
Towards Out-of-the-

Box Programming of

Wireless Sensor

Networkds

Edgard Quirino dos Santos Neto
Mestrado em Ciência de Computadores
Departamento de Ciência de Computadores

2014

Orientador
Luís Miguel Barros Lopes, Professor Associado, Faculdade de Ciências da

Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

To my grandfather that once told me:

”For those who are free, the mind shall be key.”

3

Acknowledgements

I would like to thank my friend and supervisor Prof. Lúıs Lopes for in 2012 offering

me a research scholarship, and the possibility to work with him. Further, I would like

to express my gratitude to him, for all the support given in the work during this thesis,

and the time dispended helping me with the writing of this thesis. I also would like to

thank Roberto Silva for his contribution with the new version of the data layer, Carlos

Machado for all the help with the hardware configuration and assembly, and Francisco

Martins (Faculty of Science, University of Lisbon) for advice in the programming of

the Arduino devices.

I would like to express my thanks to my dear friends Inês Castro Dutra, Tiago

Travassos Vieira Vinhoza, Pedro Miguel Ferreira and José Serra, who have supported

me all the time, helped me to achieve all my purposes and also provided me with the

funniest moments. I am very grateful to all of you.

I am very grateful for all the support given by my family, namely to my mother, my

stepfather and my little sister Sofia. In particular, I would like to say that is thanks

to Sofia’s smiles (which I can only see through a Skype video call), that I could find

the necessary strength to continue this journey.

This work has been sponsored by projects MACAW (FCT contract: PTDC/EIA-

EIA/115730/2009) and RTS (contract: NORTE-07-0124- FEDER-000062).

4

Resumo

Uma Rede de Sensores-Actuadores Sem Fio (RSSF) é um conjunto de nós destinados

a gravar, interagir e monitorizar as condições em diversas localizações. Os nós são

dispositivos portáteis e leves que são usados para monitorizar parâmetros como por

exemplo temperatura, humidade, pressão arterial e intensidade de luminosa.

A versatilidade desta tecnologia permite que ela seja usada em diferentes aplicações de

diferentes áreas, tais como saúde, vigilância ambiental e casas inteligentes. No entanto,

mesmo sendo uma tecnologia tão versátil, o seu uso ainda é restrito a utilizadores com

alguma experiência na área. Esta experiência é necessária uma vez que a maioria

das aplicações requerem do utilizador conhecimentos em programação de baixo ńıvel

e habilidades de configuração de hardware. No entanto, estas habilidades não são

encontradas entre os utilizadores não especialistas, e isso certamente torna mais dif́ıcil

a massificação desta tecnologia.

Com base nos factos mencionados acima, o nosso objetivo é produzir um sistema de

fácil utilização, que permita que até utilizadores não especializados possam monitorar

e interagir com suas RSSF. Para alcançar esse objectivo nós propomos como solução

a arquitetura SONAR.

SONAR é uma arquitetura de software de três camadas: cliente, processamento e

dados. A camada cliente é usada para monitorar, programar e injetar tarefas, sobre

a RSSF. As tarefas são programadas utilizando uma linguagem de domı́nio espećıfico,

e posteriormente são executadas nos nós. A camada processamento é responsável

pelo gerenciamento da RSSF e do armazém de dados. A camada dados, abstrai

as especificidades das RSSF, pois os nós já vem com um sistema operativo e uma

máquina virtual previamente instalados. Esta arquitetura faz do SONAR, uma solução

completa e atraente, inclusive para utilizadores finais não especialistas, uma vez que

não é preciso recorrer a programação de baixo ńıvel, nem configurações de hardware,

para implementar a sua RSSF.

5

Abstract

A Wireless Sensor-Actuator Network (WSN) is a set of sensor nodes intended to record,

to interact, and to monitor conditions at diverse locations. The sensor nodes are

portable, lightweight devices that are used to monitor parameters such as temperature,

humidity, blood pressure and light intensity.

The versatility of this technology allows it to be used in different applications of dif-

ferent areas, such as: health monitoring, environment surveillance, and smart houses.

However, even being such a versatile technology, its usage still restricted to users with

expertise on the field. This expertise is needed, since most applications require low

level programming and hardware configuration skills. These skills, are certainly not

found among non-specialist users, and this makes the massification of this technology

more difficult.

Based on the aforementioned facts, our goal is to produce a user-friendly software

system, that allows for even non-specialist users, to monitor and interact with WSN.

In order to achieve such a goal, we propose the SONAR architecture.

SONAR is a 3-layer software architecture: client, processing and data. The client

layer is used to monitor, program and inject tasks, over the WSN. The tasks are

programmed using a simple domain specific language, and are executed in the nodes.

The processing layer is responsible for managing WSN and data-stores. The data

layer, abstracts WSN deployments with factory installed software, composed of an

operating system and a virtual machine. This architecture makes SONAR, a complete

and attractive solution, even for non-specialist end-users, since one does not need to

resort to low level programming nor hardware configuration, to configure and deploy

its WSN.

6

Contents

Acknowledgements 4

Resumo 5

Abstract 6

List of Tables 10

List of Figures 13

1 Introduction 14

1.1 Motivation . 14

1.2 Problem Statement and Proposed Solution 15

1.3 Outline . 16

2 Related Work 17

2.1 Wireless Sensor Networks . 17

2.2 Middleware Infrastructure . 19

2.3 Virtual Machines and Operating Systems 22

2.4 Web Services and Data Store Models 23

2.5 Summary . 25

7

3 The SONAR Architecture 26

3.1 Overview . 26

3.2 The Data Layer . 27

3.3 The Processing Layer . 28

3.4 The Client Layer . 30

3.5 Summary . 31

4 Prototype 32

4.1 Overview . 32

4.2 The Data Layer . 33

4.2.1 Building the Data layer . 33

4.2.2 Data Layer Components . 36

4.3 The Processing Layer . 40

4.4 The Client Layer . 44

4.4.1 The Network Tab . 44

4.4.2 The Data Tab . 44

4.4.3 The Task Tab . 46

4.5 Summary . 47

5 Discussion 48

5.1 Weaknesses . 48

5.2 Solutions . 49

5.3 Summary . 50

6 The SONAR Task Language 51

6.1 Syntax . 51

6.2 Operational Semantics . 52

8

6.3 Static Semantics . 55

7 The SVM and SOS 59

7.1 The SONAR Virtual Machine . 59

7.1.1 Byte-code . 59

7.1.2 Translation . 62

7.1.3 Semantics . 64

7.2 The SONAR Operating System . 64

7.2.1 Gateway . 65

7.2.2 Nodes . 66

7.3 Implementation . 68

8 The Processing and Client Layers 71

8.1 Processing Layer . 71

8.1.1 The Data Store . 71

8.1.2 The Generic Interface for communication with data store 73

8.2 The Client Layer . 75

8.2.1 Deployment List View . 77

8.2.2 Task View . 78

8.2.3 Admin Mode . 79

9 Conclusions and Future Work 83

9

List of Tables

7.1 Memory consumption for the gateway and nodes. 70

10

List of Figures

2.1 Sensor node. 18

2.2 Smart city Santander Project WSN Infrastructure. 19

2.3 Web Service architecture. 24

3.1 The SONAR architecture. 27

3.2 Data layer control and data flow . 28

3.3 Processing layer control and data flow 29

3.4 Client layer control and data flow . 30

3.5 The SONAR architecture’s data flow. 31

4.1 Builder tool application process . 34

4.2 Builder Tool Interface for the SunSPOT. 34

4.3 The startApp method for the MIDLet running on the nodes. 35

4.4 The code for a generic reader. 36

4.5 The code for a generic interpreter. 37

4.6 The code for the data forwarder class in the gateway. 39

4.7 The code for the command forwarder class in the gateway. 39

4.8 The interface of the adapter. 40

4.9 EER diagram for the SONAR data-store. 41

4.10 The interface of the SONAR web-service. 42

11

4.11 The network tab. 45

4.12 The data visualization tab. 45

4.13 The task management tab. 46

6.1 The syntax of STL. 52

6.2 STL program that turns on and off a sprinkler according to ambient

temperature and humidity. 53

6.3 Reduction rules for STL instructions. 54

6.4 Reduction rules for STL expressions. 56

6.5 Type system for STL (part I). 57

6.6 Type system for STL (part II). 58

7.1 Byte-code syntax. 60

7.2 Translation to bytecode (part I). 61

7.3 Translation to bytecode (part II). 62

7.4 Transition rules for SVM. 63

8.1 EER diagram for the new SONAR data-store 72

8.2 DAO for Data mapped object . 74

8.3 DAO for Task mapped object . 75

8.4 DAO for Deployment mapped object 76

8.5 Factory Method for retrieve the appropriate implementation 76

8.6 Login and SONAR-service connect window. 77

8.7 Deployment view. 77

8.8 Task view: Context Menu. 78

8.9 Data view. 79

8.10 The Management menu. 80

12

8.11 The register data store window. 80

8.12 The register user window. 81

8.13 The register deployment window. 81

8.14 The Authorize window. 81

8.15 EER diagram of the admin’s database. 82

13

Chapter 1

Introduction

1.1 Motivation

Consider the following case scenario: A greenhouse owner buys a kit composed of a

few nodes, a gateway node, and a software package to be installed, say, in his home

computer. The nodes have temperature and humidity sensors and an actuator that is

used to turn on and off a water sprinkler. After placing the nodes strategically in the

greenhouse, the user installs the software in his home computer. Afterwards, the user

connects the gateway node to a USB port. The software first starts a web-service,

used to manage the deployment. Afterwards, the user can manage the deployment by

running a web client, from anywhere in the Internet with access to his home computer.

The client connects to the web-service and allows the user to visualize incoming data

from the sensor nodes, and to manage their WSN with dynamically programmed tasks.

The above paragraph exemplifies a success scenario, in which a non-specialist end-user,

is able to configure, to deploy and to monitor its WSN. However, that perfect scenario,

does not correspond to the reality, in which a degree of expertise is required from the

end-user. In particular, part of this required expertise, results from the variety of

hardware platforms available on the market e.g., SunSPOT, Arduino, Mica, Firefly,

WASP-motes. These platforms are based on nodes with the following features:

• different combinations of sensors and actuators;

• distinct communication and routing protocols, e.g., ZigBee, XBee, Bluetooth,

WiFi;

14

1.2. PROBLEM STATEMENT AND PROPOSED SOLUTION 15

• programmed using distinct programming languages, e.g., Java, nesC, C.

This heterogeneity has a positive impact, from the point of view of specialists and/or

end-users with expertise in the field, since it allows them to build and deploy different

WSN, optimized for a given application. On the other hand, it has a negative

impact on the effort required to port, configure, and deploy a given application onto

distinct platforms. In addition, a typical end-user without expertise in the field

wishing to deploy such an infra-structure, for personal or business use, would see

such heterogeneity as daunting. This makes WSN technology less appealing to the

consumer market and certainly precludes its wider dissemination.

Despite this heterogeneity, we argue that most end-user applications running on WSN

have similar modus operandi, namely: (a) periodically reading values from sensors on

the nodes and sending them to a gateway, each node generating a data-stream for

each set of sensed environment variables; (b) executing commands on the on-board

actuators of the nodes, usually triggered by off-line processing of the aforementioned

data-streams.

Based on this observation, we argue that it is possible to design and implement an

architecture that would allow even non-specialist end-users to buy hardware/software

kits and seamlessly configure, deploy and manage a WSN, without performing subtle

hardware or software configurations. This philosophy, we believe, would go a long way

in making the technology more appealing to end-users.

1.2 Problem Statement and Proposed Solution

Currently the configuration, deployment and management of a WSN is still restricted

to specialists on the field. This restriction exists, mainly because of the diversity in

hardware platforms, which requires different knowledge in low level programming and

hardware configuration from the end-user. However, the aforementioned knowledge

is not commonly found among non-specialist end-users, and it certainly prevents the

massification of the technology. The problem we address in this thesis is therefore:

How to massify the use of WSN, by providing a software framework that is

easily ported to different platforms and at the same time, is user-friendly

and accessible to non-specialist end-users ?

16 CHAPTER 1. INTRODUCTION

Our answer to the above question is the Sensor Observation aNd Actuation aRchitec-

ture (SONAR). SONAR is a 3-layer middleware architecture, composed of: (a) client

layer; (b) processing layer and; (c) data layer. The client layer provides a graphical

and user-friendly application to the end-user. This application allows for the end-

user to inject dynamic programmed tasks into their WSN and monitor its produced

data. The processing layer manages all the WSN, by storing relevant information

concerning its tasks and produced data, into an appropriate data-store. The data layer,

abstracts away the low level complexity of the hardware platform. This abstraction,

is achieved with the usage of two pre-installed software components: operating system

and virtual machine. The operating system is responsible for managing the resources

and scheduling the tasks. The virtual machine is responsible for the execution of the

tasks and the abstraction of the hardware platform. This architecture makes SONAR

a complete solution for WSN, since it provides the end-user with not only a user-

friendly application for the management of their WSN, but also with the necessary

hardware, with pre-installed software components, ready to be deployed.

1.3 Outline

The remainder of this thesis is structured as follows. Chapter 2 presents relevant

work for this thesis concerning WSN applications, middleware infrastructures, vir-

tual machines, operating systems, web services and data stores. Chapter 3 presents

SONAR’s architecture, followed by a detailed description of each layer and its compo-

nents. Chapter 4 details the design and implementation of a prototype, based on the

SONAR’s architecture. Chapter 5 follows by detailing the significant improvements

made on the prototype, of the previous chapter. Finally, in the concluding Chapter 6,

we provide conclusions, and present some ideas and opportunities for future work.

Chapter 2

Related Work

In this chapter we give an overview of work which is relevant for this thesis.

2.1 Wireless Sensor Networks

Akyildiz et al. describe a WSN as ”[...] composed of numerous sensor nodes, which are

densely deployed either inside the phenomenon or very close to it. The position of sen-

sor nodes need not be engineered or pre-determined. This allows random deployment

in inaccessible terrains or disaster relief operations. On the other hand, this also means

that sensor network protocols and algorithms must possess self-organizing capabilities.

Another unique feature of sensor networks is the cooperative effort of sensor nodes.

Sensor nodes are fitted with an on-board processor. Instead of sending the raw data

to the nodes responsible for the fusion, sensor nodes use their processing abilities to

locally carry out simple computations and transmit only the required and partially

processed data.” [1]. An illustrative example of a typical sensor node, is depicted

in the Figure 2.1. In particular, this sensor node, is an Arduino mega 2560 micro-

controller, fitted with temperature and humidity sensors, and also a radio module, for

transmitting and receiving data. These are the nodes, we use to test SONAR, later

in this thesis. However, a sensor node can be assembled with any type of sensors,

depending on the application. This makes the technology, more versatile and not

restricted to just only a few case scenarios. An example of the usage of WSN, in a

large scale, is the project Smart Santander [2]. This project uses the sensor nodes

to monitor different parameters of the city Santander, such as noise, temperature,

luminosity and CO2 levels. Each node sends its data to the gateway. That forwards it

17

18 CHAPTER 2. RELATED WORK

to the system platform, which is responsible for processing and storing the data. This

WSN infrastructure is depicted in the Figure 2.2 (from [2]).

Figure 2.1: Sensor node.

Thus, WSNs can be made of a variety of sensor nodes, e.g., temperature, humidity,

pressure and accelerometer. As a consequence, their usage in different applications

and environments have been steadily growing, namely those related to:

• E-Health: body monitoring, medical drug preservation and security for wireless

medical sensors [3, 4, 5].

• Environmental Surveillance: Monitoring fires in plantations, soil moisture, wind

speed and rainfall [6].

• Intelligent City: monitoring different parameters such as noise, traffic light and

CO levels [2].

2.2. MIDDLEWARE INFRASTRUCTURE 19

Figure 2.2: Smart city Santander Project WSN Infrastructure.

2.2 Middleware Infrastructure

Wang et al. describe a middleware as a layer of ”Software and tools that can help hide

the complexity and heterogeneity of the underlying hardware and network platforms,

ease the management of system resources, and increase the predictability of application

executions. WSN middleware is a kind of middleware providing the desired services

for sensing-based pervasive computing applications that make use of a wireless sen-

sor network and the related embedded operating system or firmware of the sensor

nodes.” [7].

TinySOA is a multi-platform service-oriented architecture for WSN that can be used

to monitor data from different deployments [8]. The architecture has four main

components: node, gateway, registry and server. The node component encapsulates all

the functionality of a sensing node and resides in all sensing nodes in the network. The

gateway component is normally located in a specialized node or computer and acts as

a bridge between a WSN and the Internet. It is possible to have multiple WSNs with

20 CHAPTER 2. RELATED WORK

different platforms, but each one must have its own gateway. The registry component

is basically a database where all the information about the infrastructure is stored

(sensor readings, available sensor networks). Finally, the server component acts as a

provider of a web service, containing an interface used to consult the services offered by

each of the networks. This general architecture trait is similar to SONAR’s. Although,

when compared with SONAR, it does not provide the possibility to directly interact

with the WSN, by sending actuation commands and/or dynamically reprogram the

deployment.

Global Sensor Networks (GSN) introduces the concept of virtual sensor, to allow

users to focus on XML-based high-level descriptions of deployments, to describe the

applications running on a WSN platform [9]. It provides built-in distributed querying,

filtering and combination of sensor data algorithms. The lower level building blocks

that compose the virtual sensor are platform specific and are provided in the platform

or, for new unsupported platforms, a port must be available. To the user, however,

this is completely transparent. This philosophy is similar to that adopted in SONAR,

in the sense that all the specific and technical details, concerning the deployment, are

completely transparent to the user. However, SONAR offers the possibility to directly

interact with the WSN, through dynamic programmed tasks, using a graphical and

intuitive application, which is a feature that GSN does not provide.

Sens-ation is a service-oriented architecture that facilitates the development of context-

aware sensor-based infrastructures [10]. It is aimed not only to WSN infrastructures

but also to ubiquitous computing platforms. The architecture is composed of multiple

layers: discovery and request, processing, persistence, handling and registry, adapter

and sensor and actor. In a typical deployment, there will be various sensors (in the

sensor and actor layer) that capture and send data to the Sens-ation platform (layers:

discovery and request, processing, persistence, and handling and registry, from top

to bottom, respectively) via adapters (adapter layer). The handling layer manages

registered sensors and the persistence layer stores the data. In the processing layer it is

possible to process sensor data using inference engines. Finally, the clients can retrieve

data from the server via various gateways provided by the discovery and request layer.

The Sens-ation project, presents us with a complex and complete architecture, which

in some points resembles SONAR, namely adapter and processing layers, that requires

a considerable expertise to configure and use with a deployment. However, it does not

offer the possibility to direct interact with the WSN, through dynamically programmed

tasks.

IrisNet envisions a world-wide sensor web in which users, via standard web-services,

2.2. MIDDLEWARE INFRASTRUCTURE 21

can transparently make queries on data from thousands to millions of widely dis-

tributed, heterogeneous nodes [11]. The manifold sensor nodes in the network collect

data and store observations in local databases. The data is then transmitted across

the Internet as it is requested by user queries. The user sees these multiple databases

as a single unit supported by a high-level query language, and the queries can be

made from anywhere in the Internet. One particular characteristic of IrisNet is that

a single sensor node may run several tasks, providing data for different services at

different rates. These tasks are managed by an IrisNet run-time installed at the node.

While apparently not supporting the use of actuators on the sensors, IrisNet does

allow users to reconfigure data-collection and filtering processes in reaction to sensed

data (e.g., changing sampling rates, invoking a special-purpose processing routine).

The system allows programmers to develop sensing services by providing high-level

abstractions and interfaces for the sensing infrastructure that hide the complexities

of the underlying distributed-data-collection and query-processing mechanisms. Al-

though the IrisNet is similar to SONAR regarding the usage of web services for

providing access to stored information, the goal is totally different. IrisNet aims

to manage large deployments geographically distributed. SONAR targets small to

medium deployments, with simple applications.

HERA is an agent-based architecture that allows the creation of a wireless sensor

network using devices with different technologies [12]. It is based on SYLPH, a plat-

form that provides a service-oriented approach to managing heterogeneous WSN [13].

SYLPH has its own language to represent and define services. In order to support a new

WSN platform, developers need to provide the implementation of the relevant services

for the target platform. Nodes in a WSN use a SYLPH Gateway to communicate with

the other software components of the platform. A gateway is a device with several

hardware network interfaces, each of which connected to a distinct WSN, allowing

nodes with distinct hardware specifications to transfer data. The HERA platform

adds reactive agents to SYLPH. These agents are pre-programmed in each node and

provide the means to develop intelligent context-aware applications for heterogeneous

WSNs. The agents can make use of planning mechanisms and adapt dynamically to

new situations. However, to program the agents, the user needs a good knowledge of

the programming language used by the devices. All agents, once initialized, register in

an agent directory where the information about their functionality is stored. Although

the HERA project provides a direct interaction with the WSN, it requires from the

end-user a good knowledge of the programming language used by the devices. This

knowledge, is certainly not found in a typical end-user, which can see it as daunting.

This project also differs from SONAR, since we allow for dynamic programming and

22 CHAPTER 2. RELATED WORK

uploading of tasks to nodes.

Corona is a WSN distributed query processor implemented for SunSPOT devices [14,

15]. Each node in the platform has a run-time query engine implemented on top of the

Squawk virtual machine. The query language is a simplified form of SQL and supports

distributed queries and in-network data aggregation in order to reduce transmission

size and conserve battery. The platform supports time-triggered queries since the

nodes in the SunSPOT network initially synchronize. This allows time-scheduled

queries to be performed on the network. The data transmitted by the sensors is

compressed to reduce transmission size. Another feature of Corona is a RMI interface

for application programmers allowing Java applications to interact with Corona. This

platform is extendable to new custom sensors or different data types, but for that, the

user needs to be comfortable with the Java programming language. Although Corona,

offers to the end-user a way to direct interact with the WSN, it is more restrictive than

SONAR, since it only supports the SunSPOT platform. Also, even this platform being

extendable to new custom sensors, it requires from the end-user a good knowledge of

Java programming language. However, it fundamentally differs from SONAR, since

we can offer support for any platform, and at the same time we do not require any

technical knowledge from the end-user.

2.3 Virtual Machines and Operating Systems

A virtual machine (VM) is a software implementation of a machine (e.g., a computer)

that executes programs like a physical machine. A VM was originally defined by Popek

and Goldberg as ”[...] an efficient, isolated duplicate of a real machine.”. However,

current use includes virtual machines that have no direct correspondence to any real

hardware [16].

Mate [17] is a compact virtual machine implemented on top of TinyOS. Programs,

called capsules, may be injected in the network at any time to perform specific tasks.

They are written in a very simple assembly language and have the capability to move

between sensor nodes.

The Regiment macro-programming language implements the Distributed Token Ma-

chine, based on an event-based programming model [18]. Each token is a typed

message with some data or code that triggers a specific handler upon reception.

Sun Microsystems (now Oracle) introduced the Squawk virtual machine to support

2.4. WEB SERVICES AND DATA STORE MODELS 23

applications for their SunSPOT devices [19]. Squawk is a very compact Java virtual

machine, with a simplified byte-code layout that runs without an underlying operating

system.

Operating systems, on the other hand, have their focus on resource management, since

the usage of the low memory capacity, cpu speed and battery on embedded systems

have to be optimized to their maximum.

In what concerns operating systems, TinyOS is perhaps the most widespread [20]. It

provides a simple event-based execution-model with non-preemptive tasks. The system

is loaded onto the sensor nodes as a set of modules linked with the user application.

Contiki is also based on an event-driven execution-model but supports multi-threaded

applications, using very lightweight threads, and the dynamic loading of program

modules [21].

SOS, also event-driven, is built from very small modules these are dynamically loaded,

using a clever memory management scheme [22].

MANTIS and Nano-RK diverge from the above systems in that they support pre-

emptive multi-threading, required for real-time and critical systems [23, 24]. A more

comprehensive survey can be found in [25].

In SONAR the operating system (OS), and the virtual machine (VM) are integrated

with the hardware. The OS is responsible for scheduling non-preemptive tasks, ac-

cording to their periods. These tasks are run in an instance of the VM, and only one

instance of the VM is running at a time. Thus, the OS does not provide support for

preemptive tasks nor multiple threads, which makes it different from MANTIS, Nano-

RK and Contiki. The VM is stack based, with a simple Instruction Set Architecture

(ISA). It is compact in the same way as Mate, and can also receive tasks at any time.

However, unlike Mate capsules, SONAR tasks do not have the capability to move

between sensor nodes.

2.4 Web Services and Data Store Models

The World Wide Web Consortium (W3C) defines a Web service as [26]:

”A software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-

24 CHAPTER 2. RELATED WORK

processable format (specifically WSDL). Other systems interact with the

Web service in a manner prescribed by its description using SOAP mes-

sages, typically conveyed using HTTP with an XML serialization in con-

junction with other Web-related standards.”

As stated in the above definition, web services traditionally uses the following tech-

nologies:

• eXtensible Markup Language (XML) [27];

• Simple Object Access Protocol (SOAP) [28];

• Web Services Description Language (WSDL) [29];

• Universal Description, Discovery and Integration (UDDI) [30].

Figure 2.3: Web Service architecture.

The interaction among these components is depicted in the Figure 2.3, and are as

follows: the service provider sends a WSDL file to the service broker (UDDI). The

service requester contacts the broker to find out who is the provider for the data it

needs, and then it contacts the service provider using the SOAP protocol. The service

provider validates the service request and sends structured data in an XML file, using

2.5. SUMMARY 25

the SOAP protocol. This XML file would be validated again by the service requester

using an XSD file [31].

Web services are used for providing a programmatic interface across the Internet,

without concerning administrative domains. This is possible, since web services are

passing messages over HTTP, which is different from other methods such as Remote

Procedure Call (RPC), which uses local ports to establish a connection with the remote

machine, and then perform the routine.

A Data Store is a data repository of a set of integrated objects. These objects are

modeled using classes defined in database schemes. Data store includes not only data

repositories like databases, it is a more general concept that includes also flat files that

can store data. Examples of different types of data stores are: Relational Database

Management System (RDBMS); Wide Column Stores (WCS) and; Document Store

(DS). RDBMS data stores may implement SQL databases, such as MySQL and Post-

greSQL [32, 33]. However, WCS and DS, may use NoSQL databases such as Cassandra

and MongoDB [34, 35].

A complete example of usage of both web service and data store, is the Amazon Simple

Store Service (Amazon S3). Amazon S3 provides a web service interface that can be

used to store and retrieve any amount of data, at any time, from anywhere on the

web. It gives any developer access to the same highly scalable, reliable, secure, fast,

inexpensive infrastructure that Amazon uses to run its own global network of web

sites. The service aims to maximize benefits of scale and to pass those benefits on to

developers [36].

2.5 Summary

In this chapter we presented an overview of the relevant work, for this thesis, such as

WSN applications, middleware infrastructures, web services and data stores.

In the next chapter, we are going to introduce the SONAR’s architecture, and detail

all of its layers and components.

Chapter 3

The SONAR Architecture

In this chapter we present the architecture for SONAR, describing its layers and

components. The chapter is organized into five sections: Overview, which will intro-

duce the architecture and its basics features and functionalities; The Data Layer, The

Processing Layer and The Client Layer, all of them corresponding to the architecture’s

layers and finally, a Summary.

3.1 Overview

SONAR is a typical 3-layer architecture, and it is depicted in the Figure 3.1. The

data layer abstracts the WSN deployments managed by the architecture. These

deployments generate data-streams, that are stored in a data-store in the processing

layer. This data can be queried by the SONAR-service and processed in the task pool

or in the client layer, in order to extract information on the status of nodes.

Clients are allowed to manage deployments in a disconnected way, through manage-

ment tasks, and to forward tasks to the task pool. Every task, in the task pool,

periodically queries the data store, processes the obtained results, and eventually

issues actuation commands. Also notice that all layers are composed of multiple

components, as required to abstract away the details of the WSN, in order to make

data management and processing fully generic and modular.

26

3.2. THE DATA LAYER 27

Figure 3.1: The SONAR architecture.

3.2 The Data Layer

The data layer abstracts each wireless sensor-actuator platform as three components:

• adapter;

• gateway;

• nodes.

The adapter is a dedicated component, and its only function is to act as a forwarder,

since it behaves as an intermediate component between the processing layer and a

gateway of a WSN.

28 CHAPTER 3. THE SONAR ARCHITECTURE

The gateway may receive data messages from nodes, or control messages from the

adapter. In the case of receiving a control message, it radios it to the appropriate set

of nodes in the deployment. When receiving a data message from a node it forwards

it to the adapter.

The nodes are composed of sensors and actuators. They send data produced by the

sensors to the gateway, or receive and execute actuation commands from the gateway.

The control flow and the data flow are both depicted in the Figure 3.2.

Figure 3.2: Data layer control and data flow

3.3 The Processing Layer

The processing layer is the intermediate layer between the client layer and the data

layer. It manages all the control and data flow, and is made up of three components:

• SONAR service;

• Task Pool;

• Data Store.

The data store, must be able to provide a generic abstraction for a deployment, storing

all the information produced by the deployment and handling all the incoming data

requests from the SONAR service.

3.3. THE PROCESSING LAYER 29

The task pool is responsible for scheduling and executing all the incoming tasks from

the client layer. When being executed, a task typically uses the SONAR service to

query the data store. The query returns a result that is processed by the task, and used

to decide whether a control message is issued or not, to a region in the deployment.

The SONAR service, manages all the data flow by receiving data messages from the

data layer and control messages from the client layer. In case the message comes

from the client layer, the SONAR service processes it, in order to decide the type

of control message received. This message can be of two types: data-request or task-

submission. In a data-request, the SONAR service redirects the query to the data-store

and forwards the results to the client. In a task-submission, it adds the task to the pool

and registers the task in the data-store. In case of a message from the data layer, the

SONAR service must process it, in order to decide whether it is a registration message

or a data message. The registration message, contain all the information about a

deployment (gateway address and available actuators and sensors), and indicates to

the web service, that this is its first connection. This also means that it must be

registered, in the data store. Afterwards, the SONAR service, can start to receive the

deployment’s data stream messages and store their values, in the data store.

The control flow and the data flow are both depicted in the Figure 3.3.

Figure 3.3: Processing layer control and data flow

30 CHAPTER 3. THE SONAR ARCHITECTURE

3.4 The Client Layer

Finally the client layer provides web-based applications, for the end-user, which are

focused on the SONAR-service’s implementation. It allows for the user to send their

tasks to the task pool and/or issues data requests to the web service, concerning a

specific deployment. It returns its results to the client, which will process the received

data, and display it to the user.

The clients need not continuous access to the Internet. On the contrary, the ar-

chitecture allows for a disconnected management of the deployment, e.g., from a

client installed in a smartphone, tablet or notebook with only occasional network

connectivity.

The control flow and the data flow are both depicted in the Figure 3.4.

Figure 3.4: Client layer control and data flow

A full view of the control and data flow detailed along this chapter is depicted in the

Figure 3.5.

3.5. SUMMARY 31

Figure 3.5: The SONAR architecture’s data flow.

3.5 Summary

This chapter introduced the SONAR’s architecture, by detailing its layers and com-

ponents. In the next chapter, we are going to use the presented architecture, to detail

the SONAR’s first prototype implementation.

Chapter 4

Prototype

In this chapter addresses the implementation of the first prototype, based on the

architecture proposed in Chapter 3. We start with an overview of the implementation,

and in the next three sections we describe each layer in detail. Finally, we conclude

the chapter with a summary.

4.1 Overview

SONAR is an out-of-the-box solution for the configuration, deployment and man-

agement of WSN, and requires the following software packages for being completely

installed:

• Java Standard Edition (SE) 7

• Apache TomCat Server 6

• MySQL Community Edition

The Java SE 7 is used to execute the client and the builder tool applications, the

adapter and the SONAR service components; the Apache TomCat Server 6 is used

to publish the adapter and the SONAR service components, since both of them are

implemented as web servers, and; the MySQL Community Edition is used to provide

a concrete implementation of the data store. In order to keep the simplicity of this

overview, we assume all the aforementioned components are installed in the same

machine. However, they can be installed in separated machines, and have only their

32

4.2. THE DATA LAYER 33

individual software packages requirements installed. For instance, suppose the user

has a dedicated machine for the data store. This machine must have installed the

MySQL Community Edition but, since the others components are not present, it is

not necessary to have installed the Java SE 7 and the Apache TomCat Server 6.

When using SONAR, the deployment and management of an application onto a WSN

is performed in three steps. The first step consists on the automatic generation of the

data layer, using a builder tool to configure, build and deploy it onto every node of a

WSN. Afterwards, once the user has the data layer deployed, the second step consists

on starting the SONAR service and the adapter components. The two aforementioned

components can be started by just copying their respective files to the folder webapps,

in the installation directory of the Apache TomCat Server 6. The third and final

step consists on the registration of the deployment’s gateway, with the processing

layer. This process is also done automatically, when the gateway turns on for the first

time, by sending a registration message. The adapter receives the registration message

and forwards it to the processing layer. In the processing layer, the SONAR service

component, receives the registration message and populates the data store with its

content. Once the registration process is done, the user can start using the client

application to manage and to interact with WSN. This interaction with WSN is done

through periodic tasks, which are also managed by the client application. In addition,

the user can also select a specific set of nodes of the deployment, and send the task to

them. This set of nodes forms a region which, from an implementation point of view,

is just a set of MAC addresses.

4.2 The Data Layer

4.2.1 Building the Data layer

An essential characteristic of SONAR is that the data layer for a deployment, is

automatically generated for the user by a Java-based builder application, as depicted in

the Figure 4.1. However, this generated data layer is platform dependent, which means

that the user must provide some initial information such as the hardware platform,

and the available sensors and actuators. This information is stored in an XML file

that is then parsed with the help of the JAXB tool, and used to adjust the builder’s

GUI to reflect the available platform functionality, as it is depicted in the Figure 4.2.

This XML file, also includes the locations of the pre-compiled modules and the scripts

34 CHAPTER 4. PROTOTYPE

required for the build. In particular, for this prototype, the available platforms are:

SunSPOT and Arduino. However, all the implementation addressed in this chapter,

is relative to the SunSPOT platform.

Figure 4.1: Builder tool application process

Figure 4.2: Builder Tool Interface for the SunSPOT.

Once the builder’s interface is properly adjusted, the user can press the Add button,

to choose which sensors are going to be used in the deployment and their sampling

frequencies. Thereafter, the Build button is used to generate the code that will be

deployed to the gateway and nodes.

The code generated for the SunSPOT nodes, uses Java Micro Edition (Java ME) for the

Squawk virtual machine [19]. The node component is made up of multiple readers, one

per selected sensor, as indicated by the user to the builder, and a command interpreter.

The readers and the interpreter are generic pre-compiled classes. The builder simply

4.2. THE DATA LAYER 35

generates a class Node that creates an instance of each object attached to a thread

(Figure 4.3).

publ ic c l a s s Node extends MIDLet {
. . .

protected void s t a r tApp () throws . . . {
new Reader (LIGHT , 5 0 0 0) . s t a r t () ;

new Reader (TEMP, 3 0 0 0) . s t a r t () ;

new I n t e r p r e t e r () . s t a r t () ;

}
}

Figure 4.3: The startApp method for the MIDLet running on the nodes.

The implementation of the readers (Figure 4.4) is rather simple: a thread periodically

wakes up, reads the value of the appropriate sensor, and sends it to the gateway. The

variable sensorID is set in the constructor (c.f. Figure 4.3) whereas connection and

board denote, respectively, the radiogram connection used to radio the data, and an

object providing access to the hardware sensors. More energy efficient data layers can

be implemented using techniques such as data aggregation and/or sensor fusion, but

we shall not address this point here.

The code for the interpreter (Figure 4.5) is also quite simple: a thread waits for a

message from the gateway. When the message arrives it is unpacked and parsed in

order to determine which actuator is to be activated and the corresponding parameters

(e.g., which LED and which RGB combination, or which PIN and turn ON or OFF).

Once the code of the gateway and nodes are built, the Deploy button is used to deploy

the generated code to the gateway and to every node onto the WSN. This deployment

process is done using whatever scripts are required by the platform, indicated in

the aforementioned XML file, preferably using Over-The-Air (OTA) programming, a

feature that, although not essential, greatly facilitates the deployment of applications.

Finally, the gateway application is installed and executed. Algorithm 1 summarizes

this build procedure.

36 CHAPTER 4. PROTOTYPE

c l a s s Reader extends Thread {
. . .

publ ic void run () {
double v a l u e ;

while (true) {
switch (s en s o r ID) {
case TEMP:

v a l u e = board . getTemp () . g e tVa l () ;

break ;

case LIGHT :

v a l u e = board . g e t L i g h t () . g e tVa l () ;

break ;

case ACX:

v a l u e = board . ge tAcce lX () . g e tVa l () ;

break ;

case ACY:

v a l u e = board . ge tAcce lY () . g e tVa l () ;

break ;

case ACZ:

v a l u e = board . ge tAcce lZ () . g e tVa l () ;

break ;

}
conn . wr i t eData (s en s o r ID) ;

conn . wr i t eData (v a l u e) ;

conn . sendPackage () ;

U t i l s . s l e e p (p e r i o d) ;

}
}
}

Figure 4.4: The code for a generic reader.

4.2.2 Data Layer Components

Once the gateway application starts to run it registers itself with the SONAR web

server and forwards information describing the deployment, used to create an appro-

4.2. THE DATA LAYER 37

c l a s s I n t e r p r e t e r extends Thread {
. . .

publ ic void run () {
while (true) {

conn . r e c e i v ePackag e () ;

i n t commandCode = conn . r e a d I n t () ;

switch (commandCode) {
case LED :

board . setLED (conn . r e a d I n t () , . . .) ;

break ;

case PIN :

board . setPIN (conn . r e a d I n t () , . . .) ;

break ;

}
}
}
}

Figure 4.5: The code for a generic interpreter.

priate table in the data-store, and a reference for the adapter. From this point on,

the gateway can forward data received from the nodes to the processing layer, via

the adapter, and the deployment is visible to clients that connect to the SONAR web

server. The web server will also be able to send commands to nodes in the WSN, via

the adapter and the gateway. When a client connects to the SONAR web server and

selects one of the registered deployments it receives the description of it kept in the

data-store. The interface of the client is automatically adjusted to reflect the kind of

information stored for that deployment, e.g., the available sensors in the node and the

actuation commands it can execute, including the range of the input parameters for

the commands.

The gateway receives data from the nodes and forwards it to the processing layer. It

also receives actuation commands from the processing layer and forwards them to the

nodes. This interaction between data and processing layers is mediated by the adapter.

In our prototype, the gateway is implemented as two threads. The first thread is an

instance of a class, DataForwarder, that continuously listens for incoming messages from

38 CHAPTER 4. PROTOTYPE

Algorithm 1 Building a platform specific data layer and deploying it.

function buildDataLayer(platform, port, config,macs)

. platform: Platform identifier

. port : Hardware port for gateway

. config : Set of pairs (sensor,frequency)

. macs : Set of mac addresses

{libs, scripts} ← getCode(platform)

{gateway, node} ← buildDataLayer(libs, config)

run(adapter, port)

for each mac in macs do

node script← getScript(scripts,mac)

run(node script,mac, node)

end for

gateway script← getScript(scripts, gateway mac)

run(gateway script, gateway mac, gateway)

end function

the nodes in the WSN, unpacks the data, and forwards it to the Adapter (Figure 4.6).

The other thread is an instance of a class CommandForwarder, that receives pairs of the

form (command,region) and radios the commands to the nodes whose MAC addresses

belong to the region using unicast communication (Figure 4.7).

The adapter is a web service implemented in Java. It is a fully generic module

and is activated in the usual way by placing the appropriate class bundle in the

Apache TomCat folder installation of the computer. The implementation is quite

straightforward as can be inferred from the interface (Figure 4.8). The three methods

are used to:

• register new deployments with the middleware - registerDeployment;

• forward data to the processing layer - forwardData, and;

• receive commands from the processing layer to be forwarded to a region of the

deployment - forwardCommand.

The communication between the gateway and the adapter is implemented through a

Java serial library, RXTXComm [37].

4.2. THE DATA LAYER 39

c l a s s DataForwarder extends Thread {
. . .

publ ic void run () {
i n t s en s o r ID ;

double v a l u e ;

S t r i n g mac ;

while (true) {
conn . r e c e i v ePackag e () ;

mac = conn . readMAC () ;

s e n s o r ID = conn . readCode () ;

v a l u e = conn . r eadVa lue () ;

adap t e r . fo rwardData (senso r ID , va lue , mac) ;

}
}
}

Figure 4.6: The code for the data forwarder class in the gateway.

c l a s s CommandForwarder extends Thread {
. . .

publ ic void run () {
i n t [] command = adap t e r . forwardCommand () . getCommand () ;

S t r i n g [] r e g i o n = adap t e r . forwardCommand () . ge tReg ion () ;

fo r (i n t i n d e x = 0 ; i nd e x < r e g i o n . l e n g t h () ; i n d e x++) {
conn . send (command , r e g i o n [i]) ;

}
}
}

Figure 4.7: The code for the command forwarder class in the gateway.

40 CHAPTER 4. PROTOTYPE

Figure 4.8: The interface of the adapter.

4.3 The Processing Layer

As stated above, the processing layer is composed of three components: a data-store,

a web service and a task pool.

The data store schema is described in Figure 4.9. The tables provides a generic

abstraction for a deployment. A top-level table - Deployment, keeps information about

the deployment, e.g., its name, an optional description and the underlying hardware

platform. It indexes three further tables that contain information about the sensors -

Sensor, and actuators - Actuator, present in the nodes, and the tasks - Task, managed by

the processing layer and associated with the deployment. Tasks described in the Task

table may be active (running in the task pool) or inactive (on hold, waiting for a client

to activate them). This table also keeps the Java byte-code associated with each task

object so that, in the event of a web server crash, the tasks can be restarted on recovery

(field binaryTask). The actual data produced by the nodes in the deployment is stored

in a single table - Data, accessed through the sensor table, that keeps the data indexed

by the sensor identifier and by the time stamp. Initially the database is empty and new

data are going to populate the database as new deployments register themselves with

the processing layer. Each gateway module contains the code necessary to register

the deployment with the processing layer and to build the tables in the data-base.

Each deployment is uniquely identified by a key, the MAC address of the device that

runs the gateway module. In the SunSPOT platform this is the MAC address of the

basestation.

4.3. THE PROCESSING LAYER 41

Figure 4.9: EER diagram for the SONAR data-store.

The web service controls the data flow in the architecture. It is a Java web service

that implements the interface given in Figure 4.10. The methods in the service allow

for:

• mySQLConn: connecting with the data-store;

• registerDeployment: registering a deployment with the processing layer;

• getDeploymentList: consulting the registered deployments;

• getDeployment: select one registered deployment;

• storeData: storing data in the data-store;

42 CHAPTER 4. PROTOTYPE

• createTask: creates a new task;

• destroyTask: destroy a specific task;

• runTask: executes a task;

• pauseTask: pauses a task;

• refreshTask : refreshes the status of a task;

• getRegion: finds the nodes that satisfy a given set of boolean conditions;

• executeCommand: sends an actuation command to the data layer.

Upon initialization the web service checks for tasks marked as active in the data-base

tables. For each record found, it gets the corresponding serialized object, deserializes

it and adds it to the pool of tasks. After this step it continues with the server loop

(Algorithm 2). This initialization step is important as, in case the server crashes, all

the active tasks prior to the crash event, can be restarted automatically. This is of

course possible because a serialized copy of each task is maintained in the data-base.

Figure 4.10: The interface of the SONAR web-service.

4.3. THE PROCESSING LAYER 43

Algorithm 2 Initializing SONAR.

function main()

initPool()

records← dbGetActiveTasks()

for each record in records do

bytes← getBytes(record)

task ← deserialize(bytes)

poolAdd(task, taskId)

end for

serverLoop()

end function

The task pool is managed through the web service interface. The tasks running on

the pool can be periodic or one-shot, as specified by clients. Tasks are created by

clients using the method createTask in the web service that registers the task in the

appropriate table for the deployment in the data-store (Algorithm 3).

Algorithm 3 Registering a task with SONAR.

function createTask(task, taskId)

. task - the task to be created

. taskId - the identification of the task to be created

bytes← serialize(task)

dbStore(taskId, bytes)

end function

When tasks are first created they are always inactive. To activate a task the method

runTask is used that attaches the task to one of the threads in the pool (Algorithm 4).

Algorithm 4 Running a task in SONAR.

function runTask(taskId)

. taskId - identification of the task to be run

record← dbMakeActive(taskId)

bytes← getBytes(record)

task ← deserialize(bytes)

poolAdd(task, taskId)

end function

44 CHAPTER 4. PROTOTYPE

Typically, tasks periodically query the data store for data returned from the deploy-

ment and process it. As a result of that processing, actuation commands for a region

of the deployment may be issued. These are forwarded to the adapter using the

forwardCommand method in the web service interface. Clients may permanently remove

tasks by invoking the method removeTask with the task identifier (Algorithm 5).

Algorithm 5 Removing a task from SONAR.

function destroyTask(taskId)

. taskId - identification of the task to be killed

poolRemove(taskId)

dbRemove(taskId)

end function

Besides the task being removed from the thread pool (whether it is active), the

record of the task in the data-store will also be removed. Finally, a task may also

be temporarily paused by a client - pauseTask, and executed again - runTask.

4.4 The Client Layer

The client layer is implemented as a Java-based GUI. When it is started it connects to

the SONAR web service and requests information about all registered networks. This

information is retrieved from the data-store via the web service.

4.4.1 The Network Tab

The list of registered networks is provided in the “network tab” of the GUI (Fig-

ure 4.11). When a user selects one network from this list, the GUI is adapted to

account for the different sensors and actuators supported by the network and for the

current tasks associated with it. The user may then choose to visualize data, in the

data tab, or manage the tasks, in the task tab.

4.4.2 The Data Tab

In this prototype, the “data tab” is quite simple, listing all readings that have been

sent by nodes in the network. Each entry describes the sensor that reported the

4.4. THE CLIENT LAYER 45

Figure 4.11: The network tab.

reading, the MAC address of the corresponding node, the reading, and the time-

stamp (Figure 4.12). The readings are time-stamped in the gateway, when the data is

received from the nodes and before it is forwarded to the processing layer.

Figure 4.12: The data visualization tab.

46 CHAPTER 4. PROTOTYPE

4.4.3 The Task Tab

All the management tasks associated with a network are listed in the “task tab”

(Figure 4.13). SONAR tasks are very simple. To specify one, the user must select

a frequency associated with the task, what sensors are interesting, their sampling

frequencies and what method is used to evaluate them (e.g., time window, average),

a boolean expression on those readings, and a set of actuation commands that must

be sent to a specific region, in which the boolean expression evaluates to true. Tasks

are implemented internally using a small domain specific programming language. The

example in Figure 4.13 shows one such task, for a WSN that manages a greenhouse.

Every 5 minutes, it reads the last 20 minutes of temperature data, takes the average

and checks whether the value is above 30 Celsius. If so, it then sends actuation

commands to all nodes with temperatures above 30 Celsius to activate the pins that

switch on the sprinkler system and open the ventilation windows. Users may also

define one-shot tasks using the keyword once rather than repeat. Also, besides average,

several data models may be used to determine the value of a physical variable for each

sensor, e.g., last - the last value stored, and median.

Figure 4.13: The task management tab.

4.5. SUMMARY 47

Users may not edit tasks explicitly. Rather, a wizard is provided to guide users in

the specification of tasks, without the need to write code. It is the wizard that then

automatically generates the code for the tasks.

Submitted tasks are compiled by the client and an internal representation, similar to

an annotated AST, is produced. Finally, a request is sent to the SONAR web server

to register and start running the task, as described in Section 4.3. When the client

receives an acknowledgment from this request, it adds the task to the list in the task

tab.

4.5 Summary

In this chapter we detailed our first prototype of SONAR. This first prototype, achieved

its primary goal, being an out-of-the-box solution for building, setup and deploying

WSN, since with just three steps, the end-user would be able to both manage and

interact with its WSN, through an easy-to-use java client GUI. In addition, this

version of the prototype was also published in proceedings of the conference SensorNets

2014 [38].

In the next chapter we discuss the several weaknesses of this prototype, and present

the solutions that we have implemented, in order to overcome them.

Chapter 5

Discussion

In this chapter we detail the weaknesses in the approach that we took, in order to

implement the prototype, described in the Chapter 4. We propose solutions for these

problems whose implementation will be described in forthcoming chapters.

5.1 Weaknesses

A subsequent analysis of the prototype presented in the Chapter 4, showed several

weaknesses in the approach that we took in its implementation. These weaknesses are

related to the following components:

• task pool;

• data store;

• interpreter and reader.

The following points detail such weaknesses:

1. The interpreter and readers are both provided by SONAR, being presented as

pre-compiled modules or scripts. Managing such modules/scripts is no easy task

since a user could build different types and combinations of deployments. It

implies that for each sensor available and possible combination of them we should

have had a set of pre-compiled modules/scripts, proving it to be non-scalable in

a long term;

48

5.2. SOLUTIONS 49

2. The task pool, presented in the Section 4.3, has been found with the very same

problem, since managing such high number of different tasks, all of them querying

the data-store periodically, would also be non-scalable;

3. In this prototype, the implementation of the communication with the data-store,

was very restricted, since it was prepared to only connect to a MySQL database,

and only one repository at a time. This situation restricts SONAR, since a typical

case scenario a user with different types of database for distinct deployments,

was not being addressed;

4. Finally, we did not address access control problems, such as the relationship

between users and deployments. This relationship is important, since we have

to define an access policy for users to deployments, to preserve the privacy of

data and/or the integrity of the deployments.

5.2 Solutions

As mentioned in the above section, our first prototype’s implementation was rather

inflexible, in terms of data store; did not address access control problems regarding

the access to deployments and; it is non-scalable, when considering the task pool

and both the interpreter and readers components. Such issues are solved with a new

implementation of the prototype, as follows:

1. Development of a generic interface for the SONAR service, to communicate with

the different types of data store. This interface, provides an abstraction for the

data store, in such a way that the user can refer to different data-stores products,

in contrast of being restricted to the usage of the MySQL. This means that the

user can access different data stores with different deployments.

2. The task pool is removed from the architecture. Thus, instead of using the

task pool to schedule and execute all the tasks, we decided to implement a tiny

operating system that runs on every node of the deployment. This operating

system manages the hardware resources, and handles the scheduling of the

tasks, in the nodes. Also, through transferring tasks to nodes, the amount of

communication between the SONAR service and the data store would diminish

significantly. This means that the tasks wouldn’t have to query the data store

every single time they would need information, since a small time window of the

produced values, will be locally available in the nodes.

50 CHAPTER 5. DISCUSSION

3. The interpreter and readers are also removed from the architecture, since we

decided to design and implement a virtual machine. The virtual machine, allows

us to abstract the hardware of the platform being used and, the effort required

to port the virtual machine to other platforms, is lesser than having to manage

different types and combinations of pre-compile modules/scripts. In addition,

a domain specific programming language was developed to program tasks. Its

compiler produces a byte-code, which is an input for the virtual machine.

4. The usage of the builder application is not necessary anymore. This means

that the user does not have to generate the data layer of the deployment, since

the operating system and the virtual machine components, would come factory

installed.

5. Regarding the access control concern, we decided to implement an authentication

and administration system functionality. In order to properly implement it,

we decided that it would be for the best to redesign the interface of the user

application. This way the new functionalities would be integrated from scratch.

Also, with the redesigned client’s interface, the user would be able to manage

and interact with multiple deployments at the same time.

5.3 Summary

Based on facts presented in the Section 5.1, it was decided that instead of having

different types of pre-compiled modules/scripts, we should design and implement new

components. These components would provide us, a better abstraction of the hardware

platform, and higher scalability. For that we designed an operating system, a virtual

machine, and a domain specific programming language. In the following chapters

we present and detail the new components: SONAR Task Language (STL); SONAR

Operating System (SOS) and; SONAR Virtual Machine (SVM).

Chapter 6

The SONAR Task Language

In this chapter we describe the syntax and semantics of the domain-specific program-

ming language used to implement periodic tasks in SONAR. We call it the Sonar Task

Language (STL).

6.1 Syntax

The syntax for tasks is described in Figure 6.1. A task T uses two sets of identifiers, s̃

and ã, to specify the available sensors and actuators in a given platform. Each of these

identifiers maps to a unique sensor or actuator in the hardware as implemented by

the underlying virtual machine. This declaration is thus similar for all tasks running

on the same hardware configuration and in a more concrete syntax would simply be

included by the programmer using a compiler directive.

The code that is actually specific for the task starts by specifying the type of the

messages sent back by the task to the gateway using the construct radiates [τ̃]. The

task only sends messages of this type to the gateway and the type is checked against

all radio statements in the task.

The data block is used to initialize task variables. This code is not executed, rather

the compiler will copy the initial values directly to the data segment of the bytecode

generated for the program. The text block, on the other hand, is the code executed for

every (periodic) activation of the task. The instructions available to the programmer

include: assignment, actuation - a(ẽ), sending a set of evaluated expressions to the

gateway - radio [ẽ], and a standard conditional execution construct - if e {r̃} else {r̃}.

51

52 CHAPTER 6. THE SONAR TASK LANGUAGE

T ::= sensors {s1 : τ1 . . . sn : τn} Tasks

actuators {a1 : τ1 . . . am : τm}
radiates [τ̃] data {q̃} text {r̃}

τ ::= bool | int | float | void Types

| τ̃ 7→ τ

q ::= τ x = v Initializations

r ::= x = e Instructions

| a(ẽ)

| radio [ẽ]

| if e {r̃} else {r̃}
e ::= s(ẽ) | e op e | op e | v Expressions

v ::= x | u Values

u ::= bools | ints | floats

Figure 6.1: The syntax of STL.

The expressions are standard except for s(ẽ) that is used to read a value from a given

sensor.

The example in Figure 6.2 shows a STL program that turns on and off a sprinkler

according to ambient temperature and humidity, and that also radios temperature and

humidity. The example uses two sensors, designated as temperature and humidity, and

an actuator sprinkler, whose types are declared in the hardware description in the first

two constructs. The task always radios two floats when sending data to the gateway.

After the initialization of sprinklerOff, each activation of the task reads the temperature

and the humidity, checks a simple condition and decides whether or not the sprinkler

should be kept on or off. Before stopping until the next activation it radios the sampled

temperature and humidity to the gateway.

6.2 Operational Semantics

The operational semantics is defined through a reduction relation → on the program

state. The latter is defined as either the halted task, ⊥, or, if the task is active, as a

6.2. OPERATIONAL SEMANTICS 53

sensors {
t empe ra tu r e : void −> f loat ,

hum id i t y : void −> f l o a t

}

actuators {
s p r i n k l e r : bool −> void

}

rad iates [f loat , f l o a t]

data {
bool s p r i n k l e r O f f = t r u e ;

f l o a t temp = 0 . 0 ;

f l o a t hum = 0 . 0 ;

}

text {
temp = tempe ra tu r e () ;

hum = humid i t y () ;

i f temp > 30 and hum < 50 {
i f (s p r i n k l e r O f f) {

s p r i n k l e r (t r u e) ;

s p r i n k l e r O f f = f a l s e ;

}
} e l s e {

i f (not s p r i n k l e r O f f) {
s p r i n k l e r (f a l s e) ;

s p r i n k l e r O f f = t r u e ;

}
}
radio [temp , hum] ;

}

Figure 6.2: STL program that turns on and off a sprinkler according to ambient

temperature and humidity.

54 CHAPTER 6. THE SONAR TASK LANGUAGE

v = eval(V, e)

(V, x = e r̃)→ (V + {x : v}, r̃)
(1)

ṽ = eval(V, ẽ) a ∈ A write(a, ṽ)

(V, a(ẽ) r̃)→ (V, r̃)
(2)

ṽ = eval(V, ẽ) send(ṽ)

(V, radio [ẽ] r̃)→ (V, r̃)
(3)

eval(V, e) = true

(V, if e {r̃1} else {r̃2} r̃3)→ (V, r̃1 r̃3)
(4)

eval(V, e) = false

(V, if e {r̃1} else {r̃2} r̃3)→ (V, r̃2 r̃3)
(5)

(V, ε)→ ⊥ (6)

Figure 6.3: Reduction rules for STL instructions.

6.3. STATIC SEMANTICS 55

tuple (S,A, V, r̃). In the latter, S and A are of type Set(Vars) and keep the identifiers

for the built-in functions declared at the beginning of an STL program and that provide

access to sensors and actuators, respectively. V , of type Map(Vars,Values) keeps the

values of the variables during the execution of the program. Thus, the initial state for

the task:

sensors {s1 : τ1 . . . sn : τn}
actuators {a1 : τ1 . . . am : τm}
radiates [τ̃] data {q̃} text {r̃}

is the tuple (S0, A0, V0, r̃), where:

S0 = {s1, . . . , sn}
A0 = {a1, . . . , am}
V0 = {(x : v) | τ x = v ∈ q̃ }

The reduction rules are presented in Figures 6.3 and 6.4, where the identifiers s and

a are built-in functions, as well as the function radio. We also simplify the notation

somewhat by not including S and A explicitly in the state, i.e., we represent the tuple

(S,A, V, r̃) tuple as the shorter version (V, r̃). The rules have the structure:

c1 . . . cn
(V1, r̃1)→ (V2, r̃2)

where the ci are preconditions or actions that must be fulfilled to make the transition

from the current state, (V1, r̃1), to a given state, (V2, r̃2), possible. For example, rule (2)

for instructions executes a(ẽ) statements, underlined and the next in the code sequence.

It evaluates the expressions ẽ into values ṽ first, checks whether the identifier a is a

valid actuator built-in function, a ∈ A, and finally calls a(ṽ). When a returns the

state of the program will be (V, r̃). The reasoning is similar in rule (2) for expressions,

where we read data from a sensor. Here, however, the value returned from the sensor,

v = f(ṽ), is the value of the expression. Rule (6) for instructions, another example, is

invoked when the code sequence in the text block ends, the next state is ⊥.

6.3 Static Semantics

The static semantics of a task is provided in the form of a type system (Figure 6.5).

The rules are fairly standard and use a typing environment Γ that keeps track of

the types for identifiers. The rules are written as Γ ` r for instructions, meaning

56 CHAPTER 6. THE SONAR TASK LANGUAGE

ẽ = e1 . . . en vi = eval(V, ei), 1 ≤ i ≤ n

eval(V, ẽ) = ṽ
(1)

ṽ = eval(V, ẽ) s ∈ S v = read(s, ṽ)

s(ẽ) = v
(2)

v1 = eval(V, e1) v2 = eval(V, e2)

eval(V, e1 op e2) = v1 op v2
(3)

v = eval(V, e)

eval(V, op e) = op v
(4)

eval(V, x) = V (x) (5)

eval(V, v) = v (6)

Figure 6.4: Reduction rules for STL expressions.

that the instruction is well-formed, and Γ ` e : τ for expressions, meaning that

expression e has type τ . Some rules have side effects, in which the environment Γ1

is enriched with new entries and becomes Γ2, as in Γ1 ` · · · a Γ2. An example is

rule Γ ` radiates [τ̃] a Γ, radiates : τ̃ (Γ collects the type declared in the radiates

construct). Besides this rule, three others are worthy of note. Rule (12) checks that

messages sent by the task have types that match the one declared in the radiates

construct. Rule (14) checks that the sensor, s, is of type τ̃ 7→ τ ′, that the arguments

ẽ match the type τ̃ to infer that the value returned by s(ẽ) is of type τ ′. The logic is

similar for rule (11) except that the type system just checks that the instruction a(ẽ)

is well formed (instructions do not evaluate to values). The rules (16), (17) and (18)

are axioms and allow values booleans, integers and floating point values to be typed.

6.3. STATIC SEMANTICS 57

∅ ` sensors {s1 : τ1 . . . sn : τn} a Γ1

∅ ` actuators {a1 : τ1 . . . am : τm} a Γ2

∅ ` radiates [τ1 . . . τk] a Γ3

∅ ` data {q1 . . . ql} a Γ4

Γ1,Γ2,Γ3,Γ4 ` text {r̃}

`

sensors {s1 : τ1 . . . sn : τn}
actuators {a1 : τ1 . . . am : τm}
radiates [τ1 . . . τk]

data {q1 . . . ql}
text {r̃}

(1)

Γ ` s1 : τ1 a Γ1 Γ ` sn : τn a Γn

Γ ` sensors {s1 : τ1 . . . sn : τn} a Γ1, . . . ,Γn

(2)

Γ ` a1 : τ1 a Γ1 Γ ` am : τm a Γm

Γ ` actuators {a1 : τ1 . . . am : τm} a Γ1, . . . ,Γm

(3)

Γ ` radiates [τ1 . . . τk] a Γ, radiates : τ1 . . . τk (4)

Γ ` q1 a Γ1 Γ ` ql a Γl

Γ ` data {q1 . . . ql} a Γ1, . . . ,Γl

(5)

∅ ` v : τ

Γ ` τ x = v a Γ, x : τ
(6)

Γ ` r̃
Γ ` text {r̃}

Γ ` r1 . . . Γ ` rn
Γ ` r̃

(7,8)

Figure 6.5: Type system for STL (part I).

58 CHAPTER 6. THE SONAR TASK LANGUAGE

Γ ` x : τ Γ ` e : τ

Γ ` x = e
(9)

Γ ` a : τ̃ 7→ void Γ ` ẽ : τ̃

Γ ` a(ẽ)
(10)

Γ ` ẽ : τ̃ Γ(radiates) = τ̃

Γ ` radio [ẽ]
(11)

Γ ` e : bool Γ ` r̃1 Γ ` r̃2
Γ ` if e {r̃1} else {r̃2}

(12)

Γ ` s : τ̃ 7→ τ ′ Γ ` ẽ : τ̃

Γ ` s(ẽ) : τ ′
(13)

Γ(x) = τ

Γ ` x : τ
(14)

∅ ` s : τ a s : τ ∅ ` a : τ a a : τ (15,16,17)

∅ ` v : bool ∅ ` v : int ∅ ` v : float (18,19,20)

Figure 6.6: Type system for STL (part II).

Chapter 7

The SVM and SOS

In this chapter we detail the SONAR Virtual Machine (SVM) and the SONAR Oper-

ating System (SOS), the modules pre-installed in the nodes.

7.1 The SONAR Virtual Machine

The SVM executes STL tasks, translated into byte-code by a compiler. Thus, we

begin by defining the byte-code format, then give the translation function for the

source code, and finally the state specification of the SVM.

7.1.1 Byte-code

The byte-code is composed of 3 segments: header, data, and text (Figure 7.1). The

header contains the sizes of the data and text segments as well as the maximum run-

time stack size. The stack segment exists only at run-time and is allocated between

the data and text segment, growing towards the lower addresses. The data segment

contains program constants and slots for task variables. It is in fact the only activation

record required for the virtual machine, since there are no calls to user functions or user

functions in tasks. All constants or variables use 4 bytes in the data segment in this

version, but this can and should be optimized to minimize the size of the byte-code.

The text segment is composed of instructions that, in general, map almost one-to-one

on the operational semantics. For example, instructions ld (st) move data between

the data segment and the stack segment and match the rules (5), in Figure 6.4, and (1),

in Figure 6.3, respectively. On the other hand, instruction ret has no correspondence

59

60 CHAPTER 7. THE SVM AND SOS

p ::= h d b Program

h ::= i1 i2 i3 Header

d ::= ṽ Data Segment

v ::= bools | ints | floats Values

b ::= r̃ Text Segment

r ::= ld i | st i | wrt i1 i2 | rd i1 i2 Instructions

| rad i | bf i | jp i | ret

| bop | uop

Figure 7.1: Byte-code syntax.

in the syntax, it marks the end of the text block and is used to stop the machine.

Instructions have a 1 byte opcode and eventually 1 or 2 extra bytes for arguments.

In addition, a simplified explanation of all instructions available for this machine, is

provided hereafter:

• ld i: loads 4 bytes at offset i in data segment, to top of stack.

• st i: stores 4 bytes at top of stack at offset i in data segment.

• wrt i1 i2: selects actuator i1 and write with i2 parameters on top of stack.

• rd i1 i2: select sensor i1 and read value from it given i2 internal parameters in

the stack. The value returned is left on top of the stack.

• rad i: send i values on top of stack to radio.

• i: branch on the value on top of the stack by offset i or continue with

the next instruction.

• jp i: jump to offset i, counting from end of instruction.

• ret : stop machine.

• bop , uop : binary and unary boolean, integer and floating point in-

structions.

7.1. THE SONAR VIRTUAL MACHINE 61

[[T]] =[[sensors {s̃ : τ}]] :

[[actuators {ã : τ}]] :

[[radiates [τ̃]]] :

[[data {q̃}]] :

[[text {r̃}]] :

(ε, ret)

[[sensors {s̃ : τ}]] =(ε, ε) ∧ S = {si : i|si ∈ s̃}
[[actuators {ã : τ}]] =(ε, ε) ∧ A = {ai : i|ai ∈ ã}

[[radiates [τ̃]]] =(ε, ε)

[[data {q̃}]] =[[q̃]]

[[τ x = v q̃]] =(v, ε) : [[q̃]] ∧ V [x]← i, i← i+ 4

[[text {r̃}]] =[[r̃]]

[[r r̃]]r =[[r]]r : [[r̃]]r

[[x = e]]r =[[e]]e : (ε, st : V (x))

[[a(ẽ)]]r =[[ẽ]]e : (ε,wrt : A(a) : |ẽ|)
[[radio [ẽ]]]r =[[ẽ]]e : (ε, rad : |ẽ|)

[[if e {r̃1} else {r̃2}]]r =[[e]]e : (D′, B′)

where

(D1, B1) = [[r̃1]]r

(D2, B2) = [[r̃2]]r

D′ = D1 : D2

j1 = 2 + |B1|
j2 = |B2|
B′ = bf : j1 : B1 : jp : j2 : B2

Figure 7.2: Translation to bytecode (part I).

62 CHAPTER 7. THE SVM AND SOS

7.1.2 Translation

Each translation function receives a syntactic term and returns a pair of sequences

(D,B) (Figure 7.2). The first, D, is the contribution to the data segment and has

type Array(bool ∪ int ∪ float). The latter, B, is the contribution to the text segment

and has type Array(byte). The top level translation function [[·]], for STL tasks,

breaks the translation into a sequence of pairwise concatenations (operator “:”) and

uses appropriate translation functions for each syntactic category. We used the same

notation [[·]] to simplify the notation except in the case of instructions [[·]]r and of

expressions [[·]]e. Besides the maps S and A (c.f., Sub-Section 6.2) we use V and U , of

types Map(Vars, int) and Map(bool ∪ int ∪ float , int), respectively, to map variables

and constants into data segment offsets. The current free offset is kept in variable i,

which is initially 0.

[[e1, . . . , en]]e =[[e1]]e : · · · : [[en]]e

[[s(ẽ)]]e =[[ẽ]]e : (ε, rd : S(s) : |ẽ|)
[[e1 bop e2]]e =[[e1]]e : [[e2]]e : (ε,bop)

[[uop e]]e =[[e]]e : (ε,uop)

[[x]]e =(ε, ld : V (x))

[[u]]e =(u, ld : U(u)) ∧ U [u]← i, i← i+ 4

[[ε]] =(ε, ε)

Figure 7.3: Translation to bytecode (part II).

The translation is quite forward with the data segment being used to store all variables

and constants. The data segment works as the only activation record required for

the execution of the task. This simplicity of layout also allows us to use a single

instruction, ld , to move both variable contents and constants to the stack. An

apparently unintuitive translation assigns sensor and actuator identifiers to integers,

rather than functions as in the operational semantics. However, these integers are

indexes into arrays of built-in functions in the virtual machine, the concrete realizations

of the fi and gi functions of the operational semantics.

7.1. THE SONAR VIRTUAL MACHINE 63

B[j] = ld B[j + 1] = i v ← D[i]

[D|S|B]j → [D|v, S|B]j+2

(7.1)

B[j] = st B[j + 1] = i D′ ← D + {i : v}
[D|v, S|B]j → [D′|S|B]j+2

(7.2)

B[j] = rd B[j + 1] = i B[j + 2] = n

f ← sensors [i]

v ← f(v1, . . . , vn)

[D|v1, . . . , vn, S|B]j → [D|v, S|B]j+3

(7.3)

B[j] = wrt B[j + 1] = i B[j + 2] = n

g ← actuators [i]

g(v1, . . . , vn)

[D|v1, . . . , vn, S|B]j → [D|S|B]j+3

(7.4)

B[j] = rad B[j + 1] = n send(v1, . . . , vn)

[D|v1, . . . , vn, S|B]j → [D|S|B]j+2

(7.5)

B[j] = bf B[j + 1] = i

[D|false, S|B]j → [D|S|B]j+2+i

(7.6)

B[j] = bf B[j + 1] = i

[D|true, S|B]j → [D|S|B]j+2

(7.7)

B[j] = jp B[j + 1] = i

[D|S|B]j → [D|S|B]j+2+i

(7.8)

B[j] = bop

[D|v2, v1, S|B]j → [D|v1 bop v2, S|B]j+1

(7.9)

B[j] = uop

[D|v, S|B]j → [D|uop v, S|B]j+1

(7.10)

B[j] = ret

[D|S|B]j → ⊥
(7.11)

Figure 7.4: Transition rules for SVM.

64 CHAPTER 7. THE SVM AND SOS

7.1.3 Semantics

The state of the virtual machine is represented as the term [D|S|B]j, where j is the

program counter and is used to travel the instructions in the text segment. The halted

machine is represented by a special state denoted ⊥. To run a task T in the virtual

machine we use the translation function to get its byte code [[T]] = (D,B) and set

its initial state to [D|ε|B]0. The computation proceeds according to the reduction

rules presented in Figure 7.4. For example, when the current instruction (the one the

program counter j is indexing) is ld , rule (1), the next byte contains i, the offset of a

variable or a constant in the data segment, and we use it to access the value (denoted

as v ← D[i]). The new state has the same data and text segments but the stack has

the value v on top of it, and the program counter was updated to j + 2. Similarly

for st , rule (2), we have a value v in the stack in the current state and we make a

transition to a state where that value has been removed from the stack and copied to

position i in the data segment (denoted as D′ = D + {i : v}). The arrays sensors

(rule (3)) and actuators (rule (4)) provide the pointers to built-in functions associated

with the identifiers. The function send (rule (5)) is a built-in that sends data over the

radio. Tasks never listen for data. For example, in rule (3), the rd instruction has two

arguments: i, the index that identifies the built-in sensor function to be called, and

n, the number of arguments that function takes. The latter, v1 . . . vn, are all stored at

the top of the stack. The rule evolves by calling a built-in function f ← sensor [i] with

the arguments taken from the stack, f(v1 . . . vn) and placing the result of the call, v,

at the top of the stack. Instructions bop and uop actually encapsulate a set of rules

that include the usual arithmetic, relational and logical binary and unary operators.

7.2 The SONAR Operating System

A node in the SONAR architecture may run multiple periodic tasks at the request of

clients. A user composes a task and compiles it in a SONAR client application. It

can then submit the task to be executed by the nodes in a given deployment. Such a

request is sent via the SONAR middleware, which then forwards it to the adapter of

the deployment in question and finally to the gateway where the bytecode is radioed

to the mesh using a simple protocol implemented on top of XBee (Figure 3.5). The

protocol uses broadcast to send tasks. If a task is smaller than the XBee payload

(usually 92 bits) then a single broadcast is sufficient. Otherwise, the task is broken in

numbered blocks and these are sent in independent broadcast events over an interval.

7.2. THE SONAR OPERATING SYSTEM 65

Only tasks that can be fully re-assembled in the nodes are scheduled for execution, by

the SOS. At this point we do not try to check whether tasks are received correctly by

all nodes.

7.2.1 Gateway

Algorithm 6 The gateway program

function main()

Attach(Radio RCV,handleRadioMsg)

Attach(Serial RCV,handleSerialMsg)

loop

microSleep()

switch (src)

case RADIO:

msg ← readRadioRCVBuffer()

forwardToAdapter(msg)

case SERIAL:

msg ← readSerialRCVBuffer()

forwardToNodes(msg)

end switch

end loop

end function

function handleRadioMsg()

src ← RADIO

end function

function handleSerialMsg()

src ← SERIAL

end function

The gateway does not run tasks. It is simply a message forwarder: it receives data

messages from nodes in the deployment and passes them to the adapter, and receives

control messages (including new tasks) from the adapter and radios them to the nodes

in the deployment (Figure 3.2). Algorithm 6 shows this basic component. The gateway

is initialized by attaching two handlers for interrupts signaling radio and serial port

data reception. It then sleeps most of the time. When one of the interrupts is detected,

66 CHAPTER 7. THE SVM AND SOS

the corresponding handler is executed and a flag is set to identify the source. The

remainder of the loop then processes the incoming message.

7.2.2 Nodes

Nodes, conversely, may run multiple tasks kept on a table (Table : Array(Entry)).

Each entry in this table contains a boolean that says whether the entry is valid,

the task’s period (an integer), its next activation time (another integer), and the

stored state (Entry : bool × int × int × State). The latter is composed of an array

of bytes that keeps the data, stack and text segments (State : Array(int ∪ float) ×
Array(int ∪ float) × ×Array(byte)). The task currently active is identified by its

integer index, denoted curr in the following algorithms. To manage and schedule

the tasks each node has a tiny operating system that executes a loop as described in

Algorithm 7.

Algorithm 7 The node main loop

function main()

Attach(Radio RCV,handleRadioMsg)

loop

run()

schedule()

sleep()

listen()

end loop

end function

A brief initialization attaches a handler for an interrupt that signals radio data re-

ception, and initializes the current task (initially the built-in task). The node then

enters the loop and executes the following procedures: Run, that executes the current

task; Schedule - that selects the next task to be executed; Sleep - that sleeps until

the next task must be activated, and, finally - Listen - that listens for incoming

radio commands that may have been received while executing elsewhere in the loop.

The first 3 procedures are executed only if there are valid tasks in the table, i.e., the

predicate TableEmpty evaluates to false.

Procedure Run (Algorithm 8) gets the stored state for the current task, its data, stack

and text segments, and runs the task in the SVM. Note that changes to variables in

a task are made directly in the data segment of the bytecode so that any state is

7.2. THE SONAR OPERATING SYSTEM 67

Algorithm 8 Run current task

function run

if ¬tableEmpty() then

(D, ε,B)← getBytes(curr)

runSVM(D, ε,B)

t← rtcTime()

p← period(curr)

setNextActivation(curr, t+ p)

end if

end function

preserved in between successive activations of the task. The virtual machine preserves

the invariant that the stack S is empty when a task begins to execute and when it

exits. Finally, the procedure adjusts the next activation time for the task by adding

its period to the current time given by the Real-Time Clock (RTC).

Algorithm 9 Select next task

function schedule()

if ¬tableEmpty() then

min←Max Int

for 0 < i <Max Tasks do

if taskValid(i) then

t← getNextActivation(i)

if t ≤ min then

min← t

curr ← i

end if

end if

end for

end if

end function

The Schedule procedure (Algorithm 9) computes the index of the (valid) task with

the closest activation time. This becomes the next task to be executed by the operating

system. Otherwise the predicate TableEmpty will evaluate to true.

Procedure Sleep (Algorithm 10) computes the time until the next task activation

and programs an alarm to wake up the node. The node then goes to sleep. This

specification builds on the underlying assumption that tasks, being so small, execute

68 CHAPTER 7. THE SVM AND SOS

Algorithm 10 Sleep until next task activation

function sleep()

if ¬tableEmpty() then

t← getNextActivation(curr)

rtcAlarm(t)

end if

microSleep()

end function

in only a tiny fraction of their corresponding periods. In other words, if a task has a

period p and an execution time, per activation, of t, then t� p. Otherwise we make

no effort to schedule tasks within their periods. Since t is in the order of microseconds

we find this assumption adequate for practical purposes.

Finally, procedure Listen (Algorithm 11) checks for any incoming messages while the

main loop was running. We assume that the nodes have the means to receive and to

buffer messages asynchronously, by programming an appropriate handler to process

the corresponding hardware interrupts. If a message is received, its tag is checked to

identify its type and it is processed accordingly. At this point, there are 3 types of

control messages: ADD TASK - sends the identifier, the period and the bytecode for a

new task to be executed in the nodes; CHANGE PERIOD - sends the identifier and

the new period of a task to be updated in the nodes, and; REMOVE TASK - sends

the identifier of a task to be invalidated in the nodes. When a new task is reassembled

and copied to the task table, its next activation is set to getNextActivation(curr)

+ δ, where δ is a delay introduced to make sure that the task is schedulable in the

next loop run, i.e., its activation time is in the future when the Schedule procedure

is called.

7.3 Implementation

We have implemented a full prototype of the specification for the data layer in a

WSN mesh composed of Arduino Mega 2560 devices, each with an extra shield with a

XBee Series 2 radio, an SHT-15 temperature and humidity sensors, and an Adafruit

Chronodot RTC. In particular, for this implementation, we used the C/C++ Wiring

programming language, which is the default programming language for the Arduino

devices. One of the devices acts as the gateway and is connected to a desktop computer

through a USB connection. The computer runs the adapter web service which links

7.3. IMPLEMENTATION 69

Algorithm 11 Handle Incoming Radio Message

function handleRadioInterrupt()

interrupted ← True

end function

function listen()

if interrupted = True then

msg ← readRadioRCVBuffer()

tag ← getTag(msg)

switch (tag)

case ADD TASK :

i← getId(msg)

p← getPeriod(msg)

b← getBytes(msg)

addTask(i, p, b)

case CHANGE PERIOD :

i← getId(msg)

p← getPeriod(msg)

changePeriod(i, p)

case REMOVE TASK :

i← getId(msg)

removeTask(i)

end switch

interrupted ← False

end if

end function

70 CHAPTER 7. THE SVM AND SOS

the deployment with the SONAR middleware, running on a server. The binaries for

the gateway and for the nodes (including the OS and the SVM) are loaded into the

devices before they are deployed physically.

Table 7.1 shows the memory footprint and the total number of code lines for both the

gateway and the nodes in this implementation. In this case the SVM in the nodes is

configured to support a maximum of 8 tasks each with a maximum byte-code size of

128 bytes. At this stage no effort was made to optimize the code both in terms of size

and energy consumption. For example, since speed is not a major constraint, we can

take advantage of the typical Harvard architecture of these devices and transfer some

of the data structures currently stored in the SRAM to the Flash, which is usually

substantially larger.

Flash (256 kb) SRAM (8 kb) #lines

gateway 10.6 kb (4%) 1.3 kb (16%) 330

node 20.3 kb (8%) 2.2 kb (26%) 1325

Table 7.1: Memory consumption for the gateway and nodes.

This SVM configuration, although quite generous, is actually quite compact and fits

easily in the Mega 2560 and almost fits in the smallest AVR Atmel micro-controller, the

ATMega32 (32 kb Flash, 2 kb SRAM) - 2.2kb used vs. 2kb available SRAM. A SVM

configuration with 4 tasks instead of 8 would fit nicely with a 1.6 kb SRAM footprint.

However, it is important to notice that of these 2.2kb used, only 1.1kb represents the

space occupied by the task table, which is the only significant structure, in terms of

memory space, created by our code. These numbers show that half of those 2.2kb, are

allocated for data structures used by Arduino libraries. This leaves room for further

optimizations, as some of these libraries are overkill for our needs. Also, of the 1325

lines of code in the nodes, 43% correspond to the OS, 27% to the SVM, and just 30%

correspond to hardware specific code, e.g., modules for sensors, actuators, radio, and

real-time clock. These numbers give us confidence that porting (and optimizing) this

data-layer to more resource constrained devices will not present major problems.

Chapter 8

The Processing and Client Layers

In this chapter we describe the changes introduced in the processing and client layers.

8.1 Processing Layer

As stated in section 5.1, the task pool being directly handled by the SONAR service,

proved to be a non-scalable solution because of the potential large number of queries

to the data-store, when considering a high number of running tasks. Also, our first

prototype had a critical limitation in terms of data store since it was only able to use

MySQL databases. In order to solve such a limitation we designed and implemented

a more generic solution, which would be capable of supporting any type of data store.

This solution is a generic common interface that allows the usage of different types

of data-store by abstracting away the specific implementation of each data-store from

the SONAR service.

8.1.1 The Data Store

The data store is one important component in SONAR, since it must be able to

abstract and represent all the data generated by deployments. Taking that into con-

sideration, and the new components of the data layer, we also decided to reformulate

the relational representation of the data store, in order to acquire a more accurate and

reliable representation of the deployment’s data and in the process also simplify it, as

it is depicted in Figure 8.1. In this new representation, the tables provides a generic

abstraction for a deployment, focusing on their tasks and the data they generate. A

71

72 CHAPTER 8. THE PROCESSING AND CLIENT LAYERS

top-level table - Deployment, keeps information about the deployment, e.g., its name,

an optional description and the underlying hardware platform. It indexes one further

table that contain information about the tasks - Task, scheduled and executed by

the SOS and the SVM. Tasks described in the Task table may be active (running in

the nodes) or killed (removed from the nodes). This table also keeps the deployment,

which the task is associated with and some additional information, e.g., its periodicity,

status and an optional description. The actual data produced by the tasks, is stored

in a single table - Data, accessed through the task table, that keeps the data indexed

by the task and the deployment identifiers.

Figure 8.1: EER diagram for the new SONAR data-store

The changes in the relational representation of the data-store, was strictly necessary

because we think SONAR as an out-of-the-box solution, i.e., all the components

required would come pre-installed. Thus, all the information concerning the hard-

ware/software configuration of the deployment were redundant and could be removed

from the representation. This led to a better representation of the produced data and

also a simplified one.

8.1. PROCESSING LAYER 73

8.1.2 The Generic Interface for communication with data store

In Section 5.1 we mentioned a critical limitation concerning the data store component

since our original implementation supported only MySQL databases, which could

restrict the usage of SONAR to only one very specific case scenario, contradicting

the primary goal of the project. Not only that but the number of possible data stores,

being used simultaneously was restricted to only one. However different users might

want to store the data from their deployments in different data stores of different

types. Thus in consideration of such limitations, we decided to implement a generic

interface, which would be able to support any type of data store, e.g., relational, wide

column based and document based.

The generic interface component was designed to mediate the communication between

the SONAR service and the data store, abstracting away the specific implementation

from the SONAR service. In order to implement such an interface, we used two design

patterns: Data Access Object (DAO) and; Factory Method Pattern (FMP).

The DAO pattern provides an abstraction layer between the business logic tier (busi-

ness object) and the persistent storage tier (data source). Business objects access data

sources via data access objects. This abstraction layer encapsulates the persistent

storage specific product implementation [39].

Gamma et al., define the FMP as [40]:

Define an interface for creating an object, but let the subclasses decide which

class to instantiate. The Factory method lets a class defer instantiation to

subclasses.

The generic interface implementation is represented using UML Classes Diagrams,

depicted in the Figures 8.2, 8.3, 8.4 and 8.5. Notice that each of the aforementioned

design patterns, are being directly used as the name of the classes in the UML Classes

Diagrams.

The Figures 8.2, 8.3 and 8.4 directly represent the usage of the DAO design pattern,

where the relational database model depicted in the Figure 8.1, is directly mapped into

objects that contains the same attributes types and names as those aforementioned.

Such objects are also meant to be instantiated, since they represent the concrete data

that populates the data store, or is retrieved from it.

The interfaces, are responsible for abstracting the concrete implementation of queries

74 CHAPTER 8. THE PROCESSING AND CLIENT LAYERS

Figure 8.2: DAO for Data mapped object

to data stores. Together with the Factory Method design pattern implementation,

which is depicted in the Figure 8.5, each implementation of the interfaces is handled

individually, meaning that given the proper implementation of some specific database

query language, the factory is capable of returning the desired implementation and

the web service does not have to worry about specific details when using methods to

insert or retrieve data from the different data stores.

8.2. THE CLIENT LAYER 75

Figure 8.3: DAO for Task mapped object

8.2 The Client Layer

In Section 4.4 we presented our first implementation of the client layer. This im-

plementation was focused on having a user-friendly application in which an end-user

would be able to manage and interact with deployments. However, our application

did not address access control problems. This means that all users were capable of

interacting and managing all registered deployments in the data store. However, it

is reasonable to think that each user has its own deployment(s), and should only be

allowed to manage these.

As a consequence of the aforementioned facts, we decided to redesign the client’s GUI.

In particular, with the new design, a user would only be allowed to manage and interact

with its own deployment(s). In order to achieve such a goal, we decided to implement

an authentication and system administration functionalities.

The admin functionalities are only accessible through the client’s GUI at the moment

76 CHAPTER 8. THE PROCESSING AND CLIENT LAYERS

Figure 8.4: DAO for Deployment mapped object

Figure 8.5: Factory Method for retrieve the appropriate implementation

of the login, using the system’s predefined user name and password. The admin’s role

is to manage the mappings between data stores, users and deployments. In order to

accomplish this, the admin manages a local database, further detailed in Section 8.2.3.

On the other hand, new users are created by the admin, and provided with a login.

This login, is used to correctly identify which deployments are available to the logged

user, and only those are going to be manageable by him.

8.2. THE CLIENT LAYER 77

8.2.1 Deployment List View

When the client is started, Figure 8.6, it offers the possibility for the user to login

with a user name and password, and choose which SONAR-server he wants to connect

with.

Figure 8.6: Login and SONAR-service connect window.

Afterwards, the main window of the client is instantiated as depicted in Figure 8.7.

The deployment list contains all the deployments that belong to the logged user. There

may be other users that can access the same deployments, since the admin is allowed

to map more than one user to the same deployment. In addition, the admin has access

to all available deployments, in the data store. This is necessary, since the admin needs

to manage the mapping between users and deployments.

Figure 8.7: Deployment view.

When the deployment is selected, the user can double-click and the task view window

is instantiated, showing all tasks in that deployment. However, in the case of the

admin, a management window would be presented, allowing him to manage which

78 CHAPTER 8. THE PROCESSING AND CLIENT LAYERS

data-store and users can access this deployment. The admin’s privileges are further

explained in Section 8.2.3.

8.2.2 Task View

The task view, Figure 8.8, is used to manage the deployment’s tasks. It allows the

user to add more tasks, view their respective data, change their periods or even killing

them.

Figure 8.8: Task view: Context Menu.

In this view the available actions, concerning the selected task, are always dependent

on their own status. A task can have two possible status:

• Active: The task is being executed in all nodes of the deployment.

• Killed: The task was killed in all nodes of the deployment.

Suppose a task has its status as active, the user can kill it, change its period or view its

produced data. Although when a task has its status as killed, the user can not activate

it again, since the task has already been removed from all nodes. This means that the

only possible action, in this case, is to visualize their past data, as it is depicted in the

Figure 8.9.

Regardless the status of all current tasks, the user can add more tasks to the deploy-

ment. Although the number of concurrent active tasks is limited by the SVM running

on the nodes. Thus, assuming the user has not reached its maximum number, and he

has the task’s byte code generated by the compiler of the STL, he has to right-click

with their mouse button on an empty row and the option Add Task will be prompted

8.2. THE CLIENT LAYER 79

Figure 8.9: Data view.

to him. By selecting it, the user will have to select the task’s byte code and type its

periodicity. Afterwards, the submitted task will be active and running in all nodes of

the deployment.

8.2.3 Admin Mode

When logged in as admin, the deployment list view displays all the previously reg-

istered deployments in the admin’s local database. Also, the Management menu is

available, as depicted in the Figure 8.10.

The Management menu, contains some possible actions to be performed by the admin.

Those consists on registering new deployments, users and/or database repositories, as

it is depicted in the Figure 8.10.

Before mapping a data store to a deployment, the admin needs to register the data

80 CHAPTER 8. THE PROCESSING AND CLIENT LAYERS

Figure 8.10: The Management menu.

store. This mapping process must be done, since a deployment needs a data repository

to store its produced data, and a user needs to have access to that same data repository.

The registration of this new data store is done by selecting the option New Data Store,

and the window depicted in Figure 8.11 will be instantiated. The admin must fill all

the fields, in order to properly register its new database repository. Otherwise, an error

message will appear informing him of the fact and he will not be allowed to conclude

the registration process. Afterwards, the admin may register a new user and/or a new

deployment, as depicted in Figures 8.12, 8.13, respectively.

Figure 8.11: The register data store window.

Finally, after having registered all data repositories, users and deployments, the admin

is allowed to authorize users to manage and interact with deployments. It is done by

double-clicking over a selected deployment, in the deployment list. This will instantiate

the Authorize window, as it is depicted in the Figure 8.14.

8.2. THE CLIENT LAYER 81

Figure 8.12: The register user window.

Figure 8.13: The register deployment window.

Figure 8.14: The Authorize window.

Management actions performed by the admin, are stored in an internal database,

called Admin’s Database, kept in the same machine as the SONAR service. Fig-

82 CHAPTER 8. THE PROCESSING AND CLIENT LAYERS

Figure 8.15: EER diagram of the admin’s database.

ure 8.15, represents the EER diagram of that database, and the relationship among

its components. The admin’s database, is responsible for maintain the relationship

among users, databases, and deployments. Also, for the communication with this

database, we use the generic interface, depicted in the Section 8.1.2.

Chapter 9

Conclusions and Future Work

In this thesis we have presented SONAR, a multi-platform middleware architecture for

WSN. In particular, SONAR differs from the most solutions on the market, because

it focuses on the (non-specialist) end-user. SONAR offers a complete generic and

transparent solution, both in terms of software and hardware. In terms of software,

the end-user is provided with a graphical user interface, that allows him to monitor

the data produced by sensor nodes and to interact with the deployments, through

periodic tasks. These tasks are written using the STL, a simple platform independent,

domain specific language. These tasks are compiled into byte-code, and injected in the

deployment nodes, where they are executed by a compact virtual machine, the SVM.

In addition, these tasks are also dynamic loaded on the sensor nodes. This means

that, differently from the static programmed applications, they can be reprogrammed

or deleted, from the sensor nodes, without having to stop and reprogram all the nodes,

on the WSN. This is made possible by the usage of a compact operating system, the

SOS. It manages and runs the tasks on the nodes, using the SVM. In addition, both

SOS and SVM can be ported to different hardware platforms with a minimal effort.

The current prototype that we have implemented with the new revision of the data

layer, has also been submitted to the conference MASS 2014 [41].

However, SONAR is still a work in progress project. The approach we take is not

without problems. We deliberately make assumptions that diminish the span of

applications that can be programmed for a given deployment in order to optimize the

architecture for a common use case. One particular example is the current impossibility

of collaboration between nodes, e.g., in the aggregation of data or processing. This

possibility is particularly important in very large networks that have to scale while

keeping power consumption within bounds. Future work involves evaluating the

83

84 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

impact of introducing data aggregation, or online processing primitives in the STL

and the SVM. Also, proving the type-safety of the STL, and the correctness of the

SVM and of the SOS, would provide users with the reassurance that compiled tasks

would not produce run-time errors. This would be a significant result, given the

difficulty in debugging deployed WSN applications.

Finally, from a personal point of view, I believe that this project contributed to further

expand my knowledge in the area of embedded systems, namely to WSN. In addition, I

was also presented with different challenges, which helped me to improve my technical

knowledge and my interpersonal skills. These skills helped me to understand the

importance of working as team member, and made me realize that no science can be

done by just one man.

Bibliography

[1] I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam, and C. Erdal. Wireless sensor

networks: a survey. Computer networks, 38(4):393–422, 2002.

[2] University of Cantabria. Smart City Project. Available at http://www.

smartsantander.eu/. [Online; accessed 12-June-2014].

[3] Libelium World. E-health sensor platform. Available at www.libelium.com/

130220224710, 2014. [Online; accessed 12-June-2014].

[4] DeltaZ. ARES Project. Available at http://www.libelium.com/ehealth_

monitor_medical_drug_preservation_waspmote/. [Online; accessed 12-June-

2014].

[5] Harvard Sensor Network Labs. CodeBlue: Wireless Sensors for Medical Care.

Available at http://fiji.eecs.harvard.edu/CodeBlue. [Online; accessed 12-

June-2014].

[6] Grupo Austen. Siega System Project. Available at http://www.siegasystem.

com/. [Online; accessed 12-June-2014].

[7] M.M. Wang, J.N. Cao, J. Li, and D. K. Sajal. Middleware for wireless sensor

networks: A survey. Journal of computer science and technology, 23(3):305–326,

2008.

[8] E. Avilés-López and J. A. Garćıa-Maćıas. TinySOA: a Service-Oriented Architec-

ture for Wireless Sensor Networks. Service Oriented Computing and Applications,

3(2):99–108, 2009.

[9] K. Aberer, M. Hauswirth, and A. Salehi. A Middleware for Fast and Flexible

Sensor Network Deployment. In Very Large Data-Bases (VLDB’06), pages 1199–

1202. ACM Press, 2006.

85

http://www.smartsantander.eu/
http://www.smartsantander.eu/
www.libelium.com/130220224710
www.libelium.com/130220224710
http://www.libelium.com/ehealth_monitor_medical_drug_preservation_waspmote/
http://www.libelium.com/ehealth_monitor_medical_drug_preservation_waspmote/
http://fiji.eecs.harvard.edu/CodeBlue
http://www.siegasystem.com/
http://www.siegasystem.com/

86 BIBLIOGRAPHY

[10] T. Gross, T. Egla, and N. Marquardt. Sens-ation: a Service-Oriented Platform

for Developing Sensor-Based Infrastructures. International Journal of Internet

Protocol Technology (IJIPT), 1(3):159–167, 2006.

[11] P. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet: an architecture for

a worldwide sensor Web. Pervasive Computing, 2(4):22–33, 2003.

[12] R. Alonso, D. Tapia, J. Bajo, and et al. Implementing a Hardware-Embedded

Reactive Agents Platform Based on a Service-Oriented Architecture over Hetero-

geneous Wireless Sensor Networks. Ad-Hoc Networks, 11(1):151–166, 2013.

[13] D. Tapia, R. Alonso, F. De La Prieta, C. Zato, and et al. SYLPH: An

Ambient Intelligence Based Platform for Integrating Heterogeneous Wireless

Sensor Networks. In IEEE International Conference on Fuzzy Systems (FUZZ

2010), pages 1–8. IEEE Press, July 2010.

[14] R. Khoury, T. Dawborn, B. Gafurov, and et al. Corona: Energy-Efficient Multi-

query Processing in Wireless Sensor Networks. In Database Systems for Advanced

Applications, volume 5982 of LNCS, pages 416–419. Springer Berlin Heidelberg,

2010.

[15] Oracle. SunSPOT Project. Available at http://www.sunspotworld.com/, 2004.

[16] Wikipedia. Virtual machines — Wikipedia, the free encyclopedia, 2004. [Online;

accessed 12-June-2014].

[17] P. Levis and D. Culler. Maté: A Tiny Virtual Machine for Sensor Networks.

In Proceedings of the International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS X), pages 85–95. ACM

Press, 2002.

[18] R. Newton and M. Welsh. Region Streams: Functional Macroprogramming for

Sensor Networks. In First International Workshop on Data Management for

Sensor Networks (DMSN’04), Toronto, Canada, 2004.

[19] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White. Java on the Bare

Metal of Wireless Sensor Devices – The Squawk Java Virtual Machine. In

Proceedings of VEE’06. ACM Press, June 2006.

[20] The TinyOS Documentation Project. Available at http://www.tinyos.org.

http://www.sunspotworld.com/

BIBLIOGRAPHY 87

[21] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible

operating system for tiny networked sensors. Local Computer Networks, Annual

IEEE Conference on, 0:455–462, 2004.

[22] C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A dynamic operating

system for sensor nodes. In Proceedings of the 3rd International Conference on

Mobile Systems, Applications, and Services (MobiSys’05), pages 163–176, New

York, NY, USA, 2005. ACM Press.

[23] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gru-

enwald, A. Torgerson, and R. Han. MANTIS OS: An Embedded Multithreaded

Operating System for Wireless Micro Sensor Platforms. ACM/Kluwer Mobile

Networks & Applications (MONET), Special Issue on Wireless Sensor Networks,

10(4):563–579, August 2005.

[24] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-RK: An Energy-Aware Resource-

Centric Operating System for Sensor Networks. In Proceedings of the IEEE Real-

Time Systems Symposium (RTSS’05), December 2005.

[25] L. Lopes, F. Martins, J. Barros. Programming Wireless Sensor Networks. In B.

Garbinato, H. Miranda, L. Rodrigues, editor, Middleware for Network Eccentric

and Mobile Applications, pages 25–41. Springer-Verlag, 2009.

[26] World Wide Web Consortium. Web services glossary. Available at http://www.

w3.org/TR/2004/NOTE-ws-gloss-20040211/, 2004.

[27] T. Erl. Service-oriented architecture: a field guide to integrating XML and web

services. Prentice Hall PTR, 2004.

[28] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,

S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP), 2000.

[29] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, et al. Web Services

Dscription Language (WSDL), 2001.

[30] E. Cerami. Web services essentials: distributed applications with XML-RPC,

SOAP, UDDI & WSDL. ” O’Reilly Media, Inc.”, 2002.

[31] Wikipedia. Web service — Wikipedia, the free encyclopedia, 2004. [Online;

accessed 12-June-2014].

[32] MySQL. Available at http://www.mysql.com/. [Online; accessed 12-June-2014].

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.mysql.com/

88 BIBLIOGRAPHY

[33] PostgreSQL. Available at http://www.postgresql.org/. [Online; accessed 12-

June-2014].

[34] Apache Cassandra. Available at http://cassandra.apache.org/. [Online;

accessed 12-June-2014].

[35] MongoDB Inc. MongoDB. Available at http://www.mongodb.org/. [Online;

accessed 12-June-2014].

[36] Amazon Simple Storage Service. Available at aws.amazon.com/s3/.

[37] RXTX Project. Available at http://mfizz.com/oss/rxtx-for-java.

[38] E. Neto, R. Mendes, and L. Lopes. An architecture for seamless configuration,

deployment, and management of wireless sensor-actuator networks. In SENSOR-

NETS, pages 73–81, 2014.

[39] Clifton Nock. Data access patterns: database interactions in object-oriented

applications. Addison-Wesley Boston, 2004.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of

reusable object-oriented software. Pearson Education, 1994.

[41] R. Silva, E. Neto, and L. Lopes. Towards out-of-the-box programming of wireless

sensor-actuator networks. In 11th IEEE International Conference on Mobile Ad-

hoc and Sensor Systems (IEEE MASS’14). (submitted).

http://www.postgresql.org/
http://cassandra.apache.org/
http://www.mongodb.org/

	Acknowledgements
	Resumo
	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Statement and Proposed Solution
	Outline

	Related Work
	Wireless Sensor Networks
	Middleware Infrastructure
	Virtual Machines and Operating Systems
	Web Services and Data Store Models
	Summary

	The SONAR Architecture
	Overview
	The Data Layer
	The Processing Layer
	The Client Layer
	Summary

	Prototype
	Overview
	The Data Layer
	Building the Data layer
	Data Layer Components

	The Processing Layer
	The Client Layer
	The Network Tab
	The Data Tab
	The Task Tab

	Summary

	Discussion
	Weaknesses
	Solutions
	Summary

	The SONAR Task Language
	Syntax
	Operational Semantics
	Static Semantics

	The SVM and SOS
	The SONAR Virtual Machine
	Byte-code
	Translation
	Semantics

	The SONAR Operating System
	Gateway
	Nodes

	Implementation

	The Processing and Client Layers
	Processing Layer
	The Data Store
	The Generic Interface for communication with data store

	The Client Layer
	Deployment List View
	Task View
	Admin Mode

	Conclusions and Future Work

