proposed in literature [73]. 

3.2. Image registration techniques 

Image registration techniques aim to find the optimal transformation that 

best aligns the structures of interest in the input images [120–122]. After the 

attribution of a common coordinate system, the images are transformed into this 

system. Therefore, registration techniques are based into geometric approaches, 

also known as feature-based methods, and intensity approaches. Feature-based 

methods start by establishing the correspondence between features in the input 

images and then compute the geometrical transformation that aligns these features. 

Intensity-based methods iteratively adjust the transformation that aligns the input 

images taking into account the image pixels intensity or voxels, through the 

minimization of a cost function. Usually, the cost function used consists of the 

similarity measure, i.e., the registration algorithms try to minimize an error measure 

[123]. Additionally, algorithms are needed to find the most suitable geometrical  



 

 

ANALYSIS OF GATED MYOCARDIAL PERFUSION SPECT IMAGES USING COMPUTATIONAL IMAGE REGISTRATION TECHNIQUES 

26 

Table 3.1 Classification of medical image registration methods (adapted from [73]). 

Classification Criteria Subdivision 

Dimensionality Spatial dimension: 2D/2D, 2D/3D, 3D/3D 

Temporal series 

Nature of the 
registration basis 

Extrinsic 

Invasive Stereotactic frame 

Fiducial (screw markers) 

Non-invasive Mould, frame, dental adapter, etc. 

Fiducials (skin markers) 

Intrinsic 

Landmark based Anatomical 

Geometrical 

Segmentation  based Rigid models (points, curves, surfaces, volumes) 

Deformable models (snakes, nets) 

Voxel property based Reduction to scalar/vectors (moments, principal axes) 

Using full image content 

Non-image based (calibrated coordinate systems) 

Nature of transformation Rigid (only rotation and translation) 

Affine (translation, rotation, scaling and shearing) 

Projective 

Curved 

Domain of 
transformation 

Local 

Global 

Interaction Interactive Initialization supplied 

No initialization supplied 

Semi-automatic User initializing 

User steering/correcting 

Both 

Automatic 

Optimization procedure Parameters computed directly 

Parameters searched (the transformation parameters are computed iteratively using 
optimization algorithms) 

Imaging modalities 
involved 

Monomodal 

Multimodal 

Modality to model (register the coordinate system of the imaging equipment with a 
model coordinate system) 
Patient to modality (register the patient with the coordinate system of the imaging 
equipment) 

Subject Intra-subject 

Inter-subject 

Atlas 

Object Head (brain, eye, dental, etc.) 

Thorax (entire, cardiac, breast, etc.) 

Abdomen (general, kidney, liver, etc.) 

Limbs 

Pelvis and perineum 

Spine and vertebrae 
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transformation, and interpolators are employed to resample the image data into the 

new common space.  

Landmarks-based registration methods are based on the identification of the 

correspondence between landmarks, e.g. points, in the two input images which are 

small natural or artificial features. It involves identifying the corresponding 

landmarks between the images. These markers can be distinguished as extrinsic, 

anatomical and geometrical landmarks. External point landmarks must be visible and 

are well suited to validation studies. However, their routine application is 

impracticable, since patient studies may be realized on different days and the 

markers location must not vary in the same study. On the other hand, internal 

anatomical landmarks do not need marker preparation, but it is difficult to obtain a 

reliable and accurate localization, as well as presents a poor resolution. Then, they 

are not used in nuclear medicine, only to access validation of registration methods. 

Geometrical landmarks consist of corners and other geometric features that can be 

identified automatically, but also presents low resolution and low signal-to-noise 

levels in nuclear medicine images [100]. These problems can be partially 

overwhelmed using image registration algorithms based on different combinations of 

landmark-, surface-, attenuation- and intensity-based registration methods [124, 

125]. 

Boundaries or surfaces are more distinct in medical images than the usual 

landmarks, leading to surface-based registration methods. It consists on the 

establishment of correspondence between boundaries or surfaces that are defined in 

the input images, presenting good results for inter-modality registration, where both 

images can have very different pixel or voxel values [100]. There are three 

approaches for representing a surface registration, namely feature, point and model-

based methods. Although, the criteria for selecting one of these approaches is 

application-specific, as well as the size of the transformation to be computed [126]. 

Feature-based methods enable building explicit models of identifiable 

anatomical elements in each image as surfaces, curves and point landmarks, which 

can be aligned with their counterparts in the second image. The use of feature-based 

methods is recommended to images that contain enough distinctive and easily 

detectable features [15]. Figure 3.1 illustrates a typical feature-based registration 

algorithm. Hybrid registration using combined surface and volumetric-based 

registration methods enable the extraction of relevant geometrical information from 
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surface-based morph and its following diffusion into the volume [127]. Surface 

alignment has been employed for image-guided surgery [128]. 

 

Fixed imageFixed image Moving imageMoving image

Features segmentationFeatures segmentation

Determnation of the “correspondence costs” between the featuresDetermnation of the “correspondence costs” between the features

Search for the matching that optimizes the corresponding costsSearch for the matching that optimizes the corresponding costs

Geometric transformation foundGeometric transformation found

Features segmentationFeatures segmentation

 

Figure 3.1. Diagram of a typical feature-based registration algorithm [73]. 

 

On the other hand, intensity based registration techniques align intensity 

patterns using mathematical or statistical criteria over the whole image, but do not 

consider anatomical information. Combining geometric features and intensity 

features in registration should result in more robust methods. Therefore, hybrid 

algorithms involving intensity-based and model-based criteria allows the 

establishment of more accurate correspondences [112]. Figure 3.2 presents the 

general framework of the registration methods based on the minimization of a cost 

function. Image registration algorithms using the intensities of the pixels in the two 

input images [129], without any requirement to segment or delineate the 

corresponding structures, such as voxel similarity-based registration, result in robust 

and accurate computations [130]. These methods tend to average the error caused 

by noise or random fluctuations.  

Image pre-processing is generally used to ensure that a sensible solution is 

obtained, since it provides a better definition of object boundaries and volumes, as 

well as enables intensity mapping to modify the range of intensities that are used in 
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the matching algorithms. However, it is fundamental pre-processing algorithms not 

to be excessive and time-consuming [100]. 

Fixed ImageFixed Image Moving ImageMoving Image

Determine initial 
transformation parameters

Determine initial 
transformation parameters

TransformTransform

Update transformation 
paratemers

Update transformation 
paratemersAre the image best aligned?Are the image best aligned?

Evaluate similarity measureEvaluate similarity measure

Registered imageRegistered image

No

Yes

 

Figure 3.2. General scheme of the image registration methods based on the optimization of a cost 
function (adapted from [100]). 

Rigid and affine registration can be determined in seconds. Contrarily, most 

non-rigid registration can take minutes or hours [112]. It is therefore commonly 

recommended to improve the speed of image registration techniques. It is common 

to employ coarse-to-fine methods, providing both faster initial estimates and 

gradually finer details. Another solution to reduce image registration time-consuming 

consists of sub-sample the image volume, involving spatial domain or histogram 

intensity values, to increase the sampling as the algorithm gets closer to the final 

solution [100]. 

3.2.1. Geometric transformations 

The goal of image registration algorithms is to find the transform involved 

between the input datasets by means of geometrical transformations, whose number 

of parameters varies with the complexity of the transformation. The selection of the 

appropriate geometrical transformation model is crucial to the success of the 

registration process.  
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The geometrical transformation model can lead to rigid or non-rigid 

registrations. The simplest geometrical transformation model is based on a rigid 

transform that considers rotations and translations, which is applied to the complete 

data set. Affine transform models include translations, rotations, scaling and 

shearing in order that the straight lines of an image are transformed to straight lines 

in the other image, and the parallel lines are preserved parallel [105]. The most 

complex transformation model implies a higher number of degrees of freedom 

resulting in a non-rigid transformation. Fig. 3.3 illustrates these geometrical 

transformations.  

 

Figure 3.3. Types of geometrical transformations: identity transformation (left); rigid transformation 
(center) and affine transformation (right) (adapted from [100]). 

Image registration algorithms based on non-rigid transformations are 

required, for example, when it is needed to establish the correspondence between 

images of one individual and an atlas [131] or computer models, and to 

accommodate the substantial anatomical variability across individuals [112, 113, 

132, 133]. Non-rigid based registration algorithms have a higher number of degrees 

of freedom, when compared with rigid transformations [134, 135]. They are 

frequently used in image registration when the image acquisition parameters are not 

known [136] and usually include an initial rigid body or affine transformation that 

provides an initial solution for the transformation. A good pre-registration method is 

recommended to obtain a starting position and orientation closer to the optima non-

rigid image registration solution. However, a higher number of parameters in the 

transformation model can introduce undesirable transformations. Then it is 

fundamental taking into account  a regularization term [137–139]. Image registration 

using non-rigid transformation can be achieved using basis functions as a set of 

Fourier [140–143] or Wavelet basis functions [144].  

Registration using splines consists of techniques based on the assumption that 

a set of control points maps their location in the target image into its corresponding 

counterpart in the source image, providing a smoothly varying displacement field 



 

 

ANALYSIS OF GATED MYOCARDIAL PERFUSION SPECT IMAGES USING COMPUTATIONAL IMAGE REGISTRATION TECHNIQUES 

31 

between the landmarks used. Therefore, spline-based geometrical transformations 

either interpolate or approximate the displacements at control points. Thin-plate 

splines (TPS) are based on radial basis functions and used in surface interpolation of 

scattered data [132, 133]. Each basis function contributes to the transformation, and 

each control point has a global influence on the transformation. The modeling of 

local deformations can be more difficult with these functions, which requires the use 

of free-form transformations based on locally controlled functions [145, 146]. B-

splines deform an object through the manipulation of an underlying mesh of control 

points generating a smooth continuous transformation. Thin-Plate Spline Robust 

Point Matching (TPS-RPM) algorithms has been used for non-rigid registration, 

showing robustness when aligning models in presence of a large amount of outliers 

[47].  

Elastic, deformable or curved registration methods enable modeling the 

deformation and resampling the stretch of an elastic material, through specific 

transforms. Their limitations are due to the highly localized deformations that 

cannot be modeled due to the deformation energy from stress.  There are reviews of 

the most promising non-linear registration strategies currently used in medical 

imaging, as a novel curvature based registration technique that permits a faster 

image registration [149], the application of deformable registration in an automated 

hexahedral meshing of anatomical structures [150, 151], symmetric non-rigid 

registration [152] and Brownian Warps, a diffeomorphism registration algorithm 

[153]. Fluid registration and registration using optical flow are approaches that are 

equivalent to the equation of motion for incompressible flow.  

3.2.2. Similarity measures 

The characteristics of the image modalities and the nature of the 

misregistration must be taken into account to choose the similarity measure, as well 

as the type of registration, i.e. intra- or inter-modality. 

Similarity measures can be classified into landmark, feature or intensity 

based metrics. Depending on the features used, some similarity metrics can be 

included in both classes. The similarity measure used for deformable image 

registration is composed of one term related to the pixel or voxel intensity or the 

matching between the structures in the images, and another one related to the 

deformation. Then, the cost function built is a trade-off between the pixel, or voxel, 



 

 

ANALYSIS OF GATED MYOCARDIAL PERFUSION SPECT IMAGES USING COMPUTATIONAL IMAGE REGISTRATION TECHNIQUES 

32 

intensity or matching between the structures and the constraints imposed on the 

deformation field. 

Respecting landmarks measures, the similarity measure commonly employed 

consists of representing the average distance between the corresponding landmarks. 

Similarly, surfaces or edges measures quantifies an average distance between the 

corresponding surfaces, or between a surface extracted in one image and its 

corresponding set of points in the other image [109].  

The simplest similarity measure compare intensity values between images 

directly [100]. To register intra-subject and intra-modality images, the correlation 

coefficient (CC) has been an adequate similarity measure, since it involves the 

multiplication of the corresponding image intensities assuming a linear relationship 

between the intensity values. It is possible to subtract the corresponding image 

intensities instead of multiply them [154], allowing the adjustment of the alignment 

by the sum of absolute differences (SAD), as exemplified in Figure 3.4 or the smallest 

sum of squared intensity differences (SSD) [155]. The SSD is very sensitive to a small 

number of voxels that have very large intensity differences between the images to 

be registered. 

Ratio image uniformity (RIU) and variance of intensity ratios (VIR) work from 

a derived ratio image and are quantified as the normalized standard deviation of the 

voxels in the ratio image. These similarity measures are employed for intra-modality 

registration. Partitioned intensity uniformity (PIU) seeks to maximize the uniformity 

by minimizing the normalized standard deviation. It is usually used to register inter-

modalities images [105]. 

Recent image registration algorithms have been demonstrating applicable 

techniques based on information theory to both inter- and intra-modality 

registration. Image registration can be described as trying to maximize the amount 

of shared information in two images, which means that information can be used as a 

registration metric [156]. The joint entropy measures the amount of information 

existing in combined images. It has been used for rigid and non-rigid image 

registration [49, 50]. Mutual information can be given by the difference between the 

sum of entropies of the individual images at overlap and the joint entropy of the 

combined images [157]. Hence, it is the measure of how one image explains the 

other. It makes no assumptions about the functional form or relationship between  

image intensities [157–161]. 
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Image #1 Image #2 SAD between images #1 and #2 

   

   

 

Figure 3.4. Application of the sum of absolute differences (SAD) to stress the differences between two 
images, before registration (up) and after registration (down). Before registration, or poor aligned 
images, the images give rise to large absolute differences, while the sum of absolute differences of well 
aligned images results in small differences. 

Changes in overlap of very low intensity regions, such as due to noise, can 

disproportionally contribute to artifacts that affect the registration accuracy when 

based on mutual information, so it is commonly used associated with normalization 

methods [160, 161]. 

3.2.3. Optimization 

All the registration algorithms require an iterative approach, whose initial 

estimation of the transformation is gradually refined by trial and error, to calculate 

the similarity measure value at each iteration. So, the optimization process consists 

of both estimating the transformation and evaluating the similarity measure till the 

algorithm converges to a point when no transformation can be found with better 

similarity measure value [105]. Hence, the optimization algorithm computes the 

value of the cost function or of the similarity measure employed to relate the 

matching of two registered images, searching for the subsequent alignment 

transformations that will stop when an optimal value is achieved. It is done by 

searching the transformation that increase or decrease the cost function until a 

maximum or minimum is found, depending on the type of the cost function used. 
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The optimization process is based on the fact that the quality of the matching 

of two images is balanced against some constraint. This constraint has the function 

of prohibiting implausible deformations and may be provided by some estimate of 

the energy required to physically induce the deformation [161]. 

One of the major difficulties is that the optimization algorithms can converge 

to an incorrect local optimum, because multiple optima can exist in the parameters 

space [162–164]. The erroneous optima can be due to interpolation artifact or local 

good matches between features or intensities and can be avoided by smoothing the 

original images. The starting position must be sufficiently close to the final position 

for the algorithm converge at the best answer, within its capture range [161]. To 

choose the solution that has the best function cost value, a multi-start optimization 

can be used to get the global optimal solution [61, 62]. Additionally, the images are 

initially registered at low resolution and then the transformation obtained is used as 

starting transformation in registration at the next higher resolution level [165, 166]. 

3.2.4. Interpolation 

A process of interpolation is applied when it is intended to transform an 

image space into the space of another image. It is required to estimate the values of 

the transformed image [100]. Thus, its goal is to estimate the intensity at the new 

position [73] and depends on the motivation for registering the images. The accuracy 

and speed of the registration process can be improved through the use of suitable 

interpolation solutions. 

Nearest neighbor, linear interpolation or trilinear interpolation are the 

simplest interpolation methods, and consist of curve fitting using linear polynomials. 

Any other interpolation method beyond the nearest neighbor interpolation is 

required to guarantee accuracy. However, the resultant image will be smoother than 

the original. When the interpolation complexity increases, according the number of 

polynomial variables augments, smoothing effects can accumulate, or even generate 

artifacts [100]. Recent interpolation methods between neighboring slices in grey-

scale are based on B-splines [167], geometric multi-grid [168], using a modified 

control grid interpolation algorithm [169] or adaptive 2D autoregressive modeling 

and soft-decision estimation [170]. 

http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Linear_polynomial
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The interpolation error can introduce modulations in the similarity measure, 

since transformations involve pure translations of datasets with equal sampling 

spacing, and the period of the modulation is the same as the sampling spacing. Thus, 

interpolation methods must be used with practicable computational costs, firstly 

using a low cost interpolation as trilinear or nearest neighbor. It is a good practice to 

employ a more expensive interpolation in the last few iterations or even take 

advantage of the spatial-frequency dependence of the interpolation error, such as 

cubic B-splines or windowed sinc interpolators. It must be taken into account the 

level of smoothness and robustness of the similarity measure against artifacts, which 

may require a more robust interpolation solution to be used successfully in the 

optimization step. 

3.3. Accuracy Assessments and Validation 

Image registration methods must be validated, especially in medical 

applications, through a verification process based on the comparison of results 

obtained against a gold standard. Accuracy assessment and validation imply a very 

low failure rate and high accuracy, through the knowledge of a ground truth 

registration [171].  

The target feature is any object that can be localized independently of the 

view. The disparity in the two corresponding positions of the target feature after 

registration provides an upper bound on the root mean square (RMS) of target 

registration error (TRE) [172].  This measure of error is recommended to be used as 

the quantity of choice to be reported in the validation process. It can be expected to 

vary with the registration problem, since it comprises different image modalities, 

anatomical structures and pathologies, and distinct positions within a view [161].  

Several fiducial features can be employed as registration cues as a more 

desirable method for rigid-body registration, constituting a validation standard. It 

can be determined without referring other standard validations and is accomplished 

through the exploitation of establishing statistical relationships among fiducial 

localization error (FLE) and TRE [173] to translate self-consistency into accuracy 

[161].  

The software industry has already developed standards, protocols and quality 

procedures [174]. Validation usually follows a sequence of measurements using 
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computer-generated models, known as software generated phantoms [175] and 

images of patients or volunteers against with the registration algorithms must 

demonstrate competence. Experimental validation of an image registration system 

must be extended to a clinical situation [176]. Visual assessment is also used as a 

standard and recently subjected to validation. Based on registration circuits, a self-

consistency method [161] is considered where a set of three or more images are 

registered in pairs. 

Registration validation methods have been concentrating more efforts for 

rigid registration than for non-rigid registration [161]. Their improvements are 

fundamental so novel registration models can be accepted as a clinical tool, which is 

not possible without a means of validation method. 

3.4. Image registration software packages 

Several registration methodologies have been developed [109], particularly 

for multimodality, cardiac and brain images registration, but also in whole-body 

oncological applications [177], which are commercialized with the nuclear imaging 

equipment or developed under their respective software, as Hermes Medical 

Solutions, GE Healthcare, Philips and Siemens, in a single unit depending on the 

specific clinical needs. The state-of-the-art of user friendly software oriented to 

medical image processing, segmentation and registration, respecting to the 

registration methods, rigid and non-rigid transformation as well as their main 

applications, optimization and interpolation algorithms is yet reduced, being the 

majority of the existing software directed to developers.  

A system for PET–MRI registration capable of automatic scalp/brain 

segmentation replacing manual drawing operations and a fast and accurate image 

registration method is embedded in a commercially available scientific visualization 

package [178]. A parallel implementation uses a priori information about the nature 

of imaged objects to adapt the regularization of the deformations, giving higher 

weight to those points in images that contain more information. Its usability was 

improved through the implementation of a grid service that can be controlled by a 

graphics workstation embedded in the clinical environment [138]. The Functional 

Image Registration (FIRE) is an operating system and platform for independent 

multimodal image registration software, where several automatic algorithms were 

implemented, including principal axes matching and maximization of the mutual 
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information methods; a user interface was designed to support image manual 

registration [174].  

Insight Toolkit (ITK) is an object-oriented software system, implemented in 

C++, for image processing, segmentation and registration. It is an open-source 

software used to academic research, once it is designed to be intuitive and easy to 

learn through a basic object-oriented and implementation methodology, although 

being a large and complex system, by exploring the examples available within the 

source directory. This cross-platform system provides developers an extensive suite 

of software tools for image analysis to employ leading-edge algorithms for registering 

and segmenting multidimensional data [179].  

There are various registration software packages related with this toolbox. A 

well-known software based on ITK is Elastix [180]. It registers any type of images, 

but is frequently used to medical image registration. Supporting many transform 

models, similarity measures, optimization methods, interpolation methods, and 

multi-resolution schemes, it facilitates the construction of own user registration 

methods since their components can easily be plugged in. Advance Normalization 

Tools (ANTs) also depends on the ITK and extracts information from complex 

datasets that include imaging, being useful for managing, interpreting and visualizing 

multidimensional data. It has been considered an emerging tool supporting 

standardized multimodality image analysis [181]. A software developed in Objective-

C oriented to MacOS called OsiriX provides multidimensional image navigation and 

image display to interpretation of large sets of multidimensional and multimodality 

images [182]. The image processing and visualization tools VTK, also based on ITK, 

have graphic capabilities provided by Open Graphics Library (OpenGL) graphic 

standard. It is thought to simplify the navigation through large datasets, such as to 

do complex and specific tasks [182]. 

NiftyReg belongs to the NifTK platform, developed at University College of 

London, and is capable of perform rigid, affine and non-linear registration of nifty or 

analyze images. Specifically oriented to groupwise and longitudinal registration, 

Groupwise and Longitudinal Image Registration Toolbox (GLIRT) is useful for unbiased 

analysis of a large set of MRI brain images, including improved unbiased groupwise 

registration guided with the sharp group-mean image, and hierarchical feature-based 

groupwise registration with implicit template. 

http://www.itk.org/
http://www.nitrc.org/projects/glirt/
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 3D-Doctor supports greyscale and color MRI, CT and PET images in several 

formats and provides segmenting tools, 3D modeling export, measurements and 

quantitative analysis, 3D advanced processing tools. Through registration and fusion 

tools, the end-user can visualize re-sliced images automatically or semi-

automatically using a user-defined axis.  

Automated Image Registration (AIR) is a library that allows automated intra 

and inter-subject registration of 2D and 3D images, such as mono and multimodality 

registration. 

Frequently used on academic research, Matlab Image Registration Toolkit 

(MIRT) is a software package for 2D and 3D non-rigid image registration, supporting 

mutual information (MI), residual complexity (RC), sum of squared differences (SSD), 

sum of absolute differences (SAD) and correlation coefficient (CC) as similarity 

measures, as well as parametric and non-parametric transformation models, namely 

free form deformation (FFD) and curvature regularization. To the optimization step, 

it presents implicit Euler method (gradient-based) and regulates with penalized 

Laplacian of the displacements both for parametric and non-parametric 

transformation models. Multi-resolution and groupwise registration is possible. 

However, compared with ITK, Matlab is heavier so the application will have a higher 

processing time. 

Amide is a Medical Image Data Examiner (AMIDE) that has been developed to 

be user-friendly to display and analyze multimodality volumetric medical images. It 

enables the user to freely shift, rotate, view, and analyzes data sets while the 

program automatically handles the interpolation needed. It is compatible with UNIX, 

Macintosh OS X and Microsoft Windows platforms [183]. 

Based on Matlab, Statistical Parametric Mapping (SPM) is a software package 

designed for the analysis of brain imaging data sequences as series of images from 

different cohorts or time-series from the same subject [184]. It enables the 

construction and assessment of spatially extended statistical processes, used to test 

hypotheses about functional imaging data. However, this software has lost its 

popularity to BioImageSuite [185]. This software has extensive capabilities for 

cardiac, abdominal and neuro-imaging analysis providing functionality for image 

visualization and registration, surface editing, cardiac 4D multi-slice editing, 

diffusion tensor image processing and mouse segmentation and registration. 

Moreover, it can be integrated with other biomedical image processing software. 

https://sites.google.com/site/myronenko/home/RC_TMI.pdf?attredirects=0
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3.4.1. Registration methods available in ITK  

The ITK registration framework is based on a data flow via pipeline, where 

each component applies a specific operation at the inputs, being its outputs equally 

treated by another element, consisting of a sequence of pointers with specific 

attributes that are linked each other to perform various operations on a dataset.  

Table 2.2. Available registration functions in ITK-4.3, relevant for this report understanding [179]. 

Funtion Class  Description 

Transform B-Spline Uses as template parameters the type for 
coordinates representation, the dimension 
of the space, and the order of the B-spline. 

Transform Versor Rigid 3D Implements a rigid transformation in 3D 
space, exposing six parameters, three for 
the versor components and three for the 
translational components. The center 
coordinates are not modified during the 
optimization performed in a registration 
process. 

Transform Affine Represents an affine transform composed 
of rotation, scaling, shearing and 
translation. The transform is specified by a 
N × N matrix and a N ×1 vector where N is 
the space dimension. Only defined when 
the input and output space have the same 
dimension. 

Metric 

 

Mattes Mutual Information The marginal and joint probability density 
function (PDF) is evaluated at discrete 
positions or bins uniformly spread within 
the dynamic range of the images. Entropy 
values are then computed by summing over 
the bins. 

Interpolation B-Spline Represents the image intensity using B-
spline basis functions. When an input image 
is first connected to the interpolator, B-
spline coefficients are computed using 
recursive filtering (assuming mirror 
boundary conditions). Intensity at a non-
grid position is computed by multiplying 
the B-spline coefficients with shifted B-
spline kernels within a small support region 
of the requested position. 

Interpolation Linear Assumes that intensity varies linearly 
between grid positions. 
Unlike nearest neighbor interpolation, the 
interpolated intensity is spatially 
continuous. However, 
the intensity gradient will be discontinuous 
at grid positions. 

Optimizer LBFGS Limited memory Broyden, Fletcher, 
Goldfarb and Shannon minimization. 

Optimizer Regular Step Gradient Descent Advances parameters in the direction of 
the gradient where a bipartition scheme is 
used to compute the step size. 

Optimizer Versor Rigid 3D Transform Optimizer Specialized version of the regular step  
gradient descent optimizer for versor rigid 
3D transform parameters, where the 
current rotation is composed with the 
gradient rotation to produce the new 
rotation versor. The translational part of 
the transform parameters are updated as 
usually done in a vector space. 
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It has: (1) a fixed image and a moving image as input data, (2) a transform 

component that represents the spatial mapping of points from the fixed image space 

to points to points in the moving image space, (3) a metric component that provides 

a measure of how well the fixed image is matched by the transformed moving image, 

comparing the intensity values in the fixed image against the correspondent in the 

moving image, (4) an interpolator used to evaluate the moving image intensities at 

non-grid positions, (5) and an optimization method, used to optimize the metric 

value relative to the defined space by the transform parameters, which means that 

it finds the maximum or minimum value, depending on the similarity criterion 

indicating the transformation that better corresponds to the involve images.  

ITK provides a variety of transforms from translations, rotations and scaling to 

general affine and kernel transforms, using itk::Transforms to encapsulate the 

mapping of points and vectors from an input space to an output space. 

3.5. Registration in Nuclear Medical Imaging 

Nuclear image modalities provide a physiological diagnose through the use of 

radiotracers to map the metabolism and fluid flow on tissues or organs [186]. Nuclear 

medicine benefits from such evolving integration and image registration plays a 

central role in this integration [25, 29, 32, 50].  

In oncology, the completion of the medical Positron Emission Tomography 

(PET) examination, most of the times hybrid Positron Emission 

Tomography/Computed Tomography (PET/CT) [76, 187] enables the detection of 

tumors at early stages, since it is capable of detecting the development state of 

cancer and, subsequently, a proper choice to carry out the treatment and the 

evaluation of the therapeutic response.  

In cardiology, several studies have been developed, particularly in the study 

of chronic ischemia [119, 188–191], myocardial perfusion [10, 37, 80, 88, 92, 95, 120, 

121, 179, 194–198], atherosclerosis rate [191, 198], post-transplantation [197] and 

cardiac nervous system. Registration of cardiac images is a more complex task than 

the registration of images of static organs, since it is a non-rigid moving organ inside 

a moving body, and exhibits few accurate landmarks [117]. Non-rigid registration is a 

key requirement for the application of cardiac function biomechanical models, 

through the creation of a generic cardiac model that is instantiated by linear elastic 

registration with cardiac images of a subject acquired in different modalities [112]. 
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As regards the neurological and psychiatric disorders, molecular imaging has 

the ability to reveal no detectable lesions by other imaging methods [199] and 

provides information on the physiological and biochemical properties and subsequent 

functional integrity determination of brain damage’s adjacent regions [200].  The 

pre-surgical evaluation of epilepsy [100, 156], guided biopsy in brain tumors [201], 

evaluation of primary brain tumors, dementia diagnosis and selection of stroke 

patients for surgical treatment [200] are the main nuclear medicine clinical cases. 

They also allows the study of Parkinson's disease [191, 200], Alzheimer [70, 72], and 

movement disorders [202]. Monitoring changes in the individual by acquiring series of 

imaging scans is a common practice since it is particularly useful in dementia where 

fluid registration is a cue to visualize patterns of regional atrophies [112].  

A generic application of non-rigid registration is the segmentation or labeling 

task [112]. It achieves good correspondences between structurally equivalent regions 

in two images. Fully automatic multimodality image registration algorithms, namely 

CT-PET, MR-CT, MR-PET and MR-SPECT registrations, requiring no user interaction, 

are already available [203] through the detection of the head contour on MR or CT 

images using a gradient threshold method, followed by segmentation into a set of 

connected components [204]. 

3.6. Conclusions 

Most current algorithms for medical image registration use rigid body 

transformations or affine transformations, but they are restricted to parts of the 

body where tissue deformation is small compared with the desired registration 

accuracy. Algorithms based on optimizing a similarity measure and information 

theory based can be applied automatically to a variety of imaging modality 

combinations without the need of pre-segmenting the images and can be extended 

to non-affine transformations. However, it is recommended to pre-register the input 

images with an image registration technique based on rigid transformation and then 

finalize the process using another image registration technique based on deformable 

transformations.  

Inter-modality registration is still unusual in the clinical environment, but this 

kind of image registration is being widely used in medical research, especially in 

neurosciences, where it is used in functional studies, in cohort studies and to 

quantify changes in structures during ageing and diseases development. However, its 
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clinical use has logistical difficulties due to the need of acquire and register a large 

number of images in a reduced time interval, requiring advanced computational 

infrastructures, as well as production of multimedia electronic records. 

Due to the functional diagnosis that molecular imaging provides, SPECT and PET 

image registration computer techniques applications in clinical diagnosis, assessment 

of response to treatment and delivery of targeted therapies are actually being 

exploited. Image registration has potential to aid the medical diagnosis, surgery and 

therapy. Some examples are the combination of functional and high anatomical 

information. It contributes to a better localization and determination of 

abnormalities, the planning of their treatment and surgeries. Besides, differences 

are directly quantified, providing a more objective evidence of the intervention 

effects or response to therapy in serial studies.  
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Chapter 4  

Image processing, segmentation and 

quantitative analysis 

Human perception is highly based on pictorial information through the sense 

of vision. Imaging is present in a great number of technical applications, through the 

entire electromagnetic spectrum: imaging based on gamma-ray and radio band are 

used in nuclear medicine and astronomical observations; x-ray imaging enables 

medical diagnosis and industry applications; ultraviolet band imaging is applied in 

lithography, industrial inspection, microscopy and biological imaging. Other imaging 

modalities are applied in geological and marine exploration through ultrasound 

systems, as well as transmission electron microscopes explores the world at micro- 

and nano-scale, without forget the applications based on visible and infrared bands 

imaging.  

Hereafter, digital image processing methods are fundamental to improve 

pictorial information for human interpretation and enable storage, transmission and 

representation of image data for autonomous machine perception. 

At this chapter, it is pretended to expose an overview of the components 

contained in a typical image processing systems, focusing on segmentation and 

quantitative image analysis techniques used in the experimental implementation of 

this dissertation, such as the image classification methods employed.  
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4.1. General Principles of Digital Image 

An image consists of a two-dimensional function 𝑓(𝑥, 𝑦), where 𝑥 and 𝑦 are 

spatial coordinates and 𝑓 represents the amplitude of any pair of coordinates, i.e., 

the intensity of the image at that point. It is a positive scalar quantity whose 

physical meaning is determined by the source of the image; it is proportional to the 

energy radiated by the physical source. A digital image is a set of finite number of 

elements called picture elements, image elements or pixels, generated from a 

physical process. 

Recognition

Analysis

Processing

Classes

Image segmentation
Image characterization

Image registration

Classification
Neural networks

Image description

ImageImage 
enhancement

Image

Image

 

Figure 4.1. Digital image general framework. 

The fundamentals steps in digital image processing are present in Figure 4.1. 

It is started by image acquisition, which generally involves image pre-processing 

techniques, to overcome the noise inherent to acquisition systems. Image 

enhancement and restoration enable the image manipulation through specific 

methods that are image oriented. The main objective at this step is to obtain images 

more suitable than the originals for the pretended purpose.   

Note that enhancement is subjective, regarding the human preferences of a 

good enhancement result, and restoration is objective, since it is based on 

mathematical or probabilistic models of image degradation. Color image processing, 

image representation based on wavelets and compression are also part of the image 

processing system. Morphological processing consists of tools that enable the 

extraction of image components to represent and describe shapes and has an 

important role in segmentation.  

Segmentation methods are one of the most difficult tasks in digital image 

processing, since the successful solution requires the correct identification of the 

objects or regions of interest. Segmentation results are then used as entry to 
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representation and description, which can be boundary or region-based depending on 

the features or image attributes that are intended to be extracted.  

The assignment of an object’s labels based on its descriptors constitutes the 

process of recognition. Using pattern recognition algorithms, it is possible to 

determine classes through classification or neural networks and classify images under 

study as belonging to a given class [205]. 

4.2. Image processing 

4.2.1. Image intensity normalization 

Spatial resolution is defined as the measure of the smallest discernible detail 

in an image, consisting of the number of pixels per unit distance. On the other hand, 

intensity resolution represents the smallest discernible change in the intensity level. 

The number of bits is used to quantize intensity resolution into intensity levels, for 

instance 256 levels has 8 bits of intensity resolution. The most commonly used is 8, 

10, 12 or 16 bits. 

Image intensity normalization is the process that changes the range of pixel 

intensity values, also known as contrast-stretching transformation function or 

dynamic range expansion. Frequently, it is used to achieve consistency in dynamic 

range for a set of data. Similarly, it permits to expand a narrow range of input levels 

into a wide range of output levels, resulting in an image of higher contrast, as 

illustrated in Fig. 4.2. 

(a)  (b)   

Figure 4.2. Image intensity normalization of (a) identity image results in (b) higher contrast image 
[206].  

Considering a 𝑛-dimensional input gray-scale image 𝑓(𝑥, 𝑦), and the output 

normalized image 𝑔(𝑥, 𝑦), the linear normalization of a grayscale digital image is 
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performed according to the equation 4.1. Non-linear image intensity normalization is 

employed when the pretended intensity normalization function is a non-linear 

equation [206].   

𝑔(𝑥, 𝑦)= 
𝑚𝑎𝑥 {𝑔(𝑥,𝑦)}−𝑚𝑖𝑛 {(𝑔(𝑥,𝑦)}

𝑚𝑎𝑥 {𝑓(𝑥,𝑦)}−𝑚𝑖𝑛 {𝑓(𝑥,𝑦)}
 (𝑓(𝑥, 𝑦) –  𝑚𝑖𝑛{𝑓(𝑥, 𝑦)})  +  𝑚𝑖𝑛{𝑔(𝑥, 𝑦)}     (4.1) 

4.2.2. Image resampling 

It is possible to enlarge an image as it is pretended. It is needed to create the 

grid with the intended size. If the pixel spacing defined is the same as the original, 

then the shrunken image fits exactly over the original image. Note that the pixel 

spacing in the shrunken grid will be less than the pixel spacing in the original image. 

Image interpolation is used to assign point intensities in the overlay grid [207].  

4.2.3. Image interpolation 

Tasks as zooming, shrink, rotating and perform geometric corrections uses 

image interpolation as basic tool. It is the process of using known data to estimate 

values at unknown locations [208].  

The nearest neighbor interpolation consists of assigning to each new location 

the intensity of its nearest neighbor in the original image. Still a simple process, it 

introduces undesirable artifacts, such as distortion of edges. To overcome this 

problem, more suitable approaches are employed. They are bilinear and bi-cubic 

interpolation, which uses four and sixteen nearest neighbors, respectively, to 

estimate the intensity of a given location. Bi-cubic interpolation allows a better 

preservation of fine details, besides the higher processing time, which is justifiable 

for medical image processing.  

(a) (b)  

Figure 4.3. Image interpolation results: (a) application of nearest neighbor interpolation and (b) using 
bilinear interpolation [206]. 
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Figure 4.3. presents images that were zoomed from 128 x 128 to 1024 x 1024 

pixels using nearest neighbor interpolation and using bilinear interpolation, which 

clearly shows better improvements for bilinear interpolation technique.  

More complex interpolation techniques, such as splines and wavelets can be 

used to obtain better results [209]. A B-spline interpolation consists of a basis spline 

function that has minimal support with respect to a given degree, smoothness and 

domain partition, i.e., any spline function of a given degree can be expressed as a 

linear combination of B-splines of that degree. Spline interpolation is preferred over 

polynomial interpolation since its error can be less if using a low degree. Moreover, 

it avoids the problem of Runge’s phenomenon, consisting of oscillation at the edges 

on an interval that occurs when using polynomial interpolation of high degree [207]. 

4.2.4. Image averaging 

Nuclear medicine images can contain noise, deterioration factors, spatial 

resolution and image reconstruction techniques, as well as they are dependent on 

the behavior of the patient respecting the clinical protocol.  

(a)  (b)  

Figure 4.4. Noise reduction of (a) X-ray image of circuit board corrupted by salt-and-pepper noise, using 
a 3 x 3 averaging mask, resulting in  image (b) [206].  

Therefore, it is fundamental to reduce the noise content. Smoothing filters 

are usually employed, which masks yields the standard average of the pixels under 

the mask. A 𝑚 𝑥 𝑛 mask would have a normalizing constant equal to 1/𝑚𝑛. If all 

coefficients are equal, the averaging mask is also called a box filter [175]. An 

example of its application is shown in Figure 4.4. 
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4.2.5. Morphological Image Processing 

Object shape description and its structure properties are defined as 

morphology. Mathematical morphology is used to extract image properties. Its 

methods are used for image processing, namely morphological filtering, thickening or 

thinning [179].  

Morphological operations require, as input data, both the processed image 

and a structural element, whose shape and dimension is arbitrary and can be 

represented as a binary image of a given size. The structural element is applied to 

all pixels of binary image and its origin is combined with a single binary pixel. 

Consequently, the entire structural element is wrapped and a subsequent alteration 

of the corresponding pixels of binary images occurs.  

Erosion and dilation are the simplest morphological operations used to image 

processing. Erosion consists of turning on the corresponding pixel to the origin of the 

structure element B if the entire structure element falls with foreground area of a 

set A; it “contracts” the boundary of A. Dilation consists of turning on the 

corresponding pixel to the origin of the structure element B, if the entire structure 

element overlaps the foreground area of a set A by at least one element; it 

“expands” the set A.  

Morphological opening is the dilation of the erosion of a set A by a structuring 

element B. It is used for smoothing contours, breaking narrows isthmuses and 

removes small islands or sharp peaks. On the other hand, morphological closing of a 

set A by a structuring element B is defined as the erosion of the dilation of that set. 

It is employed when is intended to smooth contours, fuses narrow breaks and long 

thin golfs, eliminating small holes too. These morphological operations are 

illustrated in Figure 4.5. 

They are frequently combined to remove small objects or holes, respectively, 

and are one of the basic operations of morphological noise removal [180]. Hit or miss 

transform, boundary extraction, connected components, convex hull, thinning, 

thickening, skeletons, pruning, holes filling, border clearing or top- and bottom-hat 

operations are examples of morphological operations. Top-hat is the difference 

between the input and the output of an opening operation; it enhances the thin 

sharp positive variations. On the other hand, bottom–hat is the difference between 

the output of a closing operation and the correspondent input image [206]. 
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Figure 4.5. Morphologic operations results of opening and dilation using object A (top row). The 
structuring element is the small circle, whose dot is its center. Opening operation consists of the 
application of erosion (second row) followed by dilation (third row). Closing operation consists of the 
application of dilation (forth row) followed by erosion (fifth row). 

4.3. Image segmentation 

Image segmentation is defined as the process of partitioning an image into 

multiple sets of pixels, known as segments, and allows the simplification or change 

in the representation of an image into regions of interest. The level of the 

subdivision depends on the problem being solved. 

It subdivides an image into its constituent regions, or objects, or a set of 

contours, through the attribution of a label to each pixel. The pixels of a segmented 

region are similar with respect to some computed property sharing the same label, 

but adjacent regions are significantly different.  

Image segmentation algorithms are generally classified as intensity- or region-

based. The first approach consists of partitioning an image based on abrupt changes 
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in intensity, such as edges, while the second category relies on regions that are 

similar according to a set of pre-defined criteria. 

The several applications of image segmentation cover areas as industry, 

biology, video surveillance, recognition, traffic control system, biology and 

microscopy, content-based image retrieval, machine vision, and medical imaging. It 

is a fundamental tool to locate tumors and other pathologies, measure tissue 

volumes, diagnosis and study of anatomical structure, surgery planning, virtual 

surgery simulation and intra-surgery navigation. 

Some techniques were tested in the experimental implementation presented 

in this dissertation, namely Otsu method, k-means clustering, region growing and 

shape detection, to compare these approaches in myocardial perfusion SPECT 

images. These methods are explained next.  

4.3.1. Otsu thresholding 

Thresholding is the simplest and one of the most used methods of image 

segmentation due to its intuitive properties and simplicity of implementation, 

whereupon a threshold value separates the objects intended to be extracted from 

the background. Then, being 𝑇 the select threshold, any point (𝑥, 𝑦), for 

which 𝑓(𝑥, 𝑦)  >  𝑇, is called an object point. Otherwise, it belongs to the 

background, called a background point. Depending on the threshold values, the type 

of thresholding varies, i.e. if the method only depends on gray-level values, it is a 

global thresholding, but if it also depends on some local property, it is called a local 

thresholding; a dynamic or adaptive threshold is employed if the threshold value 

depends on spatial coordinates.  

Otsu method is based on thresholding and it is used to automatically perform 

clustering-based image thresholding or the reduction of a grey level image to a 

binary image (see Figure 4.6). It assumes that the image to be threshold has a bi-

modal histogram, so it calculates the optimum thresholding that separates those two 

classes. First, it selects the initial threshold T and segments the two groups of pixels. 

The algorithm computes the histogram and the probabilities of each intensity level 

and sets up both initial class probability and respective mean. It updates the 

threshold 𝑇 considering the mean intensities previously calculated. Then, the process 

is repeated until the difference between two successive threshold values is less than 
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a prescribed tolerance. The optimum threshold is the one that minimizes the intra-

class variance and maximizes the inter-class variance. 

(a)  (b)  

Figure 4.6. Application of Otsu thresholding method on a clear bi-modal image (a), resulting in a well 
segmented image (b). 

The Otsu threshold can be extended to multiple thresholding levels, which is 

the process of segmenting a gray level image into several distinct regions. It enables 

the determination of more than one threshold, segmenting the image into one 

background and several objects, each one at different intensity levels. It can be 

obtained good results with images that have modal intensity levels well defined. 

4.3.2. K-Means Clustering 

K-Means clustering algorithm is a segmentation method that classifies the 

input data points into multiple classes based on the distance from each other. The 

algorithm assumes data features from a vector space and finds the subsequent 

clusters, through their centroids. Accordingly, it is a method of vector quantization 

that aims partitioning 𝑛 observations into 𝑘 clusters, whose observation belongs to 

the cluster with the nearest mean. The main applications of this method are vector 

quantization, cluster analysis and feature learning. It is exemplified in Figure 4.7. 

This method relies on convergence to a local minimum, which may produce 

counterintuitive results. Furthermore, an inappropriate choice of the number of 

clusters 𝑘 may yield poor results, if the number of clusters in the data set is quite 

different. Unfortunately, the facts of both the Euclidean distance being used as 

metric and variance as measure of cluster scatter are features that makes k-means 

as efficient as limited.  

Several variations of this algorithm have been developed due to overcome 

computational complexity and time consuming. Some examples are the following 

methods: Jenks natural breaks optimization, k-medians clustering, k-medoids, fuzzy 
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C-means clustering, Gaussian mixture models with expectation-maximization 

algorithm, kd-trees, spherical k-means or even minkowski metric weighted k-means. 

(a)   (b)  (c)  

Figure 4.7. (a) HLA myocardial perfusion slice. (b) Segmentation using k-means (3 clusters). (c) 
Segmentation using k-means (5 clusters). Note that an inappropriate choice of the number of clusters 𝑘 
may yield poor results, if the number of clusters in the data set is quite different. 

4.3.3. Region growing 

Region growing is an unsupervised region-based image segmentation method 

that groups pixels or sub-regions based on both predefined similarity and stopping 

criteria. The algorithm starts with a single pixel or set of pixels defined as seed 

points, from which the segmented region grows according to pre-defined conditions 

of similarity between the seeds and their neighboring pixels. The selection of 

similarity criteria depends on the problem under study and the type of available 

data. The formulation of a proper stopping rule, that stops the region growing from 

the seeds when no more pixels satisfy the inclusion criteria, is one of the major 

difficulties of this method (see Figure 4.8). 

(a)   (b)  

Figure 4.8. Segmentation of (a) HLA myocardial perfusion slice using region growing method, resulting in 
image (b). The difficult definition of the stopping criteria can result in lack of accuracy.  

Image segmentation methods based on region growing can separate regions 

with the same properties, but requires high power and time consuming.   
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4.3.4. Level set methods 

Level set method is based on implicit representation of the interface. It is a 

numerical technique for tracking interfaces and shapes, since it can perform 

numerical computations involving curves and surfaces on a fix grid without having to 

parameterize these objects. It enables segmentation of time-varying shapes.   

The main advantages of the level set methods are the fact that topological 

changes are handled smoothly with no user intervention required, as well as corners 

and cusps, using methods borrowed from hyperbolic conservation laws. Moreover, 

the method is easily extended to higher dimensions [175]. 

The fast marching method is related to the level set method, but solves a 

given problem much more quickly. It also uses an implicit representation for an 

evolving interface, but the embedding function carries much more information. This 

method requires the entire evolution of the interface to be encoded in the 

embedding function. This enables a faster solvation of the problem with one single 

pass over the mesh, contrasting with the level set method where each time steps 

requires an additional pass over the mesh to evolve the level set function in time. 

 The fast marching method needs an initialization that must be selected 

closed to where the exact solution is assigned, consisting of all the nodes that are 

immediately adjacent to the initial interface. Higher degree of accuracy can be 

reached using a bi-cubic interpolation function. It is not just used to obtain accuracy 

for the distance to the zero level set, but also for sub-grid resolution of the shape of 

the interface and sub-grid resolution of the level set function.  

Therefore, re-initialization is employed to reconstruct the level set function 

to be the signed distance function, i.e., it fixes the level set function when the 

velocity field does not preserve the level set function as a signed distance function. 

An alternative is to adjust the velocity field in the first place.  

The fast marching method has made a contribution to several application, 

like crack propagation, shape reconstruction, image processing, medical imaging, 

computer graphics and visualization and robotic navigation [179]. 
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4.4. Image Quantitative Analysis 

Image analysis can be defined as the extraction of meaningful information 

from images. Shape descriptors are used in a great number of image processing 

applications due to their capacity of characterization of the regions of interest. The 

reason for a permanent interest for newly created shape descriptors relies on the 

demand for more efficient shape classification procedures. 

4.4.1. Labeling 

Extracting and labeling of various disjoint or connected point in an image is 

fundamental to automated image analysis applications. The algorithm starts by 

scanning a binary or grayscale image, pixel-by-pixel, from both left to right and top 

to bottom. A label is attributed to each pixel, and groups the pixels into components 

based on pre-defined pixel connectivity. The equivalent label pairs are stored in an 

equivalent matrix, or into equivalence classes, and a unique label is assigned to each 

class. Finally, a second image scan replaces the labels previously assigned by the 

label assigned of its equivalence class. Then, all connected component pixels share 

the same label. The labeled objects, or even only their boundaries, are often 

displayed with different gray levels or colors, as illustrated in Figure 4.9. 

 

Figure 4.9. Identification of three objects through different color labels.  

4.4.2. Extraction of geometric dimensions 

After segmentation and connected components labeling, the objects of 

interest may be described through shape parameters, namely elementary 

geometrical parameters. The parameters used in the present dissertation will be now 

exposed. 
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 The perimeter can be obtained from the chain code of the object boundary, 

taking into account the length of the chain code and considering that all steps in 

diagonal directions are longer by a factor of 2. For an 8-neighborhood chain code the 

perimeter is given by the equation 4.2, where 𝑛𝑒 and 𝑛𝑜 are respectively the number 

of even and odd chain code steps.  

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 =  𝑛𝑒 +  √𝑛𝑜
2

                                                 (4.2) 

Perimeter results directly from the construction of the boundary line with 

equidistant samples and is well approximated to the number of sampling points times 

the mean distance between the points. Note this shape perimeter is sensitive to 

noise, so comparison of perimeters from different images must be realized carefully. 

However, it does not depend on the orientation of the objects on the image plane.   

Roundness, or circularity of a region, is a geometric feature that is invariant 

under translation, rotation and scaling. Given an object R, the circularity is given by 

function 4.3, where 𝐴 represent the object area, i.e, the number of pixels within the 

object, and 𝑃 its perimeter. It results in the maximum value of 1 for a perfect round 

region and a value in the range between 0 and 1 for all other shapes. This shape 

descriptor also offers information on how regular an object is, because the inverse of 

this measurement defines the compactness factor (see eq. 4.3). 

𝐶𝑅 =
4𝜋𝐴

𝑃2                                                                      (4.3) 

 Equivalent spherical radius of an irregularly-shaped object is the equivalent 

radius of a hypersphere of the same size than the label object, which value depends 

on the image spacing.  

 Elongation is a basic shape descriptor with a clear intuitive meaning. Its 

standard measure is area-based because all points belonging to the shape are 

involved in its computation. It is derived from the shape orientation definition which 

is based on the axis of the last second moment of inertia. Therefore, it is the ratio of 

the largest principal moment to the second largest principal moment. Its value is 

greater or equal to 1. 
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4.5. Image classification  

Machine learning and pattern recognition, or image classification, are the hot 

topics since the last two decades with the ever increasing amount of data becoming 

available. Smart data analysis is an essential tool for technological progress. Machine 

learning or pattern recognition applications concern the construction and study of 

systems that can learn from data. Web page ranking, collaborative filtering, 

automatic translation of documents, face recognition, speech recognition, optical 

character recognition and entity recognition are examples of machine learning 

applications. 

 The main challenge of image classification deals with representation of data 

instances and respective representation, as well as with generalization that provides 

the system to perform classification on unseen data, i.e., the ability to perform 

accurately on new examples or tasks after having experienced a learning data set. 

The training set has generally unknown distribution and the learner must build its 

distribution model to produce accurate predictions.   

 These algorithms can be organized based on two properties: the desired 

outcome or the type of input available during the training machine. Furthermore, 

they can be grouped into generative and discriminative models. Some examples of 

classification algorithms are decision tree learning, association rule learning, 

artificial neural networks, inductive logic programming, support vector machines, 

clustering, reinforcement learning, representation learning, similarity and metric 

learning, sparce dictionary learning and Bayesian networks.  

4.5.1. Bayesian classifier  

Pattern classification is the act of assigning a class label to an object, 

physical process or event, based on measurements that are obtained from that 

object. The definition of relevant classes depends on the nature of the application. 

Probability theory is commonly used for pattern recognition design, whose pattern-

generating mechanism is represented within a probabilistic framework, illustrated in 

Figure 4.10.  
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Figure 4.10. Statistical pattern classification [181]. 

 Bayesian network is based on a stochastic experiment defined by a set of 

Ω = {ω1, … , ω𝑘} of 𝑘 classes, which are assumed as mutually exclusive. The 

probability 𝑃(ω𝑘) of having a class ω𝑘k is called the prior probability and represents 

the knowledge about the class of an object before the measurements of that objects 

are available. The sensory system produces a measurement vector z with dimension 

N, each one containing the object from the same class. The conditional probability 

density function of the measurement vector z is given by 𝑃(z|ω𝑘) and means the 

density of z coming from an object with known class ω𝑘. If z comes from an object 

with unknown class, its density is given by 𝑃(z); it is the unconditional density of z. 

The pattern classifier casts the measurement vector in the class that will be assigned 

to the object. This is accomplished by the so-called decision function that maps the 

measurement space onto the set of possible classes.  

When an object is classified, both a uniform cost function and a zero cost 

function are obtained when the classification is correct. Since Bayes classifier is 

based on (1) the damage, or loss of value, when an object is erroneously classified, 

then it can be quantified as a cost or loss and (2) the expectation of the cost, i.e., it 

can be employed as an optimization classifier. Their uses for Bayes classification 

requires the specification of the conditional probability densities [181]. 

Bayes' formula is an important method for computing conditional probabilities 

and it is often used to compute posterior probabilities of given observations. 

4.6. Evaluation 

Every image analysis algorithms must be validated through performance 

analysis, whose evaluation depends on the type of image analysis problem. There are 

different categories, namely image classification or abnormality detection problems 

and image segmentation problems.  
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Metrics to evaluate the performance of image classification involves the 

relative frequency of correct and incorrect decisions. True and false positives and 

negatives are commonly used in this context, i.e. true positive (TP), false positive 

(FP), true negative (TN) and false negative (FN), whose positive and negative refers 

to the decision made by the algorithm and true and false to how the algorithm 

decision agrees with the actual clinical state, as Table 4.1 synthetizes. 

Derived from these metrics, additional performance metrics are defined:  

accuracy, sensitivity or recall and specificity, precision, and F-measure. Their 

definition and formulas are synthetized in Table 4.2. They can be stated as a fraction 

between 0 and 1 and consequently as a percentage. 

 Table 4.3. Confusion matrix (adapted from [182]). 

 Algorithm decision 

Clinical decision 

 Abnormality present Abnormality not present 

Abnormality present True positive False negative 

Abnormality not present False positive True negative 

 

Image segmentation problems are evaluated using performance metrics based 

on the identification of regions that share some semantic label, such as abnormality, 

or on the identification of all basic regions in the image. The set of obtained results 

is then counted and the resulting number of correct or incorrect results is more 

complex than the measurement of classification problems. 

Table 4.4. Definition of performance metrics and respective mathematical formulas. 

Metric Definition Formula 

Accuracy Measure of the global performance 

concerning correct decision. 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Sensitivity, Recall or True 

Positive Fraction 

Measure how often the algorithm 

reports that an abnormality exists in 

the instances where it actually 

exists. 

𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

Specificity or False Positive 

Fraction 

Measure how often the algorithm 

reports normal when no abnormality 

exists. 

𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

Precision Fraction of detections that are 

relevant. 

𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

F-measure Combines precision and recall by 

their harmonic mean (Fβ). The 

traditional measure is the F1 

measure, where P and R are 

weighted evenly. 

𝐹
β=

(1+β2)(𝑃.𝑅)

β2𝑃+𝑅
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 Commonly, results of image segmentation are compared with a ground truth, 

whose segmented regions are classified as correct segmentation, over-segmentation, 

under-segmentation, missed region and noise region. Its evaluation is based on 

measures that consider distance between two contours, as Hausdorff distance, mean 

absolute contour distance or degree of overlapped areas.  

The Dice’s coefficient is widely used to evaluate the performance of 

automatic segmentation algorithms results based on its overlapped area with its 

ground truth, i.e. it measures the extent of spatial overlap between two binary 

images. Thus, it gives more weighting to instances where the two images agree. Its 

values range between 0 and 1, respectively corresponding to no overlap or perfect 

agreement [183]. It can be obtained as a percentage value, through equation 4.4. 

𝐷 =
2(𝐴∩𝐺)

𝐴∩𝐺+𝐴∪𝐺
× 100                                                  (4.4) 

Free-response ROC (FROC) curve is used when the objective is counting all 

instances of abnormalities in an image, representing the space of tradeoffs between 

the sensitivity and the generalized specificity of an algorithm. Similarly to ROC 

curve, the area under FROC curve is also considered to evaluation [182].  

4.7. Conclusions 

This chapter has provided the general principles of digital image processing. 

Image processing techniques as image intensity normalization, image resampling and 

image interpolation are employed in the experimental implementation that will be 

explained in Chapter 5, as pre-processing image techniques. Morphological 

techniques also constitute a powerful set of tools for extracting features of interest 

in an image. The more significant advantage in terms of implementation is the fact 

that dilation and erosion are primitive operations that are the basis for a broad class 

of morphological algorithms, namely top-hat and bottom-hat.  

 Image segmentation is an essential preliminary step in the majority of 

automatic pattern recognition and scene analysis problems. The specific 

characteristics of a problem decide the best segmentation technique to be applied, 

since its basic goal is to partitioning the image into mutually exclusive regions to 

which there are attached meaningful labels. 
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 Computer vision, machine intelligence and pattern recognition still be in 

relatively early stages. There methods require the definition of useful shape 

descriptors and methods for their automation. Furthermore, they reduce the 

coordinate pairs in the shape vector representation to produce some compact or 

even single-parameter measure of the approximate shape. Nowadays, they are 

majority based on heuristic approaches.  
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Chapter 5  

Developed implementation, results 

and discussion 

In this chapter, computational techniques of medical image analysis, mainly 

of image registration, are integrated in a computational solution to automatically 

compute a set of features from myocardial perfusion SPECT images and use them to 

statistical analysis and classify the images as from subjects with myocardial perfusion 

associated diseases or not. The image registration algorithms used, including the 

transformation, similarity measure, optimization and interpolator algorithms, will be 

described and discussed, as well as the segmentation steps. Using the features 

subset obtained from segmentation method, image classification methods are 

employed, significantly improving diagnostic performance.  

The developed computational solution can be divided into the following 

steps: (1) formation of a template image; (2) segmentation of the template LV and 

computation of related geometric dimensions; (3) data registration, i.e. alignment of 

the gated myocardial perfusion SPECT images’ slices under study with the pre-built 

template image; (4) statistical analysis and image classification. These steps are 

minutely explained next and the experimental results obtained at each step will be 

discussed. 

With this implementation it is not intended to replace physicians’ judgment, 

but assist them in clinical decision, such as complementing medicine teaching of 

cardiology. 



 

 

ANALYSIS OF GATED MYOCARDIAL PERFUSION SPECT IMAGES USING COMPUTATIONAL IMAGE REGISTRATION TECHNIQUES 

62 

5.1. Implementation 

The computational solution was fully implemented in C++ and tested on a 

notebook PC with Intel® Pentium® CPU P6200 2.13GHz processor, RAM 4.0GB, 

NVIDIA® GFORCE® with CUDA® 315M graphic, Samsung SSD 840 Series with 100 GB 

and a TOSHIBA MK3252GSX with 300 G and under Microsoft Windows 7 NT operating 

system (32-bits). Computational techniques of image segmentation, processing and 

classification were implemented using the free open source toolkits Insight Toolkit 

(ITK) 4.3.  

5.2. Material and methods 

5.2.1. Dataset 

Data used in the preparation of this dissertation were provided by Hospital 

Lusíadas Porto, Porto, Portugal. The control group contains female and male stress 

and rest gated myocardial perfusion SPECT images. The dataset is formed by 180 3-D 

images from 48 patients with healthy cardiac condition and 72 3-D images from 12 

patients with associated cardiac diseases. Data was provided in DICOM multi-frame 

image format. 

The image acquisition system was a single head e-cam SPECT camera 

(SIEMENS-Germany) equipped with a low-energy high resolution collimator. The data 

from the SPECT studies was acquired in 64 × 64 image matrix for 32 projections over 

180◦ arc, 25s per projection, from 45◦ right anterior oblique (RAO) to the 45◦ left 

posterior oblique (LOP). These images were reconstructed using the filtered back 

projection algorithm and a low pass Butterworth filter (cut off: 0.4-order: 5). 

Thereafter, semi quantitative analysis of LV myocardium perfusion has been done by 

Cedars-Sinai Software (20 segment model). 

5.2.2. Template myocardial SPECT image 

The template myocardial SPECT image is built as a consistent reference 

against with it will be compared the images to be classified. Its formation requires 

three distinguished steps, namely (1) image registration of healthy patients’ images, 
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(2) segmentation of LV, (3) coronary artery mapping and (4) registration of image 

obtained in step 1 with the coronary artery mapping image obtained in step 3. 

The template image is composed of 12 slices for each cardiac axis, there 

being a template image for stress and rest clinical protocol. The stress template 

myocardial SPECT is the result of 16 healthy patients and rest template image 

corresponds to the registration of 6 patients’ exams (these patients are the same of 

the stress dataset used for building the template image). This difference is due to 

the fact that the patients firstly realize the stress protocol and the rest protocol is 

not always necessary, there being a few number of rest protocol images.  

At the end, there are built three template images per clinical protocol (rest 

or stress), one for each axis (SA, VLA and HLA), consisting of the registration of 

myocardial SPECT images from healthy patients containing the coronary artery 

mapping, performing a total of six template myocardial perfusion SPECT images. 

5.2.2.1.  Healthy myocardial SPECT image registration  

To build the 3-D template SPECT image, an image from the dataset was 

selected to be the reference image. Then, the data of the control group was 

automatically registered with the reference image. The result of the registration 

process was defined as the template image. Note that the template image is built 

just once. The full algorithm is presented in Figure 5.1.  

Cardiac structures have different dimensions for each patient, and more 

significantly depending on the patient genre, i.e., as the image is from a female or 

male patient. Then, it is fundamental that the moving image pass through a cubic B-

Spline interpolator to set the origin, spacing, direction and size features of the fixed 

image. A rescale intensity image filter is used next to normalize both images 

intensities.  

Hereafter, the registration method is implemented. It is divided into a pre-

registration method based on rigid transforms and a registration method based on 

deformable transforms, both using multi-resolution registration technique, since it is 

faster and efficient.  
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(a) 

Image pre-processing

Registration based on deformable transforms using multi-resolution registration technique

Pre-registration based on rigid transforms using multi-resolution registration technique

Conversion of DICOM multi-frame images into DICOM volumes

3-D Template myocardial perfusion SPECT image

Image intensity normalization

B-Spline interpolation

Versor rigid 3D transform, Mattes mutual information metric, versor rigid 3D optimizer and B-Spline 
interpolator

B-spline transform, Mattes mutual information, LBFGS optimizater and B-spline interpolation

 

 

(b) (c)  (d)  (e)  (f)  

Figure 5.1. Algorithm framework and images’ examples obtained at each step: (a) algorithm framework 

implemented to generate a template myocardial perfusion SPECT image; (b) input 3-D image; (c) B-

spline interpolation 3-D result; (d) rescale intensity image filter 3-D result; (e) image pre-registration 3-

D result; (f) image registration 3-D result. 

The pre-registration method consists of an initial translational pre-

registration step. A centered transform initializer uses the center of mass given by 

the image intensities of input images. Then, it is applied a rigid 3D transform 

consisting of a 3D rotation and a 3D translation, specified by a versor and a vector, 

respectively. The similarity measure used is the Mattes mutual information, based on 

information theory, which consists of measuring how much information in one 

random variable tells about another variable using one set of intensity sample to 

evaluate the marginal and joint probability density function at discrete positions. 

The optimizer that searches for the best geometric transformation is the versor rigid 

3D transform optimizer that implements a gradient descent optimizer for the 

transformation parameter space. The employed interpolator is the cubic B-Spline 

interpolator. The main parameters defined to properly perform this pre-registration 
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algorithm described are presented in Table 5.1. These values were experimentally 

obtained, through trial and error. 

After obtaining the pre-registered image, a final registration step based on 

deformable transformation is applied, to register it with the reference image. 

Table 5.1. Main parameters’ values defined in the pre-registration algorithm of healthy myocardial SPECT 

images. 

Function Parameters Values 

Metric Number of histogram bins 128 

Metric Number of spatial samples 25000 

Optimizer Translation scale 100000 

Optimizer Number of iterations 100 

Optimizer Maximum step length 0.05 

Optimizer Minimum step length 0.005, if multi-resolution level = 0. 

0.00005, if multi-resolution level > 0. 

Multi-resolution registration Number of levels 3 

 

The registration method starts with a B-Spline transform that encapsulates a 

deformable transform of points from one 𝑛-dimensional space to another 𝑛-

dimensional space. The Mattes mutual information is also used as similarity measure. 

The optimizer used here is a LBFGSB optimizer, which minimizes a nonlinear function 

𝑓(𝑥) of 𝑛 variables subject to simple bound constraints. Then, it is employed a B-

Spline intensity interpolator. The main parameters defined to perform properly the 

registration algorithm described are presented in Table 5.2. These values were 

experimentally obtained, through trial and error. 

5.2.2.2. Segmentation of the LV and computation of 

related geometric dimensions 

The LV segmentation is implemented in 2D. The first step is to extract the 

DICOM volume’s slices obtained in the previous registration step. Due to the image 

acquisition system, DICOM images have low resolution. It is partially improved 

passing the template image by a resample image filter that sets the default pixel 

value to 10 and an output spacing factor of 0.3.  

Next, the images are post-processed using mean spatial filtering, to reduce 

the noise of the images, followed by morphological operations. Opening and closing 

operations were used to implement a top hat followed by a bottom hat. The 

obtained image is added to the slice, and then the bottom hat is subtracted. This 
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step improves the gradient magnitude of the template SPECT image’s slices. 

Posteriorly, k-means clustering using 3 clusters is employed. 

Table 5.2. Main parameters’ values defined in the registration algorithm of healthy myocardial SPECT images. 

Function Parameters Values 

Metric Number of histogram bins 128 

Metric Number of spatial samples (Number of pixels of the fixed region * 

20.0 )/ 50.0 

Metric Translation scale 100000 

Optimizer Number of iterations 100 

Optimizer Relaxation factor 0,9 

Optimizer Cost function convergence factor 1e9, if multi-resolution level = 0. 

1e14, if multi-resolution level > 0. 

Optimizer Projected Gradient Tolerance 1e-9, if multi-resolution level = 0. 

1e-14, if multi-resolution level > 0. 

Optimizer Number of iterations 200 

Optimizer Number of Evaluations 400 

Optimizer Number of Corrections 50 

Interpolator Number of grid nodes in one 

dimension 

10 

Interpolator Spline order 3 

Multi-resolution registration Number of levels 3 

 

Here, the LV is already segmented. A label map filter is applied and the 

contour of each object is obtained. Object related geometric dimensions are 

computed, specifically perimeter, equivalent spherical radius, roundness, elongation 

and number of pixels. Each geometric dimension is written into a vector. So, five 

vectors are obtained, constituting the set of features from myocardial perfusion 

SPECT images that has been initially proposed to aim. Figure 5.2 illustrates this 

algorithm. 

5.2.2.3.  Coronary artery mapping 

The next step consists of generating the coronary artery mapping of the 

template image previously obtained, which posterior alignment with images under 

study will allow the clinical expert to observe the localization of cardiac 

abnormalities. 

To perform this task, the 20 segment-based coronary artery mapping was 

manually drawn for the apical, medial and basal region of the template myocardial 

perfusion SPECT image of each axis 
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 (a)

Image post-processing

Conversion of DICOM volumes into DICOM slices

Image Segmentation

Computation of geometric related dimensions

Segmented LV Structures

Image averaging and morphological image processing.

K-means clustering

Perimeter, equivalent spherical radius, roundness, elongation and number of 
pixels.

 

(b)     (c)     (d)   

Figure 5.3. Segmentation algorithm: (a) segmentation algorithm framework; (b) input 3-D image (c) 3-D 
image result of image averaging followed by morphological processing techniques; (d) example slice of 
segmented myocardial perfusion using k-means 3 clusters. 

5.2.2.4.  Registration of coronary artery mapping 

This is the last step required to build the template coronary artery mapping 

of myocardial perfusion SPECT image. Similar algorithms to those described in 

section 5.2.2.1 were used to align the coronary artery mapping image slices, 

obtained in the previous step, with the template image obtained in section 5.2.2.1. 

Accordingly, it is also divided into a pre-registration method based on rigid 

transforms and a registration method based on deformable transforms, both using 

multi-resolution registration technique. The registration algorithm was implemented 

bi-dimensionally, since the input images are the 2-D segmented images previously 
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obtained. The algorithm employed and registration components are synthesized in 

Figure 5.3.  

Here, the pre-registration method starts with the same centered transform 

initializer used in section 5.2.2.1. Then, it is applied an affine transform, a linear 

transformation that maps lines into lines. As previously, the similarity measure 

employed is the Mattes mutual information. According the transform method 

employed, a regular descent optimizer is used. These components are combined with 

a linear interpolator. The main parameters defined to perform this pre-registration 

method are presented in Table 5.3. These values were experimentally obtained, 

through trial and error.  

(a)

Image pre-processing

Segmented template image’s slices and template coronary artery mapping slices

Pre-registration based on rigid transforms using multi-resolution registration technique

Registration based on deformable transforms using multi-resolution registration technique

Coronary artery mapping segments labelling

Template image containing coronary artery mapping

B-Spline interpolation

Image intensity normalization

Affine transform, mattes mutual information, regular step gradient descent optimizer and 
linear interpolation

B-spline transform, mattes mutual information, regular step gradient descent optimizater and 
B-spline interpolation

Image segmentation

K-means clustering (3 clusters)

 

(b)  (c)  (d)  

Figure 5.2. Pre-registration algorithm used to align the template image's slices with the corresponding 
coronary artery mapping; (b) Image to be aligned; (c) Pre-registration between the input image and the 
coronary artery map obtained; (d) Coronary artery mapping registration final output. 
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The pre-registration algorithm’s output is the image under study with the 

coronary artery mapping. Therefore, a final registration step based on deformable 

transformation is applied, to register it with the coronary artery mapping of the 

template image.  

The final registration algorithm is based on multi-resolution registration 

approach. It is compound by the B-Spline transform, the Mattes mutual information 

metric, the regular step gradient descent optimizer and the B-Spline intensity 

interpolator. The main parameters used to perform the method were experimentally 

obtained, presented in Table 5.3, through trial and error. 

Table 5.3. Main parameters’ values defined in the pre-registration algorithm used for aligning the template 

myocardial perfusion SPECT images with the coronary artery mapping. 

Function Parameters Values 

Metric Number of histogram bins 128 

Metric Number of spatial samples 50000 

Metric Translation scale 100000 

Optimizer Number of iterations 200 

Optimizer Relaxation factor 0,8 

Optimizer Maximum step length 0.5, if multi-resolution level = 0. 

Optimizer Minimum step length 0.05, if multi-resolution level = 0. 

0,0005, if multi-resolution level > 0. 

Multi-resolution 

registration 

Number of levels 3 

 

Table 5.4. Main parameters’ values defined in the registration algorithm used for aligning the template 

myocardial perfusion SPECT images with the coronary artery mapping. 

Function Parameters Values 

Metric Number of histogram bins 50 

Metric Number of spatial samples (Number of pixels of the fixed region * 

60.0 )/ 100.0 

Metric Translation scale 100000 

Optimizer Number of iterations 200 

Optimizer Relaxation factor 0.9 

Optimizer Maximum step length 10 

Optimizer Minimum step length Tolerance 0.1 

Optimizer Number of iterations 200 

Interpolator Number of grid nodes in one 

dimension 

7 

Interpolator Spline order 3 

Multi-resolution registration Number of levels 3 
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5.2.3. Myocardial SPECT image segmentation and 

registration 

The computational techniques explained before, used to segment the LV and 

its registration with the template image, are also used to register the image under 

study with the template image. The complete algorithm is summarized in Fig. 5.4. 

The first step consists of defining the first and last slice of interest, to 

segment and register only the slices with relevant information. The empirical 

analysis of image datasets has proved the first and last fifths of DICOM volumes do 

not contain relevant information. Accordingly, the algorithm was programmed to 

consider the first slice of the second fifth of the volume as the first slice to be 

analyzed and the last slice of the forth fifth of the volume as the last slice. 

Secondly, the image under study is segmented based on k-means clusters 

using 3 clusters and respective geometric dimensions are computed, using the 

algorithm described in section 5.2.2.2. This step enables clinical professionals 

analyzing the myocardial perfusion of the patient, providing a better visual 

evaluation of myocardial perfusion extent. 

Note since the algorithms of image processing, registration and segmentation 

had already been exemplified through images previously and the following 

framework applies the same techniques, there is no need of exemplifying the next 

processes. 

 



 

 

ANALYSIS OF GATED MYOCARDIAL PERFUSION SPECT IMAGES USING COMPUTATIONAL IMAGE REGISTRATION TECHNIQUES 

71 

Image pre-processing

Image pre-processing

Patient exam’s (image under study)

Pre-registration based on rigid transforms using multi-resolution 
registration technique

Registration based on deformable transforms using multi-resolution 
registration technique

Image under study containing the artery coronary mapping with 
template myocardial perfusion SPECT image dimensions.

Image Segmentation

Segmented LV Structures

Definition of both first and last slice

Computation of geometric related dimensions

Image averaging and morphological image processing.

K-means clustering (3 clusters)

B-Spline interpolation and Image intensity normalization

Affine transform, mattes mutual information, regular step 
gradient descent optimizer and linear interpolation

B-spline transform, mattes mutual information, regular step 
gradient descent optimizater and B-spline interpolation

Image Segmentation

K-means clustering (3 clusters)

Perimeter, equivalent spherical radius, roundness, elongation 
and number of pixels.

 

Figure 5.3. Segmentation and registration of patient’s exam. Image segmentation provides an accurate 
visual analysis and image registration of the patient’s exam with the template image enables a correct 
computation of related geometric dimensions according to the normal heart size. Note that the 
template image slices is chosen according the clinical protocol and axis of the image under study. 

As referred before, due to different hearts size between patients and 

depending on the genre, the computation of cardiac geometric related dimensions 

would lead to a lack of pattern from healthy and unhealthy geometric dimensions of 

myocardial perfusion region. It is predictable that healthy myocardial perfusion 

patients have higher geometric dimensions and unhealthy patients have small 

myocardial perfusion regions. However, a bigger LV can have considerable geometric 

dimensions but be unhealthy as well as a smaller structure, very common in women, 

can be healthy with smaller geometric dimensions.  

For this reason, it is fundamental the image under study to be registered with 

the coronary artery mapping slices. It is done using the same algorithm of section 

5.2.2.4. The cardiac structure under study is interpolated considering the origin, 



 

 

ANALYSIS OF GATED MYOCARDIAL PERFUSION SPECT IMAGES USING COMPUTATIONAL IMAGE REGISTRATION TECHNIQUES 

72 

spacing and image size of the template image. Note that the template image slices 

are chosen according the clinical protocol and axis of the image under study. This 

step eases clinical professionals in the detection of the myocardial perfusion defects 

and their location.  

Since the output of segmentation process is 2-D and the selection of the 

adequate coronary artery mapping slice is subjected to observer variability, the 

middle template coronary artery mapping was chosen to be registered with all 

patients’ slices, aiming geometric related dimensions of each cardiac structure to 

have the same properties of template image pattern. This registration has enabled a 

more consistent result in the definition of the normal pattern. Therefore, the 

registered image is segmented using k-clustering using 3 clusters, since the 

computation of the maximum perfusion region is not required and it is a reliable 

segmentation of myocardial perfusion region. Finally, geometric dimensions are 

computed. This step enables image classification and consequently provides a 

computer aided diagnosis to support medical decision making. 

This algorithm provides a proper segmentation and classification of the 

patient’s gated myocardial perfusion SPECT images under study. The segmented 

image as well as the computed geometric dimensions are then used to statistical 

analysis and image classification, described below. 

5.2.4. Statistical analysis and image classification 

The steps described till section 5.2.3 permit computing a set of features from 

the template myocardial perfusion SPECT image as well as from the images under 

study. Here, they are used to statistical analysis and posterior classification of the 

images. At this section, the implemented algorithm for performing statistical analysis 

and image classification, which is based on Bayesian frameworks, is described. Figure 

5.5 illustrates the classification algorithm. 

Per set of slices previously segmented, the mean of each geometric 

dimension is computed and written into a sample vector. So, here there are five 

sample vectors containing the mean values of the related geometric dimensions of 

every set of segmented slices. They are defined as measurement vectors, used as 

input data to perform the statistical analysis.  



 

 

ANALYSIS OF GATED MYOCARDIAL PERFUSION SPECT IMAGES USING COMPUTATIONAL IMAGE REGISTRATION TECHNIQUES 

73 

Vector per geometric dimension for each set of slices (patient exam).

Computation of mean values of each vector.

Generation of sample vectors per geometric dimension containing the mean 
values.

Definition of classes and labels: “abnormality present” and “abnormality nor 
present”.

Computation of mean and standard deviation from each class, per sample 
vector.

Computation of prior probabilities.

Definition of both training and testint sets.

Classification of exam patient.
 

Figure 5.4. Algorithm used to perform statistical analysis and image classification. 

As required from Bayesian framework, there are defined two classes and 

respective labels, corresponding to (1) myocardial perfusion SPECT images features 

from healthy patients and (2) myocardial perfusion SPECT images features from 

unhealthy patients. Then, the sample vectors containing myocardial perfusion 

features from healthy patients are attributed into the first class and, similarly, the 

sample vectors containing myocardial perfusion features from unhealthy patients are 

attributed to class 2. The classifier computes mean and standard deviation are 

computed for both classes, per geometric dimension. These vectors are defined as 

reference and their prior probabilities are computed. 

Both training and testing sets have to be defined. The training set consists of 

pre-defined sample vectors of 10 patients and the testing set contains the sample 

vectors related to every geometric dimension that it is intended to classify. 

Therefore, the classifier evaluates the geometric dimensions of each cardiac axis per 

patient and clinical protocol, since stress and rest exams can be done in different 

days.  
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The algorithm output is the classification of each geometric dimension, based 

on the Bayes’ theory. Here, the health professional has a mathematical validation of 

its clinical diagnostic as a clinical decision support system.  

5.3. Results 

At this section, the obtained results will be exposed. The built template 

image is shown in section 5.3.1. Segmentation algorithm presented before was 

validated using Dice’s Coefficient, whose results are presented in section 5.3.2. 

Classification results are presented in section 5.3.3. 

5.3.1. Template myocardial perfusion SPECT 

As explained at section 5.2.2, the first step of the presented computational 

solution was to build a template myocardial perfusion SPECT image, using 

computational image registration techniques. In order to validate the proposed 

image registration method, visual evaluation of the template SPECT image was 

performed by a clinical professional. Both stress and rest segmented template 

myocardial SPECT slices, using k-means clustering, are shown in Figure 5.6 and 

Figure 5.7. 

The manual 20-segments coronary artery mapping has been aligned with the 

template image slices to generate the manual coronary artery mapping template 

images. Figure 5.8. shows basal, middle and apex regions for SA slices and middle 

region for both HLA and VLA, for stress clinical protocol, while Figure 5.9. presents 

the equivalent results for rest studies. 

(a)

 

(b)  
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(c) 

 

(d) (e)  (f)  

Figure 5.5. Segmented template stress SPECT image obtained using computer image registration 
techniques: (a) SA ; (b) HLA ; (c) VLA; (d) Zoomed SA example slice; (e) Zoomed HLA example slice; (f) 
Zoomed VLA example slice. 

(a) 

 

(b)   

 

(c)  

 

(d)   (e)  (f)  

Figure 5.6. Segmented template rest SPECT image obtained using computer image registration 
techniques: (a) SA ; (b) HLA ; (c) VLA; (d) Zoomed SA example slice; (e) Zoomed HLA example slice; (f) 
Zoomed VLA example slice. 
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(a)  (b)  (c)  

Figure 5.7. 20-segments coronary artery mapping template SPECT for stress studies: (a) SA ; (b) HLA ; 
(c) VLA. 

(a)  (b)  (c)  

Figure 5.8. 20-segments coronary artery mapping template SPECT for rest studies: (a) SA ; (b) HLA ; (c) 
VLA. 

5.3.2. Segmentation validation 

In this section, the performance of the proposed approach is evaluated. 

Firstly, the validation of the segmentation method was reached through the 

definition of a gold standard based on a student manual segmentation of 40 slices of 

a stress myocardial perfusion SPECT image. These slices were segmented using 

different segmentation methods, namely an automatic segmentation method 

available on ITK SNAP 3.0, based on snake segmentation, and here developed four 

automatic algorithms: Otsu multiple threshold with 3-levels, k-means clustering using 

3 clusters, region growing and shape detection. Dice’s coefficient was computed 

using MATLAB, whose results are shown in Table 5.5.  

Table 5.5. Dice’s coefficient computation between manual segmentation and five automated methods. 

 ITKSNAP 
Otsu 

Multiple-threshold 
K-means Clustering Region Growing Shape Detection 

 0.0284 0.0000 0.6137 0.0000 0.0000 

 0.1846 0.6406 0.6708 0.0688 0.4314 

 0.4091 0.7061 0.7962 0.6390 0.6794 

 0.3826 0.7425 0.8508 0.7585 0.6007 

 0.4864 0.7678 0.8284 0.8152 0.4424 

 0.4493 0.6688 0.8618 0.7739 0.4467 

 0.4115 0.6426 0.7901 0.7583 0.4049 

 0.5749 0.6740 0.7633 0.7475 0.5012 

 0.5472 0.7741 0.7389 0.8330 0.7629 

 0.4565 0.8639 0.7972 0.7995 0.7666 

 0.4306 0.8063 0.8332 0.8141 0.6488 

 0.4018 0.6113 0.8268 0.6188 0.5083 

(continues) 
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Table 5.5. Dice’s coefficient computation between manual segmentation and five automated methods 

(continuation). 

 ITKSNAP Otsu 
Multiple-threshold 

K-means Clustering Region Growing Shape Detection 

 0.2090 0.6005 0.7322 0.2203 0.4506 

 0.1995 0.0967 0.8437 0.0000 0.0000 

 0.5720 0.6974 0.8079 0.7854 0.5578 

 0.6780 0.6681 0.8652 0.8069 0.2416 

 0.6994 0.6622 0.8983 0.8389 0.3032 

 0.6996 0.6088 0.8802 0.8838 0.3650 

 0.7015 0.5910 0.7994 0.8961 0.4020 

 0.7264 0.6302 0.7877 0.8840 0.5086 

 0.6768 0.6303 0.8232 0.8808 0.4587 

 0.6112 0.6527 0.8155 0.8699 0.5753 

 0.5808 0.6640 0.8002 0.8522 0.6823 

 0.5867 0.7424 0.7151 0.8013 0.7651 

 0.5569 0.8663 0.6251 0.7535 0.6929 

 0.4914 0.7781 0.6791 0.7680 0.5121 

 0.0094 0.6742 0.6516 0.0000 0.0000 

 0.0735 0.7556 0.8705 0.9476 0.3960 

 0.3150 0.7416 0.9147 0.9380 0.5469 

 0.4763 0.6659 0.9051 0.9245 0.5361 

 0.5161 0.6550 0.9165 0.9203 0.4625 

 0.4831 0.6134 0.9109 0.9084 0.4066 

 0.5455 0.6449 0.8948 0.9057 0.4462 

 0.5615 0.5814 0.8755 0.8868 0.4035 

 0.5901 0.6311 0.8494 0.9037 0.4339 

 0.6362 0.6592 0.8005 0.9008 0.4240 

 0.6748 0.7386 0.8334 0.9124 0.2805 

 0.6884 0.6976 0.7444 0.8057 0.0661 

 0.5020 0.8291 0.7256 0.2000 0.0690 

 0.0742 0.7321 0.7918 0.0000 0.0420 

Mean 0.4725 0.6602 0.8032 0.7005 0.4305 

 

Secondly, the same slices used above were manual segmented by a clinical 

professional and evaluated similarly. Dice’s coefficient results are shown in Table 

5.6. 

Table 5.6. Dice’s coefficient computation between a manual segmentation of a clinical expert and five 

automated methods. 

 
ITKSNAP 

Otsu 
Multiple-threshold 

K-means Clustering Region Growing Shape Detection 

 0.0000 0.0313 0.0302 0.4678 0.0000 

 0.1314 0.0544 0.0761 0.0000 0.0044 

 0.2564 0.2996 0.3190 0.2831 0.3204 

 0.5449 0.6683 0.7054 0.6923 0.5938 

 0.6248 0.4664 0.6845 0.5970 0.3506 

 0.6958 0.5050 0.6061 0.5806 0.2353 

(continues) 
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Table 5.6. Dice’s coefficient computation between a manual segmentation of a clinical expert and five 

automated methods (continuation). 

 
ITKSNAP 

Otsu 
Multiple-threshold 

K-means Clustering Region Growing Shape Detection 

 0.7504 0.4386 0.7545 0.8584 0.4834 

 0.6209 0.7359 0.9179 0.8579 0.6378 

 0.5732 0.7025 0.6836 0.6871 0.5504 

 0.5269 0.5220 0.5507 0.5784 0.4433 

 0.5303 0.4470 0.5386 0.5381 0.2381 

 0.4434 0.3708 0.6807 0.4678 0.2555 

 0.3956 0.1366 0.6247 0.5351 0.0212 

 0.3342 0.0574 0.4719 0.3191 0.1339 

 0.7093 0.4945 0.4123 0.6701 0.1913 

 0.7330 0.5700 0.5546 0.6887 0.2883 

 0.7004 0.7401 0.7084 0.7775 0.3754 

 0.7028 0.6575 0.8940 0.8578 0.4093 

 0.6938 0.6722 0.8868 0.8646 0.5095 

 0.6718 0.7584 0.8653 0.9174 0.4796 

 0.6586 0.7700 0.8512 0.9159 0.5692 

 0.6645 0.8151 0.9732 0.9117 0.6461 

 0.6228 0.7405 0.9219 0.8414 0.6462 

 0.4995 0.7054 0.8191 0.6867 0.4022 

 0.4667 0.7440 0.6509 0.4872 0.3502 

 0.0486 0.5472 0.5668 0.7097 0.5088 

 0.0722 0.0096 0.4296 0.3395 0.1662 

 0.1241 0.4549 0.5084 0.4911 0.4833 

 0.2741 0.7876 0.6916 0.6603 0.5809 

 0.4196 0.8257 0.8357 0.8392 0.4741 

 0.4887 0.7703 0.9023 0.9333 0.4189 

 0.5152 0.7015 0.9838 0.8439 0.3712 

 0.3507 0.6384 0.9265 0.9773 0.3560 

 0.4669 0.5515 0.9465 0.9010 0.3422 

 0.5314 0.4755 0.8251 0.8939 0.2650 

 0.5424 0.5153 0.8785 0.7838 0.1053 

 0.6479 0.5190 0.8496 0.8815 0.3794 

 0.6157 0.2533 0.6607 0.8664 0.3998 

 0.6618 0.3074 0.8459 0.6427 0.2499 

 0.0654 0.0000 0.8489 0.4302 0.0874 

Mean 0.4844 0.5115 0.6970 0.6819 0.3673 

 

It can be observed the Dice’s coefficient presents higher values for k-means 

algorithm. Thus, the segmentation of template myocardial SPECT slices using k-

means (3 clusters), shown in Figure 5.6-7, provides a more valuable computation of 

valuable myocardial perfusion region’s related geometric dimensions, namely 
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perimeter, equivalent spherical radius, roundness, elongation and number of pixels. 

Mean values of each geometric dimension per axis are shown in Table 5.7, for stress 

and rest template image. 

Table 5.7. Geometric dimensions of the segmented objects. 

Clinical 

protocol 
Axis Perimeter 

Equivalent 

Spherical 

Radius 

Roundness Elongation 
Number of 

Pixels 

Stress 

SA 234.44 25.60 0.72 1.08 504.55 

HLA 223.98 26.53 0.77 1.44 558.23 

VLA 273.27 34.09 0.80 1.14 892.23 

Rest 

 

SA 217.66 25.39 0.78 1.39 525.47 

HLA 238.65 31.85 0.85 1.55 776.60 

VLA 247.85 32.93 0.87 1.40 935.65 

5.3.3. Bayesian classifier evaluation  

The classification algorithm used the geometric related dimensions obtained 

from segmentation step. Tables 5.8, 5.9 and 5.10 present the geometric dimensions 

obtained from the segmented structures and both Bayesian classification and clinical 

diagnosis. 
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Table 5.8. HLA geometric dimensions of segmented structures and respective Bayesian classification results and comparison with clinical diagnosis. 

Patient 
Number 
  

Stress Rest 

Final Algorithm 
Classification 
  

Clinical 
Diagnosis 
  

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation 

Number of 
Pixels 

Algorithm 
Classification 

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation Number of Pixels 

Algorithm 
Classification 

1 337.73 40.17 0.75 1.27 1237.54 Normal 388.47 38.82 0.65 1.74 299.44 Normal Normal Normal 

2 318.62 38.70 0.76 1.25 1151.23 Abnormal 339.19 34.50 0.66 1.51 251.00 Abnormal Abnormal Abnormal 

3 301.45 36.88 0.77 1.22 1039.89 Abnormal 364.93 37.30 0.67 1.57 283.29 Abnormal Abnormal Abnormal 

4 349.54 43.49 0.78 1.32 1449.00 Normal 380.58 40.07 0.68 1.66 316.44 Normal Normal Normal 

5 310.40 37.66 0.76 1.17 1093.92 Abnormal 310.60 34.26 0.69 1.58 247.07 Abnormal Abnormal Abnormal 

6 349.90 40.82 0.74 1.37 1274.73 Normal             Normal Normal 

7 336.04 40.57 0.76 1.17 1261.00 Normal             Normal Normal 

8 324.71 39.39 0.76 1.23 1190.45 Normal             Normal Normal 

9 341.60 41.23 0.76 1.27 1310.23 Normal             Normal Normal 

10 314.44 38.33 0.77 1.24 1125.73 Abnormal             Abnormal Normal 

11 335.70 40.36 0.76 1.22 1260.07 Normal             Normal Normal 

12 318.75 38.42 0.76 1.27 1130.00 Abnormal             Abnormal Normal 

13 330.90 39.15 0.75 1.16 1173.00 Normal             Normal Normal 

14 347.31 40.27 0.73 1.43 1237.27 Normal             Normal Normal 

15 335.14 39.23 0.74 1.50 1170.89 Normal             Normal Normal 

16 319.41 38.87 0.77 1.17 1152.55 Normal             Normal Normal 

17 348.08 41.51 0.75 1.28 1328.80 Normal 369.16 39.50 0.67 1.69 308.24 Normal Normal Normal 

22 401.53 47.30 0.74 1.37 1777.59 Normal 359.73 36.33 0.66 1.39 283.35 Normal Normal Normal 

23 349.97 42.04 0.76 1.30 1381.87 Abnormal 392.79 40.79 0.67 1.62 331.78 Normal Abnormal Abnormal 

24 363.68 42.97 0.74 1.31 1429.69 Abnormal 365.69 37.60 0.67 1.59 285.37 Abnormal Abnormal Abnormal 
(continues) 
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Table 5.8. HLA geometric dimensions of segmented structures and respective Bayesian classification results and comparison with clinical diagnosis (continuation). 

Patient 
Number 
  

Stress Rest 

Final Algorithm 
Classification 
  

Clinical 
Diagnosis 
  

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation 

Number of 
Pixels 

Algorithm 
Classification 

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation Number of Pixels 

Algorithm 
Classification 

25 329.51 40.53 0.77 1.31 1276.54 Normal 365.69 37.60 0.67 1.59 285.37 Abnormal Abnormal Abnormal 

26 368.82 43.04 0.74 1.29 1442.60 Normal 356.21 38.10 0.67 1.72 290.12 Normal Normal Normal 

27 368.44 42.62 0.73 1.37 1402.56 Normal 410.10 42.02 0.66 1.69 345.27 Normal Normal Normal 

29 364.38 43.77 0.76 1.23 1499.87 Normal 356.46 36.51 0.71 1.53 265.74 Normal Normal Normal 

31 324.42 38.78 0.75 1.22 1148.85 Normal 374.63 38.74 0.67 1.73 300.46 Normal Normal Normal 

33 366.21 42.49 0.73 1.50 1381.55 Normal 397.11 40.09 0.65 1.77 316.30 Normal Normal Normal 

35 346.40 41.42 0.75 1.30 1310.30 Normal 395.90 40.61 0.66 1.64 329.60 Normal Normal Abnormal 

36 366.21 42.49 0.73 1.50 1381.55 Normal 389.09 39.71 0.66 1.66 317.30 Normal Normal Normal 

37 333.76 40.92 0.77 1.36 1279.60 Normal 379.19 39.24 0.67 1.67 310.35 Normal Normal Normal 

38 354.38 41.58 0.74 1.25 1360.35 Normal 376.00 38.86 0.67 1.59 303.82 Normal Normal Normal 

39 340.86 40.54 0.75 1.23 1283.33 Normal 383.55 40.36 0.68 1.60 325.98 Normal Normal Abnormal 

40 339.75 40.94 0.76 1.23 1312.09 Normal 340.64 38.30 0.76 1.74 281.56 Normal Normal Normal 

42 359.38 43.75 0.76 1.26 1532.59 Normal 388.19 40.83 0.68 1.65 332.71 Normal Normal Normal 

43 354.01 41.87 0.75 1.31 1373.94 Normal 388.48 39.97 0.67 1.69 316.23 Normal Normal Normal 

44 337.00 40.00 0.75 1.30 1248.07 Normal 376.36 38.28 0.67 1.70 294.24 Normal Normal Normal 

45 313.91 38.16 0.76 1.18 1132.00 Abnormal 370.16 39.18 0.68 1.71 307.28 Normal Abnormal Abnormal 

46 351.56 41.73 0.75 1.34 1350.73 Normal 407.26 41.25 0.66 1.76 335.68 Normal Normal Normal 

47 365.11 43.50 0.75 1.40 1476.71 Normal             Normal Normal 

48 342.93 42.53 0.78 1.48 1402.47 Normal             Normal Normal 

49 355.48 41.85 0.74 1.54 1334.09 Normal             Normal Normal 

50 349.36 41.00 0.74 1.50 1290.92 Normal 341.52 37.32 0.69 1.68 280.53 Abnormal Abnormal Abnormal 

51 329.60 39.49 0.75 1.31 1192.36 Abnormal 340.05 37.44 0.69 1.62 281.84 Abnormal Abnormal Abnormal 
 (continues) 
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Table 5.8. HLA geometric dimensions of segmented structures and respective Bayesian classification results and comparison with clinical diagnosis (continuation). 

Patient 
Number 
  

Stress Rest 

Final Algorithm 
Classification 
  

Clinical 
Diagnosis 
  

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation 

Number of 
Pixels 

Algorithm 
Classification 

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation Number of Pixels 

Algorithm 
Classification 

52 362.61 42.84 0.79 1.34 1315.22 Normal             Normal Normal 

53 336.66 41.16 0.88 1.47 1125.60 Normal 373.77 39.55 0.76 1.85 285.08 Normal Normal Normal 

54 320.30 37.83 0.74 1.28 1095.00 Abnormal 318.52 34.76 0.69 1.42 256.25 Abnormal Abnormal 
Abnormal 

55 340.95 38.08 0.87 1.25 969.55 Normal 379.38 41.20 0.73 1.81 317.59 Normal Normal 
Abnormal 

56 336.95 40.83 0.82 1.44 1193.05 Normal 356.33 39.14 0.74 1.78 291.63 Normal Normal Normal 

57 352.33 42.82 0.82 1.22 1310.34 Normal             Normal Normal 

58 339.18 40.54 0.80 1.41 1169.05 Normal             Normal Normal 

59 349.92 41.69 0.80 1.44 1239.16 Normal             Normal Normal 

60 338.46 40.41 0.80 1.25 1163.38 Normal 356.03 39.28 0.74 1.64 292.59 Normal Normal Normal 

 

Table 5.9 VLA geometric dimensions of segmented structures and respective Bayesian classification results and comparison with clinical diagnosis. 

Patient 
Number 

 

Stress Rest 

Final Algorithm 
Classification 

 

Clinical 
Diagnosis 

 
Perimeter 

Equivalent 
Spherical 

Radius 
Roundness Elongation 

Number of 
Pixels 

Algorithm 
Classification 

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation Number of Pixels 

Algorithm 
Classification 

1 508.82 52.15 0.65 1.23 2074.92 Normal 298.45 25.90 0.55 1.47 509.92 Normal Normal Normal 

2 479.70 51.78 0.68 1.23 2040.71 Normal 257.06 23.02 0.56 1.38 404.00 Abnormal Abnormal Abnormal 

3 301.45 36.88 0.77 1.22 1039.89 Abnormal 278.67 25.96 0.59 1.47 514.27 Abnormal Abnormal Abnormal 

4 491.78 55.74 3.18 1.65 2148.14 Normal 290.05 25.80 0.56 1.40 510.80 Normal Normal Normal 

5 427.92 47.11 0.69 1.26 1715.54 Abnormal 265.61 23.06 0.55 1.39 406.38 Abnormal Abnormal Abnormal 

6 519.66 53.00 0.64 1.19 2139.15 Normal             Normal Normal 

7 469.64 51.70 0.69 1.14 2036.50 Normal             Normal Normal 
(continues) 
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Table 5.9 VLA geometric dimensions of segmented structures and respective Bayesian classification results and comparison with clinical diagnosis (continuation). 

Patient 
Number 

 

Stress Rest 

Final Algorithm 
Classification 

 

Clinical 
Diagnosis 

 
Perimeter 

Equivalent 
Spherical 

Radius 
Roundness Elongation 

Number of 
Pixels 

Algorithm 
Classification 

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation Number of Pixels 

Algorithm 
Classification 

8 468.67 52.65 0.71 1.25 2111.82 Normal             Normal Normal 

9 482.12 49.98 0.65 1.36 1904.25 Normal             Normal Normal 

10 485.64 53.01 0.73 1.23 1996.31 Normal             Normal Normal 

11 492.10 53.69 0.73 1.26 2049.46 Normal             Normal Normal 

12 484.49 52.32 0.68 1.11 2087.53 Normal             Normal Normal 

13 482.09 50.62 0.66 1.18 1954.09 Normal             Normal Normal 

14 476.58 49.97 0.66 1.19 1902.36 Normal             Normal Normal 

15 501.54 53.10 0.67 1.27 2157.92 Normal             Normal Normal 

16 512.68 56.21 0.79 1.47 2099.23 Normal             Normal Normal 

17 348.08 41.51 0.75 1.28 1328.80 Abnormal 298.45 25.90 0.55 1.47 509.92 Normal Abnormal Normal 

22 521.26 52.83 0.64 1.24 2127.64 Normal 285.06 25.46 0.56 1.36 168.78 Normal Normal Normal 

23 474.92 50.42 0.67 1.12 1935.67 Normal 279.90 24.90 0.56 1.38 164.75 Abnormal Abnormal Abnormal 

24 530.08 51.73 0.62 1.23 2042.73 Normal 274.98 24.26 0.55 1.44 160.04 Abnormal Abnormal Abnormal 

25 475.79 52.00 0.69 1.21 2056.75 Normal 269.66 23.78 0.55 1.36 156.50 Abnormal Abnormal Abnormal 

26 473.87 49.95 0.66 1.21 1898.09 Normal 290.63 25.65 0.56 1.39 171.28 Normal Normal Normal 

27 496.35 51.22 0.65 1.31 1995.27 Normal 303.37 26.30 0.54 1.47 175.92 Normal Normal Normal 

29 512.61 54.32 0.67 1.16 2260.87 Normal 234.17 21.02 0.56 1.31 138.52 Normal Normal Normal 

31 492.72 52.95 0.72 1.17 1993.82 Normal 291.87 26.61 0.61 1.48 176.04 Normal Normal Normal 

33 550.17 55.24 0.63 1.38 2330.62 Abnormal 290.16 25.66 0.56 1.45 171.17 Normal Abnormal Normal 

35 538.86 55.01 0.64 1.20 2165.03 Abnormal 278.36 24.23 0.55 1.32 160.04 Normal Abnormal Abnormal 

36 550.17 55.24 0.63 1.38 2330.62 Abnormal 272.21 23.90 0.55 1.26 157.51 Normal Abnormal Normal 
(continues) 
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Table 5.9 VLA geometric dimensions of segmented structures and respective Bayesian classification results and comparison with clinical diagnosis (continuation). 

Patient 
Number 

 

Stress Rest 

Final Algorithm 
Classification 

 

Clinical 
Diagnosis 

 
Perimeter 

Equivalent 
Spherical 

Radius 
Roundness Elongation 

Number of 
Pixels 

Algorithm 
Classification 

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation Number of Pixels 

Algorithm 
Classification 

37 485.82 50.81 0.66 1.28 1965.00 Normal 276.95 24.91 0.57 1.30 165.23 Abnormal Abnormal Normal 

38 517.84 53.95 0.66 1.20 2222.94 Normal 269.60 23.85 0.56 1.31 157.49 Normal Normal Normal 

39 459.06 49.96 0.68 1.18 1904.00 Abnormal 272.68 24.28 0.56 1.30 160.38 Normal Abnormal Abnormal 

40 464.82 52.64 0.71 1.13 2114.00 Abnormal 271.60 24.11 0.56 1.28 159.25 Normal Abnormal Normal 

42 488.79 52.18 0.72 1.20 1933.30 Normal 279.34 25.05 0.56 1.41 165.93 Normal Normal Normal 

43 492.38 53.24 0.73 1.21 2019.77 Normal 274.66 24.33 0.56 1.32 160.95 Normal Normal Normal 

44 492.38 53.24 0.73 1.21 2019.77 Normal 286.08 25.02 0.55 1.52 165.68 Normal Normal Normal 

45 417.66 46.56 0.70 1.25 1649.82 Abnormal 275.08 25.50 0.58 1.38 169.56 Abnormal Abnormal Abnormal 

46 460.77 49.16 0.67 1.17 1840.67 Abnormal 288.82 25.32 0.55 1.39 168.95 Normal Abnormal Normal 

47 467.12 52.06 0.70 1.19 1950.75 Normal             Normal Normal 

48 494.45 54.37 0.69 1.22 2259.19 Normal             Normal Normal 

49 506.97 53.03 0.70 1.28 2001.19 Normal             Normal Normal 

50 524.33 52.89 0.64 1.21 2129.54 Normal 290.90 25.75 0.56 1.46 508.31 Normal Normal Abnormal 

51 444.27 53.38 0.70 1.44 2026.66 Abnormal 279.81 24.89 0.56 1.45 472.46 Abnormal Abnormal Abnormal 

52 505.41 53.17 0.66 1.17 2154.58 Normal       Normal Normal 

53 488.75 51.80 0.67 1.08 2051.17 Normal 294.92 26.38 0.60 1.37 495.99 Normal Normal Normal 

54 502.57 53.96 0.68 1.17 2219.37 Normal 244.83 22.03 0.57 1.34 369.31 Abnormal Abnormal Abnormal 

55 427.57 46.11 0.73 1.43 1511.17 Normal 287.00 26.50 0.58 1.33 535.00 Normal Normal Normal 

56 490.36 52.51 0.67 1.17 2104.20 Normal 299.45 26.54 0.60 1.57 501.25 Normal Normal Normal 

57 487.73 52.36 0.72 1.30 1949.30 Normal             Normal Normal 

58 489.04 52.19 0.67 1.13 2073.14 Normal             Normal Normal 
(continues) 
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Table 5.9 VLA geometric dimensions of segmented structures and respective Bayesian classification results and comparison with clinical diagnosis (continuation). 

Patient 
Number 

 

Stress Rest 

Final Algorithm 
Classification 

 

Clinical 
Diagnosis 

 
Perimeter 

Equivalent 
Spherical 

Radius 
Roundness Elongation 

Number of 
Pixels 

Algorithm 
Classification 

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation Number of Pixels 

Algorithm 
Classification 

59 495.31 54.25 0.74 1.26 2091.85 Normal             Normal Normal 

60 472.95 51.18 0.68 1.10 1996.91 Normal 292.74 26.53 0.61 1.34 502.08 Normal Normal Normal 

  

Table 5.10. SA geometric dimensions of segmented structures and respective Bayesian classification results and comparison with clinical diagnosis. 

Patient 
Number 

Stress Rest 
Final 

Algorithm 
Classification 

Clinical 
Diagnosis Perimeter 

Equivalent 
Spherical 

Radius 
Roundness Elongation 

Number 
of Pixels 

Algorithm 
Classification 

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation Number of Pixels 

Algorithm 
Classification 

1 397.03 30.32 0.48 1.22 225.54 Normal 384.64 25.74 0.42 1.20 507.80 Normal Normal Normal 

2 454.49 34.16 0.47 1.13 264.03 Normal 355.12 24.15 0.43 1.26 445.65 Abnormal Abnormal Abnormal 

3 385.89 28.96 0.48 1.16 207.52 Abnormal 398.84 26.47 0.42 1.08 534.07 Normal Abnormal Abnormal 

4 507.49 37.63 0.47 1.21 301.12 Normal 425.40 29.02 0.43 1.28 660.29 Normal Normal Normal 

5 296.01 23.55 0.50 1.11 160.15 Abnormal 333.98 23.03 0.43 1.23 403.36 Abnormal Abnormal Abnormal 

6 404.03 30.17 0.55 1.33 212.87 Normal             Normal Normal 

7 455.60 33.55 0.46 1.18 253.50 Normal             Normal Normal 

8 459.33 34.05 0.47 1.17 262.51 Normal             Normal Normal 

9 400.45 31.51 0.53 1.28 224.27 Normal             Normal Normal 

10 401.58 30.46 0.48 1.09 225.26 Normal             Normal Normal 

11 412.60 31.69 0.48 1.15 233.35 Normal             Normal Normal 

12 417.43 30.67 0.46 1.20 225.12 Normal             Normal Normal 

13 409.49 31.54 0.63 1.37 219.02 Normal             Normal Normal 

14 415.96 31.50 0.55 1.29 222.99 Normal             Normal Normal 

(continues) 
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Table 5.10. SA geometric dimensions of segmented structures and respective Bayesian classification results and comparison with clinical diagnosis (continuation). 

Patient 
Number 

Stress Rest 
Final 

Algorithm 
Classification 

Clinical 
Diagnosis Perimeter 

Equivalent 
Spherical 

Radius 
Roundness Elongation 

Number 
of Pixels 

Algorithm 
Classification 

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation Number of Pixels 

Algorithm 
Classification 

15 460.35 32.56 0.45 1.43 243.57 Normal             Normal Normal 

16 416.10 32.37 0.49 1.19 243.04 Normal             Normal Normal 

17 406.27 31.33 0.48 1.22 234.72 Normal 384.64 25.74 0.42 1.20 507.80 Normal Normal Normal 

22 512.05 37.26 0.46 1.29 297.46 Normal 418.45 27.82 0.42 1.13 596.82 Normal Normal Normal 

23 418.13 31.84 0.48 1.16 237.11 Normal 394.41 26.24 0.42 1.18 530.12 Normal Normal Abnormal 

24 398.16 29.60 0.47 1.26 213.05 Normal 384.87 25.85 0.42 1.21 510.13 Abnormal Abnormal Abnormal 

25 489.31 36.09 0.46 1.26 279.47 Normal 416.92 27.67 0.42 1.22 586.65 Normal Normal Abnormal 

26 426.14 32.14 0.48 1.13 241.15 Normal 394.00 26.51 0.45 1.27 499.79 Normal Normal Normal 

27 342.76 26.95 0.49 1.08 187.99 Abnormal 392.91 27.18 0.51 1.39 480.51 Normal Abnormal Normal 

29 502.02 34.66 0.45 1.29 268.89 Normal 389.55 26.95 0.50 1.38 476.40 Normal Normal Normal 

31 406.96 30.26 0.47 1.13 223.17 Normal 395.34 26.44 0.42 1.14 531.85 Normal Normal Normal 

33 480.71 34.55 0.46 1.45 267.20 Normal 401.91 26.49 0.42 1.24 539.00 Normal Normal Normal 

35 453.11 33.50 0.47 1.21 257.81 Normal 410.73 27.53 0.42 1.14 585.41 Normal Normal Abnormal 

36 480.71 34.55 0.46 1.45 267.20 Normal 399.12 27.02 0.43 1.17 563.41 Normal Normal Normal 

37 390.25 31.03 0.50 1.20 221.87 Abnormal 387.20 26.09 0.42 1.17 184.19 Normal Abnormal Normal 

38 495.26 36.15 0.46 1.20 285.89 Normal 405.51 27.42 0.46 1.23 193.51 Normal Normal Normal 

39 401.02 30.04 0.47 1.15 219.09 Abnormal 373.65 25.27 0.43 1.21 176.94 Abnormal Abnormal Abnormal 

40 405.33 31.68 0.49 1.11 232.24 Normal 362.77 24.48 0.42 1.17 455.82 Abnormal Abnormal Normal 

42 444.57 32.54 0.47 1.16 249.22 Normal 406.77 26.98 0.42 1.19 558.18 Normal Normal Normal 

43 443.78 32.31 0.46 1.09 245.97 Normal 409.70 27.63 0.45 1.29 544.99 Normal Normal Normal 

44 371.28 28.71 0.52 1.15 202.48 Normal 409.52 27.44 0.42 1.23 573.38 Normal Normal Normal 

45 397.18 29.97 0.48 1.21 216.50 Abnormal 395.63 26.67 0.42 1.31 546.47 Normal Abnormal Abnormal 

(continues) 
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Table 5.10. SA geometric dimensions of segmented structures and respective Bayesian classification results and comparison with clinical diagnosis (continuation). 

Patient 
Number 

Stress Rest 
Final 

Algorithm 
Classification 

Clinical 
Diagnosis Perimeter 

Equivalent 
Spherical 

Radius 
Roundness Elongation 

Number 
of Pixels 

Algorithm 
Classification 

Perimeter 
Equivalent 
Spherical 

Radius 
Roundness Elongation Number of Pixels 

Algorithm 
Classification 

46 426.22 31.48 0.47 1.24 233.52 Normal 378.90 26.90 0.42 1.13 492.34 Normal Normal Normal 

47 475.62 34.92 0.46 1.30 268.97 Normal             Normal Normal 

48 467.22 33.92 0.46 1.33 260.68 Normal             Normal Normal 

49 458.93 34.75 0.48 1.19 260.06 Normal       Normal Normal 

50 381.71 30.46 0.50 1.14 217.35 Abnormal 371.37 25.25 0.43 1.20 486.38 Abnormal Abnormal Abnormal 

51 380.53 30.35 0.50 1.18 220.38 Abnormal 379.45 25.45 0.42 1.19 495.80 Normal Abnormal Abnormal 

52 477.98 34.26 0.45 1.33 262.77 Normal       Normal Normal 

53 438.73 33.75 0.48 1.19 258.05 Normal 377.68 25.36 0.42 1.19 489.27 Normal Normal Normal 

54 391.61 29.76 0.48 1.11 216.34 Abnormal 336.69 23.21 0.43 1.19 410.33 Abnormal Abnormal Abnormal 

55 343.54 27.08 0.50 1.19 190.48 Abnormal 414.23 27.34 0.42 1.12 574.06 Normal Abnormal Normal 

56 401.75 32.49 0.54 1.28 229.94 Normal 408.87 27.66 0.46 1.23 546.06 Normal Normal Normal 

57 345.04 26.43 0.48 1.10 185.56 Abnormal             Abnormal Normal 

58 513.18 37.91 0.50 1.23 292.25 Normal             Normal Normal 

59 419.75 32.31 0.52 1.19 233.25 Normal             Normal Normal 

60 472.95 33.81 0.45 1.30 255.53 Normal 404.75 26.83 0.42 1.14 551.06 Normal Normal Normal 

 
 



 

 

ANALYSIS OF GATED MYOCARDIAL PERFUSION SPECT IMAGES USING COMPUTATIONAL IMAGE REGISTRATION TECHNIQUES 

88 

The classification algorithm was evaluated using the classes “abnormality 

present” and “abnormality not present”. Considering that healthy patients must 

have healthy stress and rest myocardial perfusion SPECT images, while unhealthy 

patient have at least one of the exams with abnormal values, the confusion matrix 

obtained from classification results is presented in Table 5.11, containing the 

counting results of true positive (TP), false positive (FP), true negative (TN) and false 

negative (FN).  

Table 5.11. Confusion matrix obtained from Bayesian classifier results.  

 Algorithm decision 

Clinical decision 

 Abnormality present Abnormality not present 

Abnormality present 30 13 

Abnormality not present 6 104 

 

Additionally, the evaluation was completed by computing five parameters: 

sensitivity, specificity, precision, accuracy and mean error rate. From the table 

shown above, it is possible to calculate these parameters, which results can be 

observed in Table 5.12. 

Table 5.12. Performance measures of the proposed classification method. 

Measure                             Performance values 

Sensitivity 0.698 

Specificity 0.945 

Precision 0.833 

Accuracy 0.876 

Mean error rate 0.124 

 

5.4. Discussion 

The goal of this research was to perform a consistent and feasible registration 

of cardiac SPECT data sets to construct a template image and proceed to the LV 

segmentation. The final goal was to obtain geometric dimensions of a normal LV 

perfusion and perform a statistical analysis, to automatically classify patients as 

having a cardiac disease or not.   

This dissertation proposes an automatic registration image method, 

developed for cardiac SPECT images, that builds a template image using a pre-

registration method based on rigid transformation followed by a final registration 
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method based on deformable transformations. These sequential registration steps 

are fundamental to correct global deformations first and then solve local 

deformations.  

Due to the high difference between the structures dimensions when dealing 

with male or female patients, it was hard to choose the components that could 

produce consistent results, namely the interpolator. In fact, linear interpolators 

were introducing undesirable deformations into the registered images. Therefore, a 

B-spline interpolator presented best results since it approximate shapes through 

curve fitting and interactive curve design.  

Although metrics based on the information theory are more popular in 

deformable registration algorithms, their applications in several registration 

algorithms based on rigid transformations demonstrate that it is very permutable and 

adaptable to several transformations. For these reason, Mattes mutual information 

was used in the proposed registration algorithm. The template myocardial perfusion 

SPECT and its coronary artery mapping were visually validated. 

Since cardiac SPECT images are not in the same intensity range and 

simultaneously they are characterized by weak boundaries, applying conventional 

techniques such as binary thresholding or gradient magnitude based segmentation 

techniques was not enough effective to produce acceptable results. As observed in 

section 5.3.2, beyond the approximated Dice’s coefficient results of region growing, 

the employment of K-means clustering technique, using 3 clusters, has shown better 

results, with mean values of 0.80 and 0.69, respectively, both for comparison based 

on a student generated gold standard and clinical professional manual segmentation. 

These values are reasonable, but must be optimized to obtain the Dice’s coefficient 

closer to the maximum value and, obviously, a more reliable segmentation. 

The proposed method consists of a simple and efficient segmentation 

technique, starting by an image enhancement based on image averaging and 

morphological operations, simultaneously eliminating noise and making boundaries 

stronger. According the results shown in Table 5.6 and Table 5.7, k-means clustering 

is used to segment LV structure, which results are not distorted by hypertrophied 

right ventricle myocardium, retention of tracer in the lung(s) or breast activity. In 

fact, LV is well recognized in all slices and separated from right ventricle, as Figures 

5.6-9 demonstrates. The boundaries of the segmented objects were well recognized, 
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through object labeling, as well as the related geometric dimensions and statistical 

analysis. 

Mean values of each geometric dimension per axis are shown in Table 5.7., 

for stress and rest template image. These values are lower than from those shown in 

Tables 5.8-10. This is due to the fact that the template geometric dimensions 

consider all the template slices, from basal to apical region, while the other 

measures result from the segmentation of a set of slices already registered with the 

middle template coronary artery mapping slice, incrementing the mean geometric 

dimensions obtained. It does not considerably affect the classification results, since 

all slices were aligned with the same slice, resulting in a consisted proportion 

between the original patients’ exams and the final geometric dimensions, as well as 

the defined classes use geometric dimensions of segmented structures obtained using 

the same methodology. 

In section 5.3.3, the evaluation of Bayesian classification has indicated that 

the algorithm have a reasonable capacity of detect an abnormality where it actually 

exists, approximately equal to 70%. In the other hand, the false positive fraction, or 

the ability of the algorithm report healthy exam where there is no abnormality, 

rounds 95%. These values can be explained by the lower number of diseased 

patients, of which the test dataset used was composed, meaning a less consisted 

mean and standard deviation values, computed by the classification algorithm, when 

comparing with the number of healthy patients that constituted the training phase. 

Additionally, precision and accuracy parameters have demonstrated the capacity of 

83% and 88%, respectively, presenting a relatively good classification performance 

concerning correct decisions and relevant detections. 

However, a mean error rate of 12,4% leads to the necessity of optimize the 

entire algorithm, especially image registration of patient’s exam and the template 

image, since it was visually evaluated, being more subjected to observer variability. 

This mean error rate is generally due to more extreme cases, which issue of deficient 

myocardial perfusion of bigger hearts or healthy perfusion of small hearts was not 

completely overwhelmed. Since a slightly misregistration can introduce undesirable 

deformations in the exam patient, LV geometric dimensions are affected and, 

consequently, the classifier is induced into a wrong report. Accordingly, the image 

registration technique here developed must be optimized to overcome this issue. 
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Respecting computer time-consuming, per patient and clinical protocol, i.e., 

per set of HLA, VLA and SA images in a single clinical study (stress or rest), the mean 

processing time was approximated to 8 minutes. However, this value is affected by 

the reduced processor power of the computer used to develop this computational 

solution. 

5.5. Conclusions 

To the best of our knowledge, there is no template SPECT image reported in 

scientific literature, so there was the need of build it. A pre-registration technique 

based on rigid transformation followed by a registration technique based on 

deformable transformations was developed, resulting in both stress and rest 

template myocardial perfusion SPECT images, for SA, HLA and VLA. The coronary 

artery mapping was manually performed and registered with the template 

myocardial perfusion SPECT image, aiming to ease the identification of extent and 

location of the myocardial perfusion defects. 

Segmenting the LV structure is a crucial and challenging task in nuclear 

medicine imaging analysis which is required to detect cardiac abnormalities. An 

automatic method using k-means clustering technique (three clusters) was validated 

through the Dice’s coefficient. The obtained results shown well segmented 

structures with all of the data set used, including coronary artery mapping regions, 

but must be optimized to augment the Dice’s coefficient closer to the maximum 

value. However, this method has already shown a robust behavior for noisy and low-

resolution data, with capabilities to overcome nearby interfering activities. 

The results have shown the computational solution effective, especially due 

to the registration of female and male cardiac SPECT images, which can have very 

different structures dimensions. The proposed method demonstrates reasonable 

robustness against the two major difficulties in SPECT image processing, noise and 

low level details, through an automatic computational technique. Hence, the 

classifier here employed has demonstrated good specificity and accuracy values but 

image registration algorithm has to be optimized, since it is fundamental to augment 

sensitivity value and reduce the mean error ratio, as well as the computer processing 

time. 
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Chapter 6  

Final considerations 

6.1. Final conclusions 

 

Most current algorithms for medical image registration use rigid body 

transformations or affine transformations, but they are restricted to parts of the 

body where tissue deformation is small compared with the desired registration 

accuracy. Some examples are the combination of functional and high resolution 

anatomical information as an aid to diagnosis with better localization and 

determination of extent of abnormalities, planning treatment and surgeries. 

The higher incidence of heart diseases in world population, and consequently 

one of the major death factors worldwide, requires medical diagnosis to be faster 

and more efficient. Therefore, an automatic method to analyze normal myocardial 

perfusion SPECT images, through registration methods, is fundamental to summarize 

their features and ease a correct diagnosis, enhancing the monitoring of changes due 

to disease progression and response to treatments.  

For this reason, it was build both template stress and rest myocardial 

perfusion SPECT images and their coronary artery mapping. Pre-processing image 

techniques, specifically image intensity normalization and B-spline interpolation 

were fundamental to normalize the images to be registered. Then, pre-registration 

based on rigid transforms and registration based on deformable transforms, both 

using multi-resolution registration techniques, were applied as registration 



 

 

ANALYSIS OF GATED MYOCARDIAL PERFUSION SPECT IMAGES USING COMPUTATIONAL IMAGE REGISTRATION TECHNIQUES 

94 

framework, since they solve global and local deformations sequentially through a 

faster and efficient algorithm. These methods enabled the formation of a template 

myocardial perfusion SPECT image and its coronary artery mapping. 

Segmentation algorithm validation was performed using Dice’s coefficient. 

The comparison of segmented images using ITK automatic segmentation method, 

Otsu method (3 levels), k-means (3 clusters), region growing and level set methods, 

against two different gold standards demonstrated k-means as the most robust 

method. Besides this segmentation method, post-processing image techniques were 

used. Noise and low level details were overwhelmed and LV segmentation was not 

distorted by hypertrophied right ventricle myocardium or retention of tracer in the 

lung(s) or breast activity. However, Dice’s coefficient values of 0.80 and 0.69 means 

the segmentation methods needs to be optimized. 

Hereafter, the computational solution presented, consisting on (1) the 

segmentation of medical patient’s exams, (2) respective registration with template 

SPECT image, (3) computation of related geometric dimensions, (4) statistical 

analysis and its classification based on Bayesian theory, demonstrated reasonable 

robustness. Sensitivity value of 70% and mean error ratio of 12,4% leads to the 

necessity of optimize the registration and classification methods used. Precision and 

accuracy parameters have demonstrated the capacity of 83% and 88%, such as 

specificity presented a performance measure of 95%. Thus, it was presented a good 

classification performance concerning correct decisions and relevant detections. 

6.2. Future works 

The continuous development and optimization of this computational solution 

with higher values of classifier evaluation is the priority objective. It is pretended to 

realize more extensive experimentation of different registration components and 

respective parameter values, to optimize registration methods. Additionally, image 

dataset must be augmented to a bigger number of patients, with higher inter-

variability. 

Besides the optimization of registration and segmentation techniques used 

and the reduction of computer processing-time, there are several aspects that can 

be introduced in this computational solution such as: (1) computation of 3-D 

coronary artery mapping of template myocardial perfusion and 3-D registration with 
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patient’s exams, (2) generating more relevant information as detect  the myocardial 

perfusion disease, (3) informing the clinical professional about the defect percentage 

of myocardial perfusion for each exam, when compared to template myocardial 

perfusion uptake ratio, (4) integrate image registration results with 

electrocardiographic signals, (5) modeling the registered images in 3-D to provide a 

better visual evaluation and (6) develop a user guide interface.  

Therefore, it is pretended to contribute to a mathematical grounded and 

effective diagnosis, monitoring of disease development such as planning of 

treatments or surgeries. This computational solution will become both physician and 

medical activity easier and more efficient, through the development, optimization, 

test, use, comparison and validation of the developed algorithms.  
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