Tecnologias de Acumulação de Energia: Um levantamento simplificado

José Ricardo Pereira Peres Campos

Dissertação do MIEM
Orientador na FEUP: Prof. Carlos Manuel Coutinho Tavares de Pinho

Faculdade de Engenharia da Universidade do Porto
Mestrado Integrado em Engenharia Mecânica

Junho 2014
Resumo

A acumulação de energia é cada vez mais um assunto a ser analisado pela indústria, face à atual discrepância entre a oferta e procura energética, principalmente tendo em consideração que a oferta de energia disponibilizada por fontes renováveis tem cada vez maior impacto no combinado energético das nações. Como estas fontes renováveis apresentam grandes variações diárias e sazonais, a necessidade de acumulação energética é bem evidente.

O presente trabalho visa informar sobre os mais diversos sistemas de acumulação de energia, divididos em três formas de armazenamento: mecânica, eletroquímica e térmica. Foi dada particular atenção às tecnologias de bombagem hidroelétrica, ar comprimido, volantes de inércia, às baterias de Pb-ácido, de Ni-Cd e de iões de Lítio, aos sistemas de acumulação de energia térmica sensível e latente. É feita a comparação de todas as tecnologias mencionadas sob diversos pontos de vista. Dado o atual investimento destas tecnologias em inúmeras aplicações, exemplifica-se algumas delas focadas na área de Engenharia Mecânica.

Por fim, sumariza-se o conteúdo do trabalho introduzindo perspetivas futuras relativas à acumulação de energia.
Energy Storage Systems: A Review

Abstract
Due to the gap between supply and demand, energy storage is nowadays an extremely important issue that has to be taken into serious account by the general industry. Moreover the implementation of renewable energy sources leads to a greater impact on combined energy throughout the world. Since these energy resources are not steady in supply, it is obvious the need for energy storage in order to compensate for their inherent unsteadiness.

The present report informs about a variety of energy storage systems, divided into three main storage methods: mechanical, electrochemical and thermal. Particular attention is paid to pumped hydroelectric storage, compressed air energy storage, flywheel, secondary batteries and thermal energy storage. Comparison is made among all the above technologies considering certain aspects such as technical characteristics and capital costs. Given the today investment in these systems towards several applications, some practical examples in the field of Mechanical Engineering, and particularly in motor cars, are explained.

The final resume analyses some future perspectives based on the current state-of-the-art of the development of the energy storage systems.
Agradecimentos

Gostaria de agradecer às pessoas que me acompanhamaram e contribuíram direta ou indiretamente para a realização desta dissertação.

Com maior ênfase ao meu orientador, Professor Carlos Manuel Coutinho Tavares de Pinho, pela ajuda que sempre disponibilizou ao longo do semestre e ao seu vasto conhecimento que sempre quis partilhar.

À minha família, aos meus pais que sempre me deram apoio, como à minha irmã pela sua ajuda em certos momentos do semestre.
Índice de Conteúdos

Índice de figuras .. vi
Índice de tabelas .. viii
Lista de abreviaturas .. ix

1. Introdução ... 1
 1.1. Acumulação de energia .. 1
 1.2. A procura de energia .. 2
 1.3. Vantagens financeiras associadas aos sistemas de acumulação de energia 4
 1.4. Características tecno-econômicas dos sistemas de acumulação de energia 5
 1.5. Métodos de acumulação de energia ... 9

2. Estado-da-arte .. 11
 2.1. Acumulação de energia mecânica ... 11
 2.1.1. Bombagem hidroelétrica ... 11
 2.1.2. Ar comprimido ... 14
 2.1.3. Vantagens e inércia .. 17
 2.2. Acumulação de energia eletroquímica ... 19
 I. Baterias primárias ... 21
 II. Baterias secundárias ... 23
 2.3. Acumulação de energia térmica .. 30
 2.3.1. Calor sensível .. 31
 I. Depósito de água ... 32
 II. Aquiféros .. 34
 III. Aglomerado de rochas .. 37
 2.3.2. Calor latente .. 38
 I. Materiais de mudança de fase .. 38

3. Comparação das tecnologias de AE ... 49
 3.1. Maturidade técnica ... 49
 3.2. Potência e tempo de descarga ... 50
 3.3. Duração do armazenamento de energia .. 51
 3.4. Custo das instalações ... 52
 3.5. Rendimentos das tecnologias .. 53
 3.6. Energia específica e potência específica ... 54
 3.7. Tempo de vida e ciclo de vida .. 55
 3.8. Influência no meio ambiente ... 56

4. Exemplos de aplicações de sistemas de AE .. 59

5. Conclusões e perspetivas futuras ... 69

6. Referências e Bibliografia .. 73
Índice de figuras

Figura 1 – Variação da geração e necessidade de energia [2]. ... 3
Figura 2 – Campos de utilização de diferentes técnicas de AE de acordo com a energia acumulada e o trabalho produzido [3]. ... 8
Figura 3 - Principais métodos de acumulação de energia. ... 10
Figura 4 – Esquema de uma unidade de bombagem hidroelétrica [7]. .. 12
Figura 5 – Esquema de uma unidade de ar comprimido [2]. ... 15
Figura 6 – Esquema de um volante de inércia [9]. ... 18
Figura 7 - Sumário das principais tecnologias de AE eletroquímica. ... 20
Figura 8 - Baterias primárias e secundárias, adaptado de [12]. ... 22
Figura 9 - Estratificação das baterias secundárias segundo diferentes grupos com exemplos em cada. Adaptado de [3]. .. 23
Figura 10 – Dependência da profundidade de descarga no ciclo de vida de uma matéria Pb-ácido. [3]. ... 24
Figura 11 – Exemplo de uma bateria de Pb-ácido [9]. ... 25
Figura 12 – Variação do número de ciclos de vida com o nível de descarga [14]. 26
Figura 13 - Imagem de baterias de Ni-Cd. ... 27
Figura 14 – Processo químico nas baterias de íons de Lítio, adaptado de [3]. .. 28
Figura 15 – Relação do tamanho e peso para quatro diferentes baterias [16]. ... 29
Figura 16 – Exemplificação de mudanças de fase sensível e latente [8]. ... 31
Figura 17- Exemplo de um sistema de AE por calor sensível, adaptado de [6]. .. 33
Figura 18 – Acumulação de água em tanques subterrâneos, adaptação de [19]. 34
Figura 19 – Estrutura de um aquífero, adaptado de [19]. .. 35
Figura 20 – Possível utilização de aquífero em sistemas AVAC, [22]. .. 36
Figura 21 – Esquema de um sistema de aglomerado de rochas, adaptado de [1]. 38
Figura 22 - Classificação dos MMF [17]. ... 40
Figura 23 – Maturidade técnica de várias tecnologias de AE [2]. .. 50
Figura 24 – Rendimento de vários sistemas de AE [3]. .. 54
Figura 25 – Ciclo de Rankine orgânico [30]. ... 60
Figura 26 – Interior do carro da PSA [37]. ... 61
Figura 27 – A cor laranja representa o sistema do motor de combustão interna; a azul o sistema de ar comprimido [37]. .. 61
Figura 28 – Toyota TS040 Hybrid [38]. ... 62
Figura 29 – Motor/gerador elétrico [40]. ... 63
Figura 30 – Audi R18 [45]. .. 64
Figura 31 – Porsche 919 [46]. ...65
Figura 32 – BMW i8 [49]. ...66
Figura 33 - Sonda Galileo com baterias Li-SO\textsubscript{2} [50]. ...67
Figura 34 - Bateria primária Li-SO\textsubscript{2} na Mars Exploration Rover Lander [50].67
Figura 35 - Bateria de iões de lítio usada no MER Rover [50]. ...68
Figura 36 - Rover da missão MER que usa duas baterias de íons de lítio [50].68
Figura 37 - Equipamento de astronauta equipado com bateria de íons de lítio[50].68
Índice de tabelas

Tabela 1 – Principais características químicas das baterias abordadas [6,8].........................29
Tabela 2 - Propriedades térmicas a 20ºC de alguns materiais comuns nesta tecnologia, adaptado de [1, 17]. ...32
Tabela 3 – Aquíferos [1]..37
Tabela 4 - Propriedades necessárias dos MMF [1,17,24]...39
Tabela 5 – Características das cápsulas para MMF [24]...44
Tabela 6 – Ponto de fusão e calor latente de fusão de alguns MMF [1,17,24]46
Tabela 7 – Potência disponível e tempo de descarga das tecnologias de AE abordadas [3].....51
Tabela 8 – Auto descarga diária e tempo de armazenamento apropriado das tecnologias de AE abordadas [3] ..52
Tabela 9 – Custo por unidade de energia/potência das tecnologias de AE abordadas em US dólares [3]...53
Tabela 10 – Energia e potência específica das tecnologias de AE abordadas [3,5].............55
Tabela 11 – Tempo de vida e ciclo de vida das tecnologias de AE abordadas [3,5]56
Lista de abreviaturas

Português

<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>Acumulação de Energia</td>
</tr>
<tr>
<td>AEM</td>
<td>Acumulação de Energia Mecânica</td>
</tr>
<tr>
<td>AEBH</td>
<td>Acumulação de Energia por Bombagem Hidroelétrica</td>
</tr>
<tr>
<td>AEAC</td>
<td>Acumulação de Energia por Ar Comprimido</td>
</tr>
<tr>
<td>AET</td>
<td>Acumulação de Energia Térmica</td>
</tr>
<tr>
<td>AVAC</td>
<td>Aquecimento, Ventilação e Ar Condicionado</td>
</tr>
<tr>
<td>CO₂</td>
<td>Dióxido de carbono</td>
</tr>
<tr>
<td>CRO</td>
<td>Ciclo Rankine Orgânico</td>
</tr>
<tr>
<td>MMF</td>
<td>Materiais de Mudança de Fase</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotações por minuto</td>
</tr>
</tbody>
</table>

Inglês

<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL-TES</td>
<td>Aquiferous Low-temperature Thermal Energy Storage</td>
</tr>
<tr>
<td>CAES</td>
<td>Compressed Air Energy Storage</td>
</tr>
<tr>
<td>CES</td>
<td>Cryogenic Energy Storage</td>
</tr>
<tr>
<td>HT-TES</td>
<td>High-temperature Thermal Energy Storage</td>
</tr>
<tr>
<td>KERS</td>
<td>Kinetic Energy Recovery System</td>
</tr>
<tr>
<td>MER</td>
<td>Mars Exploration Rover</td>
</tr>
<tr>
<td>PHS</td>
<td>Pumped Hydroelectric Storage</td>
</tr>
<tr>
<td>PSB</td>
<td>Polysulphide bromide battery</td>
</tr>
<tr>
<td>SMES</td>
<td>Superconducting Magnetic Energy Storage</td>
</tr>
<tr>
<td>VRB</td>
<td>Vanadium Redox Battery</td>
</tr>
<tr>
<td>ZEBRA</td>
<td>Sodium nickel chloride Batteries</td>
</tr>
</tbody>
</table>
1. Introdução

1.1. Acumulação de energia

A acumulação de energia (AE) tem sido ultimamente desenvolvida a um ponto de poder vir a ter um forte impacto na tecnologia moderna. Em particular, para ir ao encontro das necessidades do mercado esta ciência é extremamente importante para o sucesso de qualquer fonte de energia. Por exemplo, a necessidade de haver acumulação de energia em aplicações relativas à energia solar é severa, especialmente quando a energia solar está pouco disponível, como é no caso do Inverno.

Os sistemas de AE podem contribuir significativamente para cobrirem as necessidades da sociedade através do uso de energia, de uma forma mais eficiente e ambientalmente mais benevolente, para aquecimento e arrefecimento, para fins aeroespaciais ou outras aplicações úteis. A estes sistemas estão associadas inúmeras vantagens tais como [1]:

- custos energéticos reduzidos;
- consumos energéticos reduzidos;
- melhoria da qualidade do ar interior;
- custos iniciais e de manutenção reduzidos;
- aumento da flexibilidade de operação;
- tamanho do equipamento reduzido;
- utilização do equipamento de uma forma mais eficaz;
- conservação de combustíveis fósseis;
- emissões reduzidas (por ex., CO₂ e clorofluorcarbonetos (CFCs)).

Os sistemas de AE têm um enorme potencial para aumentarem a eficácia dos equipamentos de conversão de energia e para facilitarem a substituição em larga escala dos combustíveis na economia mundial. A AE é complexa e não pode ser avaliada adequadamente sem antes se perceber detalhadamente as fontes de energia e a sua finalidade. Para se tornar viável e eficaz tem de ter por base uma série de ações coordenadas em vários setores energéticos para...
maximizar o seu potencial. Para se determinar se estes sistemas são úteis e atrativos ao ponto de valer a pena investir no seu desenvolvimento, é necessário que cumpram determinados critérios de desempenho. As condições futuras de operação devem ser avaliadas sem que limitem demasiado o intervalo do serviço. A versatilidade das tecnologias inerentes à AE deve ser tida em consideração em tais medidas.

1.2. A procura de energia

A procura de energia nos setores comerciais, industriais, públicos e residenciais varia diária, semanal e sazonalmente. Idealmente esta procura seria idêntica à energia produzida nos sistemas. Porém as horas de pico tornam-se as mais difíceis e caras de serem abastecidas. Os picos de consumo de eletricidade são geralmente providos pelas turbinas a gás convencionais ou por geradores a gasóleo, sendo estes métodos mais dispendiosos, para além de consumirem bens escassos. Assim, a AE proporciona um método alternativo de fornecer a energia indispensável nestes picos (figura 1). Da mesma forma os sistemas de AE podem melhorar as instalações de cogeração, solares, eólicas e hídricas. Seguem-se alguns detalhes destas aplicações:

- **Utilidades.** Estes sistemas são relativamente baratos e complementam as horas de pico de consumo, reduzindo a dependência das instalações convencionais;
- **Indústria.** O desperdício de calor a altas temperaturas de vários processos industriais pode ser armazenado para posterior pré-aquecimento e outros processos de aquecimento;
- **Cogeração.** A produção em simultâneo de calor e eletricidade raramente iguala as necessidades, assim o excesso de ambos pode ser armazenado para subsequente uso;
- **Sistemas de energia solar.** Pelo armazenamento da energia solar em excesso produzida em dias de verão para uso posterior em dias nublados ou à noite, os sistemas de AE podem aumentar o rendimento destes sistemas;
- **Energia eólica e hídrica.** Estes sistemas permitem, que ao trabalharem em alturas de baixa procura energética, possam assim ter disponível energia para os picos.
Hoje em dia as civilizações industrializadas concentram uma abundante capacidade de auto fornecimento de energia. O modo habitual de conversão de energia passa pela libertação de calor que é posteriormente fornecido a consumidores. Um exemplo comum é o vapor de água, que é largamente empregue em processos industriais e obtém-se através da libertação de calor na queima de combustíveis para deste modo permitir a evaporação da água. A eletricidade, fonte energética cada vez mais preponderante, é obtida também através dos ciclos de turbina a vapor (ciclo Rankine) alimentados a combustíveis fósseis ou energia nuclear. Porém, a exponencial subida da aplicação de sistemas movidos a fontes de energia renováveis, como a energia solar, faz com que a oferta de energia não seja constante. Dada a intermitência de produção destes sistemas é necessário frequentemente a existência em síncrono de uma instalação convencional que seja capaz de fornecer a restante energia para que se possa suprimir as carências energéticas. Como tal, os resultados que daí advêm apresentam baixas rendimentos e grandes investimentos pois estes sistemas não trabalham às suas máximas capacidades na maior parte do tempo.

Em sentido contrário, os capitais terão maior rentabilidade se forem investidos em instalações de baixa produção pois estas tendem a operar a condições próximas das da capacidade máxima, e como tal permitem acumular maior quantidade de energia para ser aproveitada nos períodos de exigência crítica.

Os ramos associados à AE não se restringem apenas à indústria. O armazenamento de energia do ponto de vista residencial e de centros comerciais irá certamente ser essencial no futuro dos sistemas de aquecimento e arrefecimento solar. No setor de transportes, atualmente dominado por veículos com motores de combustão interna, unidades de acumulação de energia elétrica poderão a vir encorajar fortemente o uso de veículos elétricos, reduzindo assim a procura de petróleo.
O aumento do custo do petróleo, a crescente dificuldade em adquirir capitais suficientes para se investir na expansão dos sistemas de produção de energia e a emergência de novas tecnologias de AE tem levado a um recente ressurgimento de interesse nas possibilidades adjacentes à aposta de sistema de AE. Para o fornecedor de energia, a energia é uma comodidade cujo valor é estabelecido de acordo com o custo de produção e a cota de mercado. Para o consumidor, o valor de energia está contido na contribuição associada à produção de bens e serviços bem como no conforto pessoal. Ainda que seja unânime que as formas alternativas de produção de energia bem como futurísticas formas de a produzir sejam tidas com grande mérito, é provável que as decisões continuem a ser feitas com base em avaliações dos custos dos meios alternativos para atingir as necessidades. Em suma, a decisão sobre a aplicação de sistemas de AE passará pela estimativa das poupanças subjacentes e pela viabilidade da sua comercialização [1].

1.3. Vantagens financeiras associadas aos sistemas de acumulação de energia

A crescente implementação de sistemas de acumulação de energia sincronizados com os equipamentos de produção elétrica intrínsecos ao sistema irá cada vez mais conduzir a um forte impacto no que diz respeito aos sistemas de produção energética atuais. Assim, apresenta-se de seguida algumas vantagens económicas inerentes a estes sistemas [3]:

- **Redução de custos ou melhor racionalização da energia** – a compra de eletricidade nos baixos períodos de procura permite acionar os sistemas de acumulação de energia bem como vender a eletricidade produzida nos picos energéticos a um maior valor de mercado;

- **Poupança de custos** – em zonas onde a produção de energia, por meio convencional, é apertada/restrita face à necessidade da mesma, estes sistemas permitem não só a geração energética em falta como a possibilidade de investir em novas instalações;

- **Redução da dependência nas redes elétricas** – a energia acumulada pode servir como fonte de energia usada para abastecer as necessidades do mercado sem sobrecarregar a rede elétrica, especialmente nos picos energéticos;

- **Aumento da credibilidade de distribuição elétrica** – a acumulação de energia permite reduzir a intermitência na saída das grelhas de transmissão e distribuição. Este fator é importante para as indústrias onde uma falha no fornecimento de energia pode levar a custos avultados;
• Aumento da qualidade/rendimento energético face à redução de perdas – estes sistemas reduzem as perdas financeiras associadas às anomalias existentes nos sistemas de distribuição. As anomalias ocorrem maioritariamente quando a rede elétrica é sobrecarregada podendo inclusive danificar os equipamentos em uso;

• Melhor aproveitamento das fontes de energias renováveis – a acumulação de energia proveniente de uma fonte renovável permite nivelar a produção de energia associada à intermitência destas fontes, aproximando-se assim com mais facilidade das exigências do mercado.

1.4. Características tecno-económicas dos sistemas de acumulação de energia

Como demonstrado em [4] existem várias características técnicas nos sistemas de acumulação de energia que influenciam a análise económica aliada a estas aplicações. De seguida são enumeradas algumas destas características.

Capacidade de armazenamento

Este parâmetro representa a quantidade de energia que um sistema pode acumular aquando da sua total carga, embora essa energia não seja, por vezes, totalmente descarregada/operacional. Nestes casos, as constantes cargas e descargas podem diminuir o rendimento do sistema.

Potência nominal do sistema

Esta característica permite o conhecimento do tamanho da instalação em questão, nomeadamente da sua potência nominal. Este valor indica o valor energético máximo disponível a produzir pela instalação operando nas condições normais de funcionamento.

Potência e energia específica

Duas variáveis relacionadas que permitem o conhecimento da energia que pode ser armazenada em sistemas que englobam um dado volume ou uma dada massa, energia específica, e também a potência que pode ser fornecida pelo sistema com um dado volume ou massa, potência específica. Estas variáveis são importantes, exceto para aplicações estacionárias, para os casos onde o espaço existente ou massa máxima disponível é um fator decisivo.

Autonomia

A duração de descarga corresponde ao tempo que o sistema demora a descarregar a uma taxa definida sem ser recarregada durante o processo. A autonomia é um importante critério na
análise da viabilidade de uma certa aplicações e no custo de uma central de acumulação de energia. Assim, este parâmetro depende das condições operacionais de um sistema na vertente energética (ciclos de descarga).

Rendimento

Todos os processos de transferência e conversão de energia têm perdas associadas. Nos sistemas em estudo, o rendimento traduz a relação entre a energia acumulada na instalação e a energia que é produzida pelo mesmo sistema.

Tipicamente os valores de rendimento de variados sistemas são: 60% a 75% para as baterias eletroquímicas; 73% a 80% para os sistemas de acumulação de energia por ar comprimido; 75% a 78% para a energia hídrica reversível; 80% a 90% para os volantes de inércia; e 95% para os condensadores.

Embora estes valores típicos sejam os convencionalmente associados aos inúmeros sistemas de acumulação de energia através de uma análise generalista, o facto é que o rendimento deve ser determinado com base em ciclos de operação realistas face à aplicação em questão e ao próprio sistema. No caso da energia acumulada por volantes de inércia, o rendimento pode atingir cerca de 50% se o diferencial entre a carga e descarga for de 24h.

Custo operacional na acumulação de energia

Esta característica assenta essencialmente em dois pontos importantes: custos associados à conceção de energia e custos não associados a energia. Neste último ponto, integram-se os custos com os trabalhadores, manutenção da instalação e a aquisição de novos equipamentos para substituir os já danificados. O conhecimento do custo operacional de uma central é chave para se poder caracterizar a relação custo-rendimento de uma unidade de acumulação de energia.

Preferencialmente, quando estes sistemas são usados em aplicações onde irão ser sobrecarregados, o rendimento associado deve ser alto e o custo de operação baixo para que o sistema dê lucro, ou seja, não aconteça que o custo de carga e descarga seja superior ao proveito.

Durabilidade

Durabilidade refere-se ao número de vezes que a unidade de AE consegue libertar a energia contida após cada recarga, que se expressa como o número máximo de ciclos, sendo uma ciclo composto por uma carga e uma descarga. Todos os sistemas de AE se degradam devido à utilização de que são alvo onde intrinsecamente estão associadas a fadiga e desgaste. Estes fatores são até mais determinantes que a degradação térmica e por conseguinte as principais
causas de envelhecimento dos sistemas. Para alguns destes sistemas, como o caso das baterias eletroquímicas, o nível de degradação depende, entre outras, das condições de operação.

Deste modo, é necessário ter em consideração o custo aliado à substituição da unidade de AE por ação da degradação, já que este valor terá de ser adicionado ao custo operacional do sistema de AE.

Por fim, a avaliação da durabilidade ou ciclo de vida de um sistema de armazenamento torna-se um aspeto preponderante na escolha do mesmo. Todavia, a fadiga acumulada representa um processo complexo de avaliar e a própria quantificação do número de ciclos de vida torna-se delicado pois este depende fortemente do nível de descarga a que o sistema é submetido.

Nível de confiança do sistema de AE

O nível de confiança associado a um sistema de AE será sempre um fator importante pois transmite a garantia ao operador que irá satisfazer as necessidades do mercado. Como tal, o engenheiro de projeto terá inevitavelmente de desenhar uma instalação que produza energia necessária e assim se torne um sistema confiável na tarefa que terá de cumprir.

Tempo de resposta

O tempo de resposta de um sistema traduz o intervalo de tempo entre uma situação estacionária com 100% de energia armazenada à total descarga.

A grande maioria dos sistemas de AE têm um tempo de resposta na ordem dos segundos, porém as tecnologias relativas ao ar comprimido e aos recursos hídricos tendem a serem as mais lentas com tempos de resposta de minutos/horas. Este facto prende-se com alguns dos componentes destes sistemas que podem demorar até minutos para atingirem a carga máxima, contudo são em grande parte capazes de responder às necessidades de mercado.

Taxa de produção de trabalho

Uma importante característica dos sistemas de acumulação é a taxa de produção de trabalho. Este atributo permite o conhecimento da taxa a que é possível produzir trabalho, ou seja, é um complemento ao tempo de resposta. Deste modo, as tecnologias com baixo tempo de resposta tendem também a terem baixa taxa de produção de trabalho.

Taxa de carregamento

A taxa de carregamento é um critério importante para se definir a quantidade de tempo necessária a que o sistema seja recarregado até 100%. Se um sistema não tiver a capacidade de recarregar rapidamente, poderá não conseguir fornecer energia suficiente no tempo devido.
Auto descarga e dissipação de energia

Qualquer tipo de AE que dependa de processo químico é volátil à auto descarga. A auto descarga acontece devido a reações químicas que ocorrem enquanto a energia está armazenada. Cada tipo de processo químico é diferente, tanto em termos de reações químicas envolvidas como na taxa de auto descarga. Acumulação de energia por via mecânica tende a ter dissipação de energia. Por exemplo, os sistemas de energia hídrica reversível podem perder energia por evaporação da água. Já os sistemas de acumulação de ar comprimido podem perder energia por fuga de ar dos reservatórios.

Fiabilidade e adaptação à fonte de geração de energia

Para se tornar bastante eficiente, um sistema de AE tem de estar bem adaptado ao tipo de aplicação (áreas isoladas de pequena ou média escala, entre outros) bem como ao tipo de produção (renovável, móvel, permanente, entre outros).

A figura seguinte representa a relação entre a potência de saída e a energia armazenada, para diferentes tecnologias de acumulação.

![Figura 2 – Campos de utilização de diferentes técnicas de AE de acordo com a energia acumulada e o trabalho produzido][3].

Restrições operacionais

Especially relacionado com segurança onde, entre outras, se incluem explosões ou rebentamento de peças de um sistema, ou também com condições operacionais (pressão, temperatura, etc), estas restrições podem influenciar, em função das necessidades energéticas, a escolha do respetivo sistema de AE.
Por outro lado, não sendo um critério fulcral como os anteriores, o aspeto ambiental pode ter repercussões do ponto de vista económico, isto porque o material usado numa tecnologia (materiais recicláveis) pode ser importante no campo das vendas. Recentemente foi averiguado nos países Nórdicos que uma grande margem dos habitantes prefere pagar mais pela energia do que contribuir para o aumento da poluição.

1.5. Métodos de acumulação de energia

Para muitas tecnologias energéticas, o armazenamento é crucial. Se se considerar a acumulação de combustíveis como o armazenamento da energia contida neles, então o petróleo é um excelente exemplo. A quantidade enorme de petróleo acumulado em todo o Mundo é fulcral para manter viáveis sistemas económicos e tecnológicos.

AE também inclui armazenamento de energia sob a forma de calor. Assim é possível conter calor numa unidade específica para posterior uso quando necessário. Um exemplo típico é água quente preservada em depósitos para fins domésticos ou industriais. Como tal, esta água armazenada pode minimizar a necessidade de produção de água quente ou vapor.

Em relação a recentes tecnologias de produção de energia, sendo estas derivadas de fontes de energias renováveis (sol e vento maioritariamente), o aumentar do rendimento da AE pode tornar estas tecnologias cada vez mais cruciais no âmbito da produção de energia. Não só compensa os baixos rendimentos destes sistemas cujas fontes são ilimitadas como os propulsiona para um patamar onde o desenvolvimento de por exemplo veículos elétricos se torna sustentada. Hoje em dia nesta área as baterias são convencionalmente usadas simplesmente para a ignição do motor e não para o seu movimento.

Assim, uma grande variedade de tecnologias de AE têm sido submetidas a exaustivos projetos de desenvolvimento para desse modo poderem se tornar viáveis no que à oferta de energia diz respeito. A figura seguinte representa os diferentes métodos que irão ser abordados neste trabalho [1].
Figura 3 - Principais métodos de acumulação de energia.
2. Estado-da-arte

2.1. Acumulação de energia mecânica

Os sistemas de acumulação de energia mecânica (AEM) compreendem acumulação de energia gravitacional ou bombagem hidroelétrica (AEBH), acumulação de energia por ar comprimido (AEAC) e volantes de inércia. As tecnologias de AEAC e AEBH são geralmente usadas em aplicações de grandes dimensões que envolvem grandes quantidades de energia, por outro lado os volantes de inércia são empregados em aplicações de mais baixa escala energética. O processo de armazenamento é iniciado em alturas do dia de baixa procura energética como é o caso das noites e fins de semana. Assim, quando se atingem picos de procura energética, os quais por vezes não são suficientemente providos pelos sistemas convencionais de produção, as tecnologias de AE entram em funcionamento.

2.1.1. Bombagem hidroelétrica

A mais antiga (1929) e mais predominante tecnologia de AE até aos nossos dias tem sido a Bombagem hidroelétrica [5]. Até bem há pouco tempo, início do século XX, as centrais hidroelétricas eram equipadas com mecanismos de bombagem como suplemento ao caudal insuflado naturalmente pelos afluentes adjacentes à albufeira superior, por forma a criar sazonalmente um volume suficiente de água para os sistemas hidroelétricos. Apenas numa segunda fase de evolução dos sistemas termoelétricos é que centrais hidroelétricas foram remodeladas ou construídas com o intuito de criar barragens somente abastecidas por água bombeada da barragem inferior para a superior. Desta forma nasceram as primeiras centrais de acumulação de energia por bombagem hidroelétrica [6].

A sua simplicidade de conceção, relativo baixo custo por unidade de energia, a sua similaridade de funcionamento com os sistemas hídricos fazem desta tecnologia a principal no ramo da AE [5]. Tipicamente este sistema permite entre 100 MW a 3000 MW de potência de...
saída. Segundo [2] considerando todas as centrais de AEBH existentes no mundo, estas equivalem a 3% da geração total de eletricidade.

Componentes

Como se verifica na figura 4 esta tecnologia consiste em:

- Dois reservatórios localizados a diferentes alturas;
- Uma unidade de bombeamento de água para o reservatório mais elevado de modo a se armazenar eletricidade sob a forma de energia potencial da água acumulada;
- Uma turbina acoplada a um gerador para produção de eletricidade nos picos de procura energética [2].

![Diagrama de bombagem hidroelétrica](image)

Figura 4 – Esquema de uma unidade de bombagem hidroelétrica [7].

Funcionamento

Assim, esta tecnologia consiste em duas albufeiras a diferentes alturas ligadas por uma tubagem. No modo de armazenamento de energia um motor é acionado eletricamente induzindo assim o movimento das pás da bomba que bombeia água para a barragem superior. Quando é necessário produzir eletricidade, a água percorre o sentido contrário da tubagem acionando assim a turbina. Esta por sua vez está acoplada a um gerador e como tal a turbina
rodando também o gerador roda produzindo eletricidade. Hoje em dia o motor e gerador são um só já que a eletricidade não só pode ser produzida quando este é atuado como também pode ser induzida externamente originando assim o seu movimento.

Neste sistema existem duas variáveis fundamentais para se caracterizar a energia disponível de se produzir: a diferença de cotas entre as albufeiras e o caudal que circula na instalação. Esta análise vem do conhecimento prévio de que a energia potencial é proporcional à altura e massa do fluido de trabalho. Assim, dado que a diferença de cotas é constante num dado sistema hídrico, quanto maior for a massa de água envolvida maior vai ser a capacidade de produção de energia [8].

Desvantagens

Este sistema requer condições geográficas especiais pois não só são necessárias duas albufeiras a diferentes altitudes como quanto maior for esta diferença de altitude melhor. Naturalmente que esta configuração geográfica é mais prevalente nas regiões montanhosas que por outro lado têm uma distância elevada relativamente às redes elétricas como componente principal na credibilidade e rendimento destas instalações.

Variações

Atualmente outras configurações são usadas sendo elas [5]:

- Armazenamento hidroelétrico subterrâneo
 - A albufeira com menor altitude é construída debaixo de terra a várias centenas de metros e a de maior na superfície terrestre. Esta configuração permite reduzir perdas associadas a fricção (deixa de ter componente transversal ao escoamento visto que a tubagem é vertical) e o impacto ambiental é inferior pois apenas será necessário um reservatório na superfície. Requer pois condições geográficas específicas.

- Armazenamento hidroelétrico de água do mar
 - À semelhança do anterior este sistema contém apenas o reservatório mais elevado na crosta terrestre, sendo que o mais baixo é simplesmente o mar. Tem a vantagem face ao anterior de ser implementado em maior número de localizações, isto para países com costa marítima. Por outro tem as desvantagens de como o fluido de trabalho é água do mar, a qual pode levar à corrosão da tubagem bem como a insuflação dessa água na albufeira superior poder afetar negativamente a ecologia do lugar.
Rendimento

O processo de bombear água para o reservatório superior e o processo contrário para produzir energia não é 100 % eficiente. Isto por que parte da eletricidade usada para acionar a bomba não irá ser recuperada.

A limitação destes sistemas prende-se maioritariamente com o rendimento da turbina e bomba, embora perdas por fricção nas tubagens também desempenhem um fator a considerar. Por outro lado as perdas por evaporação de água podem ser anuladas pela chuva que repõe o nível de água habitual. Desta forma, é frequente considerar-se que estes sistemas têm rendimentos entre 70 e 80 % [2,5,8].

2.1.2. Ar comprimido

Este método a par do AEBH é o que disponibiliza mais energia acumulada numa só instalação. O ar comprimido mantém-se acumulado em formações geológicas debaixo de terra como cavernas por exemplo.

Os sistemas de acumulação de energia por ar comprimido (AEAC) têm um funcionamento idêntico aos sistemas convencionais de turbinas a gás, com a exceção de que a compressão e expansão ocorrem independentemente e a diferentes alturas. Assim, enquanto nos sistemas convencionais cerca de dois terços da energia produzida é usada para acionar o compressor, nos sistemas de AEAC toda a energia produzida pelo gerador pode ser aproveitada para fornecer à rede [8].

Embora seja uma tecnologia com grande maturidade, existem apenas duas centrais de AEAC a operarem em todo o mundo. A mais antiga situa-se na Alemanha desde 1978 com 290 MW de potência nominal, que consegue gerar em duas horas. A outra, situada nos Estados Unidos da América desde 1991, tem uma potência nominal de 110 MW. Atualmente existem vários projetos de implementação desta tecnologia, com ênfase numa central de 2700 MW também nos Estados Unidos e com um volume de armazenamento de ar 240 vezes superior ao volume nas centrais já em operação [3].

Esta tecnologia tem aplicação em dois níveis energéticos totalmente distintos. Um é o já apresentado, o outro é a um nível bastante inferior, nomeadamente na indústria automóvel como exemplificado no capítulo 4.
Componentes

- Um conjunto motor e gerador que emprega embraiagens para promover alternância de acoplamento tanto ao compressor como à turbina;
- Um compressor com duas ou mais etapas de compressão, que inclui arrefecedores intermédios e arrefecedores posteriores para reduzir a temperatura do ar e consequentemente a sua massa volúmica;
- Uma turbina com dois andares de expansão, alta e baixa pressão (expansão em cascata);
- Um reservatório, onde o ar pressurizado é armazenado, que pode ser uma gruta subterrânea já existente ou escavada, ou uma gruta de sal, entre outras formações geológicas como aquíferos;
- Camara de combustão onde se mistura o ar comprimido com um combustível como gás natural, gasolina ou hidrogénio;
- Equipamento extra para controlar e auxiliar unidades de armazenamento de combustível e permutadores de calor [2].

Figura 5 – Esquema de uma unidade de ar comprimido [2].
Funcionamento

Durante a compressão, eletricidade proveniente da rede é usada para movimentar o compressor pressurizando assim o ar entre 4 e 8 MPa [2]. Como a densidade é inversamente proporcional à temperatura, são intercalados com o compressor arrefecedores intermédios e posteriores para que o ar seja arrefecido e portanto reduzindo-se o volume de armazenamento necessário aumentando assim o rendimento de compressão. Seguidamente o ar é insuflado para reservatórios a uma dada profundidade debaixo do solo com propriedades térmicas que reduzem as tensões mecânicas nas paredes do reservatório [8].

Assim que seja necessário produzir energia, o ar acumulado é libertado passando assim à segunda fase do sistema térmico. Durante essa mesma descarga procede-se à combustão de combustível pela injeção de ar num queimador, passando então os produtos da combustão pela turbina onde se expandem e originam a rotação da mesma e de um gerador, pois ambos estão acoplados, produzindo eletricidade. Frequentemente os gases quentes da combustão, oriundos da turbina, passam num permutador libertando energia térmica que irá aquecer o ar proveniente do reservatório, e previamente ao processo de combustão, num processo regenerativo. O calor libertado do permutador pode também ser aproveitado como fonte de calor podendo assim ser este sistema ser tratado como um ciclo de cogeração [5]. Para efeitos do aproveitamento combinado de energia mecânica (ou elétrica) e térmica, não só se pode aproveitar esta energia térmica residual à saída da turbina mas também se pode aproveitar o calor que pode ser extraído ao ar após a sua compressão.

Vantagens face aos sistemas convencionais de turbinas a gás

Ao passo que nos sistemas convencionais parte da energia produzida serve para alimentar o compressor, nos sistemas de AEAC toda a energia produzida no gerador serve apenas para minimizar o risco da oferta ser inferior ao de procura nos picos energéticos, ou seja, toda a energia será fornecida à rede elétrica. Isto porque o compressor trabalha apenas nos períodos de baixa procura como é o caso das noites. Assim, será necessário a implementação de uma instalação com potência nominal superior à de uma instalação convencional [9].

Variações

- **Ciclo diabático de AEAC** – esta conceção é a que é atualmente usada neste tipo de sistemas. O calor que é gerado na compressão é dissipado para o exterior e por sua vez aquando da expansão o ar deve ser novamente aquecido tipicamente através de combustão por gás natural. Assim, a libertação de calor e consumo de combustível
resulta na perda de rendimento do sistema embora este sistema seja mais simples de implementar que o adiabático.

- **Ciclo adiabático de AEAC** – neste ciclo o calor libertado durante a compressão é armazenado e serve para reaquecer o ar durante a expansão reduzindo assim o consumo de combustível. É cerca de 20-30 % mais dispendioso que uma central convencional [3];

- **Ciclo híbrido** – esta variação permite que o sistema opere como sistema convencional de turbina a gás ou como sistema de AEAC. Nas horas de ponta de procura de energia o ar comprimido armazenado serve para aumentar a produção elétrica, em períodos de baixa procura de eletricidade a central ou armazena ar ou funciona apenas como uma central convencional [5].

Rendimento

Estes sistemas têm rendimento associados entre 70 a 89 % essencialmente relacionados com os rendimentos dos componentes que o compõem.

2.1.3. Volantes de inércia

Generalidades

Acumular energia sob a forma de energia cinética (normalmente por períodos curtos) através de volantes de inércia é um conceito bastante antigo e atualmente é considerado como um método com vasto campo de utilização, competindo hoje em dia com as baterias eletroquímicas. Neste tipo de sistema, a energia é armazenada no movimento rotacional dos volantes de inércia [9].

Funcionamento

Este mecanismo armazena energia sob a forma de energia cinética através de discos rotacionais (figura 6). O acionamento é feito através de um motor que atua no disco fornecendo-lhe um binário que provoca a rotação deste e que se mantém até que toda a energia seja dissipada ou que seja necessária de produzir. Nesse instante o mesmo disco atua um gerador que produz eletricidade. O motor e gerador são um só componente que se pode diferenciar consoante a eletricidade é induzida ou gerada. A velocidade angular do disco aumenta na fase de carga e diminui durante a descarga. A energia total disponível no volante de inércia depende da massa, tamanho e velocidade angular deste como se verifica na equação seguinte:
onde E é a energia cinética, I é o momento de inércia, m é a massa do disco, r é o raio do disco e ω a velocidade de rotação do disco.

Isto implica que aumentar a velocidade de rotação do disco tem um maior impacto na geração de energia do que a aumentar massa do dispositivo [5].

A ilustração seguinte demonstra um sistema mecânico de volante de inércia que integra diversos componentes. A envolvente do sistema permite criar uma atmosfera quase de vácuo ($10^{-6} - 10^{-8}$ atm) para assim reduzir perdas por atrito no contacto do disco com o ar e proteger o sistema de perturbações exteriores [2].

![Esquema de um volante de inércia](image)

Figura 6 – Esquema de um volante de inércia [9].

Variações

- **Volantes de baixa velocidade** - a grande parte destes sistemas têm velocidades de 10000 rpm ou menos e são constituídos por discos metálicos pesados. O veio pode ser horizontal ou vertical e os rolamentos podem ser mecânicos ou magnéticos.

- **Volantes de alta velocidade** – estes sistemas atuam a velocidades acima das 10000 rpm e como tal, os esforços e fadiga a que o material do volante é sujeito são elevados. Consequentemente para estes sistemas são empregues materiais mais resistentes como
O caso de compósitos, os rolamentos passam a ser exclusivamente magnéticos e o veio vertical [5].

Rendimento

O rendimento de um sistema de acumulação de energia através de volantes de inércia durante os ciclos de carga e descarga vai depender da frequência de utilização associada. Existem duas principais fontes de perdas neste sistema: resistência ao ar e os rolamentos. A resistência ao ar pode ser minimizada controlando a atmosfera dentro do sistema, o mais próximo possível de vácuo e os rolamentos se forem magnéticos eliminam as forças de atrito. Assim o rendimento pode rondar os 85% em aplicações de descarga logo após a carga do volante e cair até 45% depois de 24 horas sem que se proceda à produção de eletricidade por descarga do volante [6].

Vantagens

Os volantes de inércia têm grande durabilidade podendo ser submetidos a ciclos de carga e descarga em maior número do que as baterias.

São usados principalmente em aplicações que requerem grande capacidade de produção de eletricidade em curtos espaços de tempo, na ordem de 10 s / kW.

2.2. Acumulação de energia eletroquímica

A produção de energia baseada na geração de eletricidade através de fontes de energia renováveis como o Sol e vento tem um enorme potencial para no futuro se igualar a oferta à crescente procura energética. Contudo, a geração de eletricidade através destas fontes renováveis mas intermitentes requer tecnologias de acumulação de energia elétrica eficientes. Tanto o rendimento como a durabilidade são os principais fatores limitadores para se poder difundir e adotar a conceção de energia via fontes renováveis. Isto tanto acontece a nível nacional ou regional, como também nos setores mais pequenos, casas e automóveis. Assim, o contínuo desenvolvimento de mais eficientes e novos sistemas de AE eletroquímica é necessário para se conseguir encurtar o desnível entre a procura e a oferta [8].
Como indica a figura anterior a energia elétrica pode ser armazenada através de diversas tecnologias. Segue-se uma breve explicação de cada uma destas tecnologias (com exceção das baterias pois estas serão abordadas detalhadamente mais à frente):

- **Supercondutor magnético** – é a única tecnologia conhecida que armazena energia elétrica diretamente por corrente elétrica que atravessa uma bobine, feita de um material supercondutor, gerando assim um campo magnético e perdas associadas muito baixas [2]. Estes dispositivos são extremamente eficientes (97 % [2]), de resposta rápida, benignos para o ambiente, contudo são caros [5].

- **Célula de combustível** – tal como uma bateria, gera eletricidade a partir de uma reação eletroquímica. Porém, a célula de combustível é alimentada externamente de energia química que proporciona o seu contínuo funcionamento enquanto lhe for provida combustível e oxidante. Existem variadas células, sendo a de hidrogénio a mais conhecida, nesta a fonte de energia provém do hidrogénio e de uma fonte de oxigénio (normalmente ar) [10]. Como características principais possuem elevada energia específica, de 0.6 a 1.2 kWh/kg contudo baixos rendimentos, entre 20 % a 50 % [2].

- **Condensador** - a forma mais direta de armazenar energia elétrica é com um condensador. Na sua configuração mais simples, apenas duas placas separadas por um isolante elétrico de nome dielétrico o compõem. A atuação de um
Tecnologias de acumulação de energia: Um levantamento simplificado

campo elétrico acima do limite da sua rigidez dielétrica permite o fluxo de corrente elétrica entre as placas (elétrodos). Estes dispositivos podem ser carregados mais rapidamente do que as baterias convencionais e submetidas a milhares de ciclos sempre com grandes rendimentos. Todavia a energia específica dos condensadores é muito baixa para se considerar o seu uso em grandes escalas de AE [8]. Assim, recentes progressos levaram à criação dos super condensadores. As grandes diferenças estão na utilização de uma solução eletrolítica em vez do dielétrico e em carbono poroso como material dos elétrodos. Embora a capacidade de armazenar energia seja muito superior à dos condensadores tradicionais, os super-condensadores também têm o problema da auto descarga, similarmente aos volantes de inércia [2].

Entre as tecnologias principais neste setor estão as baterias e os condensadores. Embora o condensador eletroquímico seja uma tecnologia promissora para a AE elétrica, especialmente devido à sua grande gama de potência, a sua energia específica é demasiado baixa a ponto de ser considerada para acumulações de energia de grande escala. Por esta razão os condensadores não vão ser tratados neste capítulo embora não só façam parte das tabelas de características das tecnologias associadas à AE elétrica como também irão ser abordados nas aplicações. Como tal, a discussão neste trabalho irá centralizar-se nas baterias.

Baterias

As baterias podem ser classificadas em formas primárias e secundárias.

- Baterias primárias transformam irreversivelmente energia química em energia elétrica. A partir do momento em que os químicos intrínsecos à bateria são usados, a bateria deixa de poder ser recarregada;
- Baterias secundárias podem ser recarregadas, isto é, podem ter as suas reações químicas revertidas através do fornecimento de energia elétrica à célula, restaurando quase por completo a sua composição inicial e por conseguinte a sua energia inicial [6].

I. Baterias primárias

O crescimento das baterias tem tido um forte impacto maioritariamente nas baterias secundárias (recarregáveis) contudo as baterias primárias ou não-recarregáveis são igualmente importantes. Estas continuam a preencher inúmeras aplicações do mercado tais como...
brinquedos, relógios de pulso, chaves elétricas e controlos remotos ou mesmo quando o carregamento é impossível ou impraticável, como no caso de combates militares ou missões de resgaste, as baterias primárias são a principal escolha. Mesmo a nível médico, o seu uso é primordial para os pacemakers que usam baterias primárias de iodeto de lítio (LiI₂) [11]. Os tipos mais comuns destas baterias incluem as de zinco-carbono e as baterias alcalinas.

Grande energia específica, elevados tempos de armazenamento e rápida resposta fazem destas baterias essenciais para as aplicações mencionadas. Esta bateria pode ser transportada para locais remotos e usada de imediato mesmo depois de um longo período de armazenamento. Além disto, são baterias baratas, benignas para o ambiente e fáceis de arranjar no mercado face à sua grande produção [12].

Em comparação com todos os outros meios de AE elétrica mencionados previamente, as baterias primárias têm das maiores energias específicas, sendo apenas ultrapassadas pelas células de combustível. Uma bateria alcalina proporciona cerca de 50% a mais de energia do que uma das mais modernas baterias secundárias, a de íones de lítio [12]. Dentro das baterias não-recarregáveis, as de lítio são as que têm maior capacidade de armazenar energia (figura 8), sendo estas as usadas para câmaras de filmar e nas forças armadas. Têm também cerca de duas vezes mais energia das baterias de íões de lítio e várias combinações desde as Li-MnO₂, Li-I₂, Li-SO₂, Li-SOCl₂ entre outras [12]. Na figura seguinte é possível verificar o que foi mencionado com a comparação das energias específicas (em Wh/kg) entre as baterias secundárias de chumbo-ácido, hidreto metálico de níquel e a de íões de lítio e as baterias primárias alcalina e de lítio com células primárias.

![Figura 8 - Baterias primárias e secundárias, adaptado de [12].](image-url)
II. **Baterias secundárias**

As baterias secundárias ou recarregáveis são largamente usadas, casos de várias aplicações nos automóveis desde a ignição às luzes; veículos industriais de distribuição; e mais significativamente em dispositivos eletrónicos como computadores portáteis e telemóveis. Mais recentemente estas baterias tornaram-se um grande alvo de interesse para os veículos elétricos e híbridos e para sistemas de produção de energia através de fonte renovável como o caso dos sistemas fotovoltaicos [8].

Segundo [3] as baterias secundárias comercializadas hoje em dia podem ser divididas nos seguintes grupos como demonstra a figura 9:

![Figura 9 - Estratificação das baterias secundárias segundo diferentes grupos com exemplos em cada. Adaptado de [3].](image)

A discussão neste capítulo foca-se em três destas baterias tal como exemplificado na figura 7:

- Chumbo-ácido;
- Ni-Cd;
- Iões de Lítio.

Segue-se uma breve explicações do processo químico que ocorre nas baterias.

O método que permite que cada célula possa converter energia elétrica induzida e armazená-la como energia química e o processo inverso é a reação oxidação-redução ou oxirredução. Através de oxidação e redução, os eletrões são capazes de se transferirem de um material para o outro. Na oxidação eletrões são perdidos ao contrário da redução, como tal quando ambos os fenómenos ocorrem, os eletrões deixam uma substância em prol da outra. Intrínsecos a este sistema estão três componentes essenciais [5]:

Tecnologias de acumulação de energia: Um levantamento simplificado
1. Elétrodo negativo ou ânodo: elétrodo redutor que fornece eletrões para o circuito externo e que é oxidado durante a reação eletroquímica.

2. Elétrodo positivo ou cátodo: elétrodo oxidante que recebe eletrões do circuito exterior e que se reduz durante a reação eletroquímica.

3. Eletrólito: o condutor iônico que permite a transferência de eletrões como iões, partículas eletricamente carregadas, dentro da célula entre o ânodo e o cátodo. O eletrólito é geralmente um líquido com sais ou ácidos dissolvidos que transmitem condutividade iônica. Algumas baterias usam eletrólitos sólidos que se comportam como condutores iônicos à temperatura de operação da célula.

Baterias de chumbo-ácido (Pb-ácido)

As baterias de chumbo-ácido (figura 11) são as mais comuns nos dias de hoje tendo um nível de maturidade elevado. Esta bateria é constituída por dois elétrodos, mergulhados numa solução de ácido sulfúrico (H$_2$SO$_4$), um positivo e outro negativo. O elétrodo de carga positiva, cátodo, é dióxido de chumbo (PbO$_2$) ao passo que o negativo, ânodo, é chumbo esponjoso. Quando o circuito é fechado, os terminais conectam-se eletricamente dando origem a uma descarga que converte os elétrodos em sulfato de chumbo. No processo inverso (descarga) ambos os elétrodos voltam à sua forma inicial, equação seguinte.

$$\text{PbO}_2 + \text{Pb} + 2\text{H}_2\text{SO}_4 \leftrightarrow 2\text{PbSO}_4 + 2\text{H}_2\text{O}$$

(2)

O problema das reações acima descritas serem reversíveis é que deteriora os elétrodos fazendo assim com que estas baterias tenham um ciclo de vida de cerca 1500 ciclos com um rendimento usualmente em torno dos 75% [13]. Como tal o ciclo de vida destas baterias é de aproximadamente 5 a 15 anos de acordo com as condições de operação [9]. A sua temperatura ótima de trabalho é à volta dos 25°C [5].

Figura 10 – Dependência da profundidade de descarga no ciclo de vida de uma matéria Pb-ácido.[3].
Por outro lado as principais desvantagens prendem-se com a manutenção periódica indispensável da água presente nas baterias inundadas (um dos tipos de bateria de chumboácido) e consequentemente o fraco desempenho a grandes temperaturas de trabalho, com a baixa energia específica associada de 50 Wh/kg e a dificuldade de se conseguir extrair energia a carga máxima durante grandes períodos de tempo [2]. Tal como outras baterias, o ciclo de vida varia com o grau de descarga a que é submetida, podendo este variar entre 1000 a 4000 ciclos de vida (figura 10).

Estas baterias são largamente usadas nos veículos motorizados.

![Figura 11 – Exemplo de uma bateria de Pb-ácido](image)

Baterias de níquel-cádmio (Ni-Cd)

O desenvolvimento deste tipo de baterias recarregáveis vem sido expandido desde meados do século passado. São o principal representativo das baterias com elétrodo positivo de níquel, num universo que também engloba Ni-Fe, Ni-Zn, Ni-H₂ e igualmente muito conhecida a Ni-MH [14].

Ao contrário das baterias de chumbo-ácido, os elétrodos encontram-se no mesmo recetáculo isolados um do outro. O ânodo é coberto por hidróxido de cádmio, Cd(OH)₂, ao passo que o cátodo é coberto por hidróxido de níquel, Ni(OH)₂. A solução alcalina, que conduz íons, onde ambos os polos estão submersos é de hidróxido de potássio [9].

\[
2\text{NiOOH} + \text{Cd} + 2\text{H}_2\text{O} \leftrightarrow 2\text{Ni(OH)}_2 + \text{Cd(OH)}_2
\]

(3)

Dependendo da construção, as pilhas de Ni-Cd têm energias específicas entre 40 a 60 Wh/kg [3]. O seu rendimento varia entre 60 % a 70 %. Quando completamente carregadas, estas baterias podem perder 2 % a 5 % da sua energia por mês, mesmo sob temperaturas de
trabalho iguais à do ambiente envolvente. O fator principal para estes valores de auto descarga é a lenta conversão do oxihidróxido de níquel em hidróxido de níquel bem como a correspondente reação no ánodo. Juntamente, gradientes de temperatura têm um forte impacto na sensibilidade destas baterias, de tal forma que a cada diferencial de 10°C entre as temperaturas de trabalho e do meio envolvente resulta uma perda de 20% no tempo de vida das baterias de Ni-Cd. Por sua vez, o tempo de vida varia bastante com o nível de descarga da bateria, assim para 80% de descarga corresponde cerca de 3000 ciclos e para 10% o tempo de vida aumenta para 50000, como se pode verificar na imagem seguinte. Associado às baterias de Ni-Cd está também o chamado “efeito de memória”. Este efeito é visto quando se procede a contínuos ciclos de baixa descarga. Um problema importante nesta bateria prende-se com a presença de cádmio por ser um metal extremamente tóxico, assim é fulcral haver reciclagem [14].

![Número de ciclos](image)

Figura 12 – Variação do número de ciclos de vida com o nível de descarga [14].

Comparativamente às baterias de chumbo-ácido, do mesmo grupo standard (figura 9), têm maior energia específica, são também mais leves e pequenas, o que para aplicações onde esses fatores importam, como na aviação, tornam-se preferíveis face às mais baratas baterias de cumbo-ácido [3].
Em aplicações para consumidores, as baterias de Ni-Cd competem diretamente com as baterias alcalinas (primárias). Apesar de terem uma energia específica inferior e custo superior, têm a vantagem de a sua reação química ser reversível, ou seja, acaba por ter um tempo de vida significativamente maior.

![Figura 13 - Imagem de baterias de Ni-Cd.](image)

Por fim, salientam-se as baterias de níquel-hidreto metálico, Ni-MH. Estas diferem no elétrodo negativo que é um composto intermetalúlico, uma liga metálica com hidrogénio absorvido. Comparando as suas características com as de Ni-Cd têm maior energia específica, cerca de 80 Wh/kg e rendimento idêntico [3]. Igualmente a potência específica ronda os 200 W/kg, o ciclo de vida é superior a 1000 ciclos (conforme a temperatura de serviço) como também são uma fonte energia com menor impacto no ambiente relativamente às de Ni-Cd [15]. Contudo, têm maior auto descarga, cerca de 4-5% por dia, este facto deve-se ao hidrogénio dissolvido no eletrólito que reage com o elétrodo positivo [3].

Baterias de iões de lítio

As baterias de iões de lítio, hoje em dia, têm-se tornado bastante populares não só pelo rendimento que possuem, comparativamente às restantes baterias, mas também pela superior energia específica. São vastamente utilizadas em aplicações tais como telemóveis ou computadores [9].

O efeito destas baterias é baseado em reações eletroquímicas entre iões de carga positiva de lítio (Li⁺) com dois materiais ativos, o cátodo e o ánodo. O primeiro corresponde a um óxido de lítio-cobalto e o segundo a carbono sob a forma de grafite. A área circundante a ambos os elétrodos é delimitada por uma porosa camada de polietileno ou polipropileno que permite o movimento dos iões de lítio. O eletrólito é geralmente composto por um líquido orgânico e sais dissolvidos de lítio como o LiClO₄ [3].

O princípio da operação química é:
Cátodo:
\[\text{LiCoO}_2 \rightarrow \text{Li}_{1-x}\text{CoO}_2 + x\text{Li}^+ + xe^- \] \hspace{1cm} (4)

Ânodo:
\[x\text{Li}^+ + xe^- + C_6 \rightarrow \text{Li}_xC_6, \] \hspace{1cm} (5)

onde \(x \) está entre 0 e 1 para o elétrodo negativo (ânodo), no elétrodo positivo (cátodo) entre 0 e 0.45.

Durante a fase de carga os átomos de lítio no cátodo tornam-se íones e estes por sua vez migram através do eletrólito em direção aos estratos de grafite (figura 14). O ciclo de descarga consiste no processo inverso [2]. Estes dois ciclos são ilustrados na figura seguinte.

![Figura 14 – Processo químico nas baterias de íões de lítio, adaptado de [3].](image)

As principais vantagens das baterias de íões de lítio são a elevada energia específica de 75 a 200 Wh/kg, alta voltagem (3.6 V), boas características de carga e descarga, auto descarga aceitável (<10% por mês), inexistência do efeito de memória também designado por efeito das baterias viciadas e tempo de recarregamento baixo (2h).

A principal desvantagem é o seu elevado preço. Restrições também existem no que toca ao processo de carregamento, especialmente perto da voltagem máxima. Assim, quando estas baterias são sobrecarregadas ou aquecidas acima dos 100°C, tal facto causará a decomposição do cátodo com libertação de um óxido de cobalto Co₃O₄, embora a gama em que são usadas não abranja estas temperaturas [3].
Características das baterias secundárias

A figura 15 permite verificar a diferença entre as baterias expostas neste capítulo quanto a duas das suas principais características: energia específica volumétrica e energia específica mássica. Ambas são de extrema importância pois permitem avaliar o peso que uma bateria vai adicionar a um sistema e também o espaço que irá ocupar. É possível extrair da figura que por exemplo para a mesma energia no dispositivo, uma bateria de iões de lítio equivale grosseiramente a 4 baterias de chumbo-ácido, contudo num caso temos 1 kg de bateria e noutro 4 kg, juntando também os cerca de 6 vezes mais volume ocupado pela bateria Pb-ácido.

![Figura 15 – Relação do tamanho e peso para quatro diferentes baterias [16].](image)

A tabela 1 resume as principais características químicas das baterias de Pb-ácido, Ni-Cd e iões de lítio. As restantes características são apresentadas no capítulo 3.

Tabela 1 – Principais características químicas das baterias abordadas [6,8].

<table>
<thead>
<tr>
<th>Baterias</th>
<th>Pb-ácido</th>
<th>Ni-Cd</th>
<th>Iões de lítio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cátodo</td>
<td>PbO₂</td>
<td>Ni(OH)₂</td>
<td>LiCoO₂</td>
</tr>
<tr>
<td>Ânodo</td>
<td>Pb</td>
<td>Cd(OH)₂</td>
<td>C</td>
</tr>
<tr>
<td>Eletrólito</td>
<td>H₂SO₄</td>
<td>KOH</td>
<td>Líquido orgânico</td>
</tr>
<tr>
<td>Voltagem em circuito aberto [V]</td>
<td>2,1</td>
<td>1,4</td>
<td>4,1</td>
</tr>
</tbody>
</table>
2.3. **Acumulação de energia térmica**

Acumulação de energia térmica (AET) é uma das tecnologias chave para a conservação de energia e por conseguinte tem uma grande importância prática. Uma das suas principais vantagens é o facto de ser a que mais se adequa a aplicações de aquecimento e arrefecimento térmico. AET é das tecnologias mais antigas de sempre. Desde que há registo, a civilização tem por hábito acumular gelo para posterior uso. Grandes sistemas de AET têm sido empregues em numerosas aplicações nos últimos anos, desde a acumulação de água aquecida por energia solar até sistemas de ar condicionado. A tecnologia de AET tem sido ultimamente desenvolvida a um ponto onde poderá vir a ter um forte impacto na tecnologia moderna.

A AET aparenta ser uma excelente solução para os problemas atuais derivados do desequilíbrio entre a procura e a oferta de energia. Para se tornar viável tem por base uma série de ações coordenadas em vários setores energéticos para maximizar o seu potencial. A AET pode contribuir para um aumento do rendimento e poupança do uso de energia na sociedade mas para tal, os sistemas subjacentes têm de minimizar o mais possível as perdas energéticas associadas a estes sistemas.

Existem essencialmente dois tipos de sistemas de AET, o sensível (por ex., água quente) e o latente (por ex., bancos de gelo). Para cada tipo de acumulação, existe uma grande variedade de escolhas consoante a limitação de temperatura e respetiva aplicação. A AET por via latente tem recebido um grande interesse sendo talvez o seu exemplo mais óbvio a conversão de água em gelo. Os sistemas de arrefecimento que incorporam gelo acumulado têm uma grande vantagem de volume face aos sistemas que usam água arrefecida por uma máquina frigorífica (*Chiller*) dada a facilidade em acumular grandes quantidades de energia sob a forma de calor latente. AET lida com a acumulação de energia, normalmente por arrefecimento, aquecimento, fusão, solidificação ou vaporização de uma substância, e a energia fica disponível sob a forma de calor quando o processo é invertido. O processo de escolha de um destes tipos de sistemas é principalmente dependente do período exigido de acumulação, ou seja, diurno ou sazonal, da viabilidade económica, das condições de operação, entre outras. Na prática, as atividades de investigação e desenvolvimento relacionadas com energia focam-se no aperfeiçoamento do seu uso e da sua poupança, levando à conservação de energia [1].
Assim, os tópicos a serem tratados neste capítulo são:

- **Calor sensible**
 - Depósitos de água;
 - Aquíferos;
 - Aglomerado de rochas.

- **Calor latente**
 - Materiais de mudança de fase.

2.3.1. Calor sensible

Energia pode ser fornecida a um material apenas aquecendo-o aumentando assim a sua temperatura (figura 16). Essa mesma energia envolvida no processo denomina-se calor sensible e é facilmente determinada pelo produto do calor específico com o diferencial de temperatura e com a massa.

O calor sensible pode de seguida ser transferido por exemplo para um material mais frio através de permutadores de calor ou para o ambiente através de três meios de transferência de calor, radiação, convecção ou condução, estando assim o armazenamento de calor intrínseco a estes métodos. Dois simples exemplos são: a acumulação de água quente em depósitos para posterior uso doméstico ou até o procedimento datado de há muitos anos onde rochas são pré aquecidas para posteriormente aquecerem a cama antes do repouso e a transferência de calor por convecção e radiação que ocorre dos radiadores para o meio envolvente.

Dada a importância das propriedades térmicas dos materiais característicos nos sistemas de acumulação de energia térmica, apresenta-se seguidamente uma tabela de alguns desses materiais com as respetivas propriedades térmicas.
Tecnologias de acumulação de energia: Um levantamento simplificado

Tabela 2 - Propriedades térmicas a 20°C de alguns materiais comuns nesta tecnologia, adaptado de [1, 17].

<table>
<thead>
<tr>
<th>Material</th>
<th>Massa volúmica [kg/m³]</th>
<th>Calor específico [J/kg K]</th>
<th>Calor específico volúmico [10⁶ J/m³ K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Água</td>
<td>988</td>
<td>4182</td>
<td>4,17</td>
</tr>
<tr>
<td>Argila</td>
<td>1458</td>
<td>879</td>
<td>1,28</td>
</tr>
<tr>
<td>Tijolo</td>
<td>1800</td>
<td>837</td>
<td>1,51</td>
</tr>
<tr>
<td>Silício</td>
<td>2330</td>
<td>700</td>
<td>1,63</td>
</tr>
<tr>
<td>Betão</td>
<td>2000</td>
<td>880</td>
<td>1,76</td>
</tr>
<tr>
<td>Alumínio</td>
<td>2710</td>
<td>896</td>
<td>2,43</td>
</tr>
<tr>
<td>Ferro</td>
<td>7900</td>
<td>452</td>
<td>3,57</td>
</tr>
<tr>
<td>Aço</td>
<td>7840</td>
<td>465</td>
<td>3,68</td>
</tr>
<tr>
<td>Rocha</td>
<td>2560</td>
<td>879</td>
<td>2,25</td>
</tr>
</tbody>
</table>

I. Depósito de água

Baixa temperatura

Como se pode verificar na tabela 2, a água (única que no seu estado natural é líquida) devido ao seu elevado calor específico em relação à restante maioria dos materiais, tem uma excelente capacidade térmica volumétrica fazendo dela uma substância a usar nestes sistemas sensíveis. Um aspeto negativo (para aplicações de alta temperatura) prende-se com o seu baixo ponto de evaporação, sendo portanto usada no seu estado líquido em unidades de acumulação entre os 5 °C e 95 °C [6]. Por outro lado tem a vantagem de poder ser incluída num ciclo térmico de Rankine, pois a potência calorífica a fornecer na caldeira seria inferior ao processo convencional [6]. Já os restantes materiais da tabela 2 têm temperaturas de fusão muito elevadas, pelo que têm gamas de utilização que podem chegar aos 1000 °C [1].

A AET através de um fluido como a água tem também aplicação em sistemas térmicos de cogeração, onde a produção de calor pode servir para aquecer o depósito de água e dessa forma armazenar essa energia para uso posterior [1].

A figura 17 apresenta um caso de AET vastamente utilizado. Não só permite o uso de água quente em ambientes domésticos como também o aquecimento de espaços através de radiadores. Sendo um sistema de coletor solar onde a fonte de energia provém do Sol, o isolamento do depósito deve ter muito baixa condutividade térmica para assim se poder preservar a temperatura da água no seu interior durante largos períodos mesmo com escassez de radiação solar. Nestes casos, a temperatura da água ronda os 60 °C.
De facto, um fator muito importante nestes sistemas é a condutividade térmica da unidade de armazenamento pois quanto maior for, maior vai ser a energia dissipada para o meio envolvente. Por muito baixo que esta propriedade térmica seja, haverá sempre perdas associadas que diminuirão o rendimento do sistema pois a temperatura do material acumulado será diferente da do meio ambiente em redor. Como tal, as unidades de AET como reservatórios necessitam de excelentes isolamentos particularmente quando o período de armazenamento é elevado [18].

Figura 17- Exemplo de um sistema de AE por calor sensível, adaptado de [6].

Alta temperatura

Contudo é ainda possível armazenar água a temperaturas superiores mas para tal, é necessário a inclusão no sistema de uma bomba hidráulica e de reservatórios mais resistentes. A figura 18 apresenta uma das soluções para esta aplicação. Consiste numa estrutura de betão com isolamento pelo seu exterior e com água armazenada no seu interior.

O betão é escolhido para sistemas sensíveis pois é de baixo custo, os materiais que o compõem estão disponíveis em quase todo o mundo, é de fácil produção e igualmente importante pode ser submetido a temperaturas na ordem das centenas de graus Celsius.

As características do betão do ponto de vista de armazenamento são:

- Alto calor específico;
- Boas propriedades mecânicas (nomeadamente boa resistência à compressão);
- Bom coeficiente de expansão térmica;
- Alta resistência mecânica a ciclos de carga térmica.
Quando o betão é aquecido, um número de transformações e reações ocorrem a ponto de alterarem algumas das suas propriedades físicas. Quando o betão é aquecido a 100 °C, a água é expelida, cerca de 130 kg de água por cada m³ de betão. A restante água evapora quando se atinge temperaturas entre 120 °C e 600 °C. Esta perda de água resulta numa perda de massa do betão de 2 % a 4 %. O calor específico e a condutividade térmica decrescem no intervalo de temperatura de 20 °C a 120 °C e entre 20 °C e 280 °C respetivamente. As propriedades mecânicas também são influenciadas pela perda de água. De tal forma que a resistência à compressão diminui 20 % a 400 °C relativamente à de trabalho à temperatura ambiente. A resistência aos ciclos térmicos depende do coeficiente de expansão térmica dos materiais que compõem o betão. Assim, de modo a se tornar de facto uma material a usar na AET a altas temperaturas, vários aditivos são pré-adicionados ao betão na sua construção, como barras de aço, tornando o betão em material compósito, betão armado. Deste modo, não só as propriedades mecânicas são melhoradas como também a condutividade térmica aumenta 15% a 100 °C e 10 % a 250 °C [1].

II. Aquíferos
O armazenamento de água em aquíferos já data dos anos 60 do século XX, nomeadamente na China. Nesse país asiático, havia sistematicamente extrações de água do subsolo para efeitos de arrefecimento industrial que levou ao aparecimento do fenómeno de subsidência da crosta terrestre. Para solucionar o problema, água fria era injetada para formações geológicas subterrâneas de rochas porosas e permeáveis, aquíferos, onde a água era retida. Foi então verificado que a água neste sistema mantinha a sua baixa temperatura durante largos períodos de tempo e como tal, começou a ser uma solução viável para AET [20].

Figura 18 – Acumulação de água em tanques subterrâneos, adaptação de [19].
Sendo semelhante ao uso direto de água contida em formações geológicas subterrâneas, a AET por aquíferos, figura 19, envolve a perfuração de alguns poços, geralmente dois, dentro do aquífero para que se possa dar circulação de água entre a unidade de acumulação, poço, e o sistema energético, aquífero [20]. Estes sistemas abertos permitem armazenar energia térmica através da água proveniente da superfície. Esta pode ter sido previamente aquecida por radiação solar ou por calor gerado em centrais térmicas, como as de cogeração, em períodos de baixa procura energética, como também pode ser arrefecida seja pela temperatura ambiente (Inverno) ou através de ciclos frigoríficos [21]. Assim, a água quente é armazenada num poço destinado para água quente passando-se o mesmo para a água menos energética. Os aquíferos são geralmente de grande volume, muitas vezes ultrapassando milhões de metros cúbicos, sendo portanto uma tecnologia de AET de grande capacidade energética [1].

Tradicionalmente os aquíferos estão a uma profundidade de 200 metros, quer para que o distúrbio da variação da temperatura à superfície seja mínimo quer porque é provável a existência de rios subterrâneos [1]. A envolvência do aquífero feita de material rochoso permite que a energia intrínseca à água seja preservada.

Um último ponto a ter em consideração nos aquíferos é a distância entre os poços. De facto, estes têm obrigatoriamente de estar distanciados o suficiente para se assegurar que não haja uma normalização da temperatura dos poços e assim, cada um possa manter o seu nível térmico ao longo tempo. Esta distância crítica é função dos parâmetros operacionais e
térmicos do sistema de acumulação, poços, bem como da espessura do aquífero e do material de que é feito [20].

Os sistemas geotérmicos de aquíferos têm grande aplicabilidade em sistemas AVAC de indústrias. Um exemplo é demonstrado na figura 20:

- No caso do Verão, a água do poço frio é extraída e bombeada para um permutador de calor, que irá trocar energia com o ar exterior e dessa forma permitir inclusive arrefecer o ar interior até às condições pretendidas. A água que é aquecida durante esse processo é então direcionada para o poço quente onde é armazenada;
- No caso do Inverno, o processo é inverso, sendo a sua finalidade a de pré aquecimento do ar, contudo já permite poupar energia no sistema AVAC.

![Figura 20 – Possível utilização de aquífero em sistemas AVAC, [22](image)](image)

De seguida apresenta-se a tabela 3 que resume as possíveis fontes e finalidades de energia associadas à AET em aquíferos:
Tabela 3 – Aquíferos [1].

<table>
<thead>
<tr>
<th>Possível fonte de energia</th>
<th>Possível finalidade de energia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aquecimento de espaços</td>
</tr>
<tr>
<td></td>
<td>• Indústrias</td>
</tr>
<tr>
<td></td>
<td>• Grandes edifícios (hospitais, hotéis, entre outros)</td>
</tr>
<tr>
<td>Fontes renováveis de energia</td>
<td>Indústria</td>
</tr>
<tr>
<td>• Energia solar (coletores solares ou por efeito de radiação)</td>
<td>• Processos térmicos</td>
</tr>
<tr>
<td>• Energia geotérmica (aproveitamento de rochas quentes em centrais geotérmicas)</td>
<td>• Secagem de produtos industriais</td>
</tr>
<tr>
<td>• Energia da biomassa</td>
<td>• Necessidades pontuais</td>
</tr>
<tr>
<td></td>
<td>Agricultura</td>
</tr>
<tr>
<td></td>
<td>• Aquacultura</td>
</tr>
<tr>
<td></td>
<td>• Secagem de produtos alimentares</td>
</tr>
<tr>
<td>Calor residual</td>
<td>Descongelamento</td>
</tr>
<tr>
<td>• Cogeração</td>
<td>• Ruas, aeroportos, autoestradas, entre outros</td>
</tr>
<tr>
<td>• Processos industriais com libertação de calor</td>
<td></td>
</tr>
</tbody>
</table>

III. Aglomerado de rochas
Comparativamente ao principal material usado nos sistemas sensíveis, a água, a rocha tem um calor específico volúmico baixo (tabela 2) mas por outro lado é um material fácil de adquirir (barato) e pode facilmente operar a temperaturas muito acima dos 100 ºC (principal limitação da água) [1]. Muitas atuais aplicações englobam o uso no sistema de dois meios de AET: água e rochas.

O exemplo seguinte, figura 21, representa uma dessas aplicações relacionada com o aproveitamento de energia solar que contraste com o da figura 17. Água proveniente do coletor entra na zona superior do tanque e desce à medida que vai arrefecendo até chegar ao fundo, onde posteriormente é recirculada para o coletor. Entretanto a energia térmica contida na água vai sendo conduzida para as rochas que envolvem o tanque. Assim, o ar circula de um extremo ao outro do tanque por entre as rochas e dessa forma é aquecido, sendo de seguida transportado para aquecer o espaço interior [23].
Como referido anteriormente, as temperaturas a que os aglomerados de rochas podem ser submetidos são na ordem das centenas de graus Celsius e como tal segundo [6], uma aplicação deste meio de AET é a sua inserção em sistemas térmicos de cogeração. Nestes, a produção de calor pode ser acumulada no aglomerado de rochas.

Figura 21 – Esquema de um sistema de aglomerado de rochas, adaptado de [1].

2.3.2. Calor latente

Esta tecnologia é baseada na absorção ou libertação de calor durante uma mudança de fase de um dado material. Como tal, este capítulo irá focar-se unicamente nos phase change materials ou materiais de mudança de fase (MMF).

I. Materiais de mudança de fase

MMF são materiais de acumulação de energia latente. A transferência de energia térmica ocorre quando um material muda de fase de sólido para líquido, ou líquido para sólido. Inicialmente estes MMF sólido-líquido atuam como materiais convencionais de AE, as suas temperaturas aumentam à medida que absorvem calor. Contrariamente aos materiais de AE sensível, os MMF absorvem e libertam calor a uma temperatura constante. São capazes de armazenar de 5 a 14 vezes mais calor por unidade de volume que alguns materiais de AE sensível como a água ou rocha [17]. Uma grande maioria dos MMF são conhecidos por terem uma temperatura de fusão num largo intervalo de possibilidades, nomeadamente pouco acima
da temperatura ambiente (20 °C). Contudo, a sua empregabilidade como materiais de AET latente depende de características térmicas, físicas e químicas que lhes são intrínsecas. Além dos fatores econômicos e de disponibilidade que também têm de serem tidos em consideração. Assim, os requisitos que os MMF devem ter são apresentados na tabela 4.

Tabela 4 - Propriedades necessárias dos MMF [1,17,24].

<table>
<thead>
<tr>
<th>Propriedades</th>
<th>Térmicas</th>
<th>Físicas ou Cinéticas</th>
<th>Químicas</th>
<th>Fatores econômicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transição de fase</td>
<td></td>
<td>Grande massa volúmica</td>
<td>Estabilidade química a</td>
<td>Abundante</td>
</tr>
<tr>
<td>conveniente</td>
<td></td>
<td></td>
<td>longo termo</td>
<td></td>
</tr>
<tr>
<td>Grande calor latente</td>
<td></td>
<td>Baixa alteração de</td>
<td>Compatibilidade com</td>
<td>Facilmente disponível</td>
</tr>
<tr>
<td></td>
<td></td>
<td>volume na mudança de</td>
<td>materiais de construção</td>
<td></td>
</tr>
<tr>
<td>Grande calor específico</td>
<td></td>
<td>fase</td>
<td>Sem toxidade</td>
<td></td>
</tr>
<tr>
<td>Grande condutividade térmica</td>
<td></td>
<td>Baixa pressão de vapor</td>
<td>Não inflamável</td>
<td></td>
</tr>
<tr>
<td>nas fases de líquido e sólido</td>
<td></td>
<td></td>
<td>Não explosivo</td>
<td></td>
</tr>
<tr>
<td>Rápida capacidade de transferência</td>
<td></td>
<td>Inexistência de</td>
<td>Sem decomposição química</td>
<td></td>
</tr>
<tr>
<td>de calor</td>
<td></td>
<td>sobrefusão</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taxa de cristalização</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>suficiente</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classificação

A classificação dos MMF é dada na figura seguinte. Os MMF de componente simples incluem os materiais orgânicos e inorgânicos; os orgânicos incluem parafinas e não-parafinas como ácidos gordos e álcool de açúcar; e inorgânicos que abrangem os sais de hidratos e os metálicos [24].
Figura 22 - Classificação dos MMF [17].

No geral, as parafinas, os ácidos gordos e os hidratos têm um baixo ponto de mudança de fase. Muitos MMF têm sido aplicados em materiais de construção de edifícios ou em sistemas de coletores solares. Por outro lado, o eritritol (álcool de açúcar) tem um ponto de fusão na ordem dos 118 ºC o que faz desse material, promissor para aplicações solares como o caso dos concentradores [24]. Os compostos inorgânicos têm quase o dobro da massa volúmica dos orgânicos, 250-400 kg/dm³ e 128-200 kg/dm³ respectivamente [17]. Os metálicos, graças ao seu elevado ponto de fusão, são úteis para aplicações que envolvem temperaturas acima dos 200 ºC [24].

Materiais orgânicos de mudança de fase

Estes materiais são descritos como parafinas e não parafinas. Os materiais orgânicos incluem pontos de fusão congruentes e processos contínuos de solidificação sem segregação na fase, que levaria a consequente degradação dos seus valores de calor latente de fusão. A capacidade de auto nucleação permite a cristalização sem sobrefusão (processo de baixar a temperatura de um fluido abaixo da sua temperatura de solidificação sem que o mesmo passe para o estado sólido) e são geralmente não corrosivos [17].

- **Parafinas**

A parafina é um derivado do petróleo. As ceras de parafina consistem em n cadeias saturadas de alcanos, apenas constituídos por átomos de carbono e hidrogénio formados por ligações
covalentes simples entre carbonos. A sua fórmula química é \(C_nH_{2n+2} \). A cristalização subjacente aos alcanos liberta calor latente. Quanto maior for a cadeia de hidrocarbonetos, maior são o ponto de fusão e o calor latente de fusão. Com as parafinas é possível obter diferentes pontos de fusão, desde 6 ºC a 76 ºC (tabela 6). Contudo devido ao custo associado, apenas algumas configurações moleculares deste composto é que são usadas como MMF em sistemas de AET latente. São quimicamente inertes e estáveis abaixo dos 500 ºC, durante a fusão não variam muito de volume e têm também um baixo valor de pressão de vapor na fase de fusão. Pelo facto também de serem materiais seguros, previsíveis e não corrosivos, permitem longos ciclos de mudanças de fase, fusão-solidificação e vice-versa. Dentro destes materiais, quanto maior for o número de átomos de carbono e consequentemente de hidrogénio, maior será o ponto de fusão.

Embora, como já referido, tenham algumas características favoráveis, por outro lado demonstram propriedades indesejáveis tais como: baixa condutividade térmica; não são compatíveis com recipientes plásticos e inflamáveis. Todos estes inconvenientes podem ser minimizados com modificações na cera e na unidade de armazenamento [17].

- **Não-parafinas**

As não-parafinas representam o composto orgânico mais usado em inúmeras aplicações. Ao contrário das parafinas, as não-parafinas demonstram propriedades distintas umas das outras. Em duas pesquisas desenvolvidas por [25,26] sobre materiais orgânicos, nomeadamente ácido gordo, álcool de açúcar, éster e glicol, verificou-se que são materiais inflamáveis e que não devem ser expostos a altas temperaturas, ou agentes oxidantes. As não-parafinas dividem-se essencialmente em dois grupos: os ácidos gordos e os restantes materiais orgânicos mencionados anteriormente.

Algumas das propriedades destas não-parafinas são:

- Inflamáveis;
- Baixa condutividade térmica;
- Baixos pontos de fulgor;
- Nível de toxicidade variável;
- Instabilidade a altas temperaturas.

Os ácidos gordos têm calor latente de fusão pouco acima das parafinas. Apresentam bom comportamento nas mudanças de fase e sem sobrefusão. A fórmula que descreve todos os ácidos gordos é dada por \(CH_3(CH_2)_nCOOH \). A principal desvantagem dos ácidos gordos é o seu custo, cerca de 2 a 2 vezes e meia o preço habitual de uma parafina [17].
Materiais inorgânicos de mudança de fase

Como identificado na figura 22, os MMF inorgânicos são classificados em sais de hidratos e em metálicos. O grande ponto positivo é o facto do calor latente de fusão não se degradar com os ciclos de operação.

- **Sais de hidratos**

Os sais de hidratos podem ser definidos como ligas de sais inorgânicos e água, que formam assim uma solução cristalina sólida. A sua fórmula química geral é AB.$n\text{H}_2\text{O}$, sendo AB representativo de inúmeros compostos como o cloreto de magnésio (MgCl$_2$). A transformação sólido-líquido dos sais de hidratos resulta de uma desidratação do sal hidratado, embora este processo se assemelhe termodinamicamente à uma mudança de fase [17].

À temperatura de fusão, os cristais de hidratos separam-se em anidros de sais (substância que não contém, ou quase não contém, água) e água, ou em sais de hidratos mais baixos (mais leves) e água. Um problema com a maior parte dos sais de hidratos é a fusão incongruente causada pelo facto da água libertada na cristalização não ser suficiente para dissolver a fase sólida presente. Dada a superior massa volúmica, os sais de hidratos depositam-se no fundo do recipiente onde estão contidos.

Grande parte dos sais de hidratos têm fracas propriedades de nucleação. À temperatura de fusão, a taxa de nucleação é geralmente baixa. Como tal antes da cristalização começar, dá-se o efeito da sobrefusão do líquido. Para se obter uma taxa aceitável de nucleação, a solução tem de passar pela sobrefusão, o que origina a descarga de energia latente a uma temperatura mais baixa que o ponto de fusão. Para solucionar este problema, a introdução de um agente que fornece um núcleo onde se inicia a cristalização é uma possibilidade.

Tal como as parafinas, os sais de hidratos são os mais importantes MMF. São apresentadas de seguida as propriedades mais atrativas dos sais de hidratos:

- Grande calor latente de fusão por unidade de volume;
- Média condutividade térmica (quase o dobro da das parafinas);
- Baixa alteração de volume durante a fusão.

Juntamente, são materiais pouco corrosivos, compatíveis com plásticos (ao contrário das parafinas), um pouco tóxicos e baratos tendo em conta a sua aplicabilidade em unidades de armazenamento.

A principal adversidade no uso de sais de hidratos é, como já referido, a ocorrência de fusão incongruente. As n moles de água presentes não são suficientes para dissolver uma mole de
sal resultando assim uma solução super saturada no ponto de fusão. O sal depositado no fundo do depósito não consegue recombinar com a água durante o processo inverso de solidificação. Este facto origina um decréscimo a cada ciclo de carga e descarga, na capacidade do sal de hidrato reverter o processo de fusão-solidificação [17].

Existem vários métodos para combater esta adversidade, sendo eles:

- Agitação mecânica;
- Encapsular o MMF para reduzir a separação;
- Alterar a composição química do sistema para tornar o material incongruente em congruente;
- Aumentar a espessura de agentes para manter os sais sólidos em suspensão;
- Excesso de água para que os cristais fundidos não produzam uma solução super saturada.

Como nota informativa, cientistas da General Electric [27] desenvolveram um sistema para solucionar o problema da segregação dos sais e da sobrefusão dos sais de hidrato. Os resultados foram: completa mudança de fase; libertação de calor latente correspondente a 90-100% do calor latente teórico; performance mantida após 200 ciclos; grandes taxas de transferência de calor interno; a solidificação ocorrida uniformemente.

- Metálicos

Devido ao seu elevado peso, os metálicos são muitas vezes preteridos face aos restantes MMF. Contudo quando o volume é uma propriedade necessária, estes tornam-se sérios candidatos a serem aplicados, muito por causa do seu elevado calor latente de fusão por unidade de volume. Têm também grande condutividade térmica (muito superior aos restantes MMF), calor específico baixo e baixa pressão de vapor [17].

Materiais eutéticos de mudança de fase

Os eutéticos são compostos por dois ou mais componentes, onde cada um solidifica e funde congruentemente, formando durante a cristalização, cristais que se misturam originando assim o eutético. Os processos de solidificação e fusão ocorrem geralmente sem segregação, visto que os componentes do eutético formam uma ligação de cristais forte na solidificação, fazendo com que haja pouca probabilidade de se separarem. Na fusão onde a liquefação se dá simultaneamente, de novo a separação é pouco provável [17].
Cápsulas de materiais de mudança de fase

Geralmente, como a AET latente utiliza mudanças de fase entre líquido e sólido, a encapsulação é necessária para evitar o vazamento de um MMF líquido. Os requisitos das cápsulas são [24]:

- Ir ao encontro das necessidades de forças, flexibilidade, resistência à corrosão, e estabilidade térmica;
- Atuar como uma barreira para proteger o MMF da contaminação do meio ambiente;
- Fornecer uma área de superfície suficiente para a transferência de calor;
- Prover de boa estabilidade estrutural e de fácil manobrabilidade.

A classificação e propriedades das cápsulas dos MMF são exibidas na tabela seguinte:

Tabela 5 – Características das cápsulas para MMF [24].

<table>
<thead>
<tr>
<th>Cápsulas dos materiais de mudança de fase</th>
<th>Microcápsulas</th>
<th>Macrocápsulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recentes, consideradas mais atrativas pois:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Reduzem a reatividade dos MMF com o meio ambiente</td>
<td></td>
<td>São as cápsulas mais convencionais</td>
</tr>
<tr>
<td>- Aumentam a área de transferência de calor dos MMF</td>
<td></td>
<td>Materiais da carcaça em metal ou plástico</td>
</tr>
<tr>
<td>- Maior resistência às constantes mudanças de volume do material durante mudança de fase</td>
<td></td>
<td>Formas esféricas e cilíndricas</td>
</tr>
</tbody>
</table>

Em suma, a tecnologia de encapsulamento dos MMF de baixa temperatura é hoje em dia muito importante para o desenvolvimento de várias aplicações. O desenvolvimento das microcápsulas tem sofrido uma exponencial popularidade devido às suas mais-valias, ao passo que a encapsulação de MMF a altas temperaturas tem sofrido o caminho contrário, mesmo embora a importância que tem na engenharia. É de esperar que o fabrico das cápsulas seja cada vez mais acessível bem como a melhoria das suas características mecânicas e térmicas [24].

Materiais compósitos de mudança de fase

As cápsulas dos MMF embora sejam fulcrais na tecnologia de AET latente, têm subjacentes algumas desvantagens. A capacidade de um MMF tem em acumular energia decresce a partir
do momento que é envolvido numa cápsula, em adição a encapsulação aumenta o custo de produção dos MMF. Em contraste, a condutividade térmica dos não metais como as parafinas e sais de hidratos é baixa, pelo que diminui a troca de calor num sistema de AET latente.

Recentemente, materiais compósitos de mudança de fase, uma mistura de vários materiais e de MMF, têm sido desenvolvidos. Estes trazem uma grande vantagem, o facto de não precisarem de encapsulação. O embebimento de MMF com materiais porosos é o processo mais comum para a produção de MMF compósitos. Com o uso destes inovadores materiais, o vazamento do MMF líquido da estrutura porosa é evitado devido às tensões superficiais presentes. Este método pode facilmente ser usado para produzir unidades de AET latente com grandes condutividades térmicas e grande calor latente (capacidade de acumular energia) selecionando para tal, materiais porosos com grande condutividade térmica e porosidade, como são exemplos os derivados da grafite e metais porosos [24]. Para aplicações em materiais de edifícios e processos de altas temperaturas, materiais cerâmicos porosos como a perlite expandida têm também recebido a devida atenção.

A tabela 6 apresenta exemplos de MMF orgânicos e inorgânicos mencionados neste capítulo, com o ponto de fusão e calor latente associado.
Tabela 6 – Ponto de fusão e calor latente de fusão de alguns MMF [1,17,24].

<table>
<thead>
<tr>
<th>Classificação do material de mudança de fase</th>
<th>Composto</th>
<th>Ponto de fusão [°C]</th>
<th>Calor latente de fusão [kJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orgânico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parafina</td>
<td>C_{14}H_{30}</td>
<td>5,5</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>C_{18}H_{38}</td>
<td>28</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>C_{20}H_{42}</td>
<td>36,7</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>C_{22}H_{50}</td>
<td>50,6</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>C_{24}H_{56}</td>
<td>58,8</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>C_{34}H_{70}</td>
<td>75,9</td>
<td>269</td>
</tr>
<tr>
<td>Não-parafina</td>
<td>Ácido etanoico</td>
<td>16,7</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>Ácido láurico</td>
<td>49</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Acetamida</td>
<td>81</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Eritritol</td>
<td>118</td>
<td>314</td>
</tr>
<tr>
<td>Inorgânico</td>
<td>MgCl_{2} . 6H_{2}O</td>
<td>117</td>
<td>168,6</td>
</tr>
<tr>
<td></td>
<td>Mg(NO_{3}){2} . 6H{2}O</td>
<td>89</td>
<td>162,8</td>
</tr>
<tr>
<td></td>
<td>CaCl_{2} . 6H_{2}O</td>
<td>29</td>
<td>190,8</td>
</tr>
<tr>
<td>Metálicos</td>
<td>Prata</td>
<td>962</td>
<td>104,6</td>
</tr>
<tr>
<td></td>
<td>Cobre</td>
<td>1084</td>
<td>209,4</td>
</tr>
<tr>
<td></td>
<td>Silício</td>
<td>1412</td>
<td>1414,3</td>
</tr>
</tbody>
</table>

Aplicações dos materiais de mudança de fase

Segue-se uma lista de diferentes exemplos de aplicação de MMF para aquecimento e arrefecimento de edifícios [1]:

- Um MMF que funde entre 5 ºC e 15 ºC pode ser utilizado em unidades de AET para arrefecimento. O MMF é solidificado através de uma máquina frigorífica operada durante a noite, quando a procura e preço de eletricidade é baixo, e fundida durante o dia para efeitos de arrefecimento do edifício;
- Um MMF que funde perto da temperatura ambiente, por exemplo, um sal de hidrato CaCl_{2}.6H_{2}O, que tem um ponto de fusão a 29 ºC (tabela 6), pode ser incorporado na estrutura de um edifício para balançar as oscilações diurnas da temperatura ambiente;
• Um edifício pode ser aquecido e arrefecido através de uma bomba de calor que está interligada à água de circulação, que por sua vez troca calor com um MMF com ponto de fusão entre 20-35 ºC, como é exemplo o CaCl$_2$.6H$_2$O;

• Um sistema solar de aquecimento do ar pode usar um MMF com ponto de fusão entre 25-30 ºC, para fornecer calor durante a noite e ajudar no aquecimento durante o dia;

• Um sistema solar de aquecimento do ar pode usar um MMF com ponto de fusão entre 40-60 ºC, por exemplo a parafina C$_{27}$H$_{56}$, para fornecer calor durante o dia e noite;

• Água usada em habitações familiares pode ser pré-aquecida num tanque com um MMF encapsulado com ponto de fusão de 55-70 ºC;

• Um sistema solar para aquecimento de águas sanitárias pode empregar um MMF com ponto de fusão entre 60-95 ºC, por exemplo o Mg(NO$_3$)$_2$.6H$_2$O, para ajudar no aquecimento da água;

• O aproveitamento de eletricidade em alturas de baixa procura, pode servir para fundir um MMF com ponto de fusão acima dos 25 ºC para aquecer um edifício mais tarde;

• Sistemas solares por concentradores podem usar um MMF com ponto de fusão entre 100 ºC e 175 ºC, por exemplo o MgCl$_2$.6H$_2$O, para mover um sistema de ar condicionado por absorção.
Tecnologias de acumulação de energia: Um levantamento simplificado
3. Comparação das tecnologias de AE

Este capítulo focar-se-á em exclusivo na comparação das diferentes tecnologias abordadas com ênfase nos seguintes aspectos:

- Maturidade técnica;
- Potência e tempo de descarga;
- Duração do armazenamento de energia;
- Custo das instalações;
- Rendimentos das tecnologias;
- Energia específica e potência específica;
- Tempo de vida e ciclo de vida;
- Influência no meio ambiente.

3.1. Maturidade técnica

A maturidade técnica dos sistemas de AE é representada na figura 23. As tecnologias de AE podem ser classificadas em três categorias consoante a sua maturidade [2]:

1. Tecnologias com grande maturidade: Os sistemas de energia hídrica reversível bem como as baterias de chumbo-ácido são sistemas muito maturos e vêm sido utilizados há mais de 100 anos.

2. Tecnologias desenvolvidas: Sistema de ar comprimido, Ni-Cd, Na-S, ZEBRA, Li-ião, bateria de fluxo, o supercondutor magnético, volante de inércia, condensador, super condensador, aquíferos de baixa temperatura para AET bem como sistemas de alta temperatura para AET são tecnologias desenvolvidas. Além de desenvolvidas, estão comercialmente disponíveis. Contudo, em aplicações de grande escala nem todos são competitivos e confiáveis o suficiente para serem empregues.

3. Tecnologias em desenvolvimento: Célula de combustível, bateria de metal-ar, célula fotovoltaica e sistema térmico criogénico são tecnologias ainda em fase de desenvolvimento. Embora tecnicamente já sejam reconhecidos, ainda não atingiram
Tecnologias de acumulação de energia: Um levantamento simplificado

um patamar de maturidade no setor comercial. O facto destes sistemas serem economicamente viáveis e “amigos” do ambiente confere-lhes um grande potencial no futuro próximo.

Figura 23 – Maturidade técnica de várias tecnologias de AE [2].

3.2. Potência e tempo de descarga

Os sistemas de AE podem ser divididos em três tipos de acordo com as suas aplicações, são eles:

1. Gestão de energia: Os sistemas hídricos reversíveis e os de acumulação de ar comprimido são adequados para aplicações com escalas de 100 MW com capacidade de produção constante de eletricidade durante horas ou dias. Estes podem servir como recursos a utilizar em grandes escalas para assim se conseguir gerir melhor a lacuna entre oferta e procura. Já as baterias de grande escala e os sistemas térmicos são apropriados para médias escalas com potências entre 10-100 MW;

2. Qualidade de energia disponível: Volantes de inércia, baterias, supercondutores, condensadores e super-condensadores têm uma rápida resposta, na ordem dos milissegundos, e por conseguinte podem ser utilizados em aplicações de curta duração mas que necessitam de uma rápida resposta do sistema. A gama de potência nestes casos é inferior a 1 MW.

3. Cobertura de pontas: Baterias, células de combustível não só têm rápida resposta (<~1 s) como também uma longa duração de descarga (horas), sendo portanto adequados para cobertura de pontas. A gama de potência típica é de 100 kW a 10 MW.
A tabela seguinte descreve o que foi explicado.

Tabela 7 – Potência disponível e tempo de descarga das tecnologias de AE abordadas [3].

<table>
<thead>
<tr>
<th>Sistemas</th>
<th>Potência disponível</th>
<th>Tempo de descarga</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEBH</td>
<td>100-5000 MW</td>
<td>1-24h +</td>
</tr>
<tr>
<td>AEAC</td>
<td>5-300 MW</td>
<td>1-24h +</td>
</tr>
<tr>
<td>Pb-ácido</td>
<td>0-20 MW</td>
<td>Segundos-horas</td>
</tr>
<tr>
<td>NiCd</td>
<td>0-40 MW</td>
<td>Segundos-horas</td>
</tr>
<tr>
<td>Iões de lítio</td>
<td>0-100 kW</td>
<td>Minutos-horas</td>
</tr>
<tr>
<td>Células de combustível</td>
<td>0-50 MW</td>
<td>Segundos-24h +</td>
</tr>
<tr>
<td>Supercondutor magnético</td>
<td>100 kW-10 MW</td>
<td>Milissegundos-8 s</td>
</tr>
<tr>
<td>Volante de inércia</td>
<td>0-250 kW</td>
<td>Milissegundos-15 min</td>
</tr>
<tr>
<td>Condensador</td>
<td>0-50 kW</td>
<td>Milissegundos-60 min</td>
</tr>
<tr>
<td>Super condensador</td>
<td>0-300 kW</td>
<td>Milissegundos-60 min</td>
</tr>
<tr>
<td>Aquiferos</td>
<td>0-5 MW</td>
<td>1-8 h</td>
</tr>
<tr>
<td>AET alta temperatura</td>
<td>0-60 MW</td>
<td>1-24h +</td>
</tr>
</tbody>
</table>

3.3. Duração do armazenamento de energia

A tabela seguinte ilustra a dissipação de energia para variadas tecnologias de AE. Os sistemas de bombagem hidroelétrica, de ar comprimido e das células de combustível têm auto descargas muito baixas portanto são apropriadas para longos períodos de acumulação. Já as baterias de Pb-ácido, Ni-Cd, Li-ião e os sistemas de AET têm auto descargas médias, que as tornam não desejáveis para períodos de armazenamento superiores a dez dias.

Por seu lado os condensadores e os supercondutores magnéticos têm auto descargas grandes o que impossibilita serem usados para períodos superiores a poucas horas (na ordem das unidades).

Por último, os volantes de inércia ao fim de um dia de acumular energia, irão dissipar toda essa energia, como tal só deverão ser utilizados para períodos na ordem das dezenas de minutos no máximo.
Tecnologias de acumulação de energia: Um levantamento simplificado

Tabela 8 – Auto descarga diária e tempo de armazenamento apropriado das tecnologias de AE abordadas [3].

<table>
<thead>
<tr>
<th>Sistemas</th>
<th>Auto descarga por dia</th>
<th>Tempo de armazenamento apropriado</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEBH</td>
<td>Muito pequena</td>
<td>Horas-meses</td>
</tr>
<tr>
<td>AEAC</td>
<td>Pequena</td>
<td>Horas-meses</td>
</tr>
<tr>
<td>Pb-ácido</td>
<td>0,1-0,3%</td>
<td>Minutos-dias</td>
</tr>
<tr>
<td>NiCd</td>
<td>0,2-0,6%</td>
<td>Minutos-dias</td>
</tr>
<tr>
<td>Íones de lítio</td>
<td>0,1-0,3%</td>
<td>Minutos-dias</td>
</tr>
<tr>
<td>Células de combustível</td>
<td>Quase zero</td>
<td>Horas-meses</td>
</tr>
<tr>
<td>Supercondutor magnético</td>
<td>10-15%</td>
<td>Minutos-horas</td>
</tr>
<tr>
<td>Volante de inércia</td>
<td>100%</td>
<td>Segundos-minutos</td>
</tr>
<tr>
<td>Condensador</td>
<td>40%</td>
<td>Segundos-horas</td>
</tr>
<tr>
<td>Super condensador</td>
<td>20-40%</td>
<td>Segundos-horas</td>
</tr>
<tr>
<td>Aquíferos</td>
<td>0,5%</td>
<td>Minutos-dias</td>
</tr>
<tr>
<td>AET alta temperatura</td>
<td>0,05-1%</td>
<td>Minutos-meses</td>
</tr>
</tbody>
</table>

3.4. Custo das instalações

Como em qualquer negócio, independentemente de outras análises que são feitas, o custo intrínseco ao projeto é sempre um dos fatores mais importantes a ter em consideração. Na tabela seguinte são expressos diversos custos por unidade de potência ou de energia. De salientar que os custos por unidade de energia são divididos pelo rendimento do sistema que permite assim saber o custo por unidade de energia útil.

Os sistemas de ar comprimido, bombagem hidroelétrica e AET aparecem numa posição que lhes garante um baixo custo por unidade de energia. Entre estas tecnologias, o sistema de ar comprimido é o que tem menor custo quando comparado com os restantes da mesma maturidade técnica. Embora a diferença entre o custo das baterias e os sistemas de bombagem tenha vindo a reduzir, continua a recair sobre este último a vantagem económica. Os supercondutores magnéticos, volantes de inércia e os condensadores são apropriados para aplicações que necessitam de grande potência de saída em pouca duração, pois não só são baratos do ponto de vista do custo por unidade de potência como caros na fraca capacidade que têm de acumular energia.
Tabela 9 – Custo por unidade de energia/potência das tecnologias de AE abordadas em US dólares [3].

<table>
<thead>
<tr>
<th>Sistemas</th>
<th>Custo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$/kW</td>
</tr>
<tr>
<td>AEBH</td>
<td>600-2000</td>
</tr>
<tr>
<td>AEAC</td>
<td>400-800</td>
</tr>
<tr>
<td>Pb-ácido</td>
<td>300-600</td>
</tr>
<tr>
<td>NiCd</td>
<td>500-1500</td>
</tr>
<tr>
<td>Iões de lítio</td>
<td>1200-4000</td>
</tr>
<tr>
<td>Células de combustível</td>
<td>10000 +</td>
</tr>
<tr>
<td>Supercondutor magnético</td>
<td>200-300</td>
</tr>
<tr>
<td>Volante de inércia</td>
<td>250-350</td>
</tr>
<tr>
<td>Condensador</td>
<td>200-400</td>
</tr>
<tr>
<td>Super condensador</td>
<td>100-300</td>
</tr>
<tr>
<td>Aquíferos</td>
<td>-</td>
</tr>
<tr>
<td>AET alta temperatura</td>
<td>-</td>
</tr>
</tbody>
</table>

3.5. Rendimento das tecnologias

Os rendimentos de alguns sistemas de AE estão representados na figura seguinte. Define-se rendimento como sendo o rácio entre a energia introduzida no sistema sobre a que se consegue extrair. Nos valores indicados, não foi tido em consideração a auto descarga intrínseca às tecnologias. Assim, estes sistemas podem ser divididos em três grupos distintos:

1. **Alto rendimento**: Neste grupo estão incluídas as tecnologias dos supercondutores magnéticos, volantes de inércia, super-condensadores e as baterias Li-ião com rendimentos superiores a 90%.

2. **Grande rendimento**: Bombagem hidroelétrica, ar comprimido, baterias de Pb-ácido e Ni-Cd e os condensadores são sistemas com rendimentos entre 60% e 90%. No entanto podemos verificar que o processo de compressão e expansão do ar é menos eficiente do que bombear e descarregar água dos sistemas de bombagem hidroelétrica.
3. Baixo rendimento: Os sistemas de AET têm um rendimento inferior a 60% devido a grandes perdas térmicas que por vezes tem lugar nos depósitos de armazenamento. Já as células de combustível (nomeadamente as de hidrogénio) têm um rendimento ainda mais baixo, entre 20% a 50% devido à combinação da eletrólise da água e da reconversão para eletricidade.

3.6. Energia específica e potência específica

A energia específica relaciona a quantidade de energia disponível por unidade de massa da respetiva tecnologia. Como pode ser visto na tabela seguinte as células de combustível têm uma energia específica bastante elevada, embora como já foi mencionado têm baixo rendimento. No outro extremo estão os sistemas de bombagem hidroelétrico, de ar comprimido, os condensadores/super-condensadores e os volantes de inércia com energias específicas inferiores a 30 Wh/kg. Contudo a potência específica destes três últimos é bastante elevada. Por último, as baterias de íons de lítio têm uma energia específica maior que outras baterias convencionais. É de notar que há diferentes valores para esta variável conforme diferentes produtores [28].

Figura 24 – Rendimento de vários sistemas de AE [3].
Tecnologias de acumulação de energia: Um levantamento simplificado

Tabela 10 – Energia e potência específica das tecnologias de AE abordadas [3,5].

<table>
<thead>
<tr>
<th>Sistemas</th>
<th>Energia e potência específica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wh/kg</td>
</tr>
<tr>
<td>AEBH</td>
<td>0,5-1,5</td>
</tr>
<tr>
<td>AEAC</td>
<td>30-60</td>
</tr>
<tr>
<td>Pb-ácido</td>
<td>30-50</td>
</tr>
<tr>
<td>NiCd</td>
<td>50-75</td>
</tr>
<tr>
<td>Iões de lítio</td>
<td>75-200</td>
</tr>
<tr>
<td>Células de combustível</td>
<td>800-10.000</td>
</tr>
<tr>
<td>Supercondutor magnético</td>
<td>0,5-5</td>
</tr>
<tr>
<td>Volante de inércia</td>
<td>10-30</td>
</tr>
<tr>
<td>Condensador</td>
<td>0,05-5</td>
</tr>
<tr>
<td>Super condensador</td>
<td>2,5-15</td>
</tr>
<tr>
<td>Aquíferos</td>
<td>80-120</td>
</tr>
<tr>
<td>AET alta temperatura</td>
<td>80-200</td>
</tr>
</tbody>
</table>

3.7. Tempo de vida e ciclo de vida

Também a comparação do tempo de vida e dos ciclos de vida entre as diversas tecnologias pode ser verificada na tabela 11. Os sistemas de AE mecânicos e térmicos têm longos ciclos de vida. Estas tecnologias baseiam-se em engenharia mecânica convencional e como tal, o tempo de vida é determinado com base na duração dos componentes mecânicos dos respectivos sistemas.

No que diz respeito às baterias e às células de combustível, a sua durabilidade não é tão alta quanto outros sistemas devido à deterioração dos compostos químicos.

Em relação aos sistemas cujos princípios se baseiam na acumulação de energia elétrica, casos dos condensadores, super-condensadores e supercondutores magnéticos, estes têm dos ciclos de vida mais elevados, atingindo cerca de 20 mil ciclos.
Tabela 11 – Tempo de vida e ciclo de vida das tecnologias de AE abordadas [3,5].

<table>
<thead>
<tr>
<th>Sistemas</th>
<th>Tempo de vida (anos)</th>
<th>Ciclo de vida (ciclos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEBH</td>
<td>40-60</td>
<td>-</td>
</tr>
<tr>
<td>AEAC</td>
<td>20-40</td>
<td>-</td>
</tr>
<tr>
<td>Pb-ácido</td>
<td>5-15</td>
<td>500-1000</td>
</tr>
<tr>
<td>NiCd</td>
<td>10-20</td>
<td>2000-2500</td>
</tr>
<tr>
<td>Iões de lítio</td>
<td>5-15</td>
<td>1000-10.000</td>
</tr>
<tr>
<td>Células de combustível</td>
<td>5-15</td>
<td>1000+</td>
</tr>
<tr>
<td>Supercondutor magnético</td>
<td>20+</td>
<td>100.000+</td>
</tr>
<tr>
<td>Volante de inércia</td>
<td>~15</td>
<td>20.000+</td>
</tr>
<tr>
<td>Condensador</td>
<td>~5</td>
<td>50.000+</td>
</tr>
<tr>
<td>Super condensador</td>
<td>20+</td>
<td>100.000+</td>
</tr>
<tr>
<td>Aquíferos</td>
<td>10-20</td>
<td>-</td>
</tr>
<tr>
<td>AET alta temperatura</td>
<td>5-15</td>
<td>-</td>
</tr>
</tbody>
</table>

3.8. Influência no meio ambiente

As respostas às questões ambientais relacionadas com o aproveitamento energético nem sempre são unânimes. Por exemplo há quem considere que as células de combustível são benignas para o ambiente, o que não é de todo verdade. Importa então fazer uma análise mais abrangente, indo ao encontro do desenvolvimento de um projeto para se aperceber do seu impacto ambiental.

É dito hoje em dia que os carros híbridos, com sistema elétrico, têm menores emissões de CO₂ do que um carro convencional a motor de combustão interna. Em parte, isso é verdade no que diz respeito ao dia a dia da quilometragem do veículo. Mas na realidade é necessário ter em consideração que para acumular energia elétrica nas baterias, essa mesma teve de ser produzida, que normalmente o é através de grandes centrais térmicas de turbinas a vapor ou a gás. Dessa forma, as emissões da central térmica aumentam. Além disso a necessidade de transportar a energia para ser armazenada nas baterias traz novamente mais emissões.
Um outro exemplo é o das células fotovoltaicas que aproveitam energia totalmente originária de fonte renovável para produzir eletricidade, como tal é passado para a opinião pública que são sistemas benignos para o ambiente. Na realidade estas são constituídas por materiais de abundância limitada, pelo que a sua produção irá de certa forma criar impactos ambientais. Igualmente, a conversão da eletricidade em hidrogénio envolve perdas termodinâmicas. O uso de hidrogénio em células de combustível obriga ao uso de membranas de NAFION, um derivado de TELON, feito à custa do petróleo.

As baterias têm associadas libertações de substâncias tóxicas nocivas. A bombagem hidroelétrica envolve muitas vezes a destruição de árvores para construção de albufeiras, essa mesma construção pode mexer com o sistema ecológico local. Os sistemas de ar comprimido são baseados na tecnologia das turbinas a gás (ciclos térmicos de Joule-Brayton) que envolvem o processo de combustão e consequente emissão de gases para o ambiente. A implementação de supercondutores magnéticos tem associada fortes campos magnéticos que põe em risco a saúde dos seres humanos.

Como tal, a análise do impacto ambiental terá de ser sempre feita minuciosamente, principalmente quando se afirma que uma dada tecnologia tem efeitos positivos no ambiente.
Tecnologias de acumulação de energia: Um levantamento simplificado
4. Exemplos de aplicações de sistemas de AE

Como já mencionado anteriormente, a AE tem um vasto campo de utilização e continuará a desempenhar um papel fundamental independentemente de se se tratar de aplicações com necessidades pouco energéticas, como por exemplo máquinas de calcular e brinquedos, ou altamente energéticas como veículos motorizados ou centrais elétricas. Assim, de seguida apresentar-se-á alguns casos atuais e em desenvolvimento de uso destas tecnologias.

- Veículos motorizados
 - Camiões

Existe em curso a investigação e desenvolvimento da aplicação de Ciclos de Rankine Orgânico (CRO) em camiões de classe 8. Segundo [29] o departamento de energia dos Estados Unidos da América iniciou o programa “The Super Truck programme” no final da última década com a finalidade de reduzir o consumo de combustível em 10%. Outro fator que beneficia a implementação deste ciclo é a redução de emissão de gases da combustão, pois em parte estes são aproveitados para o ciclo em questão. Importa portanto explicar sucintamente a termodinâmica do CRO.

O CRO resulta de uma evolução do ciclo de Rankine a vapor de água, sendo a principal diferença o fluido de trabalho que no caso do CRO é um fluido orgânico ou um hidrocarboneto. Este fluido apresenta um calor latente de vaporização inferior ao da água e um ponto de ebulição mais baixo, que permite a evaporação a uma mais baixa temperatura, ou seja, não requer tanta potência calorífica. A fonte de calor são os gases da combustão. Opera portanto a temperaturas e pressões mais baixas (de aproximadamente 300ºC e 3 MPa); a expansão é preferencialmente seca (erosão reduzida das pás da máquina de expansão) e permite gerar potências elétricas entre 100 kW e 2 MW [30].

O binário originado na máquina de expansão pode ser fornecido diretamente ao veio do motor ou em combinação com um gerador produzir eletricidade, que pode ser armazenada em baterias [31].
Segundo a empresa Volvo [32] a inclusão de um CRO pode ter um impacto negativo na aerodinâmica do veículo devido à recuperação de calor que necessita através dos gases da combustão. As perdas de pressão extras no tubo de escape e o baixo rendimento deste ciclo são fatores também a ter em consideração. Não obstante destas limitações, esta empresa crê que a implementação desta técnica promissora possa baixar o consumo de combustível e as emissões de gases.

Por fim, a empresa Cummins, uma das empresas do “The Super Truck programme” anunciou que o projeto conclui em Abril deste ano, contudo ainda não há informação sobre os resultados obtidos, embora tenham admitido que esperavam uma racionalização de 6 % de consumo de combustível [33].

Uma outra aplicação deste ciclo poderá ser para sistemas de ar-condicionado, evitando assim gastar energia da bateria do veículo.

![Figura 25 - Ciclo de Rankine orgânico](image)

- **Automóveis**

 Veículo híbrido da Peugeot Citroen com acumulação de ar comprimido

A tecnologia inventada pela PSA Peugeot Citroen é similar ao atual Toyota Prius, mas em vez de acumular energia por baterias, fá-lo por compressão do ar, armazenando-o num depósito (figura 26). As versões deste carro híbrido, com tamanho idêntico ao Citroen C3 ou ao Peugeot 208, têm um motor de combustão interna (ciclo Otto) de 60 a 81 kW (81 a 109 cv) e 1200 cm3 de cilindrada [34]. Na zona frontal do carro (*capot*) é adicionado um conjunto bomba/motor hidráulico que acrescenta cerca de 10% ao peso convencional desta gama de carros. Durante a travagem, a bomba hidráulica é acionada, enchendo assim o depósito (disposto paralelamente ao tubo de escape) de ar comprimido. Quando for necessário produzir trabalho, dá-se a descarga do ar comprimido que empurra o fluido hidráulico que por sua vez aciona o motor hidráulico acoplado diretamente à transmissão [35].
Com base numa quilometragem maioritariamente feita em ambiente citadino, a PSA informa que as emissões de CO$_2$/km descem para 69g o que implica uma redução de 35% face às emissões do modelo idêntico mencionado anteriormente [36]. Juntamente, o movimento poderá ser proveniente do sistema de ar comprimido em 60 a 80% da quilometragem total (dependendo do tráfego automóvel), o que poderá levar a ainda menores emissões de CO$_2$ [37]. O sistema de ar comprimido é ativado automaticamente para velocidades inferiores a 70 km/h que deste modo pode reduzir em 45% o consumo de combustível e aumentar em 90% a distância máxima do veículo (autonomia). O consumo de combustível terá uma média de 2,9 l/100 km no modo de ciclo combinado (figura 27) mas segundo a empresa PSA em 2020 esperam que este valor desça até 2 l/100 km [36]. Por fim, o seu lançamento está previsto para 2016 [35].

![Figura 26 – Interior do carro da PSA [37].](image)

![Figura 27 – A cor laranja representa o sistema do motor de combustão interna; a azul o sistema de ar comprimido [37].](image)
TOYOTA TS040 HYBRID

A evolução do TS030 HYBRID, carro usado pela Toyota no World Endurance Championship 2013 (WEC 2013), é segundo a própria marca, 25% mais eficiente que o seu antecessor, ou seja, com uma poupança de 25% no consumo de combustível. Um dos maiores motivos desta melhoria prende-se com o aumento de 220 kW (296 cv) para 353 kW (473 cv) de potência do sistema híbrido do super condensador da Nisshinbo [38,39]. A tecnologia baseia-se no chamado sistema KERS (Kinetic Energy Recovery System) que recupera a energia cinética na fase da travagem e a acumula sob a forma de eletricidade.

O TS040 Hybrid (figura 28) possui um motor de combustão interna a gasolina (ciclo Otto) de 382 kW (513 cv) e 3700 cm³ de cilindrada e é de tracção às 4 rodas. Comparativamente à versão anterior, tem também uma segunda unidade de motor/gerador elétrico da marca Aisin no eixo dianteiro do veículo, a outra unidade situa-se no eixo traseiro e é da Denso (figura 29).

Durante a desaceleração, as duas unidades aplicam uma força de travagem em combinação com os tradicionais travões mecânicos para recuperar energia, que é transmitida pelos inversores, de ambos os eixos, para a unidade de AE – o super condensador da Nisshinbo. Durante a aceleração, as unidades invertem a função, atuando como motores para assim fornecer 473 cv de potência extra [38].

Figura 28 – Toyota TS040 Hybrid [38].
Como curiosidade, este sistema inovador fez com que a Toyota pudesse atualmente estar a lutar no WES 2014 [41] pelo título de construtores, principalmente contra o Audi R18. Nas três corridas já efetuadas, a Toyota venceu duas e a Audi uma. Pode-se também acrescentar que face à classificação de 2013, a Toyota teve uma excelente melhoria, talvez pelo desempenho do seu novo sistema KERS.

Audi R18 LMP1 2014

Tal como para o anterior modelo de 2013, a Audi voltou a apostar num sistema de aproveitamento de energia cinética (KERS) através de um volante de inércia mas também acrescentou uma unidade de AET. Embora a Audi não tenha fornecido quaisquer dados sobre os valores de potência conseguidos por ambos os sistemas, nem mesmo sobre o sistema de AET, é possível debater sobre o funcionamento das duas unidades.

Quanto ao volante de inércia, este funciona do seguinte modo: a unidade de motor/gerador elétrico acoplado ao eixo dianteiro é acionada durante a travagem, que por sua vez acelera o volante de inércia de fibra de carbono que roda em condições perto de vácuo; assim que o piloto acelera, o gerador acoplado ao volante de inércia produz energia que é transmitida ao eixo dianteiro. Somente tem a restrição de poder ser usado a velocidades superiores a 120 km/h [42]. Embora não oficioso, a fonte [43] indica que o volante deste veículo atinge as 40000 rotações por minuto (rpm).

Por seu lado, segundo a fonte [44] a tecnologia de aproveitamento dos gases de escape é idêntica à usada na F1. Nesta, uma segunda unidade de motor/gerador elétrico está acoplada
ao lado da turbina do turbocompressor, aproveitando assim a energia dos gases de combustão, o turbocompressor ativa a unidade que transmite essa energia para o volante de inércia. Assim, fica armazenada mais energia mecânica que será posteriormente convertida em energia elétrica quando for necessária mais potência de tração para o automóvel. O motor de combustão interna trava com o ciclo térmico Diesel tem 483 cv de potência.

Por fim, [42] indica que a versão deste Audi dispõe de 215 cv de potência proveniente do volante de inércia, porém possa dispor de mais potência através da unidade de AET dos gases de combustão.

Figura 30 – Audi R18 [45].

Porsche 919 LMP1 2014

Trata-se de um carro com motor V4 de combustão interna (ciclo Otto) de 2000 cm³. Tal como os exemplos anteriores, possui uma tecnologia baseada no KERS, com uma unidade motor/gerador elétrico acoplado ao eixo dianteiro do carro. Tem também uma unidade para aproveitamento dos gases de combustão, em tudo idêntica à do Audi R18 com a diferença de que neste caso, essa unidade não poderá funcionar como motor. Neste caso a AE dá-se por armazenamento de energia em baterias de iões de ítrio fornecidos pela empresa A123 [46].
Figura 31 – Porsche 919 [46].

BMW i8

Muitos intitulam o BMW i8 como carro do futuro. Embora a nível tecnológico não seja inovador pois outros construtores também já desenvolveram sistemas parecidos (Porsche 919), o seu *design* já o é.

Com aproveitamento da energia cinética da travagem para recargar baterias de íons de lítio, é dito que o consumo mínimo se situa nos 2,1 litros aos 100 km e que as emissões de CO₂ equivalem a 49 g/km. Em caso de grandes distâncias e a velocidades elevadas aumenta para no máximo 8 l/100 km.O conjunto de baterias de íons de lítio de 98 kg de massa e 7,1 kWh permite uma autonomia de cerca de 60 km sem recarregamento e sem gastar combustível. Isto porque o consumo de eletricidade é em média de 11,9 kWh a cada 100 km [47].

Quanto ao sistema, no eixo dianteiro está presente um pequeno motor elétrico que movimenta as rodas dianteiras, ao passo que no eixo traseiro está acoplado um motor de 3 cilindros, 1500 cm³ de cilindrada com turbocompressor e uma caixa automática de 6 velocidades. A potência total é de 264 kW (357 cv), dividida em 168 kW (228 cv) do motor de combustão interna e 96 kW (129 cv) do motor elétrico. Conforme a voltagem do *plug-in*, as baterias podem recarregar totalmente entre 1h e meia até 5h [48].
De salientar por fim que o desenvolvimento tecnológico dos últimos anos, levou à conceção de diferentes métodos para um mesmo fim, a produção de eletricidade para reduzir consumos de combustíveis. Os casos aqui apresentados de diversos veículos demonstram que hoje em dia são postas em prática algumas combinações das fontes energéticas de um automóvel. Motor de combustão interna a ciclo Otto ou Diesel e unidades de acumulação de energia, desde mecânica a eletroquímica e térmica, são utilizados em conjunto para assim se aproveitar ao máximo o lema da lei da conservação da energia: “A energia não pode ser criada nem destruída, apenas se transforma”. Estas novas tecnologias de AE servem portanto para se aproveitar energia que seria dissipada para o ambiente. São sistemas com muito bom rendimento e de que se espera poderem cada vez mais reduzir a dependência dos combustíveis fósseis, pois muita da eletricidade provém da recuperação da energia na travagem. Embora, as baterias também sejam carregadas de eletricidade da rede que poderá provir de centrais térmicas, também é igualmente verdade que poderá vir de centrais nucleares, centrais eólicas e fotovoltaica e ainda de centrais de biomassa. Como tal, a acumulação de energia tem um papel preponderante na procura por soluções energéticas alternativas.

- **NASA (National Aeronautics and Space Administration)**

Os sistemas de AE têm vindo a ser utilizados em 99% das missões espaciais lançadas desde 1960. Estes sistemas são primordialmente usados nas missões para [50]:
Fornecer energia elétrica no lançamento de veículos, veículos de exploração com tripulação humana, sondas planetárias, equipamentos de astronautas;

Armazenar energia elétrica produzida através da radiação solar tanto em missões orbitais como em superfície e consequente abastecimento durante períodos de eclipse solar;

Disponibilizar energia elétrica em situações de picos energéticos para veículos movimentados por energia nuclear.

As baterias primárias (nomencladamente as de lítio) são usadas em missões que requerem o fornecimento de potência elétrica de uma assentada durante alguns minutos ou até algumas horas. Também têm sido utilizadas em sondas planetárias e no retorno de cápsulas de investigação. Dois exemplos são a sonda Galileo (figura 33) que tinha como objetivo estudar o planeta Júpiter e suas luas e a cápsula que permitiu o pouso de um veículo para exploração do planeta Marte (MER) - Mars Exploration Rover. Em ambos a bateria usada é a Li-SO₂ [51].

Figura 33 - Sonda Galileo com baterias Li-SO₂ [50].

Figura 34 - Bateria primária Li-SO₂ na Mars Exploration Rover Lander [50].
As baterias secundárias são usadas principalmente para se conseguir disponibilizar energia para fornecer eletricidade em alturas de eclipse e também para fatos usados em atividades extra veiculares (figura 35). O veículo de exploração da missão MER tem a bordo baterias de íons de lítio.

Figura 35 - Bateria de íons de lítio usada no MER Rover [50].

Figura 37 - Equipamento de astronauta equipado com bateria de íons de lítio [50].

Figura 36 - Rover da missão MER que usa duas baterias de íons de lítio [50].
5. Conclusões e perspetivas futuras

Vive-se numa era onde certamente a procura de energia irá aumentar substancialmente face à crescente população mundial. A própria evolução das tecnologias de produção de energia tem por base a melhoria dos componentes intrínsecos aos sistemas, como são exemplo os sistemas de AE. A acentuada vontade de utilizar fontes de energia renováveis como meio de produção traz igualmente a necessidade de evoluir os sistemas de AE pois estas fontes são tipicamente periódicas ou pelo menos intermitentes. São os casos da energia solar e eólica, entre outras.

Além disto, as empresas do setor energético que fabricam as demais tecnologias de AE urgem na melhoria do rendimento destas tecnologias bem como num melhor aproveitamento das fontes atualmente usadas para produção energética. Um exemplo é o crescente desenvolvimento de veículos híbridos. Juntamente, é assumida a vontade de criar veículos movidos eletricamente ou por células de combustível onde para tal estes sistemas de AE têm de ter a capacidade de, pelo menos, apresentarem rendimentos próximos dos atuais motores de combustão interna.

As tecnologias de AE permitem:

- Maior facilidade de gestão da energia;
- Aproximação entre oferta e procura de energia;
- Qualidade e fiabilidade de energia.

Após a realização deste trabalho, os principais pontos a sublinhar são:

- Embora existam várias tecnologias de AE disponíveis no mercado, nenhuma delas tem os requisitos de uma tecnologia ideal: longo tempo de vida, maturidade considerável, alto rendimento, alta densidade de energia, baixo custo e benignas para o ambiente. Cada tecnologia tem a sua aplicação apropriada. AEBH, AEAC, baterias de larga escala, células de combustível e AET são adequados para aplicações de gestão de energia. Baterias, volantes de inércia, condensadores e super condensadores já são mais ajustados para aplicações de grande capacidade de potência de saída e rápida
descarga. Baterias e células de combustível são também propícias a aplicações de cobertura de pontas.

- AEBH e as baterias de Pb-ácido são tecnologias já maduras; AEAC, Ni-Cd, Li-íões, supercondutor magnético, volante de inércia, condensador/super condensador e AET são tecnicamente desenvolvidos e comercialmente disponíveis; as células de combustível ainda estão numa fase de desenvolvimento. Os custos de AEAC, AEBH e AET são mais baixos que os das restantes tecnologias. De todos os sistemas de AE a AEAC é a que implica menor custos.

- Os rendimentos dos supercondutores magnéticos, volantes de inércia, condensador/super condensador, AEBH, AEAC, das baterias são altos com rendimentos superiores a 60%. As células de combustível, os sistemas de AET têm baixos rendimentos essencialmente devido a grandes perdas na conversão da energia elétrica da rede para a do sistema de armazenamento.

- Os sistemas com maiores ciclos de vida são os dos supercondutores magnéticos e os condensadores/super condensadores. Tecnologias baseadas na AET e AEM também têm um grande ciclo de vida. Por outro lado, as baterias e células de combustível têm uma capacidade cíclica não tão grande devido à deterioração química ao longo do tempo de vida.

- A grande parte das tecnologias de AE abordadas neste trabalho tem impacto negativo no ambiente. AEAC, AEBH, baterias, células de combustível e os supercondutores magnéticos são alguns dos exemplos. Fortes campos magnéticos; impacto no ecossistema e libertação de substâncias tóxicas são algumas das consequências na aposta de sistemas de AE.

Baseando no atual desenvolvimento das tecnologias de AE, espera-se que nos próximos anos:

- Os sistemas de AE estejam numa fase de grande desenvolvimento a nível tecnológico. No futuro próximo espera-se um aumento de 10 a 15% de energia acumulada na Europa. Consequentemente isto terá um grande impacto na indústria de produção de eletricidade.

- A AEBH irá provavelmente manter-se como a tecnologia predominante nos próximos anos. É expectável que a AEAC tenha um rápido desenvolvimento comercial especialmente em países com uma geografia favorável.

- É de esperar que baterias de grande escala como as de Pb-ácido e Ni-Cd sejam implementadas gradualmente em aplicações de gestão de energia com cada vez menor custo e maiores ciclos de vida.
O desempenho de produtos como os supercondutores magnéticos, volantes de inércia e condensadores/super-condensadores é esperado que melhore consideravelmente, contudo o destino de aplicação nos próximos tempos deverá continuar em aplicações de alta potência. Por seu lado, as células de combustível deverão ser cada vez mais usadas em veículos automóveis.
Tecnologias de acumulação de energia: Um levantamento simplificado
6. Referências e Bibliografia

[33] <http://www.cummins.com/cmi/navigationAction.do?nodeId=205&siteId=1&nodeName=Supertruck+Ready+to+Take+Off&menuId=1050>, visitado em 03/06/2014

[34] <http://www.autocar.co.uk/car-news/green-cars/peugeot-citroen-unveils-compressed-air-hybrid-tech>, visitado em 04/06/2014

[49] <http://www.google.pt/search?q=bmw%20i8&tbm=isch&ei=9qCrU7yGIuif7AbQr4CwAw>, visitado em 04/06/2014
