Eduardo Manuel Pinto Ferreira Silva Freitas

Neuromyelitis Optica Spectrum Disorders associated with other autoimmune diseases
Eduardo Manuel Pinto Ferreira Silva Freitas
Neuromyelitis Optica Spectrum Disorders associated with other autoimmune diseases

Mestrado Integrado em Medicina
Área: Neurologia

Trabalho efetuado sob a Orientação de: Professora Doutora Joana da Cruz Guimarães Ferreira de Almeida

Trabalho organizado de acordo com as normas da revista: Rheumatology International

março, 2014
Projeto de Opção do 6º ano - DECLARAÇÃO DE INTEGRIDADE

Eu, Eduardo Manuel Pinto Fernandes, abaixo assinado, nº mecanográfico 2007.0.776, estudante do 6º ano do Ciclo de Estudos Integrado em Medicina, na Faculdade de Medicina da Universidade do Porto, declaro ter atuado com absoluta integridade na elaboração deste projeto de opção.

Neste sentido, confirme que NÃO incorri em plágio (ato pelo qual um indivíduo, mesmo por omissão, assume a autoria de um determinado trabalho intelectual, ou partes dele). Mais declaro que todas as frases que retirei de trabalhos anteriores pertencentes a outros autores, foram referenciadas, ou redigidas com novas palavras, tendo colocado, neste caso, a citação da fonte bibliográfica.

Faculdade de Medicina da Universidade do Porto, 26/03/2014

Assinatura conforme cartão de identificação:

[Assinatura]
Projecto de Opção do 6º ano – DECLARAÇÃO DE REPRODUÇÃO

NOME

Eduardo Manuel Pinto Ferreira Silva, Eufrásio

CARTÃO DE CIDADÃO OU PASSAPORTE (se estrangeiro) E-MAIL TELEFONE OU TELEMÓVEL

128 931 87 Eduardo.manue@ipm.pt 912 68 81 99

NÚMERO DE ESTUDANTE DATA DE CONCLUSÃO

2007 07 26 20/03/2014

DESIGNAÇÃO DA ÁREA DO PROJECTO

Neurologia

TÍTULO DISSERTAÇÃO/MONOGRAFIA (riscar o que não interessa)

Neuromyelitis Optica Spectrum Disorders associated with other autoimmune diseases

ORIENTADOR

Prof. Doutor João de Cruz Guimarães Ferreira da Almeida

COORIENTADOR (se aplicável)

É autorizada a reprodução integral desta Dissertação/Monografia (riscar o que não interessa) para efeitos de investigação e de divulgação pedagógica, em programas e projectos coordenados pela FMUP.

Faculdade de Medicina da Universidade do Porto, 20/03/2014

Assinatura conforme cartão de identificação: Eduardo Manuel Ferreira Silva
Neuromyelitis Optica Spectrum Disorders associated with other autoimmune diseases

Authors: Eduardo Freitas; Joana Guimarães, PhD.

Neurology Department, Hospital de S.João and Faculty of Medicine of University of Porto; Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal. E-mail: eduardo.mffreitas@gmail.com.

Abstract

Neuromyelitis optica (NMO) is an inflammatory demyelinating autoimmune disease with severe, tremendously incapacitating, consequences in the patient’s health and wellbeing. Until 2004, NMO was considered a restricted type of Multiple Sclerosis but in the same year an auto-antibody reacting against aquaporin-4 (NMO-IgG) was found to be related with NMO and it was considered the main etiologic agent of this disease. Its detection is very sensitive and specific allowing an early diagnosis and a better treatment and prognosis. With this tool, a spectrum of diseases including other autoimmune diseases was found to have NMO-IgG antibodies and a new classification named Neuromyelitis Optica Spectrum Disorders (NMOSD) was created. In this review, we sum up the developments in this field associated with other autoimmune diseases. We approach the latest discoveries in the diagnosis like the new biomarkers that will possibly be used in the close future or the developments in the neuroimaging techniques. We reviewed the literature and synthesized case reports of NMO patients with concurrent autoimmune diseases and the information from useful larger studies. Finally, we summarize the commonly used treatments in NMO and we try to specify the best treatment for NMO with simultaneous autoimmune disease. This review updates the information about this issue and raises the awareness of rheumatologists for these severe diseases.

Keywords: NMOSD; Autoimmune; NMO-IgG; Biomarkers; Treatment.
Neuromyelitis Optica (NMO) is an inflammatory demyelinating disease of the central nervous system. NMO is a severe, idiopathic and immune-mediated disease that causes lesions predominantly in the optic nerves and spinal cord but usually spares the brain, unlike Multiple Sclerosis (MS) [1].

Until 2004, the diagnosis of NMO was made based on major and minor clinical and paraclinical criteria with special attention to the presence of pleocytosis (more than 50 leukocytes/mm³) on cerebrospinal fluid (CSF) and the lack of complete recovery after the attack. Because of the clinical similarity between MS and NMO patients were sometimes treated for MS for a long time until NMO diagnosis could be made [2].

In 2004, Lennon and colleagues identified for the first time in NMO or high-risk NMO patients the presence of serum IgG antibodies against glia limitans, brain vessel walls, Virkow-Robin spaces and ependyma, and named it NMO-IgG. This autoantibody showed high specificity (90.9%) for NMO and high-risk patients considered together and it was not detected in the group of patients with classical MS. It was also found in patients with “masked” NMO. The staining pattern distribution was compatible with the localization of the autoantigen in the blood brain barrier [3]. A year later the same group discovered that NMO-IgG reacts against the water channel aquaporin-4 (AQP4). The staining with NMO-IgG was intense in pial and microvascular elements in the brain and interestingly it was present in the distal urine-collecting tubules in the renal medulla and in gastric parietal cells. This staining distribution suggested that the AQP4 was a candidate antigen. This result was supported by the lack of staining of CNS tissue in AQP4-null mice and the selective staining of AQP4-transfected cells membranes. So, for the first time, an autoantibody associated with NMO was described and the responsible autoantigen was identified and implicated in the pathogenesis of this autoimmune disease [4].

With this discovery a new step was taken: the NMO diagnostic criteria were revised and NMO-IgG positive diseases broadened NMO to a spectrum of diseases [5,6].

Meanwhile some evidence demonstrated the close relationship between NMO and other autoimmune diseases and consequently a renewed interest in this area appeared [7].

There was an increase in the investigation in all these areas and our aim with this paper is to review the new data about this subject and approach the criteria used to diagnose the group of diseases that constitute the NMO spectrum diseases (NMOSD), the connections between NMO, NMOSD and autoimmune diseases and compile the information about the treatments available for this very incapacitating disease.

Pubmed was searched for articles in English from 01/01/2004 until 31/09/2013. Search terms included “Neuromyelitis optica spectrum diseases”, “Neuromyelitis optica AND autoimmune diseases”, “Neuromyelitis optica AND myasthenia gravis”, “Neuromyelitis optica AND sjögren syndrome”, “Neuromyelitis optica AND systemic lupus erythematosus”, “Neuromyelitis optica AND treatment” and “Neuromyelitis optica AND sarcoidosis”. Titles and abstracts were reviewed and prioritized by relevance. Some articles were obtained through reference articles’ bibliography.

NMO and NMO spectrum disorders diagnosis

According to the latest guidelines (2010) from the European Federation of Neurological Societies (EFNS) the diagnostic criteria of NMO are:

Two absolute criteria:

(i) Optic Neuritis (ON), and

(ii) Myelitis.
At least two of three supportive criteria:

(i) Presence of contiguous spinal cord magnetic resonance image (MRI) lesion extending over three or more vertebral segments,

(ii) MRI not satisfying the revised (2010) McDonald diagnostic criteria for MS [8], and

(iii) NMO-IgG in serum [1].

Since the demonstration of NMO-IgG, a spectrum of diseases with some similarities with NMO but not fulfilling the criteria for the diagnosis for this disease was created. The fact that the patients with NMO spectrum diseases were most of the time positive for NMO-IgG raised the need to find a new classification and the concept of NMOSD was created [9].

So the NMOSD comprises pathologies resembling NMO and/or frequently associated with NMO-IgG positivity:

1. Neuromyelitis optica;
2. Limited forms of neuromyelitis optica:
 - Idiopathic single or recurrent events of longitudinally extensive myelitis (LETM; ≥ 3 vertebral segment spinal cord lesion seen on MRI);
 - Optic neuritis: recurrent or simultaneous bilateral;
3. Asian optic-spinal multiple sclerosis;
4. Optic neuritis or longitudinally extensive myelitis associated with systemic autoimmune disease;
5. Optic neuritis or myelitis associated with brain lesions typical of Neuromyelitis Optica (hypothalamic, corpus callosal, periventricular or brainstem) [9,1,10,11].

Association with autoimmune diseases

There is some evidence that NMO-IgG seropositivity might be associated with organ-specific autoimmune diseases like myasthenia gravis (MG), hypothyroidism, pernicious anaemia, ulcerative colitis, primary sclerosing cholangitis, and idiopathic thrombocytopenic purpura. On the other hand Sjögren syndrome (SS), sarcoidosis, antiphospholipid syndrome (APLS) or systemic lupus erythematosus (SLE) are examples of non-organ-specific autoimmune diseases associated with NMO [12,13]. The mechanism by which this association exists is unknown and it is unknown if these diseases are the primary cause of NMOSD or a concomitant autoimmune disease [14].

One study evaluated the sera of 183 patients (153 from the USA and 30 from France) and suggested that NMOSD occurring with other autoimmune diseases is a concurrent pathology and not a vasculopathy or other complications of the connective tissue diseases (CTD) [7].

Smaller series and some case reports are present in the literature and we will try to review most of them.

Myasthenia gravis

One article from 2009 described a high frequency of MG (2%) and a higher presence of anti-acetylcholine receptors (anti-AchR) antibodies (11%) in NMO patients while in MS and healthy controls the antibody was not detected [15].

Another paper from 2009 analyzed 15 cases of MG and NMO and in all of them MG onset happened before NMO. 13 of the 15 cases had undergone thymectomy before NMOSD onset and this surgery has been associated with immune deregulation and triggering autoimmune diseases because of the inability to produce immunosuppressive T cells [16]. In 2011, a group of 26 patients with MG and NMOSD was described and the authors observed similar features [17]. In another multicenter study with 16 patients MG was developed before NMOSD in patients after thymectomy [18].
Usually NMOSD occurs after MG onset and after thymectomy. One case report, from 2008, was the first described case of a patient with NMOSD after MG onset without thymectomy performed at any stage of the follow-up. [19]

Another study, from 2010, analyzed 10 patients with thymoma (9 with MG) and demonstrated that these tumors (with or without MG) express AQP-4. The authors suggested that this can be a mechanism that predisposes to NMOSD if there is a predisposition for autoimmunity and the generated antibodies against AQP-4 from thymoma are available to cross the blood-brain barrier (causing a paraneoplastic NMOSD) [20].

One study from 2013 analyzed autoantibodies and autoimmune diseases associated with MG. 2 patients with NMOSD after the onset of MG in the group of early onset MG were described. This study concluded that the autoimmunity associated with MG is focused and not generalized or random deserving a more selective immunosuppression [21]. Another group studied antibodies detected by cell based assays in MG patients and calculated that anti-AchR antibodies and NMO-IgG occur together 70 times more frequently than would be expected by chance in the British population [22].

Sjögren syndrome

One study from 2008 described 25 patients with NMOSD and 13 in 24 patients had positive NMO-IgG and 4 patients of the 25 had criteria for the diagnosis of SS. Of 20 patients with labial salivary gland biopsy 16 were positive; however only 4 had elevated anti-SSA antibodies. The authors suggest a cross reaction with NMO-IgG and performing a labial salivary gland biopsy and anti-SSA measurement in patients with NMOSD and suspected SS [23].

In 2009 one group suggested that SS myelopathy can be a manifestation of NMO. The authors described 112 patients with SS and 8 of them had spinal cord lesions. In 5 patients NMO-IgG was measured: 4 were positive and the other had borderline levels of this auto-antibody. Three other patients had clinical and imagiological criteria for NMO diagnosis. The NMO-IgG was not detected in patients without CNS evolvement [24].

Another group analyzed brain abnormalities in SS with recurrent CNS manifestations. 12 patients were evaluated and 10 had CNS manifestations demonstrated by CNS MRI before the onset of SS. NMO-IgG was positive in 6 of the 8 patients tested. After all the analyses 9 patients had NMOSD criteria. This study also showed a positive association between the NMO-IgG levels and the relapse frequency [25].

In another article 17 patients with acute myelitis were studied and followed up for 12 years. They were diagnosed with SS (6), SLE (5), SS/SLE overlap (2), MS/SS overlap (2) and NMO only (2). Amongst the patients with SS, 4 had positive NMO-IgG and no patient with SLE alone was positive for this antibody. Eight patients of the 15 diagnosed with CTD had criteria for NMOSD and of these 3 had a diagnosis of CTD before myelitis. The 6 patients with NMO-IgG positivity experienced disease relapses and of the NMO-IgG negative patients only 3 had disease relapse [13].

A case report from 2007 described a 10-year-old patient with NMO at presentation. NMO-IgG measurement was not available. He had anti-SSA and anti-SSB antibodies but SS was diagnosed with minor salivary gland biopsy because there were no other symptoms only 10 years later [26]. Another case report described a patient with myelitis, positive anti-SSA antibody and positive minor salivary gland biopsy without relevant brain MRI abnormalities at the onset of the disease. NMO-IgG was positive [27]. A recent case report described a patient with bilateral ON presentation with a history of sicca symptoms for 12 years without SS diagnosis at NMOSD onset. The authors suggest that with this case and the data available in the literature ON in patients with SS and NMO-IgG positivity are arguments to the coexistence of two concurrent autoimmune diseases instead of a consequence of vasculitic complications [28].
One case report described a patient presenting first with SS and brain lesions afterwards. One year later NMO-IgG was measured and it was positive. After this the patient had several relapses however without ON or LETM [29]. Another case report described a patient with anti-SSA antibodies but without sicca symptoms. She presented ON later and NMO-IgG was negative. However, with brain MRI and evidence of myelitis, NMOSD criteria were fulfilled [30].

Systemic Lupus Erythematosus

In 2012 one group evaluated 626 hospitalized patients with SLE or SS and measured NMO-IgG in 6 patients (3 with SLE and 3 with SS) with suspected NMOSD. One patient with SLE and one with SS were NMO-IgG positive while the other only had anti-SSA antibodies. As NMOSD doesn’t develop in most patients with anti-SSA antibodies the authors conclude that it is unlikely that this antibody is responsible for NMOSD manifestations. The authors conclude that NMO-IgG is present in some patients with SLE and SS and it can have a reflection in the patient’s outcome [31].

Two case reports of NMOSD presentation with previous history of SLE were available. One of those patients had several relapses after NMOSD onset [32]. The other also had APLS and a recent episode of cervical myelitis [33].

Another case report described a woman with sicca symptoms for 20 years presenting with myelitis and brain lesions with MRI confirmation. The serology verified the diagnosis of SLE/NMOSD. The patient had multiple relapses in the following years [34].

A recent case report described a 51-year-old female patient with type 2 diabetes mellitus, hypertension and peripheral arterial disease. She presented with NMOSD with MRI confirmation and NMO-IgG positivity. SLE features with positive antibodies were described in the following years [35].

Another paper reported the case of a 39-year-old woman without previous diseases. She presented with NMOSD with MRI findings suggestive of acute myelitis. The measured serological markers were positive for anti-nuclear antibodies (ANA), anti-double strand DNA antibodies (dsDNA) and anticardiolipin with low C3 and C4. NMO-IgG was not measured. During the follow-up she developed typical findings of SLE (malar rash and photosensitivity) [36].

Systemic sclerosis

A first case report describing NMOSD associated with Systemic Sclerosis (SSc) was available. A female patient presented with LETM (C6-T6) and brain lesions with MRI confirmation. CSF analysis and all the other tests were normal. She had a relapse with NMO-IgG positivity. Later the diagnosis of SSc was made [37].

Sarcoidosis

A single case from 2013 was available describing NMO with concomitant sarcoidosis. A 45- year-old patient presented with acute myelitis and 5 years later she had a relapse with positive NMO-IgG. Due to an abnormal thorax CT scan, a biopsy of the supraclavicular lymph node was performed which revealed noncaseating granulomatous lesions [38].

Because of all this evidence and clinical experience it is recommended that NMO-IgG should be measured in patients with CTD, atypical presentations of CTD neurological symptoms and signs or symptoms that are suggestive of NMOSD allowing a better diagnosis, treatment and prognosis [12].

The following table (table 1) summarizes the case reports referred in the text above.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Sex/Origin/age</th>
<th>Presentation/age at onset</th>
<th>NMO-IgG</th>
<th>Brain-MRI</th>
<th>Spinal-MRI</th>
<th>CSF</th>
<th>Age at NMOSD diagnosis /Relapses</th>
<th>Other ABDs</th>
<th>Time until final diagnosis/Final treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kay et al. 2008</td>
<td>F/Jap/44 y.o.</td>
<td>MG/44 y.o.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>N</td>
<td>49 y.o./3</td>
<td>-</td>
<td>5 years/AZA</td>
</tr>
<tr>
<td>Gokcay et al. 2007</td>
<td>F/-/20 y.o</td>
<td>NMO/ 10 y.o.</td>
<td>N.P.</td>
<td>N</td>
<td>+</td>
<td>N.P.</td>
<td>10 y.o./7</td>
<td>Anti-SSA and Anti-SSB + Anti-SSA and Anti-SSB +</td>
<td>10 years/PRED +AZA + CYC 3 years/N.A.</td>
</tr>
<tr>
<td>Min et al. 2010</td>
<td>F/-/35 y.o.</td>
<td>SS/35 y.o.</td>
<td>+</td>
<td>+</td>
<td>N.P</td>
<td>N.P.</td>
<td>38 y.o./3</td>
<td>Anti-SSA and Anti-SSB + Anti-SSA +</td>
<td>6 years/PP+ PRED 0 years/PP+ PRED</td>
</tr>
<tr>
<td>Koga et al. 2011</td>
<td>F/Jap/31 y.o.</td>
<td>SS/?/25 y.o.</td>
<td>-</td>
<td>N</td>
<td>+</td>
<td>N</td>
<td>31 y.o/1</td>
<td>ANA and anti-SSA +</td>
<td></td>
</tr>
<tr>
<td>Kahlenberg et al. 2011</td>
<td>F/AA/54 y.o</td>
<td>NMO/54 y.o.</td>
<td>+</td>
<td>N</td>
<td>+</td>
<td>N</td>
<td>54 y.o./0</td>
<td>ANA and anti-SSA +</td>
<td></td>
</tr>
<tr>
<td>Tan et al. 2012</td>
<td>F/Chi/56 y.o.</td>
<td>NMO/56 y.o.</td>
<td>+</td>
<td>N</td>
<td>N.P.</td>
<td>N</td>
<td>56 y.o./0</td>
<td>ANA, RF, anti-SSA</td>
<td>0 years/ MP+PP</td>
</tr>
<tr>
<td>SLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birnbaum et al. 2008</td>
<td>F/AA/38 y.o.</td>
<td>SLE/36 y.o.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>N</td>
<td>38 y.o./3</td>
<td>ANA, anti-dsDNA +</td>
<td>2 years/RTX</td>
</tr>
<tr>
<td>Mottaghi et al. 2009</td>
<td>F/-/34 y.o.</td>
<td>NMO/34 y.o.</td>
<td>Not tested</td>
<td>-</td>
<td>+</td>
<td>N.P.</td>
<td>34 y.o./</td>
<td>ANA, anti-dsDNA, anti-cardiolipin +</td>
<td>0 years/ PRED+CYC</td>
</tr>
<tr>
<td>Polgár et al. 2011</td>
<td>F/ Cau/48 y.o.</td>
<td>NMO/48 y.o.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>N.P.</td>
<td>52 y.o./6</td>
<td>ANA, anti-cardiolipin and anti SSA +</td>
<td>4 years/ MPRED+CYC</td>
</tr>
<tr>
<td>Arul Selvan et al. 2013</td>
<td>F/-/51 y.o.</td>
<td>NMO/51 y.o.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ (without OCBs)</td>
<td>52 y.o./2</td>
<td>Anti- dsDNA, ANA +</td>
<td>1 year/AZA</td>
</tr>
<tr>
<td>Researcher (Year)</td>
<td>Gender/Age/Antibody</td>
<td>Disease/Age</td>
<td>ANA, APLS antibody</td>
<td>Duration/Therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mehta et al. 2008</td>
<td>F/AA/47 y.o.</td>
<td>SLE/"Long standing history"</td>
<td>+</td>
<td>N.P.</td>
<td>47 y.o./2</td>
<td>ANA, APLS antibody +</td>
<td>0 years/ CST+PP+CYC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sawaya et al. 2013</td>
<td>F/-/50 y.o.</td>
<td>NMO/45 y.o.</td>
<td>+</td>
<td>+</td>
<td>+ (without OCBs)</td>
<td>50 y.o./1</td>
<td>ANA, anti-dsDNA +</td>
<td>5 years/ IVIG+RTX</td>
<td></td>
</tr>
<tr>
<td>Franciotta et al. 2013</td>
<td>F/-/62 y.o.</td>
<td>NMO/62 y.o.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>63 y.o./2</td>
<td>ANA +</td>
<td>1 year/ MPRED</td>
<td></td>
</tr>
</tbody>
</table>

Biomarkers

NMO-IgG is an autoantibody against aquaporin-4 (AQP4), the major water channel in the central nervous system. AQP4 is localized in the astrocytic foot processes and is the major agent responsible for the water balance in brain but also for glutamate and potassium regulation in the blood-brain-barrier, synapses and paranodes adjacent to the nodes of Ranvier [39,1,40]. The AQP4 is also expressed in the kidneys but renal function seems to be normal in NMOSD possibly because of its small role in water balance in the nephron [9].

Binding of NMO-IgG to AQP4 has several consequences, contributing to its downregulation which causes significant damage in the astrocytic foot processes and consequently in the affected neurons. It is accepted that this pathologic mechanism has inflammatory effects through different pathways including complement and cell-based damage which cause inflammation, demyelination and oedema of the CNS [40,41]. It is suggested that NMO-IgG increases the blood-brain barrier permeability leading to higher penetration of autoantibodies, complement-dependent granulocytes and antigen-specific T-cells [42].

The antibodies detection in the patients’ serum can be achieved by indirect immunofluorescence or immunohistochemistry. The sensitivities and specificities are diverse but the used methods generally have an excellent specificity and a good sensitivity. Comparing the most commonly used assays (immunofluorescence, cell-based and fluorescence-based immunoprecipitation assays) it seems that the cell-based assay has the highest sensitivity (91%) and specificity (100%) comparable to the others [43,44]. Another study also demonstrated that the cell based assay is the most sensitive method and it is simple and easy to use in routine laboratories [45]. With this level of sensitivity is recommended that 2 different assays should be used and one of them should be indirect immunofluorescence [46].

In 2012 one group used 673 serum samples to study the specificity of the NMO-IgG in the context of autoimmune diseases and non-immune mediated diseases. This antibody was detected in none of the 585 samples without CNS manifestations. None of the SS or SLE patients had CNS involvement and NMO-IgG was negative. This study concluded that this test is very specific and if it is positive in other autoimmune diseases with CNS lesion, concurrent NMOSD is probable [47].

Routine CSF analysis can be useful in patients with NMOSD onset when clinical and imagiological distinction from Multiple Sclerosis is difficult. In contrast with MS, in NMO pleocytosis consisting of monocytes and lymphocytes is present in 14-79% of patients. The frequency of oligoclonal bands ranges from 0-37% in NMO unlike in MS where it is a common finding. Increased protein levels are present in 46-75% of the patients. Neurofilaments heavy chain levels are significantly higher than in patients with MS [48,13,1].

NMO-IgG detection in CSF didn’t improve the sensitivity or specificity of the current diagnosis criteria [49]. In another study a Chinese group demonstrated increased sensitivity of NMO-IgG detection in CSF when compared with serum [50]. However, NMO-IgG analysis in CSF is recommended in cases where there are AQP4 seronegative NMO/ NMOSD with elevated clinical or image suspicion [1].

Other diagnostic exams are being tested. The complement activating antibodies against myelin oligodendrocyte glycoprotein (MOG), a biomarker associated with acute disseminated encephalomyelitis, and their detection in serum can be a useful tool in seronegative NMO-IgG patients that have criteria for NMO or NMOSD, suggesting an alternative lesion mechanism [51]. Another study demonstrated that during initial NMOSD attacks interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) in CSF are elevated suggesting that their detection can also allow an early diagnosis [52]. Another study compared GFAP in patients with ON associated with MS and with NMO. The findings were statistically significant and demonstrated that GFAP levels in patients with ON related to NMO are higher than those in MS suggesting that it can be a good biomarker in atypical presentations [53]. One single study suggested that high-mobility group box 1 protein (HMGB1) in serum can be used as an early diagnostic tool in NMO, making its distinction from MS possible [54].
Recently, one group suggested that in NMOSD NMO-IgG seronegative patients anti-aquaporin1 antibody can be one alternative biomarker (another aquaporin present in the CNS) that was present in a subgroup of patient with demyelinating disease similar to NMOSD [55].

Brain MRI findings

After the discovery of NMO-IgG the brain lesions in NMOSD began being commonly described.

Characteristic abnormalities are:

- Transverse myelitis, clinically complete or incomplete, but associated with imagiological evidence of spinal cord lesion extending over three or more spinal segments on T2-weighted MRI and hypointensity on T1-weighted images when obtained during acute episode of myelitis.

- Non-specific brain T2 signal abnormalities not satisfying Macdonald criteria

- Lesions in the dorsal medulla, either in contiguity or not with a spinal cord lesion

- Hypothalamic and/or brainstem lesions

- “Linear” periventricular/ corpus callosum signal abnormalities, not ovoid, and not extending into the parenchyma of the cerebral hemispheres in Dawson finger configuration [56].

New MRI techniques are being used in NMOSD. Diffusion tensor image showed that multiple white matter tracts and other normal appearing white matter are involved. Magnetic resonance spectroscopy analysis was normal in normal appearing grey and white matter in NMO patients for the main metabolic parameters. Voxel based morphometry allows the study of structural changes of the brain and demonstrated that the decrease of global and focal white matter in NMO appears to be correlated with cognitive impairment [5].

In contrast with what was previously defended it was demonstrated that brain lesions can also be the first manifestation of NMOSD in two studies of 15 and 27 NMO-IgG seropositive patients [57,58].

In vasculitic diseases related with other autoimmune diseases the MRI abnormalities are diverse. One review of the imaging of cerebral vasculitis suggested a new organization of the signs of this type of brain disease in direct and indirect. The direct sign is applied mainly in large vessels and in this case a vessel wall thickening is detected with contrast enhancement. The indirect signs can be suggested by cerebral perfusion deficits, ischaemic brain lesions, cerebral haemorrhage and vascular stenosis unlikely to be atherosclerotic [59].

Another study analyzed, among other things, the differences in MRI imaging in the diagnosis of several autoimmune diseases. In SS myelopathy the MRI findings may be similar to those of NMO with LETM and gadolinium-enhancing. Concerning SLE, the MRI imaging pattern seems to be very similar to MS and acute SLE lesions often enhance with gadolinium. One common finding in these patients is cortical atrophy (which can be also found in MS and in other autoimmune diseases with SNC manifestations). The spinal cord imaging can show LETM (sometimes the entire length of spinal cord) differently from MS [60].

It is suggested that MRI evaluation in patients with autoimmune diseases, SNC lesions and positive NMO-IgG might be useful, allowing an early diagnosis and better prognosis, with a closer follow-up.

Treatment

There are no published randomized controlled trials for relapse prevention in NMOSD. However, there are recommended drugs based on small prospective or retrospective series of off-label use. For acute treatment methylprednisolone is the first line treatment [61]. When the patient doesn’t improve, plasma
exchange can be a good alternative [62,63]. Cyclophosphamide also seems to be a good alternative in refractory cases [64].

For relapse prevention several drugs can be used. Azathioprine (first line drug), mycophenolate mofetil and methotrexate are immunosuppressant drugs that seem to be safe and significantly reduce annual relapses rate (ARR) and improve or stabilize Expanded Disability Status Scale (EDSS) [61,65,66]. Other alternatives are available: rituximab, for instance, is a promising drug in refractory cases reducing ARR and EDSS [67-69]. A new alternative is eculizumab (monoclonal IgG) that neutralizes complement protein C5 and seems to reduce ARR and stabilize or improve EDSS [70].

According with Wingerchuk and Weinshenker [14] the therapeutic regimen in NMO with concomitant rheumatologic diseases can be based on cyclophosphamide and methotrexate because these agents showed benefits in both conditions. However, azathioprine should be the drug of choice because of its safety profile and tolerance in long-term therapy. The authors recommend avoiding monoclonal antibodies or fusion protein therapies that can interfere with tumor necrosis factor-alpha function (infliximab, adalimumab, etanercept). These agents are commonly used in rheumatic disorders but are associated with demyelinating events and their effect in NMO is not known [14]. Another paper reporting 2 patients with NMO and SLE overlap described a good response to cyclophosphamide and azathioprine [34]. Another review described the efficacy of Rituximab in NMO, MG and SLE and in the latter it can be used alone or in combination with corticosteroids or cyclophosphamide [71]. Methylprednisone is also commonly used in autoimmune diseases and NMO mainly in acute manifestations [16,60]. Plasma exchange is also an alternative in these patients, as seems to be intravenous immunoglobulins [72,73].

Conclusions

NMOSD are very incapacitating diseases with serious consequences in the quality of life and causing serious loss of autonomy in these patients.

With the present review we tried to summarize the developments in diagnosis and treatment of NMOSD with special focus in the relationship with other autoimmune diseases and in the recent investigation made in this field.

There was an increase in the investigation in this area mostly motivated by the discovery of NMO-IgG antibody which allowed the identification of several diseases that previously were not considered as belonging to the field of NMO.

This antibody allowed an early recognition and diagnosis of NMOSD also allowing an accurate distinction between NMOSD, MS or other manifestations of autoimmune diseases (vasculitis e.g.) when the criteria previously mentioned are not clearly fulfilled.

There are some new biomarkers being discovered and associated with NMOSD and they can be useful for a more accurate diagnosis and early treatment in the future.

The neuroimaging is also in progress and new diagnostic tools are becoming available turning possible the identification of brain lesions where before it was not possible.

Further investigation is needed and new trials with recent drugs must be performed. The small number of patients with NMOSD restricts the possibility of large scale trials to demonstrate the efficacy of the old drugs and to show the advantage of new emerging drugs. We tried to summarize the most useful treatments that can be useful in both diseases NMO and other autoimmune diseases. The number of studies considering overlapping diseases is reduced and more investigation is needed to evaluate the efficacy and safety of different treatments.
The number of cases of NMOSD associated with other autoimmune diseases available in the literature is limited and further investigation is needed to increase the knowledge and the validity of the conclusions taken from the developed research.

Conflict of interest: The authors declare that they have no conflict of interest.
References

patients. Multiple sclerosis (Houndmills, Basingstoke, England).
doi:10.1177/1352458513495938
Agradecimentos

Gostaria de agradecer, em especial, à minha Orientadora do Projeto de Opção, a Professora Doutora Joana Guimarães, que foi inexcedível no acompanhamento do desenvolvimento deste trabalho, corrigindo aquilo que não estava bem conseguido e dando sugestões muito pertinentes para melhorar e enriquecer o trabalho, tornando-o mais consistente. As suas rápidas respostas às minhas dúvidas e as suas orientações foram essenciais para tornar esta monografia possível.

Agradeço também à D. Margarida, secretária da unidade de Neurologia e Neurocirurgia da FMUP, que foi extremamente eficaz nos seus esforços para obter aqueles artigos que não conseguia obter através dos processos habituais, possibilitando a realização de um trabalho mais completo.

Uma palavra de apreço para todos os meus amigos e colegas, os quais foram um enorme suporte nestes 6 anos, oferendo conselhos, esclarecendo dúvidas, partilhando momentos felizes e sendo a melhor das ajudas quando os obstáculos, aparentemente intransponíveis, surgiam.

Por último, queria agradecer aos meus pais, ao meu irmão e à família mais próxima, por me terem acompanhado ao longo destes 6 anos, ajudando-me a enfrentar as adversidades e compartilhando comigo os vários momentos de alegria que foram surgindo durante esta caminhada que agora se aproxima do seu final.
Rheumatology International

Clinical and Experimental Investigations
Editor-in-Chief: Loreto Carmona
ISSN: 0172-8172 (print version)
ISSN: 1437-160X (electronic version)
Journal no. 296

Instructions for Authors

EDITORIAL PROCEDURE

Double-Blind Peer Review

This journal follows a double-blind reviewing procedure. Authors are therefore requested to submit:

- A blinded manuscript without any author names and affiliations in the text or on the title page. Self-identifying citations and references in the article text should be avoided.
- A separate title page, containing title, all author names, affiliations, and the contact information of the corresponding author. Any acknowledgements, disclosures, or funding information should also be included on this page.

TYPES OF PAPERS

- Original articles: word limit 4000 words, 50 references, no more than 6 figures/tables
- Review articles: word limit 5000 words, 100 references, no more than 10 figures
- Short Communication: word limit 2000 words, 25 references, no more than 4 figures
- Case Reports: 1500 words, 1-2 figures/tables, 15 references

Please note: Due to a backlog of articles Rheumatology International is not accepting Case Reports until further notice. Authors wishing to submit a Case Report should either wait until the moratorium ends or extend their Case Report and submit it as a Short Communication

Letters to editor: up to 600 words

MANUSCRIPT SUBMISSION
Manuscript Submission

Submission of a manuscript implies: that the work described has not been published before; that it is not under consideration for publication anywhere else; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities — tacitly or explicitly — at the institute where the work has been carried out. The publisher will not be held legally responsible should there be any claims for compensation.

Permissions

Authors wishing to include figures, tables, or text passages that have already been published elsewhere are required to obtain permission from the copyright owner(s) for both the print and online format and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.

Online Submission

Authors should submit their manuscripts online. Electronic submission substantially reduces the editorial processing and reviewing times and shortens overall publication times. Please follow the hyperlink “Submit online” on the right and upload all of your manuscript files following the instructions given on the screen.

TITLE PAGE

Title Page

The title page should include:

- The name(s) of the author(s)
- A concise and informative title
- The affiliation(s) and address(es) of the author(s)
- The e-mail address, telephone and fax numbers of the corresponding author

Abstract

Please provide an abstract of 150 to 250 words. The abstract should not contain any undefined abbreviations or unspecified references.

Keywords

Please provide 4 to 6 keywords which can be used for indexing purposes.

TEXT

Text Formatting

Manuscripts should be submitted in Word.

- Use a normal, plain font (e.g., 10-point Times Roman) for text.
- Use italics for emphasis.
- Use the automatic page numbering function to number the pages.
- Do not use field functions.
- Use tab stops or other commands for indents, not the space bar.
- Use the table function, not spreadsheets, to make tables.
- Use the equation editor or MathType for equations.
- Save your file in docx format (Word 2007 or higher) or doc format (older Word versions).
Manuscripts with mathematical content can also be submitted in LaTeX.

LaTeX macro package (zip, 182 kB)

Headings

Please use no more than three levels of displayed headings.

Abbreviations

Abbreviations should be defined at first mention and used consistently thereafter.

Footnotes

Footnotes can be used to give additional information, which may include the citation of a reference included in the reference list. They should not consist solely of a reference citation, and they should never include the bibliographic details of a reference. They should also not contain any figures or tables.

Footnotes to the text are numbered consecutively; those to tables should be indicated by superscript lower-case letters (or asterisks for significance values and other statistical data). Footnotes to the title or the authors of the article are not given reference symbols.

Always use footnotes instead of endnotes.

Acknowledgments

Acknowledgments of people, grants, funds, etc. should be placed in a separate section before the reference list. The names of funding organizations should be written in full.

SCIENTIFIC STYLE

Generic names of drugs and pesticides are preferred; if trade names are used, the generic name should be given at first mention.

REFERENCES

Citation

Reference citations in the text should be identified by numbers in square brackets. Some examples:

1. Negotiation research spans many disciplines [3].
2. This result was later contradicted by Becker and Seligman [5].
3. This effect has been widely studied [1-3, 7].

Reference list

The list of references should only include works that are cited in the text and that have been published or accepted for publication. Personal communications and unpublished works should only be mentioned in the text. Do not use footnotes or endnotes as a substitute for a reference list.

The entries in the list should be numbered consecutively.

Journal article

Ideally, the names of all authors should be provided, but the usage of "et al" in long
author lists will also be accepted:

Article by DOI

Book

Book chapter

Online document

Dissertation

Trent JW (1975) Experimental acute renal failure. Dissertation, University of California

Always use the standard abbreviation of a journal’s name according to the ISSN List of Title Word Abbreviations, see

ISSN.org LTWA

For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list.

EndNote style (zip, 2 kB)

Authors preparing their manuscript in LaTeX can use the bibtext file spbasic.bst which is included in Springer’s LaTeX macro package.

TABLES

All tables are to be numbered using Arabic numerals.

Tables should always be cited in text in consecutive numerical order.

For each table, please supply a table caption (title) explaining the components of the table.

Identify any previously published material by giving the original source in the form of a reference at the end of the table caption.

Footnotes to tables should be indicated by superscript lower-case letters (or asterisks for significance values and other statistical data) and included beneath the table body.

ARTWORK AND ILLUSTRATIONS GUIDELINES

For the best quality final product, it is highly recommended that you submit all of your artwork – photographs, line drawings, etc. – in an electronic format. Your art will then be produced to the highest standards with the greatest accuracy to detail. The published work will directly reflect the quality of the artwork provided.

Electronic Figure Submission
Supply all figures electronically.
Indicate what graphics program was used to create the artwork.
For vector graphics, the preferred format is EPS; for halftones, please use TIFF format. MS Office files are also acceptable.
Vector graphics containing fonts must have the fonts embedded in the files.
Name your figure files with "Fig" and the figure number, e.g., Fig1.eps.

Line Art

![Line Art Diagram](image)

Definition: Black and white graphic with no shading.
Do not use faint lines and/or lettering and check that all lines and lettering within the figures are legible at final size.
All lines should be at least 0.1 mm (0.3 pt) wide.
Scanned line drawings and line drawings in bitmap format should have a minimum resolution of 1200 dpi.
Vector graphics containing fonts must have the fonts embedded in the files.

Halftone Art

- Definition: Photographs, drawings, or paintings with fine shading, etc.
- If any magnification is used in the photographs, indicate this by using scale bars within the figures themselves.
- Halftones should have a minimum resolution of 300 dpi.
Combination Art

Definition: A combination of halftone and line art, e.g., halftones containing line drawing, extensive lettering, color diagrams, etc.

Combination artwork should have a minimum resolution of 600 dpi.

Color Art

- Color art is free of charge for online publication.
- If black and white will be shown in the print version, make sure that the main information will still be visible. Many colors are not distinguishable from one another when converted to black and white. A simple way to check this is to make a xerographic copy to see if the necessary distinctions between the different colors are still apparent.
- If the figures will be printed in black and white, do not refer to color in the captions.

Combination Art

<table>
<thead>
<tr>
<th>Group</th>
<th>mGlу1α</th>
<th>mGlу1β</th>
<th>mGlу1δ</th>
<th>mGlу1E55</th>
<th>mGlу5a</th>
<th>mGlу5b</th>
<th>mGlу3</th>
<th>mGlу3A4</th>
<th>TMD</th>
<th>1199</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

- **Group I:**
 - mGlу1α
 - mGlу1β
 - mGlу1δ
 - mGlу1E55

- **Group II:**
 - mGlу3
 - mGlу3A4

- **Group III:**
 - mGlу6a
 - mGlу6b
 - mGlу7α
 - mGlу7β
 - mGlу7c
 - mGlу7d
 - mGlу7e
 - mGlу8α
 - mGlу8b
 - mGlу8c

- **Details:**
 - Resolution: 600 dpi
 - Color Art: Free for online publication
 - Black and White: Main information should be visible
 - Xerographic copy: Check distinctions between colors
 - Avoid color references in black and white prints
• Color illustrations should be submitted as RGB (8 bits per channel).

Figure Lettering

To add lettering, it is best to use Helvetica or Arial (sans serif fonts). Keep lettering consistently sized throughout your final-sized artwork, usually about 2–3 mm (8–12 pt).

Variance of type size within an illustration should be minimal, e.g., do not use 8-pt type on an axis and 20-pt type for the axis label.

Avoid effects such as shading, outline letters, etc.

Do not include titles or captions within your illustrations.

Figure Numbering

• All figures are to be numbered using Arabic numerals.
• Figures should always be cited in text in consecutive numerical order.
• Figure parts should be denoted by lowercase letters (a, b, c, etc.).
• If an appendix appears in your article and it contains one or more figures, continue the consecutive numbering of the main text. Do not number the appendix figures, “A1, A2, A3, etc.” Figures in online appendices (Electronic Supplementary Material) should, however, be numbered separately.

Figure Captions

Each figure should have a concise caption describing accurately what the figure depicts. Include the captions in the text file of the manuscript, not in the figure file. Figure captions begin with the term Fig. in bold type, followed by the figure number, also in bold type.

No punctuation is to be included after the number, nor is any punctuation to be placed at the end of the caption.

Identify all elements found in the figure in the figure caption; and use boxes, circles, etc., as coordinate points in graphs.

Identify previously published material by giving the original source in the form of a reference citation at the end of the figure caption.

Figure Placement and Size

• When preparing your figures, size figures to fit in the column width.
• For most journals the figures should be 39 mm, 84 mm, 129 mm, or 174 mm wide and not higher than 234 mm.
• For books and book-sized journals, the figures should be 80 mm or 122 mm wide and not higher than 198 mm.

Permissions

If you include figures that have already been published elsewhere, you must obtain permission from the copyright owner(s) for both the print and online format. Please be aware that some publishers do not grant electronic rights for free and that Springer will not be able to refund any costs that may have occurred to receive these permissions. In such cases, material from other sources should be used.

Accessibility

In order to give people of all abilities and disabilities access to the content of your figures, please make sure that
• All figures have descriptive captions (blind users could then use a text-to-speech software or a text-to-Braille hardware)
• Patterns are used instead of or in addition to colors for conveying information (color-blind users would then be able to distinguish the visual elements)
• Any figure lettering has a contrast ratio of at least 4.5:1

ELEONRONIC SUPPLEMENTARY MATERIAL

Springer accepts electronic multimedia files (animations, movies, audio, etc.) and other supplementary files to be published online along with an article or a book chapter. This feature can add dimension to the author’s article, as certain information cannot be printed or is more convenient in electronic form.

Submission

• Supply all supplementary material in standard file formats.
• Please include in each file the following information: article title, journal name, author names; affiliation and e-mail address of the corresponding author.
• To accommodate user downloads, please keep in mind that larger-sized files may require very long download times and that some users may experience other problems during downloading.

Audio, Video, and Animations

• Always use MPEG-1 (.mpg) format.

Text and Presentations

• Submit your material in PDF format; .doc or .ppt files are not suitable for long-term viability.
• A collection of figures may also be combined in a PDF file.

Spreadsheets

• Spreadsheets should be converted to PDF if no interaction with the data is intended.
• If the readers should be encouraged to make their own calculations, spreadsheets should be submitted as .xls files (MS Excel).

Specialized Formats

• Specialized format such as .pdb (chemical), .wrl (VRML), .nb (Mathematica notebook), and .tex can also be supplied.

Collecting Multiple Files

• It is possible to collect multiple files in a .zip or .gz file.

Numbering

• If supplying any supplementary material, the text must make specific mention of the material as a citation, similar to that of figures and tables.
• Refer to the supplementary files as "Online Resource", e.g., "... as shown in the animation (Online Resource 3)"; "... additional data are given in Online Resource 4".
• Name the files consecutively, e.g. “ESM_3.mp4”, “ESM_4.pdf”.

Captions

• For each supplementary material, please supply a concise caption describing the content of the file.

Processing of supplementary files
• Electronic supplementary material will be published as received from the author without any conversion, editing, or reformatting.

Accessibility

In order to give people of all abilities and disabilities access to the content of your supplementary files, please make sure that

• The manuscript contains a descriptive caption for each supplementary material
• Video files do not contain anything that flashes more than three times per second (so that users prone to seizures caused by such effects are not put at risk)

CONFLICT OF INTEREST

Authors must indicate whether or not they have any conflicts of interest; this may include:

• Consultancies, stock ownership, equity interest, patent/licensing arrangements, etc. related to the content of their manuscript
• Whether the authors have directly received any research funding and the role of their funding source
• Whether the authors have any conflicts of interest in relation to the research topic
• Etc.

This note should be included on the separate title page submitted alongside the blinded manuscript file, as detailed in the ‘Editorial Procedure’ section of these instructions for authors. If no conflict exists, authors should state: The authors declare that they have no conflict of interest.

All authors must include a signed ICMJE Conflict of Interest form before their manuscript can be accepted by Rheumatology International; this form can be submitted at initial submission or upon hearing the acceptance decision from the Editor-in-Chief. To download a copy of this form please select the link on the right hand side of this page.

DOES SPRINGER PROVIDE ENGLISH LANGUAGE SUPPORT?

Manuscripts that are accepted for publication will be checked by our copyeditors for spelling and formal style. This may not be sufficient if English is not your native language and substantial editing would be required. In that case, you may want to have your manuscript edited by a native speaker prior to submission. A clear and concise language will help editors and reviewers concentrate on the scientific content of your paper and thus smooth the peer review process.

The following editing service provides language editing for scientific articles in all areas Springer publishes in.

Use of an editing service is neither a requirement nor a guarantee of acceptance for publication.

Please contact the editing service directly to make arrangements for editing and payment.

For Authors from China

文章在投稿前进行专业的语言润色将对作者的投稿进程有所帮助。作者可自愿选择使用Springer推荐的编辑服务，使用与否并不作为判断文章是否被录用的依据。提高文章的语言质量将有助于审稿人理解文章的内容，通过对学术内容的判断来决定文章的取舍，而不会因为语言问题导致直接退稿。作者需自行联系Springer推荐的编辑服务公司，协商编辑事宜。

理文编辑

For Authors from Japan

ジャーナルに論文を投稿する前に、ネイティブスピーカーによる英文校閲を希望されている方には、Edanz社をご紹介しています。サービス内容、料金および申込方法など、日本語による詳しい説明はエダンズグループジャパン株式会社の下記サイトをご覧ください。
For Authors from Korea
영어 논문 투고에 앞서 원어민에게 영문 교정을 받고자 하시는 분들께 Edanz 회사를 소개해 드립니다. 서비스 내용, 가격 및 신청 방법 등에 대한 자세한 사항은 저희 Edanz Editing Global 웹사이트를 참조해 주시면 감사하겠습니다.

Edanz Editing Global

AFTER ACCEPTANCE

Upon acceptance of your article you will receive a link to the special Author Query Application at Springer’s web page where you can sign the Copyright Transfer Statement online and indicate whether you wish to order OpenChoice and offprints. Once the Author Query Application has been completed, your article will be processed and you will receive the proofs.

Open Choice

In addition to the normal publication process (whereby an article is submitted to the journal and access to that article is granted to customers who have purchased a subscription), Springer now provides an alternative publishing option: Springer Open Choice. A Springer Open Choice article receives all the benefits of a regular subscription-based article, but in addition is made available publicly through Springer’s online platform SpringerLink.

Springer Open Choice

Copyright transfer

Authors will be asked to transfer copyright of the article to the Publisher (or grant the Publisher exclusive publication and dissemination rights). This will ensure the widest possible protection and dissemination of information under copyright laws.

Open Choice articles do not require transfer of copyright as the copyright remains with the author. In opting for open access, the author(s) agree to publish the article under the Creative Commons Attribution License.

Offprints

Offprints can be ordered by the corresponding author.

Color illustrations

Publication of color illustrations is free of charge.

Proof reading

The purpose of the proof is to check for typesetting or conversion errors and the completeness and accuracy of the text, tables and figures. Substantial changes in content, e.g., new results, corrected values, title and authorship, are not allowed without the approval of the Editor.

After online publication, further changes can only be made in the form of an Erratum, which will be hyperlinked to the article.

Online First

The article will be published online after receipt of the corrected proofs. This is the official first publication citable with the DOI. After release of the printed version, the paper can also be cited by issue and page numbers.