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Abstract

This dissertation was developed in the scope of Real-time Embedded Systems and dis-

cusses a limited preemption scheduling technique known as Fixed Preemption Points.

The purpose of this method is to limit the number of preemptions in the execution of a

multitasking application, improving the response time of the longest low priority tasks as

well as the overall system schedulability.

This work was developed within an autonomous vehicle project and the Fixed Pre-

emption Points technique is tested in an application running on the VxWorks real-time

operating system.

The results show evidence that, despite the benefits demonstrated in theoretical stud-

ies, the practical implementations of the referred technique are not always efficient. In-

stead, real-time operating systems may include, and VxWorks does, optimized implemen-

tations of fully-preemptive scheduling that provide the tasks shorter execution times and,

for most of them, better response times.

At the end, the dissertation suggests improvements for implementing the Fixed Pre-

emption Points technique.

Keywords: Real-time systems, Multitasking, Preemption, Limited-preemptive schedul-

ing, Autonomous vehicle, Response time analysis
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Resumo

Esta dissertação foi desenvolvida no âmbito de Sistemas Embarcados de Tempo-Real e

explora uma técnica de escalonamento com preempção limitada conhecida como Fixed

Preemption Points (Pontos de Preempção Fixos). O objetivo deste método é limitar

o número de preempções que ocorrem durante a execução de uma aplicação, diminuindo

o tempo de resposta das tarefas menos prioritárias e melhorando a escalonabilidade do

sistema como um todo.

O trabalho foi enquadrado no projeto de um véıculo autónomo e a técnica referida foi

testada numa aplicação baseada em VxWorks, um sistema operativo de tempo-real.

Os resultados evidenciam que, apesar dos benef́ıcios demonstrados em estudos teóricos,

as implementações da referida técnica poderão não ser muito eficientes. De facto, o escalon-

amento sem restrições de preempção, para o qual o sistema operativo de tempo-real poderá

estar otimizado, como é o caso do VxWorks, fornece às tarefas tempos de execução mais

curtos e um melhor tempo de resposta para a maioria delas.

No final, a dissertação inclui algumas sugestões para o melhoramento da implementação

da referida técnica.

Palavras chave: Sistemas de tempo-real, Multitasking, Preempção, Escalonamento

baseado em limitação de preempção, Véıculo autónomo, Análise do tempo de resposta
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1. Introduction

This chapter explains the context of the dissertation, which addresses automated vehi-

cles, their potential role in modern societies and the requirements put upon them. From

such requirements we show the importance of improving the real-time behaviour of such

systems. Then, after discussing some exiting related studies on the subject, we formulate

the work to be done in this dissertation as a problem to be solved, its objectives and the

outline of this document.

1.1 Motivation

In order to make the practice of driving as safe as possible robotics are being seriously

considered in the automotive industry. Because of the high speeds automobiles achieve,

they require a very responsible usage, and, since the human driver is always liable to fail,

there is a great concern with vehicle safety. One possible way of improving safety is having

the car alone taking care of some functions that were previously handled by the driver.

An important question is how automated is the vehicle intended to be: Is the car

supposed to move completely unmanned? Or should it facilitate the driving practice,

overcoming some of the driver’s limitations? Ideally the car should be able to detect

whether the driver is being able to control the car and adapt the level of autonomy

according to the situation. Not only would such a car help the common driver in his/her

practice, but it would also make the driving activity possible for people that were not

able to do it before, for example, due to partial blindness, deafness or poor reflections,

which is the case of many elderly people. Hopefully, such a vehicle would avoid many road

accidents caused by lack of attention or poor responsiveness of the driver. [SEN]

Since a defective behaviour in this kind of systems can cause substantial damage to

equipment and people, even putting lives at risk, these systems are known as safety-

critical systems. In their operation, one fundamental aspect is their capacity to properly

execute the control functions, with sampling and actuations at the right moments in time.

In such systems, missing temporal constraints may have catastrophic consequences and

thus they are also classified as hard real-time systems.

Hard real-time systems typically involve two fundamental concepts:

Timeliness: The vehicle must respond to expected and unexpected situations on time.

1



1.2. Problem definition and related work

This implies that the sampling of operational environment data, e.g., distance to obstacles

or speed of wheels, its processing, the response calculation and the actual actuation, e.g.

changing direction or reducing speed, have to be done on time to achieve proper vehicle

behaviour and ultimately avoid a collision or crash.

Dependability: Since human lives depend on the vehicle’s correct operation, this

machine must provide a trustworthy service. This implies high reliability, i.e., the ability

to fulfil the specification for a certain operating time interval, high availability, i.e. ex-

pectation of continued system operability, and safety, i.e., capability of avoiding damage

to surrounding people or equipment. Other dependability attributes that are also rele-

vant in this context include security, i.e., the preservation of data privacy, authenticity,

integrity and correctness against malicious failures, maintainability, i.e., the easiness of

system repair in case of defective behaviour, testability, i.e., the capacity to provide access

to certain internal parameters, and performance, i.e., bounds to performance degradation

in case of faults. [Taisy Silva Weber, 2002]

Each functionality that the vehicle provides is typically composed by a complex set

of tasks which are responsible for data collecting, processing, response calculation and

actuation. Each task must be executed within its deadline in order to fulfil the timeliness

requirements. Situations such as processor overload and the consequent undetermined

waiting time of ready tasks, often referred to as best effort behaviour, are not tolerated.

Thus, to schedule the tasks in such critical systems, a special kind of operating system must

be used, namely a Real-Time Operating System (RTOS). These provide adequate

task scheduling mechanisms and allow precise measuring of time intervals, such as the

execution time of a task. RTOS also support timed actions with bounded jitter, i.e., the

fluctuation around the arrival instants of periodic events. Thus, RTOS are very important

components in the design of hard real-time systems.

1.2 Problem definition and related work

The challenge of this project consists of studying the impact of a specific scheduling tech-

nique in a practical situation, concerning meeting timeliness requirements. The applica-

tion to test is inspired by an autonomous vehicle known as SENA (Embedded System for

Autonomous Navigation), developed in the Mechatronics Laboratory of the Mechanical

Engineering Department of the Engineering School of São Carlos (EESC), São Carlos, São

Paulo, Brazil, under supervision of Profs. Marcelo Becker and Glauco Caurin. At the core

of its computing architecture, the SENA project uses the RTOS VxWorks, by WindRiver.

The scheduling technique we will focus on aims at assuring the timeliness of the ap-

plication by reducing the response time of the application tasks that have less slack. This

technique consists in limited preemption scheduling and is considered for the case of

fixed priority scheduling. The featured limited preemption scheduling algorithm is known

as Fixed Preemption Points.

In order to apply it to the vehicle scheduler the RTOS VxWorks shall also be studied,

particularly concerning the mechanisms and tools that it offers.

The benefits of limiting preemption have been explored in many scientific works.

2



1.2. Problem definition and related work

The works in [Buttazzo, G.C. and Bertogna, M. and Gang Yao, 2013], [Baruah, 2005],

[Bertogna and Baruah, 2010] and [Bertogna et al., 2010] explain the drawbacks of both

fully- and non-preemptive scheduling policies. The authors agree that, while a non-

preemptive scheduling easily spoils the feasibility of a task set, fully-preemptive systems

are liable to suffer a significant run time overhead due to the possibly large number of

preemptions that occur, turning worst-case execution times (WCET) less predictable, and

enlarge the response time of low priority tasks beyond necessary. They also require the

usage of complex protocols that deal with the access to shared resources.

In order to avoid a time consuming access to the main memory every time data had to

be stored or restored, caches were invented, providing a quicker access to data. However,

caches also introduce a delay known as cache interference, which must be cautiously taken

into account when dealing with hard real-time systems ([Lee et al., 1999]). The cache

must be accessed every time a context switch occurs, as a consequence of a preemption.

In order to establish an upper bound to the tasks’ WCET in a preemptive system, many

studies have focused in analysing the cache interference. In [Ramaprasad and Mueller,

2006] upper bounds are established for the cache-interference in a realistic manner. In [Li

et al., 2007], two types of context switch costs are considered, namely direct costs, which

include the lag of the operations the processor performs every time a preemption occurs,

and indirect costs, which exist when a cache is shared by several processes. In [Chang-

Gun Lee, 1998] the cache-related delay is determined by first estimating the preemption

cost at each execution point of a task and then, using these results, calculating the worst-

case delay. By limiting the number of preemptions held by the tasks, the number of

cache-related delays is also limited and more predictable WCETs are obtained. The work

in [Lee et al., 1999] proposes a limiting preemption strategy which is an optimal trade-off

between preemption cost and blocking delay of higher priority tasks.

When several tasks share a resource in a fully-preemptive system, complex resource

access protocols must be followed. They assure that, if a task holding a shared resource

is interrupted, the altered or read data is not corrupted in the meantime. By defining

the critical zone (execution area where the resource is used) as a non-preemptive region,

avoiding preemptions while the resource is held, simpler protocols may be used. The work

in [Ramaprasad and Mueller, 2008] establishes upper bounds for the worst-case response

time of tasks which are mainly preemptive, but own a non-preemptive region. For this,

the WCET of the tasks is estimated, considering cache-related delays. In [Gang Yao,

2009] three methods for calculating the longest non-preemptive region of each task that

maintains the system feasible are proposed and exemplified by means of simulations. The

work in [Baruah, 2005] proves that, for Earliest Deadline First (EDF), the longest non-

preemptive interval of a task depends solely on the WCET, deadline and period of the

tasks in the set, and not on the other tasks’ non-preemptive sections. EDF is a sheduling

technique for dynamic priorities where the highest priority is dynamically assigned to the

task with the shortest time to the deadline.

Limited-preemption algorithms are suggested in [Buttazzo, G.C. and Bertogna, M. and

Gang Yao, 2013] (fixed priority based), [Baruah, 2005] and [Bertogna and Baruah, 2010]

(EDF based). The Fixed Preemption Points algorithm is one of the methods suggested

3



1.3. Objectives

in [Buttazzo, G.C. and Bertogna, M. and Gang Yao, 2013] and shall be implemented and

experimentally tested in this project. The work in [Yao et al., 2010] provides an efficient

and simplified response time analysis when using preemption points in a fixed priority

based system. The article also proposes an algorithm for determining each task’s longest

non-preemptive interval that keeps the task set feasible. In [Bertogna et al., 2010] the

authors provide an algorithm that determines an optimal placement of preemption points,

considering a static preemption overhead. They prove that, if a task set is not feasible

under this method, any other placement scheme will maintain it unfeasible. In [Bertogna

et al., 2011] the same authors improve their work to a more complex and realistic modelling

by considering that the preemption overhead varies along the task code.

1.3 Objectives

This work aims at analysing a specific system with hard real-time requirements, namely an

application similar to a particular module of the autonomous vehicle SENA, and verify in

practice the potential improvements in the temporal behaviour achieved with the limited

preemption scheduling technique.

1.4 Outline of this document

The first chapter presented an introduction discussing the motivation of the project, re-

lated work and the problem definition. The second chapter approaches several limited

preemption scheduling techniques and compares theoretical results. The third chapter

provides background information about the practical tools, namely the operating sys-

tem where the application shall run, the software used to develop the program and the

hardware, i.e., the board running the mentioned OS. The implementation details of all

developed functions are explained in the fourth chapter. The fifth chapter briefly intro-

duces an overview of the architecture of the autonomous vehicle and describes with detail

the task set used for testing. The sixth chapter, after explaining the conditions in which

the tests are performed, describes the experiments and discusses the results. A global

conclusion of the project is provided in chapter seven.

4



2. Limited preemption scheduling

This chapter explains the scheduling strategy mentioned in the first chapter, namely lim-

ited preemption scheduling. This section reveals the advantages of using this method and

provides an overview of different existing techniques.

2.1 Overview of limited preemption scheduling techniques

There are many ways to assign priority to tasks. A common method is known as Rate

Monotonic priority assigning. According to this algorithm, the highest priority is assigned

to the task with the highest rate (the shortest period), while the lowest priority goes to

the task with the longest period. Thus, it is usual that high priority tasks are the ones

with shorter execution times and periods, while low priority tasks tend to be longer and

slower.

Preemptive real-time systems allow a task to execute immediately after it becomes

ready, as long as there is no higher priority task already running. From the point-of-view

of the lower priority task that could be running at that moment, this means that it is

interrupted (or preempted), in order to give in its CPU time to the newly arrived task.

Alternatively there are non-preemptive systems, where any newly arriving task has to

wait until the currently executing task finishes its execution. Both scheduling techniques

have their pros and cons. Preemptive systems are favourable for high priority tasks, but

also imply many costs and disadvantages. Every time a task is preempted its state has

to be stored in memory so it can resume its execution from the point it has stopped.

This implies difficulties in the achievement of mutual exclusion because of possible race

conditions among concurrently executing tasks, larger memory requirements and a large

overhead related to the process of storing and fetching data. Because of context switch

delays, it is more complicated to calculate the WCET of the tasks, thus making the system

behaviour harder to predict. Conversely, not only are non-preemptive systems simpler to

implement, but they also have a more predictable behaviour. On the other hand, and

considering the worst case, if a task is requested right after the longest lower priority task

has just begun its execution, in a non-preemptive scenario it must wait for the whole

execution of the ongoing task minus a clock tick (because the task arrived after the lower

priority task started running). The situation in which a higher priority task cannot execute

5



2.1. Overview of limited preemption scheduling techniques

because a lower priority one is running is known as blocking. Taking into account that

low priority tasks may have large execution times, high priority tasks may suffer long

periods of blocking, preventing them to finish within their deadlines.

An optimal system should not be non-preemptive because of the long blocking periods

of high priority tasks, yet preempt as little as possible in order to make the behaviour

more predictable and reduce the overhead. Three approaches for limited preemption

scheduling are discussed in [Buttazzo, G.C. and Bertogna, M. and Gang Yao, 2013], namely

Preemption Thresholds Scheduling (PTS), Deferred Preemptions Scheduling

(DPS) and Fixed Preemption Points (FPP).

In the formulae indicated in this chapter the following convention is used:

• The index of the parameters indicate the task to which those parameters are con-

cerned.

• The index i corresponds to the task being analysed in the formula, while the index

h corresponds to tasks with a higher priority than the analysed task.

• N refers to the maximum number of preemptions that the task indicated by N ’s

index can suffer.

• P refers to the priority of the task.

• R refers to the response time of the task, i.e. the time between a task’s request and

its finishing instant.

• T refers to the period of the task.

• C refers to the execution time of the task.

• D refers to the relative deadline of the task.

• θ is a parameter specific to the DPS algorithm and refers to the preemption threshold

of the task.

• Q (specific to the PTS algorithm) refers to the maximum non-preemptive interval

of the task.

• q (specific to the FPP algorithm) refers to the size of a non-preemptive subjob.

• Npp, specific to the FPP algorithm, refers to the number of preemption points of

the task.

Other terms which are specific to particular algorithms are explained in the following

corresponding sections.

2.1.1 Preemption Thresholds Scheduling (PTS)

According to this method each task keeps a preemption threshold θ, usually larger than its

own priority. If task A is running at a given instant and a higher priority task B arrives,

B can only preempt A if its priority is higher than A’s preemption threshold.

6



2.1. Overview of limited preemption scheduling techniques

As we can see this method reduces the set of tasks that may preempt a given task.

Nevertheless, if B’s priority is higher than A’s preemption threshold, B can interrupt A

for an undetermined number of times.

In order to implement the PTS technique the only necessary action to take is to increase

a task’s priority to its preemption threshold as soon as it starts executing.

In PTS, it is hard to predict where a preemption will occur, since it depends on the

preemption threshold of the running task and on the arrival instants of higher priority

tasks.

The largest number of interruptions a task can suffer is the number of times each task

with priority greater than the task’s threshold can execute during the task’s response time:

([Buttazzo, G.C. and Bertogna, M. and Gang Yao, 2013])

Ni =
∑

h:Ph>θi

⌈
Ri
Th

⌉
(2.1)

2.1.2 Deferred Preemptions Scheduling (DPS)

In this method, each task defines a maximum period Q during which it cannot be pre-

empted. There are two possible implementations for this method: According to the float-

ing model the programmer defines a specific code area where preemption is prohibited.

The non-preemptive interval may not exceed Q time units and, since the instants of its

limits cannot be determined off-line, it is difficult to estimate the effect of this method.

In fact, we do not know whether the running time of the non-preemptive region overlaps

with the arrival of higher priority tasks or not. In the activation-triggered model the

non-preemptive region starts as soon as a higher priority task arrives and lingers for a

maximum time Q. The ready task starts executing after Q time units have passed or

earlier, if the running task terminates in the meantime. Once the newly arrived task

preempts the running task, it may also prevent preemptions of higher priority tasks.

The implementation of the floating model consists in calling preemption disabling and

enabling kernel primitives in the code, in order to establish the boundaries of the non-

preemptive regions. Instead, these regions can also be defined by increasing the task’s

priority to the greatest possible value and decreasing it back to its original value. In

the activation-triggered model both techniques can also be used to disable and enable

preemption. In this case a timer is set when a higher priority task arrives, keeping count

of the maximum non-preemptive interval Q.

While in the floating model the non-preemptive regions have unknown positions, in the

activation-triggered model we know that, if a higher priority task arrives, an interruption

may occur Q time afterwards. As in the case of PTS, the preemption position depends

on which task is executing (which is the size of Q) and the arrival times of higher priority

tasks. Hence both models provide behaviours which are hard to predict.

A pessimistic upper bound of the number of interruptions a task can suffer is the

number of times Q fits in the task’s execution time. ([Buttazzo, G.C. and Bertogna, M.
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and Gang Yao, 2013])

Ni =

⌈
Ci
Qi

⌉
− 1 (2.2)

2.1.3 Fixed Preemption Points (FPP)

This method allows a task to run sections of code without being interrupted. This is

achieved by inserting a desired number of preemption points in certain positions of the

code. Preemption is disabled between these points. Assuming that a task A is running

and a higher priority task B arrives, B must wait until A’s code reaches a preemption

point. The non-preemptive sections of code are known as subjobs and have a maximum

execution time of Q.

In order to implement this method the programmer needs to insert the preemption

points in the desired places. Every time such a point is reached, the scheduler is called

and allows higher priority tasks to execute.

Since the allowed preemption situations are defined while the programmer is designing

the tasks, it is possible to have a precise notion of the timing overhead caused by the

interruptions.

A task can be preempted as many times as the minimum between its number of

preemption points and the number of activations of higher priority tasks during the task’s

response time. ([Buttazzo, G.C. and Bertogna, M. and Gang Yao, 2013])

Ni = min

Nppi, ∑
h:Ph>Pi

⌈
Ri
Th

⌉ (2.3)

Consider the example illustrated in Figure 2.1.

Figure 2.1: Example of FPP implementation

In the example τ1 is the highest priority task and τ3 has the lowest priority. Both τ3

and τ1 have preemption points, marked by ”A” and ”B” respectively. In the beginning

τ3 executes without being preempted by τ1, whose request happens in the meanwhile.

Once it encounters a preemption point (situation A), τ1, which has a higher priority,

preempts τ3. τ2, which has an intermediate priority, is requested during the first subjob of

τ1. However, once τ1’s preemption point occurs (situation B), the task is not preempted,
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since all waiting tasks (τ2 and τ3) have a lower priority. Once τ1 finishes executing, τ2

takes the CPU, since it has the highest priority among the waiting tasks. τ3, having the

lowest priority, only resumes execution after τ2 finishes.

2.1.4 Comparison between the three discussed techniques

G. Buttazzo et al demonstrate in [Buttazzo, G.C. and Bertogna, M. and Gang Yao, 2013]

that, for some task sets, the three limited preemption scheduling techniques satisfy all

timeliness requirements, while non-preemptive (NPS) or fully preemptive scheduling (FPS)

do not. EDF stands for ”Earliest Deadline First”.

These results are shown in Figure 2.2.

Figure 2.2: For different limited preemption scheduling techniques: Ratio of feasible task

sets (left) and average number of preemptions (right). Reproduced from [Buttazzo, G.C.

and Bertogna, M. and Gang Yao, 2013]

A fixed preemption points scheduling strategy (FPP) leads to a larger ratio of feasible

sets, while non-preemptive scheduling has the worst results. Among limited preemption

scheduling techniques, the FPP method leads to the largest number of feasible task sets,

with the largest advantage over PTS observed for small task sets.

FPP, together with DPS, also brings forward the smallest number of preemptions.

This number decreases as the task sets increase.

Since, according to this work, the FPP algorithm provides the best theoretical results,

this method was chosen to be implemented in this project.

2.2 Response time analysis

This section provides theoretical calculations for the response time of tasks. The equations

are used to estimate the behaviour of the tested task set for the non-preemptive, limited-

and fully-preemptive situations.

2.2.1 Fully-preemptive scheduling

The worst-case response time analysis for a preemptive system is obtained iteratively

according to the equations bellow. [Almeida, 2011]
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R

(0)
i =

∑
h:Ph≥Pi,h<>i

Ch + Ci

R
(s)
i =

∑
h:Ph≥Pi,h<>i

⌈
R

(s−1)
i
Th

⌉
Ch + Ci

(2.4)

2.2.2 Limited-preemptive scheduling with the Fixed Preemption Points

algorithm

In [Buttazzo, G.C. and Bertogna, M. and Gang Yao, 2013] the worst-case response time

of the tasks with fixed preemption points is deduced to the formulae bellow. If non-

preemptive scheduling is classified as a particular case of limited preemption where there

are no preemption points, these calculations may as well be used to estimate the worst-case

response time of tasks under non-preemptive scheduling.

The longest blocking a task i can suffer (Bi) corresponds to the largest non-preemptive

section among all lower priority tasks minus one clock tick.

Bi = max
j:Pj≤Pi,j<>i

{qmaxj − 1} (2.5)

The starting time of the last subjob of instance k of task i (si,k) is obtained iteratively.

In order to obtain the worst-case response time, the starting time of the task’s last subjob

must be calculated for all instances that occur from the beginning of the application’s

execution until the end of the longest active period.
s

(0)
i,k = Bi + Ci − qlasti +

∑
h:Ph≥Pi,j<>i

Ch

s
(l)
i,k = Bi + kCi − qlasti +

∑
h:Ph≥Pi,j<>i

(⌊
s
(l−1)
i,k

Th

⌋
+ 1

) (2.6)

where k is the number of instances that run in the longest active interval Li, which is

obtained iteratively by 
L

(0)
i = Bi + Ci

L
(s)
i = Bi +

∑
h:Ph≥Pi,h<>i

⌈
L
(s−1)
i
Th

⌉
Ch.

(2.7)

k =

⌈
Li
Ti

⌉
(2.8)

Once no task can preempt the last subjob, the finishing time of task i, instance k,

(fi,k) is given by

fi,k = si,k + qlasti . (2.9)

The response time of task i (Ri) is defined according to the following formula:

Ri = max
k∈[1,Ki]

{fi,k − (k − 1)Ti} (2.10)

and the task set is feasible if, for all tasks, the response time does not exceed its relative

deadline.

Ri ≤ Di for i = 1, ..., n (2.11)
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3. Runtime environment

The purpose of this chapter is to introduce the reader into all the relevant tools that were

used along this project. They can be listed as the Real-Time Operating System VxWorks,

the software Workbench and the hardware, namely the board running VxWorks.

3.1 The operating system: VxWorks

This section discusses the main characteristics of the operating system. In order to under-

stand all implementation steps described in chapter 4, this section also provides a summary

of some important possible task operations, covering those that are used in this work, too.

3.1.1 Overview and global features

Since this project focuses on the implementation of a complex (multitasking) real-time

system, it naturally makes use of a special kind of operating system, namely a real-time

operating system (RTOS). This type of operating systems allow processing input data

with low latency, without buffering delays, and measuring time intervals in a relatively

accurate manner.

VxWorks is a popular RTOS optimized for embedded systems. It was developed by

Wind River Systems, of Alameda, California, and had its first release in 1987.

Before version VxWorks 6.0, the kernel had only one memory space containing both

operating system and the user applications. This provided high performance and great

flexibility in applications’ development, but also great danger of causing interference be-

tween applications and kernel features. Since version VxWorks 6.0, the RTOS allows the

development of applications in user and kernel mode, without interference between both

spaces. Using the Wind River Workbench 3.3, a user mode application is created through

a Real-Time Process Project, while a kernel mode application is developed by means of

a Downloadable Kernel Module Project. In the case of the real-time processes, several

can be run concurrently. Applications in kernel mode do not assure protection against the

programmer’s mistakes, but offer a few advantages over user space applications, such as an

inferior overall size of the system (which does not contain the features that are provided

for processes), a faster execution, features that only the kernel can provide (watchdog

timers, interrupt service routines (ISR), etc.) and direct hardware access.
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3.1. The operating system: VxWorks

VxWorks’ kernel is configurable, meaning that it is possible to add or remove features.

Thereby the user may have his/her application run on a kernel that includes just the

required features, without wasting any resources on unneeded ones. It is also possible

to extend the OS by adding components and application modules to the kernel (file sys-

tems, networking protocols or device drivers). System call features may also be available

on process applications by adding an API to the interface. VxWorks provides POSIX

PSE52 support for user space applications. This can be achieved by configuring the kernel

properly. [WindRiver, 2012a]

3.1.2 Multitasking

A VxWorks task is the basic schedulable unit in the operating system and executes as a

process. Real-time applications may be composed of several independent and concurrent

tasks. Since VxWorks supports a multitasking environment, it is possible to develop and

run this kind of applications. Though it seems as the tasks are running in parallel, the

VxWorks scheduler, which is fully preemptive, is actually calling each task individually,

quickly switching from task to task. This means that, if a new task arrives whose priority

is higher than the executing task, the newly arrived task preempts the currently running

one, so that at each moment the executing task is always the one with the highest priority

among the ready tasks in the set.

Task states

There are five states that a task can be in. In the READY state a task is ready to

execute, i.e., if it is not already running, it is waiting for available CPU because a higher

priority task is executing. If we command the task to sleep for a certain interval of time,

it enters the DELAYED state, switching back to the READY state after that time

expires. If a task is blocked due to unavailability of a resource other than the CPU, it

is PENDED. This happens, for example, if the task tries to take a semaphore which

is already locked, or is expecting to receive a message from a message queue. Finally,

a task can be SUSPENDED simply because the user does not want it to execute for

an undetermined amount of time, for example, for debugging purposes. There is also a

STOP state that is only used for debugging or in case of error detection. A task can also

accumulate two or more states, for example, if it is PENDED waiting for a semaphore to

be unlocked and some other task SUSPENDS it. Figure 3.1 summarizes the main possible

task states.

Round-robin scheduling

Once a task is in the READY state, it is placed in a ready queue corresponding to its

priority. There is a ready queue for each priority level and, as long as there are tasks in a

queue, they all execute before any task in the lower priority queues.

In case there are several tasks of equal priority in a ready queue, the user has two

options on how they are scheduled: Either they wait for the running task to finish ex-

ecution, or they adopt a round-robin scheduling scheme, i.e., each task executes for
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3.1. The operating system: VxWorks

Figure 3.1: Possible VxWorks task states

an equal amount of time, specified by the user. Thereby a bigger fairness among equal

priority tasks is achieved. In order to activate the round robin scheduling, the function

kernelTimeSlice() is called, receiving the maximum number of clock ticks each task

shall execute during its turn. The round-robin scheduling may only be performed among

tasks of the same priority.

Task functions

This section provides a global knowledge about the existing functions that allow the user

to create, activate, delete, delay, change, and obtain information about tasks.

There are three ways to create a task:

• taskSpawn() creates and activates a task, i.e., it immediately enters the READY

state. This function allows specifying the task name, priority, options (private or

public task, floating point support, stack filling or not, stack protection against

underflow or overflow), stack size and up to ten arguments to be passed to the task.

• taskCreate() is very similar to taskSpawn(), except that the task is created in

the SUSPENDED state. It can become READY by calling taskActivate() or

taskResume().

• taskOpen() offers the most flexibility for task creation. In addition to all the

options provided by the other task creating functions, the user can chose whether

the task is created in the READY or SUSPENDED state, as well as many stack

details, for example, the start address of the execution stack.

All creating functions return the newly created task’s ID. Tasks may be created as

private or public. When working with real-time processes, if a task is private it is only
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visible in its own process, thus it may happen that different processes contain different

private tasks with the same name. A public task is visible in the whole system and, in

order to avoid misconceptions, its name shall be unique. Figure 3.2 shows an example of

task creation in VxWorks.

Figure 3.2: Example of task creation and activation

As for delaying a task, there are two possible ways to achieve it:

• taskDelay() receives the number of clock ticks the user wants the task to sleep. The

function sysClkRate() returns the number of clock ticks that occur in a second and

is useful if the user wants to specify the delay interval in seconds.

• nanosleep() has the same purpose as taskDelay(), except that, instead of receiving

the delay in clock ticks (an integer), operates with a structure, timespec, that is

formed by two integers: The number of seconds and the number of nanoseconds of

the delay.

The delaying process is explained in Figure 3.3.

Figure 3.3: Example of task delaying
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The calling of any of those functions momentarily removes the task from the ready

queue. Once the time is expired, the task is placed at the tail of the ready queue. Sup-

posing that there are other tasks of equal priority in the ready queue, if the user wants to

give the non-executing tasks an opportunity to execute, the current task can simply call

taskDelay(0), which will remove the task from the ready queue and immediately place it

at the tail of the same queue. The ready task which is now at the head of the queue will

execute. If there are no tasks of equal priority in the ready queue, the 0 ticks delayed task

resumes its execution immediately. The same cannot be done with nanosleep(), since this

function returns an error for a null argument.

Within this work is was experimentally observed that the use of taskDelay() is more

recommended than nanosleep(), since nanosleep() introduces an undesired extra delay.

Besides, taskDelay() is more in line with the speed capacity of the system clock, since it

operates directly with the number of clock ticks.

At the moment of creation, the priority of a task must be defined. However, it is

possible for any task to change it at any time.

• taskPriorityGet() allows finding out the current priority of a specified task.

• taskPrioritySet() receives a task ID and the priority to be assigned to that task.

Once the priority of a task is changed, the task is removed from its ready queue and

placed at the tail of the ready queue corresponding to the new priority, as shown in Figure

3.4. VxWorks has 256 levels of priority, being 0 the highest level and 255 the lowest. Thus,

when comparing priorities, by saying that priority A is superior to priority B, it is implied

that the value of A is inferior to the value of B.

Figure 3.4: Example of modifying the priority of a task

As to task deletion or invalidation, VxWorks offers a few functions:

• Once a task calls taskSafe(), it cannot be deleted by other tasks using taskDelete().

This protection may be cancelled by taskUnsafe().

• taskDelete() eliminates the specified task, except if it is protected against deletion

under the taskSafe() action.

• taskForceDelete() deletes the specified task, even if it protected against deletion.

• taskClose() closes a task by turning its ID invalid. It does not delete it.

• exit() deletes the calling task.
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• taskUnlink() removes the specified task from its namespace. Thus, it will no more

be recognized in searching operations.

• taskRestart() terminates and restarts a task, passing to it the same arguments as

when it was created.

VxWorks also offers a few functions whose purpose is to provide information about a

task:

• taskName() returns the name of the task with the specified ID, if that task resides

on the same real-time process as the calling task. taskNameGet() is similar, but

also works for tasks in other processes.

• taskInfoGet() fills up a structure with general information about the specified task,

such as the ID, the ID of its process, details on the exception and execution stacks,

entry point, arguments, options, priority, state, error status, etc. The returned infor-

mation is related to the instant when taskInfoGet() is called and may not maintain

its correctness by the time the user consults the structure.

• taskOptionsGet() provides the options chosen for a task.

• taskNameTold() does the contrary of taskNameGet(): It receives a name and

returns the ID of the task with that name. Notice that, if the task is private, its

name might not be unique.

As explained before, VxWorks is constantly rescheduling the task set, making sure

that the ready task with the highest priority is the one that takes the CPU. However, any

task may disable and reactivate the scheduler using the following routines:

• taskLock() disables task rescheduling, causing the calling task to execute without

being preempted.

• taskUnlock() shall be called in order to reactivate context switching, turning the

task vulnerable to preemptions again.

3.1.3 Timing

Timers and system clock

The system clock frequency determines the step of the delays, i.e., all delays must be

multiples of the inverse of the system clock frequency. In this project there are three

functions related to the system clock and time that may be used:

• sysClkRateGet() returns the current rate of the system clock.

• sysClkRateSet() allows changing the system clock rate to a value shorter or equal

than 8000Hz in the PowerQuicc II board or 100Hz using the VxWorks simulator

provided by Workbench 3.3.

• clock gettime() receives a CLOCK ID and a pointer to a variable where it saves

the current clock value. The time values are timespec structures, where the number

of seconds and nanoseconds are saved.
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POSIX timers

It is possible to configure VxWorks in order to profit from the POSIX timers provided by

the RTOS. The following list indicates some of the existing timer functions and their use.

• timer create() creates a timer based on a real-time clock and offers the option to

associate the time expiring to a signal event. It returns the ID of the created timer.

• timer cancel() cancels and timer delete() eliminates the specified timer.

• timer connect() associates a timer to a routine which is called every time the

specified timer expires. This routine receives as arguments the clock ID and an in-

teger, which can be whatever the programmer wants. Once the routine that calls

timer connect() ends, the timer is automatically deleted. Therefore, if the program-

mer wants the timer to work for an indefinitely long time, the calling routine usually

has an infinite idling loop at the end of the code, which prevents it from ending.

• timer settime() associates a pointer to a value of type struct itimerspec to a timer.

This structure, which must be defined before, is composed by an offset and a period.

Both parameters are structures with two integers, namely the number of seconds

and nanoseconds to wait. While the offset determines the time interval between the

calling of timer settime() and the first expiration, the period is the interval between

further consecutive time-outs.

• timer gettime() returns, for the specified timer, the remaining time until the next

expiration as well as the reload value.

• timer getoverrun() returns the number of expirations of the specified timer.

This section covers all the functions that are used in this project. However, VxWorks

offers a large variety of libraries that can be consulted in [WindRiver].

3.2 The software: Wind River Workbench 3.3 IDE

Along the whole project Wind River Workbench 3.3 IDE has been used to develop the

programs to run on the VxWorks target. This Eclipse based software is optimized to create

real-time and embedded applications. It can operate on Windows, Linux and Solaris and

allows the user to develop device software to run on VxWorks and Wind River Linux

systems. [WindRiver, 2013a]

3.2.1 Overview of basic features

This IDE allows easy creation of different types of projects, code analysis, controlling

several targets at the same time and contains a debugger that can be used on various pro-

cesses on one or more targets. Debugging features include breaking points, code stepping

and structure analysing.
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While developing applications it is possible to download the not fully built project into

the target, in order to test it bit by bit. Using the host shell, it is possible to invoke an

application or just a task.

Under the Help contents, Workbench also provides several manual and tutorial docu-

ments with general and feature-specific information.

By default, when the user launches Workbench, the appearing window is divided in

five inner windows: A larger central one, where the project code is developed, the outline

of the project, the project explorer (it exposes all projects in the workspace, indicating

whether they are closed or opened), a remote systems window and a set of consoles and

terminals for building and problem reporting. However, the user may choose various inner

windows with different purposes to be displayed in the window.

3.2.2 Projects types

In the Project Explorer it is possible to create structures of projects, i.e. projects within

projects, in case the user wants to define dependencies among them. There are four types

of projects: Linux-specific, VxWorks-specific, user-defined and native application projects.

While user-specific projects are totally defined by the user, i.e, the user is responsible for

the project organization, how the project is build, the makefile, and so on, the Linux,

VxWorks and native host projects are aimed to run on a Linux, VxWorks and the host’s

OS respectively. In this dissertation only VxWorks projects were used, and, although

there are seven types of VxWorks projects, only three of them were explored along this

work.

• VxWorks Image Project (VIP)

This type of project allows the user to create and build a kernel image to boot

the target with. Here the user may choose the features he/she wants the kernel

to support and add them to the image, remove unnecessary existing features and

change kernel parameters. It is possible to link various projects to the same image

project, so that all of them will run on VxWorks configured with that same image.

• Downloadable Kernel Module (DKM)

DKM projects allow the user to create an application that will run in kernel space.

The application where the studied technique is implemented was developed using a

DKM.

• Real-Time Process Project (RTP)

RTPs are used to create executables that will run outside the kernel space, i.e. in

user mode.

The other VxWorks project Types include VxWorks ROMFS File System Projects,

whose purpose is to serve as subprojects of other project types that require target-side file

system functionality. VxWorks Source Build Projects (VSB) offer the possibility to

rebuild VxWorks libraries so that they can support products included in the user’s plat-

form or exclude unnecessary components and thereby reduce the kernel image’s size. The
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user shall develop a VxWorks Boot Loader / BSP Project if he/she wants to create

or adapt a boot loader to be used to boot the kernel into the target. Finally there are Vx-

Works Shared Library Projects, which allow creating libraries that are dynamically

linked to RTPs during run-time.

Detailed explanations and tutorials can be found on [WindRiver, 2013a].

3.2.3 Tools

Wind River’s Workbench 3.3 offers many tools that are useful for code testing and analysis

of the results. VxSim and System Viewer are two tools that stood out along this project,

since they were strongly used.

VxSim

In case the user does not want to test his/her application code on the hardware target until

being sure that it works well, or in case a board running VxWorks is not available, the

user may perform his/her experiments using the VxWorks Simulator (VxSim) provided

by Workbench. This tool consists in a simulated hardware target embedded in the IDE,

which runs on the host. This means that the user can test his/her applications in a

VxWorks environment, but in his host OS, i.e. without needing the external VxWorks

target. Even in distributed applications, using several VxSim sessions, it is possible to set

up a simulated network between them or between a VxSim session and the host.

The VxWorks simulator may not support all the features or present such a high perfor-

mance as an actual hardware target (for example, the system clock frequency’s maximum

value is much smaller than for the hardware target PowerQuicc II, used along this project).

However, VxSim offers a satisfying set of VxWorks standard features and is as capable as

a hardware target to interact with external applications. In order to configure a simulated

VxWorks kernel, a VxWorks Image Project shall be created and modified according to the

application’s requirements, just the same way as if it was for the actual VxWorks kernel.

In [WindRiver, 2013b] details about VxSim’s features and limitations, as well as tutorials

for several basic and more specific actions, can be consulted.

System Viewer

When developing embedded systems it is important to be sure that all application tasks are

running as expected, verifying, for example, if no deadlock or any other type of unexpected

blocking is occurring. This tool provided by Workbench offers the user the possibility to

visualize what tasks are causing what events and when.

When establishing a connection (it can be any type of connection, like, for example,

a VxSim or a hardware target connection), it is possible to launch an associated System

Viewer session. When the user runs an application on the target (simulated or not),

he/she can command System Viewer to start registering the events happening on the

target. The tool logs the events that occur during the execution of the application with the

corresponding timestamps, performing tasks, details about the event and total duration of

the operation. The user can stop the registering anytime until the storing buffer reaches its

19



3.3. The hardware: PowerQuicc II board

limit. Afterwards a window with a timeline indicating the event density appears, as well

as a table containing, for the selected time interval, all timestamped events that occurred

during that interval. If the user only wants to see the events related to a particular set of

tasks, he/she may filter the table by selecting those tasks.

An event is any action performed by a task or an ISR that may change the state of a

real-time system. Examples of events are listed below:

• Task spawns, deletions and other types of state altering, such as priority changing

• Interrupts and exceptions

• System calls

• Signal operations

• Locking and unlocking of semaphores

• Watchdog and non-watchdog timer activity, such as expirations

• Sending and receiving of message queues

• I/O and networking activity

• Memory allocation and freeing

System Viewer allows to choose between three event logging levels, each of them corre-

sponding to a different depth of detailing. The deeper the logging level, the more intrusive

this feature is. The Context Switch level, as the name suggests, registers task context

changes, as well as task priority changing actions. The Task State Transition level

logs all state changing events (mainly the actions listed above). Finally the Additional

Instrumentation level is the most intrusive level and is configurable, allowing logging

OS-specific event types.

The user may also choose different types of uploading and the size of the storing buffer.

System Viewer is a useful tool for detecting possible CPU issues and problems related

to task concurrency, measuring an application’s performance (it has a time resolution of

tens of nanoseconds) and many other useful affairs the user might be interested in. In this

project System Viewer is used to track the application tasks, whose response time shall

be measured. [WindRiver, 2012b]

3.3 The hardware: PowerQuicc II board

The PowerQuicc II board is the hardware target where the project’s applications are set

to run. It contains an MPC8260 communications processor, which integrates a RISC mi-

croprocessor, a system integration unit and several communications peripheral controllers.

Those allow developing several applications that involve communication and networking.

Its communications processor module support a variety of protocols, including Fast Eth-

ernet and 155-Mbps ATM. The microprocessor supports frequencies between 100 and

200MHz.
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The resolution of the waiting intervals is as high as the maximum rate of the system

clock permits. In the case of the PowerQuicc II board, the rate can take any value until

8000Hz, allowing a minimum time step of 125 microseconds.

For more details about the characteristics of board, as well as its features, [Motorola,

1999] can be consulted.
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4. Implementations

In order to implement the Fixed Preemption Points algorithm in an application, a few

functions were developed. Some of them are not related to the algorithm, but are required

to satisfy the project’s goals. This chapter describes everything that was implemented on

top of the existing features provided by VxWorks.

Note: The code presented in this section is merely illustrative. The exposed functions

are simplified to their main functionality, ignoring a few necessary details. The purpose

is to facilitate their understanding, as well as to maintain the code reading as intuitive,

light and simple as possible.

4.1 Functions that spawn tasks periodically and sporadi-

cally

The application consists mainly of periodic tasks. This section describes the existing

VxWorks functions that call routines periodically and explains how they are adapted in

order to develop a more suitable function for the purpose.

4.1.1 Primitives to set up periodic activities in VxWorks

VxWorks offers a function period() that calls a routine periodically, which can be used

to create a periodic task. It receives a pointer to the function to be called, the duration

of the period in seconds and eight arguments to be passed to the periodic routine. This

function spawns another function, periodRun(), which contains an infinite loop where

the periodic routine is called, followed by a delay function that waits the specified number

of seconds. The user cannot specify the priority, options or stack size of the routine to be

called periodically. Instead those parameters are assigned with default values.

TASK_ID period (int period_s, FUNCPTR func, int arg1, ..., arg8)

{

TASK_ID tid;

tid = taskSpawn((char *)NULL, default_priority, default_options,

default_stack_size, periodRun, period_s, (FINCPTR *)func, arg1, ...,

arg8);
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return tid;

}

void periodRun(FUNCPTR func, int period_s, int arg1, ..., arg8)

{

while(1)

{

(* func)(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);

taskDelay(period_s * sysClkRateGet());

}

}

4.1.2 Spawning tasks periodically and with an initial offset

It would be, though, desirable for this project to be able to count on a more flexible

function to spawn our tasks, so this routine suffered a few adaptations. In addition to

the period, one can also define an initial offset (an interval before the calling of the first

instance of the task), both characterised in microseconds. Since the taskDelay() function

receives the number of clock ticks it is supposed to wait, a function that provides the

number of clock ticks corresponding to a given number of microseconds, usec2ticks(),

was created.

unsigned int usec2ticks(unsigned int time){

unsigned int aux = time, mult, ticks, rate, i=0;

rate = sysClkRateGet(); // current frequency of the system clock

while(1){

if(aux%10 != 0){ // discard least significant zeros

break; // to avoid big numbers

}

aux = aux / 10;

i++; // ... but keep count of them!

}

mult = 1000000 / power(10, i);

ticks = rate * aux / mult; // (mult * aux) shall be a value in seconds

return ticks;

}

Note that the system clock rate must be defined according to the desired time step for

the application:

TimeStep =
1

SystemClockRate
(4.1)

Waiting times, such as offsets and periods, are restricted to be integer multiples of the

time step. The main advantage of reducing the time units is that it allows the function to

be used for a vast range of application rates, from slower to faster ones.
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The reason for this choice is that the periods of the tasks featured in the autonomous

vehicle are foreseen to lay in the range between 100 microseconds and tens of milliseconds.

According to the adopted strategy to spawn routines periodically, all periodic tasks

have a common structure. After declaring the required variables, they contain an infi-

nite loop where, after executing its operations, the task suspends itself. Our spawning

function, offsetPeriodSpawn(), creates the periodic task without activating it, using

taskCreate(). Here the user may define its priority, task options, stack size and until ten

arguments. Afterwards it calls offsetPeriodRun(), passing as arguments the defined

offset, period and ID of the task, obtained through taskCreate(). In turn, offsetPerio-

dRun() waits the specified offset using taskDelay() before entering an infinite loop. In

every iteration of the loop the periodic task is resumed and taskDelay() is called, letting

offsetPeriodRun() sleep for an amount of time equivalent to the specified period. This way

the periodic task, which suspends itself at the end of execution, is resumed periodically,

returning to the beginning of the next iteration of its loop, and starting a new instance. If

offset us is zero, the task is requested straight away and, if period us is zero, it only runs

once. Figure 4.1 illustrates the operation of this process.

void periodic_task(void)

{

// declare variables and initialization code

while(1)

{

// execute task operations

taskSuspend(0);

}

}

int offsetPeriodSpawn(char *name, int offset_us, int period_us, int priority,

int options, int stack_size, FUNCPTR func, int arg1, ..., int arg10)

{

TASK_ID tid;

tid = taskCreate(name, priority, options, stack_size, func, arg1, ..., arg10);

taskSpawn((char *)NULL, default_priority, default_options,

default_stack_size, offsetPeriodRun, tid, offset_us, period_us, 0, 0, 0,

0, 0, 0, 0);

return tid;

}

void offsetPeriodRun(TASK_ID tid, int offset_us, int period_us)

{

taskDelay(usec2ticks(offset_us));

while(1)

{

taskResume(tid);
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taskDelay(usec2ticks(period_us));

}

}

int main(void)

{

TASK_ID id;

int offset = 1000000, period = 3000000;

id = offsetPeriodSpawn("periodicTask", offset, period, 104, 0x100, 2000,

periodic_task, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);

return OK;

}

Figure 4.1: State diagram of periodic task τ

4.1.3 Spawning tasks periodically to run for a limited number of times

In our application task set there are cases where a task needs to run periodically for a

limited number of times and then suspend for a longer period. That number is unknown a

priori and only defined by a sporadic task, from time to time. In order to implement that,

the function in question, whose structure is identical to the regular periodic task struc-

ture, is created (but not activated) in main(). Another task, which is called sporadically,

determines how many times the function is to execute and calls runNTimes(), which in

turn, after a given offset, resumes the function periodically (with a given period) and for

the specified number of times.

void sporadicTask(void)

{

// define n_times

runNTimes(offset_periodicNTimes, period_periodicNTimes, idPeriodNTimes,

n_times);

}
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void runNTimes(int offset_us, int period_us, TASK_ID tid, int n_times)

{

int i;

taskDelay(usec2ticks(offset_us));

for(i=0; i<n_times; i++)

{

taskResume(tid);

taskDelay(usec2ticks(period_us));

}

}

int main(void)

{

TASK_ID idPeriodicNTimes = taskCreate("periodicNTimesTask", priority, 0x100,

2000, periodic_n_times_task, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);

return OK;

}

4.1.4 Spawning tasks at random instants

In hard real-time systems the calling of aperiodic or sporadic tasks are consequences of

events whose occurring time is unpredictable - for example, the activation of an alarm.

The aperiodic task spawning function has only simulation purposes: The idea is to simu-

late unpredictable events that could happen in the real-life operation of the application,

allowing to test the implemented strategies in more realistic (non-deterministic) situations,

without actually having them operate in real-life.

Remembering the difference between the concepts of aperiodic and sporadic, ape-

riodic tasks can happen at any time, while in the case of sporadic tasks there must be a

minimum amount of time between two consecutive requests (MIT: minimum interar-

rival time).

As for the task structure, an aperiodic or sporadic task is framed as a periodic one: In

order to allow being called several times, the task consists of an infinite loop that suspends

itself at the end and, as for periodic tasks, the reactivation of the task is achieved by

resuming it. The difference now consists in determining the waiting interval until the

next task request, which for offsetPeriodSpawn() is constant (the specified period), but

for offsetSporadicSpawn() follows a different logic.

In order to provide as much freedom as possible to the user when he/she creates his/her

aperiodic or sporadic tasks, the new function offsetSporadicSpawn() accepts, in addition

to all arguments to be sent to taskCreate(), an offset, a lower limit, an upper limit

and a step, all quantities in microseconds. The offset is the initial interval when no

aperiodic/sporadic requests may happen. If it is desired that those requests may happen

since the beginning of the execution, its value shall be zero. The lower and upper limits

are the minimum and maximum amount of time, respectively, that can pass between two

consecutive requests (minimum and maximum interarrival times). In order to implement

an aperiodic task, the lower limit shall be a very small number (but not zero). As for the
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sporadic task, the lower limit corresponds to the MIT.

The function offsetSporadicSpawn() does the same as offsetPeriodSpawn(), with the

slight difference that it calls offsetSporadicRun() instead of offsetPeriodRun(), and here

is where the main differences reside. First, the function waits offset microseconds to guar-

antee that there are no requests before that time. Afterwards it enters an infinite loop

that waits a certain amount of time and resumes the aperiodic task. That amount of time

is a random value between the upper and lower interval bounds. The role of the step

parameter is to discretize the resulting waiting interval. As an example, being the lower

and upper limits 2 and 15 seconds respectively, and the step 0.1 seconds, the resulting

waiting interval can be 2, 2.1, 2.2, ..., 14.8, 14.9 or 15 seconds. If the step is 0.5 seconds,

the result can take values of the set 2, 2.5, 3, 3.5, ..., 14, 14.5 and 15 seconds. If complete

non-determinism is desired, the step shall be as small as possible, namely the inverse of

the system clock frequency. Since stdlib.h’s rand() function is being used, the use of off-

setSporadicSpawn() requires a time seed to be planted in the main() function, in order to

obtain pseudo-random values.

int offsetSporadicSpawn(char *name, int offset_us, int low_lim_us, int

upp_lim_us, int step_us, int priority, int options, FUNCPTR func, int

stack_size, int arg1, ..., int arg10)

{

TASK_ID tid;

tid = taskCreate(name, priority, options, stack_size, func, arg1, ..., arg10);

taskSpawn((char *)NULL, default_priority, default_options,

default_stack_size, offsetSporadicRun, tid, offset_us, low_lim_us,

upp_lim_us, step_us, 0, 0, 0, 0, 0);

return tid;

}

void offsetSporadicRun(TASK_ID tid, int offset_us, int low_lim_us, int

upp_lim_us, int step_us)

{

int n_levels, next_interval_us;

taskDelay(usec2ticks(offset_us));

n_levels = 1 + ((upp_lim_us - low_lim_us) / step_us); // # of possible results

while(1)

{

next_interval_us = rand() % n_levels; // random result

next_interval_us *= step_us; // convert it to microseconds

next_interval_us += low_lim_us; // shall be >= to the lower limit

taskDelay(usec2ticks(next_interval_us));

taskResume(tid);

}

}

int main(void)
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{

TASK_ID tid;

int offset = 3000000, low_lim_us = 1000000, upp_lim_us = 9000000, step_us =

2000000;

srand(time(NULL));

tid = offsetSporadicSpawn("aperiodicTask", offset, low_lim_us, upp_lim_us,

step_us, 104, 0x100, 2000, aperiodic_task, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);

return OK;

}

In this example, and remembering that all quantities are represented in microseconds,

an aperiodic task is created with an offset of 3 seconds. The interval between two consecu-

tive requests lies between 1 and 9 seconds and may take values of 1, 3, 5, 7 and 9 seconds.

Figure 5.3 illustrates the possible instants where the request may occur.

Figure 4.2: Request generation for aperiodic or sporadic tasks

Note 1: We have seen that the periodic task calling consists in periodically resuming a

task that repeatedly suspends itself. However, the taskResume() command only actuates

if the specified task is in SUSPENDED state. Due to task concurrency, it may happen

that the task finds itself in the READY state by the time it is resumed – because it is still

running or is waiting to run since the previous taskResume(). Either way this means that

the task has missed its deadline, since the latter is smaller or equal to the period. In these

cases taskResume() will have no effect and there will be no new request. This situation

corresponds to skipping one or more activations. A possible example of such a situation

in shown in Figure 4.3.

Figure 4.3: At instant 10 there is no new request since the task is not in suspended state
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Note 2: It shall be kept in mind that the periodic task spawning routine does not assure

interarrival times between consecutive task requests rigorously equal to the task’s period.

In fact it waits a minimum interarrival time equal to the desired period, and, afterwards,

requests the task as soon as it can execute. Thus, the interval between two consecutive

task requests may be slightly longer than the desired period. Despite this uncertainty, the

concerned application tasks are considered periodic along this document.

4.2 Fully-preemptive, limited-preemptive and non-preemptive

tasks implementation

The goal of this project is to compare fully-preemptive, non-preemptive and limited pre-

emptive systems for a given set of tasks. In order to force the respective expected be-

haviours, the tasks are structured differently for each type of scheduling.

4.2.1 Fully-preemptive tasks

Since the traditional VxWorks scheduler is fully preemptive itself, the task structure does

not require any modifications:

void periodic_task(void)

{

// declare variables and initialization code

while(1)

{

// execute task operations

taskSuspend(0);

}

}

4.2.2 The Fixed Preemption Point (FPP) algorithm implementation

The FPP algorithm, as explained before, consists in having the tasks to run non-preemptively,

except for some points of the code, the so called preemption points.

Two implementations are explored in this work, namely one based in controlling

priorities of the application tasks and another one based on disabling and reactivating

the scheduler.

Changing priorities

Since VxWorks supports a fully-preemptive scheduling and offers the possibility of chang-

ing any task’s priority at any time, both non-preemption and preemption points can be

implemented by increasing and decreasing the task’s priority respectively, using taskPri-

oritySet().
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In order to turn a task non-preemptable, its priority is increased to a value which is

higher than the highest priority among the task set. This value is globally known in the

system and shall be referred to as PRIOR NOPREEMP in this document. In order to

implement a preemption point, the original priority PRIOR ORIG shall be momentarily

assigned to the task. Just before the task ends, or at least before the remaining tasks have

the opportunity to start, the task’s priority must return to its original value.

Here is the structure of a periodic task with preemption points:

void periodic_task(void){

// declare variables and initialization code

while(1){

taskPrioritySet(my_tid, PRIOR_NOPREEMP); // 1st subjob

// execute 1st subjob’s operations

taskPrioritySet(my_tid, PRIOR_ORIG); // 1st preemption point

taskPrioritySet(my_tid, PRIOR_NOPREEMP); // 2nd subjob

// execute 2nd subjob’s operations

taskPrioritySet(my_tid, PRIOR_ORIG); // 2nd preemption point

...

taskPrioritySet(my_tid, PRIOR_NOPREEMP); // nth subjob

// execute nth subjob’s operations

taskPrioritySet(my_tid, PRIOR_ORIG); // return to original priority value

taskSuspend(0); // end of task instance

}

}

Disabling the scheduler

It is also possible to disable the scheduler in order to start a non-preemptive section. This

way, even if there are other ready tasks, and regardless of their priorities, they will not be

called and set to run. When the non-preemptive section ends, the scheduler is reactivated,

and gives the CPU to the ready task with the highest priority.

void periodic_task(void){

// declare variables and initialization code

while(1){

taskLock(); // 1st subjob

// execute 1st subjob’s operations

taskUnlock(); // 1st preemption point

taskLock(); // 2nd subjob

// execute 2nd subjob’s operations

taskUnlock(); // 2nd preemption point
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...

taskLock(); // nth subjob

// execute nth subjob’s operations

taskUnlock(); // reactivate the scheduler

taskSuspend(0); // end of task instance

}

}

Ending the task

Although both ideas are simple, they do not work for a particular situation: Consider that

task A is executing and, during A’s last subjob, task B (with higher priority than A) is

requested. As soon as A’s last taskPrioritySet() or taskUnlock() command finishes, task

B starts executing, not giving task A the chance to perform its own suspension. Since a

task can only be resumed if it is in SUSPENDED state, it might happen that, although

task A finished all its operations, it will not be resumed again and considered to have

missed its deadline. This happens if, by the time a new request of A occurs, task A has

not retaken execution to suspend itself yet, as exemplified in Figure 4.4.

Figure 4.4: Possible situation where taskSuspend() is not performed immediately after the

priority lowering

To avoid such situations, the priority lowering / scheduler re-enabling and the task

suspension must be performed atomically, i.e., without letting any application task run in

between. The idea of locking a semaphore before and releasing it after those operations

quickly comes to mind. However, since the last operation happens to be a self-suspension,

the task would not be able to unlock the semaphore. A possible solution is to call upon a

higher priority task for the purpose. Thus, a special task was implemented, taskEnd(),
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whose only intention is to end application tasks properly.

Depending on whether we are using priority manipulation or scheduler disabling, task-

End() has a different operating principle.

If using priority manipulation, every application task, upon starting a non-preemptive

section, must store its ID and original priority in global variables (global id and global prior).

At the end of the execution, instead of suspending itself, it resumes taskEnd(), whose pri-

ority is higher than PRIOR NOPREEMP. The ending routine consists of an infinite loop

where it lowers the priority of the task, suspends it and finally suspends itself. In order to

change the priority of the right task and suspend it, it uses the values stored in global id

and global prior. Since taskEnd()’s priority is higher than the priority of any task in the

set, no ready task can preempt it, and it executes immediately after it is resumed.

TASK_ID global_id;

int global_prior;

void periodic_task(void)

{

// ...

while(1){

taskPrioritySet(my_id, PRIOR_NOPREEMP); // start non-preemptive subjob

global_id = my_id; //

global_prior = PRIOR_ORIG; //

// ...

taskResume(id_end); // finish task instance

}

}

void task_end(void){

while(1){

taskPrioritySet(global_id, global_pr);

taskSuspend(global_id);

taskSuspend(0);

}

}

As for the case where the scheduler is turned off and on, taskEnd() must be modified

since we cannot simply replace the taskPrioritySet() for a taskUnlock() command. Once

a task disables the scheduler using taskLock() it must be the same task that unlocks it, or

the system will block. The adopted solution consists of having the periodic task to resume

taskEnd() and than unlocking the scheduler. Once the scheduler is activated, taskEnd()

executes and suspends the periodic task, before suspending itself. In this case, since we

are not dealing with priorities, it is only necessary to store the task’s ID in global id.

TASK_ID global_id;
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void periodic_task(void)

{

// ...

while(1){

taskLock(); // start non-preemptive subjob

global_id = my_id; //

// ...

taskResume(id_end); // finish task instance

taskUnlock(); //

}

}

void task_end(void){

while(1){

taskSuspend(global_id);

taskSuspend(0);

}

}

Simplifying the code

In order to keep the code as intuitive as possible, all sequence of operations that are per-

formed at the beginning of a subjob, at the end of the task instance and in a preemption

point are encapsulated in functions.

Implementation by manipulating priorities:

TASK_ID id_end;

// Start non-preemptive subjob

void startSubjob(TASK_ID tid, int prTask){

taskPrioritySet(tid, PRIOR_NOPREEMP);

global_id = tid;

global_pr = prTask;

}

// Preemption point

void preempPoint(TASK_ID tid, int prTask){

taskPrioritySet(tid, prTask);

}

// End instance

void endJob(){

taskResume(id_end);

}

// Basic structure of a periodic/aperiodic task using those functions
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void periodic_task(void){

// declare variables and initialization code

while(1){

startSubjob(my_id, PRIOR_ORIG, PRIOR_NOPREEMP);

// execute 1st subjob’s operations

preemptionPoint(my_id, PRIOR_ORIG);

startSubjob(my_id, PRIOR_ORIG, PRIOR_NOPREEMP);

// execute 2nd subjob’s operations

preemptionPoint(my_id, PRIOR_ORIG);

...

startSubjob(my_id, PRIOR_ORIG, PRIOR_NOPREEMP);

// execute nth subjob’s operations

endJob();

}

}

Implementation by disabling the scheduler:

TASK_ID id_end;

// Start non-preemptive subjob

void startSubjob(TASK_ID tid){

taskLock();

idGlobal = tid;

}

// Preemption point

void preempPoint(void){

taskUnlock();

}

// End instance

void endJob(void){

taskResume(idEnd);

taskUnlock();

}

// Basic structure of a periodic/aperiodic task using those functions

void periodic_task(void){

// declare variables and initialization code

while(1){

startSubjob(my_id);

// execute 1st subjob’s operations

preemptionPoint();
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startSubjob(my_id);

// execute 2nd subjob’s operations

preemptionPoint();

...

startSubjob(my_id);

// execute nth subjob’s operations

endJob();

}

}

Finally, in order to simplify the main() function, all operations that are required at

the beginning of the execution are also encapsulated in an init() function. This function

is the same for both FPP implementations. It receives the desired system clock rate and

does the following:

• Changing the main() function’s priority to the maximum possible value (0 in Vx-

Works), so that the application tasks may have very high priorities without ever

exceeding main()’s.

• Defining the seed to be used in the rand() function.

• Changing the system clock rate to the specified rate.

• Creating the function taskEnd() using taskCreate(), i.e., without activating it, and

storing its ID in the global variable id end.

4.2.3 Non-preemptive tasks

Non-preemptive tasks have an identical structure as limited-preemptive tasks, except that

they contain no preemption points.

void periodic_task(void){

// declare variables and initialization code

while(1){

startSubjob(...);

// execute task’s operations

endJob();

}

}

Note: Although it is intended to avoid preemption during the whole execution of the

tasks, this is not possible when applying any of the presented methods. Figure 4.5 explains

an undesirable, but possible situation that may happen.

The phases of the execution (A, B, C and D) are represented in the graphic. Once

preemption is forbidden by increasing the priority or disabling the scheduler (A) until
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Figure 4.5: Undesired preemptions in non- or limited-preemptive tasks

this action is cancelled and the task is suspended (C) there is no risk of preemption by

any other application task. But, just after the task is resumed to its next instance until

the startSubjob() in the next iteration, there are a few moments where the task can be

preempted (D). If a higher priority routine is requested during that time, it will preempt

the task, even if its instance has already started.

4.2.4 Drawbacks when disabling the scheduler

When creating a set of periodic or sporadic tasks it is implied that, for each application

task, another task, which is responsible for waking up the application task at the right

moment, is also created. If the task is periodic, the wake-up task is offsetPeriodRun()

and, if sporadic, it is awaken by offsetSporadicRun(). As shown in the respective sections,

those tasks are basically composed by an infinite loop that resumes the periodic / sporadic

task and sleeps for the proper amount of time. If the programmer disables the scheduler

in order to avoid preemption, the wake-up tasks will be unable to execute, since they are

regular tasks. This behaviour is not desired, since it causes the application tasks to miss

activations. Figure 4.6 illustrates a possible example. Suppose that all tasks 1, 2 and

3 are requested at instant 0. Task 1 and Task 2 have periods of 3 and 5 units of time

respectively. Each wake-up routine, whose priority is higher than all application tasks, are

marked with a lighter tone of the colour of the corresponding application task.

Figure 4.6: Desynchronization of tasks due to scheduler disabling

When Task 3 executes, it disables the scheduler, preventing any task to run. At

moments 3 and 5 respectively, the wake-up routines of Task 1 and 2 become ready, but
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they only execute after Task 3 finishes, reactivating the scheduler, at moment 7.5. They

resume Tasks 1 and 2 and delay themselves for the tasks’ periods. This way, Task 1 will be

resumed at 7.5 + 3 = 10.5 and Task 2 at 7.5 + 5 = 12.5. Ideally, the activation instants of

Task 1 would be 0, 3, 6, 9, 12, etc. and of Task 2 would be 0, 5, 10, 15, etc. This does not

happen as, every time another task activates the scheduler, all blocked wake-up routines

run immediately afterwards and reset the phases of the application tasks.

One possible solution is the use of interrupts, since the operations taskLock() and

taskUnlock() only affect tasks and not ISRs. However, it is not recommended to use ISRs

that may cause blocking to the system, such as occupying semaphores. In our case the

ISRs would resume tasks that lock the scheduler, which is considered a blocking operation.

Another possible solution is the use of regular tasks, but, instead of having a wake-

up task that delays itself, POSIX timers take care of the delays. Timer expiration and

reloading are performed independently of whether the scheduler is on or off, so they prevent

the application tasks from desynchronizing. Thus, different versions of the periodic and

sporadic task spawning routines were made and are detailed in the following sections.

Spawning tasks periodically with an initial offset using a POSIX timer

As explained in chapter 3, VxWorks provides POSIX timers, which allow the programmer

to define an initial offset until the first time-out, and a period, which is the waiting time

between consecutive time-outs afterwards. This feature is appropriate for the periodic

task spawning function, since there are similarities between the operation of the timer and

the desired behaviour of the routine.

There are three auxiliary routines to implement the operation. First, timerOffset-

PeriodSpawn() creates the periodic task and spawns timerOffsetPeriodRun(). In

turn, the latter creates the timer, associates it with with the routine wakeUpPeriodic(),

assigns the specified offset and period to a value of type struct itimerspec and starts the

timer, using the created composed variable. The infinite cycle at the end of timerOffset-

PeriodRun() only idles the CPU to other ready tasks and keeps the routine permanently

running; otherwise the timer would automatically be deleted as the routine ended. Finally

wakeUpPeriodic(), which is the timer handler associated to it by means of timer connect(),

resumes the periodic task. It takes as arguments the timer ID and the ID of the periodic

task to be resumed.

void timerOffsetPeriodSpawn(TASK_ID *tid, char *name, int offset_us, int

period_us, int priority, int options, int stackSize, FUNCPTR entryPt, int

arg1, ..., int arg10){

*tid = taskCreate(name, priority, options, stackSize, entryPt, arg1, ...,

arg10);

taskSpawn((char *)NULL, 0, 0x100, 2000, timerOffsetPeriodRun, *tid,

offset_us, period_us, 0, ..., 0);

}

void timerOffsetPeriodRun(TASK_ID tid, int offset_us, int period_us){
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timer_t timerid;

struct itimerspec value;

// set value to have the specified offset and period

timer_create(CLOCK_REALTIME, &timerid);

timer_connect(timerid, (VOIDFUNCPTR)wakeUpPeriodic, tid);

timer_settime(timerid, &value);

while(1){

taskDelay(1); // the routine that creates the timer

} // cannot end, else the timer is canceled

}

void wakeUpPeriodic(timer_t timerid, TASK_ID tid){

taskResume(tid);

}

Spawning tasks at random instants using a POSIX timer

Once again, we use three auxiliary functions. timerOffsetSporadicSpawn() has the

same purpose as timerOffsetPeriodSpawn(), with the difference in the arguments it re-

ceives. timerOffsetSporadicRun() has a similar operation as timerOffsetPeriodRun(),

but it also stores the data needed for determining a random period (lower and upper limits

and step) in global variables. At the beginning of the application execution, it is desired

that no requests happen before the specified offset. Thus, at assigning the itimerspec

variable, the offset component is defined according to the desired offset. Since it is not

intended that the sporadic task runs periodically, zero is assigned to the period compo-

nent. After the offset has passed, it is not intended that the first instance of the sporadic

task runs straight away, since this way the moment of the first instance would not be un-

certain. In order to distinguish the first instance of the sporadic task from the remaining

the global flag flg firstSporadic is used. The routine creates the timer, connects it to

wakeUpSporadic() and starts it. Finally, wakeUpSporadic() resumes the sporadic task

in case it is not the first time it is being called. Afterwards, and independently of the case,

it calculates a random interarrival time with the saved global data and assigns it to the

offset component of a new itimerspec variable, while the period component remains zero.

It starts the timer with that new time value. Notice that every time wakeUpSporadic() is

called, a new random interarrival time is calculated, leading to non-deterministic request

moments of the sporadic task, as intended.

The use of global variables implies that this function is restricted to the existence of

only one sporadic task in the application. A possible solution to this problem would be

the use of global vectors with user-defined dimensions (the vectors would have to allocate

a number of values equivalent to the desired number of sporadic tasks), instead of single

global variables.
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int lowLim, uppLim, step, flg_firstSporadic;

void timerOffsetSporadicSpawn(TASK_ID *tid, char *name, int offset_us, int

low_lim_us, int upp_lim_us, int step_us, int priority, int options, int

stackSize, FUNCPTR entryPt, int arg1, ..., int arg10){

*tid = taskCreate(name, priority, options, stackSize, entryPt, arg1, ...,

arg10);

taskSpawn((char *)NULL, 0, 0x100, 2000, timerOffsetSporadicRun, *tid,

offset_us, low_lim_us, upp_lim_us, step_us, 0, ..., 0);

}

void timerOffsetSporadicRun(TASK_ID tid, int offset_us, int low_lim_us, int

upp_lim_us, int step_us){

timer_t timerid;

struct itimerspec value;

lowLim = low_lim_us;

uppLim = upp_lim_us;

step = step_us;

// Set value to have the specified offset.

// The period is zero, since a periodic time-out is not intended.

flg_firstSporadic = 1;

timer_create(CLOCK_REALTIME, &timerid);

timer_connect(timerid, (VOIDFUNCPTR)wakeUpSporadic, tid);

timer_settime(timerid, &value);

while(1){

taskDelay(1);

}

}

void wakeUpSporadic(timer_t timerid, TASK_ID tid){

int next_rqst;

struct itimerspec value;

if(flg_firstSporadic == 0){

taskResume(tid);

}

if(flg_firstSporadic == 1){

flg_firstSporadic = 0;

}

n_levels = 1 + ((uppLim - lowLim) / step);

next_rqst = (rand() % n_levels) * step;
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next_rqst += lowLim;

// Set value with the new offset.

// The period remains zero, since, once a value is

// assigned to it, it remains constant.

timer_settime(timerid, &value);

}

Note 1: When using POSIX timers, if a task is executing and is requested in the

meanwhile, the situation described in the note at the end of section 4.1 does not hap-

pen anymore, since no taskResume() is performed during an application task’s execution.

Instead, the waking task runs as soon as an opportunity arises, namely right after the

blocking application task has been suspended and reactivated the scheduler.

Note 2: The solution of constantly yielding the CPU at the end of timerOffsetPe-

riodRun() and timerOffsetSporadicRun() using the command taskDelay(0) was used in

order to avoid that the wake-up task ends, cancelling the timer. This implies a constant

processing effort and introduces a significant overhead in the system. Since the wake-up

tasks have a higher priority than the application routines, they will interrupt them, if the

scheduler is enabled, namely in the fully-preemptive case.

4.3 Analysis program

As mentioned in chapter 3, System Viewer is a tool provided by Wind River Workbench

and has been strongly used along this project, programmed in a mode that allows to detect

and register task state changes. However, many events that are not directly related to the

application are registered and, although they may help to find out the cause for eventual

unexpected delays, it is intended to analyse solely the application task set in this project.

An analysis program was developed aiming to read a System Viewer log file, simplify

it to show only the events related to the task set in a lighter arrangement and extract a

time analysis of the global system, as well as an individual analysis of the execution times

of each application task.

4.3.1 Simplifying the System Viewer log file

The System Viewer log file is organized in columns. The first column shows the times-

tamp, the second one the task that causes the event, the third one the operation, the

following four columns show a few details about the event and the last column presents

the parameters of the operation. The simplifying function reads that log and extracts, in

another log file, the following events:

• the moment an application task is requested

• the moment an application task starts its nth non-preemptive subjob

• the moment an application task has its nth preemption point
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• the moment an application task finishes an instance

• the moment of an application task’s deadline

The user must provide the tasks’ names, relative deadlines and number of preemption

points to the analysis program. In the case of fully-preemptive systems the latter piece of

information does not make sense, since the number of preemptions that a task may suffer

is not known a priori. The deadline of a task is not definable in VxWorks, so it is the

function’s job to calculate the moment of the next deadline by adding the relative deadline

to the moment of the task request.

The timestamps in the log file are relative to the moment when the registering starts.

However, in order to examine the instants of the events in an easy manner, it is intended

that the instant zero is the moment when main() suspends itself, allowing the application

tasks to start. The interval from the beginning of the registering until the suspension of

main() is referred here as offset and all timestamps in the output file are relative to the

moment main() suspends.

In order to keep the output file as light as possible, the following symbolism was

adopted:

Task request ->

Task finishes -

Task deadline <-

Task starts subjob [number of subjob]

Preemption point *[number of preemption point]

Table 4.1: Meaning of the symbolism used in the simplified log file

As an example, suppose that three tasks run concurrently: task 1 is the highest prior-

ity task, followed by task 2 and lastly task 3. All tasks are equal in the sense that their

worst case execution time is approximately 6 seconds and they contain only one preemp-

tion point in the middle of the execution (Each subjob takes approximately 3 seconds.).

The task characteristics are displayed in the following table:

The resulting output file is shown in Figure 4.7.

Figure 4.8 is an illustrated interpretation of the output file:

Notice that, around the 41st second, task 3 has not finished executing, since at that

point only the first subjob is finished. There is a task request, but, since task 3 is not

in the SUSPENDED state, it has no effect and is ignored. In fact, the execution that

occurs at the 54th second is the second subjob of the second instance (requested at 21s).
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Name task 1 task 2 task 3

Type sporadic periodic periodic

Offset 5s 2s 1s

Period - 20s 20s

Lower lim. 4s - -

Upper lim. 10s - -

Step 0.5s - -

Deadline 10s 20s 20s

Table 4.2: Timing characteristics of the task set in the example

Offset: 185.568741 
1.015152 task_3 -> 
1.015213 task_3 1 
2.015152 task_2 -> 
4.051926 task_3 *1 
4.051987 task_2 1 
7.088089 task_2 *1 
7.088089 task_2 2 
10.126663 task_2 - 
10.126709 task_3 2 
11.548492 task_1 -> 
13.162201 task_3 - 
13.162247 task_1 1 
16.197250 task_1 *1 
16.197250 task_1 2 
19.232391 task_1 - 
21.015152 task_3 <- 
21.031815 task_3 -> 
21.031876 task_3 1 

21.548492 task_1 <- 
22.015152 task_2 <- 
22.031830 task_2 -> 
24.066864 task_3 *1 
24.066910 task_2 1 
26.098495 task_1 -> 
27.102844 task_2 *1 
27.102905 task_1 1 
30.139313 task_1 *1 
30.139313 task_1 2 
33.175690 task_1 - 
33.175735 task_2 2 
36.098495 task_1 <- 
36.115158 task_1 -> 
36.212158 task_2 - 
36.212204 task_1 1 
39.248611 task_1 *1 
39.248611 task_1 2 
41.031815 task_3 <- 

41.048477 task_3 ->
42.031830 task_2 <-
42.048477 task_2 ->
42.283798 task_1 - 
42.283844 task_2 1 
45.318817 task_2 *1
45.318817 task_2 2 
46.115158 task_1 <-
46.181824 task_1 ->
48.353867 task_2 - 
48.353912 task_1 1 
51.388870 task_1 *1
51.388870 task_1 2 
54.423691 task_1 - 
54.423737 task_3 2 
56.181824 task_1 <-
57.459793 task_3 - 
END OF LOG

Figure 4.7: Output file with the simplified log

Figure 4.8: Gantt diagram of the application tasks

If the experience continued for a few more seconds, the next task 3 request would occur

at instant 61s.

4.3.2 Time analysis of the global system

The analysis program includes a function that reads the simplified log described above

and extracts a time analysis of the global system. First it lists all detected deadline misses

and preemptions, indicating the concerned task and timestamp. Afterwards it presents,

for each task, the following information:

• The total number of task requests, missed deadlines and the percentage of deadline
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misses relatively to the number of requests.

• The total number of suffered preemptions and the average, standard deviation and

maximum number of suffered preemptions per instance.

• The number of complete instances.

• The average, standard deviation and maximum of the response time (time interval

between task request and finishing time).

4.3.3 Execution times

The analysis program was complemented with another function that reads the simplified

log file and creates, for each application task, an auxiliary file with the total execution

time, as well as the duration of the non-preemptive sections, in case of having preemption

points. The average, standard deviation and maximum of the total execution time is

displayed. In case of limited preemption scheduling, the same statistical information is

provided for the last and the longest subjob in the instance.

The execution time of a task is deduced in the following manner: The moment the task

starts running is registered, opening the first segment of execution. If another application

routine starts running, but the task has not finished yet, it means that the task has been

preempted and the segment is closed at that moment. In case of having preemption points,

the segment is closed when one is found. Once the task becomes suspended it means it

has finished execution. This instant closes the last segment. The total execution time is

obtained by adding all segments.

In this process only application tasks are considered, but there are many short op-

erating system tasks and interrupts that run in the system constantly. These tasks are

responsible for communication between computer and board, clock tick announce, etc.

and may have very high priorities. When disabling the scheduler, these tasks cannot ex-

ecute. However, when a task’s priority is raised to avoid preemption, these tasks may

interrupt if their priority is higher. In the fully-preemptive case, where nothing is done to

avoid preemption, any such system task with priority higher than the application tasks’

can interrupt. These system tasks are ignored when computing the execution time of the

application tasks and end up causing interference in the measurements.
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This chapter discusses the autonomous vehicle application. The top-level structure of the

vehicle is exposed, indicating its main functionality. Afterwards, a more practical approach

is made by describing with detail the task set that is actually used in the experiments.

5.1 The autonomous vehicle

This section provides background information on the case study that motivated this work,

namely the SENA autonomous vehicle, to make the reader aware of its main features.

5.1.1 Software architecture

In terms of software, the system is divided in three levels: A deliberative layer (upper

level), a reactive layer (lower level) and a middle layer. Figure 5.1 provides a visual

representation of the software architecture. All three levels count on an integrity and

security monitoring unit.

The low level is responsible for every action directly related to the external interface

of the vehicle. One important function is sampling outside data by means of sensors. For

this purpose, this layer is provided with laser sensors and an inertial unit. The data are

received and processed and the results are sent to a low level sensor fusion unit. Another

function is the actuation, changing the behaviour of the vehicle. For this function the

system counts with different kinds of actuators, which are directly controlled by smart

power drivers (approximately six units). These drivers receive commands from the upper

layers (velocity, position, etc.) and respond with information about the actuators’ state.

As mentioned before, these drivers are smart, meaning that they receive a command with

a desired velocity or position and calculate the necessary voltage and current to be applied

to the actuators in a local feedback loop.

The middle level provides an abstraction layer for the upper level. Here the sensor data

fusion results of the lower layer are interpreted by a similar but more abstracted unit.

The upper layer is the one that makes the general decisions. It receives the results of

the middle layer sensor fusion and further refines it to an even more abstract vehicle rep-

resentation. Here, a suitable sensor interpretation is carried out to be sent to the mapping
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Figure 5.1: SENA software architecture

unit, which estimates the surroundings of the vehicle. This information helps the local-

ization of the car and the navigation unit that makes the driving decisions. This unit also

receives commands from the user and, depending on the safety level of each concrete situ-

ation, decides whether to follow the driver’s commands or to take autonomous decisions.

The navigation unit knows the state of the actuators and issues actuation commands ac-

cording to what was decided. Finally the upper layer also includes an user interface. The

driver has access to the information derived from the mapping and localization units and

may send his/her commands to the navigation unit.

For this kind of systems to work properly, the various tasks involved in the feedback

control loops must be activated periodically with relatively low jitter. Furthermore the

interference and blocking each task suffers must be small enough for the task to terminate

its execution before its deadline.

The individual SENA features have been finished or are under development by sev-

eral programmers in a collaborative fashion, each focusing on a different subsystem. It is

desired that these subsystems then become consolidated in the same platform in a reli-

able and deterministic manner using the real-time multitasking capabilities of the RTOS.

At this moment the team is focused on progressively taking a step apart from the exist-

ing desktop implementation of the autonomous vehicle to a more integrated, embedded

approach.
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The presented architecture includes several functionalities. In this experiment only a

few features were taken into account, namely six tasks that provide input for the actuators,

one task for localization and a set of two tasks which sporadically change the parameters

of one of the six tasks mentioned before.

Since the SENA project is under development, a few tasks are not ready to run on

VxWorks yet. The reason for that is that they contain certain operations, such as Ethernet

communication commands and floating point manipulation, whose support is not included

in the current configuration of the board PowerQuicc II. Due to lack of time, neither

the board was configured to support those features nor the functions were adapted to

avoid those requirements. The considered alternative was to test the limited preemption

technique with tasks that do not perform the operations that the real SENA tasks do,

yet provide a similar behaviour towards the other application tasks in the sense that they

have similar (or at least plausible) periods and execution times.

5.2 Experimental task set

This section focuses on the practical task set used for experimenting. After describing

the usage given to the tools mentioned in chapter 3, it provides details on each task’s

implementation and information about the chosen timing characteristics, such as offsets

and periods.

5.2.1 Tools usage

For the configuration of the operating system a VxWorks Image Project was created

and the required components for the support of System Viewer and a particular console

were added to the image. The application was created within a Downloadable Kernel

Module and was set to run in the PowerQuicc II board. The communication between

computer and board is mainly achieved by an Ethernet connection. The chosen system

clock rate is 2000Hz, which grants a system clock resolution of 500µs. System Viewer

was configured to register task state change events in a buffer with a memory capacity of

512Kbyte.

5.2.2 The task set

This section discusses the task set that served as basis for the experiments, including their

implementation and the chosen timing characteristics (offsets and periods).

tLocal - A task for vehicle localization

The localization routine to be used in SENA is based on the Markov algorithm. It receives

a two-dimensional map, the sensors of the car (what the vehicle can see) and the last

movement of the car, including distance and direction. The successful localization of the

vehicle consists of determining three parameters: The x and y component of the position

in the map and the car’s orientation. Depending on the dimensions and resolutions of

the map, and also the resolution of the orientation angle, this process can be more or less
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longstanding. For each possible combination of those factors the probability of the vehicle

to be in that spot with that orientation is calculated, making the number of probability

calculations the following:

nProbablilityCalculations =
totalSizex
stepx

· totalSizey
stepy

· 2π

stepangle
(5.1)

where the step is inversely proportional to the resolution. The total execution time of

this function can be manipulated by experimenting with different values of the map sizes

and steps.

Although a version of this function is ready and functional by this time, for it to

execute in VxWorks it would be necessary to configure the operating system to support

certain required features, or, alternatively, adapt the localization function to not needing

these features. Due to lack of time, none of the alternatives was fulfilled and, instead, a

simplified and illustrative version of this function was implemented. In this version only

two dimensions are considered, rather than three, and, instead of performing a probabil-

ity calculation, other senseless operations are made, with the only purpose of consuming

processor time. Also, instead of having a map, there is only one vector which is crossed

from beginning to end in the outer loop in the contrary direction in the inner loop. The

performed calculations consist in swapping the values in the positions indicated by the

outer and inner iterators.

/* Defines for the localization function */

#define LOCAL_VEC_SIZE 544 // defined accordingly to the desired execution time

of the task

/* Localization function */

void tLocalization(void){

int i, j, vec[LOCAL_VEC_SIZE], aux;

while(1){

// initialize the vector

for(i=0; i<LOCAL_VEC_SIZE; i++){

vec[i] = i;

}

for(i = 0; i < LOCAL_VEC_SIZE; i++){

for(j = LOCAL_VEC_SIZE-1; j >= 0; j--){

// swap vec[i] with vec[j]

aux = vec[j];

vec[j] = vec[i];

vec[i] = aux;

}

}

taskSuspend(0);

}

}
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Placing of preemption points

Since this function can take long execution times, preemption points are placed in its

code. In fact, it will soon become clear that it is the only task with an execution time

worth to be divided, since all other tasks have relatively short execution times. The idea

is to test the behaviour of the system for non-preemptive subjobs of different sizes. The

most preemptions points tLocal has, the smaller are the non-preemptive sections, since

we place them approximately evenly along the (unfolded) task’s code, as the following

example shows.

#define LOCAL_N_PP 3

#define LOCAL_VEC_SIZE 544 // defined accordingly to the desired execution time

of the task

void tLocalization(void)

{

// ...

while(1){

// ...

for(i = 0; i < LOCAL_VEC_SIZE; i++){

for(j = LOCAL_VEC_SIZE-1; j >= 0; j--){

// swap elements

}

if (i % (LOCAL_VEC_SIZE/(LOCAL_N_PP+1)) == 0){

if(i > 0){

if(i > LOCAL_N_PP*(LOCAL_VEC_SIZE/(LOCAL_N_PP+1))){

continue;

}

preempPoint(...);

startSubjob(...);

}

}

}

// ...

}

}

Depending of the value of the outer iterator i, a preemption point shall or not happen.

Let us recall that a task with X preemption points is divided in X+1 non-preemptive

subjobs.

Since the task is divided in sections of approximately similar sizes, the value of i at

which a preemption point happens must be a multiple of the total vector size divided by the

desired number of non-preemptive sections (number of preemption points (LOCAL N PP)

plus one), and that is what the first if-statement suggests. Since this condition is satis-

fied for a null value of i and it is not desired that a preemption point happens right

after the task begins, the second if-statement filters out i’s initial zero value. Finally,
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the third if-statement has the following purpose: Suppose that LOCAL VEC SIZE is 100

and LOCAL N PP is two – It is desired that the task is divided by three similar non-

preemptive sections. However, 100 divided by 3 is 33.333(...), but, since an iterator only

takes integer values, the preemption point happens for multiples of 33, in this case, i =

33, i = 66 and i = 99. In the cases where the total number of iterations is multiple of

the number of subjobs, for i equal to the total number of iterations (which is a multiple

of LOCAL VEC SIZE/(LOCAL N PP+1)) no preemption point occurs, since this value

is out of the loop scope (The scope includes values from zero to LOCAL VEC SIZE-1).

However, due to the truncation of, in this case, 33.333(...), the total number if iterations

is never a multiple of that amount, but a slightly smaller value is, which lies within the

loop scope, thus causing an undesired preemption point. The third if-statement jumps

straight to the next iteration immediately after the last desired preemption point occurs,

thereby avoiding a preemption point too close to the end of the execution.

In the experiment, tLocal embraces as many preemption points as needed in order to

have zero deadline misses, i.e., until the system is feasible.

tPID X - A PID for each axis of the vehicle

The vehicle has six axes, being each one of them individually controlled by a PID con-

troller. This task, which is instantiated six times with different names (tPID 1, tPID 2,

..., tPID 6) performs the common PID operations, namely calculating the proportional,

integrative and derivative components and adding them to form the output. Each param-

eter, input and output of the PIDs is organized through a vector, being the data in the

first position concerned to tPID 1, the second to tPID 2 and so on. Thereby, and taking

advantage of the fact that all PIDs perform the same operations only with different values,

instead of having six individual functions, there is only one common function. This func-

tion receives as only parameter the index of the vector: For tPID 1 the index is zero and

for tPID 6 it is five. This allows the function to know what data to read (gains, reference

and sensor input) and the vector location where it should write the output. The main()

function creates six tasks with taskCreate(), assigning tPID 1, tPID 2, etc. to the name,

the function tPID to the entry point and the corresponding vector index (0, 1, ...) as a

parameter to be passed to the entry point.

#define N_AXIS 6

/* Global variables for the PIDs */

int Kp[N_AXIS] = {10, 60, 30, 70, 40, 50};

int Ki[N_AXIS] = {20, 10, 40, 30, 100, 30};

int Kd[N_AXIS] = {50, 80, 20, 90, 60, 70};

int reference[N_AXIS] = {100, 200, 300, 400, 500, 600};

int input[N_AXIS] = {50, 150, 250, 350, 450, 550};

int output[N_AXIS];
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5.2. Experimental task set

/* IDs, offsets, periods and priorities */

TASK_ID id_PIDs[N_AXIS];

int offsetPID[N_AXIS] = {500, 500, 500, 500, 500, 500};

int periodPID[N_AXIS] = {3000, 5000, 5500, 6000, 6500, 7000};

int priorityPID[N_AXIS] = {3, 4, 5, 6, 7, 8};

/* PID function */

void tPID(int index){

int error, error_sum = 0, error_delta, error_prev = reference[index];

while(1){

error = reference[index] - input[index];

error_sum += error;

error_delta = error - error_prev;

output[index] =

(Kp[index]*error)+(Ki[index]*error_sum)+(Kd[index]*error_delta);

error_prev = error;

taskSuspend(0);

}

}

/* Main function */

int main(){

...

int i;

char pid_name[10] = "tPID_", num[2];

for(i=0; i<N_AXIS; i++){

sprintf(num, "%d", i+1); // turn integer into string

strcat(pid_name, num); // concatenate PID_ and number

id_PIDs[i] = offsetPeriodSpawn(pid_name, offsetPID[i], periodPID[i],

priorityPID[i], 0x100, 2000, tPID, i, 0, 0, 0, 0, 0, 0, 0, 0, 0);

strcpy(pid_name, "tPID_");

}

...

}

tChange and tUpdate - Tasks that change the PID gains sporadically

In real-life applications, it is common to have a task running in a different processor that,

knowing the surroundings of the vehicle, estimates that a certain controller is not adequate

for the upcoming situation. The concerned controller, which resides in the application, is

than replaced. For simplicity purposes, instead of having the function of the controller

task completely replaced (this would imply deleting the current task and creating a new

one with a different entry point function), only the proportional, integrative and derivative

gains are replaced by new ones.

In order to decide what PID to change and what the new gains shall be, the task
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tChange uses nothing but random calculations by means of stdlib.h’s function rand().

Since in real-life applications the moments where a controller needs to be changed is not

predictable, this task shall be called at non-deterministic moments. For this purpose the

functions offsetSporadicSpawn() or timerOffsetSporadicSpawn() are to be used.

Simply replacing the values in the gain vectors is not a good real-life solution, since

this could cause an abrupt change in the output to the actuator, possibly damaging the

dynamic system. In order to avoid that, it is desired that the gain changes in a softer

manner, as illustrated in Figure 5.2.

Figure 5.2: Abrupt (left) and linear (right) gain change

In order to obtain a gradual change of gains, the task tChange, after randomly deter-

mining the PID to be altered and the new proportional, integrative and derivative gains,

calls another task, tUpdate, which periodically runs for a limited number of times (the

function runNTimes() is used for this purpose) and gradually updates the gains in a linear

manner. Figure 5.3 shows an example of a possible situation.

Figure 5.3: Example of tChange and tUpdate operations

In the example tChange randomly chooses tPID 5 to be altered and the values 40, 50

and 0 for the new proportional, integrative and derivative gains, respectively. Assuming

that the current gains are 90, 20 and 40, respecting the same order, and the desired step

for the linear progress is 10, tChange calculates the biggest difference between new and old

values and divides by the step. The result corresponds to the required number of tUpdate
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executions until all gains are updated. Notice that the integrative gain takes its final value

already at the third execution of tUpdate and the derivative gain at the fourth.

/* Global variables for the gain updating functions */

int newKp, newKi, newKd;

int step;

int index;

int offset_update, period_update;

void tChangeRqst(void){

int difKp, difKi, difKd, maxDif;

int n_times;

while(1){

// obtains index of the PID to be changed and gains

index = random() % 6; // possible indexes: 0, 1, ..., 5

Kp = ((random() % 10) + 1) * 10; // possible gains: 0, 10, 20, ..., 100

Ki = ((random() % 10) + 1) * 10;

Kd = ((random() % 10) + 1) * 10;

// obtain absolute difference between old and new values

difKp = abs(newKp - Kp[index]);

difKi = abs(newKi - Ki[index]);

difKp = abs(newKd - Kd[index]);

// obtain maximum difference

maxDif = max(difKp, difKi, difKp);

// number of required times for tUpdate to execute

n_times = maxDif / step;

// calls tUpdate repeatedly

runNTimes(offset_update, period_update, idUpdate, n_times);

taskSuspend(0);

}

}

void tUpdateGains(void){

while(1){

if(Kp[index] > newKp){

Kp[index] = Kp[index] - step;

}

else if(Kp[index] < newKp){

Kp[index] = Kp[index] + step;
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}

// do the same for the integrative and proportional gains

taskSuspend(0);

}

}

After obtaining the PID to update and the new gains, tChange becomes tUpdate’s

waking task, exclusively resuming it periodically. Upon measuring tChange’s execution

time, it is considered that it ends execution after resuming tUpdate for the first time.

This convention was adopted as no other tasks’ waking routine’s execution time is being

considered either.

Offsets and periods

The tables below expose the chosen timing values and priorities of the application tasks.

These values are the ones that are passed to the waking routines.

Periodic tasks

Task name Offset (µs) Period (µs) Priority

tPID 1 500 3000 3

tPID 2 500 5000 4

tPID 3 500 5500 5

tPID 4 500 6000 6

tPID 5 500 6500 7

tPID 6 500 7000 8

tUpdate 500 10000 10

tLocal 500 40500 11

Table 5.1: Timing characteristics and priorities of the periodic tasks

Notice that tUpdate is considered a periodic task in the sense that, when it is set to

execute, it is requested with regular intervals.

Sporadic tasks
Task name Offset (µs) Minimum interarrival time (µs) Maximum interarrival time (µs) Step (µs) Priority

tChange 500 300 000 800 000 50 000 9

Table 5.2: Timing characteristics and priorities of the sporadic tasks

Recalling the meaning of these terms, tChange is requested sporadically and the time

between two consecutive requests belongs to the set 300, 350, 400, 450, ..., 750 and 800

milliseconds.
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6. Experiments and results

Along this project three types of experiments were made. First, in order to inflict non-

preemptivity, the priority of the tasks is increased (experiment 1). Afterwards, the same

goal is achieved by disabling the scheduler (experiment 2). In the first two experiments,

the periodic and sporadic tasks are set to run at the proper moments using the wake-up

routines offsetPeriodSpawn(), runNTimes() and offsetSporadicSpawn(), described in sec-

tions 4.2.4, 4.1.3 and 4.1.4 respectively. Finally, and since disabling the scheduler causes

the tasks to desynchronize relatively to their periods, as explained in section 4.2.4, in order

to avoid that problem, the waking functions timerOffsetPeriodSpawn() and timerOffset-

SporadicSpawn(), described in sections 4.2.4 and 4.2.4, are used (experiment 3).

For each of the tree groups, two experiments were made: At first, a task set exactly

as described in section 5.2.2 is tested. As demonstrated in this chapter, the tasks tPID x,

tChange and tUpdate have very short execution times (short tasks), thus consisting in a

small interference for the long, low priority task tLocal. In order to increase the impact

of preemptions, the tasks tPID x and tUpdate are artificially expanded by adding a futile

loop with as many iterations as wanted to achieve a certain execution time (long tasks).

At the end of each of the three experiments, the results are briefly discussed.

An experiment consists of setting the task set to run in the following conditions:

• Non-preemptively: Once a task starts executing, no other task may preempt it,

independently of its priority.

• With preemption points: The low priority, time-consuming task tLocal is evenly

divided in non-preemptive subjobs by preemption points until no task in the set

misses their deadlines.

• Fully-preemptively: A task may interrupt any other task that has a lower priority

than its own.

All presented graphs in this chapter include all these stages of the experiment: In the x-

axis N.P. stands for non-preemptive, F.P. for fully-preemptive and all the numerical

values in between stand for the number of preemption points placed in tLocal. The last

number before F.P. corresponds to the necessary number of preemption points needed in

tLocal in order to keep the task set feasible.
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For each experiment the execution times of the tasks, measured along the tests, are

presented. In case of tLocal, not only the total execution time is brought up, but also the

execution time of the longest non-preemptive subjob in the instance is shown. For the

fully-preemptive case, where no subjobs are featured, the equivalent result corresponds to

the maximum interval in the instance during which tLocal suffered no preemptions.

Afterwards the behaviour of the system is evaluated by analysing the following param-

eters:

• Deadline miss rate, i.e. number of deadline misses relatively to the total number

of requests. The system is considered feasible when no task misses its deadline (0%

of deadline misses).

• Response time, i.e. interval between the moment of the request and the task’s

finishing time. It is desired that the response time of the tasks is as short as possible,

without compromising the feasibility of the system.

• In case of the time-consuming task tLocal, the number of suffered preemptions

per instance.

Ultimately, the response times observed in the experiments are compared to theoretical

estimations based on the worst-case response time analysis presented in sections 2.2.2 (non-

and limited-preemptive cases) and 2.2.1 (fully-preemptive case). This analysis normally

considers worst-case execution times of the tasks and non-preemptive subjobs. However,

because we observed large and rare worst-case execution times and we were interested in

analytical results that would be tighter, i.e., closer to the average case, we took the average

execution times as inputs for those calculations. Consequently, the estimations are not

absolute upper bounds of the worst-case response times and there are cases in which the

estimations are even optimistic in the sense that they provide a value that is lower than

the observed one. Nevertheless, we believe this value represents better the actual temporal

behaviour of the task and thus we use it in this section.

In experiment 1 (priority manipulation) and 2 (scheduler locking and spawning routines

using taskDelay()) the tasks are set to execute for about one minute in the non- and

limited-preemptive cases and nearly 30 seconds more in the fully-preemptive situation. In

experiment 3 (scheduler locking and spawning routines using timers) the task set executes

for about 20 seconds in all situations. The duration of the experiments is related to the size

of the System Viewer buffer, where the timestamped events are registered. The fact that

it takes a short time to fill the buffer denotes a large event density. Thus, one concludes

that the implementation in experiment 3 causes more events per second than the ones in

the other experiments. In fact this gap happens due to the events corresponding to the

constant taskDelay() actions performed by the waking tasks, as explained in Note 2 at the

end of section 4.2.4.

When comparing the behaviour of the PID tasks, darker colours are used to mark the

PIDs with shorter periods and higher priorities, while lighter colours are used to mark the

lower priority and less frequent ones.
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6.1. Experiment 1 - Changing priorities

6.1 Experiment 1 - Changing priorities

6.1.1 Short tasks

This task set is composed by the original application tasks.

Execution times

In this experiment the PID tasks take average execution times around 40µs and maximum

values up to 200µs. In the fully-preemptive case they execute for an average of 15µs

and maximum under 50µs. Such differences may arise from the overhead caused by the

taskPrioritySet() commands. See Figure 6.1.
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Figure 6.1: Exp. 1, short tasks - Execution times of the PID tasks

Figure 6.2 shows the execution times of the sporadic set tChange and tUpdate. tChange

executes for approximately 30µs with maximums of 120µs. tUpdate has an average ex-

ecution time of 30µs, maximum 110µs, except for the fully-preemptive case, where both

maximum and average values lie around 20µs.
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Figure 6.2: Exp. 1, short tasks - Execution times of tChange and tUpdate

tLocal executes for an average between 8650µs and 8780µs, with maximum values

between 8830µs and 8970µs (Figure 6.3).
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Figure 6.3: Exp. 1, short tasks - Execution times of tLocal (total value and longest subjob)

Results

The deadline miss rate of the PID tasks, which are the only tasks that suffer deadline

misses in all experiments, is shown in Figure 6.4. tPID 1, having the shortest period, is

the task that suffers more deadline misses. In fact, one can see in the graph that, the

higher the priority (the shorter the periods), more deadlines are missed. At 3PPs no task

misses a deadline and the task set is considered feasible.
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Figure 6.4: Experience 1, short tasks - Deadline miss rate of the PID tasks

Figure 6.5 illustrates the PID’s response times. The average and maximum values

decrease as PPs are placed in tLocal. Since the PIDs are relatively short tasks, their max-

imum response times are not much longer than tLocal’s maximum subjob. The average

response time is much shorter than the maximum. In fact, since tLocal has a relatively

big period, the PIDs are only seldom affected by it. During the remaining time they are

mainly affected by the higher priority PIDs. The best behaviour is observed in the fully-

preemptive case.
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Figure 6.5: Exp. 1, short tasks - Response time of the PID tasks

tChange’s maximum response time takes 8000µs for the non-preemptive case, suggest-

ing that the task is affected by tLocal at least once. The response time decreases as PPs

are added. As to tUpdate, the response time is always smaller than 500µs, suggesting that

it was not or only partially blocked by tLocal. These results are shown in Figure 6.6.
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Figure 6.6: Exp. 1, short tasks - Response time of tChange and tUpdate

Figure 6.7 shows tLocal’s response time and number of preemptions per instance. As

expected, the response time increases as PPs are added to its own code. It reaches a maxi-

mum of 9500µs for 2 and 3PPs and decreases to 9100µs in the fully-preemptive case. This

behaviour is not expected, since, as soon as the last subjob starts, there is no interference

of higher priority tasks to expanding tLocal’s response time, while in the fully-preemptive

case this restriction is not imposed. As shown in the graphic in the right, tLocal suffers

an average of 7 preemptions per instance in the fully-preemptive case. The fact that, for

the limited-preemptive cases, the maximum number of preemptions per instance is one

unit greater than the number of PPs in the code is explained in the note at the end of

section 4.2.3. These unintended preemptions do not happen often, as the average number

of preemptions per instance is very close to the number of preemption points.
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Figure 6.7: Exp. 1, short tasks - Response time and suffered preemptions of tLocal

Comparison with theoretical response time

Figure 6.8 illustrates all task’s theoretical estimations of their worst-case response times

for the different cases. The worst-case response times observed for the PIDs and tChange

is similar to the ones obtained theoretically. tUpdate has much smaller maximum response

times in practice, possibly due to the fact that it is not strongly affected by tLocal’s non-

preemptive sections. As for tLocal, with the addition of preemption points the maximum

response time grows more in practice than the observed in theoretical estimations. Con-

cerning this task, in the fully-preemptive case a longer maximum response time is observed

in practice, while in theory the response time is lower than for the non-preemptive situa-

tion. The reason for that may be related to the tightness of the estimations: the response

time estimation for preemptive systems is likely to provide tighter results than the analysis

for fixed preemption points. Also, the theoretical analysis does not consider overheads due

to context switching, such as cache interference. In addition to that, if the experiment had

lasted longer, eventually all worst-case situations would occur, causing maximum response

times to be closer to the theoretical estimations.
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Figure 6.8: Exp. 1, short tasks - Theoretical response times

6.1.2 Long tasks

The previous experiment has shown that the overhead of the operations responsible for

limiting preemption have a greater impact than the high priority tasks’ interference and

context switch overheads. In order to increase the interference, the PIDs and tUpdate

have been enlarged by means of a finite loop whose only purpose is to force processing.

Execution times

The average execution time of the PIDs lies around 485µs for the non- and limited-

preemptive cases. In the fully-preemptive situation it decreases to 440µs. Maximum

values are observed between 580µs and 670µs. (Figure 6.9)
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Figure 6.9: Exp. 1, long tasks - Execution times of the PID tasks

tChange has short execution times (average 30µs and maximum 90µs) and tUpdate

executes for an average of 470µs and maximum of 590µs. In the fully-preemptive case

the latter task reaches a maximum of almost 700µs. The execution times of tChange and

tUpdate are illustrated in Figure 6.10.
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Figure 6.10: Exp. 1, long tasks - Execution times of tChange and tUpdate

Figure 6.11 shows the execution time of the time consuming task tLocal. It indicates

that the execution times lie between 7600µs and 8000µs and, in the fully-preemptive case,

it features a maximum of 8600µs.

62



6.1. Experiment 1 - Changing priorities

N.P. 1 2 3 F.P.
7500

7750

8000

8250

8500

8750

tLocals’sxPreemptivity

T
im

ex
ju

sh

Totalxexecutionxtime

Average

Maximum

N.P. 1 2 3 F.P.
0

1000

2000

3000

4000

5000

6000

7000

8000

tLocals’sxPreemptivity

T
im

ex
ju

sh

Longestxsubjobxinxthexinstance

Figure 6.11: Exp. 1, long tasks - Execution times of tLocal (total value and longest

subjob)

Results

Comparing to the short task experiment, the PIDs have higher deadline miss rates and also

reach zero misses at 3PPs. Once again tPID 1 stands out with a slightly greater deadline

miss rate, due to its short period. As to the remaining PIDs, higher priority ones have

a smaller number of misses. This suggests that lower priority PIDs lost their deadlines

partially because higher priority PIDs executed instead (interference). The deadline miss

rate of the PIDs is represented in Figure 6.12.
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Figure 6.12: Exp. 1, long tasks - Deadline miss rate of the PID tasks

Figure 6.13 shows the average, standard deviation and maximum response time of the

PID tasks. Once again, and as expected, the three values decrease as PPs are placed in

tLocal. In contrast to the short task case, relevant differences are observed among PIDs:

Higher priority tasks have shorter response times than lower priority ones. For the non-

preemptive case the PIDs have a worst-case response time between 7900µs and 12700µs

and in the fully-preemptive case between 1000µs and 3300µs, approximately.
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Figure 6.13: Exp. 1, long tasks - Response time of the PID tasks

Judging the maximum response times, both tChange and tUpdate are affected by tLo-

cal at some point of the experiment. tChange has a worst-case response time of 13000µs.

It decreases linearly as PPs are added and reaches 2000µs in the fully-preemptive case. In

the non- and limited-preemptive situations the maximum response time of tUpdate varies

in the range between 5000µs and 7500µs and, in the fully-preemptive case, it decreases to

3000µs. (Figure 6.14)
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Figure 6.14: Exp. 1, long tasks - Response time of tChange and tUpdate

In contrast to the short task case, having longer PIDs and tUpdate causes the re-

sponse time of tLocal to have similar values in the cases of fully preemption and with

3PPs (around 21000µs). For unlimited preemption tLocal suffers an average of 12 pre-

emptions per instance. The response time and preemptions of tLocal are shown in Figure

6.15.
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6.1. Experiment 1 - Changing priorities
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Figure 6.15: Exp. 1, long tasks - Response time and preemptions of tLocal

Comparison with theoretical response time

The theoretical estimations of the tasks’ response time are represented in Figure 6.16. For

the non-preemptive case the theoretical response times of the PIDs are pessimistic com-

pared to the practical worst-case results. They become optimistic as preemption points

are placed in tLocal, becoming shorter than the observed in practice for high preemption

levels of tLocal. The reason for that probably lies on the fact that the theoretical analysis

does not consider the overheads due to preemptions. Both tChange and tUpdate present

much longer theoretical response times than in practice. A possible reason for that is

that the theoretical calculations provide worst-case response times, considering possible

situations where the analysed task needs to wait the longest combination of blocking and

interference that may happen with the given set. The actual worst-case response time of

tLocal is very similar to the estimation, except for the fully-preemptive case, where it is

shorter in practice than theoretically.
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Figure 6.16: Exp. 1, big tasks - Theoretical response times

6.1.3 Preliminary discussion

The purpose of limiting preemption is to improve the response time of long, low priority

tasks. However it is observed that tLocal has the best, or at least an equally good response

time (providing a feasible system) for the fully-preemptive case, compared to the use of

preemption points. A possible cause for this difference is that the operations responsible

for avoiding preemption (in this case priority manipulation) generate an overhead which

is more harmful than the interference of higher priority tasks. The execution and response

times of the higher priority tasks have a by far better behaviour in the fully-preemptive

case, comparing to the other methods. As such, using the traditional VxWorks scheduler

without any extra routines in the tasks is the best option, especially when having a small

impact of preemptions (small tasks).

6.2 Experiment 2 - Disabling the scheduler

Since using priority manipulation turned out to be a not very efficient solution, another

approach was explored, namely to disable the scheduler in order to avoid preemption.
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6.2. Experiment 2 - Disabling the scheduler

6.2.1 Short tasks

Once again, this implementation of the FPP algorithm is tested with original sized and

expanded tasks. This section focuses on the short tasks.

Execution times

In this experiment the PID tasks execute for an average of 35µs for the non- and limited-

preemptive cases and 12µs for the fully-preemptive case. Maximum execution times lie

between 55µs and 150µ, except for the fully-preemptive case, where it decreases to 25µs

to 55µs. (Figure 6.17)
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Figure 6.17: Exp. 2, short tasks - Execution time of the PID tasks

Figure 6.18 presents the execution times of tChange and tUpdate. Both tasks execute

for an average of 40µs and maximum of 70µs for most situations. In the fuly-preemptive

case tUpdate’s execution time falls to 15µs to 20µs.
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Figure 6.18: Exp. 2, short tasks - Execution time of tChange and tUpdate

Figure 6.19 illustrates the execution time behaviour of tLocal. The maximum values

lie around 7260µs and grow to 7460µs in the fully-preemptive case. The cause of this

increment is likely to lie on the fact that, without any preemption limiting, high priority

background tasks interrupt tLocal. Since their execution times are not excluded from the

measurements, tLocal’s execution time includes the interrupting tasks. On the other hand,

in the remaining cases the scheduler is disabled and only tLocal’s processing is considered

in the measurements.
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Figure 6.19: Exp. 2, short tasks - Execution times of tLocal (total value and longest

subjob)

Results

In this experiment only tPID 1 and tPID 2 miss deadlines for the non-preemptive case.

Although for 1PP they present a very small number of misses, the system is only feasible

for 2PPs. (Figure 6.20)
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Figure 6.20: Exp. 2, short tasks - Deadline miss rate of the PID tasks

Figure 6.21 illustrates an analysis of the response time of the PIDs. The behaviour

is similar as in experiment 1 for short tasks. However, tPID 3 and tPID 5 stand out as

their average and maximum response times do not follow the same pattern as the other

PIDs. This means that these tasks were never requested at the beginning of a tLocal

instance in the non-preemptive case. The best worst-case response times are obtained for

the fully-preemptive case and do not exceed 1000µs for any PID.
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Figure 6.21: Exp. 2, short tasks - Response time of the PID tasks

tChange and tUpdate have similar curves for the response times, as shown in Figure

6.22. Both tasks were likely affected by the non-preemptive sections of tLocal, since their

worst-case response times take values similar to the execution time of tLocal’s subjobs.
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Figure 6.22: Exp. 2, short tasks - Response time of tChange and tUpdate

Figure 6.23 illustrates the response time behaviour and preemptions sufffered by tLo-

cal. The response time increases as PPs are placed in its code, reaching a maximum of

7750µs for 2PPs. For the fully-preemptive case, where it suffers an average of 5.5 preemp-

tions per instance, the worst-case response time falls to 7700µs.
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Figure 6.23: Exp. 2, short tasks - Response time and preemptions of tLocal

Comparison with theoretical response time

The theoretically expected PID response times are mainly pessimistic comparing to the

practical maximum response time, except for the fully-preemptive case. The same is

observed for tChange and tUpdate. As for tLocal, the theory foresees shorter response

times in all cases. A possible cause for that difference is that the estimations are obtained

considering average execution times of the tasks. There might be cases, though, where

tLocal suffers an interference of high priority tasks with longer execution times. The

theoretical estimation of the tasks’ response times are shown in Figure 6.24.
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Figure 6.24: Exp. 2, short tasks - Theoretical response times
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6.2. Experiment 2 - Disabling the scheduler

6.2.2 Long tasks

Once again the PIDs and tUpdate are inflated whith loops in order to cause a more

significant interference against tLocal.

Execution times

As for the inflated PIDs, their execution times take average values between 300µs and

325µs for the non- and limited-preemptive cases and between 275µs and 300µs for the

fully-preemptive case. Maximum values reach almost 450µs. (Figure 6.25)
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Figure 6.25: Exp. 2, long tasks - Execution time of the PID tasks

Figure 6.26 presents the execution times of tChange and tUpdate. tChange’s worst-

case execution time lies at 35µs, except for the fully-preemptive case, where it grows to

55µs. On the other hand tUpdate executes for a constant maximum of 400µs.

N.P. 1 2 F.P.
0

10

20

30

40

50

60

tLocals’sCPreemptivity

T
im

eC
Uu

sd

tChangeC−CExecutionCtime

Average

Maximum

N.P. 1 2 F.P.
0

100

200

300

400

500

tLocals’sCPreemptivity

T
im

eC
Uu

sd

tUpdateC−CExecutionCtime

Figure 6.26: Exp. 2, long tasks - Execution time of tChange and tUpdate

tLocal has a maximum execution time around 6400µs for the non- and limited-preemptive

cases and 6900µs for the fully-preemptive case. tLocal’s execution time is represented in

Figure 6.27.
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Figure 6.27: Exp. 2, long tasks - Execution times of tLocal (total value and longest

subjob)

Results

The PIDs reach zero percent deadline misses at 2PPs. Except for tPID 1 and tPID 2,

they miss a very small number of deadlines along this experiment. The PIDs’ deadline

miss rate is illustrated in Figure 6.28.
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Figure 6.28: Exp. 2, long tasks - Deadline miss rate of the PID tasks

Figure 6.29 shows the average, standard deviation and maximum values of the PIDs’

response times. As observed in previous experiments, the response time average, standard

deviation and maximum decreases as tLocal’s preemptivity level grows. The maximum

response time lies, for most PIDs, between 6000µs and 8000µs for the non-preemptive case

and falls to a range between 300µs and 2000µs when preemption is enabled.
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Figure 6.29: Exp. 2, long tasks - Response time of the PID tasks

Like in the short task case, in this experiment tChange and tUpdate present similar

response time curves, with both maximums starting at 8000µs (non-preemptive case)

and ending around 1000µs (fully-preemptive case). Figure 6.30 illustrates both tasks’

behaviour.
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Figure 6.30: Exp. 2, long tasks - Response time of tChange and tUpdate

Figure 6.31 illustrates the response time and suffered preemptions of tLocal. The max-

imum response time grows with the preemptivity level of tLocal, as expected, varying in a

range between 7700µs (non-preemptive case) and 12500µs (fully-preemptive case). In the

former situation each instance suffers an average of 7.5 preemptions.
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Figure 6.31: Exp. 2, long tasks - Response time and preemptions of tLocal

Comparison with theoretical response time

The theoretical estimations for the response time of the tasks are illustrated in Figure

6.32. The estimations for the PID tasks are relatively accordingly to the actual worst-case

response times. As to tChange and tUpdate, the theoretical response times are overall

longer than the ones observed in practice. tLocal’s practical maximum response time

is shorter than the theoretical estimations except for the fully-preemptive case, where a

longer response time is observed.

N.P. 1 2 F.P.
0

2000

4000

6000

8000

10000

12000

tLocals’sDPreemptivity

T
im

eD
hu

sg

tPID_xD−DResponseDtime

tPID
1

tPID
2

tPID
3

tPID
4

tPID
5

tPID
6

N.P. 1 2 F.P.
0

2000

4000

6000

8000

10000

12000

tLocals’sDPreemptivity

T
im

eD
hu

sg

tChangeD−DResponseDtime

N.P. 1 2 F.P.
0

2000

4000

6000

8000

10000

12000

tLocals’sDPreemptivity

T
im

eD
hu

sg

tUpdateD−DResponseDtime

N.P. 1 2 F.P.
8000

9000

10000

11000

12000

tLocals’sDPreemptivity

T
im

eD
hu

sg

tLocalD−DResponseDtime

Figure 6.32: Exp. 2, big tasks - Theoretical response times
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6.3. Experiment 3 - Disabling the scheduler using timers

6.2.3 Preliminary discussion

Considering the short task experiment, like in experiment 1, for short tasks, the overhead

of the operations responsible for limiting preemption is a drawback to all the tasks, even

tLocal. The fully-preemptive scheduling policy is an asset for this task set, using this

implementation.

For longer tasks the fixed preemption points provide a better response time to tLocal,

comparing to the fully-preemptive scheduling policy, which in turn compensates providing

the best response times to the higher priority tasks. However, the reader shall keep in

mind that, due to the eventual desynchronizations of the tasks (section 4.2.4), it is possible

that they execute less times than they are supposed to, as their interarrival time is always

equal or greater than their period. Since this does not happen in the fully-preemptive case,

the interference of the higher priority tasks is smaller in the non- and limited-preemptive

scheduling policies.

6.3 Experiment 3 - Disabling the scheduler using timers

Another experiment using the scheduler disabling method was performed, this time using

timers to wake up the application tasks. The reason behind experiment 3 is that, if the

waking tasks use taskDelay() to synchronize, as in the previous experiments, they reset

their phase every time their wake-up tasks execute after being pended on scheduler locking.

This phenomena is explained in section 4.2.4.

In this experiment the application task set is slightly different than the one explained

in chapter 5. Instead of having the sporadic task tChange calling tUpdate for a limited

number of times, there are only sporadic requests of tChange, which does not call tUpdate

and executes only once. In order to compensate the absence of tUpdate, tChange has been

expanded with a finite loop, providing a greater impact on the system scheduling.

6.3.1 Short tasks

The following section describes the experiment for the task set without any artificial

expanding of the PIDs.

Execution times

Figure 6.33 illustrates the average and maximum execution time of the PIDs. They exe-

cute for an average between 40µs and 50µs for the non- and limited-preemptive cases and

around 15µs for the fully-preemptive situation. Maximum execution times lie between

300µs and 400µs and tend to be shorter with no preemption limiting.
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Figure 6.33: Exp. 3, short tasks - Execution time of the PID tasks

tChange executes for an average around 530µs and takes maximum execution times of

870µs in the non-preemptive case, decreasing to 610µs in the fully-preemptive situation.

(Figure 6.34)
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Figure 6.34: Exp. 3, short tasks - Execution time of tChange

tLocal has a maximum execution time of 8000µs, except for the fully-preemptive case,

where it grows to 13000µs. This can be observed in Figure 6.35. The reason for that raise

is explained in Note 2, at the end of section 4.2.4.
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Figure 6.35: Exp. 3, short tasks - Execution times of tLocal (total value and longest

subjob)
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Results

Figure 6.37 presents the deadline miss rate of the PIDs. tPID 1 is the task missing more

deadlines and, for 2PPs, all PIDs meet their timing requirements.
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Figure 6.36: Exp. 3, short tasks - Deadline miss rate of the PID tasks

The response time of the PIDs has an average of 900µs in the non-preemptive case,

decreases as preemption points are placed in tLocal and reaches values around 100µs for

full preemption. Maximum values go from about 7500µs (non-preemptive case) to 1200µs

and bellow (fully-preemptive case). The response time behaviour of the PIDs is shown in

Figure 6.37.
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Figure 6.37: Exp. 3, short tasks - Response time of the PID tasks

Figure 6.38 illustrates tChange’s response time. The task has relatively short worst-

case response times (1600µs for the non-preemptive case), suggesting that it is not strongly

affected by tLocal’s non-preemptive chunks during this experiment, i.e., a worst-case sit-

uation has not occurred during the observation interval. In the fully-preemptive situation

it has the shortest maximum response time, namely less than 700µs.
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Figure 6.38: Exp. 3, short tasks - Response time of tChange

Figure 6.39 presents the response time behaviour of tLocal and the number of preemp-

tions the task suffers per instance. The average and maximum response times increase

as preemption points are accumulated in the code and, for the fully-preemptive case, it

grows significantly, reaching a maximum of about 13700µs. In this case tLocal suffers an

average of 12 preemptions per instance.
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Figure 6.39: Exp. 3, short tasks - Response time and preemptions of tLocal

Comparison with theoretical response time

The experimental results of the PIDs’ maximum response times is very similar to the

theoretical calculations, except in the fully-preemptive case, where the response time is

significantly longer than estimated. The reason for that may lie on the fact that we used

the average execution times of the tasks for the theoretical estimations, instead of the

WCET, which may have affected the PIDs more often than expected. As to tChange

the maximum response time is pessimistic for the non- and limited-preemptive cases and

relatively accurate for the fully-preemptive situation. Finally tLocal’s maximum response
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time estimation is overall optimistic with respect to the observed results. (Figure 6.40)
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Figure 6.40: Exp. 3, short tasks - Theoretical response times

6.3.2 Long tasks

In order to keep up the routine of the previous experiments, an experiment using timers

and featuring long tasks was performed.

Execution times

Figure 6.41 shows the execution time behaviour of the PIDs. They execute for an average

of 500µs, except tPID 1, which lasts slightly longer. In the fully-preemptive case the

execution times decay to a range between 450µs and 500µs, approximately. Maximum

values lie around 900µs, except in the fully-preemptive case, where they take dispersed

values from 730µs to 980µs.
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Figure 6.41: Exp. 3, long tasks - Execution time of the PID tasks

tChange has a uniform execution time in all situations, namely an average around

500µs and maximums between 700µs and 800µs. (Figure 6.42)
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Figure 6.42: Exp. 3, long tasks - Execution time of tChange

As for the short-task experiment, using long tasks allows observing a similar course in

the measurements of tLocal’s execution times. It executes for around 7000µs in the non-

and limited-preemptive cases and reaches more than 12000µs when preemption is fully

enabled. Figure 6.43 illustrates this behaviour.
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Figure 6.43: Exp. 3, long tasks - Execution times of tLocal (total value and longest

subjob)

Results

As shown in Figure 6.44, the PIDs provide similar curves for the deadline miss rates as

in the short-task experiment. However, using long tasks the system only becomes feasible

with 3PPs.
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Figure 6.44: Exp. 3, long tasks - Deadline miss rate of the PID tasks

The response time of the PIDs has the expected behaviour. Average values lie between

1250µs and 2500µs in the non-preemptive case, fall as preemption points are added to

tLocal and reach a range between 500µs and 1500µs in the fully-preemptive situation.

Maximum values go from a range between 7000µs and 12000µs (non-preemptive case) to a

range between 800µs and 4000µs (fully-preemptive case). This behaviour can be confirmed

in Figure 6.45.
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Figure 6.45: Exp. 3, long tasks - Response time of the PID tasks

The response time curves of tChange suggest that the task has been affected by tLo-

cal’s non-preemptive sections at some points of the experiment. Its average response time

lies around 2000µs, while the maximum values vary between 5000µs and 5700µs. In the

fully-preemptive situation the maximum response time falls to 3400µs. (Figure 6.46)

81



6.3. Experiment 3 - Disabling the scheduler using timers

N.P. 1 2 3 F.P.
0

1000

2000

3000

4000

5000

6000

tLocals’sRPreemptivity

T
im

eR
(u

s)

ResponseRtime

Average

StandardRdeviation
Maximum

Figure 6.46: Exp. 3, long tasks - Response time of tChange

Figure 6.47 represents the response time and suffered preemptions of tLocal. Once

again the task’s response time gets longer as its own preemption level is increased and, like

in the short-task experiment, takes a particularly big step from the case of 3PPs (maximum

of 20000µs) to the fully-preemptive situation (maximum above 30000µs). Although the

gap in the response times is greater than for the short-task case, the fact that the PIDs

are longer causes tLocal’s response time to be much larger than its execution time in

all situations, and not only in the fully-preemptive case. In this situation tLocal suffers

approximately 11.5 preemptions per instance, on average.
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Figure 6.47: Exp. 3, long tasks - Response time and preemptions of tLocal

Comparison with theoretical response time

Figure 6.48 shows the theoretical response times of the tasks. While for the non- and

limited-preemptive cases the PIDs have manifested shorter response times in practice, for
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the fully-preemptive situation the theoretical analysis is optimistic with respect to the

actual results. As to tChange, the practical behaviour is, in every situation, better than

the theoretical estimation. On the other hand, the theoretical response time analysis

concerning tLocal presents shorter response times than the ones observed in the practical

experiment.
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Figure 6.48: Exp. 3, long tasks - Theoretical response times

6.3.3 Preliminary conclusion

This implementation of waking tasks with timers avoids the problem of the application

tasks increasing their periods due to scheduler disabling. However, due to the way it has

been developed, i.e., the wake-up tasks are kept alive by yielding the CPU with a taskDe-

lay(0) command in an infinite loop, it injects a constant overhead in the system. If the

application tasks disable the scheduler in order to avoid preemption, this delaying action

is not performed. However, in the fully-preemptive case it runs all the time, preempting

the application tasks. This results in longer execution (and consequently response) times.

As such, this implementation does not provide a good perspective for comparing the use

of the FPP algorithm to the traditional fully-preemptive scheduling policy.

6.4 General discussion of the results

When focusing on the response time of longer low priority tasks, in this case tLocal, the

Fixed Preemption Points algorithm may have a positive influence when we have a large

impact of preemptions (long tasks), especially when preemption is inhibited by disabling

the scheduler. In this case, neither experiment 2 nor experiment 3 provide completely fair

results. In experiment 2 the total number of instances of the tasks is potentially smaller

in the non- and limited-preemptive situations than in the fully-preemptive case. This is

caused by the phase resetting of the tasks, explained in section 4.2.4. As to experiment

3, the execution time of tLocal is much longer for the fully-preemptive case than for the

others. These differences muddle conclusions about the benefits of the FPP algorithm.

The suggested method (FPP) does, indeed, present a better response time of the longer

tasks. However, if the conditions were equal for all strategies, would the results indicate

the same?
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Experiment 1 provides a fairer comparison between the different scheduling techniques,

since the number of task instances and the execution times are almost equal for all strate-

gies. Because of this fairness, or perhaps because the priority changing routines inject a

more significant overhead in the tasks’ execution times, the response time of the longer,

lower priority tasks does not present any improvements with preemption points relatively

to fully-preemptive scheduling. Possibly, for even larger task sets (formed by larger tasks

with longer periods), this FPP implementation can have a positive impact in the schedul-

ing.

At the beginning of this document, the related work on limited preemption is discussed

(section 1.2). Many of the authors affirm that, in preemptive systems, the WCETs of the

tasks are harder to predict, since they suffer an undetermined number of preemptions.

Thus, the execution times of the tasks embrace a potentially large number of context

switch delays. However, in this project it is observed that both average and maximum

values of the tasks’ execution times are smaller for fully-preemptive scheduling for all

experiments, especially when concerning the PIDs, tChange and tUpdate. This means

that VxWorks’ preemptive scheduling system is optimized and that the existing context

switch delays have a negligible impact when compared to the insertion of extra operations

in the tasks’ code to inhibit preemption.

Appendix A shows, for each task and for all performed experiments, the average and

maximum response times observed in practice, as well as the response times obtained

theoretically based on the average and maximum execution times of the tasks.
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7. Conclusion

This project allowed exploring a few real-time techniques, particularly the Fixed Preemp-

tion Points algorithm, which is a method that aims at limiting the preemption of preemp-

tive systems. The purpose of limited preemption scheduling is to provide the longer, low

priority tasks a better response time while exploring the slack of higher priority tasks to

improve overall schedulability.

Concerning obtained practical skills, a lot was learned about the VxWorks 6.9 RTOS

and the Workbench 3.3 software, both developed by Wind River systems. Still, these tools

provide a world of useful features and options and many of them were not deepened as

deserved along this project.

Facing the performed experiences and their results, many improvements in the imple-

mentations can be done and are left for future work. The following two paragraphs discuss

some possible approaches.

The excessive overhead of the waking tasks that use timers (timerOffsetPeriodSpawn()

and timerOffsetSporadicSpawn()) spoils the execution times of the tasks for fully- preemp-

tive scheduling. In fact, the strategy to keep the waking tasks eternally alive would be

approached differently now. For example, instead of having a taskDelay(0) command in-

side an infinite loop, which is constantly being executed, a larger delaying value can be

used. As such the waking task waits a longer time interval between consecutive taskDe-

lay() commands, introducing a less frequent processing in the system. Another idea is

for the waking task to suspend itself before ending. If no other task resumes it, than the

waking task exists forever in SUSPENDED state. The conditions for the timers’ active

existence must be studied a priori in order to know if these implementations will work.

We also conclude that the operations that inhibit preemption introduce a significant

overhead. These delays are more harmful to the tasks’ execution times than the overhead

due to a higher number of context switches that may occur in a fully-preemptive system.

Therefore we may consider that the approached implementations are far from being op-

timal. VxWorks’ kernel has, by default, a fully-preemptive scheduling. Any attempt to

change it is forcing the kernel to behave in a different way than the one it is optimized

for. It is though possible to change the kernel in order to support a different type of

scheduling, customized by the programmer. This approach is interesting to explore, as it

would probably provide the best results, without the overhead of auxiliary functions.
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