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Abstract 
 

Recent evidence on agricultural productivity growth contradicts common and 

longstanding beliefs that productivity growth in the agriculture sector is lower than in 

the overall economy and faster in developed than in developing countries. Such 

contradiction brings new interest to the issue of measuring agricultural productivity 

growth and of investigating the extent to which agriculture is responsible for the rising 

cross-country disparities of income and productivity.   

First, we evaluate relevant empirical studies identifying the sources of labor 

productivity growth and the available methods for studying efficiency and productivity.  

Then, we investigate the role of agriculture in economic growth by using a panel data 

set for 45 countries and 26 years, for agriculture and for the overall economy. We 

estimate parametric and semiparametric production frontier models that incorporate 

heterogeneity across countries.  Within each framework, we first determine cross-

country distributions of labor productivity, both for the overall economy and for 

agriculture, and we look at how those distributions have changed over time; second, we 

try to shed some light on the causes of those changes by investigating the extent to 

which they are due to catch-up, technical change and factor accumulation.   

We find that TFP growth was stronger for agriculture than for the economy as a whole, 

both for developed and developing countries. Changes in the distribution of labor 

productivity were mainly caused by capital deepening in the overall economy and by 

TFP change in agriculture. In this sector, factor accumulation was negative in the 

developing countries and positive in the developed countries, but the TFP growth rates 

were higher in the former group of countries than in the latter. Therefore, our results 

suggest that if disinvestment in this sector had not occurred, agriculture could have been 

an important engine of per capita income growth for the developing countries. 
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1 - Introduction 

There are three concepts of world (or inter-national) inequality dealt with in the 

literature, although they are often confounded. The concept of unweighted inter-national 

inequality takes each country as the unit of observation: each nation, small or large, 

counts the same. The weighted inter-national inequality uses the population size of each 

country as weight. Both approaches assume that within country, distribution is perfectly 

equal: all residents have the same income. The concept of true world inequality 

presented by Milanovic (2005) defines each individual as the unit of observation, 

ignoring country boundaries. 

Considering the unweighted inter-national inequality, measured by the gross domestic 

product (GDP) or gross national product per capita, the literature (e.g., Quah, 1996a, 

1997; Kumar and Russell, 2002; Henderson and Russell, 2005) is consensual about the 

conclusion that it has been rising during the last 30 years, through a phenomenon of 

bipolar international divergence of labor productivity. With labor productivity growing 

at rather modest or even negative rates over the last few decades in many developing 

nations, its distribution across countries evolved from a conventional unimodal shape in 

the early sixties to a bimodal shape at the end of the last century. Feyrer (2003) and 

Johnson (2005) have also found evidence of bimodality in the long-run distribution of 

output per worker. Having in mind that labor productivity is a rough indicator of 

nations' welfare, this evidence suggests that the world has become bipolarized into the 

rich and the poor, with the middle-income group of countries nearly disappearing.  

A consensus is also obtained but in the opposite direction, when the variable studied is 

the weighted inter-national inequality, measured by national accounts: it has declined in 

the same period.  

As pointed out by Deaton (2003), the controversy arises when the observation unit is the 

individual rather than the country, and the welfare is measured by the mean of per 

capita disposable income (or expenditures) rather than the mean of gross national 

product per capita. This explains why the contribution of growth to reduce global 

inequality among countries remains a controversial issue since the early seventies (e.g., 

Fishlow, 1972; Bardhan, 1973; Chenery et al. 1974). According to Milanovic (2005), 
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this acrimonious debate turns out to revolve around the choice of data to measure 

consumption and hence living standards. In fact, consumption measured from 

household surveys grows less rapidly than consumption measured in national accounts. 

Results of studies drawing mainly on national accounts data indicate a reduction in 

poverty during the eighties and the nineties (e.g., Bhalla, 2002; Dollar and Kraay, 2002; 

Sala-i-Martin; 2002), called a golden age of capitalism and globalization. Studies 

relying on household surveys (e.g., Milanovic, 2002; Dikhanov and Ward, 2002; 

Dowrick and Akmal, 2001) conclude the opposite.  

This dissertation does not address this controversial issue. We only deal with the 

unweighted inter-national concept of inequality and, therefore, assume that it has 

increased since the seventies. Our purpose is to make a contribution for the explanation 

of this fact, by investigating the role of agriculture in this process and comparing the 

determinants of labor productivity growth - factor accumulation or total factor 

productivity (TFP) growth - in this sector with those observed in the overall economy.  

Therefore, we intend to use a development accounting technique to determine which 

factor plays the major role in explaining the differences of labor productivity growth in 

agriculture and in the overall economy.  

Over the last few years, various studies (e.g., Mankiw et al., 1992; Mankiw, 1995; 

Young, 1995; Klenow and Rodriguez-Clare, 1997; Prescott, 1998; Hall and Jones, 

1999; and Kumar and Russell, 2002) that will be analyzed in the next chapter have used 

a relatively wide range of methodological approaches to pursue this line of research. 

However, the resulting evidence is mixed and somehow contradictory: while some 

studies conclude that capital accumulation accounts for most of the increase in output 

per worker and for the bulk in cross-country growth differences over the last decades, 

others argue that such differences are mainly due to disparities in TFP growth.  

The sectoral decomposition of total output may contribute to explain the increasing gap 

between the rich and poor countries that occurred in the last decades. Caselli (2005, p. 

42) alerts that international productivity differences “could also be the result of 

variation in the weights in GDP of sectors with different sectoral-level productivity”.  



 3

Regarding the case of agriculture, most of the empirical evidence appears to suggest 

that this sector has contributed strongly to the disparities of productivity and income 

between developed and developing nations. This is so for a number of reasons.  Firstly, 

since the days of Adam Smith and David Ricardo, agriculture has often been regarded 

as a sector of low productivity growth relatively to the overall economy, due to a more 

limited scope for the division of labor and also to diminishing returns to land.1 The 

confirmation of this argument has major implications for the international distribution 

of income, given the fact that agriculture still accounts for a significant share of the 

overall economy in developing countries.  

Secondly, some empirical research suggests that TFP growth in agriculture has been 

higher in developed than in developing countries. In particular, various studies conclude 

that agricultural TFP has been increasing in rich nations and declining in poor nations  

(e.g., Fulginiti and Perrin, 1993, 1997, 1998, 1999; Arnade, 1998; Lau and Yotopoulos, 

1989; Kawagoe and Hayami, 1985; Kawagoe et al. 1985; Trueblood, 1996). This 

evidence is found even for the “green revolution” Asian countries and for agricultural 

exporter nations of South America. Therefore, the low levels of productivity growth that 

arguably characterize the agricultural sector may prove to be even lower (or negative) in 

the developing world. 

Thirdly, various studies conclude that the labor productivity gap between rich and poor 

nations is much higher in agriculture than in the overall economy. For example, 

Restuccia et al. (2004) find that in 1985, GDP per worker in agriculture for the richest 5 

countries in the world is 71 times that of the poorest 5 countries, more than twice than 

the overall economy. As pointed out by Caselli (2005, p. 49), “if poor countries 

achieved the same level of agricultural labor productivity as the United States, world 

income inequality would virtually disappear!”   

Finally, some additional factors appear to limit further the potential contribution of 

agriculture to the process of economic growth and development in developing countries. 

Given that the demand for agricultural products is rather inelastic with respect to 

income, there is very limited potential for a developing country to base a process of fast 

                                                 
1 See Stern (1996) for an extensive theoretical analysis of the role of agriculture in economic growth. 
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growth on the agricultural sector, unless it manages to exploit its comparative 

advantages by increasingly supplying foreign markets. However, the highly protective 

agricultural policies of rich countries and some domestic market distortions strongly 

constrain this possibility. Indeed, both the low income elasticity of demand for 

agricultural products and the highly protective agricultural policies of the rich nations of 

the world appear to constrain severely the possibility of developing countries to base 

their economic growth process on the agricultural sector.   

The dominant role the agriculture sector has in most developing countries appears 

therefore to be a major source of disadvantage for them. In accordance with this 

reasoning, some authors argue that the most important role of agriculture in the process 

of economic development lies on releasing productive resources for the other sectors 

and reducing its own weight in the economy.   

Timmer (1988) presents two stylized facts that are consistent with this view: (i) the 

share of agriculture in both labor force and total output declines as income per capita 

increases and (ii) rapid agricultural growth accompanies or precedes general economic 

growth.  

Some further evidence is reported in Gollin et al. (2002): a negative relationship 

between GDP per capita and the share of employment in agriculture and a positive 

relationship between growth in a country's agricultural productivity and the movement 

of labor out of agriculture. The latter relationship highlights the important role of 

agriculture in economic growth.  

The arguments and findings mentioned above may have contributed to the strong 

government policy bias against agriculture and towards manufacturing presented in 

many developing countries. Such bias is found in Krueger et al. (1992), after measuring 

the income transfers that were induced by price interventions in 18 developing countries 

over the time period of 1960-83. Krueger et al. (1992, p. 1) conclude that “agriculture 

was clearly the loser, while the big winners were government (net revenue gain), urban 

consumers (lower food prices), and industry (cheap raw materials and other inputs)”. 

Restuccia et al. (2004) also find evidence of market distortions: estimates for the price 
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of food and price of agricultural products at the farm gate are, respectively, higher and 

lower in rich than in poor countries. 

Recently, some empirical evidence appears however to put into question most of the 

previous findings. Martin and Mitra (2001) estimate a production model for 50 

countries in different development stages over the period 1967-1992. Contrarily to the 

conventional wisdom, the authors conclude that technical progress has been faster in 

agriculture than in manufacturing, for both developing and developed countries. In an 

earlier study, using parametric methods and covering 14 OECD countries over the 

period 1970-1987, Bernard and Jones (1996) come to the same conclusion, estimating 

annual TFP growth rates at 2.6 percent for agriculture and 1.2 percent for industry. 

The idea of agricultural TFP regression in developing countries has also been recently 

put into question. Coelli and Rao (2003) examine the growth in agricultural productivity 

in 93 countries over the period 1980-2000 using data from FAOSTAT (2001). Results 

show that Asia is the major performer with an annual TFP growth of 2.9 percent and 

Africa seems to be the weakest performer with only 0.6 percent growth in TFP. Such 

figures clearly reject a phenomenon of negative productivity trends and technological 

regression. Nina et al. (2003) analyze agricultural productivity growth in developing 

countries over the period 1961-1994. Their results confirm that measured agricultural 

TFP in developing countries is generally increasing, with technical change being the 

main source for this growth. Similarly, the empirical results in Martin and Mitra (2001) 

indicate a strong positive annual average TFP growth between 1.76% and 2.62%, for 

developing countries, though lower than for developed countries. Bernard and Jones 

(1996) go one step further and find evidence of a relatively rapid convergence in 

agricultural TFP across countries. Coelli and Rao (2003) reach a similar conclusion with 

a larger and more representative database. In particular, they found that, on average, in 

the period 1980-2000, TFP has grown at 3.6 percent in countries that were technically 

inefficient in 1980, a much higher rate than the 1.2 percent found for the group of 

countries that were efficient in 1980. According to Coelli and Rao (2003, p. 14), “these 

results indicate a degree of catch-up in productivity levels between high-performing and 

low-performing countries”. Restuccia et al. (2004) have also found that productivity 
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differences needed to account for international disparities in economic growth are 

smaller once the role of agriculture is taken into account. 

In short, the idea that agriculture is a sector of low productivity growth and also one 

with a strong productivity growth bias against the poor countries of the world has been 

challenged by recent empirical evidence.  

Various authors have also pointed out the negative effects of development strategies 

that rely on a strong support of the manufacturing sector while penalizing agriculture. 

Krueger et al. (1992) find a negative relation between the rate of total taxation of 

agriculture and GDP growth: policies that depress agriculture’s terms of trade below 

international levels are associated with slower economic growth. Therefore, Krueger et 

al. (1992) prescribe a recipe to governments of developing countries: do not tax 

agriculture relative to other sectors by protecting industry and maintaining overvalued 

exchange rates.  Similarly, Restuccia et al. (2004, p. 20) conclude that market 

distortions and different types of barriers “reduce the incentives of farmers in poor 

countries to use modern inputs that are crucial for improving agricultural productivity”.  

These results suggest that the role of agriculture in the growth process of developing 

countries may well go beyond releasing labor and helping to create conditions for the 

development of non-agricultural sectors. Specifically, the empirical results indicate that 

agriculture can act as an engine of growth in significant parts of the developing world 

and contribute strongly to reversing the trend for global divergence that has been 

observed in the last few decades.  Martin and Mitra (2001, p. 20) support this view by 

arguing that their results “suggest that a large agricultural sector need not be a 

disadvantage, and may be an advantage in terms of growth performance”. Accordingly, 

Martin and Mitra (2001, p. 20) also challenge the validity of “the frequently-advocated 

policies of discrimination against agriculture on the grounds that it is a stagnant sector”.   

There seems therefore to be recent conflicting evidence on agricultural productivity 

growth both in relation to the other sectors of the economy as well as across countries. 

In our view, such evidence brings new interest to the issues of measuring agricultural 

productivity growth, investigating further the role of agriculture in economic 

development and also the extent to which this sector is responsible for the rising cross-
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country disparities of income and productivity. In particular, the research questions like 

the following remain largely unanswered: 

- What are the trends and relationship between labor productivity growth in agriculture 

and in the overall economy? 

- How has the international distribution of labor productivity evolved in agriculture? 

- What is the contribution of the agricultural sector to productivity growth and to the 

changing distribution of GDP per capita?  

- In developing countries, is a “shrinking agriculture” a pre-condition for economic 

growth and for fast labor productivity growth in agriculture itself? 

- What are the main factors affecting the growth rates and changing international 

distributions of labor productivity growth in agriculture and in the overall economy? In 

particular, what are the roles of factor accumulation, technical change and catch-up in 

shaping those distributions? 

In order to address those questions, we will try to link the problem of explaining 

international labor productivity differences across countries to the role played by 

agriculture in economic growth.  More specifically, we will make a development 

accounting exercise for agriculture and the overall economy, identifying sources of 

growth in each case. Although estimates of productivity growth for the economy as a 

whole abound, there are surprisingly very few studies that provide comparisons between 

productivity in agriculture and the overall economy, particularly in developing 

countries.  We try to make a contribution in filling that gap. 

We start by estimating cross-country distributions of labor productivity, both for the 

economy as a whole and for the agricultural sector, and we look at how those 

distributions have changed over the period 1967-92. Secondly, we try to shed some light 

on the causes of those changes by investigating the extent to which they are due to 

catch-up, technical change and factor accumulation.  In particular, we are interested in 

assessing whether those three factors have played different roles in shaping the 
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distributions of labor productivity of the overall economy and of agriculture through the 

period under consideration.  

Methodologically, we decide to use a frontier production approach, for three main 

reasons. First, this method allows the decomposition of labor productivity growth into 

three components (dividing TFP into catch-up and technical change) and none of them 

is determined residually. Secondly, recent advances in the frontier literature account for 

heterogeneity of individuals, a desirable characteristic when we are dealing with a 

sample with countries in different development stages. Last but not least, it is possible 

to introduce some flexibility in the definition of technology and stochastic noise, 

avoiding misspecifications problems.      

The dissertation extends the literature on frontier-based development accounting models 

(e.g., Kumar and Russell, 2002; Henderson and Russell, 2005; Kumbhakar and Wang, 

2005) in some important directions: it uses a panel data framework; the frontier is not 

assumed to be common to all countries; the specification of the frontier is flexible. 

Kumar and Russell (2002) and Henderson and Russell (2005) estimate a single 

production frontier to cross-country data using a deterministic method. Kumbhakar and 

Wang (2005) use a translog specification to determine production frontiers of a panel 

data sample of countries, taking heterogeneity into account. The main conclusion of this 

study was that ignoring heterogeneity tends to underestimate the catch-up rate and 

overestimate technical change effect. Therefore, we will try to create stochastic models 

which account simultaneously for heterogeneity across countries and for the flexibility 

of the frontier specification. 

The rest of the dissertation is organized as follows. Chapter 2 briefly reviews the most 

relevant empirical studies identifying sources of labor productivity growth in the overall 

economy and/or in agriculture. After concluding that the results of those studies are 

largely sensitive to measurement methods they use, we present, in chapter 3 a survey of 

some empirical methods that have been used in the literature to study efficiency and 

productivity. The following chapters try to answer the research questions of the 

dissertation, using panel data of 45 countries and 26 years for agriculture and overall 

economy. Chapter 4 introduces some labor productivity growth indicators exhibited by 

the sample. Chapter 5 and 6 use two different methods to perform the decomposition of 
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labor productivity growth, respectively a finite mixture model and a penalized spline 

approach both for Classical and Bayesian formulations. The last chapter summarizes the 

main results and conclusions of the dissertation. 
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2 - Sources of Labor Productivity Growth in the Agricultural Sector and in the 

Overall Economy: A Literature Review   

2.1 - Introduction 

Development accounting uses cross-country data on output and inputs to identify the 

most important source of differences in per-worker incomes: disparities in factor 

quantities or in the efficiency with which those factors are used, known as TFP. 

Conceptually, according to Caselli (2005), development accounting can be defined as 

the task of quantifying the relationship:   

                            Per-capita income=F(Factors,TFP). (2.1) 

In the traditional cross-country growth regression models, the key steps of this 

assignment are “(1) choosing a functional form for F, and (2) accurately measuring 

Income and Factors” (Caselli, 2005, p.1). The omission of TFP measurement is 

explained by the fact that within these models, it is determined as a residual, “a measure 

of our ignorance on the causes of poverty and under-development” (Caselli, 2005, p. 1).  

The baseline equation for this kind of models is developed by Solow (1956), assuming a 

Cobb-Douglas production function with constant returns to scale, in which total GDP is 

a function of the economy's labor resources L, its capital stock K, and its TFP level A: 

                                                 
1( ) ( ) .t t t tY K L Aα α−=  (2.2) 

Using lowercase letters to denote proportional rates of change, we can use equation 

(2.2) to decompose growth in output per worker into various components: 

                                               ( ) ,y s nα δ τ= − − +  (2.3) 

where:  

y is the rate of growth of GDP per worker; s is the investment to GDP ratio; δ is the 

depreciation rate of physical capital stock; n the labor force growth rate; and τ  is the 

TFP growth rate, assumed to be a constant and obtained as a residual, after accounting 

for factor inputs and for changes in the quality of labor inputs. 
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We will use the work of Mankiw et al. (1992) as an example of a traditional cross-

country growth regression model. Mankiw et al. (1992) extend Solow's (1956) 

framework with an augmented production function that incorporates human capital (H): 

1( ) ( ) ( ) .t t t t tY K H L Aα β α β− −=     (2.4) 

The decomposition of output-per-worker growth is now: 

( ) ( ) ,k k h hy s n s nα δ β δ τ= − − + − − +    (2.5) 

with additional terms arising because growth can be generated both by investments in 

physical capital and investments in human capital. 

All of traditional cross-country growth regression models present two undesirable 

characteristics: (i) they obtain the effect of TFP growth residually; and (ii) they are 

heavily model-driven, depending on particular assumptions about the technology, 

market structure and technological change. Therefore, one potential promising research 

strategy is to measure directly the effect of TFP on growth and to improve on steps (1) 

and (2) indicated by Caselli (2005, p.1); i.e., by looking at alternative functional forms 

and by attempting a more sophisticated measurement tools to perform the development 

accounting exercise. The frontier production models presented by Kumar and Russell 

(2002) and Henderson and Russell (2005) represent an important step towards this 

direction. This method estimates a best practice frontier at each point in time with a 

deterministic and nonparametric approach known as Data Envelopment Analysis 

(DEA). It envelops the data in the smallest fitting convex cone, with upper boundary of 

this set representing the “best practice” production frontier. Then, it calculates measures 

of TFP growth by means of Malmquist productivity indices presented in the work of 

Grosskopf (1993) and Färe et al. (1994a, 1994b). 

To illustrate this decomposition method, we use the subscripts b and c to stand for the 

base period and the current period, respectively. In period b, xb units of input per worker 

are used to produce yb units of output per worker. However, if the country is fully 

efficient, it could produce ( )b by x . Therefore, efficiency in period b is measured as: 
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( )
.b

b
b b

yEff
y x

=       (2.6) 

Thus, labor productivity in period b can be expressed as: 

( ).b b b by Eff y x= �      (2.7) 

Consider the current period c, labor productivity growth is given by the equation: 

( )
( )

.c cc c

b b b b

y xy Eff
y Eff y x

= ⋅      (2.8) 

Multiplying the numerator and the denominator of (2.8) by ( )c by x , labor productivity 

growth can be rewritten as: 

( )
( )

( )
( )

.c b c cc c

b b b b c b

y x y xy Eff
y Eff y x y x

= ⋅ ⋅     (2.9) 

The ratio cEff  to bEff  is the efficiency change or technological catch-up between the 

current period and the base period. The ratio of ( )c by x to ( )b by x  captures the shift in 

the deterministic frontier caused by technological change, since input quantity per 

worker does not change. The last term on the right hand side captures the effect of 

factor accumulation, since it measures the output per worker change along the 

“deterministic” frontier in period c.  

Alternatively, (2.8) could be multiplied and divided by ( )b cy x  and a different, but 

valid, decomposition would be obtained. This means that labor productivity growth 

decomposition is path dependent, forcing the use of geometric averages:  

( )
( )

( )
( )

( )
( )

( )
( )

1 1
2 2

,c b c c c c b cc c

b b b b b c c b b b

y x y x y x y xy Eff
y Eff y x y x y x y x

⎡ ⎤ ⎡ ⎤
= ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
  (2.10) 

where: 
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 ( )
( )

( )
( )

1
2

c b c c

b b b c

y x y x
y x y x

⎡ ⎤
⋅⎢ ⎥

⎢ ⎥⎣ ⎦
represents technological change and ( )

( )
( )
( )

1
2

c c b c

c b b b

y x y x
y x y x

⎡ ⎤
⋅⎢ ⎥

⎢ ⎥⎣ ⎦
indicates 

factor accumulation and all the other terms are defined as before.  

Considering the combined effect of efficiency variation with technological change, we 

obtain the Malmquist TFP index (e.g., Grosskopf, 1993 and Färe et al., 1994a, 1994b). 

Therefore, the specification of a functional form for the technology and the assumptions 

on technological change and the market structure are not needed to determine the 

contribution of each component to labor productivity growth. TFP is not obtained 

residually and it can be decomposed into technological change (shifts in the world 

production frontier) and technological catch-up (movements towards or away from the 

frontier as countries adopt “best practice” technologies and reduce or exacerbate 

technical inefficiency). The other source of labor productivity growth, factor 

accumulation, is captured through the movements along the frontier.  

In this chapter, we briefly review the most relevant empirical studies identifying sources 

of labor productivity growth in the overall economy and in agriculture with the purpose 

of answering two questions: are the results sensitive to the methods used? And to the 

sectors analyzed? To carry on this task, we will also analyze how the literature 

contextualizes the role of agriculture in the process of economic growth. 

 

2.2 - Sources of Labor Productivity Growth in the Overall Economy 

Over the last few years, various studies2 have used a relatively wide range of 

methodological approaches to decompose labor productivity growth for the economy as 

a whole. However, the resulting evidence has been mixed and somehow contradictory: 

while some studies indicate that capital accumulation accounts for most of the increase 

in output per worker and for the bulk in cross-country growth differences over the last 

decades, others suggest that such differences are mainly due to disparities in TFP 

growth.  

                                                 
2 e.g., Boskin and Lau (1990, 1991, 1992a, b), Kim and Lau (1992a, b, 1994, 1995), Mankiw et al.  
(1992), Mankiw (1995), Young (1995), Lau (1996), Klenow and Rodriguez-Clare (1997), Prescott 
(1998), Hall and Jones (1999) and Kumar and Russell (2002). 
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Mankiw et al. (1992) are among the first to perform a cross-country analysis of 

economic growth determinants. Using data for 98 countries and a three-factor Cobb-

Douglas production function [equation (2.4)], Mankiw et al. (1992) conclude that factor 

accumulation accounts for 78% of the variation in output per worker between 1965 and 

1985. Mankiw (1995, p. 301) argues that for “understanding international experience, 

the best assumption may be that all countries have access to the same pool of 

knowledge, but differ by the degree to which they take advantage of this knowledge by 

investing in physical and human capital.”  

In a series of papers, Boskin and Lau (1990, 1991, 1992a, 1992b), Kim and Lau (1992a, 

1992b, 1994, 1995) and Lau (1996) investigate the sources of economic growth for 

developed and developing countries using the aggregate meta-production function 

framework. They find that technical progress for the developed countries and capital 

accumulation for developing countries are the most important sources of economic 

growth in the postwar period. When the analysis is extended to take into account the 

effects of embodied technical progress, capital accumulation is found to be the most 

important source of economic growth for the developed countries. Furthermore, the 

hypothesis of no technical progress and no catch-up cannot be rejected for developing 

countries. Therefore, the gap between TFP levels of developed and developing countries 

appears to be widening. Lau (1996) concludes that this finding should conduct 

developing countries to devote greater proportions of their resources to innovative 

activities, in order to attain a positive rate of growth in productive efficiency and to 

increase the contribution of technical progress to labor productivity growth. 

Young (1995) applies the growth rates accounting approach to the growth miracles of 

the East Asia in the period 1965-1990 and concludes that the translog index of TFP 

growth lies between 0 and 2% for these countries, clearly less than previously found by 

growth accounting studies which attributed 1/3 of growth to TFP. Thus, both studies of 

Mankiw et al. (1992) and Young (1995) are consistent with the idea that factor 

accumulation is the crucial determinant of growth. 

This view was initially questioned by the works of Klenow and Rodriguez-Clare (1997), 

Prescott (1998) and Hall and Jones (1999), suggesting that disparities in TFP are the 

main explanation for output per worker differences.  
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Klenow and Rodriguez-Clare (1997) use a similar method as in Mankiw et al. (1992), 

but question two assumptions made, namely the values chosen for capital shares and the 

human capital accumulation measure. These modifications change the results, allowing 

Klenow and Rodriguez-Clare (1997, p. 99) to “call for returning productivity 

differences to the center of theorizing about international differences in output per 

worker.” 

Prescott (1998) also concludes that differences in physical and intangible capital cannot 

account for international income differences. The most striking result found is that 

differences in the publicly available stock of technical knowledge do not explain TFP 

variations across countries. Therefore, Prescott (1998) concludes that a theory of TFP is 

needed. 

Following Prescott (1998), Hall and Jones (1999) show that TFP differences are related 

to the type of policies and institutions adopted by the countries. Hall and Jones (1999) 

present a new technique of level accountings instead of growth rates accounting in the 

decomposition of output per worker into capital intensity, human capital and TFP. 

Assuming a small capital share coefficient in the Cobb-Douglas production functions, 

Hall and Jones (1999) conclude that most of the growth gap between any country and 

the United States of America is due to residual productivity differences, which are 

primarily related to differences in social infrastructures across countries such as 

government policies and institutions. 

All of economic growth studies reported so far share one important characteristic: TFP 

is measured residually. According to Easterly and Levine (2001, p. 1), this means that 

“after accounting for physical and human capital accumulation, ‘something else’ 

accounts for the bulk of cross-country growth differences”, with the term TFP used “to 

refer to the ‘something else’ (besides physical factor accumulation) that accounts for 

economic growth differences”. When the residual is the main variable explaining some 

phenomenon, it is natural that some authors would try to look for other methods and 

check if the result holds. 

Kumar and Russell (2002) and Henderson and Russell (2005), starting from the 

decomposition of the Malmquist index presented in the works of  Grosskopf (1993) and 
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Färe et al. (1994a, 1994b), develop a method in which none of the decomposed effects 

is determined residually. Furthermore, catch-up is not measured relatively to a single 

country, but to a world productiob frontier. DEA is used to estimate a world production 

frontier for the years of 1965 and 1990 from a large sample of countries. As indicated 

by Durlauf et al. (2005), this is important since “any misspecification of the production 

function due to the Cobb-Douglas assumption in other studies will tend to increase the 

apparent variation in TFP relative to that found by Henderson and Russell”. In fact, 

Duffy and Papageorgiou (2000) reject the Cobb-Douglas aggregate production function 

in favor of the more general constant elasticity of substitution specification for cross-

country empirical studies.  

Assuming constant returns to scale (CRS), Kumar and Russell (2002) decompose labor-

productivity growth into components attributable to physical capital accumulation 

(movements along the frontier), technological change (shifts in the world production 

frontier) and technological catch-up (movements towards the frontier). The empirical 

results suggest that capital deepening, as opposed to technological change or 

technological catch-up, is the main explaining factor for the international divergence of 

economies. Furthermore, Kumar and Russell (2002) argue that wealthy countries have 

benefited more from technological progress than less developed countries and find 

striking examples of technological regress in low-income countries. Henderson and 

Russell (2005) extend the approach of Kumar and Russell (2002) by introducing human 

capital. Henderson and Russell (2005) find that, on average, about 90% of the increase 

in output per worker over the 1965-1990 period is attributable to the accumulation of 

human and physical capital. 

 

2.3 - Agriculture and the Overall Economy 

2.3.1 - The role of Agriculture in Economic Development 

The sectoral decomposition of total output may contribute to explain the increasing gap 

between the rich and poor countries that occurred in the last decades. The fact that 

agriculture in developing countries still accounts for a significant share of the overall 

economy may be important to understand labor productivity growth in those countries. 

The role of agriculture in economic development and the extent to which the 
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agricultural sector is responsible for the rising cross-country disparities of income and 

productivity are rather important issues that remain largely unclear. 

Gollin et al. (2002) decompose growth in per worker GDP over the 1960-1990 period 

into three components: growth within agriculture, growth within non-agriculture, and 

growth due to sectoral shifts. On average, Gollin et al. (2002, p.164) find that the 

contribution of agricultural growth, non-agricultural growth, and sectoral shifts are 54 

percent, 17 percent and 29 percent respectively, concluding that “agricultural 

productivity growth, along with the ensuing sectoral shifts in employment, is an 

important source of economic growth”.  

Another important finding supporting the crucial role of agriculture in development 

processes and described in recent studies (e.g., Restuccia et al. , 2004; Caselli, 2005) is 

that cross-country differences in labor productivity for the agricultural sector are much 

higher than differences in aggregate labor productivity. For instance, in 1985, GDP per 

worker in the richest 5 countries in the world is 32 times that of the poorest 5 countries 

and in agriculture, the productivity difference is even larger: GDP per worker in 

agriculture for the richest countries is 71 times that of the poorest countries.  

This idea that growth in agricultural productivity is crucial to the development of poor 

countries is recurrent in the traditional development literature (e.g., Timmer, 1988) after 

the publication of Johnston and Mellor's (1961) and Schultz (1964) classical works. 

Two stylized facts are often mentioned in the literature: agriculture's share in GDP and 

labor force declines as economies grow (agriculture's direct contribution to economic 

growth diminishes); for most of poor countries, a rapid, substantial and continued 

agricultural growth is a necessary condition to induce general economic growth 

(agricultural indirect contribution must increase to allow the decline of its direct 

contribution). These facts are empirically confirmed by several studies (e.g., World 

Development Report, 1992; Gollin et al., 2002) reporting the declining share of 

agriculture during the process of economic growth and a strong positive relationship 

between agricultural productivity and the movement of labor out of agriculture. This 

evidence is valid independently of the time period and countries considered.  
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Table 1 - Share of Agriculture in GDP 
 1965 1990 
Low income 41 31 
Lower middle income 22 17 
Upper middle income 16 9 
High income 5 2,5 
 

Source: World Development Report (1992) 

Nevertheless, the dominant role of agriculture in developing countries seems to be 

disadvantageous for two reasons. First, the domestic demand for agricultural products is 

inelastic and the highly protective agricultural policies of rich countries and some 

domestic market distortions constrain the possibility of exporting. Second, several 

empirical studies suggest a decline in agricultural TFP for developing countries (e.g., 

Fulginiti and Perrin, 1993, 1997, 1998, 1999; Arnade, 1998; Lau and Yotopoulos, 1989; 

Kawagoe et al., 1986). Each one of these aspects presented in the literature should be 

analyzed carefully. 

Regarding internal and external market distortions, the idea that agriculture was 

impervious to price incentives and that industry was the engine of growth seems to 

contribute to strong government policy biases against agriculture and towards 

manufacturing in many developing countries. According to the World Bank (1992, p. 

1), an analysis of these income transfers reveals that “agriculture was clearly the loser, 

while the big winners were government (net revenue gain), urban consumers (lower 

food prices), and industry (cheap raw materials and other inputs)”. 

The study of Krueger et al. (1992), focusing on 18 developing countries over the time 

period of 1960-83, measures the income transfers induced by price interventions among 

agriculture, government, and the overall economy. Countries with high taxation of 

agriculture present low rates of growth in the agricultural output (2.7 percent per year, 

on average) and in GDP (4.2 percent per year on average). Countries with lower 

taxation of agriculture exhibit higher rates of growth in agricultural output (5.2 percent 

per year) and in GDP (5.9 percent per year on average). Therefore, Krueger et al. (1992) 

prescribe a recipe to governments of developing countries: if heavy taxation ended, 
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agricultural growth rates would nearly double, inducing a 40% raise in the aggregate 

growth rate of GDP. 

Restuccia et al. (2004) also find evidence of market distortions by estimating that the 

price of food is higher and the price of agricultural products at the farm gate is lower in 

rich than in poor countries. Thus, Restuccia et al. (2004, p. 28) decide to examine direct 

and indirect barriers in the use of intermediate inputs in agriculture, concluding that 

“these barriers reduce the incentives of farmers in poor countries to use modern inputs 

that are crucial for improving agricultural productivity”. Schultz (1964) identifies these 

problems thirty years before, but, as pointed out by Restuccia et al. (2004, p. 28), “this 

quantitative analysis shows that for many countries in the world, barriers to 

transforming traditional agriculture are still pervasive”.  

Using a two-sector general equilibrium model with subsistence food requirements, 

Restuccia et al. (2004) emphasize two interesting outcomes: agriculture accounts for 7/8 

of the aggregate productivity differences between the rich and poor countries; low labor 

productivity in agriculture in poor countries can largely be accounted for low levels of 

economy-wide productivity and barriers to the use of modern intermediate inputs in 

agricultural production. Restuccia et al. (2004) report a vicious circle: a low economy-

wide productivity has also an indirect effect on low productivity in agriculture, since the 

subsistence requirements of food and land act as a fixed factor in agriculture, implying 

that more labor has to be allocated to this sector in countries with low economy-wide 

productivity level, which results in a lower land to labor ratio and a further reduction in 

labor productivity in agriculture. Therefore, the removal of market barriers in 

agriculture seems crucial in the growth process of developing countries. 

 

2.3.2 - Sources of Labor Productivity Growth in Agriculture 

Regarding TFP in developing countries, several empirical studies indicate a prolonged 

and rapid decline in agricultural TFP: Kawagoe and Hayami (1985), Kawagoe et al. 

(1985), Lau and Yotopoulos (1989), Trueblood (1996), Arnade (1998) and Fulginiti and 

Perrin (1993, 1997, 1998, 1999). This evidence is found even for the “green revolution” 

Asian countries and for agricultural exporter nations of South America. If this evidence 
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was true, then any agricultural-oriented development strategies, such as the one 

suggested by Adelman (1995), would not be followed by policy makers in developing 

countries and probably more market distortions in favor of non-agricultural sectors 

would be encouraged. 

Kawagoe and Hayami (1985) and Kawagoe et al. (1985) analyze data from 22 

developing countries and 21 developed countries for 1960, 1970, and 1980, using a 

Cobb-Douglas specification for the production function with five conventional inputs 

(land, labor, tractors, livestock, and fertilizer) and two educational variables to adjust 

for differences in labor quality. Lau and Yotopoulos (1988), using the same data and 

including first differences to account for fixed country-specific effects, show that results 

are sensitive to the functional form specification. Nevertheless, the results for TFP 

growth are similar among these studies: regression in the poor and progress in the rich 

countries. It is important to note that the studies of Kawagoe and Hayami (1985), 

Kawagoe et al. (1985) and Lau and Yotopoulos (1988) represent cross-section 

international comparisons.  

Fulginiti and Perrin (1993, 1997, 1998, 1999) carry out a panel data study of 18 

developing countries considering one output (aggregate agricultural output) and five 

inputs (land, labor, fertilizer, machinery and livestock) over the period 1961-1985. The 

majority of countries exhibited negative TFP growth, including nations of the “Green 

Revolution” (Korea and Philippines) and American agricultural exporters (Argentina, 

Brazil). Interestingly, this outcome does not change with the method used in the 

estimation (standard econometric methods with a Cobb-Douglas production function or 

DEA). Fulginiti and Perrin (1997, 1999), Trueblood (1996) and Arnade (1998) use an 

output-based Malmquist index to estimate agricultural TFP.  Trueblood (1996) applies 

this method to 115 countries over the period 1961-1991. North America and Western 

Europe showed high productivity growth throughout the entire period. Asia and Sub-

Sahara Africa exhibited negative productivity growth and the Latin American countries 

experienced positive TFP rates only in the eighties. Arnade (1998) estimates 

nonparametric Malmquist indices for 70 countries over the years 1961-1993 and finds 

that 36 of 47 developing countries show negative rates of TFP. 
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Recent empirical studies contradict this result of regression in TFP for the developing 

countries. Coelli and Rao (2003) examine agricultural productivity growth in 93 

countries over the period 1980-2000 using data from FAOSTAT (2001). Asia is the 

major performer with an annual TFP growth of 2.9 percent and Africa seems to be the 

weakest performer with only 0.6 percent growth in TFP. Nevertheless, the phenomenon 

of negative productivity trends and technological regression is rejected. According to 

Coelli and Rao (2003, p. 14), “this is most likely a consequence of the use of a different 

sample period and an expanded group of countries”. Nina et al. (2003) provide an 

additional argument: technical regression observed is probably the consequence of 

biased technical change together with the definition of technology used to estimate the 

Malmquist index. Nina et al. (2003) analyze agricultural productivity growth in 

developing countries over the period 1961-1994, applying a broader cumulative 

definition of technology than the one normally used to estimate the Malmquist index. 

The results confirm that agricultural TFP in developing countries is raising and that 

technical change is the main source for this growth.  

The work of Nina et al. (2003) emphasizes the relevance of the definition of technology 

used in empirical studies. Martin and Mitra (2001) conclude the same within a 

parametric framework. The Cobb-Douglas production function employed in other 

studies is empirically rejected, concluding that the constancy of factor shares across 

countries and over time imposed by this specification is inadequate. Martin and Mitra 

(2001) adopt the translog form in a study of 50 countries in different development 

stages over the period 1967-1992 and conclude that the annual average TFP growth 

rates in developing countries are strong, between 1.76 and 2.62 percent, although lower 

than developed countries. Furthermore, technical progress has been faster in agriculture 

than in manufacturing for both developing and developed countries (Martin and Mitra, 

2001). Mundlak (2000) concludes that agricultural labor and total factor productivity 

growth rates, from the 1950s through the late 1980s, have consistently exceeded their 

non-agricultural counterparts in the majority of countries. Bernard and Jones (1996) 

obtain similar results for 14 OECD countries over the period 1970-87, using time-series 

and cross-section parametric methods: the annual TFP growth rates is 2.6 and 1.2 

percent, respectively for the agriculture sector and the industry. In addition, there is a 

tendency for a relatively rapid convergence in agricultural TFP across countries. In a 
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sample of developed countries, this result seems unimportant. However, Martin and 

Mitra (2001) and Coelli and Rao (2003) conclude the same for a larger database, with 

countries in all development stages. Martin and Mitra (2001, p. 20) conclude that “at all 

levels of development, however, technical progress appears to have been faster in 

agriculture than in manufacturing” and that “there is strong evidence of convergence in 

levels and growth rates of TFP in agriculture, suggesting relatively rapid international 

dissemination of innovations”. Coelli and Rao (2003, p. 14) find evidence that 

“countries that were well below the frontier in 1980 have a TFP growth rate of 3.6 

percent”, contrasting with “a low 1.2 percent growth for the countries that were on the 

frontier in 1980”, clearly a sign of  catch-up in productivity levels. 

2.4 - Conclusions 

The discussion of the previous section shows that there seems to be recent conflicting 

evidence on agricultural productivity growth both in relation to the other sectors of the 

economy as well as across countries. In our view, such evidence brings new interest to 

the issue of measuring agricultural productivity growth and investigating the role of 

agriculture in economic development. If empirical results such as those of Martin and 

Mitra (2001) are valid, then the agricultural sector may well have the potential for 

playing a decisive role in the growth strategies of developing countries and in reversing 

the trend for global divergence that has been observed in the last few decades. A large 

agricultural sector may be an advantage in terms of growth performance, weakening 

“the case for the frequently-advocated policies of discrimination against agriculture on 

the grounds that it is a stagnant sector” and potentially providing “an explanation for 

growth convergence at the macroeconomic level where growth rates slow down as the 

share of the agricultural sector declines” (Martin and Mitra, 2001, p.20). 

Furthermore, this overview of existing literature reveals how particular assumptions on 

the technology, market structure and technological change affect results relative to the 

growth process, specially the fraction of labor productivity growth attributable to TFP 

growth and capital deepening. To overcome this dependency on the model specification, 

Kumar and Russell (2002) adopt a cross-section nonparametric frontier production 

method. The application of production frontier approaches to international growth-

accounting has the main advantage of determining directly the factor accumulation and 
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the TFP growth, decomposed further into the catch-up and technological change effects. 

None of the components is determined residually and technical change is measured 

through the shift of the frontier, avoiding estimation problems with the inclusion of a 

time trend to capture this effect. Nevertheless, although this linkage of economic growth 

studies to the production frontier literature looks fruitful, the choice of a deterministic 

and cross-section approach by Kumar and Russell (2002) seems controversial and 

worthy of improvement. Estimating a non-stochastic production frontier with 

information of only one year seems dangerous. Furthermore, the assumption of a single 

world production frontier can be challenged, particularly for samples including a large 

and heterogeneous set of countries. Kumbhakar and Wang (2005) show that ignoring 

heterogeneity invalidates the decomposition of TFP growth. Therefore, we will try to 

create stochastic models which account simultaneously for heterogeneity across 

countries and for the flexibility of the frontier specification. 

 If this assumption is not valid, technological differences may be labeled as inefficiency 

and the decomposition of output per worker is not valid. Therefore, it is important to 

find in the panel data production frontier literature, stochastic and flexible models that 

account for heterogeneity among countries in order to use or extend them to the purpose 

of this dissertation.   In the next chapter we review the main methods of production 

frontier estimation that have been used recently in the literature.   
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3 – A Survey on Panel Data Production Frontier Methods 

3.1 - Introduction 

Farrell (1957) was the first to measure productive efficiency empirically. Nevertheless, 

his work would not be possible without the developments of theoretical literature on 

growth and productivity in the 1940s and 1950s under the auspices of the Cowles 

Commission, directed by Koopmans since 1948.  

Koopmans was thinking, ever since his wartime days with the Combined Shipping 

Adjustment Board, about a systematic way to find the optimal routing plan for empty 

ships when there were fixed tonnages of cargo per month to go from one port to other 

ports. In seeking this systematic approach, Koopmans hits upon the principles of linear 

programming and activity analysis of production. Koopmans (1951) provides a 

definition of technical efficiency: a combination of inputs and outputs is said to be 

technical efficient when it is impossible to increase the rate of any output without at the 

same time increasing some input or decreasing some other output. However, only in 

Debreu (1951) it is possible to find a measure of productive efficiency, designated by 

the coefficient of resource utilization. Debreu (1951) uses a radial measure of 

efficiency, focusing on the maximum feasible equiproportionate reduction in all 

variable inputs or the maximum feasible equiproportionate expansion of all outputs.  

Farrell (1957) extends the work initiated by Koopmans (1951) and Debreu (1951) and 

shows how to decompose economic efficiency into technical efficiency and allocative 

efficiency. Within a cost efficiency analysis, Farrell (1957) defines technical efficiency 

as the ability of a firm to minimize input use in the production of a given output vector. 

Allocative efficiency refers to the ability of a firm to use inputs in optimal proportions 

given their relative prices and the production technology.  

It is interesting that the diffusion of Farrell's work was very slow. In fact, he was a 

Cambridge professor with no Ph.D. students and the journal he published in was not 

included in the social science databases of the United States. The first enthusiastic 

citation came by Amey (1964), an Operations Research scientist, and by Boles (1967), a 

Berkeley agricultural economist who wrote FORTRAN codes to improve the Farrell 
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estimation method. Farrell (1957) illustrates the cost efficiency decomposition with an 

empirical application to U.S. agriculture using linear programming techniques. Farrell's 

work was important for the development of the Stochastic Frontier Analysis (SFA) 

independently proposed by Aigner et al. (1977) and Meeusen and van den Broeck 

(1977) and the DEA method by Charnes et al. (1978). Other important studies for the 

development of the frontier analysis directly built upon Farrell's work were the 

deterministic approach of Aigner and Chu (1968), the statistical foundation of frontier 

estimation developed by Afriat (1972), and a corrected ordinary least squares method 

introduced by Richmond (1974).  

In the last twenty five years a wide range of methods have been developed for studying 

efficiency and productivity issues through the estimation of production frontiers. In this 

chapter, we briefly review the main stochastic panel data production frontier models 

that have recently been proposed in the literature. We classify those methods into five 

different categories: i) traditional parametric techniques of fixed, random effects and 

maximum likelihood, according to the taxonomy presented by Kumbhakar and Lovell 

(2000); ii) confidence interval methods of bootstrapping and Bayesian analysis, 

according to the taxonomy suggested by Schmidt and Kim (2001, p. 283); iii) 

semiparametric approaches; iv) nonparametric methods; v) recent parametric 

approaches that account for heterogeneity, such as the latent class models or the true 

fixed- and true random-effects models.  We dedicate one section to each group of 

methods. In the final section of the chapter we summarize the discussion of the main 

strengths and weaknesses of the various models and justify the methodological option 

that we make in the following chapters.  

 

3.2 - Traditional Parametric Techniques 

In this section, we will follow the taxonomy presented by Kumbhakar and Lovell 

(2000) and try to explain the main features of each model. 
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3.2.1 - Origins and Advantages Over Cross-Section Data 

Stochastic frontier analysis was independently proposed by Meeusen and van den 

Broeck (1977) and, one month later, by Aigner et al. (1977). Their production frontier 

specifications involve a stochastic composed error term associated with random shocks 

outside the control of producers that can affect output and a non-negative random 

variable representing technical inefficiency. This approach advances the deterministic 

frontier specification of Aigner and Chu (1968) involving only a non-negative random 

variable associated with technical inefficiency.  

The production frontier model in both papers can be expressed as following:  

+ - ,y x v uβ ′=      (3.1) 

where:  

y designates a scalar output; x a vector of inputs; β a vector of technology parameters; the 

error component v ~ N[0,σv
2] captures the effects of statistical noise; and the other error 

component, u ≥ 0, represents technical inefficiency.  

Meeusen and van den Broeck (1977) assume an exponential distribution for u and Aigner 

et al. (1977) try both the exponential and the half-normal distributions. The specification 

of these distributional assumptions became one of the main criticisms in the stochastic 

frontier analysis since there is no a priori justification for the selection of any particular 

distributional form for the technical inefficiency term. This criticism led to the 

specification of more general distributional forms. Stevenson (1980) introduces the 

truncated-normal model; Greene (1980) proposes the two-parameter gamma model; and 

Lee (1983) suggests the four-parameter Pearson family of distributions. Other criticism 

made was the impossibility of obtaining the decomposition of individual residuals. 

Jondrow et al. (1982) devise a method of disentangling these effects using the mean of 

the conditional distribution [ui|vi-ui] to provide individual estimates of technical 

inefficiency. According to Jondrow et al. (1982, p. 234), “this was Farrell's (1957) 

original motivation for introducing production frontiers, and the ability to compare 
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levels of efficiency across observations remains the most compelling reason for 

estimating frontiers”. 

Until the work of Pitt and Lee (1981), all efficiency measurement studies were cross-

sectional. As pointed out by Schmidt and Sickles (1984, p. 367), these models have 

three problems: “first, the technical inefficiency of a particular observation can be 

estimated but not consistently. (…) Second, the estimation of the model and the 

separation of technical inefficiency from statistical noise require specific assumptions 

about the distribution of technical inefficiency and statistical noise. (…) Third, it may 

be incorrect to assume that inefficiency is independent of the regressors”. A rich panel 

data can overcome some of these difficulties. In fact, individual technical efficiency can 

be estimated consistently with a panel data, whereas the estimates of technical 

inefficiency using the decomposition developed by Jondrow et al. (1982) are not 

consistent in a cross-sectional context. Furthermore, panel data make it possible to 

control for individual heterogeneity, which can lead to inconsistent estimation due to the 

correlation problem between the technical inefficiency term and the regressors. Finally, 

panel data estimation techniques can be adapted to the efficiency measurement problem 

while not requiring strong distributional or independence assumptions, since repeated 

observations on a sample of individuals can serve as a substitute for those assumptions. 

 

3.2.2 - Time-invariant Technical Efficiency 

a ) Maximum Likelihood 

Pitt and Lee (1981) are the first authors to analyze a panel data set by extending the 

cross-sectional Maximum Likelihood technique. The production frontier is estimated as: 

yit = β′xit + vit - ui ,      (3.2) 

where:  
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i refers to individuals (i=1,…,N); t to time periods (t=1,…,T); β is a Kx1 vector of 

coefficients3; vit ~ N[0,σv
2]; ui ~ N+[0,σu

2]. 

Kumbhakar (1987) and Battese and Coelli (1988) generalize this specification by 

considering a truncated-normal distribution for the inefficiency term with mean μ and 

variance σu
2. We will present this model, since results for the half-normal specification 

can be easily obtained by defining μ=0. 

The mixture of a normal distribution for the statistical noise with a truncated-normal 

distribution for the inefficiency term results in the following functional form for the log 

likelihood function for a sample of N individuals, each one observed over T periods of 

time: 

Log L= 
( )2 22 log( 1) logconstant log 1

2 2
v uv
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where:  

εit = yit - β′xit ; μi* =
2 2

1
2 2

T
v u itt

v uT
μσ σ ε

σ σ
=

−

+
∑ ; σi* =

2 2
u v

v uT
σ σ

σ σ+
. 

In order to obtain estimates of the parameters, this function is maximized with respect to 

β. In a second step, the mean of the distribution of uit given εit can be used as a point 

estimator of technical efficiency: 

( )
*

*
* *
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  .
1

i

i
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E u
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   (3.4) 

                                                 
3 from this point, we will omit the meaning of i, t and β in the production frontier specifications presented 
in this chapter. 



 29

Alternatively, producer-specific technical efficiency can be estimated using the 

minimum squared error estimator: 

 

( )
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*
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  (3.5) 

 

b) Fixed and Random Effects 

Schmidt and Sickles (1984) apply fixed and random effects procedures on a panel 

towards the estimation of a stochastic production frontier. 

Regarding the fixed effects model, its basic framework is given by the equation: 

.it i it ity x vα β′= + +      (3.6) 

This model can be estimated consistently and efficiently by ordinary least squares. It is 

reinterpreted by treating αi as a compound function of the independent term and the 

firm-specific inefficiency variable: 

αi  =  α0  -  ui .      (3.7) 

The inefficiency terms are fixed, but possibly correlated with the regressors and no 

distributional assumption is made on ui. 

To retain the essential characteristics of the frontier model, Schmidt and Sickles (1984) 

suggest that individuals be compared on the basis of:  

ui*  =  maxi αi  -  αi .     (3.8) 

In order to assure that the most efficient individual has a score of one, technical 

efficiency is calculated as following:  
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{ }*=exp .i iTE u−      (3.9) 

A disadvantage of this model is that estimates of αi’s are only consistent as T tends 

towards infinity and consistency of the estimates of ui* requires N and T tending to 

infinity. Furthermore, the fixed effect does not include only variation in inefficiency 

across firms, but all kinds of heterogeneity sources. Nevertheless, it has the advantage 

of simplicity and consistency does not depend on the distribution of ui* or the 

independence assumption between ui* and the regressors. In fact, when the distribution 

of the inefficiency effects is not known or if one has strong reasons to believe that they 

are correlated with the regressors, then the fixed-effects model is preferable to other 

approach.   

In the random-effects approach, the ui’s are assumed to be randomly distributed with 

mean μ and variance 2
uσ  and uncorrelated with vit and the regressors. Thus, the 

production frontier is expressed by the equation: 

,it it ity xα β ε′= + +      (3.10) 

where:  

it it iv uε = − . 

The only difference relative to the standard panel data models is that the individual 

effects ui are one-sided. Schmidt and Sickles (1984) solve this problem using the 

transformation: 

μαα −=* , 

μ−= ii uu* , 

to obtain the following production frontier: 

* * .it it it ity x v uα β ′= + + −     (3.11) 
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Schmidt and Sickles (1984) apply the standard two-step Generalized Least Squares 

(GLS) estimator to disentangle the individual effects from the residuals and use (3.9) as 

in the fixed-effects models to recover the technical efficiency index.  

The random-effects approach, like the fixed-effects model and contrary to the maximum 

likelihood method, does not require a specific distribution on the efficiency term. 

However, it shares with the maximum likelihood technique the imposition of 

independence between the regressors and the inefficiency term.  

3.2.3 - Time-variant Technical Efficiency 

The assumption of time-invariant technical efficiency seems to be very unreasonable 

with large panels. “Particularly if the operating environment is competitive, it is hard to 

accept the notion that technical inefficiency remains constant through very many time 

periods.” (Kumbhakar and Lovell, 2000, p. 108). It is impossible to eliminate this 

assumption without additional changes in the specification due to the excess of 

parameters to be estimated. Cornwell et al. (1990) and Kumbhakar (1990) were the first 

to propose a model with technical efficiency varying with time. The first study uses a 

fixed-random effects approach and a different pattern of technical efficiency variation 

for each individual while the second study applies a maximum likelihood technique 

with the assumption that technical efficiency varies in the same way for all individuals.  

a) Common Pattern of Variation 

a.1) Maximum Likelihood 

This technique presumes independent and known technical inefficiency effects 

distributions. The production frontier is written as: 

,it it it ity x v uβ ′= + −      (3.12) 

where:  

it t iu uα= ⋅ ; vit ~ N[0,σv
2] ; ui ~ N+[0,σu

2]. 
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The log-likelihood function for the entire sample is given by the following equation: 
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where:  
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The mean of the distribution of ui given εit can be used as a point estimator of technical 

efficiency: 
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   (3.14) 

Alternatively, producer-specific technical efficiency can be estimated using the 

minimum squared error estimator: 

( )

*
*

* 2 *2
*

*

*

1
exp  exp  

2
1

i
t

t
it it t i

i

E u

μα σ
σ α σε α μ

μ
σ

⎡ ⎤⎛ ⎞
−Φ −⎢ ⎥⎜ ⎟

⎛ ⎞⎝ ⎠⎣ ⎦⎡ ⎤− = − +⎜ ⎟⎣ ⎦ ⎡ ⎤⎛ ⎞ ⎝ ⎠−Φ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

  (3.15) 

There is in the literature two well known time-variant specifications with a common 

pattern of variation for all individuals. Kumbhakar (1990) proposes the following 

specification for αt in (3.12): 
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( )2

1 .
1 expt t t

α
γ δ

=
+ +

    (3.16) 

Battese and Coelli (1992) propose a less flexible specification for αt but convex in t: 

( )exp .t t Tα γ= − −⎡ ⎤⎣ ⎦     (3.17) 

Instead of considering the half-normal distribution for the inefficiency component, 

Battese and Coelli (1992) use a truncated-normal assumption: 

+ 2~ N [ , ]itu μμ σ .  

In this case, the individual efficiency estimates can be found applying the formula: 
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a.2) Fixed and Random Effects 

Lee and Schmidt (1993) generalize the model of Schmidt and Sickles (1984) to the case 

of time-varying technical efficiency, using the following specification: 

( ) ,it iu t uα= ⋅      (3.19) 

where:  

( )tα is a set of time dummy variables, treated as coefficients of the inefficiency terms.  
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The temporal pattern of the inefficiency terms is more flexible, since it is not restricted 

to a specific parametric functional form, implying a more complex estimator of 

technical inefficiency. However, this formulation imposes a temporal pattern that is 

invariant across individuals. As in Kiefer (1980a)), Lee and Schmidt (1993) use a 

concentrated least-squares (CLS) estimator as the solution to an eigenvalue problem. 

As in the time-invariant case, the most efficient unit should have a score of one. After 

estimating all parameters in the fixed- and random-effects models, technical efficiency 

is calculated as following:  

( ){ }=exp max ( ) - ( ) .it i i iTE t u t uα α− ⋅ ⋅⎡ ⎤⎣ ⎦    (3.20) 

Ahn et al. (2001) consider that the CLS estimator presented in Lee and Schmidt (1993)  

is consistent only if the terms itε  are non-autocorrelated and with constant variance. 

Therefore, given these strong assumptions, the CLS estimator tends to be inefficient. 

Ahn et al. (2001) show that, for unrestricted ( )tα , a Generalized Method of Moments 

(GMM) estimator that makes use of the first- and second-order moment conditions, 

implied by the exogeneity of the regressors, non-autocorrelation and homoskedasticity 

of itε , dominates the CLS estimator, in the sense of being asymptotically more efficient. 

Han et al. (2005) show that the same results hold for a parametric (therefore, restricted) 

function, allowing for smoothness. 

Greene (2005) argues that by interpreting the firm-specific term as inefficiency, the 

models of Schmidt and Sickles (1984), Cornwell et al. (1990) , Lee and Schmidt (1993)   

and Han et al. (2005) are assuming away any kind of cross-firm heterogeneity. Greene 

(2005) proposes a “true-fixed effects stochastic frontier model”, in which it is possible 

to disentangle the firm-specific term from inefficiency. 

b) Different Pattern of Variation Across Individuals 

b.1) Maximum Likelihood 
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Kumbhakar (1991) argues that estimates of itu  in equation (3.12) are biased, although 

consistent, since technical efficiency is not decomposed into individual-specific and 

time-specific effects. The production frontier is defined as: 

,it it ity xα β ε′= + +      (3.21) 

where: 

it it itv uε = − ; it i tu μ λ= + ; itv  is the white noise disturbance term; itu  is the inefficiency 

component; iμ  is the firm-specific effect; tλ  is the time-specific effect. 

Kumbhakar and Hjalmarsson (1993) propose a two-stage model. In the first stage, 

fixed- and random-effects models similar to the ones in Schmidt and Sickles (1984) are 

used with a different specification: 

0 ,it it it ity x v uα β′= + + +     (3.22) 

where:  

it i itu τ ξ= + ; iτ  is the firm-specific effect; itξ  is the technical inefficiency component. 

In the first stage, parameters are estimated without any distributional assumptions on the 

errors. In the second stage, the rest of the parameters are estimated by conditional 

maximum likelihood, assuming that 2
it ~ N[0, ]vv σ  and + 2

it ~ N [0, ].ξξ σ  

Subjacent to this formulation is the idea that there are two components of technical 

efficiency: one is persistent and estimable in the same way as in Schmidt and Sickles 

(1984); the other one is residual and captured by the maximum likelihood estimator of 

the one-sided error component.  

Kumbhakar and Lovell (2000, p. 115) note that “the problem with this approach is that 

any time-invariant component of technical inefficiency is captured by the fixed effects, 

rather than by the one-sided error component, where it belongs.” Greene (2002, p. 28) 

does not agree entirely since “whether those time invariant effects really belong in the 
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inefficiency is debatable. (…) Once again, this is a methodological issue that deserves 

closer scrutiny.”4  

Some studies try to estimate simultaneously individual efficiencies and provide 

explanations for those differences with a single-stage estimation procedure. Battese and 

Coelli (1995) extend the model of Kumbhakar et al. (1991) and Reifschneider and 

Stevenson (1991) to a panel data framework.  

The Battese and Coelli (1995) model specification may be expressed as: 

yit = xitβ + (vit - uit) ,      (3.23) 

where:  

uit are assumed to account for technical inefficiency in production and are assumed to be 

independently distributed as truncations at zero of N(mit,σu
2); mit = zitδ ; zit is a (p×1) 

vector of variables which may influence the efficiency of an individual; δ is a (1×p) 

vector of parameters to be estimated. 

The main problem of this model is that an incorrect choice of variables explaining 

differences in predicted individual efficiencies influences all results. 

b.2) Fixed and Random Effects 

Cornwell et al. (1990) propose a time-variant model where no assumptions are made on 

the distribution of the technical inefficiency effects. Their approach uses the following 

equation: 

,it it it ity x vα β′= + +      (3.24) 

where:  

0it t ituα α= − ; 0tα  is the intercept common to all individuals in period t. 

The specification adopted is: 

                                                 
4 Please refer to Heshmati and Kumbhakar (1994) and Kumbhakar and Heshmati (1995) for further 
discussion. 
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2
1 2 3 ,it i i it tα η η η= + +      (3.25) 

where: 

 t is time and η are the firm-specific parameters to be estimated.  

The fixed- and random-effects approaches can be used to estimate this model. The 

method used in the fixed-effects approach changes with the size of the ratio N
T

. If it is 

relatively small, the technical inefficiency terms are included in the model and 1iη  

parameters are treated as coefficients of dummies and 2iη  and 3iη as coefficients of 

dummies interacted with the linear and quadratic time trends. As in the time-invariant 

approach, technical efficiency for each individual in time period t is determined as: 

( )exp max .it i it itTE α α= − −⎡ ⎤⎣ ⎦            (3.26) 

If the ratio N
T

 is relatively large, itu is not considered in the frontier equation and the 

vector β is estimated directly from the residuals. Then, the residuals are regressed on a 

constant, t and t2 in order to obtain the individual-specific parameters 1iη , 2iη  and 3iη . 

Regarding the random-effects model, the approach is similar to the time-invariant case. 

The uit are assumed to be uncorrelated with vit and the regressors. The authors apply the 

standard two-step Generalized Least Squares (GLS) estimator to separate the individual 

effects from the residuals and use (3.26) as in the fixed-effects models to calculate 

individual technical efficiency.  In order to relax the assumption of uncorrelation, 

Cornwell et al. (1990) develop an efficient instrumental variable estimator that is 

consistent even with correlation between the inefficiency and the regressors. 

Through the text, some comments were made on each model. To summarize the main 

conclusions, the fixed-effects model is the only possible choice with short panels when 

we suspect there is correlation between inefficiency and the regressors. Nevertheless, as 

pointed out by Sena (2003, p. 15), “in this case, a lot of effort must be put to make sure 

that inefficiency is the only source of heterogeneity as picked up by the fixed effects.” If 
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the regressors and inefficiency can be treated as independent and distributional 

assumptions can be made on technical inefficiency, then a maximum likelihood 

approach is more efficient than random-effects models. Long panels imply time-variant 

measures of technical efficiency. 

3.3 - Confidence Intervals for Individual Inefficiencies 

Schmidt and Kim (2001, p. 283) present a taxonomy of models that create confidence 

intervals for individual inefficiencies, generated by parametric or nonparametric 

traditional panel data approaches. Therefore, some of its properties (e.g., flexibility of 

the production frontier) are highly sensible to the framework adopted. Although these 

techniques are an extension of models presented in the previous section, the advantages 

brought to the literature justify its presentation in an autonomous section.  

 

3.3.1 - Bootstrapping 

The bootstrap is a computer-intensive non-parametric method introduced by Efron 

(1979). An unknown distribution is approximated by the empirical distribution of the 

original sample, and the data are resampled, with replacement, to obtain the bootstrap 

sample and confidence intervals for the unknown parameters.  

Suppose x1, x2,…,xn are independent and identically distributed random variables from a 

population with unknown cumulative distribution function (cdf) F, and suppose the goal 

is to draw inference about some parameter θ of the population.  Let ( )1 2, ,..., nx x xθ
∧

 be 

an estimator of θ  and let 
∧

F  be the sample cdf, that is, the cdf that assigns mass 
n
1  to 

each x.  The bootstrap approximates the distribution of θ  under F by the sampling 

distribution of 
∧

θ  under 
∧

F  (Efron, 1979).   

The application of bootstrapping to efficiency analysis is relatively recent. Simar (1992) 

was the first to apply the percentile bootstrapping method defined by Efron (1979) to 

the problem of estimating frontier models and inefficiencies within standard 
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econometric methods (fixed- and random-effects) for panel data. This procedure can be 

summarized as follows: 

(1) Calculate the fixed-effects estimates and obtain ˆˆît it i itv y xα β′= − − from the original 

data set, where i=1,…n; and t=1,…,T; 

(2) Construct ( )îtF v
∧

 by associating mass 1
nT

 at each observed residual; 

(3) Draw a random sample of size nT with replacement from a smoothed 
∧

F ; 

(4) Independently repeat (3) B times to provide the set of bootstrap estimates 
*ˆ ;  1,...,b
itv b B=  and the pseudo-data * *ˆˆ ˆb b

it i it ity x vα β′= + + ; 

(5) Calculate the bootstrap estimators ( ) ( ) ( ) ( )*, , ,b b b b
i i iu TEα β  and obtain the confidence 

interval based on the bootstrap percentile method for each parameter as an 

approximate (1 2α− ) central confidence interval of the bootstrap distribution. 

Hall et al. (1993) show that the bootstrap estimators proposed by Simar (1992) have 

consistency problems with small samples. This problem has been raised in the literature 

(Efron,1985), but it gains even more relevance in the context of efficiency analysis due 

to the calculation of ui*. The assumption of assymptotic normality is very difficult to 

accept with the maximum function (necessary to calculate ui*), introducing an 

important bias with small to moderate sample sizes. When inconsistency occurs, the 

bootstrap distribution estimator does not even converge in probability. Hall et al. (1995) 

suggest the use of the iterated bootstrap (also known as the double bootstrap) to correct 

for the coverage probability of confidence intervals obtained by the percentile method  

relatively to the maximum of the intercepts in a fixed-effects model.  

Efron (1982, 1985) introduces the bootstrap bias-corrected percentile method which 

also uses the percentiles of the bootstrap distribution, but not exactly the thα  and 

(1 ) thα− . Instead, it corrects these values for possible bias in the estimation of the 

partameters. Simar and Wilson (1998, 2000) use this bootstrap bias-corrected percentile 

approach to efficiency measures obtaineded by DEA or FDH (non-stochastic methods). 
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These works were possible due to the discussion of the nature of the Data-Genetating 

Process (DGP) implicit in DEA models. The steps of the algorithm are the following: 

1. Calculate the Malmquist Index for each observation and obtain Μ̂ i for i = 1,...,n; 

2. Construct the density function for Μ̂ by putting mass 1
n

 at each observed 

Malmquist Index; 

3. Extract with reposition n observations from the original sample in order to build the 

pseudo-samples;  

4. Calculate the bootstrap estimator ˆ *Μi ; 

5. Repeat B times (3) and (4) to obtain B bootstrap estimates ˆ *Μi ; 

6. Calculate 

ˆ
1 ˆ

1000

B *Μb,ibBias Μi

∑
== − ; 

7. Calculate the bias-corrected bootstrap estimator 
ˆ

,1ˆ ˆ2
1000

B *Μb i* bΜ Μ bias Μi i i

∑
== − = −% ; 

8. Obtain confidence intervals ( )* (αΜi
% , 1 )* ( αΜi

−% ) where )* (αΜi
%  stands for the 100α 

percentile of the sampling density function of * Μi
% .  

 

3.3.2 - Bayesian 

Koop et al. (1997) create a panel data Bayesian model for making inferences about 

firm-specific inefficiencies, which are assumed to be constant over time. The approach 

of Schmidt and Sickles (1984) is extended to the Bayesian framework for both fixed- 

and random-effects models. These Bayesian tools are extended by Koop et al. (1997) to 
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cost frontiers and by Koop and Steel (2001) to the context of production frontiers. 

Therefore, we will use this latter study as the main reference of this section: 

0 ,i T i i i Ty x zβ ι δ υ ι= + + −     (3.27) 

where: 

i = 1,…,N; t = 1,…,T; yi is a T x 1 vector of outputs; β0 is the intercept coefficient; Tι  is 

a T x 1 vector of ones; xi a T x k matrix of inputs; δ  is a k x 1 vector of unknown 

parameters; υi is a T x 1 vector of the error term, assumed to be i.i.d. with probability 

density function (pdf) ( )10 ,T
N i Tf h Iυ − , with h being a parameter to be estimated; iz  

refers to the firm-specific time-invariant inefficiency. 

In the Bayesian fixed-effects model, the individual effect is given by the expression: 

0 ;i izα β= −      (3.28) 

and the model is rewritten as: 

.i i T i iy xα ι δ υ= + +          (3.29) 

The classical (frequentist) version of this model uses firm-specific dummy variables for 

αi. The Bayesian way of doing this is to use flat, non-informative priors for the isα .  

Defining ( )'' '
1... Nα α α= ,  Koop and Steel (2001) adopt the prior ( ), ,p hα δ ∝ ( )1h p δ−  . 

This prior seems innocuous but since it is impossible to disentangle zi from 0β  it 

implies a rather unusual prior for the relative inefficiency measure, favoring low 

efficiency: 

( ) ( )min max .rel
i i j j ij j

z z z α α= − = −    (3.30) 

Relative efficiency is defined as ( )rel
izrel

ir e −= . 
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p( rel
ir ) has a point mass of N-1 at full efficiency with the prior p( rel

ir )∝1/ rel
ir  for 

( )0,1rel
ir ∈ . This is an L-shaped improper prior density which, for an arbitrary small  

( )0,1a∈  puts an infinite mass in (0, a ) but only a finite mass in ( a , 1). Therefore, the 

prior favors low efficiency. 

For future references, ( ),k
Nf a b C  indicates that a is a k-variate normal with mean b and 

a covariance matrix C and ( ),Gf d g l  indicates that the density function of d is a 

Gamma distribution with shape parameter g and scale l. 

After some calculations, Koop and Steel (2001) find the marginal posterior for δ: 

( ) $ $( ) ( )
1 1, , ,k

Np y x f h S pδ δ δ δ
− −=          (3.31) 

where:  

$ $( )1 1,k
Nf h Sδ δ

− −  indicates that δ  is a k-variate normal with mean $δ  and a covariance 

matrix $ 1 1h S
− − ; $ ( ) ( )1

1

'
N

i T i i T i
i

S x x y yδ ι ι−

=

= − −∑ ; '

1

1,
N

i i T i
i

S S x x
T
ι

=

= =∑ ; 

( ) '( )i i T i i T iS x x x xι ι= − − ; $
( )

� $( ) � $( )1

1

1 '
1

N

i ii T i i T i
i

h y x y x
N T k

α ι δ α ι δ
−

=

= − − − −
− − ∑ ; � iα  is 

the posterior mean of αi . 

This is the standard within estimator from the panel data literature.  

The marginal posterior of α is the N-variate normal with means: 

� $;i iiy xα δ= −      (3.32) 

and covariances 

( )� $ ( )1 1,
cov , ' ,i j i j

i j
h x S x

T
α α

− −Δ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
  (3.33) 
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where Δ(i, j) = 1 if i =j ; and 0 otherwise.  

For relative inefficiencies, rel
ir , analytical expressions for posterior means and standard 

deviations are not available and, therefore, posterior simulation methods are necessary, 

such as Gibbs sampling or Monte Carlo integration.   

The calculation of the posterior for rel
ir  in the cases where the firm is not the most 

efficient unit results in the expression: 

( ) ( ) ( )
1,

, , , 1 1 , ,
N

rel rel rel rel
i i j j

j j i

p r y x p r y x r P r y x
= ≠

= = =∑   (3.34) 

where:  

( ) ( )( )1 , max ,rel
i i jj

P r y x P y xα α= = =  is the probability5 that a given firm i is the most 

efficient, which can be calculated using Monte Carlo integration and 

( ), , 1rel rel
i jp r y x r =  can be obtained from a posterior simulation method.  

The Bayesian fixed-effects model is not very attractive due to unreasonable prior 

assumptions made for the relative inefficiencies. Therefore, Koop and Steel (2001) 

derive a Bayesian random-effects model by combining the production frontier in (3.27) 

with the prior: 

( )1
0 , , , ,p h zβ δ λ− ∝ ( ) ( )( ) ( )1 1 * 1

1

1, ln 1, ,
N

G G i
i

h p f f zδ λ τ λ− − −

=

− ∏   (3.35) 

where:  

( )*ln τ−  is a non-negative random variable; h and 0β  have non-informative priors and 

inefficiencies are assumed to follow an exponential distribution with mean λ.  

                                                 
5 This notation in capital letters is used to distinguish from posterior probabilities.  
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Koop and Steel (2001) set up a Gibbs sampler with data augmentation. Defining 

( )0 ' 'β β δ=  and  ( ):NTX xι= , the posterior conditional for the measurement error 

precision can be written as: 

( ) ( ) ( )1 1, , , , , ' ;
2 2G N T N T

NTp h y x z f h y X I z y X I zβ λ β ι β ι− ⎛ ⎞
= − + ⊗ − + ⊗⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠  
(3.36) 

and 

( ) ( ) ( )( )11 1 1, , , , , ' ,k
Np y x z h f h X X pβ λ β β δ−− + −=    (3.37) 

where: 

( ) ( )1´ N TX X y I zβ ι−= + ⊗⎡ ⎤⎣ ⎦ . 

The posterior conditional for the inefficiencies takes the form: 

( )1, , , ,p z y x hβ λ− ∝ %( ) % ( ) ( )( ) ( )1 1

1

: , 0 ,
N

N
N N N N i

i

f z x y Th Th I I zι β λ ι− −

=

− − ≥∏  (3.38) 

where % % %( )1... 'Ny y y= ; % % %( )1

' '
... 'Nx x x=  and ( ).I is the indicator function, assuming the value 

of 1 if the event occurs and 0 otherwise. 

Furthermore, the posterior conditional for 1λ−  is given by:  

( )1 1 *, , , , 1, ' ln( ) .G Np y x z h f N zλ β λ ι τ− −⎡ ⎤= + −⎣ ⎦    (3.39) 

Using these results, Bayesian inference can be carried out using a Gibbs sampling 

algorithm. 

The model of Koop et al. (1997) presented in this section with the production frontier 

version of Koop and Steel (2001) was extended in many directions. Koop et al. (1999, 

2000) relax the assumption of time-invariant inefficiency; Fernández et al. (2000, 2005) 

apply the method to the multiple output case; Koop and Poirier (2004) abandon the 

assumption of a linear functional form to the frontier.  
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Studies of Koop et al. (1999, 2000) are relevant to this survey for two reasons: they 

present Bayesian models with time-variant inefficiency and simultaneously analyze the 

decomposition of output and productivity growth in a panel of countries. The frontier 

common to all countries is given by the expression: 

[ ], ,it t it it it itY f K L wτ=     (3.40) 

where:  

, ,it it itY K L  stand for real output, capital stock and labor, respectively, in country i in time 

period t; tf  is the production frontier; itτ  designates the efficiency term and itw  is the 

error term. 

Regarding the production frontier, it is important to note that Koop et al. (1999, 2000) 

assume variations of a translog production frontier: 

' ,it it t it ity x uβ υ= + −     (3.41) 

where:  

ity  stands for the natural log of output; ( )2 21it it it it it it itx k l k l k l=  with lnit itk K=  

and lnit itl L= ; ( )lnit itu τ= −  is a non-negative random variable; ln( )it itwυ =  and it is 

assumed to have an symmetric distribution with mean zero. 

Changes in productivity of country i between time periods t and (t+1) is measured by 

the output-oriented Malmquist index: 

, 1 , 1 , 1,i t i t i tPC TC EC+ + += ×            (3.42) 

where: 

( ) ( )'

, 1 , 1 1exp 0.5i t i t it t tTC x x β β+ + +
⎡ ⎤= + −⎢ ⎥⎣ ⎦

 represents technical change and 

, 1
, 1 , 1exp i t

i t it i t
it

EC u u
τ
τ

+
+ +⎡ ⎤= − =⎣ ⎦  is the efficiency change. 
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Koop et al. (1999, 2000) assume that the production frontiers are independent across 

time, which is equivalent to estimate T independent cross-sectional stochastic 

production frontiers. Therefore, the Bayesian model is given by: 

 ( ) ( ) ( ) ( ) ( )2 2 1

1 1

, 1, .
T N

N
N it t t t t N t t t G it t

t i

f y x u I p p p f uβ σ β σ λ λ− −

= =

−∏ ∏   (3.43) 

Given that the time-variant efficiency model in Koop et al. (1999, 2000) requires the 

estimation of T independent cross-sectional production frontiers, the panel structure of 

the data is not properly and fully exploited. Therefore, all results for the cross-section 

models of van den Broeck et al. (1994) can be imported into this panel data approach.  

Griffin and Steel (2004) show the limitations of the exponential parametric model that is 

often used in this literature (e.g., Koop et al. , 1997). Griffin and Steel (2004, p. 149), 

conclude that “predicting the efficiency for an unobserved firm on the basis of this 

parametric model is shown to be totally misleading” and propose a Bayesian 

semiparametric approach for stochastic frontier models6. The stochastic production 

function proposed in Griffin and Steel (2004) is defined as follows: 

' ,it it it iy x uα β υ= + + −     (3.44) 

where:  

xit is a vector of appropriate explanatory variables, υit represents an i.i.d. error term 

reflecting measurement and specification errors with ( )2~ 0,it Nυ σ , and ui is the one-

sided disturbance, representing time-invariant inefficiency, which is the nonparametric 

component of the model, since it is assumed to be independently distributed as ui~F, 

with F being a random probability measure based on a Dirichlet process. 

The model is estimated using a Markov Chain Monte Carlo (MCMC) algorithm, which 

is a modification of the Gibbs sampler described in Koop et al. (1997). The main 

difference between the Dirichlet process-based approach and the parametric approach 

described by Koop et al. (1997) is the form of the full conditional distribution for u. The 

                                                 
6 These methods eill be discussed in section 3.4. 
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inefficiency term is assumed to be the same for some units, grouped in each cluster k. 

The sampler uses a data augmentation scheme where each observation is associated 

with an element of the Dirichlet process using latent variables. Griffin and Steel (2004) 

also explore the case in which the inefficiency distributions are allowed to vary with 

some covariates, using a slight modification of the MCMC sampler.  

3.4 - Semiparametric Methods 

Semiparametric models involve parametric and nonparametric components. In general, 

the stochastic production frontier is defined parametrically and the inefficiency 

distribution is generated in a nonparametric fashion. A clear advantage of these models 

is the possibility to relax strong parametric assumptions on the distribution of the 

inefficiency term, mitigating possible specification errors.  

Park and Simar (1994) and Park et al. (1998) estimate a semiparametric panel data 

frontier, in the sense that individual effects have an unknown density function. The 

production frontier is assumed to be linear: 

,it i it ity xα β υ= + +      (3.45) 

where:  

αi are i.i.d. random variables from an unknown density h whose support is bounded 

above by B(h) and υit are i.i.d. random variables from N(0, υ2). Therefore, the 

deterministic production frontier is given by βxit + B(h) and technical efficiency of the 

i-th observation is calculated as αi - B(h).  

In the model of Park and Simar (1994), the individual effects and regressors are 

assumed to be independent. In this case, the semiparametric efficient estimator is the 

within estimator. Park et al. (1998) extend this model by allowing two cases of 

dependency: (i) between the individual effects and a subset of regressors and (ii) 

between the effects and long-run movements in a subset of regressors.  

In the first case, the semiparametric efficient estimator is:  

� � 1
1

,
IV N

i
N lβ β −

=
= + ∑ $%      (3.46) 
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where:  

� IV
β is the Hausman-Taylor instrumental variable estimator of β and l$%  is a 

nonparametric kernel estimator with (1 + Tq) dimensions, where T is the number of time 

periods and q is the number of regressors correlated with the individual effects 

In the second case, the efficient semiparametric estimator is the same as in (3.46), but 

now l$%  is a nonparametric kernel estimator, with (1 + q) dimensions.  

Adams et al. (1999) apply the model of Park et al. (1998) in two distinct ways. First, 

Adams et al. (1999) estimate a stochastic distance frontier, where a subgroup of 

multiple regressors is correlated with the individual effects. Second, Adams et al. 

(1999) assume independence between the covariates and the individual effects but use a 

nonparametric regression, in which no functional form is imposed on the distance 

function.  

In the first model, Adams et al. (1999) derive the semiparametric efficient estimator for 

the panel Cobb-Douglas stochastic distance frontier, combining a Hausman-Taylor 

estimator with a fourth-order normal kernel. In the second model, Adams et al. (1999) 

apply the nonparametric Nadaraya-Watson estimator to find the conditional expectation 

of the output given the regressors. Both models mitigate possible specification errors 

that can occur in estimation.  

 

3.5 - Nonparametric Models 

In this class of methods, the production frontier is not estimated parametrically, with the 

purpose of removing any influence of a particular specification on the results. 

Furthermore, it is not assumed a specific distribution for the inefficiency term7.  

Henderson and Ullah (2004, 2005) apply to a production frontier model the 

nonparametric method introduced by Cleveland (1979) that accommodates statistical 

noise using random-effects procedures on a panel data as follows:  

                                                 
7 For a detailed analysis of nonparametric methods, please refer to Hardle (1990) and Pagan and Ullah 
(1999). 
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( ) ,it it ity m x ε= +     (3.47) 

where:  

yit is the endogenous variable; itx  is a vector of k exogenous variables; (.)m is an 

unknown smooth function and itε  is the error component. 

In this framework, heterogeneity in the distribution of yit is assumed to impact the 

density function in the form of a random effect. Assuming that ( )itxβ is a varying 

gradient vector of the function ( )itm x , estimates of these parameters can be obtained by 

using local polynomial estimation. Cleveland (1979) introduces the form of a local 

polynomial regression that is referred to as LOWESS. Simply, LOWESS is a locally-

weighted regression with the local weights being defined by a kernel function (Hastie 

and Tibshirani, 1990). The basic idea is to approximate the unknown production frontier 

( )itm x  in a neighborhood of 0x by a polynomial of degree 1 on itx , using the Taylor 

series expansion: 

( ) ( ) ( ) ( ) ( )1
0 0 0 .it itm x m x m x x x≈ + −     (3.48) 

This function can be fitted locally by the minimization of a weighted least squares 

(WLS) regression: 

( ) 2 0
0 1 0

1 1
min ,

N T
it

it it
i t

x xy x x K
h= =

−⎛ ⎞−β −β −⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠
∑∑           (3.49) 

where:  

( ).K  represents a kernel function with the bandwidth parameter h that controls the size 

of the neighborhood.  

The minimization problem in (3.49) can be stated in the matrix form:   

( ) ( ) ( )'
0 0 0min ,Y X x W x Y X xβ − β − β⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦     (3.50) 
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where:  

( )'
11 1 1,..., ,..., ,...,T N NTY y y y y= ; ( ) ( )'

0 0 1,xβ = β β  ; 

( ) ( ) ( ) ( )

'

11 0 1 0 1 0 0

1 1 1 1

T N NT

X
x x x x x x x x

⎡ ⎤
= ⎢ ⎥− − − −⎣ ⎦

L L L

L L L
; and ( )0W x  is an 

( )NT NT×  matrix of kernel-based weights. 

The minimization results in the following solution: 

( ) ( )( ) ( )1
0 0 0

ˆ .x X W x X X W x Y
−

′ ′β =     (3.51) 

Henderson and Ullah (2004, 2005) argue that the estimator presented in (3.51) ignores 

the information contained in the error component.  Instead of doing simple WLS fits to 

the points local to x0, Henderson and Ullah (2004, 2005) prefer to perform Local Linear 

Weighted Least Squares regressions, after estimating the covariance matrix Ω of the 

disturbance vector. This approach extends the Local Linear Generalized Least Squares 

Estimator suggested by Ullah (2001) within a cross-section framework.  

Assuming that Ω  is a ( )NT NT×  covariance matrix of the disturbance term itε , the 

objective function changes to: 

      ( ) ( ) ( ) ( )' 1
0 0 0 0min ,Y X x W x W x Y X x−

β − β Ω − β⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                   (3.52) 

resulting in the solution vector: 

( ) ( ) ( )( ) ( ) ( )
1

' 1 ' 1
0 0 0 0 0

ˆ .x X W x W x X X W x W x Y
−

− −β = Ω Ω   (3.53) 

Henderson and Ullah (2004, 2005) consider three different functions for Ω , according 

to the estimators used in Lin and Carroll (2000) and Ullah and Roy (1998). Henderson 

(2004), Henderson and Ullah (2004, 2005) divide the error term into inefficiency and 

stochastic error components:  

,it it iv uε = −      (3.54) 
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where:  

itv  is the error term with ( )2,0...~ vit diiv δ  and iu  is the inefficiency component, with 

( )2,...~ ui diiu δμ . 

 

The production frontier in (3.47) is modified since the mean of the inefficiency 

component is non-zero: 

    * *( ) ( ) ( ) ,it it it it it it i it it it iy m x y m x v u y m x v uε μ μ= + ⇔ = − + + − ⇔ = + +      (3.55) 

where ( )* 2~ . . . 0,i uu i i d δ . 

Assuming that the efficient component and the shocks are uncorrelated, it is possible to 

obtain the covariance matrix of the disturbance term: 

( ) ( ) 2 2 '' ' ,it it i i T v T u T T Ti iε ε ε ε δ δ⎡ ⎤Ω = Ε = Ε ⊗Ι = Ι + ⊗ Ι⎣ ⎦   (3.56) 

where TΙ  is a T T×  identity matrix and Ti  is a 1T ×  vector of ones. 

The estimation of Ω  requires the calculation of 2
ûδ  and 2

v̂δ . It can be used the spectral 

decomposition of the covariance matrix, resulting in the following consistent estimators: 

         ( ) [ ] [ ]
2

2
0 0

1 1ˆ ˆ ˆ( ) ( ) ;
1v it it it it

i t t

y m x y m x
N T T

δ ⎧ ⎫= − − −⎨ ⎬− ⎩ ⎭
∑∑ ∑    (3.57) 

[ ]22 2
0

1 1ˆ ˆˆ ( ) ,u it it v
i t

y m x
N T T

δ δ= − −
⋅ ∑∑     (3.58) 

where:  

( )0ˆ itm x is obtained using a simple WLS estimator. 

These estimates can be used to obtain the estimator of Ω  necessary to estimate ( )itm x .  
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Henderson (2004) obtains estimates of *
iu  by maximization of the following objective 

function with respect to *
iu :  

                      
( )*

2 2* *
2 2

1 1ˆmax .ˆ ˆi
it it i iu

i t i tv u

y m x u u
δ δ

⎡ ⎤− − +⎣ ⎦∑∑ ∑∑       (3.59) 

Solving the maximization problem in (3.59) results in the following expression: 

( )
2

*
2 2

ˆ
ˆ ˆ .ˆ ˆ

u
i it it

v u

u y m x
T
δ

δ δ

⎛ ⎞
= −⎡ ⎤⎜ ⎟ ⎣ ⎦⎜ ⎟+ ⋅⎝ ⎠

               (3.60) 

In order to obtain an individual technical efficiency index, Henderson (2004) proceeds 

to the usual normalization in the literature: 

� ( )ˆ ˆexp max .i i i iTE u u= − −⎡ ⎤⎣ ⎦      (3.61) 

 

3.6 - Parametric Methods that Account for Heterogeneity of Production Units 

Since the studies of Laird (1978) and Heckman and Singer (1984), the problem of latent 

heterogeneity has been accounted within panel data models. Nevertheless, only very 

recently this question has been addressed in the stochastic frontier literature (Greene, 

2001a, 2001b, 2003, 2005; Tsionas, 2002; Orea and Kumbhakar, 2004). If all units in 

the sample face exactly the same production possibilities set and differ only with respect 

to their degree of inefficiency, the traditional stochastic frontier model is adequate. 

Nevertheless, “in practice, production possibilities are expected to differ in a cross-

section of firms, and a set of different technologies may simultaneously coexist at any 

given time” (Tsionas, 2002, pp. 128). In these cases, classical approaches can not be 

used. We will analyze three different approaches addressing this question: the random 

parameters approach suggested by Tsionas (2002); the latent class model developed by 

Greene (2001a, 2001b, 2003) and Orea and Kumbhakar (2004) and the true fixed-

effects and true random-effects models of Greene (2005).   

Tsionas (2002) relaxes the assumption that the frontier is common to all firms by 

proposing a random coefficient stochastic frontier model where absolute firm-specific 
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efficiency can be separated from technological differentials across firms. Exact finite 

sample results for parameters as well as latent efficiencies are derived using a Bayesian 

MCMC method, more specifically the Gibbs sampler with data augmentation. The 

model structure suggested in Tsionas (2002) is: 

yit  =  α  +  xit′βi  +  vit  -  uit ,    (3.62) 

where:  

vit is the measurement error distributed as i.i.d. N[0,σv
2] and uit is the inefficiency 

component with an exponential density; 

uit  ~  exp( 0, 0,),it itu uθ −θ θ > ≥     (3.63)  

where:  

E[uit] = 1/θ  and Var[uit] = 1/θ2.   

In this model, each firm has its own production frontier, since parameters βi reflect 

heterogeneity in the technology. Furthermore, each observation experiences a shock 

which determines its inefficiency level uit from an exponential distribution. 

Parameters βi are distributed according to a (K-1)-variate normal distribution: 

βi~N[ β ,Ω ], where β  is a (K-1)x1 vector of parameter means and Ω is a  (K-1)x(K-1) 

positive definite covariance matrix. 

This assumption implies that model can be written as: 

yit  =  α  +  xit′ β   +  eit  -  uit ⇔  yit =  zit′δ  +  eit -  uit ,   (3.64) 

where: 

 eit is i.i.d. with eit ~N[0,σv
2+ xit′Ωxit] ; zit′=[1  xit′] and δ =[α  β ′]′.  
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Therefore, the model in (3.64) is similar to the stochastic frontier model with a normal, 

heteroscedastic8 measurement error. Tsionas (2002) uses Gibbs sampling to estimate the 

posterior means and variances of the various quantities of interest in the model: α, β , 

σv, Ω, θ, and u.  

Latent class models have been developed in the context of several cross-sectional 

studies (e.g., Quandt and Ramsey, 1978; Kiefer, 1979, 1980a, 1980b; Poirier and Ruud, 

1981). Only after the works of Heckman and Singer (1984), Wedel et al. (1993), Nagin 

and Land (1993) and Wang et al. (1998) developed in a panel data framework, latent 

class models have been used within the stochastic frontier literature. The basic 

assumption of these models is that there is a latent sorting of the observations in the data 

set into J latent classes, unobserved by the econometrician. We will try to present 

briefly the studies of Greene (2001a, 2001b, 2003) and Orea and Kumbhakar (2004) 

using the single theoretical production frontier model summarized in Greene (2005): 

yit | j  =  αi  +   βj′xit  +  vit | j  -  uit | j ,   (3.65) 

where:  

j refers to the class number, with j=1,…,J; vit | j = N[0, σvj
2] ; uit | j =  N+[0, σuj

2] . 

For an observation from class j, the model is characterized by the conditional density: 

| |
|

( / ) 1( , | ) ( | , , , ) , ,
(0)

j it j j it j
j j j it j j

j j
it it it itP i t j f y x y x

⎛ ⎞Φ λ ε σ ε
′= β σ λ = φ ε = − β⎜ ⎟⎜ ⎟Φ σ σ⎝ ⎠

      (3.66) 

where:  

σj  =  [σvj 2 + σuj 2]1/2; λj  =  σuj / σvj ; Φ(.) refers to the standard normal cumulative 

density function evaluated at the point; and φ(.) stands for the standard normal probability 

density function evaluated at the point. 

The log likelihood of the model is given by: 

                                                 
8 For an overview of stochastic frontier models with heteroscedasticity, in either or both of the two error 
components, please see Kumbhakar and Lovell (2000).  
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1
log log ( )

N

i
L P i

=

=∑ =
1 1

1

log ( | ) log ( , | ) ,, ,
T

J J

j j
t

F P i j F P i t ji j i j= =
=

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑ ∏    (3.67) 

where P(i) is the unconditional likelihood for individual i,  averaged over the classes;  

,i jF is the prior probability attached by the econometrician to membership in class j, 

parameterized by the multinomial logit form: ,i jF = exp(θij) / Σ j  exp(θij), θij  =  θj′zi, with 

θj  denoting a vector of parameters and zi a vector of latent variables; ( | )P i j  reflects the 

contribution of individual i to the conditional on class j likelihood; P(i,t|j) denote the 

density for observation i at time t assuming class j. 

Using Bayes' theorem, the posterior probability of a particular class membership is 

given by: 

P(j | i)  =  ( , )
( )

P i j
P i

 =  1

1

( , | )

( | )

iT

t
J

ijj

P i t j

P i j F
=

=

∏
∑

 = 
1

( | )
,

( | )
ij

J
ijj

P i j F

P i j F
=∑

   (3.68) 

where P(i,t|j) denotes the density for observation i at time t assuming class j. 

Using this result, it is possible to obtain the index of the group with the highest posterior 

probability. The log likelihood function presented in (3.67) can be maximized with 

respect to all parameters using conventional quasi-Newton methods for unconstrained 

optimization such as BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; and 

Shanno, 1970) and DFP (Davidon, 1959 and Fletcher and Powell, 1963).  

Another approach is the EM algorithm (Dempster et al.).  The EM algorithm is 

employed simply by iterating back and forth among all optimization problems. The 

choice of the algorithm is a strictly empirical matter. Standard gradient methods are 

preferred if there are no convergence problems; otherwise, EM algorithm can be 

employed. The EM algorithm is slower to converge, but it is more stable.  

The other approaches to account for heterogeneity are presented in Greene (2005), the 

true fixed- and true random-effects models. According to Greene (2005), traditional 

fixed-effects models have a common shortcoming. By interpreting the firm-specific 

term as inefficiency, any unmeasured time-invariant cross-firm heterogeneity must be 
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assumed away. Furthermore, the inefficiency must be assumed to be time-invariant 

which is a very unreasonable assumption. Greene (2005) proposes a true fixed-effects 

formulation:  

' .it i it it ity x uα β υ= + + −     (3.69) 

There remain two problems that must be solved. First, the model may involve too many 

parameters to be estimated. Second, with small T, many fixed-effects estimators of 

model parameters are inconsistent and subject to a small sample bias.  Greene (2005) 

solves these questions by noticing that in the linear case, the regression model using 

group mean deviations sweeps out the fixed-effects. Unlike the estimator of the fixed-

effect, the slope estimator is consistent, since it is not a function of the fixed-effects. 

Therefore, the log likelihood is a function of β that is free of the fixed effects. The log 

likelihood function for the fixed-effects stochastic frontier model is:  

     
( )1 1

' '1log log ,
0

N T
it i it it i it

i t

y x y xL α β α βλ φ
σ σ= =

⎡ ⎤⎛ − − ⎞ − −⎛ ⎞ ⎛ ⎞= Φ −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟Φ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∑∑   (3.70) 

where:  

/u υλ σ σ= ; 2 2
uυσ σ σ= + . 

Maximization of the unconditional log likelihood function can be accomplished using 

Newton's method and some well-known results from matrix algebra. Using these 

results, it is possible to compute directly both the joint maximizers of the log likelihood 

and the appropriate submatrix of the inverse of the Hessian for estimating asymptotic 

standard errors.  

Regarding the true random-effects model, Greene (2005) justifies it by noting three 

shortcomings of the traditional random-effects models. First, the assumption that the 

effects are not correlated with the regressors. Second, inefficiency is assumed to be the 

same in every period. The third shortcoming is that ui incorporates both the inefficiency 

and any time invariant firm-specific heterogeneity.  
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Greene (2005) uses the following general form of the random parameters stochastic frontier 

model:  

(1)  Stochastic Frontier yit  =  αi +βi′xit  +  vit  -  uit 

 

 vit  ~  N[0,σv
2] 

 

(2)  Inefficiency Distribution uit  ~  N+[μi,σui
2] 

 

 μi   =  δi′zi         (3.71) 

 

 σui  =  σu × exp(γi′hi) 

 

(3) Parameter heterogeneity (αi,βi) = ( ),α β  +  Δα,βqi  +  Γα,βwα,βi 

 

 δi  =  δ  +  Δδqi  +  Γδwδi 

 

 γi  =  γ  +  Δγqi  +  Γγwγi , 

 

where:  

zi and hi are vectors of firm specific characteristics which affect the mean and variance of the 

inefficiency term, respectively; (αi,βi) is allowed to vary randomly with mean vector  ( ),α β  + 

Δβqi  ; Δj (j = β,δ,γ) is a matrix of parameters to be estimated; qi is a set of related variables 

which enters the distribution of the random parameters; wji parameterizes random variation and 

it is the random vector normally distributed with mean vector zero and known diagonal 

covariance matrix Σj; Γj is a free, lower triangular matrix, allowing the generation of an 

unrestricted covariance matrix.  

Greene (2005) derives from (3.71) the following true random-effects specification:  

        ' ,it it i i ity x w uα β υ= + + + −       (3.72) 

where:  
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wi is the firm-specific random-effect and υit and uit are, respectively, the symmetric and 

one-sided components specified earlier. 

To avoid identification problems, Greene (2005) uses the compound error formulation: 

' ,it it i ity x wα β ε= + + +     (3.73) 

where itε = i ituυ − . 

This equation represents an ordinary random-effects model, albeit one in which the 

time-varying component has an asymmetric distribution.  

The distribution of the compound disturbance is given by the expression: 

( ) ( )
( )

/ 1 .
0

it it
itf

ε λ σ εε φ
σ σ

Φ − ⎛ ⎞= ⎜ ⎟Φ ⎝ ⎠         
   (3.74) 

Thus, the model specified in (3.65) - (3.66) is actually a random-effects model in which 

the time-varying component does not have a normal distribution, though wi may be 

assumed to follow this distribution. In order to estimate this random-effects model by 

maximum likelihood, it is necessary to integrate the common term out of the likelihood 

function. There is no closed form for the density of the compound disturbance in this 

model. However, the integration can be done either by quadrature or simulation 

techniques, although the former technique is impractical for models with more than one 

random parameter.  

Note that it is possible to re-write the model in (3.73) as a stochastic frontier model with 

a firm-specific random constant term: 

( ) ' .it i it i ity w x uα β υ= + + + −    (3.75) 

This model can be extended to the normal-truncated normal model and to a singled- or 

doubled-heteroscedastic model with only minor modifications and, therefore, be solved 

as in Tsionas (2002).  
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Assuming that, conditioned on the firm-specific iw , the observations are independent,   

the conditional log likelihood for the sample is:  

( )1
1 1

log ,..., log , , , , , ,
N T

N i it it i i i i
i t

L w w f y x z h q w
= =

= Θ∑∑         (3.76)                       

where Θi contains all the parameters of the model. 

In order to estimate the model parameters, the heterogeneity is integrated out of the log 

likelihood. The unconditional log likelihood is given by:  

( ) ( )
1 1

log log , , , , , ,
i

N T

i it it i i i i i iw
i t

L f y x z h q w g w dw
= =

= Θ∑ ∑∫   (3.77) 

where:  

g(wi) is the multivariate density of the random vector wi.  

The unconditional log likelihood function must be maximized with respect to the 

unknown parameters. However, there is no closed form solution for the integral in the 

unconditional log likelihood in (3.77). The integral may be satisfactorily approximated 

by simulation. As long as it is possible to simulate primitive draws from the distribution 

of wi, the problem may be solved by maximizing the simulated log likelihood: 

( )
1 1 1

1log log , , , , , ,
N R T

S i it it i i i ir
i r t

L f y x z h q w
R= = =

⎡ ⎤= Θ⎢ ⎥⎣ ⎦
∑ ∑ ∑    (3.78) 

where:  

R is the number of replications and wir is the simulated random.  

This function is smooth and twice continuously differentiable in the underlying 

parameters and can be maximized with conventional techniques. 
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3.7 - Conclusions 

Despite all potential advantages of frontier production models, very few were used to 

address development accounting problems (e.g., Kumar and Russell, 2002; Henderson 

and Russell, 2005). Furthermore, the referred studies have important undesirable 

characteristics such as its deterministic and cross-sectional nature and its assumption of 

homogeneity across countries. Therefore, in panel data production frontier literature, it 

was important to look up for stochastic models that account for heterogeneity of 

countries in different development stages and that are capable of introducing some 

flexibility in the definition of technology or stochastic noise.  

In order to summarize the main advantages and disadvantages of each group of 

stochastic panel data production frontier models, we characterize them in terms of some 

desirable features such as flexibility of the frontier, possibility to account for the 

random nature of the frontier, possibility to account for time-varying inefficiency, 

possibility to account for latent heterogeneity of production units, requirement of a 

specific distribution on the efficiency term, flexibility of inefficiency component and 

requirement of independence between the regressors and inefficiency. 

The main results of this analysis are presented in tables 2 and 3. It is possible to 

conclude that only the three last approaches (random parameters, latent class and true 

fixed effects and true random effects) account for latent heterogeneity of production 

units. Nevertheless, all of them present inflexible production frontier and inefficiency 

component, contrary for example to the semiparametric or Bayesian methods. In chapter 

5, we present a finite-mixture model approach, which accounts for heterogeneity, but 

fails to assure flexibility of all specifications.  For this reason, chapter 6 introduces a 

semiparametric approach, more specifically a penalized spline model both for Classical 

and Bayesian formulations, which combines the advantages of the three models 

accounting for heterogeneity across countries with the flexibility of the semiparametric 

and Bayesian models also presented in table 3.  
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Table 2 - Summary of Traditional Method’s Attributes 
 Time-Invariant Technical 

Inefficiency 
Common Pattern of Time Varying 

Inefficiency 
Different Pattern of Time Varying 

Inefficiency 
 Random 

Effects 
Fixed 

Effects 
Maximum 
Likelihood 

Random 
Effects 

Fixed  
Effects 

Maximum 
Likelihood 

Random 
Effects 

Fixed  
Effects 

Maximum 
Likelihood 

 
Works 

Schmidt 
and 

Sickles 
(1984) 

Schmidt 
and 

Sickles 
(1984) 

Pitt and Lee 
(1981); Kumbhakar 
(1987); Battese and 

Coelli (1988). 

Lee and 
Schmidt 

(1993); Ahn et 
al. (2001); 
Han et al. 

(2005) 

Lee and 
Schmidt 

(1993); Ahn et 
al. (2001); 
Han et al. 

(2005) 

Kumbhakar 
(1990) 

Battese and 
Coelli 
(1992) 

Cornwell 
et al. 

(1990) 

Cornwell 
et al. 

(1990) 

Kumbhakar (1991); 
Kumbhakar and 

Hjalmarsson (1993, 
1995); Battese and 

Coelli (1995) 

Flexibility of frontier  
 

Low Low Low Low Low Low Low Low Low 

Possibility to account for 
random nature of frontier 

No No No No No No No No No 

Possibility to account for 
time varying inefficiency 

No No No Yes Yes Yes Yes Yes Yes 

Possibility to account for 
latent heterogeneity of 
production units 

No No No No No No No No No 

Requires a specific 
distribution on the 
efficiency term 

 
No 

 
No 

 
Yes 

 
No 

 
No 

 
Yes 

 
No 

 
No 

 
Yes 

Flexibility of inefficiency 
component 

Low Low Low Low Low Low Low Low Low 

Requires independence 
between variables and 
inefficiency 

 
Yes 

 
No 

 
Yes 

 
Yes 

 
No 

 
Yes 

 
Yes 

 
No 

 
Yes 
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Table 3 - Summary of Non-Traditional Method’s Attributes 
 Bootstrap9 Bayesian Semiparametric Local Linear 

Weighted 
Least Squares 

Local Maximum 
Likelihood 

Latent Class True Fixed and 
True Random 

Effects 
 

Works 
Simar and 

Wilson (1998, 
2000) 

Koop et al. 
(1999, 2000); 
Griffin and 

Steel (2004). 

 
Tsionas 
(2002) 

Park et al. 
(1998); Adams et 

al. (1999) 

Henderson and 
Ullah  

(2004, 2005) 

 
Kumbhakar et al. 

(2004) 

Greene 
(2001a, 2001b, 

2003) and 
Orea and 

Kumbhakar 
(2004); 

 
Greene (2005).   

Flexibility of frontier  
 

It depends 
on the 

subjacent 
method. 

It depends 
on the 

subjacent 
method. 

Low High Very High High Low Low 

Possibility to account for 
random nature of frontier 

No Yes Yes No Yes Yes No No 

Possibility to account for 
time varying inefficiency 

Yes Yes Yes Yes Yes Yes Yes Yes 

Possibility to account for 
latent heterogeneity of 
production units 

 
No 

 
No 

 
Yes 

No No No Yes Yes 

Requires a specific 
distribution on the 
efficiency term 

 
No 

 
No 

 
Yes 

 
No 

 
No 

 
Yes 

 
Yes 

 
No 

Flexibility of inefficiency 
component 

High High Low High High High Low Low 

Requires independence 
between variables and 
inefficiency 

 
No 

 
No 

 
Yes 

 
No 

 
No 

 
Yes 

 
Yes 

 
Yes 

                                                 
9 Bootstrap is not an autonomous method and it can be used with parametric and nonparametric production frontier approaches.  
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4 - Growth Patterns of Labor Productivity 

This study relies on two cross-country datasets (one for the overall economy and the 

other for the agricultural sector) covering 45 countries and the period 1967-92, as 

indicated in table 4. Although a larger number of countries can be included in each 

dataset, our analysis is deliberately restricted to those countries for which both 

economy-wide data and agricultural sector data are available.10 Please refer to the 

annexes for a description of data sources used.  

 

Table 4 - Countries List by Alphabetical Order 

Argentina  Kenya  
Australia  Korea, Republic of 
Austria  Madagascar  
Canada  Malawi  
Chile  Morocco  
Colombia  Netherlands  
Costa Rica  New Zealand  
Denmark  Norway  
Dominican Republic  Pakistan  
Egypt  Peru  
El Salvador  Philippines  
Finland  Portugal  
France  South Africa  
Great Britain  Sri Lanka  
Greece  Sweden  
Guatemala  Syrian Arab Republic  
Honduras  Tunisia  
India  Turkey  
Indonesia  United States of America  
Iran  Uruguay  
Israel  Venezuela  
Italy  Zimbabwe  
Japan    

With the purpose of extracting some global indicators about the aggregate labor 

productivity growth, we will construct the kernel estimator of its probability density 

function and proceed to a descriptive analysis of some available data. 

                                                 
10 As it is common in the convergence literature (e.g., Kumar and Russell, 2002), we exclude the two 

major oil-producing countries (Iran and Venezuela) from the overall economy dataset. Therefore, the 

sample is of 45 countries to the overall economy and 43 to the agricultural sector.    
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Following Kumar and Russell (2002), we use a nonparametric kernel density estimator 

for measuring the probability density functions of labor productivity for the overall 

economy and for agriculture. Assuming n independent observations x1, x2, …, xn from a 

random variable X, the kernel density estimator of the density value f(x) at point x, 

( )f̂ x , is defined as: 

( )
1

1ˆ ,
n

i

i

x xf x k
nh h=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑                                            (4.1) 

where:  

k(.) denotes a Gaussian kernel function and h is the optimal bandwidth (for details, 

please see Pagan and Ullah, 1999). 

The choice of the optimal bandwidth for a kernel density estimate is typically calculated 

on the basis of the minimization of the mean integrated squared error function: 

2ˆ ˆ( ) ( ) ( ) .MISE f E f x f x dx⎡ ⎤= −⎣ ⎦∫                                     (4.2) 

Under the asymptotic conditions 0,h nh→ →∞ : 

( )
4

22 2
22 2.

1ˆ( ) '' ,
4asymp

hMISE f k k f
nh

μ≈ + ⎡ ⎤⎣ ⎦                              (4.3) 

where: 

- 2

2
k  and ( ) 2

2 kμ⎡ ⎤⎣ ⎦ are parameters depending on the kernel function k(.), 

- 2

2
"f  is an unknown term, denoting the second derivative of the unknown density f.  

 

Minimizing (4.3) with respect to h, we obtain the following optimal bandwidth:  
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( )

1
52

2
22

22

.
''

opt

k
h

f k nμ

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

                                          (4.4) 

Using the method of Silverman (1986) and assuming a normal distribution ( )2,N μ σ  

for f, the optimal bandwidth for a Gaussian kernel is: 

� 1
5ˆ1.06 .opth nσ=                                                     (4.5) 

The kernel distributions of labor productivity are presented in figures 1 and 2 for the 

overall economy and for agriculture, respectively11. We focus on mean-preserving 

distributions; i.e., departures from the productivity mean.   

 
Figure 1 - Gaussian Kernel of Labor Productivity for the Economy 
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11 All kernel calculations were carried out using GAUSS (Aptech Systems, Inc.,1999). 
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Figure 2 - Gaussian Kernel of Labor Productivity for Agriculture 
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For the economy as a whole, our empirical results are similar to those of Kumar and 

Russell (2002) and Quah (1996a, 1997). In particular, the labor productivity distribution 

evolves from a unimodal to a bimodal distribution with a higher mean.      

The results for the agricultural sector are substantially different. There is a probability 

shift from the lower tail toward the rest of the distribution. The increase of density mass 

for the middle-income countries contradicts the idea of the world becoming polarized 

into high-productivity and low-productivity (or rich and poor) countries. Consequently, 

it appears that the agricultural sector has not contributed to the bipolarization 

phenomenon that has been observed at the aggregate economy level by studies such as 

Quah (1996a, 1997).   

 

The descriptive analysis of some global indicators related to labor productivity growth 

is presented in table 5.  
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Table 5 - Global Indicators for the Sample 
 Mean Std. Deviation Minimum Maximum 
% change of  output per 
worker agriculture 

,89747 ,886375 -,331 3,953

% change of output per 
worker economy 

,6483 ,77966 -,34 4,23

% variation in weight of 
agriculture 

-,3266 ,18455 -,67 ,07

 

Results indicate that, on average, the output per worker increased more in agriculture 

than in the economy for the period 1967-1992, with a bigger spread. Furthermore, it is 

evident a global reduction in the weight of agriculture in employment. These global 

indicators are incapable of determining if countries behave in the same manner. To 

perform such a task, it is necessary to group nations according to an objective and 

defendable criterion measuring the development stage and compare outcomes for each 

set.  

The World Bank uses per capita gross national income as the main criterion of 

classifying countries. The thresholds are defined according to a stable relationship 

between a summary measure of wellbeing such as poverty incidence and infant 

mortality on the one hand and economic variables including per capita gross national 

income12 on the other. Those limits are updated every year to incorporate the effect of 

international inflation, in order to assure their constancy in real terms over time. The 

available thresholds in USD for the last 6 years in the sample are presented in the table 

6.  

Table 6 - Countries Classification Adopted by the World Bank 
 1987 1988 1989 1990 1991 1992 

Low income 
(L) 

< 480 < 545 < 580 < 610 < 635 < 675 

Lower middle 
income (LM) 

481-1,940 546-2,200 581-2,335 611-2,465 636-2,555 676-2,695 

Upper middle 
income (UM) 

1,941-6,000 2,201-6,000 2,336-6,000 2,466-7,620 2,556-7,910 2,696-8,355 

High income 
(H) 

> 6,000 > 6,000 > 6,000 > 7,620 > 7,910 > 8,355 

                                                 
12 To obtain real values with a small impact of exchange rate fluctuations in the cross-country comparison 
of national incomes, the World Bank uses Atlas conversion factor for any year; i.e., the average of a 
country's exchange rate for that year and its exchange rates for the two preceding years, adjusted for the 
differences between the rate of inflation in the country and the G-5 countries (France, Germany, Japan, 
the United Kingdom, and the United States). 
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We adopt the criterion used by the World Bank for the last year of our sample, leading 

to sample classification presented in table 7. 

Table 7 - Application of the World Bank’s Criterion to the Sample 
Developed 
countries 

Developing countries13 (29)  

Rich (16) Upper Middle 
(6) 

Lower Middle 
(13) 

Poor (10) 

Australia Argentina Chile Egypt 
Austria Greece Colombia Honduras 
Canada Rep. Korea Costa Rica India 

Denmark South Africa Dominican Rep. Indonesia 
Finland Uruguay El Salvador Kenya 
France Venezuela Guatemala Madagascar 
Israel  Iran Malawi 
Italy  Morocco Pakistan 
Japan  Peru Sri Lanka 

Netherlands  Philippines Zimbabwe 
New Zealand  Syria  

Norway  Tunisia  
Portugal  Turkey  
Sweden    

UK    
USA    

A descriptive analysis of data according to the classification is presented in table 8.  

Table 8 - Descriptive Analysis of Growth Indicators 

    N Mean 
Std. 

Deviation Minimum Maximum 
Rich 16 1,48531 ,734183 ,009 2,800
Upper Middle 6 1,40550 1,346254 ,471 3,953
Lower Middle 13 ,53492 ,325233 -,093 ,997
Poor 10 ,12340 ,390770 -,331 ,931

 

% change of 
output per worker 
in agriculture 

Total 45 ,89747 ,886375 -,331 3,953
Rich 16 ,6719 ,46763 ,05 1,68
Upper Middle 5 1,1956 1,73630 ,17 4,23
Lower Middle 12 ,4334 ,46987 -,34 1,26
Poor 10 ,5949 ,79398 -,34 2,49

 

% change of 
output per worker 
in economy 

Total 43 ,6483 ,77966 -,34 4,23
Rich 16 -,4436 ,16198 -,65 -,12
Upper Middle 5 -,3993 ,19184 -,67 -,20
Lower Middle 12 -,2971 ,09658 -,45 -,14
Poor 10 -,1385 ,14051 -,42 ,07

 

% variation in 
weight of 
agriculture 

Total 43 -,3266 ,18455 -,67 ,07
 

                                                 
13 The term “developing economies” is used in World Bank reports to denote the set of 
non-rich economies. Therefore, this concept includes upper middle, lower middle and 
poor countries. 
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Output per capita growth in agriculture varies directlty with countries’ income. 

Furthermore, differences among groups are very meaningful. The rich and upper middle 

countries exhibit strong growth rates, contrasting with moderate rates for the other 

countries. In the economy, growth rates are stronger for the upper middle nations than 

the rich ones and for the poor than the lower middle income countries, the group with 

the worst performance of all. Growth rates are very homogeneous among groups as the 

ANOVA test presented in table 9 proves.  

Table 9 - ANOVA Test: Analysis of Variance for the Classification in 4 Groups 

  
Sum of 
Squares Df 

Mean 
Square F Sig. 

Between Groups 14,778 3 4,926 10,205 ,000
Within Groups 19,791 41 ,483    

% change output per 
worker agriculture   

Total 34,569 44      
Between Groups 2,089 3 ,696 1,159 ,338
Within Groups 23,441 39 ,601    

% change output per 
worker economy 

Total 25,531 42      
Between Groups ,609 3 ,203 9,649 ,000
Within Groups ,821 39 ,021    

% variation in weight of 
agricult. 

  Total 1,430 42      
 

It is not possible to reject the hypothesis of the mean being equal among sets. This 

evidence contrasts with the heterogeneity of the variation in weight of agriculture in 

employment. The reduction is stronger for the rich countries, declining as the income of 

the reference group diminishes.  

Tables 10 and 11 refer to the case of considering only two kinds of countries (developed 

and developing). 
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Table 10 - Descriptive Analysis of Growth Indicators for a Classification of 

Countries in 2 Groups 
 N Mean Std. 

Deviation Minimum Maximum 

Developed 16 1,48531 ,734183 ,009 2,800
   
Developing 29 ,57314 ,799648 -,331 3,953

% change output 
per worker 
agriculture    

Total 45 ,89747 ,886375 ,132133 3,953

Developed 16 ,6719 ,46763 ,05 1,68
   
Developing 27 ,6344 ,92479 -,34 4,23

% change output 
per worker 
economy 

   
Total 43 ,6483 ,77966 -,34 4,23

Developed 16 -,4436 ,16198 -,65 -,12
   
Developing 27 -,2573 ,16272 -,67 ,07

% variation in 
weight of agriculture 

   
Total 43 -,3266 ,18455 -,67 ,07

  
 
 

Table 11 - ANOVA Test: Analysis of Variance for the Classification in 2 Groups 

  
Sum of 

Squares df 
Mean 

Square F Sig. 
Between Groups 8,579 1 8,579 14,195 ,000

   
Within Groups 25,990 43 ,604    

% change output 
per worker 
agriculture 

   
Total 34,569 44     

Between Groups ,014 1 ,014 ,023 ,881

   
Within Groups 25,516 41 ,622    

% change output 
per worker 
economy 

   
Total 25,531 42     

Between Groups ,349 1 ,349 13,207 ,001

   
Within Groups 1,082 41 ,026    

% variation in 
weight of agriculture 

   
Total 1,430 42     

 

 Conclusions are the same: very high rates for the developed in agriculture, similar rates 

in the economy and a stronger reduction of agriculture weight of agriculture in 

employment.  

In order to identify the different roles of factor accumulation, technical change and 

catch-up among countries' groups in shaping labor productivity distributions of the 

agricultural sector and the overall economy, first it is necessary to perform its 
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decomposition. This task is sensitive to the approach used. In chapter 5 we apply a 

parametric method and in chapter 6 a semiparametric approach, both accounting for the 

heterogeneity of countries. 
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5 - A Stochastic Frontier Finite Mixture Approach for the Decomposition of Labor 

Productivity Growth 

 

5.1 - The Model 

So far, parametric and non-parametric production frontier studies of international 

productivity growth such as Kumar and Russell (2002) and Martin and Mitra (2001) 

have normally assumed a common frontier for all countries. A simple panel data 

stochastic production frontier can be expressed as follows:  

it it it ity x v uβ ′= + −    i = 1,...,N ; t = 1,...,T ;   (5.1) 

where: 

‘i’ indexes countries and ‘t’ indexes time periods; yit  is the log of the production level 

in year t for the i-th country; xit  is a 1 × K vector of the log of inputs in year t for the i-th 

country; β is a 1 × K vector of coefficients; vit is the measurement error, and uit refers to 

the inefficiency component. 

In this framework, heterogeneity in the distribution of yit is assumed to impact the 

density function in the simple form of a random effect. 

However, the underlying belief that the production technology is common to all 

countries can be challenged, particularly for samples including a large and 

heterogeneous set of countries.  If this assumption is not valid, technological differences 

may be labeled as inefficiency and the decomposition of output per worker is 

imprecisely determined.  

One method to solve this problem is based on a two-stage approach: first, countries are 

classified into several classes, according, for instance, to a cluster analysis applied to the 

dependent variable; and second, a production frontier is estimated separately for each 

class (e.g., Kolari and Zardkoohi, 1995; Mester, 1997). However, such a procedure has 

the disadvantage of estimating the production frontier of a particular class without using 

information regarding the other classes. This problem may be overcome by using the 

Stochastic Frontier Finite Mixture Model (SFFMM) approach, which was proposed by 
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Heckman and Singer (1984), also drawing on important recent developments suggested 

by Greene (2001a, 2001b). The SFFMM allows for the simultaneous estimation of both 

the class membership probabilities and the parameters of the mixed frontier functions.   

Following this approach, we accommodate the unobserved heterogeneity with a model 

where the density function is specific to each endogenously determined country class:   

    
'       ;       1,...,  ;    1,...,  ;    1,...,  ,it j it it ity j x v j u j i N t T j Mβ= + − = = =     (5.2) 

where:  

j indicates class number.  

The observations of the sample arise from M unobserved classes in unknown 

proportions, p1, p2, …, pM, such that: 

( )
1

0 1   and   1.
M

j j
j

p p
=

≤ ≤ =∑  (5.3) 

To ensure conditions in (5.3), a logit parameterization is used as follows: 

 

( )
( )

1

exp
                 1,...,  ;  0,  

exp

j
j MM

c
p j M c

cγ
γ =

= = =

∑
 (5.4) 

where:  

cj refers to lower level parameters. 

Within each class, the basic form of a half normal specification in (1) applies: 

                              vit | j =  N[0, σvj
2]     ;      uit | j = N+[0, σuj

2].  (5.5) 

After some algebra work, the distribution of the dependent variable conditional on the j 

class has the form: 
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it itf y j

⎛ ⎞Φ λ ε σ ε
= φ⎜ ⎟⎜ ⎟Φ ⎝ ⎠

x
σ σ

 (5.6) 

where: 

|it j jit ity j x′ε = −β ; σj=[σvj
2 + σuj

2]1/2 ; λj = σuj / σvj ; Φ(.) refers to the standard normal 

cumulative distribution function ; φ(.) designates the standard normal probability 

density function. 

The class from which from which a particular observation arises is unknown a priori. 

Assuming that the T events are independent within each class, the contribution of 

country i to the likelihood function is: 

                                         
( )

1 1

, .
TM

j it it
j t

p f y x j
= =

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑ ∏
         

(5.7) 

Thus, the log likelihood function for the sample is given by: 

( ) ( )
1 1 1

ln ln , ,
TN M

j it it
i j t

L p f y x jα
= = =

⎧ ⎫⎡ ⎤
= ⎨ ⎬⎢ ⎥

⎣ ⎦⎩ ⎭
∑ ∑ ∏                                           (5.8) 

where: 

( ) ( ) ( ) ( ) ( )11 1 1 1 1 1,..., ,..., ,..., , ,..., , ,..., , ,...,M K KM M u uM v vMp pα β β β β σ σ σ σ= ⎡ ⎤⎣ ⎦ . 

The log likelihood can be maximized with respect to α using conventional gradient 

methods.  Once estimates of α are obtained, we can also compute the posterior estimate 

of the probability of a particular class membership by using the Bayes theorem: 

( )
( )

( )
1

1 1

,
P  |  

,

T

j it it
t

TM

j it it
j t

p f y x j
j i

p f y x j

=

= =

×
=

⎡ ⎤
⎢ ⎥
⎣ ⎦

∏

∑ ∏
.                                         (5.9)  

Using (5.9), we can identify the index of the group with the highest posterior probability 

and therefore determine which class generates each observation. Furthermore, the 
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posterior probability can be used in the computation of the efficiency estimates. 

Following Greene (2001a, 2001b), the individual efficiencies are computed as: 

( )
1

ln  | ln ,
M

it it
j

EF P j i EF j
=

=∑                                           (5.10)  

where:  

EFit|j is the estimator of the efficiency of the i-th country, calculated applying the 

Jondrow et al. (1982) approach to the production frontier of class j.14  

There remains an unsolved question: how to determine the number of classes, M? In 

fact, M is not an estimable parameter and, therefore, it cannot be obtained by 

maximization of the likelihood function. A model with (M-1) classes is nested within a 

model with M classes by imposing restrictions on the parameters. Testing ‘up’ from   

(M-1) to M is not a valid procedure because if there are M classes, then estimates based 

only on (M-1) are inconsistent.  Conversely, testing ‘down’ is an acceptable method, as 

suggested by Greene (2002).  Therefore, we would only need to pick a large M* and test 

down to the “true” M based on likelihood ratio tests. Unfortunately, the latent class 

model is a little volatile and the estimation of models with larger number of classes 

or/and restrictions may not be possible, because the estimated variance matrix of 

estimates can be singular. Furthermore, according to McLachlan (1987) and Feng and 

McCulloch (1996), Pearson fit, Kolmogorov-Smirnov and likelihood ratio tests do not 

have a nice distribution for this sort of problems. Thus, some authors (see, for example, 

Fraley and Raftery, 1998 and Roeder et al., 1999) propose the use of information 

criteria such as the Akaike Information Criterion (AIC) and the Schwarz Bayesian 

Information Criterion (SBIC). Both AIC and SBIC take the following form:  

MSC(h)  =  -2 ln max L(h)  +  a(n)m(h),                                  (5.11) 

where:    

                                                 
14 In models with a single frontier, it is a standard procedure the application of the Jondrow et al. (1982) 
estimator of individual inefficiencies E[uit|vit-uit] to calculate efficiency E[exp(-uit)|vit-uit]. 
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MSC(h) is the value of the criterion for the h-th model (the lower the score, the better); 

L(h)  is the likelihood for the h-th model; m(h) is the number of parameters used in the 

h-th model; a(n) = 2 for AIC  and  a(n) = ln n  for SBIC; and h = 1, 2, . . ., H  indexes 

the alternative models. 

Most statisticians who are involved with the theory and application of model selection 

criteria prefer SBIC, since it penalizes models with more components heavier than AIC. 

Moreover, Leroux (1992) concludes that SBIC does not underestimate the number of 

classes; and Roeder and Wasserman (1997) argue that this method is consistent. On the 

other hand, Berger and Pericchi (1998) argue that information criteria are valid only for 

“nice” problems, that is, large sample sizes models with regular asymptotics and models 

for which the likelihood is not concentrated on the boundary of the parameter space. 

Furthermore, authors such as Zhang (1997) and Greene (2002) have suggested that an 

evaluation of the estimation results should play a role in choosing between alternative 

model specifications. In particular, Greene (2002) eliminates models with parameter 

estimates not significant for at least one of the classes. Zhang (1997) recommends that a 

simpler specification that sufficiently approximates the true model might be preferred to 

a more complex specification, even if information criteria indicators point towards 

adopting the latter. We adopt the approach of combining SBIC with an evaluation of the 

estimation results.     

 

5.2 - Decomposition of Labor Productivity Growth 

We define a CRS reference technology with one aggregate output, Y, and a K-

dimensional vector of inputs, X. The CRS hypothesis allows us to transform the 

dependent variable in labor productivity, y, and the vector X into the (K-1)-dimensional 

vector of inputs per worker, x.  For the economy as a whole, K=2 and X=(labor, capital); 

and for agriculture, K=3 and X=(labor, land, capital). 

Figure 3 illustrates the decomposition of output per worker growth, assuming an 

aggregate input per labor x. Let b and c stand for the base period and the current period, 

respectively. For simplicity in the analysis, we suppress the subscript i, and consider 

only one country. 
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Figure 3 - Illustration of Labor Decomposition 

 

 

 

 

 

 

 

 

 

 

 

 

This decomposition is similar to the one presented by Kumar and Russell (2002) and 

Henderson and Russell (2005) described in equations (2.6) - (2.10), with the important 

difference that stochastic shocks are accounted for. 

In period b, xb units of input per worker are used to produce yb units of output per 

worker. However, the country faces a positive shock vb in this period and, in reality, it 

could produce ( )b by x . Therefore, efficiency in period b is measured as: 

( ) ( ) ( ) ( ) ( ) ( )
.

exp exp exp exp
b b b b

b
b b b b b b bb b

y y y yEff
x v x v y x vy x β β

= = = =
′ ′+ ⋅ ⋅

         (5.12) 

Thus, labor productivity in period b can be expressed as: 

y

xxb xc

yb

yc
☺

yc=exp(β’xc)

observed output in b
exp(β’xb+vb-ub) 

/ observed output in c
exp(β’xc +vc-uc)

yc(xb)

yb(xb)

yc(xc)

yb(xc)
yb=exp(β’xb)

�

frontier output in c, vc <0
exp(β’xc +vc)

frontier output in b, vb >0
exp(β’xb+vb)

( )b by x

( )c cy x
�



 78

( )exp( ) .b b b b by Eff v y x= ⋅ ⋅                                                (5.13) 

Mutatis mutandis, labor productivity in period c is given by: 

     ( )exp( ) .c c c c cy Eff v y x= ⋅ ⋅           (5.14) 

Dividing (5.14) by (5.13), we obtain labor productivity growth: 

 ( )
( )

exp( ) .
exp( )

c cc c c

b b b b b

y xy Eff v
y Eff v y x

= ⋅ ⋅                                              (5.15) 

Multiplying the numerator and the denominator of equation (5.15) by ( )c by x , labor 

productivity growth can be rewritten as: 

( )
( )

( )
( )

exp( ) .
exp( )

c b c cc c c

b b b b b c b

y x y xy Eff v
y Eff v y x y x

= ⋅ ⋅ ⋅                                      (5.16) 

The ratio cEff  to bEff  is the efficiency change or technological catch-up between the 

current period and the base period. The second component on the right hand side of 

(5.16), exp( )
exp( )

c

b

v
v

, represents the stochastic shocks effect. The ratio of ( )c by x to ( )b by x  

captures the shift in the “deterministic” frontier caused by technological change, since 

input quantity per worker does not change. The last term on the right hand side captures 

the effect of factor accumulation, since it measures the output per worker change along 

the “deterministic” frontier in period c.  

Alternatively, equation (5.15) could be multiplied and divided by ( )b cy x  and a 

different, but valid, decomposition would be obtained: 

( )
( )

( )
( )

exp( ) .
exp( )

c c b cc c c

b b b b c b b

y x y xy Eff v
y Eff v y x y x

= ⋅ ⋅ ⋅      (5.17) 
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As said in chapter 2, this means that labor productivity decomposition is path 

dependent15, forcing the use of the geometric average of equations (5.16) and (5.17): 

( )
( )

( )
( )

( )
( )

( )
( )

1 1
2 2exp( ) ,

exp( )
c b c c c c b cc c c

b b b b b b c c b b b

y x y x y x y xy Eff v
y Eff v y x y x y x y x

⎡ ⎤ ⎡ ⎤
= ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
                 (5.18) 

where:  
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1
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b b b c

y x y x
y x y x
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 represents technological change and 
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( )
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1
2

c c b c

c b b b

y x y x
y x y x

⎡ ⎤
⋅⎢ ⎥

⎣ ⎦
 indicates 

factor accumulation and all the other terms are defined as before.  

Considering the combined effect of efficiency variation with technological change, we 

obtain the Malmquist TFP index (e.g., Grosskopf, 1993 and Färe et al., 1994a, 1994b). 

In the stochastic finite mixture model, there is not a unique frontier for the entire 

sample, but one frontier for each class. Furthermore, one observation does not belong to 

a single class, it has a probability of class membership. Thus, the decomposition of 

labor productivity in equation (5.18) must be adjusted to this framework. Following a 

similar procedure used in the computation of individual inefficiency, the potential 

output per worker of each country in each year is determined by: 

( ) ( ) ( )
1

| .
M

it it it it
j

y x P j i y x j
=

=∑                             (5.19) 

 

Using (5.18) and (5.19), labor productivity is decomposed as follows: 

 

                                                 
15 In the presence of constant returns to scale and disembodied Hicks neutral technical change, equations 
(16) and (17) would be identical (e.g., Grosskopf, 1993). 
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Using the components of the labor productivity change decomposition given in equation 

(5.20), it is possible to obtain the corresponding counterfactual distributions.  In other 

words, it is possible to analyze how the distribution of labor productivity would change 

through time under the influence of a particular effect or a combination of the 

decomposition effects (catch-up, technical change and factor accumulation). 

Counterfactual distributions are rather more informative than summary measures of the 

decomposition effects, such as the mean or the variance (Quah, 1993, 1996a, 1996b, 

1997). 

 

5.3 - Frontier Estimates and the Determinants of Labor Productivity Growth 

Across Countries 

5.3.1 - Economy as a Whole 

We now turn to investigating which factors are mainly responsible for labor 

productivity distribution changes. This requires estimating the SFFMM, performing the 

decomposition analysis described in the previous section and finally using the results 

for determining the counterfactual distributions of labor productivity.  We use a translog 

specification (Christensen et al., 1971) for the production frontier model. This flexible 

functional form allows the elasticity of substitution to vary with the type of inputs and 

the returns to scale and output elasticity to vary with the size of the inputs.  The 

production frontier model (ignoring the j-class subscript, for notational ease) can be 

written as: 
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( )2
0 1 2ln ln ln ,it it it it ity k k v uβ β β= + + + −                                 (5.21) 

where: 

ity  refers to output per worker in year t for the i-th country; itk  designates capital per 

worker in year t for the i-th country;  β‘s  label coefficients; vit is the measurement error 

and uit  refers to the inefficiency component. 

The production frontier (5.21) is estimated separately for the time periods 1967-1979 

and 1980-199216. This procedure overcomes the estimation problems when a time trend 

is included in the specification to capture the technological change. The utilization of 

relatively large periods is explained by the need of using richer panels for estimating 

these models. 

We start by estimating our model with a large number of classes. As discussed in 

section 2, the SBIC indicator can be used to help choosing the most appropriate number 

of classes in this type of models. Table 12 reports the SBIC scores for the 1, 2 and 3 

class models. The 4-class model for the economy is over-specified since convergence is 

not attained.   

 
Table 12 - Score for Schwarz Bayesian Information Criterion (SBIC) 

Number of classes  

1 2 3 4 

1967-1979 -18,749 -349,442 -541,640 - 
Economy as 

a Whole 1980-1992 -21,104 -400,116 -567,284 - 

1967-1979 1040,398 491,191 - - 
Agriculture 

1980-1992 736,106 363,016 - - 
 

The score values suggest the use of a 3-class model for the overall economy.  However, 

a judgment about the estimation results of each model is also advisable, as discussed in 

                                                 
16 All estimation results were obtained using LIMDEP (Econometric Software, Inc., 2003). 
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section 2.  The estimation results for the 3-class model in both periods are presented in 

table 13.   

 

Table 13 - Three Class Model Estimation Results for the Economy as a Whole 
 

a) 1967-1979 

 
b) 1980-1992 

 

 

 Model parameters for 
latent class 1 

Model parameters for 
latent class 2 

Model parameters for 
latent class 3 

Variable Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] 

Constant 6,5086 0,2879 0,0000 2,7048 0,2778 0,0000 -0,9588 0,3120 0,0021 

ln itk  0,0205 0,0671 0,7605 0,7847 0,0650 0,0000 1,7624 0,0655 0,0000 

( )2ln itk  0,0290 0,0037 0,0000 -0,0137 0,0039 0,0004 -0,0680 0,0033 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 0,1842 0,0164 0,0000 0,1579 0,0705 0,0251 0,1577 0,0126 0,0000 

λj  =  σuj / σvj 1,3392 0,4973 0,0071 0,7111 1,7676 0,6875 3,1117 0,9559 0,0011 

Prior Probabilities for 
Class Membership 

0,4189 0,0756 0,0000 0,1628 0,0563 0,0038 0,4183 0,0756 0,0000 

 Model parameters for 
latent class 1 

Model parameters for 
latent class 2 

Model parameters for 
latent class 3 

Variable Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] 

Constant -0,0213 271298 1,0000 1,4252 0,1289 0,0000 2,3218 0,4848 0,0000 

ln itk  1,5186 0,0421 0,0000 1,1556 0,0282 0,0000 0,7225 0,1171 0,0000 

( )2ln itk  -0,0547 0,0022 0,0000 -0,0350 0,0016 0,0000 0,0002 0,0069 0,9721 

σj  =  [σvj
2 +σuj

2]1/2 0,1146 0,0025 0,0000 0,1736 0,0094 0,0000 0,2204 0,0097 0,0000 

λj  =  σuj / σvj 0,0000 2965820 1,0000 1,2826 0,2439 0,0000 46,7975 173,865 0,7878 

Prior Probabilities for 
Class Membership 

0,3010 0,0758 0,0001 0,5051 0,0913 0,0000 0,1939 0,0975 0,0466 
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At least one of the lambdas is not statistically significant and some of the estimation 

results are poor for this class. Following a testing down procedure, empirical results are 

generated for the 2-class model (table 14).   

 

Table 14 - Two Class Model Estimation Results for the Economy as a Whole 
a) 1967-1979 

 Model parameters for 
latent class 1 

Model parameters for 
latent class 2 

Variable Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] 

Constant 0,8585 0,2222 0,0001 -1,3149 0,1741 0,0000 

ln itk  1,3241 0,0483 0,0000 1,7275 0,0392 0,0000 

( )2ln itk  -0,0431 0,0025 0,0000 -0,0640 0,0022 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 0,2089 0,0087 0,0000 0,2768 0,0050 0,0000 

λj  =  σuj / σvj 1,4707 0,2060 0,0000 5,4008 0,7528 0,0000 

Prior Probabilities for 
Class Membership 0,4652 0,0763 0,0000 0,5348 0,0763 0,0000 

  

b) 1980-1992 

 Model parameters for 
latent class 1 

Model parameters for 
latent class 2 

Variable Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] 

Constant 4,7043 0,0903 0,0000 1,1935 0,1693 0,0000 

ln itk  0,5064 0,0197 0,0000 1,1765 0,0372 0,0000 

( )2ln itk  -0,0005 0,0011 0,6766 -0,0338 0,0020 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 0,1898 0,0151 0,0000 0,2936 0,0089 0,0000 

λj  =  σuj / σvj 1,4959 0,3978 0,0002 7,8311 2,0985 0,0002 

Prior Probabilities for 
Class Membership 0,5375 0,0765 0,0000 0,4625 0,0765 0,0000 
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The estimation results are very satisfactory indicating the assumption of a common 

production frontier for all countries does not seem appropriate.  Consequently, we adopt 

the 2-class specification. The grouping of countries generated by the adopted model is 

reported in table 15.   

 
Table 15 - Countries Classification According to the Stochastic Frontier Finite 

Mixture Model for the Economy as a Whole 

1967- 1979 1980-1992 
Countries Class Countries Class Countries Class Countries Class 

Argentina 1 Austria 2 Australia 1 Argentina 2 

Australia 1 Chile 2 Canada 1 Austria 2 

Canada 1 Costa Rica 2 Chile 1 Costa Rica 2 

Colombia 1 Dominican Rep. 2 Colombia 1 Denmark 2 

Denmark 1 Egypt 2 Dominican Rep. 1 El Salvador 2 

France 1 El Salvador 2 Egypt 1 Finland 2 

Guatemala 1 Finland 2 France 1 Greece 2 

Indonesia 1 Greece 2 Guatemala 1 Honduras 2 

Israel 1 Honduras 2 Índia 1 Indonesia 2 

Italy 1 India 2 Israel 1 Japan 2 

Madagascar 1 Japan 2 Italy 1 Kenya 2 

Netherlands 1 Kenya 2 Madagascar 1 Korea 2 

New Zealand 1 Korea 2 Netherlands 1 Malawi 2 

Philippines 1 Malawi 2 New Zealand 1 Morocco 2 

Sri Lanka 1 Morocco 2 Pakistan 1 Norway 2 

Sweden 1 Norway 2 Philippines 1 Peru 2 

Syria 1 Pakistan 2 Portugal 1 South Africa 2 

United Kingdom 1 Peru 2 Sri Lanka 1 Tunisia 2 

Uruguay 1 Portugal 2 Sweden 1 Turkey 2 

USA 1 South Africa 2 Syria 1 Zimbabwe 2 

    Tunisia 2 United Kingdom 1     

    Turkey 2 Uruguay 1     

    Zimbabwe 2 USA 1      

This classification is influenced by several factors such as different factor elasticities, 

efficiency patterns and/or shock effects. After estimating production frontiers, it is 

possible to perform the decomposition of labor productivity growth17. The 

decomposition results considering the evolution of all components between the first and 

the last year of the sample are reported in table 1618.  

                                                 
17 All decomposition calculations were carried out using GAUSS (Aptech Systems, Inc.,1999). 
18 We also use the mean values of all components in the time periods 1967-1979 and 1980-1992 to 
evaluate their contribution to the relative change in output per worker. For presentation reasons, we 
decide not to exhibit these results. Nevertheless, they are available upon request. 
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Table 16 - Decomposition of Labor Productivity Growth for the Economy 

Contribution to Percentage Change in Output per Worker of
Country Percentage

(by ascending order Change in Output Change in Change in Capital Stochastic
of output per worker per Worker Efficiency Technology Deepening Shocks

in the first year)
Malawi 22,55% 30,81% 25,81% -33,93% 12,70%
Kenya 15,74% -14,93% 13,18% 22,65% -1,99%
Indonesia 248,48% 2,36% -20,79% 328,30% 0,35%
India 95,07% 2,90% 79,44% 12,45% -6,05%
Madagascar -33,85% 8,17% 70,30% -73,94% 37,81%
Zimbabwe -6,22% 9,36% 3,33% -25,13% 10,83%
Pakistan 66,21% 32,46% 42,82% -27,04% 20,42%
Sri Lanka 78,95% 10,90% 4,53% 18,77% 29,98%
Korea, Republic of 422,65% -0,76% 6,21% 419,20% -4,50%
Philippines 24,41% 10,28% 7,01% -14,22% 22,90%
Egypt 92,30% 19,45% 32,44% 8,54% 12,00%
Honduras 15,56% 21,23% 2,01% -14,70% 9,55%
Turkey 107,44% 3,04% 0,91% 94,07% 2,80%
Morocco 53,10% 5,10% 0,70% 39,36% 3,80%
Tunisia 103,62% 29,59% -0,09% 39,49% 12,74%
Dominican Republic 40,71% 1,93% 24,44% 23,85% -10,43%
El Salvador 3,22% 2,81% 0,25% -2,83% 3,06%
Guatemala 23,56% 5,62% 0,12% -8,23% 27,33%
Colombia 31,98% 8,63% -3,65% 1,56% 24,17%
Portugal 160,32% 3,48% 22,25% 130,16% -10,59%
Syrian Arab Republic 126,30% 4,37% -5,04% 83,33% 24,56%
South Africa 17,02% -12,17% 1,41% 31,10% 0,21%
Greece 108,70% 13,35% 4,73% 67,81% 4,76%
Costa Rica 15,18% 1,43% -0,12% 12,54% 1,04%
Japan 167,57% 1,61% 14,67% 118,67% 5,01%
Peru -33,56% -28,76% -0,07% 0,54% -7,17%
Uruguay 30,30% 6,99% -6,41% 5,47% 23,37%
Chile 24,22% 9,34% 16,61% -8,74% 6,75%
Israel 108,47% 13,08% -0,90% 43,10% 29,99%
Argentina 19,13% -11,56% -17,97% 58,71% 3,47%
Finland 71,42% 0,75% 14,38% 44,59% 2,88%
Austria 84,33% -4,35% 13,63% 69,73% -0,07%
Italy 95,40% -0,49% 2,14% 97,50% -2,66%
United Kingdom 51,35% 0,47% -0,66% 50,97% 0,45%
Denmark 36,22% -4,19% -13,84% 52,90% 7,93%
France 63,81% 1,54% 5,65% 47,81% 3,30%
Norway 67,40% 1,23% 18,38% 37,97% 1,25%
Sweden 26,29% -3,97% 6,44% 34,24% -7,97%
Netherlands 38,77% -2,36% 3,98% 49,99% -8,87%
Australia 35,76% 1,31% 3,08% 25,41% 3,66%
New Zealand 4,80% 1,41% -0,32% -0,57% 4,26%
Canada 39,33% 1,71% 3,15% 24,47% 6,70%
USA 23,76% 0,85% 4,21% 12,50% 4,67%
Mean 64,83% 4,28% 8,80% 44,15% 7,08%  

As we can see in table 16, there is evidence of catch-up for the majority of the 

countries: rich as well as poor countries have, on average, moved towards the frontier. 

Capital deepening is, in general, the most important determinant of labor productivity 

growth for the majority of countries 



 86

Finally, the results of the decomposition analysis are used for obtaining the 

counterfactual distributions through the nonparametric kernel density estimator. The 

estimated counterfactual distributions of labor productivity are presented in figures 4-6.  

 

Figure 4 - Counterfactual Distributions of Output per Worker for the Economy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Panel b of figure 4 reveals that the efficiency change has an almost imperceptible effect 

on the first year labor productivity distribution. There is a very small shift of the density 

function from the lower and upper tails to the middle, without significant changes in the 

labor productivity mean.   
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Figure 5 - Counterfactual Distributions of Output per Worker for the Economy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Panel b of figure 5 shows that technological change is responsible for a small shift of 

the density function from the lower tail to the low-middle and a more significant 

transfer from the high-middle to the upper tail of the distribution, with a small rise of 

the labor productivity mean. This fact confirms the result of Kumar and Russell (2002) 

that technological change has contributed more to the welfare of richer countries than 

poorer ones. Nevertheless, as we can observe in table 8, there are some low and low-

middle income countries such as Malawi, India, Madagascar, Zimbabwe, Pakistan, 

Dominican Republican and Chile in which efficiency or technology change is the main 

contributor to growth. This outcome can also be confirmed by the transfer of mass from 

the low to the low-middle income countries brought by the conjugated effect of the 

technological change and catch-up (panel c of figures 4 and 5).  
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Figure 6 - Counterfactual Distributions of Output per Worker for the Economy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Again following Kumar and Russel (2002), we test for the closeness of each of 

counterfactual distributions to the labor productivity distribution of 1992, using Li's T-

test (Li, 1996).  

For any two distributions f(x) and g(x) on the integrated-square-error metric 

space, ( ) [ ]2, ( ) ( )I f g f x g x dx= −∫ : 

                                       
,

ˆ
I n hT

σ
⋅ ⋅

=                                                         (5.22) 

where: 
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k(.) denotes a Gaussian kernel function and h is the optimal bandwidth (for details, 

please refer to Pagan and Ullah, 1999). 

 

Li (1996) demonstrates that this statistic test is valid for dependent and independent 

variables. Fan and Ullah (1999) show that the T-statistic goes asymptotically to the 

standard normal.   The results of Li's tests for the closeness of distributions are reported 

in table 1719.  

 
Table 17 - Li’s Distribution Hypothesis Tests for the Economy 

 
 

Null Hypothesis (H0) 
 

T-test 
Ten percent 

significance level 
(critical value: 1.28) 

Five percent 
significance level 

(critical value: 1.64) 

( ) ( )92 67f y g y=  2.398 H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Eff=  2.639 H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Tech=  2.412 H0 rejected H0 rejected 

( ) ( )92 67 *f y g y FAcc=  -0.073 H0 not rejected H0 not rejected 

( ) ( )92 67 * *f y g y Eff Tech=  2.643 H0 rejected H0 rejected 

( ) ( )92 67 * *f y g y Eff FAcc=  -0.020 H0 not rejected H0 not rejected 

( ) ( )92 67 * *f y g y Tech FAcc=  -0.026 H0 not rejected H0 not rejected 

( ) ( )92 67 * * *f y g y Eff Tech FAcc=  -0.009 H0 not rejected H0 not rejected 

 

 

                                                 
19 Our calculations for this test were carried out using GAUSS (Aptech Systems, Inc.,1999). 
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Comparing panel b in figures 4-6, which reports the effect of a single component, we 

can infer that capital deepening causes the emergence of a bimodal distribution and 

leads to a significant increase in the mean of labor productivity.  The appropriate 

statistical tests support this conclusion (table 17).  At both significance levels, it is not 

possible to reject the equivalence of the 1992-distribution and the counterfactual 

distribution assuming only capital deepening.  Additionally, when this effect is 

combined with each of the other components, the null hypothesis of equivalence 

relatively to the last year distribution cannot be rejected either. 

 

5.3.2 - Agricultural Sector 

For agriculture we adopt the following translog production frontier model (ignoring the 

j-class subscript, for notational ease): 

( ) ( )2 2
0 1 2 3 4 5ln ln ln ln ln ln lnit it it it it it it it ity k la k la k la v uβ β β β β β= + + + + + + −    (5.25) 

where itla  designates land per worker in year t for the i-th country and all the other 

variables are defined as before. 

The model is estimated first with a large number of classes. Table 12 reports the score 

values of SBIC for 1 and 2 class models. The 3 and 4 class models are over-specified 

for agriculture since convergence is not attained.  The score values suggest a 2-class 

model, whose estimation results are presented in table 18.   
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Table 18 - Two Class Model Estimation Results for Agriculture 
a) 1967-1979 

 

b) 1980-1992 

Inspection of those outcomes indicates that one of the lambdas and some of the 

coefficients are not statistically significant in both time periods.  Hence, we consider the 

single class model, the results of which are reported in table 19.   

 

 Model parameters for 
latent class 1 

Model parameters for 
latent class 2 

Variable Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] 

Constant 
2,3565 1,2931 0,0684 9,0558 0,2264 0,0000 

ln itk  0,7012 0,2254 0,0019 0,4485 0,0479 0,0000 

ln itla  1,5487 0,2835 0,0000 -0,3563 0,0655 0,0000 

( )2ln itk  0,0127 0,0065 0,0521 -0,0825 0,0041 0,0000 

( )2ln itla  -0,0899 0,0419 0,0320 -0,1014 0,0100 0,0000 

ln lnit itk la⋅  -0,0285 0,0366 0,4371 0,2378 0,0113 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 
0,1864 0,3559 0,6006 0,6742 0,0078 0,0000 

λj  =  σuj / σvj 0,3477 9,7291 0,9715 6,2148 0,7656 0,0000 

Prior Probabilities for 
Class Membership 0,2221 0,0621 0,0004 0,7779 0,0621 0,0000 

 Model parameters for 
latent class 1 

Model parameters for 
latent class 2 

Variable Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] 

Constant 6,5715 0,4885 0,0000 7,9509 0,1258 0,0000 

ln itk  0,4140 0,1657 0,0125 0,5748 0,0735 0,0000 

ln itla  0,7919 0,0995 0,0000 -0,0543 0,0793 0,4940 

( )2ln itk  -0,0173 0,0143 0,2263 -0,1196 0,0065 0,0000 

( )2ln itla  -0,0413 0,0110 0,0002 -0,1037 0,0166 0,0000 

ln lnit itk la⋅  0,0322 0,0174 0,0640 0,2493 0,0219 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 0,4413 0,0682 0,0000 0,3561 0,0114 0,0000 

λj  =  σuj / σvj 0,6658 0,4957 0,1792 4,0321 0,9388 0,0000 

Prior Probabilities for 
Class Membership 0,4693 0,0995 0,0000 0,5307 0,0995 0,0000 
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Table 19 - One Class Model Estimation Results for Agriculture 
a) 1967-1979 

 

b) 1980-1992 

 

Based on the outcomes for both time periods, there is evidence supporting the use of a 

single production frontier for all countries. 

 Model parameters for 
latent class 1 

Variable Coeff. St.Err. P[|Z|>z] 

Constant 7,8479 0,3347 0,0000 

ln itk  0,1632 0,0737 0,0268 

ln itla  0,4114 0,0793 0,0000 

( )2ln itk  -0,0305 0,0046 0,0000 

( )2ln itla  -0,1150 0,0110 0,0000 

ln lnit itk la⋅  0,1584 0,0150 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 0,7570 0,0132 0,0000 

λj  =  σuj / σvj 1,5599 0,1306 0,0000 

 Model parameters for 
latent class 1 

Variable Coeff. St.Err. P[|Z|>z] 

Constant 8,1360 0,2091 0,0000 

ln itk  0,4601 0,0715 0,0000 

ln itla  0,0151 0,0647 0,8159 

( )2ln itk  -0,0600 0,0068 0,0000 

( )2ln itla  -0,0884 0,0096 0,0000 

ln lnit itk la⋅  0,1773 0,0133 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 0,5380 0,0130 0,0000 

λj  =  σuj / σvj 1,1033 0,1177 0,0000 
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As before, we perform the decomposition analysis of labor productivity growth and 

generate the corresponding counterfactual distributions. The results of the 

decomposition are presented in table 20; the counterfactual distributions of labor 

productivity in figures 7-9; the Li's tests in table 21.  

 
Table 20 - Decomposition of Labor Productivity Growth for Agriculture 

Contribution to Percentage Change in Output per Worker of
Country Percentage

(by ascending order Change in Output Change in Change in Factor Stochastic
of output per worker per Worker Efficiency Technology Accumulation Shocks

in the first year)
Malawi -30,59% 13,43% 19,75% -54,84% 13,14%
Indonesia 93,06% 34,52% 28,68% -39,05% 82,96%
India 42,03% 21,57% 23,87% -35,34% 45,85%
Kenya 6,92% 19,24% 28,34% -42,91% 22,37%
Korea, Republic of 395,34% 26,19% 32,55% 81,51% 63,16%
Zimbabwe -33,14% 4,51% 24,17% -37,70% -17,30%
Madagascar -17,99% 14,56% 26,73% -55,55% 27,07%
Pakistan 20,61% 11,47% 24,34% -33,70% 31,25%
Sri Lanka -13,25% 8,14% 30,42% -41,93% 5,92%
Guatemala 22,25% 26,79% 29,45% -53,95% 61,74%
Morocco 10,96% 24,08% 26,20% -58,73% 71,72%
Philippines 38,81% 14,91% 29,48% -45,28% 70,50%
Egypt 39,67% 8,10% 37,56% -23,76% 23,20%
Turkey 63,49% 39,59% 30,35% -49,57% 78,17%
Iran 74,37% 169,14% -1,57% -82,88% 284,50%
El Salvador 40,37% 26,79% 28,99% -45,92% 58,69%
Japan 258,68% 18,83% 6,68% 109,66% 34,94%
Peru -9,33% 7,12% 29,73% -34,48% -0,41%
Tunisia 96,41% 33,47% 38,93% -23,81% 39,02%
Dominican Republic 75,75% 9,00% 30,31% -4,36% 29,38%
Honduras 15,95% 19,97% 31,94% -41,49% 25,19%
Colombia 65,67% 15,04% 30,76% -34,45% 68,02%
Portugal 177,78% -0,90% 32,55% 214,12% -32,68%
Syrian Arab Republic 71,98% 37,39% 37,62% -45,49% 66,87%
Venezuela 100,32% 23,80% 33,51% -28,41% 69,29%
Costa Rica 99,72% 30,50% 23,93% -37,24% 96,76%
South Africa 57,51% 17,55% 37,16% -30,78% 41,14%
Greece 183,84% 24,96% 27,73% -11,46% 100,84%
Chile 44,82% 12,58% 35,28% -27,27% 30,74%
Finland 138,57% 6,07% 28,24% 118,11% -19,58%
Italy 197,22% 33,53% 8,28% 29,46% 58,78%
Norway 100,08% 5,68% 18,29% 86,79% -14,32%
Austria 156,24% 12,71% 19,34% 50,87% 26,27%
Sweden 199,32% -0,25% 36,99% 198,03% -26,50%
Israel 173,93% 29,24% 0,80% 13,17% 85,81%
France 279,99% 26,94% 19,24% 46,53% 71,32%
Uruguay 59,25% 12,29% 34,04% -51,67% 118,91%
Argentina 47,14% 23,16% 43,54% -59,17% 103,85%
Denmark 151,35% 9,79% 29,41% 44,04% 22,83%
Netherlands 140,19% 5,00% 10,39% 27,62% 62,37%
Canada 192,47% 4,56% 91,98% 57,70% -7,62%
United Kingdom 78,66% 6,78% 29,02% -20,52% 63,14%
USA 67,95% 11,24% 65,28% -37,03% 45,08%
Australia 63,04% 27,59% 88,29% -63,18% 84,32%
New Zealand 0,95% 0,94% 13,88% 11,51% -21,25%
Mean 89,74% 20,61% 30,05% -3,62% 47,68%  
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Figure 7 - Counterfactual Distributions of Output per Worker for Agriculture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 - Counterfactual Distributions of Output per Worker for Agriculture 
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Figure 9 - Counterfactual Distributions of Output per Worker for Agriculture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 21 - Li’s Distribution Hypothesis Tests for Agriculture 
 

Null Hypothesis (H0) 
 

T-test 
Ten percent 

significance level 
(critical value: 1.28) 

Five percent 
significance level 

(critical value: 1.64) 

( ) ( )92 67f y g y=  5.842 H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Eff=  4.336 H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Tech=  1.832 H0 rejected H0 rejected 

( ) ( )92 67 *f y g y FAcc=  4.686 H0 rejected H0 rejected 

( ) ( )92 67 * *f y g y Eff Tech=  0.982 H0 not rejected H0 not rejected 

( ) ( )92 67 * *f y g y Eff FAcc=  3.719 H0 rejected H0 rejected 

( ) ( )92 67 * *f y g y Tech FAcc=  1.350 H0 rejected H0 not rejected 

( ) ( )92 67 * * *f y g y Eff Tech FAcc=  0.774 H0 not rejected H0 not rejected 

 

(b): Effect of Factor Accumulation
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The analysis of those results suggests the following:  

- The catch-up effect is stronger for agriculture than for the overall economy, as 

described in table 20. Panel b of figure 7 indicates that efficiency change is responsible 

for a shift of the density from both tails to the middle; i.e., exactly the opposite of the 

divergence process described by Quah (1993) as the “pilling up of probability mass in 

the tails, and a thinning out in the middle”.  Thus, although rich as well as poor 

countries move toward the world production frontier, the technological catch-up seems 

to help convergence in agriculture.  

- The analysis of table 20 reveals that technological change is the most important 

component for the majority of countries. Panel b of figure 8 suggests that technological 

change is responsible for an important shift of the density from the lower tail to the low-

middle and an almost imperceptible mass change from the high-middle to the upper tail 

of the distribution. This means that, contrary to the overall economy, technological 

change in agriculture, contributes more to the welfare of poorer countries than richer 

ones. The combined effect of the catch-up and technological change components on the 

distribution of labor productivity is presented in panel c of figures 7 and 8.  The analysis 

of panel c shows that the combined effect of the two components results in a higher 

mean of output per worker and in a 1967-distribution closer to the 1992-distribution 

than the individual effect of each component. This conclusion is supported by the 

statistic tests of Li (1996) presented in table 21. At both significance levels, it is not 

possible to reject the equivalence of the 1992-distribution and the counterfactual 

distribution assuming only TFP change.  

- It is notable that many countries experience reductions in factor per worker 

endowments20, as we can observe in table 20. Nevertheless, factor accumulation is a 

very important determinant of growth for some countries, such as two Southeast Asian 

growth miracles (Korea and Japan) and some European countries (Portugal, Finland, 

Norway, Austria, Sweden, France, Netherlands). Panel b of figure 9 indicates that factor 

accumulation effect leads to a shift from the lower tail to the rest of distribution. 

                                                 
20 For instance, although labor has diminished in the period for most of the countries, the reduction of 
factor endowments was even stronger.  
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However, this is a small effect, with minor changes on labor productivity distribution 

and its mean.  

 

5.4 - Differences Among Groups of Countries 

In chapter 4, we conclude that, on average, the output per worker increased more in 

agriculture than in the overall economy for the period 1967-1992 and that the weight of 

agriculture in employment declined during that time. To study the behavior of each set 

of countries, we use the criterion defined by the World Bank presented in the table 6, 

leading to the sample classification accessible in table 7. In the economy, labor 

productivity presents similar growth rates across sets, as shown in table 8. On the 

contrary, in agriculture, the rich and upper middle countries exhibit high growth rates, 

contrasting with moderate rates for the other countries.  

Table 22 presents the decomposition of labor productivity growth for each of the 4 

groups of countries considered.  

 

Table 22 - Decomposition of Labor Productivity Growth (4 Groups) 
 

   N Mean 
Std. 

Deviation Minimum Maximum 
Rich 16 ,4352 ,28449 ,15 1,16
Upper Middle 6 ,5610 ,06788 ,46 ,67
Lower Middle 13 ,6275 ,33726 ,37 1,68
Poor 10 ,4313 ,09980 ,29 ,63

 
 
 
TFP change 
agriculture 
  
  
  

Total 45 ,5067 ,26276 ,15 1,68

Rich 16 ,0677 ,10011 -,18 ,26
Upper Middle 5 -,0328 ,17976 -,30 ,18
Lower Middle 12 ,0785 ,15796 -,29 ,30
Poor 10 ,3757 ,35987 -,18 ,82

 
 
 
TFP change 
economy 
  
  
  

Total 43 ,1307 ,24639 -,30 ,82

Rich 16 ,55431 ,762177 -,632 2,141
Upper Middle 6 -,16683 ,510632 -,592 ,815
Lower Middle 13 -,41800 ,189011 -,829 -,044
Poor 10 -,40610 ,094301 -,555 -,238

 
 
 
Capital 
deepening 
agriculture 
  Total 45 -,03616 ,665226 -,829 2,141
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N Mean 

Std. 
Deviation Minimum Maximum 

Rich 16 ,5247 ,35968 -,01 1,30
Upper Middle 5 1,1646 1,70993 ,06 4,19
Lower Middle 12 ,2174 ,36076 -,14 ,94
Poor 10 ,2162 1,11748 -,74 3,28

 
 
 
Capital 
deepening 
economy 
  
  

Total 43 ,4416 ,84715 -,74 4,19

Rich 16 1,1788 1,00153 -,12 3,13
Upper Middle 6 ,3663 ,86197 -,28 2,04
Lower Middle 13 -,0544 ,26127 -,55 ,41
Poor 10 -,1230 ,16397 -,39 ,13

 
 
Y/L chg no 
stochastic 
shocks 
agriculture  
  Total 45 ,4249 ,89093 -,55 3,13

Rich 16 ,6430 ,49724 ,00 1,91
Upper Middle 5 1,1669 1,88452 ,06 4,47
Lower Middle 12 ,3128 ,41164 -,29 1,02
Poor 10 ,4675 ,83186 -,52 2,47

 
 
Y/L chg no 
stochastic 
shocks 
economy  
  Total 43 ,5709 ,82768 -,52 4,47

 
 

 

For all groups, TFP growth rates are higher in agriculture than in the overall economy. 

Furthermore, factor accumulation in agriculture is negative for all classes, except for the 

rich countries. Although output per capita grew faster in the period for agriculture, when 

we remove the stochastic shocks, this conclusion is altered.  

The ANOVA tests presented in table 23 indicate that the null hypothesis that the means 

of output per capita change without shocks are equal is rejected for the agriculture and 

not rejected for the economy. The same indication applies to capital deepening and the 

opposite to TFP. Capital deepening in the overall economy mimics the behavior of 

output per capita after removing shocks. In agriculture, capital deepening is only 

positive for rich countries while TFP is similar among groups and stronger than the 

growth rates observed in the overall economy for all sets of nations.  

 

 

 



 99

Table 23 - ANOVA Tests (4 Groups of Countries) 

 
Sum of 

Squares df 
Mean 

Square F Sig. 
Between Groups ,346 3 ,115 1,758 ,170
Within Groups 2,692 41 ,066    

 
TFP change agriculture 
  
  Total 3,038 44     

Between Groups ,830 3 ,277 6,276 ,001
Within Groups 1,720 39 ,044    

 
TFP change economy 
  
  Total 2,550 42     

Between Groups 8,945 3 2,982 11,614 ,000
Within Groups 10,526 41 ,257    

 
Capital deepening 
agriculture 
  
  

Total 19,471 44     
Between Groups 3,835 3 1,278 1,895 ,146
Within Groups 26,307 39 ,675    

 
Capital deepening 
economy 
  
  

Total 30,142 42     

Between Groups 15,103 3 5,034 10,413 ,000
Within Groups 19,822 41 ,483    

 
Y/L chg no stochastic 
shocks agriculture 
  Total 34,925 44     

Between Groups 2,766 3 ,922 1,383 ,262
Within Groups 26,006 39 ,667    

 
Y/L chg no stochastic 
shocks economy 
   Total 28,772 42     

 

 

Same conclusions are obtained when we only consider, in table 24, the classical split up 

of countries into developed or rich and developing.  
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Table 24 - Decomposition of Labor Productivity Growth (2 Groups) 

 N Mean 
Std. 

Deviation Minimum Maximum 
Developed 16 ,4352 ,28449 ,15 1,16
Developing 29 ,5461 ,24618 ,29 1,68

TFP change agriculture 
  
  

Total 45 ,5067 ,26276 ,15 1,68
Developed 16 ,0677 ,10011 -,18 ,26
Developing 27 ,1680 ,29732 -,30 ,82

TFP change economy 
  
  

Total 43 ,1307 ,24639 -,30 ,82
Developed 16 ,55431 ,762177 -,632 2,141
Developing 29 -,36193 ,273941 -,829 ,815

 
Capital deepening 
agriculture 
 Total 45 -,03616 ,665226 -,829 2,141

Developed 16 ,5247 ,35968 -,01 1,30
Developing 27 ,3924 1,03822 -,74 4,19

Capital deepening 
economy 
  
  Total 43 ,4416 ,84715 -,74 4,19

Developed 16 ,6430 ,49724 ,00 1,91
Developing 27 ,5282 ,97923 -,52 4,47

Y/L chg no s. shocks 
economy 
  
  Total 43 ,5709 ,82768 -,52 4,47

Developed 16 1,1788 1,00153 -,12 3,13
Developing 29 ,0090 ,45390 -,55 2,04

Y/L chg no s. shocks 
agriculture 
  
  Total 45 ,4249 ,89093 -,55 3,13

 

 

 

In agriculture, although developing countries exhibit a strong positive growth rate for 

TFP, the disinvestment in this sector shown by the factor accumulation effect causes a 

null growth of output per capita without shocks. For developed countries, high rates of 

factor accumulation and TFP originate an even higher growth rates of output per capita 

with no stochastic shocks. For both sets of countries, TFP growth rates are lower in the 

overall economy than in agriculture. Furthermore, TFP growth is stronger in developing 

countries than in developed countries both for agriculture and for the overall economy. 

ANOVA tests exhibited in table 25 reveal that capital deepening is the only case that the 

null hypothesis of group means being equal is rejected. 
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Table 25 - ANOVA Tests (2 Groups of Countries) 

  
Sum of 
Squares df 

Mean 
Square F Sig. 

Between Groups ,127 1 ,127 1,874 ,178
Within Groups 2,911 43 ,068    

 
 
TFP change agriculture 
  Total 3,038 44     

Between Groups ,101 1 ,101 1,691 ,201
Within Groups 2,449 41 ,060    

 
 
TFP change economy 
  Total 2,550 42     

Between Groups 8,656 1 8,656 34,417 ,000
Within Groups 10,815 43 ,252    

 
Capital deepening 
agriculture 
  Total 19,471 44   

Between Groups ,176 1 ,176 ,241 ,626
Within Groups 29,966 41 ,731    

 
Capital deepening 
economy 
  Total 30,142 42     

Between Groups ,132 1 ,132 ,189 ,666
Within Groups 28,640 41 ,699    

 
Y/L chg no s. shocks 
economy 
  Total 28,772 42     

Between Groups 14,110 1 14,110 29,150 ,000
Within Groups 20,815 43 ,484    

 
Y/L chg no s. shocks 
agriculture 
  Total 34,925 44     

 

In neoclassical growth models (e.g., Solow, 1956; Cass, 1965 and Koopmans, 1965), 

per capita output growth rate for a given period is assumed to be inversely related to its 

starting level.  Therefore, countries with different starting levels of per capita income 

will tend to converge. Barro (1991) tests this hypothesis to a cross section of 98 

countries, using average rates of the period 1960-1985. Barro (1991) finds out some 

empirical regularities about growth, fertility, and investment. Following this study, in 

addition to the initial level of income, we introduce two agriculture-related indicators as 

explanatory variables of per capita output growth rates. Our purpose is to find out if a 

shrinking agricultural sector is a pre-condition for economic growth and for fast labor 

productivity in agriculture itself.  

Table 26 reports information about a linear regression by ordinary least squares in 

which the dependent variable is the rate of output per worker growth for the overall 

economy.  
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Table 26 - Regressions on Output per Worker Growth Rates for the Economy 

 Unstandardized Coefficients
Standardized 
Coefficients T Sig. 

  B Std. Error Beta     
(Constant) 1,421 ,747  1,904 ,064
Starting weight of 
agric. in employment  -1,631 ,885 -,547 -1,842 ,073

Variation of agricultural 
weight in employment -3,789 1,819 -,350 -2,083 ,044

Starting output per 
worker in the economy -5,21E-005 ,000 -,501 -1,536 ,133

Stepwise method: 

 Unstandardized Coefficients
Standardized 
Coefficients T Sig. 

  B Std. Error Beta     
(Constant) ,200 ,179  1,116 ,271
Variation of agricultural 
weight in employment -4,771 1,520 -,440 -3,140 ,003

 

As the stepwise method reveals, the only significant independent variable at 5% is the 

variation of agricultural weight in employment. Nevertheless, estimates suggest that, 

ceteris paribus, output growth rates are higher in countries: 

• with a smaller agricultural sector at the beginning of the period; 

• in which the agricultural sector has a higher shrinkage.    

 

This evidence apparently indicates that agriculture has a negative role in economic 

growth, since the reduction of agriculture weight appears to be a condition for 

development. The same result is obtained in table 27 for output per worker growth in 

agriculture, with all variables being significant at 5%.  
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Table 27 - Regressions on Output per Worker Growth Rates for Agriculture 

  Unstandardized Coefficients
Standardized 
Coefficients t Sig. 

  B Std. Error Beta     
(Constant) 

1,821 ,326  5,594 ,000

Starting weight of agric 
in emp 1974 -2,874 ,491 -,828 -5,854 ,000

Variation of agricultural 
weight in employment -3,770 1,623 -,299 -2,323 ,026

Starting output per 
worker in agriculture -4,08E-007 ,000 -,349 -2,245 ,031

 

We have found previously that only developed countries do not experience reductions 

in factor accumulation. Therefore, it could be interesting to check if the negative role of 

agriculture holds for total factor productivity growth rates. In table 28, it is possible to 

find that only the variation of agricultural weight in employment, is significant, but it is 

important to notice that the signs of the estimates related to agriculture have changed.  

 

Table 28 - Regressions on TFP Growth Rates for the Economy 

  
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

  B Std. Error Beta     
(Constant) ,028 ,242  ,116 ,908
Starting weight of 
agriculture in 
employment  

,423 ,286 ,448 1,477 ,148

Variation of agricultural 
weight in employment ,404 ,588 ,118 ,686 ,497

Starting output per 
worker in the economy -1,76E-006 ,000 -,053 -,160 ,874

Stepwise method: 

 
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

  B Std. Error Beta     
(Constant) -,032 ,059  -,538 ,593
Variation of agricultural 
weight in employment ,435 ,131 ,461 3,330 ,002

 

This evidence indicates that, ceteris paribus, a country with a large and non-declining 

agricultural sector tends to exhibit stronger TFP rates. Therefore, the reason for the 
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negative role of agriculture to growth in developing countries seems to be the large 

negative rates of the factor accumulation effect occurring in the agricultural sector, 

probably due to the market distortions introduced by agricultural policies of the 

developed nations. If this disinvestment did not occur, since TFP growth rates in 

agriculture are stronger for developing nations and higher than the ones presented for 

the economy, agriculture could be the growth engine for developing countries, inducing 

rises in TFP growth rates for the overall economy and, as a result, in output per labor 

growth rates.    
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6 - A Penalized Spline Approach for the Decomposition of Labor Productivity 

Growth 

 

6.1 - Introduction 

Panel data refers to data where cross-section units are observed over several periods 

of time. The main difference between panel data analysis and cross-sectional or 

time-series analysis is that it allows for the cross-sectional and time heterogeneity. It 

is possible to understand population heterogeneity and disaggregate changes over 

time within individuals from cohort effects, frequently mistaken with changes 

occurring within subject determinants. On the other hand, dealing with these 

dynamical relationships introduced by time-varying covariates adds complexity to 

the statistical model.  

The most general approaches for analysis of longitudinal data are the linear mixed 

models built on the work of Laird and Ware (1982). The linear mixed models are an 

extension of linear models for which covariance structure is based on random effects 

and their covariance parameters. As pointed out by Wand (2005, p. 1), this general 

approach is developed through vigorous research both on analytic results and 

computational methods. Laird and Ware (1982) define each cross-section unit as a 

linear sum of a time-dependent population mean (modeled as a fixed effect) and a 

subject-specific component (modeled as a polynomial with random effects). This 

approach is quite robust to missing data and irregular spaced measurements, since it 

is a full-likelihood method making full use of all available information on each 

cross-section unit. It provides a very flexible framework that can be applied to both 

continuous and discrete dependent variables. Nevertheless, the model presented by 

Laird and Ware (1982) imposes a linear relationship between the covariates and the 

dependent variable.  

Generalizations of Laird and Ware (1982)´s approach to nonparametric and 

semiparametric frameworks were developed: penalized splines (e.g., O´Sullivan, 

1986); smoothing splines (e.g., Eubank, 1988; Wahba, 1990; Green and Silverman, 

1994); regression splines (e.g., Hastie and Tibshirani, 1990; Friedman, 1991); kernel 
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methods (e.g., Härdle, 1990; Zeger and Diggle, 1994; Wand and Jones, 1995; Fan 

and Gijbels, 1996). These early studies use several kinds of smoothers to estimate 

the mean population curve but random effects are modeled by parametric functions. 

Zhang et al. (1998) extend this work by accounting for the within-subject 

correlation using a Gaussian process, though they do not consider smooth curves for 

individual subjects. Brumback and Rice (1998) prove the equivalence between 

smoothing splines and mixed model representations with fixed subject-specific 

effects. However, they run into computational problems because they assume fixed 

slopes and intercepts for the subject-specific curves. Verbyla et al. (1999) generalize 

the equivalence proof to the case where mix models include individual random 

effects. Using the results of Verbyla et al. (1999), Rice and Wu (2001) model 

individual curves as spline functions with random coefficients where model-fitting 

and inferences are based on standard parametric methods operationally. Guo (2002) 

introduces a functional mixed effects model using smoothing splines. This model 

faces computational problems, since it uses as many knots as data points.  

Spline regression models are too dependent on the number and position of the knots 

while smoothing spline models are too computationally intensive with large data 

sets. Smoothing spline models take all of the distinct time points as knots, 

overcoming the dependence of spline regression models on the location and number 

of knots, and use a roughness penalty to control the smoothness of the resulting 

smoothers. Yet, the model may not be estimated when the number of distinct time 

points is too large. Penalized spline models combine a penalty approach, introduced 

by Eilers and Marx (1996), with a low-rank smoother presented by Rice and Wu 

(2001). The penalty approach alleviates the dependence on the number and location 

of the knots and the low-rank smoother solves computational problems. More recent 

penalized spline models combine spline regression with smoothing spline (e.g., 

Ruppert et al., 2003). 

In this chapter, we estimate production and inefficiency functions using the 

penalized splines (P-splines) approach of Ruppert et al. (2003). It is possible to find 

in the literature some spline models used to estimate production and cost functions 

(e.g., Humphrey and Vale, 2004; Fox, 1998; Carbo Valverde and Humphrey, 2004; 
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Peeters and Surry, 2000; Fox and Grafton, 2000). In the particular case of P-splines, 

applications in economics are more scarce (e.g., Tanggaard, 1997; Huang and 

Nychka 2000). Our framework will bring all the advantages of the most recent 

approach for analysis of longitudinal data to the efficiency and productivity field of 

research. Recent international productivity growth studies combine stochastic 

models with parametric production functions (e.g., Martin and Mitra, 2001) and 

more flexible specifications with deterministic approaches (e.g., Kumar and Russell, 

2002).  

We specify a semiparametric and stochastic panel data model using both the 

frequentist (or classical) and Bayesian approaches. The classical approach uses a 

restricted maximum likelihood (REML) method; the Bayesian approach employs a 

Markov Chain Monte Carlo (MCMC) algorithm. The MCMC algorithm does not 

rely on normality or asymptotic assumptions allowing to overcome problems when 

the sample size is small. The model specifications in both approaches are similar 

with one important exception: all parameters are random in the Bayesian approach, 

while some of the spline components are fixed in the classical approach. Other 

stochastic frontier models with random coefficients can be found in Tsionas 

(2002)21.  

Proceeding in the same way as in the previous chapter, the stochastic 

semiparametric models are estimated separately for the time periods 1967-1979 and 

1980-1992.  

This chapter is organized as follows. In section 2, we present the general 

semiparametric penalized spline model. In section 3 and 4, this model is completely 

specified for a frequentist and Bayesian approach, respectively, within univariate 

and multivariate cases. In section 5, we extend these models by considering the 

division of countries into 2 classes presented in chapter 5.  

                                                 
21 Please refer to chapter 3 for a comprehensive survey on panel data production frontier methods, 
including other semiparametric and nonparametric frameworks. 
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6.2 - A Penalized Spline Model 

We propose a semiparametric production frontier model in the following way: 

 
*( )it it ity m x ε= +           i = 1,...,N ; t = 1,...,T, (6.1) 

where: 

‘i’ indexes countries and ‘t’ indexes time periods; yit  is the log of the production 

level per worker in year t for the i-th country; xit  is a  q × 1 vector of the log of 

inputs per worker in year t for the i-th country; *(.)m is an unknown world 

production frontier; itε  is the error term.  

The error term itε  can be decomposed into statistical noise and inefficiency, 

resulting in the following frontier model: 

                          * *( ) ( )it it it i ity m x v u x= + + , *(.) 0iu ≤ , (6.2) 

where: 

*(.)iu  is the technical inefficiency component function representing deviations of 

each country’s frontier from the world production frontier and itv  is the error term 

specified as ( )2~ 0,it vv N δ .  

 

6.2.1 - The Frequentist Approach 

For clarity of exposition, we treat separately the univariate and multivariate cases.   

a) Univariate Smoothing 

Given that itx  is the log of capital per worker, the penalized linear spline model for 

*(.)m  in (6.1) is: 
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  ( )*
1

1

( )
K

it it k it k
k

m x x w xβ κ
+

=

= + −∑ , (6.3) 

where:  

)(*
itxm is a piecewise linear function with K number of knots 1 2, ,..., Kκ κ κ , kw  is 

the kth knot coefficient, 2(0, )k ww N δ� , ( )it kx κ +−  is the linear spline basis function 

defined as 
,

( )
0 .

it k it k
it k

it k

x if x
x

if x
κ κ

κ
κ+

− >⎧
− = ⎨ ≤⎩

. 

The linear regression spline in (6.3) has two components: a fixed and linear 

component and a random deviation from linearity, using truncated lines as the basis 

for regression. The technical efficiency component in (6.2) is specified as: 

  ( )*
1

1

( )
K

i it i it ik it k
k

u x x u xα κ
+

=

= + −∑ , (6.4) 

where:  

2
1 (0, )i N αα δ−� and 2(0, )ik uu N δ−�  with (.)N − denoting the half-normal distribution 

function22.  

Compared to *( )itm x , *( )i itu x  has also two components, one linear and the other 

non-linear, yet both of them are random. This specification is innovative in the 

literature, allowing for subject-specific differences to be more than a random 

intercept.  

Substituting (6.3) and (6.4) in (6.1), the resulting model can be written as: 

               ( ) ( )1 1
1 1

K K

it it k it k i it ik it k it
k k

y x w x x u x vβ κ α κ
+ +

= =

= + − + + − +∑ ∑ . (6.5) 

The model in (6.5) has two advantages: it employs a semiparametric approach to the 

production frontier and uses a relatively flexible inefficiency specification. 
                                                 
22 We also tried the definition of a modal value different from zero. Nevertheless, estimation was not 
possible, due to convergence problems.  
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*( )itm x  refers to the world production function, common to all countries. After 

considering inefficiency, each country has its own subject-specific production 

frontier. One alternative was to consider, as in Schmidt and Sickles (1984), a simple 

random effect 0iU ≤ , allowing for functions to differ only in the intercept. Lee and 

Schmidt (1993) generalize the model of Schmidt and Sickles (1984) to the case of 

time-varying technical efficiency. However, this formulation imposes a temporal 

pattern that is invariant across individuals. Kumbhakar (1990) and Battese and 

Coelli (1992) use maximum likelihood models, but propose rigid specifications, 

with a time trend included to allow for time-variant inefficiency, but unable to 

distinguish a pattern of variation for each individual. The specification presented in 

this study is more flexible, treating the differences relatively to the world production 

frontier as regression splines *( )i itu x  with all parameters being random. Inefficiency 

of each country is time variant in the sense that it depends on the level of inputs 

used, a dimension variable to the problem. The model of Battese and Coelli (1995) 

allows the use of panel data to estimate time variant inefficiency. It consists in the 

simultaneous estimation of the frontier production function with the variables which 

may influence the efficiency of a country’s production function. In our model, 

contrary to the approach of Battese and Coelli (1995), it is not necessary to choose 

variables that affect efficiency, avoiding probable identification problems.  

Using matrix notation, the model in (6.5) can be written as: 

                                              Y X Z vβ ω= + + ,  (6.6) 

where: 

1 1

. .

. ; . ;

. .
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N iT

Y y

Y Y

Y y
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⎢ ⎥ ⎢ ⎥
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⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1

N

X
X

X

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M ; 
1i

i

iT

x
X

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M ;  
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.  

Z is a matrix of dimension ( )NT K N NK× + + , ω  with dimension ( ) 1K N NK+ + ×  

and G a symmetric matrix of dimension ( ) ( )K N NK K N NK+ + × + + . For given 

values of the covariance components, the estimates of ( ),β ω  can be obtained by 

minimizing the penalized least squares function: 

           ( ) ( )
2 2

, 1 22 2min T T Tv v

w u

Y X Z Y X Z P Pβ ω
δ δβ ω β ω ω ω ω ω
δ δ

− − − − + + , (6.7)  

where:  

( )

( ) ( ) ( )

K N+NK

1
N+NK K N+NK N+NK

0
;

0 0
KI

P
×

× ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

( ) ( ) ( )

( )

K+N K+N K+N NK

2
NKNK K+N

0 0
;

0
P

I
× ×

×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

r s0 ×  is a ( )r s×  matrix of zeros.  

 

As in Durbán et al. (2005), 
2

2
v

w

δ
δ  and 

2

2
v

u

δ
δ

 are smoothing parameters, controlling the 

amount of smoothing of the production frontier. 1P  and 2P  are designed in a way to 

penalize the coefficients of the spline basis functions ( )it kx κ
+

− . 

 

Dividing (6.7) by the error variance 2
vδ : 

        ( ) ( ), 1 22 2 2

1 1 1min T T T

v w u

Y X Z Y X Z P Pβ ω β ω β ω ω ω ω ω
δ δ δ

− − − − + + . (6.8) 
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If we assume that ω  is a matrix of random coefficients independent relatively tov , 

i.e., with ( ) 0ωΕ =  and ( )Cov Gω = , then solution of (6.8) is equivalent to the 

BLUP in the linear mixed model representation (Laird and Ware, 1982 and 

Brumback et al., 1999) of a penalized spline. This is a major empirical step since it 

reveals a correspondence between the penalized spline smoother and the optimal 

predictor in a mixed model. This fact allows taking advantage of the methodology 

and software existent for mixed model analysis, and makes possible a simple 

implementation of otherwise complicated models.  More specifically, the smoothing 

or penalty parameters are playing the role of a ratio of variances in the mixed model 

which suggests the application of maximum likelihood methodology for estimation 

(Kauermann, 2004) such as maximum likelihood estimation and restricted 

maximum likelihood estimation (REML). Both have the same merits of being based 

on the likelihood principle which leads to useful properties such as consistency, 

asymptotic normality, and efficiency. As pointed out by Verbeke and Molenberghs 

(2000, p. 46), the main advantage of the REML approach has been given by 

Patterson and Thompson (1971): in the absence of information on β, inference can 

be based only on a set of error contrasts rather than on the vector of dependent 

variables. The REML estimates for the variance components are identical to 

classical ANOVA-type estimates obtained from solving within a balanced panel 

data model the equations which set mean squares equal to their expectations.  

Furthermore, REML estimates do not rely on any normality assumption, only on 

moment assumptions. In short, with this approach, optimal minimum variance 

properties are attained.  

Covariance components are obtained with REML of Patterson and Thompson 

(1971) by maximization of the logarithm of the likelihood function: 

  ( ) 11 1 1 1 11 1 1log log log
2 2 2

T T T T
RL V X V X Y V V X X V X X V Y

−− − − − −⎡ ⎤= − − −⎢ ⎥⎣ ⎦
,  (6.9) 

where:  

V  is a ( )NT NT×  matrix with 
2T
v NTV ZGZ Iδ= +    (6.10)  
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The REML covariance components can be estimated with the software functions 

successfully tested such as PROC MIXED (Littell et al., 1996) in SAS (SAS 

Institute Inc, 2004) or lme(.) (Pinheiro and Bates, 2000) in S-PLUS (Insightful 

Corporation, 2003).    

After minimizing the penalized least squares function, the BLUP of ( ),β ω  can be 

written as: 

                                        

�

�

( )
�( )

11 1

1

ˆ ˆ

ˆ ˆ

T T

T

X V X X V Y

GZ V Y X

β

ω β

−
− −

−

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥⎣ ⎦

.  (6.11) 

There remains an unsolved question: how to determine the number and the value of 

the knots to be used in the model? The number of knots (K) should be large enough 

to ensure flexibility over the linear regression methods but smaller than the number 

of observations to obtain smoothness. The choice of K is discussed in Berry et al. 

(2002) and Ruppert (2002). For P-splines, it is argued that the exact value of K has 

little effect on the estimator, provided that K is at least a certain minimum value, 

because the amount of smoothing is determined not by K but rather by the penalty 

parameter. Nevertheless, as Ruppert et al. (2003, p. 177) point out, automatic 

smoothing methods like REML are somewhat erratic when we change the number 

of knots used. The amount of smoothing depends on the effective degrees of 

freedom, which varies with the degree of the spline and with the number of knots. 

Therefore, it must be used the full-search algorithm presented by Ruppert (2002) for 

K=10, K=20, K=30, K=40, K=50. The idea is to evaluate REML estimation results 

with different number of knots. After the application of this method, we decide to 

use a number of knots equal to 50 for m*(.) and for the technical efficiency 

component. 

After determining K, the knot of order k is chosen in the univariate case as the 

sample quantile of the independent variable with probability ( )1
k

K + . 
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b) Multivariate Smoothing 

When itx  is a vector of the log of q inputs per worker (q>1), the estimation of 

splines becomes a more difficult task, more specifically the determination of the 

knots and the basis functions to smooth the world production frontier and 

inefficiency. The method for determining the number of the knots is the same, but 

now the method presented by Ruppert (2002) implies the choice of K=50 for m*(.) 

and K=10 for the technical efficiency component. Furthermore, the choice of their 

value is more challenging, since it requires the use of an efficient space filling 

algorithm such as the one defined by Nychka and Saltzman (1998) and available on 

the S-PLUS (Insightful Corporation, 2003) and R (R Development Core Team,  

2005) modules FUNFITS (Nychka et al., 1998) and FIELDS (Fields Development 

Team, 2004), respectively.  

The purpose of the algorithm is to determine a subset of design points from a larger 

set of candidate points which not only serve as possible design points but determine 

the coverage criterion. A very intuitive example can be found in the FIELDS 

manual: 

Suppose that you are charged with locating a fixed number of convenience stores in 

a city. Given a particular set of store locations each resident will have a store that is 

closest to their home. Out of all the residents, find the one who is farthest to their 

nearest store. This is the maximum over the nearest neighbor distances. A good 

design for the stores makes this criterion as small as possible. In words, one seeks to 

minimize the distance the residents must travel to their closest convenience store.  

Fields Development Team (2004) 

This example describes the concept of the minimax distance design. With the 

purpose of formalizing this concept, we consider the set of all candidate points Φ  at 

which an experiment may be run and a distance function d defined on ΦxΦ.  A 

finite number of sites, |Φ| will be assumed, where |Φ| denotes the cardinality of Φ. 

The distance function, d, satisfies the usual properties in order to define (Φ,d) as a 

metric space. Therefore, the distance between a point φ ∈  Φ and a non-empty 
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subset, S ⊂  Φ , can be defined as d(φ,S) = mins∈S d(φ,s). The minimax distance 

space-filling criterion chooses a subset of Φ so that the farthest points from the 

subset are made as close as possible to the subset:  

( ){ }* min max , |  ,d d S S S Kφ φ∈Φ= ⊂ Φ =   

where:  

K is fixed with 1 ≤  K < |Φ|. S* ⊂  Φ is defined to be a minimax distance design of 

size K provided ( )* *max ,d S dφ φ∈Φ =  and |S*| = K.  

We use a swapping algorithm to solve this minimization problem, in the sense that 

for each design point, one checks whether a swap with a candidate point will yield a 

smaller coverage criterion. If this is the case, the substitution is made: the new point 

is adopted as part of the design and the old design point is moved into the candidate 

set. This process continues until no more productive swaps can be made or the 

number of iterations is exceeded.  

For illustrative purposes, Figure 10 shows the knots chosen by applying the 

algorithm to the first panel for the agricultural sector with two inputs. Dots in blue 

represent all the candidate points. The circled red dots correspond to the 50 knots 

chosen for m*(.) by the minimax distance space-filling criterion. 
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Figure 10 - Application of the Swapping Algorithm 

x1

x2 

 

Regarding the construction of the multivariate basis functions, as pointed out by 

Wand (2003, p. 234), penalized spline regression can be performed in at least two 

ways: taking products of one-dimensional splines or using radial basis functions. We 

avoid the tensor product method for three reasons: dependence on the coordinate 

axes; improper for the estimation of nonlinear models; convergence problems due to 

the introduction of product terms between all covariates to both linear and truncated 

terms of the splines.  

In this study, we employ radial basis functions to avoid the problems underlying the 

tensor product method. First, rotational invariance can be achieved through the 

utilization of radial functions. Second, as reported by Simpson et al. (2001), there is 

always a drawback when applying polynomial response surfaces to highly nonlinear 

or irregular models. On the other hand, radial basis function approximations have 

produced robust fits to arbitrary contours of both deterministic and stochastic 

response functions (Powell, 1987). Last, but not least, the addition of product terms 
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between all covariates brings some empirical problems to the inference23. As 

pointed out by Wood (2006), all proposals for tensor product smoothing with a 

single penalty are unsatisfactory since they do not assure both smoothness range and 

scale invariance.    

We decide to use the thin plate spline family of smoothers, which combines kriging 

with radial basis functions. Assuming ( )1 ,..., q q
it it itx x x= ∈�  and q

kκ ∈� , the 

penalized linear spline model for *(.)m  in (6.1) is: 

       ( ) ( )
1

2* 1
1 '

1

( ) ...
K

q
it it q it k it k k k

k

m x x x w xβ β ς κ ς κ κ
−

=

⎡ ⎤ ⎡ ⎤= + + + − −⎣ ⎦ ⎣ ⎦∑ , (6.12) 

where:  

)(*
itxm is a piecewise linear function with K number of knots 1 2, ,..., Kκ κ κ ; kw  is 

the kth knot coefficient, 2(0, )k ww N δ� ; ( ).ς  is the radial basis function, defined as: 

( )
2

2

q odd
q evenlog

h q

h q

r
r

r r
ς

−

−

⎧ ⇐⎪= ⎨ ⇐⎪⎩
,  (6.13) 

where h is an integer satisfying 2 0h q− >  that controls the smoothness of ( ).ς . 

Similarly, the technical efficiency component in (6.2) can be specified as: 

        ( ) ( )
1

2* 1
1 '

1

( ) ...
K

q
i it i it iq it ik it k k k

k

u x x x u xα α ς κ ς κ κ
−

=

⎡ ⎤ ⎡ ⎤= + + + − −⎣ ⎦ ⎣ ⎦∑ , (6.14) 

where:  

1

2 2
1 (0, ),..., (0, )

qi iqN Nα αα δ α δ− −� � ; 2(0, )ik uu N δ−� . 

The linear Gaussian mixed model can be defined as: 

                                              RY X Z vβ ω= + + ,  (6.15) 

                                                 
23 We try to estimate our model with the tensor product method and convergence was not reached. 
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where: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

iT

i

i

N y

y

Y

Y

Y

Y
.
.
.

,
.
.
.

11

; 

1
1 1

1

q
i i

i
q

iT iT

x x
X

x x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

L

M O M

L

; 1

T

qβ β β⎡ ⎤= ⎣ ⎦K ;  

1 1 1

2 2 2

0 0 0 0
0 0 0 0

0 0 0 0

R

N N N

Z X Z
Z X Z

Z

Z X Z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L L

L L

M M M O M M M O M

L L

; 

( ) ( )

( ) ( )

1 1 1
1

2

1

i i K

i

iT iT K

x x

Z
x x

ς κ ς κ

ς κ ς κ

−

⎡ ⎤− −
⎢ ⎥

= Ω⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

L

M O M �

L
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( ) ( )
( ) ( )

( ) ( )

1 2 1

2 1 2

1 2

1

1
;

1

K

K

K K

ς κ κ ς κ κ

ς κ κ ς κ κ

ς κ κ ς κ κ

⎡ ⎤− −
⎢ ⎥

− −⎢ ⎥Ω = ⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

L

L

M M O M

L

 

[ ]TNN uuw ...... 11 ααω = ; [ ]1 ... Kw w w= ; 1 ...i i iqα α α⎡ ⎤= ⎣ ⎦ ;

[ ]1 ...i i iKu u u= ; 
11

NT

v
v

v

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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M ; 

( )
1

2

2

2

2

0 0 0
0 0 0

0 0 0

0 0 0
q

w K

N

N

u NK

I
I

Cov G
I

I

α

α

δ
δ

ω
δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M O M M

L

L

.  



 119

Now, X is a matrix of dimension NT q× ,β  is a 1q×  vector; Z  is a matrix of 

dimension ( )NT K Nq NK× + + ;ω  is a ( ) 1K Nq NK+ + ×  matrix and G a symmetric 

matrix of dimension ( ) ( )K Nq NK K Nq NK+ + × + +   

The use of 
1

2−Ω  in the definition of RZ  is one of the possible ways to assure that 

( )Cov ω is a positive definite covariance matrix, allowing the estimation by standard 

mixed effects methods. This formulation might seem arbitrary and with no 

justification other than its symmetry, but it can be shown that it corresponds to the 

thin plate spline family of smoothers presented in Green and Silverman (1994) with 

parameter h controlling smoothness. For more details, please refer to Wood (2003, 

2006) and Ruppert et al. (2003, pp. 248-254).  

The resulting penalized least squares function can be expressed by: 

( ) ( )
2 2

, 1 22 2min T T Tv v
R R

w u

Y X Z Y X Z P Pβ ω
δ δβ ω β ω ω ω ω ω
δ δ

− − − − + +  , 

where:  

( )

( ) ( ) ( )

K Nq+NK

1
Nq+NK K Nq+NK Nq+NK

0
;

0 0
KI

P
×

× ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

( ) ( ) ( )

( )

K+Nq K+Nq K+Nq NK

2
NKNK K+Nq

0 0
;

0
P

I
× ×

×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦  

r s0 ×  is a ( )r s×  matrix of zeros; 1P  and 2P  are designed in a way to penalize the 

coefficients of the radial basis functions. 

As in (6.9), covariance components are obtained with REML of Patterson and 

Thompson (1971) by maximization of the logarithm of the likelihood function: 

( ) 11 1 1 1 11 1 1log log log
2 2 2

T T T T
R R R R R R RL V X V X Y V V X X V X X V Y

−− − − − −⎡ ⎤= − − −⎢ ⎥⎣ ⎦  (6.16)  

where:  

2 .T
R R R v NTV Z GZ Iδ= +  
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The resulting BLUP estimates of ( ),β ω  can be written as: 

�

�

( )
�( )

11 1

1

ˆ ˆ
.

ˆ ˆ

T T
R R

T
R R

X V X X V Y

GZ V Y X

β

ω β

−
− −

−

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥⎣ ⎦

  

Summarizing, all parameters in the multivariate case can be estimated by carrying 

out the following steps: 

(1) Determine the number of knots using ( ){ }K  max 10,min 50, .4
NTround⎡ ⎤= ⎣ ⎦  

(2) Knots are obtained with the application of an efficient space filling algorithm 

such as the one defined by Nychka and Saltzman (1998) and available on the S 

and R modules FUNFITS (Nychka et al., 1998) and FIELDS (Fields Development 

Team, 2004). 

(3) Form the matrices Ω  and .RZ  Since for agricultural sector, q=2:  

2 2 2 2
1 2 1 2 1 1

2 2 2 2
2 1 2 1 2 2

2 2 2 2
1 1 2 2

1 log log

log 1 log ;

log log 1

h h
K K

h h
K K

h h
K K K K

κ κ κ κ κ κ κ κ

κ κ κ κ κ κ κ κ

κ κ κ κ κ κ κ κ

− −

− −

− −

⎡ ⎤− − − −
⎢ ⎥
⎢ ⎥− − − −

Ω = ⎢ ⎥
⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

L

L

M M O M

L

 

1 1 1

2 2 2

0 0 0 0
0 0 0 0

0 0 0 0

R

N N N

Z X Z
Z X Z

Z

Z X Z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L L

L L

M M M O M M M O M

L L

; 

2 2 2 2
1 1 1 1 1 1

1
2

2 2 2 2
1 1

log log

log log

h h
i i i K i K

i
h h

iT iT iT K iT K

x x x x
Z

x x x x

κ κ κ κ

κ κ κ κ

− −

−

− −

⎡ ⎤− − − −
⎢ ⎥

= Ω⎢ ⎥
⎢ ⎥

− − − −⎢ ⎥⎣ ⎦

L

M O M �

L

. 

(4) Use mixed model computer functions such as PROC MIXED (Littell et al., 

1996) in SAS (SAS Institute Inc, 2004) or lme(.) (Pinheiro and Bates, 2000) in S-
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PLUS (Insightful Corporation, 2003)  to fit the mixed model RY X Z vβ ω= + + , 

in which covariance components are chosen via REML. 

(5) The resulting BLUP estimates 
�

�

β

ω

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

can be used to compute ˆˆ ˆRY X Zβ ω= +  . 

 

6.2.2 - The Bayesian Approach 

a) Introduction 

Advances in machine learning and data mining changed the focus of applied 

statistics from choosing simple tractable frameworks to building computationally 

demanding models that are expected to present a better fit to the data. One example 

is the combination of the MCMC algorithm with Bayesian analysis for models that 

were previously intractable. This technique produces a correlated sample from the 

joint posterior distribution of parameters given the data, allowing statistical 

inference about all parameters. For clarity of exposition, we will present some 

introductory concepts, according to some classical textbook references (Gilks et al., 

1996; Tanner, 1996; Gamerman, 1997). 

A stochastic process is a procedure by which a system moves through a series of 

well-defined states in a way that exhibits some element of randomness. The set of 

distinct values assumed by a stochastic process is called the state space.  The state 

space may have countably many or uncountably many members.  In the first case, 

we have a discrete parameter stochastic process, also designated as chain; otherwise, 

it is a continuous parameter stochastic process. 

A discrete parameter stochastic process is a Markov process if it has no memory; 

i.e., the probability that the system moves into a particular state depends only upon 

the state it is currently in, and not on the history of the past visitations of states. 

Therefore, a Markov process can be fully specified via a set of transition 

probabilities that describe the likelihood with which the system moves into a state 

given the current state. The Metropolis-Hastings algorithm is a class of Markov 
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chain which new states are selected according to any convenient transition 

probability matrix. Each state is accepted with a probability that ensures that the 

overall transition probability is consistent with the desired limiting distribution.   

The Gibbs sampler (introduced in the context of image processing by Geman and 

Geman, 1984) is a special case of Metropolis-Hastings sampling wherein the 

random value is always accepted. The task remains how to construct a Markov 

Chain whose values converge to the target distribution. The key to the Gibbs 

sampler is that only conditional distributions are considered, i.e., distributions where 

all random variables, but one, are assigned fixed values. Such conditional 

distributions are far easier to simulate than complex joint distributions and usually 

have common prior distributions. Thus, one simulates n random variables 

sequentially from the n univariate conditionals rather than generating a single n-

dimensional vector in a single step using the full joint distribution. Repeating this 

process k times, generates a Gibbs sequence of length k, where a subset of points are 

taken as our simulated draws from the full joint distribution. To obtain the desired 

total of m sample points, the chain is sampled after a sufficient burn-in period to 

remove the effects of the initial sampling values and at every n samples following 

the burn-in. The Gibbs sequence converges to a stationary distribution that is 

independent of the starting values, and by construction this stationary distribution is 

the target distribution we are trying to simulate (Tierney 1994). 

We can conclude that, given a model and a sample, MCMC produces a correlated 

sample from a sequence of distributions having as stationary distribution the joint 

posterior distribution of the parameters. Using this correlated sample the entire 

posterior density of one parameter given the data is estimated. In some models, 

maximum likelihood produces biased estimates or faces convergence difficulties. 

MCMC overcomes these problems. 

b) Bayesian P-splines Using WINBUGS: Univariate Smoothing 

Please recall the general mixed model presentation in (6.6) for the univariate case: 
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,Y X Z vβ ω= + +              ( )

2

2

2

0 0
0 0
0 0

w K

N

u NK

I
Cov G I

I
α

δ
ω δ

δ

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

.  

In a Bayesian model, all parameters are random and prior distributions must be 

assigned in order to simulate the posterior distribution of them. The parameter 

vector of the linear Gaussian mixed model includes ( ),β ω  and the covariance 

components. The prior on ω  is intrinsically specified by the model as a normally 

distributed function with ( ) 0ωΕ =  and ( )Cov Gω = . Regarding β , the usual 

choice for a proper prior is a normal distribution with an extremely large standard 

deviation that may cover a very wide range. For example if we take 

(0,1000000)Nβ � , then we are allowing a 95% prior credible interval between -

2000 and +2000.   

Priors for the standard deviation parameters are a bit more difficult.  Either we can 

set a flat prior for the variance, over a fixed range which gives a Pareto prior for the 

precision or we can use a member of the Gamma family for the precision, which is 

the conjugate prior for this problem. For more details, please refer to Gelman and 

Rubin (1992) and Carlin (1992). We assume that the prior distribution for each 

covariance parameter is the inverse gamma: 

 
( ) ( ) ( ) ( )2 2 2 2, ; , ; , ; ,v v v w w w u u uIG A B IG A B IG A B IG A Bα α αδ δ δ δ� � � �  .   

Regarding the conditional posterior of ( ),β ω  given all variance components of G 

and the error variance 2
vδ , also known as complete conditional, Berry et al. (2002) 

and Ruppert et al. (2003) prove that: 

        
( ) ( )1 12 2 2 2 2 2 2, , , , , , ,T T T

v w u v v vY N C C F C Y C C Fαβ ω δ δ δ δ δ δ δ
− −⎡ ⎤⎡ ⎤ + +⎣ ⎦ ⎢ ⎥⎣ ⎦

�  (6.17) 

where:  

( ) is a 1C NT K N NK× + + +⎡ ⎤⎣ ⎦  matrix defined as [ ],C X Z=   
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( )

( )

1x1 1x K+N+NK

1
K+N+NK x1

0 0
,

0
F

G−

⎡ ⎤
= ⎢ ⎥
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( )

2

2

2

0 0
0 0
0 0

w K

N

u NK

I
Cov I

I
α

δ
ω δ

δ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.  

Berry et al. (2002, p. 164) and Ruppert et al. (2003, p. 281) calculate the conditional 

posterior of each variance component given all other data: 

( )2 22
10.5 , 0.5 0.5 .w w w KIG A K B w wδ + + + +� L         (6.18) 

( )2 22
11 10.5 , 0.5 0.5 .NIG A N Bα α αδ α α+ + + +� L   (6.19) 

( )2 22
110.5 , 0.5 0.5 .u u u NKIG A NK B u uδ + + + +� L   (6.20) 

( )22 0.5 , 0.5 ,v v vIG A NT B Y X Zδ β ω+ + − −�   (6.21) 

where x refers to the Euclidean norm of a vector and îx
 
to the absolute value of 

the i-element of the vector. 

As pointed out by Ruppert et al. (2003, p. 281), as part of the MCMC chain, ),( ωβ  

are generated from the current values of the variance components according to the 

multivariate normal distribution defined in (6.17). It is possible to iterate the MCMC 

between sampling the regression coefficients given all variance components and 

vice-versa (all conditional on the data, Y). The MCMC chain needs a starting value 

for all variance parameters. Since given ( ),β ω , each variance component is 

independent from the others, the starting point is indifferent for the algorithm 

results. Following Ruppert et al. (2003, p. 280) and Carroll et al. (2006, p. 305), we 

set up both parameters of the inverse gamma distributions in (6.18)-(6.21) close to 

zero (0.001), in order to obtain a non-informative, but proper, prior. We define large 

starting values for the variance components ( )2 2 2 2 100v w uαδ δ δ δ= = = = , although a 
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specific choice of starting values is not important, since the chain converges quickly 

to the stationary distribution and the burn-in period discards the beginning of the 

chain. Convergence to the posterior distributions is assessed by using several initial 

values (including the model parameters for the frequentist version presented in the 

last section) and visually inspecting several chains corresponding to the model 

parameters.  

The model is estimated with the software WINBUGS (Spiegelhalter et al., 2003). 

We discard the first 30000 burn-in simulations. For inference we use 50000 

simulations and we monitor all parameters of the model. For each one, we report the 

95% equal tail probability credible interval and the posterior mean and median. 

Since the parameters of the spline tend to be weakly identified with poor mixing 

properties, we use the posterior mean (which tends to be well identified and with 

good asymptotical properties) as the point estimator. Furthermore, Pérez and 

Quintana (2003) show that adaptive Bayesian estimators are rarely unbiased and that 

using the posterior mean as a point estimator also yields better estimates than using 

the posterior median or mode. 

The chain can be summarized in the following way: 

(1) Define 2 2 2 2 100v w uαδ δ δ δ= = = =
 

and 

0,001.v v w w u uA B A B A B A Bα α= = = = = = = =
 
 

(2) Sample ( ),β ω  from the multivariate normal distribution  

( ) ( )1 12 2 2, .T T T
v v vN C C F C Y C C Fδ δ δ

− −⎡ ⎤+ +⎢ ⎥⎣ ⎦
 

(3) Sample 2
wδ  from ( )2 2

10.5 , 0.5 0.5 .w w KIG A K B w w+ + + +L

 
 

(4)  Sample 2
αδ  from ( )2 2

11 10.5 , 0.5 0.5 .NIG A N Bα α α α+ + + +L  

(5) Sample 2
uδ  from ( )2 2

110.5 , 0.5 0.5 .u u NKIG A NK B u u+ + + +L  
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(6) Sample 2
vδ  from ( )20.5 , 0.5 .v vIG A NT B Y X Zβ ω+ + − −    

(7) Return to (2) and iterate. 

c) Bayesian P-splines Using WINBUGS: Multivariate Smoothing 

Please recall the general mixed model presentation in (6.15) for the multivariate 

case, with q (>1) inputs: 

RY X Z vβ ω= + + ,    

where: 

[ ]TNN uuw ...... 11 ααω = ; [ ]1 ... Kw w w= ; 1 ...i i iqα α α⎡ ⎤= ⎣ ⎦ ; 

[ ]1 ...i i iKu u u= ; ( )
1

2

2

2

2

0 0 0
0 0 0

0 0 0

0 0 0
q

w K

N

N

u NK

I
I

Cov G
I

I

α

α

δ
δ

ω
δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M O M M

L

L

.  

RZ  is a design matrix obtained outside MCMC and entered as data collected by the 

frequentist version of the model. Compared with the univariate case, now we have 

(q-1) additional covariance parameters, with the same assumption for priors: 

( ) ( ) ( ) ( )1 1 1

2 2 2 2, ; , ; , ;...; , ;
q q qv v v w w wIG A B IG A B IG A B IG A Bα α α α α αδ δ δ δ� � � �     

( )2 , .u u uIG A Bδ �  

The conditional posterior of ),( ωβ  given all variance components of G and the 

error variance 2
vδ  is defined in a similar way as in the univariate case. This 

distribution is defined as follows: 

        
( ) ( )1 12 2 2 2 2 2 2, , , , , , ,T T T

v w u v v vY N C C F C Y C C Fαβ ω δ δ δ δ δ δ δ
− −⎡ ⎤⎡ ⎤ + +⎣ ⎦ ⎢ ⎥⎣ ⎦

�  (6.22) 



 127

where:  

( ) is a  matrix defined as ,RC NT q K Nq NK C X Z⎡ ⎤× + + + =⎡ ⎤⎣ ⎦ ⎣ ⎦   

( )

( )

x x K+Nq+NK

1
K+Nq+NK x

0 0
.

0
q q q

q

F
G−

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

   

In the same way, model is estimated with WINBUGS (Spiegelhalter et al., 2003), 

discarding the first 30000 burn-in simulations. For inference we use 50000 

simulations and the posterior mean as the point estimator, for the reason already 

described. 

The chain can be summarized in the following way: 

(1) Define 
1

2 2 2 2 2... 100
qv w uα αδ δ δ δ δ= = = = = =

 
and 

1 1
... 0,001.

q qv v w w u uA B A B A B A B A Bα α α α= = = = = = = = = = =
 
 

(2) Sample ( ),β ω  from the multivariate normal distribution 

( ) ( )1 12 2 2,T T T
v v vN C C F C Y C C Fδ δ δ

− −⎡ ⎤+ +⎢ ⎥⎣ ⎦
 

 with RC X Z⎡ ⎤= ⎣ ⎦  and 

( )

( )

x x K+Nq+NK

1
K+Nq+NK x

0 0
.

0
q q q

q

F
G−

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

    

(3) Sample 2
wδ  from ( )2 2

10.5 , 0.5 0.5 .w w KIG A K B w w+ + + +L

 
 

(4.1) Sample 
1

2
αδ  from ( )1 1

2 2
11 10.5 , 0.5 0.5 .NIG A N Bα α α α+ + + +L  

... 

(4.q) Sample 2
qα

δ  from ( )2 2

10.5 , 0.5 0.5 .
q q q NqIG A N Bα α α α+ + + +L  

(5) Sample 2
uδ  from ( )2 2

110.5 , 0.5 0.5 .u u NKIG A NK B u u+ + + +L  
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(6) Sample 2
vδ  from ( )20.5 , 0.5 .v v RIG A NT B Y X Zβ ω+ + − −    

(7) Return to (2) and iterate. 

 

6.3 - The Determinants of Labor Productivity Growth Across Countries 

We define a CRS reference technology with one aggregate output, Y, and a K-

dimensional vector of inputs, X. The CRS hypothesis allows us to transform the 

dependent variable in labor productivity, y, and the vector X into the (K-1)-

dimensional vector of inputs per worker, x.  For the economy as a whole, K=2 and 

X=(labor, capital); and for agriculture, K=3 and X=(labor, land, capital). 

Labor productivity decomposition is performed using equation (5.18) and 

counterfactual distributions by (4.1).  

As in chapter 5, each production frontier is estimated separately for the time periods 

1967-1979 and 1980-1992. 

6.3.1 - Economy as a Whole 

Splines models estimate numerous parameters. All of them have the correct signs 

and small standard errors. We detect small differences between the Classical and the 

Bayesian approach. As expected, in the latest framework, mean and mode values are 

very similar. In table 29, we illustrate these findings with estimation results for the 

fixed part of m*(.).  

 
Table 29.1 - Estimation Results for the Fixed Part of m*(.) Using a Frequentist 

Approach (Overall Economy). 
 

First Period: 1967-1979 

 Value Std.Error p-value 

ln kit 0.858 0.005 <.0001 

Second Period: 1980-1992 

 Value Std.Error p-value 

ln kit 0.855 0.005 <.0001 
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Table 29.2 - Estimation Results for the Fixed Part of m*(.) Using a MCMM 
Approach (Overall Economy). 

 
First Period: 1967-1979 

node Mean Std. Error MC error Median 

Ln kit 0.857 0.006 0.0003 0.8578 

Second Period: 1980-1992 

Node Mean Std. Error MC error Median 

ln kit 0.8495 0.007 0.0004 0.8494 

 

 Table 30 presents the decomposition of labor productivity growth for both classical 

and Bayesian approaches.  Figures 11, 12 and 13 refer to the counterfactual 

distributions of output per worker. Table 31 indicates the Li’s distribution 

hypothesis tests presented earlier. 
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Table 30.1 - Decomposition of Labor Productivity Growth for the Economy 
Using a Frequentist Approach 

Contribution to Percentage Change in Output per Worker of
Country Percentage

(by ascending order Change in Output Change in Change in Capital Stochastic
of output per worker per Worker Efficiency Technology Deepening Shocks

in the first period)
Malawi 22,55% -68,36% 248,55% -0,04% 11,17%
Kenya 15,74% -49,44% 141,75% -0,21% -5,10%
Indonesia 248,48% -9,48% 159,26% 15,53% 28,53%
India 95,07% -40,30% 149,80% -0,25% 31,12%
Madagascar -33,85% -86,81% 372,69% 2,69% 3,32%
Zimbabwe -6,22% -41,40% 81,01% -11,01% -0,66%
Pakistan 66,21% -27,57% 92,46% -9,42% 31,63%
Sri Lanka 78,95% -21,97% 88,18% 7,72% 13,14%
Korea, Republic of 422,65% 18,35% 40,31% 188,21% 9,21%
Philippines 24,41% -43,31% 94,19% -4,31% 18,11%
Egypt 92,30% -16,49% 76,33% 3,96% 25,62%
Honduras 15,56% -32,98% 71,10% -6,86% 8,21%
Turkey 107,44% -11,61% 30,73% 52,02% 18,09%
Morocco 53,10% -14,96% 40,10% 21,94% 5,38%
Tunisia 103,62% 21,85% 8,58% 25,94% 22,20%
Dominican Republic 40,71% -19,42% 40,58% 14,94% 8,07%
El Salvador 3,22% -35,20% 35,22% -1,75% 19,90%
Guatemala 23,56% -33,54% 69,16% -4,37% 14,92%
Colombia 31,98% -8,06% 34,05% 1,12% 5,89%
Portugal 160,32% 9,42% 7,41% 108,66% 6,15%
Syrian Arab Republic 126,30% -6,66% 13,15% 64,85% 29,98%
South Africa 17,02% -0,52% -4,62% 30,91% -5,79%
Greece 108,70% 14,79% -1,61% 64,62% 12,25%
Costa Rica 15,18% -3,14% 0,46% 8,64% 8,97%
Japan 167,57% 8,22% -5,65% 144,81% 7,04%
Peru -33,56% -13,25% -2,21% 0,32% -21,93%
Uruguay 30,30% 10,32% -1,17% 3,64% 15,32%
Chile 24,22% 21,40% -4,36% -9,77% 18,56%
Israel 108,47% 5,94% 3,11% 39,47% 36,83%
Argentina 19,13% -19,49% -1,73% 54,90% -2,79%
Finland 71,42% 5,45% 1,71% 40,55% 13,72%
Austria 84,33% 0,85% -2,65% 73,70% 8,09%
Italy 95,40% 4,64% 0,23% 70,31% 9,39%
United Kingdom 51,35% -7,37% 3,04% 44,25% 9,93%
Denmark 36,22% -9,78% 4,11% 39,53% 3,94%
France 63,81% 1,84% 3,41% 33,77% 16,28%
Norway 67,40% 8,92% 1,88% 45,97% 3,35%
Sweden 26,29% -2,00% 5,91% 20,42% 1,05%
Netherlands 38,77% -6,47% 4,74% 32,98% 6,51%
Australia 35,76% -2,18% 9,53% 14,78% 10,39%
New Zealand 4,80% -3,44% 5,74% -0,61% 3,26%
Canada 39,33% 4,59% 9,69% 13,94% 6,59%
USA 23,76% -4,25% 11,19% 4,12% 11,64%
Mean 64,83% -11,69% 45,01% 28,85% 11,10%  
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Table 30.2 - Decomposition of Labor Productivity Growth for the Economy 
Using a MCMC Approach 

 
Contribution to Percentage Change in Output per Worker of

Country Percentage
(by ascending order Change in Output Change in Change in Capital Stochastic
of output per worker per Worker Efficiency Technology Deepening Shocks

in the first period)
Malawi 22,55% -64,41% 213,90% -1,40% 11,25%
Kenya 15,74% -46,36% 125,91% 0,52% -4,97%
Indonesia 248,48% -8,08% 142,18% 21,70% 28,64%
India 95,07% -36,14% 132,50% 0,25% 31,06%
Madagascar -33,85% -84,30% 319,91% -2,85% 3,30%
Zimbabwe -6,22% -39,20% 76,00% -11,50% -0,98%
Pakistan 66,21% -23,97% 85,74% -10,27% 31,16%
Sri Lanka 78,95% -19,51% 82,21% 8,00% 12,97%
Korea, Republic of 422,65% 21,26% 36,03% 191,51% 8,70%
Philippines 24,41% -40,86% 87,28% -4,83% 18,01%
Egypt 92,30% -14,80% 71,95% 4,28% 25,87%
Honduras 15,56% -30,99% 67,28% -7,38% 8,08%
Turkey 107,44% -11,84% 29,19% 53,92% 18,34%
Morocco 53,10% -14,77% 38,30% 23,04% 5,56%
Tunisia 103,62% 21,86% 8,24% 26,30% 22,23%
Dominican Republic 40,71% -18,98% 38,98% 15,76% 7,94%
El Salvador 3,22% -34,47% 34,25% -1,81% 19,49%
Guatemala 23,56% -31,90% 65,59% -4,73% 15,02%
Colombia 31,98% -7,59% 33,17% 1,20% 5,97%
Portugal 160,32% 12,11% 5,73% 104,39% 7,45%
Syrian Arab Republic 126,30% -6,73% 13,06% 65,37% 29,78%
South Africa 17,02% 0,10% -4,73% 29,63% -5,34%
Greece 108,70% 17,90% -2,81% 60,89% 13,20%
Costa Rica 15,18% -3,20% 0,51% 8,65% 8,97%
Japan 167,57% 15,67% -8,39% 134,87% 7,50%
Peru -33,56% -13,36% -2,08% 0,33% -21,94%
Uruguay 30,30% 10,28% -1,17% 3,39% 15,63%
Chile 24,22% 20,75% -3,80% -9,41% 18,03%
Israel 108,47% 11,45% 0,26% 35,79% 37,40%
Argentina 19,13% -17,75% -2,83% 51,33% -1,50%
Finland 71,42% 12,24% -2,30% 38,18% 13,14%
Austria 84,33% 7,50% -5,85% 67,90% 8,47%
Italy 95,40% 11,16% -2,36% 64,76% 9,26%
United Kingdom 51,35% -2,27% 0,13% 40,64% 9,97%
Denmark 36,22% -4,51% 0,63% 36,19% 4,09%
France 63,81% 8,05% -0,92% 31,85% 16,06%
Norway 67,40% 15,68% -3,12% 43,83% 3,85%
Sweden 26,29% 3,81% 1,04% 19,09% 1,10%
Netherlands 38,77% -0,94% 0,86% 30,90% 6,10%
Australia 35,76% 3,68% 4,00% 14,29% 10,17%
New Zealand 4,80% 0,53% 1,35% -0,65% 3,52%
Canada 39,33% 10,67% 4,02% 13,40% 6,73%
USA 23,76% 1,48% 5,34% 4,68% 10,60%
Mean 64,83% -8,62% 39,19% 27,72% 11,16%  
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Figure 11.1 - Counterfactual Distributions of Output per Worker for the 
Economy Using a Frequentist Approach 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.2 - Counterfactual Distributions of Output per Worker for the 

Economy Using a MCMC Approach 
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Figure 12.1 - Counterfactual Distributions of Output per Worker for the 
Economy Using a Frequentist Approach 

 

 

 

 

 

 

 

 

 

 

 
Figure 12.2 - Counterfactual Distributions of Output per Worker for the 

Economy Using a MCMC Approach 
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Figure 13.1 - Counterfactual Distributions of Output per Worker for the 
Economy Using a Frequentist Approach 

 

 

 

 

 

 

 

 

 

 

 
Figure 13.2 - Counterfactual Distributions of Output per Worker for the 

Economy Using a MCMC Approach 
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Table 31.1 - Li’s Distribution Hypothesis Tests for the Economy Using a 
Frequentist Approach 

 

Null Hypothesis (H0) 

 

T-test 

Ten percent 

significance level 

(critical value: 1.28) 

Five percent 

significance level 

(critical value: 1.64) 

( ) ( )92 67f y g y=  2.398  H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Eff=  1.726  H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Tech=  4.099  H0 rejected H0 rejected 

( ) ( )92 67 *f y g y FAcc=  0.087  H0 not rejected H0 not rejected 

( ) ( )92 67 * *f y g y Eff Tech=  2.765  H0 rejected H0 rejected 

( ) ( )92 67 * *f y g y Eff FAcc=  -0.027  H0 not rejected H0 not rejected 

( ) ( )92 67 * *f y g y Tech FAcc=  0.529  H0 not rejected H0 not rejected 

( ) ( )92 67 * * *f y g y Eff Tech FAcc=  0.068  H0 not rejected H0 not rejected 

 
Table 31.2 - Li’s Distribution Hypothesis Tests for the Economy Using a 

MCMC Approach 
 

Null Hypothesis (H0) 

 

T-test 

Ten percent 

significance level 

(critical value: 1.28) 

Five percent 

significance level 

(critical value: 1.64) 

( ) ( )92 67f y g y=  2.398  H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Eff=  1.348  H0 rejected H0 not rejected 

( ) ( )92 67 *f y g y Tech=  4.440  H0 rejected H0 rejected 

( ) ( )92 67 *f y g y FAcc=  0.145  H0 not rejected H0 not rejected 

( ) ( )92 67 * *f y g y Eff Tech=  2.584  H0 rejected H0 rejected 

( ) ( )92 67 * *f y g y Eff FAcc=  -0.044 H0 not rejected H0 not rejected 

( ) ( )92 67 * *f y g y Tech FAcc=  0.902 H0 not rejected H0 rejected 

( ) ( )92 67 * * *f y g y Eff Tech FAcc=  0.073 H0 not rejected H0 not rejected 
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The combination of the results presented allows us to conclude the following: 

- As we can see in tables 30.1 and 30.2, there is no sign of catch-up. In fact, 

observations with stronger movements away of the frontier are from low and low-

middle income countries.  Furthermore, this effect helps the emergence of a bimodal 

distribution, as we can observe in figures 11.1 and 11.2. This is more evident in the 

Bayesian framework, where, as we can see in table 31.2, for 5% of significance 

level, it is not possible to reject the equivalence of the 1992-distribution and the 

counterfactual one.  

- Panel b of figures 12.1 and 12.2 shows that technological change is responsible for 

an important shift of the density function from the lower tail to the middle, which 

means that technological change has an important contribution to the welfare of 

poorer countries.  It also reveals a very small change of mass from the high-middle 

to the higher tail, meaning that also the welfare of the rich is raised, although in a 

more reduced way. If we combine the effects of efficiency and technological 

change, the reading of tables 30.1 and 30.2 reveals that total factor productivity 

growth is very small for the economy.  

- Analyzing panel b in figures 13.1 and 13.2, which reports the effect of a single 

component, we can infer that capital deepening is the only effect that, for all levels 

of significance and for both frequentist and Bayesian methods, causes, per se, the 

emergence of a bimodal distribution and leads to a significant increase in the mean 

of labor productivity.  The appropriate statistical tests support this conclusion (tables 

31.1 and 31.2).  At both significance levels, it is not possible to reject the 

equivalence of the 1992-distribution and the counterfactual distribution assuming 

only capital deepening.   

 

6.3.2 - Agricultural Sector 

As before, we present parameters estimated for the fixed part of m*(.), the 

decomposition analysis of labor productivity growth and the corresponding 

counterfactual distributions. Estimation results are presented in table 32. We can 
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confirm the quality of the estimation and the similarity between Classical and 

Bayesian versions of the model.   

 
Table 32.1 - Estimation Results for the Fixed Part of m*(.) Using a Frequentist 

Approach (Agriculture). 
 

First Period: 1967-1979 

 Value Std.Error p-value 

ln kit 0.545 0.217 0.01 

ln lait 1.33 0.285 <.0001 

Second Period: 1980-1992 

 Value Std.Error p-value 

ln kit 0.883 0.162 <.0001 

ln lait 1.024 0.202 <.0001 

 

 
Table 32.2 - Estimation Results for the Fixed Part of m*(.) Using a MCMC 

Approach (Agriculture). 
 

 

 

 

 

 

 

 

 

 

The results of the decomposition are presented in tables 33.1 and 33.2; the 

counterfactual distributions of labor productivity in figures 13-15; the Li's tests in 

tables 34.1 and 34.2.  

First Period: 1967-1979 

node Mean Std. 

Error 

MC 

error 

Median 

ln kit 0.670 0.177 0.01 0.688 

ln lait 1.203 0.214 0.01 1.211 

Second Period: 1980-1992 

node Mean Std. 

Error 

MC 

error 

Median 

ln kit 0.8441 0.1809 0.01 0.8576 

ln lait 1.125 0.2203 0.01 1.156 
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Table 33.1 - Decomposition of Labor Productivity Growth for Agriculture 
Using a Frequentist Approach 

 
Contribution to Percentage Change in Output per Worker of

Percentage

       Country Change in Output Change in Change in Capital Stochastic
per Worker Efficiency Technology Deepening Shocks

Malawi -30.59% 278.04% -79.42% 4.71% -14.78%
Indonesia 93.06% 149.89% -33.25% -3.54% 19.99%
India 42.03% 190.33% -47.48% -10.51% 4.09%
Kenya 6.92% 150.10% -51.65% -11.00% -0.65%
Korea, Republic of 395.34% 168.57% 32.70% 39.92% -0.66%
Zimbabwe -33.14% 53.44% -34.84% -15.72% -20.66%
Madagascar -17.99% 52.83% -44.46% -2.02% -1.40%
Pakistan 20.61% 63.12% -21.47% -20.17% 17.95%
Sri Lanka -13.25% 55.47% -38.75% -5.59% -3.50%
Guatemala 22.25% 37.03% 5.53% -27.98% 17.38%
Morocco 10.96% 45.48% 7.68% -30.23% 1.52%
Philippines 38.81% 53.23% -19.16% 2.28% 9.55%
Egypt 39.67% 104.65% -28.65% -11.07% 7.55%
Turkey 63.49% 35.74% 56.12% -26.24% 4.59%
Iran 74.37% -18.49% 161.03% -24.90% 9.13%
El Salvador 40.37% -3.08% 53.28% -22.75% 22.31%
Japan 258.68% -32.35% 180.63% 81.43% 4.14%
Peru -9.33% -10.90% 15.63% -10.57% -1.58%
Tunisia 96.41% 88.99% -8.27% -7.01% 21.83%
Dominican Republic 75.75% 0.85% 25.34% 20.63% 15.26%
Honduras 15.95% -0.35% 45.28% -27.32% 10.20%
Colombia 65.67% 23.99% 46.63% -20.15% 14.12%
Portugal 177.78% -4.16% 4.80% 179.33% -1.00%
Syrian Arab Republic 71.98% 118.21% 8.91% -29.72% 2.97%
Venezuela 100.32% 40.24% 24.11% 0.58% 14.43%
Costa Rica 99.72% -15.60% 107.35% -23.04% 48.29%
South Africa 57.51% 55.65% -7.30% 25.52% -13.03%
Greece 183.84% 16.71% 62.81% 29.58% 15.27%
Chile 44.82% 31.38% 11.21% -17.04% 19.49%
Finland 138.57% -41.35% 73.30% 138.94% -1.77%
Italy 197.22% -50.67% 182.21% 79.64% 18.84%
Norway 100.08% -53.14% 132.57% 79.27% 2.40%
Austria 156.24% -36.84% 134.23% 71.30% 1.11%
Sweden 199.32% -22.70% 51.57% 171.91% -6.04%
Israel 173.93% -54.22% 207.64% 72.08% 13.04%
France 279.99% -29.96% 115.72% 139.40% 5.05%
Uruguay 59.25% 18.75% 28.24% -16.44% 25.14%
Argentina 47.14% 27.38% 28.13% -2.06% -7.96%
Denmark 151.35% -15.66% 76.13% 76.37% -4.07%
Netherlands 140.19% -46.90% 191.65% 14.25% 35.74%
Canada 192.47% 63.17% 3.33% 47.42% 17.66%
United Kingdom 78.66% -12.78% 66.16% 11.51% 10.55%
USA 67.95% 5.05% 19.62% 24.01% 7.79%
Australia 63.04% -22.93% 26.58% 38.85% 20.37%
New Zealand 0.95% -92.83% 135.42% 443.35% 10.05%
Mean 89.74% 30.30% 42.37% 31.72% 8.24%  
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Table 33.2 - Decomposition of Labor Productivity Growth for Agriculture 
Using a MCMC Approach 

 
Contribution to Percentage Change in Output per Worker of

Percentage

       Country Change in Output Change in Change in Capital Stochastic
per Worker Efficiency Technology Deepening Shocks

Malawi -30.59% 143.98% -61.36% -13.39% -14.99%
Indonesia 93.06% 92.24% -1.14% -13.00% 16.75%
India 42.03% 86.62% -12.98% -16.46% 4.70%
Kenya 6.92% 69.94% -22.22% -19.21% 0.12%
Korea, Republic of 395.34% 163.53% 32.53% 43.48% -1.15%
Zimbabwe -33.14% 3.66% 4.20% -21.87% -20.77%
Madagascar -17.99% 21.59% -13.96% -20.01% -2.00%
Pakistan 20.61% 16.67% 24.24% -27.15% 14.22%
Sri Lanka -13.25% 15.24% -10.19% -13.56% -3.04%
Guatemala 22.25% 10.88% 44.49% -35.52% 18.33%
Morocco 10.96% 15.23% 54.41% -39.27% 2.68%
Philippines 38.81% 25.41% 14.25% -9.71% 7.29%
Egypt 39.67% 76.21% -17.81% -10.74% 8.04%
Turkey 63.49% 28.45% 89.67% -35.67% 4.32%
Iran 74.37% -16.38% 97.38% -2.73% 8.61%
El Salvador 40.37% -8.27% 76.17% -28.09% 20.79%
Japan 258.68% -23.27% 141.12% 85.05% 4.77%
Peru -9.33% -30.10% 58.33% -16.42% -1.97%
Tunisia 96.41% 88.46% 1.20% -12.18% 17.26%
Dominican Republic 75.75% -22.19% 65.28% 18.71% 15.12%
Honduras 15.95% -7.87% 74.21% -34.57% 10.42%
Colombia 65.67% 13.93% 79.78% -28.01% 12.36%
Portugal 177.78% -37.78% 32.33% 239.09% -0.50%
Syrian Arab Republic 71.98% 119.94% 14.78% -34.25% 3.63%
Venezuela 100.32% 32.38% 36.63% -2.70% 13.83%
Costa Rica 99.72% -19.77% 105.07% -17.89% 47.84%
South Africa 57.51% 51.30% 3.89% 14.23% -12.27%
Greece 183.84% 7.54% 61.25% 39.60% 17.24%
Chile 44.82% 25.82% 25.34% -21.19% 16.52%
Finland 138.57% -18.05% 36.09% 129.17% -6.65%
Italy 197.22% -37.28% 102.51% 95.63% 19.62%
Norway 100.08% -33.24% 72.49% 72.27% 0.85%
Austria 156.24% -21.40% 81.17% 78.34% 0.90%
Sweden 199.32% 6.38% 25.97% 139.16% -6.61%
Israel 173.93% -37.12% 107.86% 85.69% 12.88%
France 279.99% -12.67% 60.11% 159.67% 4.66%
Uruguay 59.25% 27.55% 16.94% -13.23% 23.06%
Argentina 47.14% 32.05% 7.87% 8.49% -4.79%
Denmark 151.35% 4.79% 37.65% 78.83% -2.55%
Netherlands 140.19% -32.50% 129.23% 11.93% 38.68%
Canada 192.47% 87.46% 2.28% 30.97% 16.46%
United Kingdom 78.66% 2.94% 26.03% 20.64% 14.15%
USA 67.95% 2.79% 6.03% 43.40% 7.45%
Australia 63.04% -37.53% 29.98% 66.86% 20.32%
New Zealand 0.95% -92.33% 69.08% 615.60% 8.83%
Mean 89.74% 17.45% 40.18% 35.33% 7.90%  
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Figure 14.1 - Counterfactual Distributions of Output per Worker for 
Agriculture Using a Frequentist Approach 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.2 - Counterfactual Distributions of Output per Worker for 
Agriculture Using a MCMC Approach 
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Figure 15.1 - Counterfactual Distributions of Output per Worker for 
Agriculture Using a Frequentist Approach 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15.2 - Counterfactual Distributions of Output per Worker for 

Agriculture Using a MCMC Approach 
 

 

 

 

 

 

 

 

 

 

 

 

(b): Effect of Technological Change
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Figure 16.1 - Counterfactual Distributions of Output per Worker for 
Agriculture Using a Frequentist Approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16.2 - Counterfactual Distributions of Output per Worker for 
Agriculture Using a MCMC Approach 

 

 

 

 

 

 

 

 

 

 

 

(b): Effect of Factor Accumulation
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Table 34.1 - Li’s Distribution Hypothesis Tests for Agriculture Using a 
Frequentist Approach 

 

Null Hypothesis (H0) 

 

T-test 

Ten percent 

significance level 

(critical value: 1.28) 

Five percent 

significance level 

(critical value: 1.64) 

( ) ( )92 67f y g y=  5.842  H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Eff=  11.226 H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Tech=  0.196  H0 not rejected H0 not rejected 

( ) ( )92 67 *f y g y FAcc=  0.683 H0 not rejected H0 not rejected 

( ) ( )92 67 * *f y g y Eff Tech=  4.504 H0 rejected H0 rejected 

( ) ( )92 67 * *f y g y Eff FAcc=  5.051 H0 rejected H0 rejected 

( ) ( )92 67 * *f y g y Tech FAcc=  8.652  H0 rejected H0 rejected 

( ) ( )92 67 * * *f y g y Eff Tech FAcc=  0.152 H0 not rejected H0 not rejected 

 
Table 34.2 - Li’s Distribution Hypothesis Tests for Agriculture Using a MCMC 

Approach 
 

Null Hypothesis (H0) 

 

T-test 

Ten percent 

significance level 

(critical value: 

1.28) 

Five percent 

significance level 

(critical value: 

1.64) 

( ) ( )92 67f y g y=  5.842 H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Eff=  9.555 H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Tech=  1.044 H0 not rejected H0 not rejected 

( ) ( )92 67 *f y g y FAcc=  1.291 H0 not rejected H0 not rejected 

( ) ( )92 67 * *f y g y Eff Tech=  5.509 H0 rejected H0 rejected 

( ) ( )92 67 * *f y g y Eff FAcc=  2.553 H0 rejected H0 rejected 

( ) ( )92 67 * *f y g y Tech FAcc=  6.848 H0 rejected H0 rejected 

( ) ( )92 67 * * *f y g y Eff Tech FAcc=  0.154 H0 not rejected H0 not rejected 

 



 144

The analysis of results suggests the following:  

- The catch-up effect is stronger for agriculture than for the overall economy, as 

described in tables 33.1 and 33.2. Furthermore, the poorest countries have strong 

positive effects, contrasting with movements away from the world production 

frontier for some rich countries.  Panel b in figures 14.1 and 14.2 shows a clear 

unimodal counterfactual distribution, contrasting with the results for the overall 

economy. 

- The analysis of tables 33.1 and 33.2 reveals that technological change is the most 

important component for the majority of countries. Furthermore, if we combine this 

result with efficiency change, we can conclude that total factor productivity rates are 

very high for the agricultural sector. Panel b of figures 15.1 and 15.2 suggests that 

technological change is responsible for an important shift of the density from the 

lower tail to the rest of the distribution. This means that technological change in 

agriculture contributes to the welfare of poorer countries. This effect results in a 

higher mean of output per worker and in a distribution closer to the 1992-

distribution. This conclusion is supported by the statistic tests of Li (1996) presented 

in tables 34.1 and 34.2. At both significance levels and using both methods, it is not 

possible to reject the equivalence of the 1992-distribution and the counterfactual 

distribution assuming only technical change.  

- It is notable that many countries experience reductions in factor per worker 

endowments24, as we can observe in tables 33.1 and 33.2. This effect is similar to 

the last one, resulting in a shift of the density from the lower tail to the rest of the 

distribution (panel b in figures 15.1 and 15.2).  At both significance levels, it is not 

possible to reject the equivalence of the 1992-distribution and the counterfactual 

distribution assuming only this effect (tables 34.1 and 34.2).  

6.4 - Differences Among Groups of Countries 

In section 4, we conclude that output per capita growth in agriculture grows as the 

income presented by countries increases. Developed countries present very strong 

                                                 
24 For instance, although labor has diminished in the period for most of the countries, the reduction of 
factor endowments was even stronger.  
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growth rates while developing countries exhibit modest values. In the economy, 

output growth rates are similar for both groups. In tables 35.1 and 35.2, the 

decomposition of labor productivity growth for the overall economy of developed 

and developing countries is presented. 

 
Table 35.1 - Decomposition of Labor Productivity Growth for the Economy 

Using a Frequentist Approach (2 Groups of Countries) 
 

 N Mean 
Std. 

Deviation Minimum Maximum
Developed 16 ,2839 ,39444 -,83 ,90
Developing 29 ,5651 ,53967 -,22 2,56

 
TFP change agriculture 
 

Total 45 ,4651 ,50687 -,83 2,56
Developed 16 ,1354 ,55184 -,52 1,97
Developing 27 ,1993 ,46551 -,56 1,26

 
TFP change economy 
  
  Total 43 ,1756 ,49385 -,56 1,97

Developed 16 1,04317 1,042233 ,115 4,434
Developing 29 -,08339 ,183488 -,302 ,399

 
Capital deepening 
agriculture  
  Total 45 ,31717 ,830149 -,302 4,434

Developed 16 ,5699 ,57462 -,10 1,99
Developing 27 ,3374 ,91328 -,49 3,32

 
Capital deepening 
economy  
  Total 43 ,4239 ,80448 -,49 3,32

Developed 16 1,3260 ,75557 -,08 2,62
Developing 29 ,4532 ,77187 -,19 3,99

 
Y/L chg no s. shocks 
agriculture  
  Total 45 ,7635 ,86734 -,19 3,99

Developed 16 ,6756 ,69507 -,19 2,42
Developing 27 ,4010 ,71018 -,37 3,26

 
Y/L chg no s. shocks 
economy  
  Total 43 ,5032 ,70909 -,37 3,26
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Table 35.2 - Decomposition of Labor Productivity Growth for the Economy 
Using a MCMC Approach (2 Groups of Countries) 

 

 N Mean 
Std. 

Deviation Minimum Maximum
Developed 16 ,2447 ,42264 -,87 ,92
Developing 29 ,6410 ,51536 -,06 2,49

 
TFP change agriculture 
 

Total 45 ,5001 ,51643 -,87 2,49
Developed 16 ,1354 ,55184 -,52 1,97
Developing 27 ,1993 ,46551 -,56 1,26

 
TFP change economy 
  
  Total 43 ,1756 ,49385 -,56 1,97

Developed 16 1,22018 1,434408 ,119 6,156
Developing 29 -,12493 ,206581 -,393 ,435

 
Capital deepening 
agriculture 

Total 45 ,35333 1,073588 -,393 6,156
Developed 16 ,5699 ,57462 -,10 1,99
Developing 27 ,3374 ,91328 -,49 3,32

 
Capital deepening 
economy 

Total 43 ,4239 ,80448 -,49 3,32
Developed 16 1,3297 ,75975 -,07 2,63
Developing 29 ,4584 ,77329 -,18 4,01

 
Y/L change with no 
stochastic shocks 
agriculture  Total 45 ,7682 ,86904 -,18 4,01

Developed 16 ,6756 ,69507 -,19 2,42
Developing 27 ,4010 ,71018 -,37 3,26

 
Y/L change with no 
stochastic shocks 
economy Total 43 ,5032 ,70909 -,37 3,26

 

It is possible to conclude that the TFP effect is higher for agriculture. Furthermore, 

in this sector, the TFP growth rate of developing countries is twice the one exhibited 

by the developed nations. This contrasts with the behavior of TFP growth rates for 

the overall economy, very similar for the 2 groups. Therefore, in agriculture, TFP 

does not contribute to the large difference between the rich and the poor. Capital 

deepening, per se, is responsible for the gap between country groups. Developing 

countries present evidences of factor disaccumulation, probably due to the market 

distortions introduced by agricultural policies of the developed nations.  

Even if we desegregate developing countries into middle and poor countries in 

tables 36.1 and 36.2, conclusions are maintained: different capital deepening and 

TFP rates for agriculture among groups (as ANOVA tests confirm in tables 37.1 and 

37.2) and similar rates for economy. It is interesting to notice that middle income 

countries present the strongest TFP rates for agriculture and negative values for 

factors accumulation.    
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Table 36.1 - Decomposition of Labor Productivity Growth for the Economy 
Using a Frequentist Approach (3 Groups of Countries) 

 

  N Mean 
Std. 

Deviation Minimum Maximum 
TFP change agriculture Rich 16 ,2839 ,39444 -,83 ,90
  Médium 19 ,7484 ,54995 ,03 2,56
  Poor 10 ,2170 ,30915 -,22 ,67
  Total 45 ,4651 ,50687 -,83 2,56
TFP change economy Rich 16 ,1354 ,55184 -,52 1,97
  Médium 17 ,1014 ,35578 -,56 ,93
  Poor 10 ,3658 ,59336 -,22 1,26
  Total 43 ,1756 ,49385 -,56 1,97
Capital deepening 
agriculture 

Rich 16 1,04317 1,042233 ,115 4,434

  Médium 19 -,07348 ,218498 -,302 ,399
  Poor 10 -,10222 ,093058 -,273 ,047
  Total 45 ,31717 ,830149 -,302 4,434
Capital deepening 
economy 

Rich 16 ,5699 ,57462 -,10 1,99

  Médium 17 ,4467 ,92643 -,44 3,32
  Poor 10 ,1516 ,90711 -,49 2,62
  Total 43 ,4239 ,80448 -,49 3,32
Y/L chg no s. shocks 
agriculture 

Rich 16 1,3260 ,75557 -,08 2,62

  Médium 19 ,6490 ,87987 -,08 3,99
  Poor 10 ,0811 ,26539 -,19 ,61
  Total 45 ,7635 ,86734 -,19 3,99
Y/L chg no s. shocks 
economy 

Rich 16 ,6756 ,69507 -,19 2,42

  Médium 17 ,4419 ,77415 -,14 3,26
  Poor 10 ,3316 ,61894 -,37 1,83
  Total 43 ,5032 ,70909 -,37 3,26
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Table 36.2 - Decomposition of Labor Productivity Growth for the Economy 
Using a MCMC Approach (3 Groups of Countries) 

 

 N Mean 
Std. 

Deviation Minimum Maximum 
TFP change agriculture Rich 16 ,2447 ,42264 -,87 ,92
  Médium 19 ,7966 ,53794 ,11 2,49
  Poor 10 ,3453 ,31509 -,06 ,90
  Total 45 ,5001 ,51643 -,87 2,49
TFP change economy Rich 16 ,1354 ,55184 -,52 1,97
  Médium 17 ,1014 ,35578 -,56 ,93
  Poor 10 ,3658 ,59336 -,22 1,26
  Total 43 ,1756 ,49385 -,56 1,97
Capital deepening 
agriculture 

Rich 16 1,22018 1,434408 ,119 6,156

  Médium 19 -,09072 ,245109 -,393 ,435
  Poor 10 -,18995 ,073781 -,346 -,107
  Total 45 ,35333 1,073588 -,393 6,156
Capital deepening 
economy 

Rich 16 ,5699 ,57462 -,10 1,99

  Médium 17 ,4467 ,92643 -,44 3,32
  Poor 10 ,1516 ,90711 -,49 2,62
  Total 43 ,4239 ,80448 -,49 3,32
Y/L chg no s. shocks 
agriculture 

Rich 16 1,3297 ,75975 -,07 2,63

  Médium 19 ,6539 ,88086 -,08 4,01
  Poor 10 ,0869 ,27296 -,18 ,65
  Total 45 ,7682 ,86904 -,18 4,01
Y/L chg no s. shocks 
economy 

Rich 16 ,6756 ,69507 -,19 2,42

  Médium 17 ,4419 ,77415 -,14 3,26
  Poor 10 ,3316 ,61894 -,37 1,83
  Total 43 ,5032 ,70909 -,37 3,26
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Table 37.1 - ANOVA Tests Using a Frequentist Approach (3 Groups of 
Countries) 

  
Sum of 

Squares Df 
Mean 

Square F Sig. 
Between Groups 2,666 2 1,333 6,482 ,004
Within Groups 8,638 42 ,206    

 
TFP change agriculture 
  
  Total 11,304 44      

Between Groups ,481 2 ,241 ,986 ,382
Within Groups 9,762 40 ,244    

 
TFP change economy 
  
  Total 10,243 42      

Between Groups 13,091 2 6,546 15,955 ,000
Within Groups 17,231 42 ,410    

 
 
Capital deepening 
agriculture Total 30,322 44      

Between Groups 1,091 2 ,546 ,837 ,441
Within Groups 26,091 40 ,652    

 
Capital deepening 
economy 
  Total 27,182 42      

Between Groups 9,968 2 4,984 9,049 ,001
Within Groups 23,132 42 ,551    

 
Y/L chg no s. shocks 
agriculture 

Total 33,100 44      
Between Groups ,834 2 ,417 ,822 ,447
Within Groups 20,284 40 ,507    

 
Y/L chg no s. shocks 
economy 

Total 21,118 42      
 

 
Table 37.2 - ANOVA Tests Using a MCMC Approach (3 Groups of Countries) 

  
Sum of 

Squares Df 
Mean 

Square F Sig. 
Between Groups 2,953 2 1,477 7,062 ,002
Within Groups 8,782 42 ,209    

TFP change agriculture 
  
  

Total 11,735 44      
Between Groups ,481 2 ,241 ,986 ,382
Within Groups 9,762 40 ,244    

TFP change economy 
  
  

Total 10,243 42      
Between Groups 18,721 2 9,360 12,288 ,000
Within Groups 31,993 42 ,762    

Capital deepening 
agriculture 
  
  Total 50,714 44      

Between Groups 1,091 2 ,546 ,837 ,441
Within Groups 26,091 40 ,652    

Capital deepening 
economy 
  
  Total 27,182 42      

Between Groups 9,935 2 4,967 8,956 ,001
Within Groups 23,295 42 ,555    

Y/L chg no s. shocks 
agriculture 
  
  Total 33,230 44      

Between Groups ,834 2 ,417 ,822 ,447
Within Groups 20,284 40 ,507    

Y/L chg no s. shocks 
economy 
  
  Total 21,118 42      
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In the spirit of the regressions presented in Barro (1991), we search for empirical 

regularities about growth and agriculture, trying to answer the question if a 

shrinking agricultural sector is a pre-condition for economic growth and for fast 

labor productivity in agriculture itself. Estimates obtained by ordinary least squares 

in the previous section suggest that, ceteris paribus, output growth rates are higher in 

countries with a smaller agricultural sector at the beginning of the period and in 

which the agricultural sector has a higher shrinkage. Nevertheless, when we check if 

this negative role of agriculture holds for total factor productivity growth rates in 

tables 38.1 and 38.2, although none of the variables are significant at 5%, the sign of 

the weight of agriculture in employment changes. This evidence indicates that, 

ceteris paribus, a country with a large agricultural sector at the start tends to exhibit 

stronger TFP rates. Nevertheless, the reduction of the weight of agriculture in 

employment through time appears to be important to raise both TFP and output per 

worker growth.  

 

Table 38.1 - Regressions on Total Factor Productivity Growth Rates Using a 
Frequentist Approach 

  
Unstandardized 

Coefficients 
Standardized 
Coefficients T Sig. 

  B Std. Error Beta     
(Constant) ,196 ,622  ,315 ,754
Starting weight of 
agriculture in employment ,063 ,764 ,033 ,082 ,935

% variation in weight of 
agriculture -,213 ,571 -,079 -,372 ,712

Starting output per worker 
in the economy -1,14E-005 ,000 -,173 -,496 ,622

 
Table 38.2 - Regressions on Total Factor Productivity Growth Rates Using a 

MCMC Approach 
 

  
Unstandardized 

Coefficients 
Standardized 
Coefficients T Sig. 

  B Std. Error Beta     
(Constant) ,046 ,534  ,085 ,932
Starting weight of 
agriculture in employment ,095 ,634 ,050 ,149 ,882

% variation in weight of 
agriculture -1,273 1,302 -,185 -,978 ,334

Starting output per worker 
in the economy -2,52E-006 ,000 -,038 -,104 ,918
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Summing up all results, it seems that if this disinvestment expressed by factor 

disaccumulation did not occur, the agricultural sector, presenting stronger TFP rates 

than the economy and with a growth rate twice for the poor when we compare with 

the one of the rich nations, could be the growth engine for developing countries, 

inducing rises in TFP and, as a result, in output per labor growth rates. Therefore, 

the results of the parametric model presented in section 5.4 are confirmed within a 

semiparametric framework.   

 

6.5 - Model Extension 

For the overall economy, in the last chapter, using the Schwarz Bayesian 

Information Criterion (SBIC) within a Stochastic Frontier Finite Mixture Model, we 

group the countries into 2 classes.  If we do not take into account this information, 

technological differences could be labeled as inefficiency, invalidating the 

decomposition of output per worker. Therefore, we decide to address this issue 

within the penalized spline model.  Ruppert, Wand and Carroll (2003, pp. 188-190) 

address a similar problem in determining the influence of four ethnic groups on the 

spinal bone mineral density. Their decision was to incorporate those differences in 

the constant of the fixed part of the spline. This solution in our model would be 

equivalent to assume that the production frontiers for the groups are parallel, 

differing only on the origin. In this case, the production frontier model would be:  

 * *
0( ) ( ),it it i it i ity m x class v u xβ= + ⋅ + +  (6.23) 

where: 

  
0 i is from class 1

.
1 i is from class 2i

if
class

if
⎧

= ⎨
⎩

 (6.24) 

We prefer to extend this model of Ruppert, Wand and Carroll (2003, pp. 188-190) to 

the case where the frontier changes in all parameters of the production-frontier 

spline: 

  * * *( ) ( ) ( ),it it c it it i ity m x m x v u x= + + +  (6.25) 
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where: 

 ( )*
1

1

( ) ;
K

it it k it k
k

m x x w xβ κ
+

=

= + −∑  (6.26) 

( ) ( )* 2 1 1 2 2
1

1 1

( ) .
K K

class class class class class
c it it k it k k it k

k k

m x x g x g xγ κ κ= = = = =

+ +
= =

= + − + −∑ ∑  (6.27) 

If we use other way of presenting the last equation, it becomes clear that eventual 

problems of nonidentifiability do not exist: 

( )

( )

* 1 1
1

1

* 2 2 2
2 1

1

( )
.

( )

K
class class

it k it k
k

K
class class class

it it k it k
k

m x g x

m x x g x

κ

γ κ

= =

+
=

= = =

+
=

⎧
= −⎪⎪

⎨
⎪ = + −
⎪⎩

∑

∑
 (6.28) 

Ruppert (2004, p. 33) indicates that the use of a non-parallel difference between 

group functions should be difficult to implement due to the small number of times 

each individual is usually observed. We try to implement the frequentist version of 

the extended model, but convergence was not attained. The MCMC version of the 

model eliminates this kind of problems. In each spline, we use the method already 

described.  

In this model, there is not a unique frontier for the entire sample, but one frontier for 

each class. Thus, the decomposition of labor productivity in (5.18) must be adjusted 

to this framework:  

    

( )
( )

( )
( )

( )
( )

( )
( )

1 1
2 2exp( ) .

exp( )
b cc b c c c c c c cc c c b

b b b b b b b c b c b c b b b

y x jy x j y x j y x jy Eff v
y Eff v y x j y x j y x j y x j

⎡ ⎤ ⎡ ⎤
= ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
  (6.29) 

Using the components of the labor productivity change decomposition given in 

equation (6.29), it is possible to obtain the corresponding counterfactual 

distributions.  



 153

Reading table 39, it is possible to conclude that the catch-up effect and capital 

deepening are stronger than the single class model presented in table 30.2. As 

expected, gains in efficiency are more evident in poorer countries. Technical change 

represents now a much more reduced effect than the single frontier case.      

 
Table 39 - Decomposition of Labor Productivity Growth for the Economy 

Using a MCMC Approach With 2 Classes 
 

Contribution to Percentage Change in Output per Worker of
Country Percentage

(by ascending order Change in Output Change in Change in Capital Stochastic
of output per worker per Worker Efficiency Technology Deepening Shocks

in the first period)
Malawi 22,55% -30,75% 20,37% 36,36% 7,81%
Kenya 15,74% 13,38% -11,41% 18,57% -2,81%
Indonesia 248,48% 23,22% -36,61% 262,45% 23,10%
India 95,07% 64,56% 33,72% -28,48% 23,95%
Madagascar -33,85% -32,93% 38,34% -31,78% 4,50%
Zimbabwe -6,22% -1,53% 1,96% -22,89% 21,14%
Pakistan 66,21% -11,70% 155,37% -48,84% 44,06%
Sri Lanka 78,95% -19,83% 92,13% 6,79% 8,80%
Korea, Republic of 422,65% 6,65% -7,58% 332,45% 22,61%
Philippines 24,41% -32,55% 60,52% -12,62% 31,50%
Egypt 92,30% -25,61% 176,37% -30,55% 34,69%
Honduras 15,56% -3,06% 8,89% -9,99% 21,64%
Turkey 107,44% -1,07% -0,39% 71,71% 22,59%
Morocco 53,10% 5,53% 6,66% 31,18% 3,69%
Tunisia 103,62% 25,72% -6,21% 21,85% 41,72%
Dominican Republic 40,71% -31,68% 170,47% -25,48% 2,18%
El Salvador 3,22% -22,11% 1,88% 8,44% 19,95%
Guatemala 23,56% -21,69% 50,62% -5,65% 11,02%
Colombia 31,98% 13,14% 18,97% 0,44% -2,38%
Portugal 160,32% -10,12% 230,97% 15,10% -23,97%
Syrian Arab Republic 126,30% 15,94% -15,90% 60,42% 44,68%
South Africa 17,02% -9,04% -7,84% 34,11% 4,10%
Greece 108,70% 8,58% 3,91% 55,77% 18,74%
Costa Rica 15,18% -0,30% -8,03% 14,42% 9,78%
Japan 167,57% -14,63% -16,23% 198,61% 25,30%
Peru -33,56% -9,92% 4,71% -1,59% -28,42%
Uruguay 30,30% 25,49% -18,20% 9,91% 15,49%
Chile 24,22% -1,26% 95,42% -43,53% 14,00%
Israel 108,47% 10,77% -7,14% 87,35% 8,18%
Argentina 19,13% 11,99% -60,69% 207,59% -12,02%
Finland 71,42% -21,06% 43,63% 142,80% -37,73%
Austria 84,33% 3,67% -12,30% 101,59% 0,58%
Italy 95,40% 5,26% 5,93% 77,03% -1,01%
United Kingdom 51,35% 5,25% -29,20% 59,56% 27,29%
Denmark 36,22% 37,93% -65,16% 102,17% 40,19%
France 63,81% -0,88% 9,67% 26,00% 19,60%
Norway 67,40% 12,70% -19,93% -10,13% 106,41%
Sweden 26,29% -4,15% -10,10% 24,96% 17,29%
Netherlands 38,77% -8,40% 7,16% 13,28% 24,80%
Australia 35,76% 0,39% 29,51% 28,72% -18,88%
New Zealand 4,80% 5,57% 9,81% -3,13% -6,67%
Canada 39,33% -2,24% 24,82% 24,26% -8,12%
USA 23,76% 6,40% 45,91% 23,73% -35,57%
Mean 64,83% -0,33% 23,60% 42,39% 12,65%  
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Capital deepening is the only effect that, per se, causes the emergence of a bimodal 

distribution, as we can observe in figures 17-19 and in table 40. 

 
Figure 17 - Counterfactual Distributions of Output per Worker for the 

Economy Using a MCMC Approach With 2 Classes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18 - Counterfactual Distributions of Output per Worker for the 
Economy Using a MCMC Approach With 2 Classes 
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Figure 19 - Counterfactual Distributions of Output per Worker for the 
Economy Using a MCMC Approach With 2 Classes 

 
 
 

 

 

 

 

 

 

 

 

 
 
 

Table 40 - Li’s Distribution Hypothesis Tests for the Economy Using a MCMC 
Approach With 2 Classes 
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Tests of Li in table 40 support this conclusion: at both significance levels, it is not 

possible to reject the equivalence of the 1992-distribution and the counterfactual 

distribution assuming only capital deepening. Panel b of figure 18 shows that the 

efficiency change effect remains very small, with the first year distribution almost 

unchanged. Panel b of figure 19 reveals that technical change benefits both poor and 

rich countries. When compared to the single class model, the effect is now smaller 

for the poorest and higher for the richest. 
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7 - Conclusion 

The main purpose of this dissertation is to solve the conflicting evidence on the role 

of agriculture in economic growth, especially for developing countries. A 

quantitative study of this kind with countries in different development stages can 

only be accurate if technology differences are accounted for. Recent advances in the 

stochastic frontier literature, such the ones presented in section 3.6, account for 

heterogeneity of individuals. Furthermore, it is possible to introduce some flexibility 

in the definition of technology and stochastic noise and to allow the direct 

decomposition of labor productivity growth into catch-up, technical change and 

factor accumulation effects. We propose two different ways of accommodating 

heterogeneity across countries using a production frontier: a parametric known as 

stochastic frontier finite mixture model and a semiparametric approach with 

penalized splines, both using a panel data and fully stochastic frameworks.  

The stochastic frontier finite mixture model is built on the assumption that there is a 

latent sorting of the observations in the data set into latent classes, unobserved by 

the investigator. Empirical results presented in chapter 5 show that, for the overall 

economy, countries can be grouped into 2 latent classes, each one with a specific 

parametric frontier, stochastic and inefficiency terms. If this outcome was not taken 

into account, technological differences would be labeled as inefficiency and the 

decomposition of labor productivity would not be valid.  

In order to obtain more flexibility in the specifications of the frontier and the 

inefficiency component, we construct a semiparametric model using penalized 

splines.  As we conclude in section 3, traditional semiparametric models involve a 

stochastic production frontier defined parametrically and an inefficiency distribution 

generated in a nonparametric fashion. In the model we create, each one is 

determined semiparametrically, since the linear regression splines used in the 

specification of the frontier and inefficiency component have two components: a 

linear one; and a random deviation from linearity using truncated lines as the basis 

for regression. We estimate both classical and Bayesian versions of the model. In 

the Bayesian approach, all parameters are random, while some of the spline 
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components are fixed in the classical approach. Additionally, to increase the 

sensitivity of the model to the heterogeneity of countries, we create the exact 

semiparametric counterpart version of the parametric stochastic finite mixture 

model. 

Although some country-specific outcomes change with the method used, it is 

possible to identify several global results common to all models, suggesting that 

agriculture can act as an engine of growth in the developing countries and contribute 

to change the trend for global divergence that has been observed in the last few 

decades.  

One important conclusion of our analysis is that labor productivity in the overall 

economy evolved from a unimodal to a bimodal distribution, with the middle-

income countries nearly disappearing. This contrast with the changes occurred in 

agriculture.  The increase of mass in the middle of the labor productivity distribution 

in the agricultural sector contradicts the idea of the world becoming polarized into 

rich and poor countries.  Furthermore, our results suggest that changes in labor 

productivity distribution are brought by capital deepening in the overall economy 

and by TFP change in agriculture.  

In agriculture, the catch-up phenomenon is evident, while the opposite occurs for the 

overall economy. In the later case, factor accumulation and efficiency contributes to 

the welfare of the rich more than the poor, causing the formation of the twin-peak 

distribution. For both cases, technical change seems to increase the welfare of low 

and low-middle income countries, contradicting the results presented in Kumar and 

Russell (2002). Nevertheless, our remaining outcomes seem to confirm the main 

conclusions of Kumar and Russell (2002) for the overall economy, namely the 

reduced importance of total factor productivity to growth and the bipolar 

international divergence of labor productivity. Furthermore, it also supports the 

results of Bernard and Jones (1996) and Martin and Mitra (2001) that TFP growth 

rates are higher in agriculture and there is evidence of catch-up in this sector. 

The output per worker increased more in agriculture than in the overall economy 

and the weight of agriculture in employment declined during the period 1967-1992. 
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To study the behavior of each set of countries, we use the criterion defined by the 

World Bank. In the overall economy, labor productivity presents similar growth 

rates across income groups. It is not possible to reject the hypothesis of the mean 

being equal among 2 or 4 sets. On the contrary, in agriculture, differences among 

groups are very meaningful: developed countries exhibit high growth rates, 

contrasting with moderate rates for the other nations. Regarding the variation in 

weight of agriculture in employment, the reduction is stronger for the rich countries, 

declining as the income of the reference group diminishes.  

Capital deepening in the overall economy mimics the behavior of output per capita 

after removing shocks. In agriculture, capital deepening is only positive for the rich 

countries while TFP is similar among groups and stronger than the growth rates 

observed in the overall economy for all sets of nations. In agriculture, although 

developing countries exhibit a strong positive growth rate for TFP, the 

disinvestment in this sector shown by the factor accumulation effect causes a null 

growth of output per capita without shocks. For developed countries, strong rates of 

factor accumulation and TFP originate an even stronger growth of output per capita 

with no stochastic shocks.  

In the spirit of the study of Barro (1991), we try to find some empirical regularities 

about labor productivity growth and agriculture. In addition to the initial level of 

income, we introduce two agriculture-related indicators as explainable variables of 

per capita output growth rates. Our purpose is to answer the question if a shrinking 

agricultural sector is a pre-condition for economic growth and for fast labor 

productivity in agriculture itself. Estimation results suggest that, ceteris paribus, 

output growth rates for the overall economy and agriculture are higher in countries 

with a smaller agricultural sector at the beginning of the period and in which the 

agricultural sector has a higher shrinkage.  This evidence apparently indicates that 

agriculture has a negative role in economic growth, confirming that the reduction of 

agriculture weight is a necessary condition for development. Nevertheless, when we 

study the overall TFP growth, we conclude that, using a parametric model, a country 

with a large and rising agricultural sector tends to exhibit stronger TFP rates, ceteris 
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paribus. The semiparametric approach confirms the reversion of the conclusion only 

for the dimension of the agricultural sector at the start. 

Therefore, the reason for the apparently negative contribution of agriculture to 

productivity growth in developing countries seems to lie mainly on the large 

negative rates of factor accumulation occurred in the agricultural sector. In those 

countries, TFP growth was stronger in agriculture than in the overall economy. 

Furthermore, agricultural TFP growth rates were higher in the developing countries 

than in the developed ones. Consequently, agriculture could have contributed to 

higher rates of TFP and income per capita growth in the developing world. 

Therefore, our results suggest that if such a disinvestment in agriculture had not 

occurred, if policy makers did not discriminate against agriculture, this sector could 

have played a much more important role in the economic growth process of the 

developing countries.   
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Annexes – Data Sources 

 

For the economy as a whole, we use the following data sources:  

(i) Gross Domestic Product at 1990 constant USD is built from Heston et al. 

(2002); 

(ii) Economy-Wide Fixed Capital series at 1990 constant USD is drawn from 

Crego et al. (1998);  

(iii) Total Labor Force is obtained from World Development Indicators 

(WDI).  

 

For agriculture, the following data sources were used:  

(i) total output at 1990 constant USD is built from Rao (1993, p. 74) and 

FAOSTAT (2001);  

(ii) capital series measured in 1990 thousands USD, agricultural labor and 

land data measured in hectares are drawn from Martin and Mitra (2001). 
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