MESTRADO INTEGRADO EM MEDICINA

2013/2014

João Carlos Menezes Magalhães

Modulação de dados clínicos em obstetrícia usando a norma openEHR

agosto, 2014
João Carlos Menezes Magalhães
Modulação de dados clínicos em
obstetrícia usando a norma
openEHR

Mestrado Integrado em Medicina

Área: Informática Médica

Trabalho efetuado sob a Orientação de:
Doutor Ricardo João Cruz Correia

Trabalho organizado de acordo com as normas da revista:
Journal of the American Medical Informatics Association

agosto, 2014
Eu, João Carlos Menezes Magalhães, abaixo assinado, n° mecanográfico 200804447, estudante do 6º ano do Ciclo de Estudos Integrado em Medicina, na Faculdade de Medicina da Universidade do Porto, declaro ter atuado com absoluta integridade na elaboração deste projeto de opção.

Neste sentido, confirmo que NÃO incorri em plágio (ato pelo qual um indivíduo, mesmo por omissão, assume a autoria de um determinado trabalho intelectual, ou partes dele). Mais declaro que todas as frases que tirei de trabalhos anteriores pertencentes a outros autores, foram referenciadas, ou redigidas com novas palavras, tendo colocado, neste caso, a citação da fonte bibliográfica.

Faculdade de Medicina da Universidade do Porto, 29/08/2014

Assinatura conforme cartão de identificação: João Carlos Menezes de Magalhães
Projecto de Opção do 6º ano – DECLARAÇÃO DE REPRODUÇÃO

NOME
João Carlos Menezes Magalhães

CARTÃO DE CIDADÃO OU PASSAPORTE (se estrangeiro) E-MAIL TELEFONE OU TELEMÓVEL
13764765 joao@joamagalhaes.me +351913428655

NÚMERO DE ESTUDANTE DATA DE CONCLUSÃO
200804447 2014

DESIGNAÇÃO DA ÁREA DO PROJECTO
Informática Médica

TÍTULO DISSERTAÇÃO
Modulação de dados clínicos em obstetrícia usando a norma openEHR

ORIENTADOR
Doutor Ricardo João Cruz Correia

É autorizada a reprodução integral desta Dissertação/Monografia (riscar o que não interessa) para efeitos de investigação e de divulgação pedagógica, em programas e projectos coordenados pela FMUP.

Faculdade de Medicina da Universidade do Porto, 29/08/2014

Assinatura conforme cartão de identificação: João Carlos Menezes Magalhães
Modulation of existent obstetrics EHRs to the openEHR specification

Menezes de Magalhães, João Carlos¹ and Cruz Correia, Ricardo João²,³

¹Mestrado Integrado em Medicina, Faculdade de Medicina da Universidade do Porto
²CINTESIS, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
³Department of Health Information and Decision Sciences, Faculdade de Medicina da Universidade do Porto, Porto, Portugal

Word count: 1948

Abstract

Objective: Create templates in OpenEHR through the modulation of existing electronic health records defined in OpenObsCare platform.

Materials and Methods: Apply a 4 step process: select data fields already existent in OpenObsCare; search both in openEHR and NEHTA clinical knowledge manager (CKM) for the archetypes that contain these data fields; create new archetypes when a data field doesn’t have an existent one in both CKM’s; develop templates from all the information gathered in the previous steps.

Results: Development of 6 templates available online via http://joomagalhaes.me/admission_templates, 1 archetype (openEHR-EHR-CLUSTER.exam-vagina.v1).

Discussion: The process of modulation from existent EHR to the openEHR was possible since the standardization of clinical concepts allowed the re-utilization of a lot of already existent archetypes. This speeds up the development process by defining earlier the domain knowledge necessary for the HIS. Some hurdles faced in the process were due to the necessity of translation of all the archetypes to use at a national level and also due to the lack of national wide accepted terminologies. As this process is eased by the robustness of existent archetypes, the creation of default obstetric templates validated by a special commission, would probably be advantageous since the interoperability and semantics standardization would allow effective transmission of information between all the health care agents.

Conclusion: The modulation of admission data existent in the HIS OpenObsCare to openEHR was easier than the ”traditional” way of doing it which is by specifying requirements. This is due to the fact that a lot of the existent archetypes are already robust enough and the number of them is enough to represent several clinical concepts contained in the created templates.

Keywords: openEHR, Interoperability, Health Informatics, Obstetrics EHR
Background and Significance

The widespread use of electronic health records demands the need of a electronic health record (EHR) that can resist during a patient entire lifetime. The quality of the EHR can enhance the health care quality and can also facilitate the research for academic purposes contributing for a more evidence based medical practice. There is a consensus about the need of a system that is designed to allow maintainability and interoperability of this records. The interoperability is the ability of different software systems to interpret clinical information in the same way. For this to be achieved the advantages of standardized clinical concepts and reference models comes as a need. This is the goal that OpenEHR foundation and others such as HL7 proposed to reach. The openEHR architecture is a two level modelling approach for EHRs. The first level is the reference model which is a relatively small set of classes used to support the medico-legal requirements and record management functions. The first level stands for functional interoperability. It provides the communication between different HIS (Health Informatic Systems). The second level represents the openEHR archetype methodology. Archetypes map clinical knowledge, therefore each archetype represents one clinical concept by constraining instances of the openEHR reference model. This dual approach allows a fundamental abstract concept which is the independence of the development of domain knowledge (clinical content) which is delegated to medical specialists and technical implementation which is a concern for the software development team. This has an enormous advantage since there is no need to transmit clinical requirements to non specialized people. OpenEHR Templates are created by the clinicians and are used to create definitions of content such as a particular document or message, required for specific use cases, such as specific screen forms, message types or reports. They contain different archetypes that have meaning all together (e.g. obstetrics hospitalization entrance note, obstetrics ultrasound report) and that can be assigned to the same template or to different templates several times making it re-usable. In an effort to implement this change of paradigm in the Obstetrics department at Hospital de São João, Porto, we propose the creation of templates to be used by an experimental version of the OpenObsCare health information system (HIS) that is currently being used in this department. Since there are different ways o collecting data for an obstetrics EHR the analysis and comparison of this data between different institutions an countries is hard.
Objective

Due to the referred importance in transitioning to a new standardized way of defining clinical records in a given medical area, the need to modulate existing EHR systems is crucial. In this work we aim at creating openEHR templates for a pregnant woman hospitalization admission in an obstetrics department. We also want to document the process in order to evaluate its advantages and disadvantages compared to a more traditional way of creating HIS.

Materials and methods

As data source for the templates’ creation we used the current HIS implemented in the obstetrics department at Hospital de São João - OpenObscare. To create openEHR templates 4 stages were defined:

1. Select data fields already existent in OpenObsCare

OpenObsCare (Figure 1) is an openEHR solution still in development that derives from the already existent ObsCare. Obscare is a software that was designed to be used by OB/GYN doctors, anesthesiologists, nurses and administrative staff and is used to register patient admission and discharge, as well as childbirth and newborn data. It is also used to register surgical and anesthetic procedures, nursing records, as well as gynecological interventions. It is currently in use at Hospital de S.João and will soon be installed in several other hospitals in northern Portugal. These fields were extracted from the hospitalization admission section of this HIS which is composed of several main tabs. We only included the Admission Note, General information and Ultrasound Exams for this modulation. The General Information contains 5 more sub-tabs which were each counted as main tabs. For each of these tabs a google spreadsheet was created to describe the different forms they contain. The spreadsheet information was gathered regarding the following parameters: Data fields, Description,

4. Create Templates

This similar process has already been used by others [8].

1 Select data fields from OpenObsCare

OpenObsCare (Figure 1) is an openEHR solution still in development that derives from the already existent ObsCare. Obscare is a software that was designed to be used by OB/GYN doctors, anesthesiologists, nurses and administrative staff and is used to register patient admission and discharge, as well as childbirth and newborn data. It is also used to register surgical and anesthetic procedures, nursing records, as well as gynecological interventions. It is currently in use at Hospital de S.João and will soon be installed in several other hospitals in northern Portugal. These fields were extracted from the hospitalization admission section of this HIS which is composed of several main tabs. We only included the Admission Note, General information and Ultrasound Exams for this modulation. The General Information contains 5 more sub-tabs which were each counted as main tabs. For each of these tabs a google spreadsheet was created to describe the different forms they contain. The spreadsheet information was gathered regarding the following parameters: Data fields, Description,
OpenEHR archetype corresponding field, Archetype ID and Note.

2 Search for archetypes

OpenEHR maps the clinical statements using specific types of Entries (Administrative, Observation, Evaluation, Instruction and Action) according to the nature of the statement. Archetypes were chosen according to the clinical concept the data field was part of. As an example, the pattern of uterine contraction data field present in OpenObsCare could be represented by the field Pattern of the archetype openEHR-EHR-Observation.uterine_contractions.v1. Preference was given to the openEHR CKM and only when a clinical concept wasn’t found on it, the NEHTA repository was used. This archetypes were found in both the referred CKM’s by submitting a ”Complete search”, which searches ”inside” resources, including all metadata, and for archetypes, archetype definition, and the archetype ontologies. The last search was performed on August 27th.

3 Create new archetypes for data that doesn’t have a corresponding archetype in the openEHR and NEHTA clinical CKM’s

If after searching on the referred repositories no available archetype could be found to represent a clinical statement, the creation of a new archetype would be considered. For this purpose the Ocean Archetype Editor, a tool to support the authoring of archetypes was used.

4 Create Templates

The structured spreadsheets created helped in creating the framework for the development of the template, where the archetypes will be arranged. This was made using Ocean Template Designer – software that allows composing a set of archetypes into a template.

Results

From the modulation of OpenObsCare IHS, spreadsheets with the specifications necessary for the development of templates were created (Fig.3). From this framework 6 templates were developed:

- Admission Note(Fig.3)
• Ultrasounds
• Current Pregnancy
• Obstetric history
• Family history
• Personal history

They are all available for download in the following url http://joaomagalhaes.me/admission_templates.

The archetypes used for creating the mentioned templates are presented in Table 1. Only 1 of the concepts used is taken from the NEHTA repository and also only 1 was created (Fig. 4). The reason for this has to do with the fact that no archetype could define with clinical rigor the concept of the pelvic examination.

Discussion

The process of creating templates for an obstetrics pregnancy hospitalization admission was possible by mostly using archetypes already defined in OpenEHR and NEHTA CKM’s. This is an advantage compared to the process of creating new ones from scratch since those already available to be shared have been val-
<table>
<thead>
<tr>
<th>Data fields</th>
<th>Description</th>
<th>OpenEHR archetype corresponding field</th>
<th>Archetype ID</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous to gestation weight</td>
<td>Weight</td>
<td>openEHR-EHR-OBSERVATION.body_weight.v1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>Height/Length</td>
<td>openEHR-EHR-OBSERVATION.height.v1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
<td>openEHR-EHR-OBSERVATION.body_mass_index.v1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body surface area</td>
<td>Body Surface Area</td>
<td>openEHR-EHR-OBSERVATION.body_surface_area.v1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doctor’s name</td>
<td>Name of the doctor who performs the observation</td>
<td>openEHR-EHR-CLUSTER.individual_professional.v1 - openEHR-EHR-CLUSTER.person_name.v1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doctor’s team</td>
<td>Professional Details -> Team</td>
<td>openEHR-EHR-CLUSTER.individual_professional.v1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Story</td>
<td>Story</td>
<td>openEHR-EHR-OBSERVATION.story.v1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complications for the pregnancy book</td>
<td>National pregnancy book implemented in Portugal</td>
<td>Free text</td>
<td>openEHR-EHR-CLUSTER.free_text.v1</td>
<td></td>
</tr>
<tr>
<td>Medication</td>
<td>Current medication Free data field to identify all medication</td>
<td>Order -> Medicine</td>
<td>openEHR-EHR-INSTRUCTION.medication_order.v1</td>
<td></td>
</tr>
<tr>
<td>Medication prescribed in the current pregnancy</td>
<td></td>
<td>Order -> Medicine</td>
<td>openEHR-EHR-INSTRUCTION.medication_order.v1</td>
<td></td>
</tr>
<tr>
<td>Fetal Heartbeat</td>
<td>Type of uterine contractions</td>
<td>openEHR-EHR-OBSERVATION.uterine_contractions.v1</td>
<td>Archetype describes one more Data field only refers 2 states h - Minimal [Heart rate variability] - Moderate [Heart rate variability] - Marked [Heart rate variability]</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>Fetal heartbeat variability category</td>
<td>openEHR-EHR-OBSERVATION.fetal_heart-monitoring.v1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>Abdominal findings -> Presentation</td>
<td>openEHR-EHR-CLUSTER.exam-fetus.v1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundal Height</td>
<td>Findings -> Size -> Fundal height</td>
<td>openEHR-EHR-CLUSTER.exam-utensus.v1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelvic exam</td>
<td>Vaginal exam using a speculum</td>
<td>openEHR-EHR-CLUSTER.exam-vagina.v1</td>
<td>Create new cluster archetype</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: OpenObsCare form modulation spreadsheet for the Admission note
Figure 3: Admission Template
Figure 4: OpenObsCare platform
idated by a group of specialists and so its robustness is inevitable. 1 archetype was created being derived from a pre-existent cluster - openEHR-EHR-CLUSTER.exam-vagina.v1. This was necessary since there wasn’t an already available archetype to represent the findings of a speculum examination performed on a pregnant woman. This archetype can also be used in a more general context e.g. in a gynecology routine consult. However it still lacks the analysis of obstetrics specialists by being submitted to validation in openEHR CKM.

This migration from traditional HIS to a more standardized and consistent OpenEHR specification has already been performed by others [9, 10]. As in the current paper the advantages of using pre-existent archetypes was valued and the biggest disadvantage resides in the translation of the concepts when creating templates. Other common problem noticed was the difference of terminologies [9] (e.g. degree and extent of oedema and fetal contractions) which can indicate the need for a national or international level standardization.

As the modulation of an existent EHR was possible and bearing in mind the advantages of using openEHR to achieve national interoperability we can see the enormous advantages of creating a national level comission to create obstetrics templates. They would have the minimal acceptable content. The advantages of this approach would be a common language spoken by all HIS in the country, a consensus on what is essential for an obstetrics EHR and the flexibility to allow different regions or locals to add more archetypes since the database schema doesn’t have to suffer big changes thus also being very well supported economically. The local archetype addition could be useful in cases where a specific detail of the obstetric history that isn’t contained in one the national accepted templates is necessary for academic purposes.

Since the templates were created but not translated to HTML and implemented in the OpenOb-scare version that was built with a database schema that adapts to OpenEHR specification, there is no information about the possible easiness or difficulty in performing this process.

Conclusion

In the current paper the modulation of clinical hospitalization data existent in an obstetrics HIS to the OpenEHR specification was performed. The process was easier than the "classic" one by which medical specialists transmit the requirements of the system and then these data models are created from scratch since it can be easily achieved by reusing existent
validated archetypes. Both OpenEHR and NEHTA CKM’s contain good solid archetypes with a community of medical specialists reviewing them in an iterative process that aims to achieve an EHR standardization that allows interoperability between different systems. There was only the need to create 1 new archetype and to edit other. Using the method described here in this paper the transition process to an interoperable and semantics standardized EHR can start. However there are still more steps ahead and the process of application and maintainability of this type of EHR must be ascertained. Furthermore this is an effort that we would expect to be more effective if there were nationwide standard templates defined by a special commission of specialists.

References

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhoc heading</td>
<td>openEHR-EHR-SECTION.adhoc.v1</td>
</tr>
<tr>
<td>Adverse Reaction</td>
<td>openEHR-EHR-EVALUATION.adverse_reaction.v1</td>
</tr>
<tr>
<td>Alcohol Use</td>
<td>openEHR-EHR-OBSERVATION.alcohol_use.v1</td>
</tr>
<tr>
<td>Blood Matching</td>
<td>openEHR-EHR-OBSERVATION.blood_match.v1</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td>openEHR-EHR-OBSERVATION.blood_pressure.v1</td>
</tr>
<tr>
<td>Body Mass Index</td>
<td>openEHR-EHR-OBSERVATION.body_mass_index.v1</td>
</tr>
<tr>
<td>Body Surface Area</td>
<td>openEHR-EHR-OBSERVATION.body_surface_area.v1</td>
</tr>
<tr>
<td>Body Temperature</td>
<td>openEHR-EHR-OBSERVATION.body_temperature.v1</td>
</tr>
<tr>
<td>Body Weight</td>
<td>openEHR-EHR-OBSERVATION.body_weight.v1</td>
</tr>
<tr>
<td>Examination of the cervix</td>
<td>openEHR-EHR-CLUSTER.exam-uterine_cervix.v1</td>
</tr>
<tr>
<td>Examination of the fetus</td>
<td>openEHR-EHR-CLUSTER.exam-fetus.v1</td>
</tr>
<tr>
<td>Examination of the uterus</td>
<td>openEHR-EHR-CLUSTER.exam-uterus.v1</td>
</tr>
<tr>
<td>Examination of the vulva</td>
<td>openEHR-EHR-CLUSTER.exam-vagina.v1</td>
</tr>
<tr>
<td>Examination</td>
<td>openEHR-EHR-CLUSTER.exam.v1</td>
</tr>
<tr>
<td>Family History</td>
<td>openEHR-EHR-COMPOSITION.family_history.v1</td>
</tr>
<tr>
<td>Family History</td>
<td>openEHR-EHR-EVALUATION.family_history.v1</td>
</tr>
<tr>
<td>Fetal Heart Monitoring</td>
<td>openEHR-EHR-OBSERVATION.fetal_heart-monitoring.v1</td>
</tr>
<tr>
<td>Fetal Movement</td>
<td>openEHR-EHR-OBSERVATION.fetal_movement.v1</td>
</tr>
<tr>
<td>Free text</td>
<td>openEHR-EHR-CLUSTER.free_text.v1</td>
</tr>
<tr>
<td>Gestation</td>
<td>openEHR-EHR-OBSERVATION.gestation.v1</td>
</tr>
<tr>
<td>Height/Length</td>
<td>openEHR-EHR-OBSERVATION.height.v1</td>
</tr>
<tr>
<td>Imaging examination</td>
<td>openEHR-EHR-ACTION.imaging_exam.v1</td>
</tr>
<tr>
<td>Imaging examination result</td>
<td>openEHR-EHR-OBSERVATION.imaging_exam_result.v1</td>
</tr>
<tr>
<td>Medication Order List</td>
<td>openEHR-EHR-SECTION.medication_order_list.v1</td>
</tr>
<tr>
<td>Medication Order</td>
<td>openEHR-EHR-INSTRUCTION.medication_order.v1</td>
</tr>
<tr>
<td>Oedema</td>
<td>openEHR-EHR-CLUSTER.oedema.v1</td>
</tr>
<tr>
<td>Physical Examination</td>
<td>openEHR-EHR-OBSERVATION.physical_exam.v1</td>
</tr>
<tr>
<td>Pregnancy Summary</td>
<td>openEHR-EHR-EVALUATION.pregnancy.v1</td>
</tr>
<tr>
<td>Problem/Diagnosis</td>
<td>openEHR-EHR-EVALUATION.problem_diagnosis.v1</td>
</tr>
<tr>
<td>Procedure Report</td>
<td>openEHR-EHR-COMPOSITION.report-procedure.v1</td>
</tr>
<tr>
<td>Procedure undertaken</td>
<td>openEHR-EHR-ACTION.procedure</td>
</tr>
<tr>
<td>Report Report</td>
<td>openEHR-EHR-COMPOSITION.report.v1</td>
</tr>
<tr>
<td>Review</td>
<td>openEHR-EHR-COMPOSITION.review.v1</td>
</tr>
<tr>
<td>Story/History</td>
<td>openEHR-EHR-OBSERVATION.story.v1</td>
</tr>
<tr>
<td>Substance Use</td>
<td>openEHR-EHR-OBSERVATION.substance_use.v1</td>
</tr>
<tr>
<td>Tobacco Use</td>
<td>openEHR-EHR-OBSERVATION.tobacco_use.v1</td>
</tr>
<tr>
<td>Urinalysis</td>
<td>openEHR-EHR-OBSERVATION.urinalysis.v1</td>
</tr>
<tr>
<td>Uterine contractions</td>
<td>openEHR-EHR-OBSERVATION.uterine_contractions.v1</td>
</tr>
</tbody>
</table>

Table 1: List of archetypes used - all taken from the openEHR CKM except for the Pregnancy Summary which was taken from NEHTA CKM and Examination of the vulva which was newly created
Agradecimentos

Neste espaço gostaria de agradecer a todas as pessoas que ao longo do meu percurso no Mestrado Integrado em Medicina me acompanharam e ajudaram, directa ou indirectamente, a cumprir os meus objetivos e a terminar esta etapa da minha formação académica.
Ao Professor Doutor Ricardo Correia, orientador desta tese de mestrado, agradeço todo o apoio e dedicação, que se revelaram em valiosas contribuições para o trabalho. Agradeço ainda o entusiasmo pelo qual sempre me acompanhou e me incentivou a ver uma perspectiva diferente da medicina.
Ao Doutor Gustavo Bacelar, o meu sincero agradecimento pela co-orientação neste projecto e pela total disponibilidade, que foi determinante para a elaboração desta tese.
Agradeço ainda o apoio incondicional dos meus pais e irmã, que me mostraram que os limites do humano são combatidos através do domínio da mente e carácter.
ANEXOS

[JAMIA Instructions for authors]
JAMIA Instructions for authors

Editorial policy
JAMIA considers publication of any original manuscript in biomedical and health informatics. This includes informatics manuscripts in the areas of: clinical care, clinical research, translational bioinformatics, consumer health, public health, and imaging.

Open Access
Authors can choose to have their article published Open Access for a fee of £1,200 (plus applicable VAT).

Colour figure charges
During submission you will be asked whether or not you agree to pay for the colour print publication of your colour images. This service is available to any author publishing within this journal for a fee of £500 per article. Authors can elect to publish online in colour and black and white in print, in which case the appropriate selection should be made upon submission.

Article types and word counts
JAMIA word limits exclude materials in Acknowledgments and in References sections. Supplemental materials such as additional tables, figures, data sets and source code can be included for online only publication. For all articles, authors are required to submit related published materials (including articles published in conference proceedings) to allow reviewers to assess the degree of overlap. These materials can be entered as appendices "for review only".

Please note that all submissions should be double-spaced.

Research and Applications
Research and Applications articles describe original work in the formulation, implementation, or evaluation of informatics-based studies and investigations. The articles do not need to be limited to hypothesis-driven research, and they can, for example, report on an innovative application of information technology, the detailed description of a new methodology, or the formulation and formative evaluation of a new model. The structured abstract should contain the headings: Objective, Materials and Methods, Results, Discussion, and Conclusion. The main text should, in addition to the sections corresponding to these headings, include a section describing Background and Significance.
Title page
The title page must contain the following information:

Title of the article.
Full name, postal address, e-mail and telephone number of the corresponding author.
Full name, department, institution, city and country of all co-authors.
Up to five keywords or phrases suitable for use in an index (it is recommended to use MeSH terms).
Word count, excluding title page, abstract, references, figures and tables.

Manuscript format
The manuscript must be submitted as a Word document. PDF is not accepted.

The manuscript should be presented in the following order:

Title page.
Abstract, or a summary for case reports (Note: references should not be included in abstracts or summaries).
Main text separated under appropriate headings and subheadings using the following hierarchy: BOLD CAPS, bold lower case, Plain text, Italics.
Tables should be in Word format and placed in the main text where the table is first cited.
Tables must be cited in the main text in numerical order.
Acknowledgments, Competing Interests, Funding and all other required statements. Reference list.

Images must be uploaded as separate files (view further details under the Figures/illustrations section). All images must be cited within the main text in numerical order and legends should be provided at the end of the manuscript.

Appendices should be uploaded using the File Designation
"Supplementary File" and cited in the main text.

Please remove any hidden text headers or footers from your file before submission.

Style

Abbreviations and symbols must be standard. SI units should be used throughout, except for blood pressure values which should be reported in mm Hg.

Whenever possible, drugs should be given their approved generic name. Where a proprietary (brand) name is used, it should begin with a capital letter.

Acronyms should be used sparingly and fully explained when first used.

Figures/illustrations

Images must be uploaded as separate files. All images must be cited within the main text in numerical order and legends should be provided at the end of the manuscript.

Colour images and charges

For certain journals, authors of unsolicited manuscripts that wish to publish colour figures in print will be charged a fee to cover the cost of printing. Refer to the specific journal's instructions for authors for more information.

Alternatively, authors are encouraged to supply colour illustrations for online publication and black and white versions for print publication. Colour publication online is offered at no charge, but the figure legend must not refer to the use of colours.

File types

Figures should be submitted in TIFF or EPS format. JPEG files are acceptable in some cases. A minimum resolution of 300 dpi is required, except for line art which should be 1200 dpi. Histograms should be presented in a simple, two-dimensional format, with no background grid.

During submission, ensure that the figure files are labelled with the correct File Designation of “Mono Image” for black and white figures and “Colour Image” for colour figures.
Figures are checked using automated quality control and if they are below the minimum standard you will be alerted and asked to resupply them.

Please ensure that any specific patient/hospital details are removed or blacked out (e.g. X-rays, MRI scans, etc). Figures that use a black bar to obscure a patient’s identity are NOT accepted.

Tables

Tables should be in Word format and placed in the main text where the table is first cited. Tables must be cited in the main text in numerical order. Please note that tables embedded as Excel files within the manuscript are NOT accepted. Tables in Excel should be copied and pasted into the manuscript Word file.

Tables should be self-explanatory and the data they contain must not be duplicated in the text or figures. Any tables submitted that are longer/larger than 2 pages will be published as online only supplementary material.

Multimedia files

You may submit multimedia files to enhance your article. Video files are preferred in .WMF or .AVI formats, but can also be supplied as .FLV, .Mov, and .MP4. When submitting, please ensure you upload them using the File Designation "Supplementary File - Video".

References

Authors are responsible for the accuracy of cited references and these should be checked before the manuscript is submitted.

Citing in the text

References must be numbered sequentially as they appear in the text. References cited in figures or tables (or in their legends and footnotes) should be numbered according to the place in the text where that table or figure is first cited. Reference numbers in the text should be inserted immediately after punctuation (with no word spacing)—for example,[6] not [6].

Where more than one reference is cited, these should be separated by a comma, for example,[1, 4, 39]. For sequences of consecutive numbers,
give the first and last number of the sequence separated by a hyphen, for example, [22-25]. References provided in this format are translated during the production process to superscript type, and act as hyperlinks from the text to the quoted references in electronic forms of the article.

Please note that if references are not cited in order the manuscript may be returned for amendment before it is passed on to the Editor for review.

Preparing the reference list

References must be numbered consecutively in the order in which they are mentioned in the text.

Only papers published or in press should be included in the reference list. Personal communications or unpublished data must be cited in parentheses in the text with the name(s) of the source(s) and the year. Authors should request permission from the source to cite unpublished data.

Journals from BMJ use a slightly modified version of Vancouver referencing style (see example below). The style template is available via Endnote. Note that The BMJ uses a different style.

BMJ reference style

List the names and initials of all authors if there are 3 or fewer; otherwise list the first 3 and add ‘et al.’ (The exception is the Journal of Medical Genetics, which lists all authors). Use one space only between words up to the year and then no spaces. The journal title should be in italic and abbreviated according to the style of Medline. If the journal is not listed in Medline then it should be written out in full.

Example references

Journal article

Chapter in book

Book
Abstract/supplement

Electronic citations
Websites are referenced with their URL and access date, and as much other information as is available. Access date is important as websites can be updated and URLs change. The "date accessed" can be later than the acceptance date of the paper, and it can be just the month accessed.

Electronic journal articles

Electronic letters

Digital Object Identifier (DOI)
A DOI is a unique string created to identify a piece of intellectual property in an online environment and is particularly useful for articles that are published online before appearing in print (and therefore have not yet been assigned the traditional volume, issue and page number references). The DOI is a permanent identifier of all versions of an article, whether raw manuscript or edited proof, online or in print. Thus the DOI should ideally be included in the citation even if you want to cite a print version of an article.

How to cite articles with a DOI before they have appeared in print

How to cite articles with a DOI once they have appeared in print

PLEASE NOTE: RESPONSIBILITY FOR THE ACCURACY AND COMPLETENESS OF REFERENCES RESTS ENTIRELY WITH THE AUTHOR.

Permissions
If you are using any material e.g. figures, tables or videos that have already been published elsewhere, you must obtain permission to reuse them from the copyright holder (this may be the publisher rather than the author) and include any required permission statements in the figure legends. This includes your own previously published material, if you are not the copyright holder.

It is the author’s responsibility to secure all permissions prior to publication.

Online only supplementary material
Additional figures and tables, methodology, references, raw data, etc may be published online only as supplementary material. If your paper exceeds the word count you should consider if any parts of the article could be published online only. Please note that these files will not be copyedited or typeset and will be published as supplied, therefore PDF files are preferred. All supplementary files should be uploaded using the File Designation "Supplementary File". Please ensure that any supplementary files are cited within the main text of the article. Some journals also encourage authors to submit translated versions of their abstracts in their local language, which are published online only alongside the English version. These should be uploaded using the File Designation “Abstract in local language”.

Statistics
Statistical analyses must explain the methods used.

Research reporting guidelines
Authors are encouraged to use the relevant research reporting guidelines for the study type provided by the EQUATOR Network. This will ensure that you provide enough information for editors, peer reviewers and readers to understand how the research was performed and to judge
whether the findings are likely to be reliable.

The key reporting guidelines are:

- Randomised controlled trials (RCTs): CONSORT guidelines
- Systematic reviews and meta-analyses: PRISMA guidelines and MOOSE guidelines
- Observational studies in epidemiology: STROBE guidelines and MOOSE guidelines
- Diagnostic accuracy studies: STARD guidelines
- Quality improvement studies: SQUIRE guidelines

Research checklists should be uploaded using the File Designation “Research Checklist”.

Pre-submission checklist

In order to reduce the chance of your manuscript being returned to you, please check:

Author information: Have you provided details of all of your co-authors? Is the information that you have entered into ScholarOne the same as the information on the manuscript title page?

Manuscript length and formatting: Have you checked that your manuscript doesn’t exceed the requirements for word count, number of tables and/or figures, and number of references? Have you provided your abstract in the correct format? Have you supplied any required additional information for your article type, such as key messages?

Tables: Have you embedded any tables into the main text? Have they been cited in the text? Have you provided appropriate table legends? Have you uploaded any lengthy tables as supplementary files for online publication?

Figures: Have you uploaded any figures separately from the text? Have they been supplied in an acceptable format and are they of sufficient quality? Are they suitable for black and white reproduction (unless you intend to pay any required fees for colour printing)? Have the files been labelled appropriately? Have the figures been cited in the text? Have you provided appropriate figure legends?

References: Have all of the references been cited in the text?

Supplementary files and appendices: Have you supplied these in an acceptable format? Have they been cited in the main text?

Statements: Have you included the necessary statements relating to contributorship, competing interests, data sharing and ethical approval?
Research reporting checklists: Have you either provided the appropriate statement for your study type, or explained why a checklist isn’t required?

Permissions: Have you obtained from the copyright holder to re-use any previously published material? Has the source been acknowledged?

Reviewers: Have you provided the names of any preferred and non-preferred reviewers?

Revised manuscripts: Have you supplied both a marked copy and a clean copy of your manuscript? Have you provided a point by point response to the reviewer and editor comments?

Information required for all authors submitting a manuscript to any BMJ journal:

- Manuscript files in the appropriate format, including a cover letter and title page
- Details of any co-authors (name, institution, city, country and email address)
- Details of preferred reviewers (name and email address)
- Word count, number of figures, number of tables, number of references and number of supplementary files for online only publication
- Competing interest statement
- Contributorship statement

Additional information that can be provided or may be required when submitting certain article types to certain journals:

- Name of the research funder(s)
- ORCID number(s) for all authors
- Names of any collaborators
- Details of non-preferred reviewers (name and email address)
- Clinical trial registration number
- Patient consent form
- Details of ethical approval
- Research reporting checklist (or a reason why one has not been provided)
- Data sharing statement
- Permission from the copyright holder to re-use previously published material
Title of an alternate BMJ journal to which your manuscript can be automatically submitted if rejected from your first choice journal