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INTRODUCTION 

Hypertension and the kidney 

Hypertension, or high blood pressure, is a major contributor to cardiovascular 

disease. It has been recently reported that approximately 25% of the adult population 

worldwide suffer from hypertension (Kearney et al. 2005). As many as 90-95% of all cases 

of hypertension are classified as essential (primary) hypertension with unknown cause of 

the disease (Chobanian et al. 2003). The remaining 5-10% of cases (secondary 

hypertension) are caused by known factors including endocrine disorders, kidney diseases 

and tumors (Taler 2008). This severe condition is associated with a significant increase in 

the risk for progression to heart failure, arrhythmias or sudden death (Levy et al. 1990; 

Lorell et al. 2000).  

The causes that underlie hypertension are complex, because both genetic and 

environmental factors participate in the pathogenesis of this disease (Moore et al. 2002; 

Coy 2005; Marteau et al. 2005; Kunes et al. 2006). It has been estimated, however, that 

30–50% of essential hypertension is heritable. Approximately 30–35% of subjects with 

normal blood pressure are salt-sensitive; in hypertensive patients, this percentage is as 

high as 50–70% (Burnier et al. 2006; Haddy 2006). Because the kidney is important in the 

long-term regulation of blood pressure and is the major organ involved in the regulation 

of sodium homoeostasis, many studies have focused on the abnormal renal handling of 

salt in the pathogenesis of hypertension. Moreover, several studies have shown that 

human essential hypertension is associated with increased sodium transport in the renal 
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proximal tubule (Ortiz et al. 2001; Hussain et al. 2003). Several rodent models of genetic 

hypertension have been established for experimental investigation of hypertension 

genetics and pathophysiology, including spontaneously hypertensive rats of the Okamoto-

Aoki strain (SHR), Dahl salt-sensitive rats, Milan hypertensive rats, and Prague 

hypertensive rats (Grisk et al. 2001). In these rats arterial hypertension can be transferred 

with a renal graft from the hypertensive strain to normotensive recipients. Furthermore, 

renal grafts from the respective normotensive control strains lowered arterial pressure in 

these genetically hypertensive rat strains (Bianchi et al. 1974; Dahl et al. 1974; Heller et al. 

1993; Grisk et al. 2001).  

SHR have been the most frequently used experimental animal models in research 

on genetics and pathology of arterial hypertension (Grisk et al. 2001). By the age of 3−6 

weeks, the pressure natriuresis and diuresis relationship in these animals has already 

shifted to elevated arterial pressure levels. Renal afferent arteriolar resistance and tubular 

sodium reabsorption is increased when compared with normotensive animals (Roman 

1987). These abnormalities in renal function are consistent with an involvement of renal 

mechanisms in the pathophysiology of hypertension in SHR. 

 

Renal systems controlling sodium homeostasis 

The renal renin-angiotensin-aldosterone system (RAAS) and dopaminergic system 

control renal electrolyte balance through various receptor-mediated pathways with 

counter-regulatory interactions. In order to conserve sodium during low sodium intake, 
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the RAAS is upregulated to produce angiotensin II (Ang II). Stimulation of the principal 

membrane bound cell surface receptor for Ang II, the AT1R, leads to sodium reabsorption. 

On the other hand, during high sodium intake the local renal production of dopamine is 

increased, leading to inhibition of sodium reabsorption (Felder et al. 2006).  

 

The renin-angiotensin-aldosterone system 

The RAAS plays an important role in regulating blood volume and systemic vascular 

resistance, which together influence cardiac output and arterial pressure (Covic et al. 

2009). Renin, which is primarily released by the kidneys, stimulates the formation of 

angiotensin in blood and tissues, which in turn stimulates the release of aldosterone from 

the adrenal cortex (Harrison-Bernard 2009). The release of renin is stimulated by 

sympathetic nerve activation (acting via β1-adrenoceptors), renal artery hypotension 

(caused by systemic hypotension or renal artery stenosis) and decreased sodium delivery 

to the distal tubules of the kidney (Paul et al. 2006; Covic et al. 2009). When renin is 

released into the blood, it acts upon a circulating substrate, angiotensinogen, that 

undergoes proteolytic cleavage to form angiotensin I. Angiotensin converting enzyme 

forms Ang II, which constricts resistance vessels (via Ang II AT1 receptors) thereby 

increasing systemic vascular resistance and arterial pressure (Paul et al. 2006; Harrison-

Bernard 2009). Ang II also acts on the adrenal cortex to release aldosterone, which in turn 

acts on the kidneys to increase sodium and fluid retention; stimulates the release 

of vasopressin from the posterior pituitary, which increases fluid retention by the kidneys; 
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facilitates noradrenaline release from sympathetic nerve endings and inhibits 

noradrenaline reuptake by nerve endings, thereby enhancing sympathetic adrenergic 

function and resulting in cardiac and vascular hypertrophy (Paul et al. 2006; Harrison-

Bernard 2009). 

Aldosterone plays a pivotal role in electrolyte and fluid homeostasis and thus in the 

control of blood pressure. The classical view of aldosterone action is that it targets 

epithelia of the distal colon and renal nephron to stimulate sodium reabsorption and 

potassium excretion (Laragh et al. 1964; Ngarmukos et al. 2001). The classical actions of 

aldosterone are mediated by the mineralocorticoid receptor (MR) that translocates to the 

nucleus upon ligand binding (Figure 1). The steroid-bound receptor modulates gene 

expression by functioning as a transcription factor (Yang et al. 2009; Ackermann et al. 

2010). The classical actions of aldosterone include increasing the expression and activity of 

the αENaC, Na+,K+-ATPase α1-subunit and sodium-hydrogen exchanger (NHE) (Loffing et al. 

2001; Fuller et al. 2005; Drumm et al. 2006; Pinto et al. 2008). However, other intrinsic 

proteins localized to the apical membrane of epithelia in the intestine and kidney are now 

also recognized as final effectors. 
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Figure 1–Activation of the MR by aldosterone results in its dissociation from molecular 

chaperones, translocation into the nucleus and binding to hormone-response elements in the 

regulatory region of target gene promoters to enhance expression. Aldosterone enhances the 

gene expression of profibrotic molecules and stimulates inflammation through the generation of 

ROS by increasing the expression of NADPH oxidase. Abbreviations: MR, mineralocorticoid 

receptor; ROS, reactive oxygen species; SGK1, serine/threonine-protein kinase-1; TGF-β, 

transforming growth factor-β; NADPH oxidase, nicotinamide adenine dinucleotide phosphate-

oxidase; PAI1, plasminogen activator inhibitor-1 [Adapted from (Perico et al. 2008)]. 

 

Aldosterone increases activity of the luminal sodium-hydrogen exchanger type 3 

(NHE3) in the proximal portion of the colon and the apical thiazide-sensitive sodium-

chloride cotransporter (NCC) in the distal renal tubule (Cho et al. 1998; Kim et al. 1998). 
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Inappropriate aldosterone secretion leads to hypertension in the case of 

hyperaldosteronism, or to hypotension in the case of hypoaldosteronism (Epstein 2001). 

 

The renal dopaminergic system 

Intrarenal dopamine plays a central role in the regulation of sodium metabolism 

(Aperia 2000). Several clinical observations as well as studies on animals with various 

forms of genetic hypertension suggest that defects in the renal dopaminergic system may 

contribute to the development of hypertension, by causing salt retention (Hussain et al. 

2003). 

In the mammalian kidney, dopamine is primarily produced in the proximal tubule 

(Soares-da-Silva et al. 1998; Aperia 2000; Gomes et al. 2008). The dopamine precursor L-

dihydroxyphenylalanine (L-DOPA) is filtered at the glomerulus and is taken up by the 

proximal tubule and converted to dopamine by aromatic L-amino acid decarboxylase (L-

AADC), which is highly expressed in the proximal tubule (Soares-da-Silva et al. 1991). The 

regulation of this non-neuronal dopaminergic system depends mainly on the availability of 

L-DOPA, on its decarboxylation into dopamine and on cell outward amine transfer 

mechanisms (Soares-da-Silva et al. 1991; Pestana et al. 1994). In the kidney, dopamine is 

metabolized predominantly by catechol-O-methyl-transferase (COMT) and monoamine 

oxidase (MAO) to 3,4-dihydroxyphenylacetic acid (DOPAC), and to homovallinic acid 

(Soares-da-Silva et al. 1991; Pestana et al. 1994). Studies have shown the overexpression 

of sodium-independent and pH-sensitive amino acid transporter LAT2 (SLC7A8) in the SHR 
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kidney (Pinho et al. 2003), which might contribute to enhanced L-DOPA uptake in the 

proximal tubule and increased dopamine production, as an attempt to overcome the 

defect in D1 receptor function. In agreement with these findings, immortalized renal 

proximal tubular epithelial cells from the SHR also overexpressed LAT2. However, only 

25% of L-DOPA uptake in SHR cells occurred through LAT2; 50% of L-DOPA uptake 

occurred through LAT1 (SLC7A5) and the remaining 25% through sodium-dependent 

transport systems (Pinho et al. 2004). 

The effects of dopamine, in mammals, are mediated by five dopamine receptor 

subtypes. These five receptor subtypes differ in their primary structures and show distinct 

affinities for dopamine receptor agonists and antagonists (Zeng et al. 2007). The D1-like 

receptors are composed of the D1 and D5 receptor subtypes (D1A and D1B, for rodent 

homologues). The D1-like receptors couple to the stimulatory G-proteins Gs and Gq, and 

activate adenylate cyclase activity to increase cytosolic cAMP levels (Figure 2) (Hussain et 

al. 2003). The D2-like receptors are composed of the D2, D3 and D4 receptor subtypes, 

which couple to the inhibitory G-proteins Gi and Go and modulate ion channel activity 

and/or inhibit adenylate cyclase activity. All of the dopamine receptor subtypes have been 

shown to regulate, directly or indirectly, sodium transport in the proximal and distal 

nephron and blood pressure (Hussain et al. 2003; Zeng et al. 2004). The mechanisms 

through which renal dopamine is thought to produce natriuresis involve the activation of 

D1-like receptors that inhibit the activity of both apical (eg, NHE exchange and chloride-

bicarbonate exchange and Na-P cotransport) and basolateral (Na+,K+-ATPase and NaHCO3 
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cotransport) transporters (Aperia et al. 1987; Felder et al. 1990; Lokhandwala et al. 1991; 

Jose et al. 1992).  

 

 

Figure 2–Hypothetical scheme of dopamine synthesis and D1-like receptor signaling pathway that 

causes inhibition of sodium transporters in proximal tubles of rat kidney. Abbreviations: L-AADC, L-

aromatic amino acid decarboxylase; AC, adenylate cyclase; PLC, phospholipase C; PKA, protein 

kinase A; PKC, protein kinase C; PIP2, phosphatidylinositol bisphosphate; IP3, inositol 

trisphosphate; L-DOPA, L-dihydroxyphenylalanine; DAG, diacylglycerol. [Adapted from (Hussain et 

al. 2003)]. 

 

The SHR is a genetic model of hypertension characterized by the resistance to the 

natriuretic effect of dopamine and D1-like receptor agonists, as a result of a defective 
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transduction of the D1 receptor signal in renal proximal tubules (Sanada et al. 1999; Jose 

et al. 2010; Zeng et al. 2011). It has been suggested that increased oxidative stress in renal 

proximal tubules of the SHR could be a mechanism responsible for defective dopamine D1 

receptor/G-protein coupling (White et al. 1998).  

 

Oxidative stress: relation to aging and hypertension  

Oxidative stress is defined as an excess in the levels of oxidants over antioxidants 

within a biological system, and the direct consequence of this is a shift in the redox state 

of the biological compartment towards one that is more oxidizing. Reactive oxygen 

species (ROS), which include radical species such as superoxide anions and hydroxyl 

radicals, and non-radical oxidants such as hydrogen peroxide (H2O2), are particularly 

important effectors of cellular redox status. In the organism they can be produced by 

xanthine oxidase, nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase), 

mitrochondrial oxidative phosphorylation, lypoxygenase, cytochrome P450 mono-

oxygenase and heme-oxygenase. ROS can result in cell damage by reacting with various 

cellular constituents, including membrane lipids, proteins, and DNA (Wei et al. 2002). It is 

widely accepted that oxidative stress is closely linked to aging (Harman 1998; Kujoth et al. 

2007) and to a variety of pathological processes, including cancer, diabetes and 

cardiovascular and renal diseases (Spector 2000; Makino et al. 2003; Touyz et al. 2004). 

Presently, ROS are known to be normal products of cell metabolism and recognized for 

playing a dual role as both harmful and beneficial species to the organism (Valko et al. 
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2006; Valko et al. 2007). For example, ROS play a major physiological role in several 

aspects of intracellular signaling and regulation. Cells are capable of generating ROS 

endogenously and constitutively which are utilized in the induction and maintenance of 

signal transduction pathways involved in cell growth and differentiation (Droge 2002). 

There is an increase in the incidence of hypertension as well as an increase in the 

generation of ROS and inflammation with age. There is evidence that ROS can influence 

vascular reactivity either directly or through intermediate pathways such as reduction of 

nitric oxide (NO) availability or by oxidation of arachidonic acid with the generation of 

vasoactive lipid mediators (Schnackenberg et al. 1998). Thus oxidative stress may account 

for endothelial dysfunction, but it is unknown whether this abnormality is a primary event 

or a consequence of increased blood pressure. Furthermore, studies have indicated that 

an increase in oxidative stress within the renal medulla selectively reduces medullary 

blood flow resulting in chronic hypertension (Makino et al. 2002). Attempts to counteract 

the hypertensive effect of ROS have led to the use of exogenous administration of 

antioxidants thought to improve the vascular function and reduce the blood pressure in 

animal models (Chen et al. 2001; Hoagland et al. 2003) and in human hypertension (Duffy 

et al. 2001; Boshtam et al. 2002).  

 

The opposing effects of angiotensin and dopamine on the redox status 

Accumulating evidence suggests that Ang II stimulates intracellular formation of 

ROS such as the superoxide anion and H2O2 (Sachse et al. 2007). Ang II activates several 
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subunits of the membrane-bound NADPH oxidase and also increases ROS formation in the 

mitochondria (Sachse et al. 2007). Some of these effects may be induced by aldosterone 

and not directly by Ang II. For example, aldosterone has been shown to increase 

superoxide production and to induce cardiovascular injury in mineralocorticoid-induced 

hypertensive animals. These effects were blocked by the administration of MR 

antagonists, as well as by antioxidants and/or NADPH oxidase inhibitors (Beswick et al. 

2001; Schiffrin 2006). Moreover, in cultured rat aortic endothelial cells, aldosterone was 

shown to induce superoxide generation via MR activation of NADPH oxidase (Iwashima et 

al. 2008). Podocyte injury and proteinuria are enhanced in rats infused with aldosterone. 

An antioxidant, TEMPOL, and eplerenone, a MR antagonist, significantly reduced oxidative 

stress markers and prevented podocyte damage and proteinuria (Nagase et al. 2008). 

Several reports have indicated that aldosterone which causes serine/threonine-protein 

kinase-1 (SGK1) upregulation, increases ROS generation and podocyte injury (Figure 1) 

(Nishiyama et al. 2004; Nagase et al. 2006). Aldosterone-induced ROS production can 

activate extracellular signal–regulated kinase 1/2 (ERK 1/2), c-Jun N-terminal kinase (JNK), 

and big mitogen-activated protein kinase (BMK1) in rat renal cortex and cultured 

mesangial cells (Nishiyama et al. 2004; Nishiyama et al. 2005). 

The renal dopaminergic system can counteract the pro-oxidant effects of the RAAS 

(Yasunari et al. 2000; Gildea 2009). Recently, it was shown that age-related hypertension 

in rats may be reversed through the use of exercise which reduces ROS and inflammation 

in the kidneys from old rats, while simultaneously increasing the abundance of the D1 
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receptor (Asghar et al. 2007). Moreover, both D2 (Armando et al. 2007) and D5 receptor 

subtype (Yang et al. 2006) knock-out mice have increased ROS production. D1-like 

receptors were found to decrease NADPH oxidase activity and ROS production, mediated 

via PKA- and PKC-dependent mechanisms in human kidney cells (Yu et al. 2011). In 

addition, Han et al reported that D1-like receptors regulate NADPH oxidase activity 

through the redistribution of NOX2 and subunits (p22phox and Rac1) in membrane 

microdomains and intracellular vesicles (Han et al. 2008).  

In summary, although the cell signaling pathways of the dopamine receptor family 

are complex and interconnected, they work together to maintain normal blood pressure 

at least in part by inhibiting RAAS activity and ROS production. The availability of 

dopamine to activate its specific receptors is determined by factors affecting renal 

synthesis, mainly the amounts of L-DOPA and sodium delivered to the kidney and the 

degree of degradation of the amine (Soares-da-Silva et al. 1993).  Moreover, the activity of 

the amino acid transporters that promote L-DOPA uptake in renal epithelial cells is 

thought to rate-limit the synthesis of renal dopamine. 

 

Epithelial amino acid transporters  

Amino acid transporters are responsible for the uptake of amino acids derived 

from diet in the small intestine, the release into the blood, and subsequent uptake of 

amino acids from the blood into tissues such as liver or skeletal muscle or the 

reabsorption of amino acids from the urine along the kidney nephron. In the central 
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nervous system, amino acid transporters regulate the transport of amino acids across the 

blood-brain barrier or are involved in the reuptake of neurotransmitter amino acids such 

as glycine, aspartate, or glutamate from the synaptic cleft and are important for the 

metabolic coupling of astrocytes and neurons. Other amino acid transporters are involved 

in basic cellular functions such as cell volume regulation, the synthesis of glutathione 

(GSH), the provision of amino acids for protein synthesis and energy metabolism. 

In the kidney nephron, the proximal tubule is the major site of nutrient 

reabsorption. About 95–99% of all amino acids are reabsorbed in the proximal convoluted 

tubule and proximal straight tubule. All kidney cells express some amino acid transporters 

that are involved mostly in house-keeping functions. Some kidney cells also require 

additional uptake of amino acids, which are used as precursors for the synthesis of 

paracrine and/or endocrine substances such as NO (Verrey et al. 2009). As reviewed by 

Broer (Broer 2008), five transport activities in kidney and intestine were proposed: 1) the 

“neutral system” transporting all neutral amino acids; 2) the “basic system” transporting 

cationic amino acids together with cystine; 3) the “acidic system” transporting glutamate 

and aspartate; 4) the “iminoglycine system” transporting proline, hydroxyproline, and 

glycine; and 5) the β-amino acid system. The epithelial amino acid transport systems and 

their mediators are summarized in Table 1. 
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Table 1–Epithelial amino acid transport systems and their mediators (Broer 2008). 

 

NR, not reported; A, antiport; AA0, neutral amino acids; AA+, cationic amino acids; U, uniport; S, 

symport; S-AA0, symport together with neutral amino acids; K, kidney; I, intestine; AM, apical 

membrane; BM, basolateral membrane; Ub, ubiquitous. Amino acids are given in one-letter codes. 

O, ornithine; HO-P, hydroxyproline. Affinity: high, <100 μM; medium, 100 μM to 1 mM; low, >1 

mM. * Expression in epithelial cells of kidney and intestine. 

 

 

Luminal amino acid transporters of the proximal tubule 

Neutral amino acids represent more than 80% of the free plasma amino acids and 

are all transported by the luminal B0AT1 transporter (SLC6A19) (Figure 3), though with 

different apparent affinities (Broer et al. 2004; Verrey et al. 2009). This neutral amino acid 

cotransporter with broad selectivity is expressed in the luminal brush border membrane 

of the early segments of the kidney proximal tubule and similarly along the small intestine 
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(Romeo et al. 2006). Expressed in Xenopus oocytes, the B0AT1 cDNA induces a sodium-

dependent, chloride-independent uptake of neutral amino acids with an affinity for L-

leucine uptake (Broer et al. 2004). Its defect has been shown to cause Hartnup disorder, 

an autosomal recessive condition which is characterized by a urinary loss of neutral amino 

acids (Kleta et al. 2004). Another member of the same SLC6 amino acid transporter 

cluster, SLC6A20 in human, has been identified as the molecular correlate of system 

IMINO, mediating the cotransport of L-proline (Kowalczuk et al. 2005; Takanaga et al. 

2005). This transporter called SIT1 or IMINOB was shown to localize to the brush border 

membrane of the proximal tubule in mice by immunofluorescence (Romeo et al. 2006). As 

expected for system IMINO, it also transports hydroxy-L-proline and betaine but does not 

transport glycine. SIT1/IMINOB appears to require, as B0AT1 and B0AT3, the association 

with collectrin for its surface expression in kidney. This is suggested by the low brush 

border membrane expression of SIT1/IMINOB in collectrin knock-out mice and by the large 

urinary L-proline loss in these animals (Malakauskas et al. 2007). Collectrin (Tmem27) is a 

relatively short type I transmembrane protein (25 kDa) that is approximately 40% identical 

with the membrane anchor region of the RAS enzyme ACE2 (Danilczyk et al. 2006; 

Malakauskas et al. 2007). 

Cationic amino acids and the disulfide-linked L-cysteine dimmer enter the 

epithelial cells via the cystinuria transporter (b0,+AT) (Figure 3). This transporter is made of 

a catalytic subunit belonging to the SLC7 family and a disulfide linked accessory subunit 

referred to as heavy chain and called rBAT (SLC3A1) (Broer 2008). Similarly to the 
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basolateral heterodimeric exchangers of the SLC7/SLC3 family, it functions as an 

obligatory antiporter and specifically exchanges its cationic substrates or L-cystine against 

intracellular neutral amino acids. b0,1AT mRNA is expressed in kidney and small intestine, 

and, to a smaller extent, in heart, liver, placenta, and lung. rBAT protein was found in the 

apical membrane of the renal proximal tubule, increasing from the S1 to the S3 segment 

and in the microvilli of the small intestine. On the other hand, although b0,1AT protein is 

also expressed in the apical membrane of the proximal tubule, expression levels decrease 

from the S1 to the S3 segment (Wagner et al. 2001). 

The high-affinity transporter for anionic amino acids, referred to as EAAT3 

(SLC1A1) (Figure 3), is expressed in the intestine and kidney, as well as in the brain (Kanai 

et al. 1992; Hediger 1999). It is localized in the proximal tubule brush border membrane 

with an axial gradient: low amounts in S1 and highest levels in the later segments S2 and 

S3 (Hediger 1999). This transporter has been shown to cotransport its substrates with 

three sodium ions and one proton in exchange for one potassium ion (Zerangue et al. 

1996). Unlike the SLC6 and SLC7 transporters no SLC1 associated transmembrane protein 

has been identified.  

ASCT2 (SLC1A5) is a sodium -dependent exchanger of neutral amino acids that 

belongs to the SLC1 family and has been shown to be expressed at the mRNA level in 

kidney. ASCT transporters are sodium-dependent obligatory exchangers of amino acids (in 

particular alanine, serine, cysteine, and threonine) that are structurally related to the 

EAAT transporters. ASCT2 belongs to a restricted group of transporters that share 
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specificity for glutamine, since glutamine is the major precursor of urinary ammonia, thus 

playing a key role in acid-base homeostasis (Utsunomiya-Tate et al. 1996; Avissar et al. 

2001). 

Basolateral amino acid transporters of the proximal tubule 

The best characterized basolateral transporters of the proximal tubule amino acid 

reabsorption machinery function as obligatory exchangers (System L and system y+L) 

(Figure 3) and thus do not perform net basolateral amino acids export (Verrey et al. 2005). 

System L conveys the sodium-independent transport of large branched and aromatic 

neutral amino acids in almost all types of cells (Wagner et al. 2001). The first isoform of 

system L, LAT1 (SLC7A5), preferentially mediates the sodium-independent transport of 

large neutral amino acids such as leucine, isoleucine, valine, phenylalanine, tyrosine, 

tryptophan, methionine and histidine and is a major route for providing tumour cells with 

branched and aromatic amino acids (Kanai et al. 1998). LAT1 is widely expressed in 

nonepithelial cells such as brain, spleen, thymus, testis, skin, liver, placenta, skeletal 

muscle, and stomach and has a high affinity for amino acid substrates (Kanai et al. 1998; 

Prasad et al. 1999). Recent studies have demonstrated that LAT1 is a major L-type amino 

acid transporter in a variety of cancer cells including hepatic, oral, breast, bladder and 

colon (Storey et al. 2005). Although the transport of leucine by LAT1 in pig LLC-PK1 renal 

cells has been previously described (Soares-da-Silva et al. 2004), LAT1 has a very limited 

tissue distribution in the kidney (Pinho et al. 2007). The heavy subunit 4F2hc brings LAT1 

to the plasma membrane. In the absence of 4F2hc, LAT1 is found in intracellular 
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compartments, whereas 4F2hc can reach the plasma membrane independently 

(Nakamura et al. 1999). Moreover, 4F2hc interacts with several light chains to form 

system L (with LAT1 and LAT2), system y+L (with y+LAT1 and y+LAT2), system Xc
- (with xCT), 

or system asc (with asc1) (Wagner et al. 2001).  

LAT2 (SLC7A8) is highly expressed in polarized epithelia (Segawa et al. 1999), 

suggesting an important role in transepithelial amino acid transport, but it has a lower 

affinity for amino acid substrates than LAT1 (Segawa et al. 1999; Wagner et al. 2001). LAT2 

is a major sodium-independent amino acid transporter and its functionality is dependent 

on the abundance of 4F2hc. The heterodimerization of LAT2 with 4F2hc is a prerequisite 

for the transporter to reach the cell surface. Moreover, 4F2hc may regulate the functional 

surface expression of the transporter (Nakamura et al. 1999; Pineda et al. 1999). 

Expression of LAT2 and 4F2hc induces amino acid transport with characteristics of system 

L, namely, sodium-independent transport of neutral amino acids sensitive to classic 

system L inhibitors (Pineda et al. 1999; Segawa et al. 1999). LAT2 also transports small 

neutral amino acids such as L-alanine, L-glycine, L-cysteine, and L-serine and glutamine, all 

of which are poor substrates for LAT1 (Pineda et al. 1999; Segawa et al. 1999; Wagner et 

al. 2001). 

System y+L was first functionally described in erythrocytes (Deves et al. 1992). 

However, its presence has also been revealed in placenta, liver, small intestine and kidney 

(Desjeux et al. 1980; Rajantie et al. 1981; Eleno et al. 1994; Furesz et al. 1997). It has an 

axial distribution along the kidney proximal tubule and small intestine similar to that of 
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LAT2-4F2hc (Bauch et al. 2003; Dave et al. 2004). y+LAT1 (SLC7A7) plays an important role 

for the transepithelial transport of its cationic substrates which it transports out of the 

cells in exchange for extracellular neutral amino acids and sodium (Torrents et al. 1998; 

Pfeiffer et al. 1999). The functional importance of this electroneutral exchange for 

transcellular cationic amino acid transport is demonstrated by the disease, lysinuric 

protein intolerance, that is caused by mutations of the y+LAT1 gene which is characterized 

by the urinary loss of L-arginine, L-ornithine, and L-lysine and by a poor intestinal 

absorption of these amino acids (Borsani et al. 1999; Torrents et al. 1999). This leads to 

low plasma concentrations of these amino acids and to an impaired function of the urea 

cycle and hyperammonemia (Tanner et al. 2007). 
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Figure 3–Luminal and basolateral transporters belonging to the amino acid 

absorption/reabsorption machinery. Names of transporters and of the corresponding genes are 

indicated in rectangles. Recycling pathways are shown by dotted lines. AA, neutral amino acids; 

AA+, cationic amino acids; AA– anionic amino acids [Adapted from (Verrey et al. 2005)]. 

 

Modulation of amino acid transporters by oxidative stress 

Although the mechanisms responsible for the regulation of amino acid 

transporters are not fully understood, several factors have been shown to regulate their 

expression and/or activity. These factors include osmotic shock, growth factors, peptide 

hormones and protein phosphorylation (Fleck et al. 2003). Several evidence points 

towards the possible regulation of amino acid transport by oxidative stress. Oxidative 

stress has been found to stimulate the activity of NMDA receptors (Agostinho et al. 1995) 

and the calcium-independent, carrier-mediated release of glutamate and [3H]-D-aspartate 
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(Rego et al. 1996) from cultured retina cells. On the other hand, oxidative stress 

conditions induced by ascorbate/Fe2+ reduces significantly the activity of the excitatory 

amino acid (EAA) transporter, mainly by protein oxidation (Agostinho et al. 1997).  

The cystine/glutamate exchange system (Xc
-) is another amino acid transport 

system that is regulated by oxidative stress. System Xc
- transports one molecule of cystine, 

the oxidized form of cysteine, into cells and thereby releases one molecule of glutamate 

into the extracellular space. Cystine, a disulfide formed between two cysteine molecules, 

is the predominant form in the extracellular space, whereas cysteine is the prevailing form 

in cells due to highly reducing conditions. These amino acids are important not only as 

precursors for protein and antioxidant glutathione (GSH) biosynthesis, but also for the 

maintenance of physiological redox conditions inside/outside of the cell (Conrad et al. 

2011). One of most important features of system Xc
- is that its activity is highly inducible 

by various stimuli, including electrophilic agents like diethyl maleate, cystine deprivation 

in the culture medium, oxidized low density lipoprotein and hydrogen peroxide (Conrad et 

al. 2011).  

Peroxynitrite generated from the reaction of nitric oxide with superoxide anion 

leads to alterations in cell signaling and function via the modification of cellular lipids and 

protein thiols (Beckman 1996). In bovine aortic endothelial cells, 3-

morpholinosydnonimine (SIN-1), a donor of nitric oxide and peroxynitrite, caused an 

increase in L-cystine transport and intracellular glutathione (GSH) levels. Induction of L-

cystine transport in both aortic endothelial and smooth muscle cells in response to SIN-1 
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was abolished by inhibitors of protein and RNA synthesis. It has been suggested that 

under conditions of overproduction of NO or peroxynitrite in inflammation, endothelial 

cells can adapt by increasing system Xc
- transport activity and their GSH levels to 

counteract NO-mediated changes in cellular thiols (Li et al. 1999).  

More recently, exposure of Caco-2 cells to the S-nitrosothiol type nitric oxide 

donor, SNAP, was found to increase sodium-dependent alanine uptake mediated by 

ASCT2 (Uchiyama et al. 2005). Peroxynitrite stimulated sodium-dependent alanine 

transport, and the NADPH oxidase inhibitor DPI, and superoxide dismutase, partially 

inhibited SNAP induced sodium-dependent alanine transport which suggested that NO-

related radicals as well as NO itself might be responsible for stimulating ASCT2 (Uchiyama 

et al. 2005). 
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AIM 

The broad objective of this thesis is to gain further insight into the role of oxidative 

stress on the renal expression and regulation of the amino acid transporters potentially 

involved in the uptake of L-DOPA in hypertension and aging.  

 

The following questions were raised: 

CHAPTER I: Is the function and expression of sodium-dependent ASCT2 altered in 

hypertension? Does intracellular H2O2 play a role in the regulation of ASCT2 in 

immortalized renal proximal tubular epithelial (PTE) cells from WKY and SHR? Can H2O2 

modulate the activity of other transporters, such as NHE in PTE cells? 

CHAPTER II: What are the effects of aging on the renal oxidative stress status in WKY and 

SHR? 

CHAPTER III: How does aging affect the renal dopaminergic system and the regulation of 

LAT1, LAT2, 4F2hc, and ASCT2 in WKY and SHR? 

CHAPTER IV: Do age-related changes in the renal expression of amino acid transporters 

potentially involved in L-DOPA uptake parallel changes in the activation of the renal 

aldosterone/MR system? 
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CHAPTER I - H2O2 and the regulation of renal ASCT2 in hypertension 
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affinity high-capacity Na+-dependent alanine transport in SHR proximal tubular epithelial 

cells. Biochemical and Biophysical Research Communications 398 (3):553-558 
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Underexpression of the Na�-dependent neutral amino acid transporter ASCT2
in the spontaneously hypertensive rat kidney
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Pinho MJ, Pinto V, Serrão MP, Jose PA, Soares-da-Silva P.
Underexpression of the Na�-dependent neutral amino acid transporter
ASCT2 in the spontaneously hypertensive rat kidney. Am J Physiol
Regul Integr Comp Physiol 293: R538–R547, 2007. First published
May 2, 2007; doi:10.1152/ajpregu.00906.2006.—This study exam-
ined the inward transport of L-[14C]alanine, an ASCT2 preferential
substrate, in monolayers of immortalized renal proximal tubular
epithelial (PTE) cells from Wistar-Kyoto (WKY) and spontaneously
hypertensive (SHR) rats. The expression of ASCT2 in WKY and SHR
PTE cells and kidney cortices from WKY and SHR was also evalu-
ated. L-[14C]alanine uptake was highly dependent on extracellular
Na�. Replacement of NaCl by LiCl or choline chloride abolished
transport activity in SHR and WKY PTE cells. In the presence of the
system L inhibitor BCH, Na�-dependent L-alanine uptake in WKY
and SHR PTE cells was inhibited by alanine, serine, and cysteine,
which is consistent with amino acid transport through ASCT2. The
saturable component of Na�-dependent L-alanine transport under
Vmax conditions in SHR PTE cells was one-half of that in WKY PTE
cells, with similar Km values. Differences in magnitude of Na�-
dependent L-alanine uptake through ASCT2 between WKY and SHR
PTE cells correlated positively with differences in ASCT2 protein
expression, this being more abundant in WKY PTE cells. Abundance
of ASCT2 transcript and protein in kidney cortices of SHR rats was
also lower than that in normotensive WKY rats. In conclusion,
immortalized SHR and WKY PTE cells take up L-alanine mainly
through a high-affinity Na�-dependent amino acid transporter, with
functional features of ASCT2 transport. The activity and expression of
the ASCT2 transporter were considerably lower in the SHR cells.

L-alanine transport; hypertension; alanine-serine-cysteine-threonine
transporter-2

TRANSPORT OF NEUTRAL amino acids across membranes of mam-
malian cells proceeds through a variety of different transport
systems (reviewed in Refs. 4, 9, and 18). At the level of the
kidney and small intestine epithelia, distinct transporters are
located in the apical and basolateral membranes to ensure the
vectorial transport of amino acids across the epithelial cells
(13). Recently, several amino acid transporters have been
identified and shown to play a role in the cellular uptake and/or
basolateral extrusion of neutral amino acids. Indeed, it has been
proposed (13) that neutral amino acids are absorbed from the
luminal fluid via Na�-dependent systems, like the proline
transporter IMINO/SIT (SLC6A20) (20, 37), the neutral amino
acid exchanger ASCT2 (SLC1A5) (16), or the broad specific
neutral amino acid transporter B0AT1 (SLC6A19), whose
molecular structure has been identified recently (7). The exit
path for neutral amino acids to the blood stream is supposed to

proceed through the system L. In kidney and small intestine
epithelial cells, type-2 L-amino acid transport (LAT2), together
with 4F2hc, was found to be present in basolateral membrane,
which is well suited for the exit path of intracellular amino
acids (28, 32). System y�L, most likely y�LAT1 (38, 45),
located at the basolateral membrane, is expected to mediate the
obligatory exchange of intracellular basic amino acids against
extracellular neutral amino acids, cotransported with sodium
ions (27). Because these two transport systems function as
obligatory exchangers, they cannot contribute to the net trans-
epithelial transport of amino acids but are thought to play a role
in extending the transport selectivity of putative parallel func-
tioning by unidirectional transporters.

System ASC transport activity is ubiquitous and character-
ized by its preference for small neutral amino acids including
alanine, serine, and cysteine. The system ASC of neutral amino
acid transporters (SLC1A4 and SLC1A5) belongs to the solute
carrier family-1 (SLC1), which also includes the high-affinity
glutamate transporters (13, 14, 40, 46). Human ATB0 was
identified by RT-PCR and enzymatic restriction analysis in the
human proximal tubule cell line HKPT (17) and corresponds to
rodent ASCT2. The two ASC transporters exhibit distinct
substrate selectivity. SLC1A4 encodes the Na�-dependent
amino acid transporter ASCT1, which accepts L-alanine, L-
serine, L-theonine, and L-cysteine in a stereospecific manner.
ASCT2, the second isoform of the ASC transport system, is
encoded by SLC1A5. In the kidney and intestine, ASCT2 is
present in the brush-border membranes of the proximal tubule
cells and enterocytes, respectively (3). In addition to the typical
system ASC substrates, it also accepts L-glutamine and L-
asparagine at higher affinity as well as methionine, leucine, and
glycine with lower affinity. Both ASCT1 and ASCT2 mediate
the Na�-dependent obligatory exchange of substrate amino
acids (5, 38, 46).

We previously reported that overexpression of Na�-inde-
pendent LAT2 in the spontaneously hypertensive rat (SHR)
kidney is organ specific and precedes the onset of hyperten-
sion. This overexpression is accompanied by an enhanced
ability to take up L-3,4-dihydroxyphenylalanine (L-DOPA)
(29). These observations formed the basis for the hypothesis
that overexpression of renal LAT2 leads to enhanced renal
production of dopamine in the SHR in an attempt to compen-
sate for the decreased dopamine-mediated natriuresis generally
observed in this genetic model of hypertension. Furthermore,
we have demonstrated that immortalized renal proximal tubu-
lar epithelial (PTE) cells from Wistar-Kyoto rats (WKY) and
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SHR transport L-DOPA quite efficiently through the apical cell
border, in a Na�-independent manner (30). LAT2 was almost
exclusively responsible for L-DOPA transport in WKY cells,
whereas in SHR cells, 25% of L-DOPA uptake was through a
Na�-dependent system, 25% through LAT2, and the remaining
50% through LAT1. Differences in L-DOPA handling between
SHR and WKY cells may result from the overexpression of
LAT1 and LAT2 transporters in the former (30).

In an attempt to understand better differences in the handling
of L-amino acids in hypertension, the present study examined
the function and expression of ASCT2. The inward transport of
L-[14C]alanine, an ASCT2 preferential substrate, was evaluated
in monolayers of immortalized renal PTE cells from the SHR
and its normotensive control, WKY. The quantification of
ASCT2 mRNA and ASCT2 protein was performed in immor-
talized renal PTE cells and kidney cortices from WKY
and SHR.

METHODS AND MATERIALS

Cell culture. Immortalized renal PTE cells from WKY and SHR
(44) were maintained in a humidified atmosphere of 5% CO2-95% air
at 37°C. SHR and WKY PTE cells were grown in DMEM Nutrient
Mixture-Ham’s F-12 (Sigma, St. Louis, MO) supplemented with 100
U/ml penicillin G, 0.25 �g/ml amphotericin B, 100 �g/ml streptomy-
cin (Sigma), 5% fetal bovine serum (Sigma), and 25 mM HEPES
(Sigma). For subculturing, the cells were dissociated with 0.10%
trypsin-EDTA, split 1:4, and subcultured in Costar flasks with 75- or
162-cm2 growth areas (Costar, Badhoevedorp, The Netherlands). The
cell medium was changed every 2 days, and the cells reached
confluence after 3–5 days of incubation. For 24 h before each
experiment, the cells were maintained in fetal bovine serum-free
medium. Experiments were generally performed 2–3 days after cells
reached confluence and 6–8 days after the initial seeding; each
squared centimeter contained �80–100 �g of cell protein.

Uptake of L-amino acids. Flux measurements in immortalized renal
PTE cells from the WKY and SHR were performed as previously
described (30). Briefly, on the day of the experiment, growth medium
was aspirated, and the cell monolayers were preincubated for 15 min
in Hanks’ medium at 37°C. The Hanks’ medium had the following
composition (in mM): NaCl 137, KCl 5, MgSO4 0.8, Na2HPO4 0.33,
KH2PO4 0.44, CaCl2 0.25, MgCl2 1.0, Tris �HCl 0.15, and sodium
butyrate 1.0, pH � 7.4. Uptake was initiated by the addition of 1 ml
of Hanks’ medium with a given concentration of the substrate. Time
course studies were performed in experiments in which cells were
incubated with 0.25 �M L-[14C]alanine for 1, 3, 6, 12, 30, and 60 min.
Saturation experiments were performed in cells incubated for 6 min
with 0.25 �M radiolabeled amino acid in the absence and in the
presence of increasing concentrations of the unlabeled substrate. To
achieve Na�-free and Cl�-free conditions, NaCl was replaced by LiCl
or sodium gluconate (NaGlu). In experiments performed to determine
the Na� dependence of transport, sodium chloride was replaced by an
equimolar concentration of choline chloride. To determine whether
L-[14C]alanine transport is an electrogenic process, cells were depo-
larized by the addition of 50 mM KCl or NH4Cl (5); in these
experiments, 100 mM sucrose added to Hanks’ balancing for the
increased osmolarity represented the control situation. In inhibition
studies, test substances were applied from the apical side and were
present during the incubation period only. During preincubation and
incubation, the cells were continuously shaken and maintained at
37°C. Uptake was terminated by the rapid removal of uptake solution
by means of a vacuum pump connected to a Pasteur pipette followed
by a rapid wash with cold Hanks’ medium. Subsequently, cells were
solubilized by 0.1% vol/vol Triton X-100 (dissolved in 5 mM

Tris �HCl, pH 7.4), and radioactivity was measured by liquid scintil-
lation counting.

Immunoblotting. Cell monolayers and renal cortical membranes
from the WKY and SHR were washed with PBS and then lysed in
RIPA buffer containing 150 mM NaCl, 50 mM Tris �HCl, pH 7.4, 5
mM EDTA, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS,
100 �g/ml PMSF, 2 �g/ml leupeptin, and 2 �g/ml aprotinin. Protein
concentration was determined using a protein assay kit (Bio-Rad
Laboratories, Hercules, CA), with bovine serum albumin as standard.
Cell lysates were boiled in sample buffer (35 mM Tris �HCl, pH 6.8,
4% SDS, 9.3% dithiothreitol, 0.01% bromophenol blue, 30% glyc-
erol) at 95°C for 5 min. Samples containing 60 �g of protein were
separated by SDS-PAGE with 10% polyacrylamide gel and then
electroblotted onto nitrocellulose membranes (Bio-Rad). Blots were
blocked for 1 h with 5% nonfat dry milk in PBS (10 mmol/l PBS) at
room temperature with constant shaking. Blots were then incubated
with anti-ASCT2 polyclonal antibody (1:800; Chemicon Interna-
tional) in 5% nonfat dry milk in PBS-T (0.01% Tween 20-PBS)
overnight at 4°C. The immunoblots were subsequently washed and
incubated with fluorescently labeled goat anti-rabbit (1:10,000; IRDye
800, Rockland) or the fluorescently labeled goat anti-mouse secondary
antibody (1:5,000; AlexaFluor 680, Molecular Probes) for 60 min at
room temperature and protected from light. The membrane was
washed and imaged by scanning at both 700 and 800 nm with an
Odyssey Infrared Imaging System (LI-COR Biosciences).

RT-PCR. One microgram of total RNA was reverse transcribed to
cDNA with SuperScript First Strand Synthesis System for RT-PCR
(Invitrogen) according to manufacturer’s instructions. The reverse
transcription was performed at 50°C and with the use of 5 �g/�l
random hexamers. The ASCT2 cDNA was amplified by PCR using
the following set of rat-specific primers: forward 5�-GCC TGA TCG
GAG GTG CAG CC-3� and reverse 5�-CGG GTA AAG AGG AAG
TAG ATG-3�, corresponding to nucleotides 334 and 983 of the rat
cDNA (GenBank accession no. AJ132846). The B0,� cDNA was
amplified by PCR using the following set of primers: forward 5�-AAC
AGT ATT GGG ATA AAG TGA-3� and reverse 5�-TAA TGG CAT
CAG AGT AAC AG-3�, corresponding to nucleotides 755 and 1136
of the rat B0,� mRNA sequence (GenBank accession no.
NM_001037544). PCR was performed with Platinum TaqPCRx DNA
Polymerase (Invitrogen). Amplification conditions were as follows:
hot start of 2 min at 94°C; 30 cycles of denaturing (94°C for 30s),
annealing (55°C for 30 s), and extension (72°C for 45 s); and a final
extension of 7 min at 72°C. The PCR products were separated by
electrophoresis in a 2% agarose gel and visualized under UV light in
the presence of ethidium bromide.

Real-time PCR quantification of rat ASCT2. Kidney cortices from
WKY and SHR (4 and 12 wk of age) and immortalized renal PTE
WKY and SHR cells were homogenized (Diax, Heidolph) in Trizol
reagent (75 mg/ml; Invitrogen), and total RNA was extracted accord-
ing to the manufacturer’s instructions. All animal interventions were
performed in accordance with the European Directive no. 86/609 and
the rules of the Guide for the Care and Use of Laboratory Animals,
7th ed, Washington, DC. Instittue for Laboratory Animal Research
(ILAR), 1996. The RNA preparation was further treated with DNase
(Ambion), to eliminate potential genomic DNA contamination. Re-
verse transcription was performed with SuperScript First Strand
System for RT-PCR (Invitrogen), using 5 �g/�l random hexamers as
primers at 50°C, according to the manufacturer’s instructions. cDNA
was synthesized from 1 �g of total RNA in a total volume of 20 �l.
Standards for ASCT2 and GAPDH were obtained by conventional
PCR amplification, using Platinum TaqPCRx DNA Polymerase (Life
Technologies) and the following rat-specific primers: rASCT2 for-
ward primer 5�-CGT CCT CAC TCT TGC CAT CAT-3� and reverse
primer 5�-CCA AAA GCA TCA CCC TCC AC-3� (nucleotide posi-
tions 1298 and 1427 in rat ASCT2 sequence NM_175758); rGAPDH
forward primer 5�-GGC ATC GTG GAA GGG CTC ATG AC-3� and
reverse primer 5�-ATG CCA GTG AGC TTC CCG TTC AGC-3�
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(nucleotide positions 1348 and 1512 in rat GAPDH sequence
M17701). PCR products were gel purified with Qiaex II (Qiagen),
quantified by spectrophotometry at 260 nm, and further diluted ac-
cordingly in serial steps. All PCR fragments were cloned and se-
quenced. Real-time PCR was carried out using a LightCycler (Roche,
Mannheim, Germany). Each RT-PCR reaction mixture (50 �l) in-
cluded reverse transcription products corresponding to 50 ng of total
RNA or standard DNA, 1� SYBR Green I master mix (LightCycler
FastStart DNA MasterPLUS SYBR Green I, Roche), and 0.5 �M each
forward and reverse primer, mentioned above. Cycling conditions
were as follows: denaturation (95°C for 1 min), amplification and
quantification (95°C for 10 s, 60°C for ASCT2 and 62°C for GAPDH
for 10 s, and 72°C for 5 s, with a single fluorescence measurement at
the end of the 72°C for 5 s segment) repeated 35 times, a melting
curve program (65–95°C with a heating rate of 0.1°C/s and continu-
ous fluorescence measurement), and a cooling step to 40°C. Ampli-
fication specificity was checked using melting curves, following the
manufacturer’s instructions. In addition, PCR products were separated
by electrophoresis in a 2% TBE agarose gel to confirm that correct
band sizes were obtained. Target mRNAs were quantified by measur-
ing the threshold cycle (when fluorescence is statistically significantly
above background) and reading against a calibration curve. Results
were analyzed with LightCycler Software v.3.5 (Roche Applied
Science, Mannheim, Germany) using the second derivate maximum
method. The relative amount of each mRNA was normalized to the
housekeeping gene (GAPDH) mRNA. Each sample was tested in
duplicate.

Drugs. L- and D-Amino acids, 2-aminobicyclo-(2,2,1)-heptane-2-
carboxylic acid (BCH), and N-(methylamino)-isobutyric acid were
purchased from Sigma Chemical (St. Louis, MO). L-[14C]alanine
(specific activity 152 mCi/mmol) was purchased from Amersham
Pharmacia Biotech (Little Chalfont, UK).

Data analysis. Km and maximum velocity (Vmax) values for the
uptake of L-[14C]alanine were determined from a competitive uptake
inhibition protocol (10) and calculated from nonlinear regression
analysis using the GraphPad Prism statistics software package (21).
For calculation of the IC50, the parameters of the equation for one-site
inhibition were fitted to the experimental data (21). Arithmetic means
are given with SE. Statistical analysis was performed by one-way
analysis of variance (ANOVA) followed by Newman-Keuls test for
multiple comparisons. A P value � 0.05 was assumed to denote a
significant difference.

RESULTS

Inward transfer of L-alanine. To determine the initial rates of
uptake, SHR and WKY PTE cells were incubated with a
nonsaturating (0.25 �M) concentration of L-[14C]alanine for 1,
3, 6, 12, 30, and 60 min. In both types of cells, uptake of
nonsaturating concentration of L-[14C]alanine was linear with
time up to 60 min of incubation (Fig. 1). As depicted in Fig. 1,
the initial rate for L-[14C]alanine uptake was significantly lower
in SHR than in WKY PTE cells.

Since transfer of neutral amino acids across the plasma
membrane can be mediated by both Na�-dependent and Na�-
independent transport systems, a set of experiments was per-
formed replacing NaCl with an equimolar concentration of
choline chloride to determine a potential Na� dependence of
L-[14C]alanine apical uptake. Na� removal from the uptake
solution almost completely abolished transport activity in both
SHR and WKY PTE cells (Fig. 2A). Complete Na� activation
curves are shown in Fig. 2B. Linearization of data according to
the Hill equation yielded a Hill coefficient of 0.98 and 1.0 for
SHR and WKY PTE cells, respectively. A more detailed
analysis of the Na�-dependent L-[14C]alanine uptake using

Fig. 1. Time course of L-[14C]alanine transport in immortalized Wistar-Kyoto
(WKY) and spontaneously hypertensive rat (SHR) proximal tubular epithelial
(PTE) cells. Values represent means of 4–6 experiments per group, and error
bars show SE. Significantly different from values for WKY PTE cells
(*P � 0.05).

Fig. 2. A: effect of sodium chloride replacement by an equimolar concentra-
tion of choline chloride on 0.25 �M [L-14C]alanine transport. Columns
represent the mean of 4 experiments per group; vertical lines show SE.
B: [L-14C]alanine transport as a function of extracellular sodium concentration
in immortalized WKY and SHR PTE cells. Symbols represent means of 4
experiments per group; error bars show SE. Significantly different from
corresponding control values (*P � 0.05) and corresponding values for WKY
PTE cells (#P � 0.05).
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Lineweaver-Burk plots revealed the presence of high- and
low-affinity uptake processes in both WKY and SHR PTE cells
(Fig. 3, A and B). The kinetic parameters (Km and Vmax) for the
high- and low-affinity Na�-dependent L-[14C]alanine uptake in
WKY and SHR PTE cells are given in Table 1. The effect of
BCH on high- and low-affinity Na�-dependent L-[14C]alanine
uptake was also evaluated. In the WKY PTE cells, BCH
induced a decrease in the affinity for Na� without changes in
Vmax values, in both low- and high-affinity components, thus
behaving as a competitive inhibitor (Table 1). In the SHR PTE
cells, the effects of BCH on Km and Vmax for the high- and
low-affinity components of Na�-dependent L-[14C]alanine up-
take did not attain a statistical significance (Table 1).

The replacement of NaCl by LiCl reduced the transport
activity by �90% in both SHR and WKY PTE cells (Fig. 4A).
Replacing NaCl with NaGlu produced a significant reduction
in L-alanine uptake in both WKY and SHR PTE cells, this
being more marked in the latter (Fig. 4A). The addition of 50
mM KCl, but not of 50 mM NH4Cl, to the uptake solution, a
manipulation that reduces cell membrane potential, resulted in

a slight but statistically significant (P � 0.05) reduction
(�13% decrease) in L-[14C]alanine uptake (Fig. 4B), suggest-
ing that alanine uptake occurs mainly through nonelectrogenic
transporters.

In the presence of extracellular 140 mM Na�, the system A
inhibitor N-(methylamino)-isobutyric acid (MeAIB) had no
inhibitory effect on L-alanine accumulation in both types of
cells (WKY, 91 	 8%, and SHR, 115 	 7% of control).

Subsequent experiments were designed to determine the
apparent kinetics of L-alanine transporters under Na� Vmax

experimental conditions (extracellular 140 mM Na�). Cells
were incubated for 6 min in the absence or presence of
increasing concentrations of unlabeled substrate (3–3,000
�M). The effect of BCH on the kinetic parameters was also
investigated. In both types of cells, the accumulation of
L-[14C]alanine was found to be concentration dependent and a
saturable process (Fig. 5). The apparent kinetic parameters of
L-[14C]alanine uptake, determined by nonlinear analyses of the
inhibition curves, are given in Table 2. The transport capacity
of the saturable component of L-[14C]alanine transport in SHR
was lower than that for WKY PTE cells, at all substrate
concentrations with similar Km values (Table 2). Experiments
were also conducted in the presence of BCH to reduce the
contribution of L-type amino acid transport. In the presence of
BCH, Km values for L-[14C]alanine uptake in SHR PTE cells
were markedly increased without changes in Vmax, whereas Km

values in WKY PTE cells changed only slightly (Table 2).
Substrate selectivity of L-alanine uptake was investigated by

inhibition experiments in which the accumulation of 0.25 �M
L-[14C]alanine was measured in the presence of 1 mM unla-
beled amino acids and selective analogs (Fig. 6A). In both cell
lines, L-alanine uptake was markedly (
80%) inhibited by
L-isomers of neutral amino acids, such as alanine, serine,
threonine, and cysteine, which is consistent with amino acid
transport through ASCT2. Nevertheless, the profile of inhibi-
tion differs considerably in the case of other neutral and
aromatic amino acids, such as leucine, isoleucine, phenylala-
nine, methionine, tyrosine, and histidine, which, in WKY PTE
cells, produced moderate inhibition (10–50%). By contrast, in
SHR PTE cells, neutral and aromatic amino acids produced a
high degree of inhibition (75–90%) on L-[14C]alanine uptake.
The basic amino acids lysine and arginine also reduced the
accumulation of L-[14C]alanine in SHR PTE cells. In WKY

Table 1. Na�-Km and Vmax values for uptake of
L -[14C]alanine in immortalized WKY and SHR PTE cells

WKY SHR

Na�-Km Vmax Na�-Km Vmax

Vehicle
High affinity 18	1 59	2 9	1 15	1
Low affinity 55	4† 105	3† 182	14† 111	23†

BCH, 3 mM
High affinity 29	3* 58	2 23	8 14	4
Low affinity 155	12*† 118	5† 105	33† 58	18†

Values are means 	 SE of 6 experiments/group; Na�-Km (mM). Vmax,
maximum velocity (pmol �mg protein�1 �6 min�1); WKY, Wistar Kyoto rats;
SHR, spontaneously hypertensive rats; PTE cells, proximal tubular epithelial
cells; BCH, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid. *Significantly
different from corresponding control values (P � 0.05); †significantly differ-
ent from corresponding values for the high-affinity state (P � 0.05).

Fig. 3. Lineweaver-Burk reciprocal plots of velocity (V) and substrate con-
centrations ([S]) are presented for L-[14C]alanine transport as a function of
extracellular sodium concentration in immortalized WKY (A) and SHR (B)
PTE cells. Lines were derived from a weighted least squares analysis of the
data points. Inset: Lineweaver-Burk reciprocal plots of velocity and substrate
for the low-affinity component.
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PTE cells, L-alanine uptake was also inhibited by glutamine
and asparagine.

To prove that the uptake of L-[14C]alanine occurs through
system ASC, substrate specificity was examined in the pres-
ence of BCH 3 mM. As shown in Fig. 6B, the SHR cell profile
of inhibition changed considerably, becoming less sensitive to
glycine, isoleucine, phenylalanine, methionine, tyrosine, and
histidine (0–35% inhibition) as well as to cationic amino acids.
By contrast, glutamine was able to reduce significantly
L-[14C]alanine uptake in SHR PTE cells. WKY PTE cells were
less affected by the presence of 3 mM BCH in the uptake
solution.

These results indicate that L-alanine transport in SHR and
WKY PTE cells is largely promoted through a high-affinity,
Na�-dependent, Li�-sensitive amino acid transporter, insensi-
tive to amino acid analog MeAIB, with specificity for alanine,
serine, and cysteine. These are features of ASC-like activity.
As evidenced by Vmax values, the Na�-dependent and Li�-
sensitive transport of L-[14C]alanine was lower in SHR than in
WKY PTE cells. However, in SHR PTE cells, L-alanine trans-
port was sensitive to BCH as well as to basic amino acids, and
the absence of Cl� in the media inhibited the uptake. These
observations suggest that, in SHR PTE cells, the Na�-depen-
dent component might be the combination of system B0,� and
ASCT2.

Expression of ASCT2. The presence of ASCT2 protein in
SHR and WKY PTE cells was studied by means of immuno-
blotting using an antibody raised against ASCT2. As shown in
Fig. 7, antibodies against ASCT2 recognized the presence of
the protein in immortalized WKY and SHR PTE cells and in
renal cortical membranes from WKY and SHR. The abundance
of ASCT2 (corrected for �-actin) was lower in SHR than in
WKY PTE cells (Fig. 7A). The reduced ASCT2 protein ex-
pression in SHR PTE cells correlates positively with the lower
transport capacity observed in SHR PTE cells compared with
WKY PTE cells. The reduced ASCT2 protein expression in the
SHR was also observed in renal cortical membranes in both 4-
and 12-wk-old rats (Fig. 7, B and C).

ASCT2 transcript abundance. Detection of ASCT2 tran-
script in immortalized PTE cells and kidney cortices from
WKY and SHR at 12 wk of age was performed by conven-
tional RT-PCR, using rat-specific primers. As depicted in
Fig. 8A, all samples amplified the expected 650-bp fragment.
Transcript abundance of ASCT2 was measured by quantitative
real-time PCR in immortalized PTE cells and kidney cortices
from WKY and SHR. The expression of the ASCT2 transcript
was normalized to that of the housekeeping gene GAPDH,
which was identical in WKY and SHR. Data are presented as

Fig. 4. Ion dependence of L-[14C]alanine transport in immortalized WKY and
SHR PTE cells. A: replacement of NaCl with equimolar concentrations of
lithium chloride and sodium gluconate. B: addition of 50 mM KCl or 50 mM
NH4Cl; the control medium contained 100 mM sucrose to maintain osmolarity.
Columns represent the mean of 4–6 experiments per group; error bars show
SE. Significantly different from corresponding control values (*P � 0.05).

Fig. 5. Effect of increasing concentrations of L-alanine ([Ala]; 3, 10, 30, 100,
300, 1,000 and 3,000 �M) on the uptake of L-[14C]alanine (0.25 �M) in WKY
(A) and SHR (B) PTE cells in the absence and in the presence of 2-aminobi-
cyclo-(2,2,1)-heptane-2-carboxylic acid (BCH; 1 and 3 mM). Symbols repre-
sent means of 4–8 experiments per group; vertical lines show SE.
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the ratio of ASCT2 to GAPDH. The mRNA expression of
ASCT2 was lower (P � 0.05) in WKY than in SHR PTE cells
(Fig. 8B), which is not consistent with higher ASCT2 protein
in WKY than in SHR PTE cells. Posttranscriptional events
may be responsible for the low expression of ASCT2 protein in
SHR cells, as previously reported by Tailor et al. (36). As
depicted in Fig. 8C, the expression of ASCT2 transcript was
markedly lower in SHR than in WKY rat kidney cortices, at
both 4 and 12 wk of age, which correlated well with differ-
ences in ASCT2 protein expression between WKY and SHR.
ASCT2 mRNA decreased with age in both WKY and SHR.

Detection of B0,� transcript. To explore the possible in-
volvement of system B0,�, a Na�- and Cl�-dependent amino
acid transporter sensitive to BCH as well as neutral and basic
amino acids (35, 41), conventional RT-PCR was performed in

immortalized PTE cells and kidney cortices from WKY and
SHR. A specific primer set, designed based on the rat B0,�

sequence NM_00103744, was used. As shown in Fig. 9, the
expected 400-bp fragment corresponding to B0,� was present
only in the SHR immortalized PTE cells.

DISCUSSION

The present study shows that renal WKY and SHR PTE cells
take up L-[14C]alanine mainly through the high-affinity Na�-
dependent amino acid transporter system ASCT2. The SHR
PTE cells were found to be endowed with lower expression
level and function of ASCT2. Furthermore, findings described
here in immortalized WKY and SHR PTE cells are consistent
with that occurring in vivo in WKY and SHR. In fact, the
abundance of ASCT2 transcript and protein in kidney cortices
was also markedly lower in SHR than in normotensive WKY.

Although the expression of ASCT2 in renal epithelial cells
has been reported previously (3, 11, 15), it was only recently
that functional evidence for ASC-like activity in the apical
membrane of kidney epithelial cells was observed. Oppedisano
and co-workers observed transport activity with characteristics
of ASCT2 (22, 23) in liposomes obtained from rat renal apical
plasma membranes. The immortalized renal PTE cells from
WKY and SHR are well-established models in our laboratories
(25, 26, 29, 30) that have been used to evaluate both the
diversity and the regulation of amino acid transport systems
(29). In the present study, L-alanine was used to assess the
presence of ASCT2, one of the transport systems responsible
for the Na�-dependent inward transfer of this amino acid.

Fig. 6. L-Amino acid inhibition of the uptake of 0.25
�M L-[14C]alanine in immortalized WKY and SHR
PTE cells in the presence of 140 mM NaCl (A) and 140
mM NaCl with 3 mM BCH (B). Columns represent the
mean of 4–6 experiments per group; error bars
show SE.

Table 2. Kinetic parameters for uptake of L-[14C]alanine in
immortalized WKY and SHR PTE cells

WKY SHR

Km Vmax Km Vmax

L-Alanine 110	11 32,554	2,766 60	3* 13,816	628*
L-Alanine �1 mM

BCH 152	13† 32,862	2,573 141	20† 18,657	2,861*
L-Alanine �3 mM

BCH 152	8† 29,979	1,491 208	16†* 15,961	1,492*

Values are means 	 SE of 16 experiments/group; Km (�M); Vmax (pmol �mg
protein�1 �6 min�1). Significantly different from WKY cells (*P � 0.05) and
without BCH (†P � 0.05).
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However, transport systems B0 and ASCT2 are most likely to
be responsible for the Na�-dependent uptake of alanine in
kidney brush border membranes. WKY and SHR PTE cells
transport quite efficiently L-alanine through the apical cell
border, and several findings suggest that this uptake process is
a facilitated mechanism and proceeds through ASCT2. Most of
L-[14C]alanine entered the cells in a Na�-dependent manner,
and only a minor component of L-[14C]alanine uptake (�10–
15%) was found not to require extracellular Na�. The Na�

activation Hill coefficient of unity indicates a 1:1 Na�-to-
alanine activation stoichiometry for secondary active transport
in both cell lines. However, in-depth analysis of this process
revealed the presence of high- and low-affinity states for the
Na�-dependent L-[14C]alanine uptake in both cell lines. Al-
though this could be interpreted as the presence of two trans-
porter entities, it is likely that this is not the case. In fact, at low
extracellular Na� concentrations, the Na�-dependent L-[14C]
alanine uptake in both WKY and SHR PTE cells is a high-
affinity, low-capacity process, and increases in extracellular
Na� reduced the affinity for the substrate but increased the

capacity to take up L-[14C]alanine. Another finding that sup-
ports this suggestion is that BCH decreases the affinity of the
transporter but does not affect the Na�-dependent L-[14C]ala-
nine uptake, this being particularly evident for WKY PTE
cells. It is also likely that differences in the Na�-dependent
L-[14C]alanine uptake between WKY and SHR cells may be
related to the presence of two different Na�-dependent
L-[14C]alanine transporters in the latter, as discussed below.

The L-[14C]alanine uptake was unaffected by MeAIB, sug-
gesting that inward transfer in WKY and SHR PTE cells was
not promoted by the system A. BCH only reduced L-[14C]
alanine uptake �25%; this low level of sensitivity to BCH
supports the view that L-alanine transport is mediated by an
ASC-like transporter. Furthermore, L-[14C]alanine uptake was
also found to be markedly inhibited by Li�. Small neutral
amino acids such as alanine, serine, and cysteine significantly
inhibited the uptake of L-[14C]alanine in both cell lines. System
B0 is largely electrogenic, with high affinity for phenylalanine
(7). The uptake of L-[14C]alanine in WKY and SHR PTE cells
was largely nonelectrogenic. In the presence of BCH (to

Fig. 7. Immunoblot analysis of ASCT2 amino
acid transporter in immortalized WKY and
SHR PTE cells (A) and in kidney cortices from
WKY and SHR [at 4 wk (B) and 12 wk of age
(C)]. Each lane contains an equal amount of
protein (60 �g). Western blot analysis was
repeated 3 times. Significantly different from
corresponding values for WKY PTE cells (*P �
0.05).
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exclude the role of system L), L-[14C]alanine uptake in SHR
and WKY PTE cells was less sensitive to phenylalanine than to
alanine. Taken together, these results indicate that the Na�-
dependent alanine uptake in SHR and WKY cells proceeds
mainly through the Na�-dependent neutral amino acid ASCT2
transporter and not by systems B0 and A. This suggestion
agrees with data in previous reports that characterized the
Na�-dependent alanine uptake in renal epithelial cells (19, 34).

In SHR PTE cells, the ability of the transporter to take up
L-[14C]alanine appeared to be lower than that observed in

WKY PTE cells. As shown in time course experiments, the
initial rate of L-[14C]alanine uptake in SHR PTE cells was
already two times lower than that in WKY PTE cells. In
addition, the saturable component of Na�-dependent
L-[14C]alanine transport under Vmax conditions in SHR was
one-half that in WKY PTE cells. In the presence of BCH, the
system L inhibitor, Km values for transport increased and
became similar in both cell lines. The Km values reported here
are in close agreement with those described previously for
human ASCT2 expressed in Xenopusoocytes (�169.7 �M)
(24) and for the pig kidney epithelial cell line LLC-PK1 (380
�M) (19). Furthermore, differences in the magnitude of Na�-
dependent L-[14C]alanine uptake through ASCT2 between
WKY and SHR PTE cells correlated positively with differ-
ences in the expression of ASCT2 protein, this being more
abundant in WKY than in SHR PTE cells. The discrepancy
between mRNA concentration and protein expression observed
in SHR PTE cells might be related to posttranscriptional
events. Several levels of nuclear posttranscriptional events can
be regulated, such as the control of splicing efficiency, precur-
sor RNA stability, polyadenylation, or RNA transport (2).
Whether this overproduction in SHR involves a cis- or trans-
regulatory mechanism or whether any labile protein factor
affected the regulation is unknown. Studies to elucidate the
molecular mechanism of mASCT2 overproduction in SHR
PTE cells are required.

Different routes for alanine uptake are present in SHR PTE
cells. SHR cells, but not WKY cells, were also found to take up
L-[14C]alanine in a Cl�-dependent manner (�45% of L-alanine
uptake) that, in the absence of BCH, was sensitive to inhibition
by leucine, isoleucine, phenylalanine, methionine, tyrosine,
and histidine and to the cationic amino acids lysine and
arginine. The Na�- and Cl�-dependent L-[14C]alanine trans-
porter most likely involved corresponds to system B0,�, a
transporter sensitive to BCH, neutral and basic amino acids
(35, 41). Thus the major Na�-dependent L-alanine transporter
in WKY cells is ASCT2, contributing to �85% of the total
L-alanine uptake. By contrast, in SHR cells Na�-dependent
component may result of ASCT2 (�55%) and system B0,�

(�45%). A minor contribution to L-alanine uptake by Na�-
independent transporters is also observed in both cell lines.

To determine whether the findings obtained in immortalized
WKY and SHR PTE cells might reflect the in vivo situation, a
set of experiments was conducted in renal cortices from SHR

Fig. 8. A: RT-PCR detection of ASCT2 in total RNA extracted from WKY
and SHR PTE cells and kidney cortices from WKY and SHR (12 wk of age).
MW, GeneRuler DNA Ladder Mix (MBI, Fermentas). B and C: abundance of
ASCT2 transcript in WKY and SHR PTE cells (B) and in kidney cortices from
WKY and SHR (4 and 12 wk of age) (C). Results are expressed as ratio to
GAPDH, as determined by quantitative real-time PCR. Arithmetical mean
values were used to calculate the percentage of control levels. Data are
means 	 SE. *Significantly different from WKY (P � 0.05) and significantly
different from 4 wk of age (P � 0.05).

Fig. 9. RT-PCR detection of system B0,� in total RNA extracted from WKY
and SHR PTE cells and kidney cortices from WKY and SHR (12 wk of age).
MW, GeneRuler DNA Ladder Mix (MBI, Fermentas).
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and WKY rats of 4 and 12 wk of age. An ASCT2-specific
fragment was detected in the mRNA samples from the rat
kidney, suggesting that this transporter was also expressed in
renal cortices. The quantitative real-time PCR experiments
correlated positively with data from immunoblots, which indi-
cated that the expression of ASCT2 in renal cortices from SHR
was lower than that in the WKY. This suggests that immortal-
ized SHR and WKY PTE cells constitute a good experimental
model for the study of ASCT2.

Neutral amino acid transporter ASCT2 displays substrate-
induced Na� antiport activity; therefore, as an obligatory
exchanger, it cannot mediate net amino acid uptake (6). Thus
the role of ASCT2 in proximal tubule homeostasis is that of a
mechanism for the delivery of glutamine for ammoniagenesis
(4, 8) and for the removal of other small neutral amino acids
from the extracellular space, maintaining their low extracellu-
lar levels. ASCT2 belongs to a restricted group of transporters
that share specificity for glutamine, since glutamine is the
major precursor of urinary ammonia, thus playing a key role in
acid-base homeostasis. Interestingly, however, glutamine was
higher in muscle and plasma of SHR at 6 wk of age and
thereafter (12). These differences, because they occurred most
strikingly in SHR during the prehypertensive state, were sug-
gested to be related to the development of hypertension (12).
However, ammonium urinary excretion was identical in WKY
and SHR (31). The possibility that the SHR uses less glutamine
in renal ammoniagenesis because of underexpression of
ASCT2 needs to be evaluated.

Another interesting observation is that ASCT2 has been
shown to be regulated by nitric oxide (NO) in the human
intestinal cell line Caco-2 (39). NO is inactivated by reaction
with superoxide (O2

�) to produce peroxynitrite. In the kidney of
SHR the regulation of renal oxygen consumption by NO is
impaired (1), due to the increased superoxide production ob-
served in this model of hypertension (33, 42, 43). NO avail-
ability in the kidney is decreased in SHR, resulting in increased
oxygen consumption. By lowering intrarenal oxygen levels,
reduced NO may contribute to susceptibility to renal injury (1).
Taken together, these observations and those described in the
present study suggest that, in SHR, oxidative stress might be
downregulating ASCT2 by decreasing intrarenal NO availabil-
ity. Therefore, the modulation of renal ASCT2 transporter in
hypertension is worthy of further attention.

In conclusion, immortalized SHR and WKY PTE cells take
up L-alanine mainly through a high-affinity Na�-dependent
amino acid transporter, with functional features of ASCT2
transport. The activity and expression of the ASCT2 trans-
porter were considerably lower in the SHR cells. As a com-
pensatory mechanism, in SHR cells, L-alanine is also trans-
ported by other amino acid transport systems, namely B0,�,
that account for �45% of total Na�-dependent L-[14C]alanine
uptake. Finally, findings obtained in immortalized cells match
those in vivo: ASCT2 is underexpressed at the kidney cortex
level in the SHR.
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a b s t r a c t

The presence of high and low sodium affinity states for the Na+-dependent [14C]-L-alanine uptake in
immortalized renal proximal tubular epithelial (PTE) cells was previously reported (Am. J. Physiol. 293
(2007) R538–R547). This study evaluated the role of H2O2 on the Na+-dependent [14C]-L-alanine uptake
of ASCT2 in immortalized renal PTE cells from Wistar Kyoto rat (WKY) and spontaneously hypertensive
rat (SHR). Na+ dependence of [14C]-L-alanine uptake was investigated replacing NaCl with an equimolar
concentration of choline chloride in vehicle- and apocynin-treated cells. Na+ removal from the uptake
solution abolished transport activity in both WKY and SHR PTE cells. Decreases in H2O2 levels in the
extracellular medium significantly reduced Na+-Km and Vmax values of the low-affinity high-capacity
component in SHR PTE cells, with no effect on the high-affinity low-capacity state of the Na+-dependent
[14C]-L-alanine uptake. After removal of apocynin from the culture medium, H2O2 levels returned to basal
values within 1 to 3 h in both WKY and SHR PTE cells and these were found stable for the next 24 h.
Under these experimental conditions, the Na+-Km and Vmax of the high-affinity low-capacity state were
unaffected and the low-affinity high-capacity component remained significantly decreased 1 day but
not 4 days after apocynin removal. In conclusion, H2O2 in excess is required for the presence of a low-
affinity high-capacity component for the Na+-dependent [14C]-L-alanine uptake in SHR PTE cells only. It
is suggested that Na+ binding in renal ASCT2 may be regulated by ROS in SHR PTE cells.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Renal absorption of amino acids is accomplished by at least
three different types of Na+-dependent transporters for neutral
amino acids [1]: the proline transporter IMINO/SIT (SLC6A20),
the broad specific neutral amino acid transporter B0AT1 (SLC6A19)
and the neutral amino acid exchanger ASCT2 (SLC1A5). ASCT2 is
present in the brush-border membranes of the proximal tubule
cells and enterocytes in the kidney and intestine, respectively [2].
In addition to its preference for small neutral amino acids (alanine,
serine, and cysteine), it also accepts L-glutamine and L-asparagine
at higher affinity, as well as methionine, leucine and glycine with
lower affinity [3,4]. Additionally, because of its specificity for glu-
tamine, the major precursor of urinary ammonia, ASCT2 plays
and important role in acid–base homeostasis [5]. Recently it has
been shown that the activity and expression of the glutamine/ami-
no acid transporter (ASCT2) were significantly lower in SHR PTE
ll rights reserved.
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cells, which matched the in vivo findings; ASCT2 was under-ex-
pressed at the kidney cortex level in the SHR [6].

Several lines of evidence point towards the possible regulation
of amino acid transport by oxidative stress [7–10]. Studies by our
group have show that immortalized renal PTE SHR cells generate
more hydrogen peroxide (H2O2) than WKY cells [11]. In SHR cells,
the NADPH oxidase inhibitor apocynin reduced their increased
ability to generate H2O2 and reverted differences in receptor-med-
iated events between WKY and SHR cells [11–13]. Differences be-
tween WKY and SHR PTE cells in their sensitivity to angiotensin II
correlate with the higher H2O2 generation that accompanies an en-
hanced expression of glycosylated and nonglycosylated AT1 recep-
tor forms in lipid rafts [12]. Likewise, the increased generation of
H2O2 was found responsible for the amplification of the response
downstream to alpha2-adrenoceptor activation in SHR PTE cells
[13] as well as the aldosterone-induced stimulation of NHE1 activ-
ity [11].

Although crystallographic studies of Na+-coupled secondary
transporters have greatly advanced the understanding of the struc-
tural principles that underlie transporter function [14–16], the
mechanisms by which these transporters couple substrate and so-
dium transport are still largely unknown. We have previously

http://dx.doi.org/10.1016/j.bbrc.2010.06.117
mailto:pss@med.up.pt
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Fig. 1. Effect of sodium chloride replacement by an equimolar concentration of
choline chloride on 0.25 lM [14C]-L-alanine transport. Cells were incubated for
6 min with 0.25 lM [14C]-L-alanine in the presence of BCH (3 mM). Significantly
different from corresponding control values (*P < 0.05) and corresponding values
for WKY PTE cells (#P < 0.05). Symbols represent the mean of four experiments per
group; error bars show S.E.M.
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shown that WKY and SHR PTE cells transport L-alanine efficiently
through the apical cell border and several findings suggested this
uptake process is a facilitated mechanism that proceeds through
ASCT2. The Na+ activation Hill coefficient of unity indicates a 1:1
Na+/alanine activation stoichiometry for secondary active trans-
port in both cell lines [6]. At low extracellular Na+ concentrations,
the Na+-dependent [14C]-L-alanine uptake in both WKY and SHR
PTE cells is a high-affinity low-capacity process. Increments in
extracellular Na+, reduced the affinity for the substrate, but in-
creased the capacity to take up [14C]-L-alanine [6].

The aim of this study was, therefore, to determine the role of
H2O2 on the kinetic parameters for Na+-dependent [14C]-L-alanine
uptake and on ASCT2 expression in immortalized renal PTE cells
from WKY and SHR.

2. Methods and materials

2.1. Cell culture

Immortalized renal PTE cells from the WKY and SHR [17] were
maintained as previously described [6]. The cell medium was chan-
ged every 2 days, and the cells reached confluence after 3–5 days of
incubation. For 24 h prior to each experiment, the cells were main-
tained in fetal bovine serum-free medium. Experiments were
generally performed 2–3 days after cells reached confluence and
6–8 days after the initial seeding; each cm2 contained about
80–100 lg of cell protein.

2.2. Uptake of L-amino acids

Flux measurements in immortalized renal PTE cells from the
WKY and SHR were performed as previously described [18]. All
experiments were carried out in the presence of BCH (3 mm), to
minimize the contribution of L-type amino acid transports. Satura-
tion experiments were performed in cells incubated for 6 min with
0.25 lM radiolabeled amino acid. In experiments performed to
determine the Na+-dependence of transport, sodium chloride was
replaced by an equimolar concentration of choline chloride. Radio-
activity was measured by liquid scintillation counting.

2.3. Measurement of H2O2

H2O2 was measured fluorometrically using the Amplex™ Red
Hydrogen Peroxide Assay Kit (Molecular Probes, Inc., Eugene,
OR), as described previously [11].

2.4. Immunoblotting

Western blot was performed as previously described [6]. Blots
were incubated anti-ASCT2 polyclonal antibody (1:800; Chemicon
International) or mouse anti-b-Actin (Santa Cruz Biotechnology).
After incubation with fluorescently-labeled goat anti-rabbit
(1:10,000; IRDye™ 800, Rockland) or the fluorescently-labeled
goat anti-mouse secondary antibody (1:5000; AlexaFluor 680,
Molecular Probes) the membrane was washed and imaged by scan-
ning at both 700 and 800 nm, with an Odyssey Infrared Imaging
System (Li-COR Biosciences).

2.5. Drugs

L- and D-Amino acids, 2-aminobicyclo (2,2,1)-heptane-2-carbox-
ylic acid (BCH) and apocynin were purchased from Sigma Chemical
Company, St. Louis, Mo, USA. [14C]-L-alanine (specific activity
152 mCi/mmol) was purchased from Amersham Pharmacia Bio-
tech (Little Chalfont, UK).
38
2.6. Data analysis

Km and Vmax values for the uptake of [14C]-L-alanine, were deter-
mined from a competitive uptake inhibition protocol [19], and cal-
culated from non-linear regression analysis using the GraphPad
Prism statistics software package [20]. For calculation of the IC50

the parameters of the equation for one site inhibition were fitted
to the experimental data [20]. Arithmetic means are given with
S.E.M. Statistical analysis was performed by one-way analysis of
variance (ANOVA) followed by Newman–Keuls test for multiple
comparisons. A P value <0.05 was assumed to denote a significant
difference.

3. Results

3.1. H2O2 and the sodium kinetic parameters for the high and low-
affinity Na+-dependent [14C]-L-alanine uptake

The effect of H2O2 availability on the Na+ dependence of [14C]-L-
alanine uptake was investigated replacing NaCl with an equimolar
concentration of choline chloride in the absence and presence of
apocynin. Na+ removal from the uptake solution almost completely
abolished transport activity in both WKY and SHR PTE cells (Fig. 1).
The sodium concentrations and alanine uptake data were trans-
formed using the Eadie–Hofstee equation. The low- and high-affin-
ity components in both WKY and SHR PTE cells were identified and
subsequently plotted as a double reciprocal Lineweaver–Burk plot
as previously reported [6]. The sodium kinetic parameters (Na+-Km

and Vmax) for the high- and low-affinity Na+-dependent [14C]-L-ala-
nine uptake in WKY and SHR PTE cells are given in Table 1. Treat-
ment with apocynin (100 lM) for 4 days decreased H2O2 levels
[11], but had no effect on the high- and low-affinity states of
Na+-dependent [14C]-L-alanine uptake in WKY PTE cells (Fig. 2A
and B) or on the high-affinity state of SHR PTE cells (Fig. 2C). How-
ever, apocynin significantly decreased the low-affinity high-capac-
ity state (Fig. 2D). Treatment with apocynin (100 lM) for 4 days
significantly reduced Na+-Km and Vmax values of the low-affinity
high-capacity component of Na+-dependent [14C]-L-alanine uptake
(from 361 ± 7 to 48 ± 6 mM, and 137 ± 2 to 40 ± 2 pmol/mg/6 min,
respectively) in SHR PTE cells only. The high-affinity low-capacity
sodium Km and Vmax values of ASCT2 were unaffected by apocynin
treatment.



Table 1
Sodium Km (mM) and Vmax (pmol/mg protein/6 min) values for uptake of [14C]-L-
alanine in immortalized WKY and SHR PTE cells in the presence of BCH (3 mM).

WKY SHR

Na+-Km Vmax Na+-Km Vmax

Vehicle High
affinity

16 ± 1 53 ± 2 21 ± 5 26 ± 3

Low
affinity

111 ± 1# 101 ± 1# 361 ± 7# 137 ± 2#

Apocynin
(100 lM)

High
affinity

15 ± 6 47 ± 7 29 ± 4 32 ± 2

Low
affinity

138 ± 15# 104 ± 7# 48 ± 6*,# 40 ± 2*,#

Values are means ± S.E.M. of eight experiments per group.
* Significantly different from corresponding vehicle values (P < 0.05).

# Significantly different from corresponding values for the high-affinity state
(P < 0.05).
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3.2. Reversibility of apocynin effects on the sodium kinetic parameters
for the high and low-affinity Na+-dependent [14C]-L-alanine uptake

To evaluate the nature of the relationship between H2O2 avail-
ability and the effects of apocynin on the low-affinity high-capacity
Na+-dependent [14C]-L-alanine uptake, it was decided to determine
whether these effects could be reversed after return of H2O2 pro-
duction to basal values. H2O2 levels were measured before and
after (1, 3, 6 and 24 h) apocynin treatment for 4 days in WKY
and SHR cells. Treatment with apocynin reduced H2O2 levels in
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Fig. 2. Lineweaver–Burk reciprocal plots of velocity and substrate concentrations for
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the extracellular medium by �20% in WKY PTE cells and �30% in
SHR PTE cells (Fig. 4A and B). H2O2 levels returned to control values
1 and 3 h after apocynin removal in both WKY and SHR PTE cells,
respectively. Thereafter, H2O2 levels were kept stable up to 24 h
after apocynin withdrawal (Fig. 4A and B). Therefore, in this new
set of experiments the Na+-dependent [14C]-L-alanine uptake was
evaluated 1 and 4 days after apocynin removal in SHR PTE cells
treated for 4 days with the antioxidant. Despite apocynin removal
and the return of H2O2 levels to control values, Lineweaver–Burk
plots show that the high-affinity low-capacity Na+-dependent
[14C]-L-alanine uptake was not affected in apocynin-treated cells
(Fig. 3A), whereas the low-affinity high-capacity component of
Na+-dependent [14C]-L-alanine uptake was markedly reduced in
apocynin-treated cells (Fig. 3B). However, 4 days after apocynin re-
moval (Fig. 3C and D) the low-affinity high-capacity Na+-depen-
dent [14C]-L-alanine uptake was restored (Fig. 3D). Sodium
kinetic parameters for the high- and low-affinity Na+-dependent
[14C]-L-alanine uptake were determined and results show that
1 day after H2O2 levels were restored, sodium Km and Vmax values
of the low-affinity high-capacity component were still reduced,
but not 4 days later (Table 2), indicating that the effect of apocynin
is not long lasting and that H2O2 in excess is required to maintain
normal sodium Km and Vmax values in SHR PTE cells.

3.3. Expression of ASCT2

The presence of ASCT2 protein in WKY and SHR PTE cells was
studied by means of immunoblotting using an antibody raised
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against ASCT2. The anti-ASCT2 antibody recognized the presence of
the protein in immortalized WKY and SHR PTE cell lines. The abun-
dance of ASCT2 (corrected for b-actin) in SHR PTE cells was lower
than in WKY PTE cells (Fig. 4C), which correlates positively with
the lower transport capacity observed in SHR PTE cells when com-
pared to WKY PTE cells. Treatment with apocynin (100 lM) for
4 days had no effect on ASCT2 expression in both cell lines
(Fig. 4C).

4. Discussion

In the present study inhibition of H2O2 production by apocynin
during cell growth was shown to significantly reduce Na+-Km and
Vmax values of the low-affinity high-capacity component of Na+-
dependent [14C]-L-alanine uptake in immortalized SHR PTE cells.

The evaluation of several amino acid transport systems using
immortalized renal PTE cells from WKY and SHR has been well
documented in our group [6,18,21,22]. Recent studies indicate that
WKY and SHR PTE cells take up [14C]-L-alanine mainly through the
high-affinity Na+-dependent amino acid transporter system ASCT2.
Moreover, SHR PTE cells were found to have a lower expression
level and function of ASCT2 [6]. The System A and System N trans-
porters of the SLC38 family each mediate Na+-dependent transport
of small, zwitterionic (net neutral) amino acids and exhibit marked
inhibition at low extracellular pH [23]. The uptake of L-alanine in
the SHR cells was not sensitive to pH. In the presence of extracel-
lular 140 mM Na+, system A inhibitor N-(methyamino)-isobutyric
acid (MeAIB), had no inhibitory effect on the L-alanine accumula-
tion in both types of cells (WKY, 97 ± 8% and SHR, 115 ± 7% of
40
control) [6]. This suggests that the inward transfer of L-alanine in
WKY and SHR cells is not promoted by SNAT’s (SLC38). On the
other hand, system B (SLC6) is highly electrogenic, with high affin-
ity for phenylalanine [24]. Contrasting, L-alanine uptake in the
WKY and SHR cells was significantly inhibited by small amino
acids, such as alanine, serine and cysteine. Besides, the uptake of
L-alanine in WKY and SHR cells was largely non-electrogenic [6].

Since the imbalance between NO and reactive ROS production is
an important factor in the development of hypertension [25,26],
we hypothesised whether oxidative stress could have an effect
on ASCT2 regulation and function. The effect of decreased avail-
ability of H2O2 on [14C]-L-alanine uptake was determined using
apocynin. Apocynin has antioxidant properties and reduces ROS
production in vivo and in vitro [27]. It inhibits the membrane
recruitment of regulatory cytosolic NADPH oxidase subunits such
as p47phox, p67phox, and rac-1 by direct interaction with p47phox

[28]. Previous studies have shown that SHR PTE cells are endowed
with an increased capacity to generate H2O2 when compared with
WKY PTE cells and treatment with apocynin for 4 days reduces sig-
nificantly the rate of H2O2 production in WKY and SHR PTE cells
[11]. The experiments described here were designed to evaluate
the effect of H2O2 availability on the sodium high- and low-affinity
states for the Na+-dependent [14C]-L-alanine uptake in WKY and
SHR PTE cells. As previously described [6], Lineweaver–Burk plots
from data obtained in the present study also revealed the presence
of high- and low-affinity states for the Na+-dependent [14C]-L-ala-
nine uptake processes in both cell lines. At low extracellular Na+

concentrations, the Na+-dependent [14C]-L-alanine uptake in both
WKY and SHR PTE cells is a high-affinity low-capacity process
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Fig. 4. Extracellular H2O2 in A) WKY and B) SHR PTE cells in the presence of
apocynin (4 days after seeding) and after 1, 3, 6 and 24 h following apocynin
removal. Each column represents the mean of six experiments per group; vertical
lines indicate SEM. Significantly different from values for control (*P < 0.05). (C)
ASCT2 protein expression in immortalized WKY and SHR PTE cells and effect of
apocynin (100 lM) for 4 days on ASCT2 protein expression. Each lane contains
equal amount of protein (60 lg), Western blotting was repeated 6�. b-Actin was
used as a control. Significantly different from corresponding control values
(*P < 0.05).

Table 2
Sodium Km (mM) and Vmax (pmol/mg protein/6 min) values in the presence of BCH
(3 mM) for uptake of [14C]-L-alanine in immortalized SHR PTE cells after treatment
with apocynin 100 lM for 4 days and subsequent removal for 1 and 4 days.

1 day 4 days

Na+-Km Vmax Na+-Km Vmax

Vehicle High
affinity

16 ± 3 23 ± 2 14 ± 2 28 ± 1

Low
affinity

218 ± 26# 96 ± 8# 274 ± 8# 105 ± 2#

Apocynin
(100 lM)

High
affinity

16 ± 1 19 ± 1 18 ± 5 24 ± 3

Low
affinity

55 ± 8*,# 27 ± 2*,# 320 ± 38# 107 ± 10#

Values are means ± S.E.M. of eight experiments per group.
* Significantly different from corresponding vehicle values (P < 0.05).

# Significantly different from corresponding values for the high-affinity state
(P < 0.05).

V. Pinto et al. / Biochemical and Biophysical Research Communications 398 (2010) 553–558 557
and increases in extracellular Na+ reduced the affinity for the sub-
strate, but increased the capacity to take up [14C]-L-alanine. Apocy-
nin treatment during cell growth (4 days) had no effect on the
high- and low-affinity states of Na+-dependent [14C]-L-alanine up-
take in WKY PTE cells or on the high-affinity state of SHR PTE cells.
However, the reduction in H2O2 levels significantly decreased the
Na+-Km and Vmax of the low-affinity high-capacity component of
[14C]-L-alanine uptake in SHR PTE cells. These results suggest that
when H2O2 levels are reduced after apocynin treatment the Na+-
dependent [14C]-L-alanine uptake by ASCT2 in SHR PTE cells func-
tions predominantly as a high-affinity low-capacity transporter.
We have previously found (data not shown) that treatment with
41
a non toxic concentration (100 lM) of exogenous H2O2 (for
21 min or 1 day) failed to change the Na+-Km and Vmax values for
the Na+-dependent [14C]-L-alanine uptake, possibly due to the
rapid decomposition of H2O2 by catalase.

There have been recent crystallographic advances relating to
Na+-coupled transporters specifically about the coupling of sub-
strates to ions, the conformational state of the transporter at differ-
ent stages of the transport cycle and how the substrate and ion
pathway is alternately opened and closed, or gated, to maintain a
tightly coupled transport mechanism [29–31]. Sodium ions have
been shown to be ‘gate-keepers’ of aspartate transporter GltPh
and other members of this Na+-coupled transporter family, includ-
ing ASCT2, which has a similar structural fold [16]. In the present
study ROS have been shown to be important in modulating sodium
coupling in SHR PTE cells. The mechanism by which this occurs is
still not known. However, it is possible that oxidative stress may
have an effect on the conformations of ASCT2 in SHR PTE cells as
they proceed through the transport cycle, which may result in dif-
ferential sodium binding and unbinding. ROS may also have an ef-
fect on steric, chemical and electrical properties of the sodium
binding site. Nevertheless, ROS has shown to regulate other amino
acid transport systems in different cell models. Oxidative stress
was shown to stimulate NMDA receptor activity [8,32] and the
Ca2+-independent carrier-mediated release of glutamate and
aspartate from cultured retina cells [33,34]. On the other hand,
reuptake of glutamate in astrocytes, a critical mechanism involved
in the maintenance of physiological excitatory amino acid neuro-
transmission, is inhibited by ROS [35].

The results show that the apocynin effects were long lasting but
reversible. The reversal process is not immediate and an adaption
period is needed in order to restore basal Na+-Km and Vmax values.
As previously suggested, H2O2 may affect steric, chemical and elec-
trical properties of the sodium binding site as well as the confor-
mational state of the transporter. Though H2O2 production is
recovered within 1 day after apocynin removal the apocynin-asso-
ciated changes of the Na+-dependent [14C]-L-alanine uptake take
longer (at least 4 days) to return to its initial state of activity.
Apocynin was also found not to alter ASCT2 protein expression in
either WKY or SHR PTE cells. ASCT2 expression was found to be
lower in SHR than WKY PTE cells as previously described [6].

5. Conclusions

It is concluded that ROS production during growth of the cell
monolayer is essential for maintaining a low-affinity high-capacity
component of Na+-dependent [14C]-L-alanine uptake in immortal-
ized SHR PTE cells. Finally, data gathered here suggest that the
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modulation of Na+ binding to ASCT2 is dependent on increased
hydrogen peroxide production exclusively in SHR PTE cells.
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Abstract This study evaluated the effects of aldosterone

upon Na+/H+ exchange (NHE) activity in immortalized

proximal tubular epithelial (PTE) cells from the sponta-

neously hypertensive rat (SHR) and the normotensive

controls (Wistar Kyoto rat; WKY). Increases in NHE

activity after exposure to aldosterone occurred in time- and

concentration-dependent manner in SHR PTE cells, but not

in WKY PTE cells. The aldosterone-induced increases in

NHE activity were prevented by spironolactone, but not by

the glucocorticoid receptor antagonist Ru 38486. The

presence of the mineralocorticoid receptor transcript was

confirmed by PCR and NHE1, NHE2, and NHE3 proteins

were detected by immunoblot analysis. Cariporide and

EIPA, but not S3226, inhibited the aldosterone-induced

increase in NHE activity, indicating that NHE1 is the most

likely involved NHE isoform. Pretreatment of SHR PTE

cells with actinomycin D attenuated the aldosterone-

induced increases in NHE activity. The SHR PTE cells had

an increased rate of H2O2 production when compared with

WKY PTE cells. Treatment of cells with apocynin, a

NADPH oxidase inhibitor, markedly reduced the rate of

H2O2 production. The aldosterone-induced increase in

NHE activity SHR PTE cells was completely prevented by

apocynin. In conclusion, the aldosterone-induced stimula-

tion of NHE1 activity is a genomic event unique in SHR

PTE cells, which involves the activation of the mineralo-

corticoid receptor, but ultimately requires the availability

of H2O2 in excess.

Keywords Na+/H+ exchanger � NHE1 � Aldosterone �
H2O2 � Hypertension � SHR � WKY

Introduction

Aldosterone is a steroid hormone secreted by the adrenal

cortex. This mineralocorticoid is the final endocrine signal

in the rennin–angiotensin–aldosterone system that is

responsible for Na+ reabsorption and K+ secretion in the

kidney and colon [1]. Consequently, it plays a pivotal role

in the control of blood volume and thus blood pressure. The

classical final effectors of aldosterone action are the apical

ENaC, the basolateral Na+–K+–ATPase and the Na+/H+

exchanger 3 (NHE3) located in the proximal tubule [2].

Aldosterone was shown to have short- and long-term

effects on the Na+-K+-ATPase and on the ENaC. The

transcriptional effects on these ion transporters occur after

4 h [3]. Aldosterone enters the cell by diffusion through the

cellular membrane and once in the cytoplasm it binds to an

intracellular receptor, the mineralocorticoid receptor (MR).

As has been shown, in the collecting duct, long-term

effects are dependent on the activation of the serum-and-

glucocorticoid-regulated kinase (SGK) which occurs after

aldosterone binds to the MR [4]. Other studies have also

shown that aldosterone also stimulates epidermal growth

factor receptor (EGFR) expression in the kidney [5].

Steroid hormones, however, have the ability to act

through non-genomic mechanisms as well as genomic. The
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non-genomic action is characterized by a rapid onset

(within seconds to minutes) after aldosterone administra-

tion and by the lack of sensitivity to transcription and

translation inhibitors [6]. In Madin–Darby canine kidney

(MDCK) cells aldosterone makes use of the EGFR-ERK1/

2 cascade to bring out its rapid effects [7, 8].

Recent studies have shown that aldosterone stimulates

surface expression of NHE3 in rat renal proximal tubular

brush borders [9]. Furthermore, aldosterone stimulates not

only the surface expression but also the activity of NHE3 in

human primary renal proximal tubular epithelial (PTE) cells

[10]. The NHE is a protein found in many mammalian cell

types responsible for intracellular pH and cell volume reg-

ulation by exchanging protons localized in the cell for

sodium ions. Seven isoforms of NHE have already been

identified and cloned [11]. NHE1, 2 and 3 have been local-

ized in the kidney [11, 12] and in MDCK-C11 cells.

Aldosterone is thought to activate NHE1 activity through

non-genomic stimulation [8, 13]; however, information

concerning the long-term effect of aldosterone on NHE1 is

scarce.

Abnormal aldosterone signaling or hyperactivity of its

final effectors has been associated to steroid hypertension in

humans [14]. Hypertension has also been linked to oxida-

tive stress. Oxidative stress has been observed in a number

of models of hypertension including in the spontaneous

hypertensive rat (SHR) [15] and in the mineralocorticoid

hypertensive rat [16]. Studies have shown that aldosterone

directly induces reactive oxygen species (ROS) generation

through the activation of NADPH oxidase in the salt-loa-

ded, aldosterone-infused hypertensive rats [17], as well as

in rat mensagial cells [18]. In mineralocorticoid hyperten-

sive rats prolonged antioxidant administration normalizes

superoxide accumulation and attenuates hypertension [19].

The aim of this study was to investigate the effects of

aldosterone on NHE activity in immortalized renal PTE cells

from the SHR and its normotensive control, the Wistar–

Kyoto rat (WKY), and to determine whether oxidative stress

is involved in aldosterone actions on NHE activity.

Materials and methods

Cell culture

Immortalized renal PTE cells from 4- to 8 week-old WKY

and SHR animals [20] were maintained in a humidified

atmosphere of 5% CO2-95% air at 37�C. WKY and SHR

PTE cells were grown in Dulbecco’s modified Eagle’s

medium nutrient mixture F-12 Ham (Sigma Chemical

Company, St. Louis, MO, USA) supplemented with 100

U/ml penicillin G, 0.25 lg/ml amphotericin B, 100 lg/ml

streptomycin (Sigma), 4 lg/ml dexamethasone (Sigma),

5 lg/ml transferrin (Sigma), 5 lg/ml insulin (Sigma), 5

ng/ml selenium (Sigma), 10 ng/ml epidermal growth factor

(Sigma), 5% fetal bovine serum (Sigma) and 25 mM N-2-

hydroxyethylpiperazine-N0-2-ethanosulfonic acid (HEPES;

Sigma). For subculturing, the cells were dissociated with

0.10% trypsin-EDTA, split 1:4 and subcultured in Costar

plates with 21-cm2 growth areas (Costar, Badhoevedorp,

The Netherlands). For pHi measurement experiments, cells

were grown in 96 well plates (Costar). On the day of each

experiment, the cells were maintained in fetal bovine

serum-free medium for 2 h. Experiments were generally

performed 1–2 days after cells reached confluence and

4–5 days after the initial seeding; each cm2 contained

about 50 lg of cell protein.

NHE activity

NHE activity was assayed as the initial rate of intracellular

pH (pHi) recovery after an acid load imposed by 20 mM

NH4Cl followed by removal of Na+ from the Krebs’

modified buffer solution (in mM: NaCl 140, KCl 5.4,

CaCl2 2.8, MgSO4 1.2, NaH2PO4 0.3, HEPES 10, glucose

5, and pH 7.4) in the absence of CO2/HCO3. In these

experiments NaCl was replaced by an equimolar concen-

tration of tetramethylammonium chloride (TMA). In

intracellular pH measurement experiments, WKY and SHR

PTE cells were grown in 96 well plates. The cell culture

medium was aspirated and the cell monolayers were

incubated for 30 min with 10 lM BCECF/AM, the mem-

brane-permeant acetoxymethyl ester derivative of 20,70-bis

(carboxyethyl)-5,6-carboxyfluorescein (BCECF) at 37�C in

5% CO2–95% air atmosphere. Cells were placed in the

sample compartment of a dual-scanning microplate spec-

trofluorometer (Spectramax Gemini XS, Molecular

Devices, Sunnyvale, USA), and fluorescence was measured

every 17 s alternating between 440 and 490 nm excitation

at 535 nm emission, with a cutoff filter of 530 nm. The

ratio of intracellular BCECF fluorescence at 490 and

440 nm was converted to pHi values by comparison with

values from an intracellular calibration curve using the

nigericin (10 lM) and high-K+ method [21, 22].

Intracellular buffering capacity was determined from the

pHi response to the removal of NH3/NH4
+ using the following

formula: intracellular buffering capacity (bI)=K[NH4
+]i/KpHi

where [NH4
+]i is the intracellular concentration just before

NH3/NH4
+ removal, calculated as [NH4

+]i =[NH4
+]0 9 10(7.4-pHi)

and KpHi is the pHi change on removal of NH4
+ [23].

In experiments aimed to evaluate the sensitivity of the

Na+-dependent pHi recovery to selective inhibitors of NHE

isoforms, cells were treated with increasing concentrations

of 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) or vehicle for

0.5 h before starting the Na+-dependent pHi recovery.
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Reverse transcription (RT)-PCR

To identify the presence of the MR, immortalized renal

PTE WKY and SHR samples were examined by Reverse

trancriptase-PCR analysis. Cells were homogenized (Diax,

Heidolph) in Trizol Reagent (75 mg/ml; Invitrogen) and

total RNA was extracted according to manufacturer’s

instructions. The RNA preparation was further treated with

DNase (Ambion), to eliminate potential genomic DNA

contamination. Reverse transcription was performed with

SuperScript First Strand System for RT-PCR (Invitogen),

using 5 lg/ll random hexamers as primers at 50�C,

according to manufacturer’s instructions. cDNA was syn-

thesized from 1 lg of total RNA in a total volume of 20 ll.

PCR was performed on 5 ll of cDNA using degenerate

pairs of primers (Sigma Genosys) based on rattus and canis

sequences (for MR DQ195096 and NP_037263) as

described in Table 1. PCR reactions were carried out in

50-ll final solutions (5 ll of 109 PCR buffer, 1.5 mM

MgCl2, 0.2 mM dNTPs, 0.4 lM of each primer, 2.5 units

of Taq polymerase (Invitrogen)). Cycling conditions were

as follows: (1) denaturation: 94�C, 2 min; (2) denaturation:

94�C, 30 s; annealing: 55�C (for MR) and 57�C (for

11b-HSD1), 30 s; and extension: 72�C, 30 s for 35 cycles;

and (3) final extension: 72�C, 7 min.

NHE expression

In order to determine the expression of NHE1, NHE2, and

NHE3 in WKY and SHR PTE cells, cells were cultured to

90% of confluence were washed twice with PBS and total

cell protein extracted. Cells were lysed by brief sonication

(15 s) in lysis buffer with protease inhibitors (150 mM

NaCl, 50 mM Tris–HCl pH 7.4, 5 mM EDTA, 1% Triton

X-100, 0.5% sodium deoxycholate, 0.1% SDS, 100 lg/ml

PMSF aprotinin and leupeptin 2 lg/ml each) and incubated

on ice for 1 h. After centrifugation (14,000 r.p.m., 30 min,

4�C), the supernatant was mixed in 69 sample buffer

(0.35 M Tris–HCl, 4% SDS, 30% glycerol, 9.3% DTT, pH

6.8, 0.01% bromphenol blue) and boiled for 5 min. The

proteins (30 lg) were subjected to SDS-PAGE (10%

SDS-polyacrylamide gel) and electrotransfered onto nitro-

cellulose membranes. The transblot sheets were blocked

with 5% of non-fat dry milk in Tris.HCl 25 mM pH 7.5,

NaCl 150 mM and 0.1% Tween 20, overnight at 4�C.

Then, the membranes were incubated with appropriately

diluted antibodies: rabbit anti-NHE1, rabbit anti-NHE2

polyclonal isoform specific antibodies (Chemicon Interna-

tional) or the rabbit polyclonal anti-NHE3 antibody [24] and

mouse anti-Actin (Santa Cruz Biotechnology). The immu-

noblots were subsequently washed and incubated with

0.5 lg/ml of fluorescently labeled goat anti-rabbit or goat

anti-mouse secondary antibody (IRDyeTM 800 or IRD-

yeTM 680, Rockland Immunochemicals, Gilbertsville, PA)

for 1.30 h at room temperature and protected from light.

Membranes were washed and imaged by scanning at 800 or

700 nm with an Odyssey Infrared Imaging System (LI-COR

Biosciences). Protein concentration was measured using the

DC protein assay kit (Bio-Rad Laboratories, Hercules, CA)

and bovine serum albumin as standard.

Measurement of H2O2

H2O2 was measured fluorometrically using the AmplexTM

Red Hydrogen Peroxide Assay Kit (Molecular Probes, Inc.,

Eugene, OR). AmplexTM Red is a fluorogenic substrate with

very low background fluorescence that reacts with H2O2 with

a 1:1 stoichiometry to produce a highly fluorescent reagent

[25]. Measurement of H2O2 was evaluated both directly by

H2O2 released form the WKY and SHR monolayer cultured

in 96 well plates or by H2O2 accumulated in the extracellular

medium during 24 h after cells achieved confluence. Fluo-

rescence intensity was measured in multiplate reader

(Spectromax Gemini, Molecular Devices) at an excitation

wavelength of 530 nm and emission wavelength of 590 nm

at room temperature. After subtracting background fluores-

cence, the concentration of H2O2 was calculated using a

resorufin-H2O2 standard calibration curve generated from

experiments using H2O2 and AmplexTM Red.

Data analysis

Geometric means are given with 95% confidence limits and

arithmetic means are given with SEM. Statistical analysis

was performed by one-way analysis of variance (ANOVA)

followed by the Student’s t-test or the Newman–Keuls test

for multiple comparisons. A P value less than 0.05 was

assumed to denote a significant difference.

Drugs

Aldosterone, apocynin, spironolactone, Ru 38486, actino-

mycin D, cytochalasin B, and EIPA were purchased from

Table 1 Sequences of the degenerated oligonucleotides used for RT-PCR

Target gene (Rat) GeneBank accession no Primer Sequence (50–30) Position Product

MR NP_037263 Forward 50CCA GAT GG(A/G) GCT TT(C/T) AG30 1006 732

Reverse 50GCA (A/G)TC ATT TCT TCC AGC ACA 30 1738
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Sigma Chemical Company, St. Louis, MO, USA. Acetoxy-

methyl ester of 20,70-bis(carboxyethyl)-5(6)-carboxyfluo-

rescein (BCECF-AM) nigericin and the AmplexTM Red

Hydrogen Peroxide Assay Kit were obtained from Molecular

Probes (Eugene, OR). S3226 and Cariporide were kindly

provided by Dr. Jurgen Punter (Aventis Pharma).

Results

NHE activity and expression

NHE activity was assayed as the initial rate of pHi recovery

measured after an acid load imposed by 20 mM NH4Cl

followed by removal of Na+ from the Krebs modified

buffer solution, in the absence of CO2/HCO3. The cells

were incubated in Krebs solution for 15 min, then an acid

load was imposed during 5 min and subsequently the

NH4Cl was aspirated and the cells were placed into TMA

solution for an additional 5 min. As shown in Fig. 1a, the

Na+-dependent recovery of pHi in SHR cells was more

pronounced than that observed in WKY cells. The pHi

recovery rates (in dpHi/dt, pH units/s) during the linear

phase of pHi recovery after intracellular acidification in

SHR were greater than in WKY cells (Fig. 1b).

The sensitivity of NHE to inhibition by EIPA, an

effective NHE1 inhibitor and moderate NHE2, and NHE3

inhibitor, was evaluated in SHR and WKY immortalized

PTE cells (Fig. 1c). The inhibition produced by EIPA was

found to be more potent in SHR than in WKY. At the

concentration of 100 nM, EIPA did not affect pHi recov-

ery, therefore being able to inhibit NHE1 and leave NHE2,

and NHE3 unaltered.

The expression of NHE1, 2 and 3 was also evaluated in

immortalized renal PTE cells from SHR and WKY. As

shown in Fig. 2c, the level of expression of NHE3 in the SHR

cells was greater than in WKY. However, in both cell lines

NHE1 and NHE2 expression was equal (Fig. 2a and b).

Effect of aldosterone on NHE activity

Since NHE activity is an important mechanism for the

maintenance and regulation of pHi in the proximal tubules

we next examined the effects of aldosterone on the NHE

transporter. Cells were exposed to control DMEM or

aldosterone-supplemented DMEM at various concentra-

tions (0.01, 0.1, and 1 lM) for 72 h. As shown in Fig. 3a,

Fig. 1 Assessment of (a) delta intracellular pH and (b) NHE activity

under Vmax conditions as the initial rate of Na+-dependent pHi recover

after an acid load imposed by exposure to NH4Cl followed by Na+

removal of the perfusion medium in immortalized WKY and SHR

PTE cells. Influence of (c) EIPA (0.001–10 lM) on NHE activity in

WKY and SHR PTE cells. Traces represent means of 9–14

experiments per group. Columns represent the mean of 9–15

independent determinations: vertical lines show SEM. Significantly

different from values in WKY cells (*P \ 0.05)
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the aldosterone-induced increase in NHE activity was a

concentration-dependent effect; treatment with aldosterone

0.1 and 1 lM significantly increased NHE activity (19 ± 5

and 22 ± 6% increase, respectively) in SHR PTE cells;

however, no stimulation was observed in immortalized

WKY PTE cells (Fig. 3b). We next examined the time-

dependent effects in the NHE activity induced by aldo-

sterone (1 lM) in SHR and WKY PTE cells. Cells were

exposed to aldosterone (1 lM) for 6, 24, and 72 h. Sig-

nificant stimulatory effects on NHE activity were observed

for 24 and 72 h (16 ± 6 and 21 ± 6% increase, respec-

tively) in SHR PTE cells but not in WKY PTE cells

(Fig. 4a and b).

There were no significant differences on the intrinsic

buffering capacity at pHi of 7.6 between the two conditions

(vehicle, 16.02 ± 0.97 mM/H+, pH, n = 8 and aldosterone

(72 h) 14.09 ± 0.68 mM/H+, pH, n = 7) in SHR PTE

cells. Therefore, the Na+-dependent pHi recovery after acid

load appears to be dependent on the NHE activity and the

aldosterone-induced increases in the Na+-dependent pHi

recovery after acid load may not relate changes in differ-

ences on the intrinsic buffering capacity, but rather on

increases in NHE activity.

Detection of MR

To confirm the presence of the mineralocorticoid receptor,

MR in immortalized WKY and SHR PTE cells, a con-

ventional RT-PCR was performed. Degenerate primer sets,

designed based on the MR canine and rattus sequences,

were used. As shown in Fig. 5, the expected 732-bp

fragment corresponding to MR was present in both cell

lines.
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Fig. 2 Immunoblot analysis of (a) NHE1, (b) NHE2, and (c) NHE3

in immortalized WKY and SHR PTE cells. Each lane contains equal

amount of protein (30 lg). Significantly different from corresponding

values for WKY PTE cells (*P \ 0.05)
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Fig. 3 Effect of aldosterone (0.01, 0.1, and 1 lM) for 72 h on NHE

activity in (a) SHR PTE cells and (b) WKY PTE cells. In WKY PTE

cells, the pHi values in vehicle- and aldosterone-treated were,

respectively, 7.51 ± 0.01 and 7.48 ± 0.02. In SHR PTE cells the

pHi values in vehicle- and aldosterone-treated were, respectively,

7.63 ± 0.02 and 7.66 ± 0.03. Each column represents the mean of

7–8 experiments per group; vertical lines indicate SEM. Significantly

different from values for control (*P \ 0.05)
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Effects of spironolactone and Ru 38486 on

aldosterone-induced increase in NHE activity

To determine whether the stimulatory effects of aldoste-

rone on NHE activity occurred via the MR and/or the

glucocorticoid receptor (GR), SHR PTE cells were exposed

to the MR antagonist spironolactone (100 lM) or the GR

antagonist Ru 38486 (10 lM) for 24 h. The concentrations

of spironolactone and Ru 38486 used were those previously

described in the literature [26]. Results are shown in

Fig. 6a for spironolactone-treated SHR PTE cells and

Fig. 6b for Ru 38486-treated SHR PTE cells. Spironolac-

tone or Ru alone caused no effect on NHE activity. The

addition of Ru 38486 produced no effect on the long term

stimulatory effect of aldosterone on NHE activity whereas

spironolactone completely inhibited the aldosterone-

induced stimulation.

Determination of the NHE transporter isoform involved

in the aldosterone-induced increase in activity

In order to identify the NHE transporter isoform involved

in the aldosterone-induced increase in activity SHR cells

were incubated with aldosterone (1 lM) for 24 h and EIPA

(100 nM), cariporide (1 lM), a selective NHE1 inhibitor or
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Fig. 4 Effect of aldosterone (1 lM) for 6, 24, and 72 h on NHE

activity in (a) SHR PTE cells (b) and WKY PTE cells. Each column

represents the mean of 7–8 experiments per group; vertical lines

indicate SEM. Significantly different from values for control

(*P \ 0.05)
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Fig. 5 PCR detection of MR in total RNA extracted from WKY and

SHR PTE cells; MW—GeneRulerTM DNA Ladder Mix (MBI,

Fermentas)
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Fig. 6 Effects of the mineralocorticoid receptor antagonist sipiron-

olactone or the glucocorticoid receptor antagonist Ru 38486 on

aldosterone-induced increase in NHE activity in SHR PTE cells. (a)

Cells were exposed to control DMEM or aldosterone (1 lM)

supplemented DMEM for 24 h in the absence or presence of

spironolactone (100 lM). (b) Cells were exposed to control DMEM

or aldosterone (1 lM) supplemented DMEM for 24 h in the absence

or presence of Ru 38486 (10 lM). Each column represents the mean

of 7–8 experiments per group; vertical lines indicate SEM. Signif-

icantly different from values for control (*P \ 0.05)
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S3226 (1 lM), a NHE3 inhibitor for 30 min. EIPA and

cariporide completely reversed the effects of aldosterone

upon the NHE activity (Fig. 7a and b), but not S3226

(Fig. 7c), indicating that NHE1 is the most likely involved

exchanger isoform.

Effects of actinomycin D and cytochalasin B

on aldosterone-induced increase in NHE activity

To determine whether gene transcription is required for

aldosterone-induced increase in NHE activity, SHR cells

were incubated with actinomycin D (400 nM), an inhibitor

of gene transcription and aldosterone (1 lM) for 24 h.

Recent studies demonstrate that the interaction between the

cytoskeleton and the plasma membrane regulates the

activity of many ion channels and transport proteins,

including the NHE transporters. To determine whether the

cytoskeleton is involved in the aldosterone stimulation of

the NHE, SHR cells were incubated with cytochalasin B

(1 lM), a disruptor of filamentous actin (F-actin). For this

purpose, SHR cells were treated during 24 h with aldoste-

rone (1 lM) and cytochalasin B for 3 h. As shown in Fig. 8,

actinomycin D (Fig. 8a) and cytochalasin B (Fig. 8b) had

no influence on NHE activity. However, both drugs atten-

uated the stimulatory effect of aldosterone upon NHE

activity, though this did not attain statistical significance.

Aldosterone effect on NHE1 protein expression

Protein expression of NHE1 in SHR PTE cells treated for

24 h with aldosterone (1 lM) and aldosterone (1 lM) plus

spironolactone (10 M) was evaluated by immunoblot

analysis. The protein expression levels of NHE1 from

aldosterone-treated cells were not significantly different

from control (Fig. 9a and b).

Role of oxidative stress in the mediation of aldosterone-

induced increase in NHE activity

H2O2 generation was measured in SHR and WKY PTE

cells and the involvement of H2O2 in the regulation of

NHE by aldosterone was determined. The SHR PTE cells

revealed an increased rate of H2O2 formation when com-

pared with WKY PTE cells (22.4 ± 0.9 vs.

7.9 ± 0.3 nmoles/min) (Fig. 10a). Cells were also treated

with apocynin (0, 10, 30, and 100 lM) for 4 days and the

rate of H2O2 production was determined. WKY PTE cells

were less sensitive to apocynin than SHR PTE cells
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(Fig. 10b); inhibition of H2O2 production in WKY PTE

cells was only obtained at 100 lM apocynin, whereas in

SHR PTE cells 30 lM apocynin was enough to inhibit this

production in SHR PTE cells (Fig. 10c). Treatment of cells

with apocynin (100 lM), an inhibitor of the NADPH

oxidase complex, for 4 days reduced the rate of H2O2

production in WKY and SHR PTE cells, but did not change

the NHE activity in both WKY (0.0065 ± 0.0002 vs.

0.0054 ± 0.0005 pH units/s) and SHR (0.0075 ± 0.0002

vs. 0.0081 ± 0.0002 pH units/s) PTE cells. However,

treatment of SHR PTE cells with apocynin (100 lM)

completely blocked the ability of aldosterone to increase

NHE activity (Fig. 11). Treatment of cells with aldosterone

(1 lM) for 24 h did not change the rate of H2O2 production

(Fig. 12). Differences in the inhibitory effect apocynin

(100 lM) on the production of H2O2 in the absence and the

presence of aldosterone (1 lM) did not attain statistical

significance (Fig. 12).

Discussion

The present study was designed to evaluate the effects of

aldosterone on NHE activity in immortalized renal PTE cells

from SHR and WKY and to determine the mechanisms

whereby aldosterone regulates NHE activity in these cells.

The aldosterone-mediated increase in NHE activity was a

concentration- and time-dependent phenomenon in SHR

PTE cells. The data presented here also demonstrates that the

aldosterone-induced increase in NHE1 activity in immor-

talized renal PTE cells from SHR, but not in WKY, occurs as

early as 24 h and is sustained effect for up to 72 h. The

effects of aldosterone upon NHE1 activity occur through the

activation of genomic mechanisms involving the stimulation

of the MR, but require the availability of H2O2 in excess.

In order to explain the differences in sensitivity to

aldosterone in WKY and SHR immortalized PTE cells, it

was hypothesized that oxidative stress could be involved in

such differences. In the present study, the generation of

H2O2, a marker of oxidative stress, was evaluated in WKY

and SHR PTE cells. SHR PTE cells were found to have an

increased rate of H2O2 production. Apocynin specifically
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Fig. 8 Effects of (a) actinomycin D (400 nM) and (b) cytochalasin B

(1 lM) on aldosterone-induced increase in NHE activity in SHR PTE

cells. Cells were exposed to control DMEM or aldosterone 1 lM for

24 h in the absence or presence of actinomycin D 400 nM supple-

mented DMEM for 24 h. Each column represents the mean of 7–8

experiments per group; vertical lines indicate SEM. Significantly

different from values for control (*P \ 0.05)
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inhibits the activity of NAD(P)H oxidase by interfering

with the assembly of the cytosolic NAD(P)H oxidase

components (p40phox, p47phox, and p67phox) with the

membranous components gp91phox and p22phox [27]. The

concentration of apocynin that reduced the extracellular

levels of H2O2 in SHR was lower (30 lM) than that in

WKY (100 lM), which fits well the observation that the

level oxidative stress in SHR may be higher than in WKY

PTE cells. In SHR PTE cells, treatment with apocynin

abolished the stimulation of aldosterone upon the NHE1

activity in SHR PTE cells. According to these results, the

effects of aldosterone upon NHE1 activity in SHR PTE

cells are a consequence of the oxidative stress, resulting

from increases in the generation of H2O2. Although pre-

vious studies have indicated that aldosterone directly

induces ROS generation through the activation of NADPH

oxidase [17, 18], we gathered evidence that aldosterone did

not increased the production of H2O2.

The results presented here show that aldosterone-

induced increase in NHE1 activity in SHR PTE cells was

partially inhibited by actinomycin D, an inhibitor of gene

transcription and cytochalasin B, a disruptor of filamentous

actin (F-actin). This data suggests that the long-term effect

of aldosterone on NHE1 activity might be related to a

genomic effect. On the other hand, it is likely that aldo-

sterone might facilitate a ‘‘shuttle’’ process where NHE1 is

translocated to the plasma membrane. Since the aldoste-

rone-induced increase in NHE1 activity was prevented by

apocynin, it is likely that increases in H2O2 production may

promote the translocation of NHE1 to the plasma mem-

brane induced by aldosterone or facilitate the intracellular

events induced by the activation of the MR. These aspects

are currently under evaluation in our laboratory.

Aldosterone enters the cell by diffusion through the

cellular membrane and once in the cytoplasm it binds to the

intracellular MR receptor. In the present study, mRNA of

MR was detected in WKY and in SHR PTE cells indicating

that aldosterone has the potential to bind to the MR, and

activate NHE; however, only SHR PTE cells responded to

aldosterone. It is clear that the mechanism responsible for

the activation of NHE by aldosterone in SHR PTE cells is

different from WKY PTE cells. The long term effect of

aldosterone was inhibited by the MR antagonist spirono-

lactone, which indicates that the effect of aldosterone

occurs through the MR. High concentrations of aldosterone

(1 lM) may activate both the MR and the GR, as reported

Fig. 10 (a) Rate of H2O2 (nM/min) released from WKY or SHR cell

culture when cells reached confluence (4 days after of seeding).

Levels of extracellular H2O2 (nM) in (b) WKY and (c) SHR PTE cells

in control cell culture conditions or in the presence of apocynin

(4 days after seeding). Each column represents the mean of 4

experiments per group; vertical lines indicate SEM. Significantly

different from values for control (*P \ 0.05)
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by Ebata et al. [26]. However, in the present study aldo-

sterone (1 lM) most likely was devoid of effects upon the

GR, as revealed by the finding that Ru 38486 did not

prevent the aldosterone-induced stimulation of NHE.

WKY and SHR PTE cells were found to express all three

NHE isoforms. NHE1 expression was identical in both cell

lines, whereas NHE3 in SHR cells was more abundant than

in WKY PTE cells, which fits well the data by Kelly et al.

[28] in freshly isolated PTE cells from SHR and WKY.

However, according to Pedrosa et al. [29], NHE1 in

immortalized SHR PTE cells is significantly more abundant

than in WKY PTE cells. Recent studies have shown that

serum deprivation leads to an increase in NHE1 mRNA and

protein expression in immortalized PTE cells [30], which

may offer an explanation for this apparent discrepancy. It is

possible that immortalized SHR PTE cells are more affected

by serum deprivation than WKY PTE cells and, therefore,

have a high expression of NHE1 in serum deprivation

conditions. NHE2 was also detected in WKY and SHR PTE

cells and its expression was identical in both cell lines.

NHE2 is also expressed in other proximal tubular cell lines

for example MCT and RKPC2 [30].

Previous studies in other cell types, namely vascular

smooth muscle cells, have reported genomic effects of

aldosterone through NHE1 [26]. In order to identify the

NHE isoform involved, 100 nM EIPA was used to selec-

tively inhibit the NHE1 isoform. This concentration of

EIPA completely reversed the stimulatory effects of aldo-

sterone upon NHE activity. To confirm this result,

cariporide, a selective NHE1 inhibitor and S3226, a NHE3

inhibitor, were also used. As predicted, cariporide inhibited

the stimulation produced by aldosterone, whereas S3226

was devoid of effects. In hypertension, there is evidence

that NHE1, the isoform most frequently studied, exhibits

increased activity in a large variety of cell types. In several

examples of increased NHE1 activity, the primary change is

not in NHE1 expression, but in post-translational regulation

of activity. In immortalized cells from hypertensive

patients, enhanced NHE1 activity appears to reflect

increased Vmax rather than increased NHE1 mRNA [31].

Similarly, vascular smooth muscle cells from SHR were

found to be endowed with increased NHE1 activity as

evidenced by increases in Vmax, compared to WKY, without

changes in NHE1 mRNA levels or protein abundance [32].

These observations are in agreement with the results pre-

sented here. The present study shows that total protein

levels of NHE1 were not increased in the presence of

aldosterone. It has also been reported that increased extra-

cellular sodium concentration together with the prolonged

treatment with aldosterone may contribute to the increase in

NHE1 activity. In fact, Yamamuro et al. [33] showed an

apparent cardiomycocyte hypertrophy caused by long term

exposure to aldosterone in the presence of elevated extra-

cellular sodium concentration which is thought to occur via

NHE1 with the involvement of the MR. The medium used

in the present study was the ideal for SHR and WKY cells;

however, it is possible that the aldosterone-stimulated

increase of NHE1 activity in SHR PTE cells may be also

effected by extracellular sodium concentration.

In conclusion, we demonstrate that aldosterone increases

NHE1 activity under Vmax conditions through the activa-

tion of the MR in immortalized SHR PTE cells, but not in

WKY PTE cells. This activation occurs through genomic

mechanisms and requires the availability of H2O2 in

excess. High blood pressure is a major clinical issue in

patients afflicted with primary or secondary aldosteronism.

However, the precise mechanisms of blood pressure ele-

vation in mineralocorticoid excess are still unclear. The

present findings, together with previous reports, show that

enhanced NHE1 activity might have an important role in

the pathogenesis of hypertension.
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Erratum to: Oxidative stress and the genomic regulation
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proximal tubular cells
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In the original article, Fig. 3 was not displayed correctly.

Everything else in the paper remains correct.
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Fig. 3 Effect of aldosterone (0.01, 0.1, and 1 lM) for 72 h on NHE

activity in (a) SHR PTE cells and (b) WKY PTE cells. In WKY PTE

cells, the pHi values in vehicle- and aldosterone-treated were,

respectively, 7.51 ± 0.01 and 7.48 ± 0.02. In SHR PTE cells, the

pHi values in vehicle- and aldosterone-treated were, respectively,

7.63 ± 0.02 and 7.66 ± 0.03. Each column represents the mean

of 7–8 experiments per group; vertical lines indicate SEM. Signif-

icantly different from values for control (*P \ 0.05)
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Oxidative stress has been hypothesized to play a role in aging and age-related disorders, such as hypertension.
This study compared levels of oxidative stress and renal expression of oxidant and antioxidant enzymes in
male normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) at different ages (3 and
12 months). In the renal cortex of 3-month old SHR increases in hydrogen peroxide (H2O2) were accompanied
by augmented expression of NADPH oxidase subunit Nox4 and decreased expression of antioxidant enzymes
SOD1 and SOD3. A further increase in renal H2O2 production and urinary TBARS was observed in 12-month
old WKY and SHR as compared with 3-month old rats. Similarly, expressions of NADPH oxidase
subunit p22phox, SOD2 and SOD3 were markedly elevated with age in both strains. When compared with
age-matched WKY, catalase expression was increased in 3-month old SHR, but unchanged in 12-month old
SHR. Body weight increased with aging in both rat strains, but this increase was more pronounced in WKY. In
conclusion, renal oxidative stress in 12-month old SHR is an exaggeration of the process already observed in
the 3-month old SHR, whereas the occurrence of obesity in 12-month old normotensive rats may partially be
responsible for the age-related increase in oxidative stress.
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1. Introduction

Aging is a degenerative process affecting all living organisms.
Among the many theories that have been put forward to explain the
aging process, the free radical theory has received widespread
attention in recent years. This theory postulates that endogenous
oxygen radicals cause a pattern of cumulative damage that is
responsible for the functional deterioration associated with aging
(Harman, 1956). The current view is that oxidative stress, resulting
from excessive production of reactive oxygen species (ROS) and/or
inadequate antioxidant defense mechanisms, may be mechanistically
linked to some aspects of aging and a multitude of age-associated
disorders (Finkel and Holbrook, 2000; Kregel and Zhang, 2007). ROS
can either be generated exogenously or produced intracellularly from
several different sources. Enzymatic systems contributing to oxidative
stress include, among others, the superoxide-generating enzyme,
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
(Griendling et al., 2000; Li et al., 2001). However, under physiological
conditions, the burden of ROS production is largely neutralized by an
intricate antioxidant defense system that includes low molecular
weight antioxidants like glutathione, vitamins E, C and A, the
enzymatic scavengers superoxide dismutase (SOD), catalase and
glutathione peroxidase (GPx) (Finkel and Holbrook, 2000; Kregel and
Zhang, 2007).

The spontaneously hypertensive rat (SHR) is a genetic model of
naturally developing hypertension that appears to be similar in many
aspects to human essential hypertension (Trippodo and Frohlich, 1981).
It is becoming increasingly recognized that hypertension in SHR is
associatedwith enhanced oxidative stress (Touyz, 2004;Wilcox, 2002).
This assumption results from multiple lines of evidence, including
measurements of oxidative stressmarkers in plasma, urine and tissue or
protein levels and activity of oxidant and antioxidant enzymes in the
kidney and vascular tissues of SHR in comparison with their genetic
normotensive controls, the Wistar Kyoto (WKY) rats (Biswas et al.,
2008; Kerr et al., 1999; Schnackenberg and Wilcox, 1999; Ulker et al.,
2003; Zhan et al., 2004a). Nevertheless, experimental studies have
provided conflicting resultswhen the aforementioned parameterswere

http://dx.doi.org/10.1016/j.exger.2011.02.003
mailto:pss@med.up.pt
http://dx.doi.org/10.1016/j.exger.2011.02.003
http://www.sciencedirect.com/science/journal/05315565
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analyzed. For example, Zhan et al. (2004a) reported a marked increase
in immunodetectable p22phox subunit of NADPH oxidase in the renal
cortex of SHR comparedwith that in theWKY; by contrast, Chabrashvili
et al. (2002) reported that there was no detectable difference for
p22phox. On the other hand, data on the expression of oxidant and
antioxidant enzymes in the aged SHR kidney are scarce.

The aim of the present study was, therefore, to assess oxidative
stress and renal expression of oxidant and antioxidant enzymes in
SHR and WKY and whether or not the expression of these enzymes
may change in the kidney during aging.

2. Materials and methods

2.1. Animal preparation and experimental design

Five-week old male Wistar Kyoto (WKY) and spontaneously
hypertensive rats (SHR) were obtained from Harlan-Interfauna
Ibérica (Barcelona, Spain). Animals were housed under controlled
conditions (12 h light/dark cycle and room temperature at 22±2 °C)
and had free access to tap water and standard rat chow (PANLAB,
Barcelona, Spain). The animals were carefully maintained and
monitored until 12 months of age. Blood pressure (systolic and
diastolic) and heart rate were measured in conscious animals using a
photoelectric tail–cuff detector (LE 5000, Letica, Barcelona, Spain). A
minimum of 5 measures were made each time and the mean values
were used for further calculations. Both body weight and blood
pressure measurements were performed at 4 to 6 week intervals.

2.2. Metabolic study

Two days before the start of experiments, 3- and 12-month old rats
were placed in metabolic cages (Tecniplast, Buguggiate, Italy) for a 24 h
urine collection. The urine sampleswere collected in sterilized vials that
were stored at−80 °C until assayed. After completion of this protocol,
rats were anesthetized with sodium pentobarbital (60 mg/kg, i.p.). The
animals were then sacrificed by exsanguination using cardiac puncture
and the blood collected into tubes containing K3 EDTA for later
determination of plasma biochemical parameters. Before excising the
kidneys, the right ventricle of the heart was perfused with ice-cold
saline (0.9% NaCl) to remove all blood from the kidneys. The kidneys
were then excised, weighed, decapsulated, and the renal cortex and
medulla rapidly separated by fine dissection. Tissue pieces were
immediately frozen in liquid nitrogen and stored at−80 °C until use.

2.3. Plasma and urine biochemistry

The quantification of sodium was performed by an ion-selective
electrode. The analysis of non-fasting plasma creatinine, urinary
creatinine, urinary proteins and serum lactate dehydrogenase (LDH)
was performed on the Cobas Mira Plus automated analyzer (Roche
Diagnostics, Germany) using standardized procedures (ABXDiagnostics
for Cobas Mira, Switzerland). Creatinine clearance was calculated using
24-h urine creatinine excretion in absolute values (ml/min).

2.4. Quantification of adiposity levels

Adiposity of all rats was evaluated by the Lee index, which is well
correlated with the percentage of body mass (Li et al., 1998; Ricci
et al., 2006). The Lee index is calculated through the cubic root of body
weight (g) divided by the naso-anal length (mm) times 104.

2.5. H2O2 production by renal cortex

Fresh renal cortex was cut into square pieces and incubated at 37 °C
in Krebs–HEPES buffer (in mM: NaCl 118, KCl 4.5, CaCl2 2.5, MgCl2 1.20,
K2HPO4 1.2, NaHCO3 25.0, Na–HEPES 25.0, and glucose 5; pH 7.4) for
58
90min. The supernatant was then used in the Amplex Red Hydrogen
PeroxideAssay kit (Molecular Probes Inc., Eugene, OR) in order to detect
H2O2 released from the tissue, as previously described (Furukawa et al.,
2004). Amplex Red is a fluorogenic substratewith very low background
fluorescence that reactswithH2O2with a 1:1 stoichiometry toproducea
highly fluorescent reagent. Fluorescence intensity was measured in a
multiplate reader (Spectromax Gemini; Molecular Devices, Sunnyvale,
CA) at an excitation wavelength of 530 nm and emission wavelength of
590 nm at room temperature. After subtracting background fluorescence,
the concentration of H2O2 (in nmol/mg tissue) was calculated using a
resorufin–H2O2 standard calibration curve generated from experiments
using H2O2 and Amplex Red.
2.6. Measurement of TBARS

As a marker of lipid peroxidation, we measured thiobarbituric acid
reactive substances (TBARS) according to the method of Ohkawa et al.
(1979), with some modifications. Briefly, urine samples were
combined with 8.1% SDS for 10 min. Equal volumes of 28% TCA and
0.6% TBAwere added and heated at 95 °C for 1 h. After cooling at room
temperature, a mixture of chloroform/methanol (2:1) was added and
centrifuged at 5000 rpm for 10 min. Supernatant absorbance was
measured at 532 nm. A calibration curve was prepared with
malondialdehyde (MDA) as a standard and results were expressed
as μmol MDA/24 h urine volume. All samples gave results which were
within the linear range of the MDA standard curve.
2.7. Western blotting

Renal cortices were lysed in RIPA buffer containing 150 mM NaCl,
50 mM Tris–HCl, pH 7.4, 5 mM EDTA, 1% Triton X-100, 0.5% sodium
deoxycholate, 0.1% SDS, 100 μg/ml PMSF, 2 μg/ml leupeptin and 2 μg/ml
aprotinin. Protein concentrationwas determined using a protein assay kit
(Bio-Rad Laboratories, Hercules, CA), with bovine serum albumin as
standard. Homogenates were boiled in 2x sample buffer (62.5 mM Tris–
HCl pH 6.8, 2% SDS, 10% glycerol, 2% 50 mM DTT, 0.1% w/v bromophenol
blue) at 95 °C for 5 min. Samples containing 25–100 μg of protein were
separated by SDS-PAGE with 10% polyacrylamide gel and then electro-
blotted onto nitrocellulose membranes (Bio-Rad Laboratories, Hercules,
CA). Blots were blocked for 1 h with 5% non-fat dry milk in TBS at room
temperature with constant shaking. Blots were then incubated with
antibodies goat polyclonal anti-Nox4 (1:400, Santa Cruz Biotechnology,
Santa Cruz, CA); rabbit polyclonal anti-p22phox (1:800, Santa Cruz
Biotechnology); rabbit polyclonal anti-SOD1 (1:2000, Santa Cruz Biotech-
nology); goat polyclonal anti-SOD2 (1:100, Santa Cruz Biotechnology);
goat polyclonal anti-SOD3 (1:500, Santa Cruz Biotechnology); rabbit
polyclonal anti-catalase (1:2000, Calbiochem, Nottingham, UK); mouse
monoclonal anti-glutathione peroxidase (1:1000, Calbiochem) and
mouse monoclonal anti-GAPDH (1:60,000, Santa Cruz Biotechnology) in
5% non-fat dry milk in TBS-T overnight at 4 °C. The immunoblots were
subsequently washed and incubatedwith fluorescently labeled goat anti-
rabbit (1:20,000; IRDyeTM800, Rockland, Gilbertsville, PA), fluorescently
labeled donkey anti-goat (1:20,000; IRDyeTM 800, Rockland), or the
fluorescently labeled goat anti-mouse secondary antibody (1:20,000;
AlexaFluor 680, Molecular Probes, Paisley, UK) for 60 min at room
temperature and were protected from light. The membranes were
washed and imaged by scanning at both 700 and 800 nm, with an
Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE).
2.8. Drugs

All chemicals were obtained from Sigma (St. Louis, MO) unless
otherwise stated.
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2.9. Data analysis

Arithmetic means are given with standard error of the mean
(SEM). Statistical analysis was performed by one-way analysis of
variance (ANOVA) followed by Newman–Keuls test. A P value less
than 0.05 was assumed to denote a significant difference.
3-months 12-months
0

50

100

150

S
B

P
 (

m
m

H
g)

3-months 12-months
0

50

100

150

200

250
WKY

SHR
# *

*

D
B

P
 (

m
m

H
g)

400

500 WKY

SHR

* *

s)

B

C

3. Results

3.1. General data

Body weight increased with age in both rat strains, but this
increment wasmore pronounced inWKY than in SHR (70% versus 40%
increase) (Table 1). In addition, body weight inWKYwas significantly
higher than in age-matched SHR (Table 1). Tibia length is an index of
growth that remains constant after maturity. As shown in Table 1,
tibia length was slightly higher in 12-month old rats, indicating that
3-month old rats were reaching full body growth. In contrast, the
increase in body weight/tibia length ratio in WKY (58%) was greater
than in SHR (18%), suggesting that aged WKY accumulate fat mass.
Additionally, the obesity Lee index was augmented in 12-monthWKY
rats when compared with 3-month WKY rats, whereas no differences
were observed in the SHR rats during aging. Fractional urinary
excretion of sodium (FE Na+) and creatinine clearance were
considered as markers of renal function. In WKY, FE Na+ and
creatinine clearance were unaffected by age. FE Na+ in 12-month
SHR was lower than in 3-month SHR and 12-month WKY (Table 1).
On the other hand, creatinine clearance was slightly higher in
12-month SHR than in 3-month SHR (Table 1). We have also
evaluated urinary protein excretion and serum lactate dehydrogenase
(LDH) levels as markers of renal injury. Urinary protein excretion was
not affected by age in WKY. By contrast, urinary protein excretion in
12-month SHR was higher than in 3-month SHR. Urinary protein
excretion in both SHR groups was also significantly higher than in
age-matched WKY (Table 1). Following a similar pattern, serum LDH
levels were higher in SHR than in age-matched WKY rats and no
age-related changes were observed, although statistical significance
was not reached (Table 1).
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3.2. Blood pressure data

As expected, the systolic anddiastolic bloodpressures (SBPandDBP)
determined by the tail–cuff method were significantly higher in both
3- and 12-month old SHR than in age-matched WKY (Fig. 1A and 1B).
Moreover, a significant increase in both SBP and DBP was observed in
12-month versus 3-month SHR (Fig. 1A and 1B). Heart rate in SHR was
higher than in WKY (Fig. 1 C).
Table 1
Physiological parameters in 3- and 12-month old WKY and SHR.

WKY SHR

Parameter 3-months 12-months 3-months 12-months

Body weight (g) 332±9 565±10a 272±5 380±5a,b

Tibia length (cm) 4.00±0.09 4.30±0.02 3.30±0.01 3.90±0.03
Body weight/tibia
length (g/cm)

83.0±2.9 131.4±2.5a 82.4±1.4 97.4±0.9a,b

Lee index 297.7±3.1 308.2±1.8a 301.8±3.0 303.4±1.7
FE Na+ (%) 0.36±0.04 0.40±0.03 0.37±0.04 0.20±0.04a,b

Creatinine clearance
(ml/min)

2.6 ±0.3 3.4±0.3 1.9±0.2 2.7 ±0.2a

Proteinuria (mg/24 h) 14.0±0.8 13.9±1.2 26.0±1.6b 34.0±3.3a,b

LDH (U/L) 248±72 337±44 436±70 410±93

Data are means±SEM of 5–11 rats per group.
a Pb0.05 compared with corresponding 3-months old rats.
b Pb0.05 compared with corresponding WKY rats.

3-months 12-months

Fig. 1. Changes in systolic (A), diastolic blood pressure (B), and heart rate (C) of 3-and
12-month old WKY and SHR. Each bar represents the mean±SEM of 6–12 rats.
Significantly different from corresponding WKY values (* Pb0.05) and significantly
different from values in 3-month old rats (# Pb0.05) using the Newman–Keuls test.

59
3.3. Markers of oxidative stress

To evaluate oxidative stress during aging in both WKY and SHR, we
measured the production of hydrogen peroxide (H2O2), a hazardous
ROS against tissues and cells, in renal cortex tissue samples, and
assessed lipid peroxidation through the quantification of TBARS in urine
samples. H2O2 production by the renal cortex of 3-month SHR was
increased in comparison with age-matched WKY (Fig. 2A). In contrast,
no changes in urinary TBARS were detected in this age group (Fig. 2B).
H2O2 production in the renal cortex increasedmarkedly (4–5 fold)with



3-months 12-months
0.00

0.02

0.04

0.06
WKY

SHR

*

# #

3-months 12-months
0.00

0.05

0.10

0.15

0.20 WKY
SHR

##

A

B

R
en

al
 c

or
te

x 
H

2O
2 

pr
od

uc
tio

n
(n

m
ol

/m
g 

tis
su

e)
U

rin
e 

T
B

A
R

S
 c

on
te

nt
(µ

m
ol

es
 M

D
A

/2
4h

)

Fig. 2. Production of H2O2 by renal cortex of 3- and 12-month old WKY and SHR (A).
Urinary levels of lipid peroxidation (TBARS) in 3- and 12-month old WKY and SHR (B).
Each bar represents the mean±SEM of 3–7 rats. Significantly different from values in
3-month old WKY (* Pb0.05) and significantly different from corresponding values in
3-month old rats (# Pb0.05) using the Newman–Keuls test.

Fig. 3. Expression of the NADPH oxidase protein subunits p22phox (A) and Nox4 (B) in
the renal cortex of 3- and 12-month oldWKY and SHR. Representative immunoblots are
depicted on top of the bar graphs. Values are normalized to the level of GAPDH
expression in each condition and expressed as % of 3-month old WKY rats. Each bar
represents the mean±SEM of 4 independent immunoblots. Significantly different from
values in 3-month old WKY (* Pb0.05) and significantly different from corresponding
values in 3-month old rats (# Pb0.05) using the Newman–Keuls test.
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age in both WKY and SHR, though no significant differences were
observed between rat strains of the same age group (Fig. 2A). Similar to
the results shown for oxidant production, a significant increase (2 fold)
was observed in urinary TBARS in 12-month WKY and SHR when
compared with 3-month rats (Fig. 2B).

3.4. Pro-oxidant enzymes

Because the NADPH oxidases are predominant sources of ROS
leading to oxidative stress (Griendling et al., 2000; Li et al., 2001), the
levels of two major subunits of NADPH, Nox4 and p22phox, were
evaluated by Western blotting in the renal cortex of 3- and 12-month
old WKY and SHR. The abundance of Nox4 in 3-month SHR, as well as
in 12-month WKY and 12-month SHR, was higher than in 3-month
WKY (Fig. 3B). No significant differences in p22phox protein
expression were found between age-matched groups of WKY and
SHR strains. However, the abundance of p22phox in both 12-month old
WKY and SHRwas higher than in 3-month oldWKY and SHR (Fig. 3A).

3.5. Antioxidant enzymes

Protein expression of superoxide dismutase isoforms (SOD1, SOD2
and SOD3) was determined in renal cortex of 3- and 12-month WKY
and SHR (Fig. 4). Expression of SOD1 in 3-month SHRwas significantly
lower than in age-matched WKY (Fig. 4A). In 12-month SHR the
expression of SOD1 was higher than in 3-month SHR, though no
differences were detected between aged WKY and SHR (Fig. 4A). The
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abundance of SOD2 did not differ in 3-month WKY and SHR. In
contrast, the abundance of SOD2 in 12-month WKY and SHR was
higher than in the 3-month rats (Fig. 4B). SOD3 expression levels in 3-
months SHR were significantly lower than in 3-month WKY. In 12-
month WKY and SHR the abundance of SOD3 was higher than in the
3-month rats (Fig. 4 C). In addition, expression of catalase and GPx,
the enzymes responsible for H2O2 catabolism, were also evaluated in
the renal cortex of all groups of animals (Fig. 5). The abundance of
catalase in 3-month SHR, as well as in 12-month WKY and SHR, was
higher than in 3-month WKY (Fig. 5A). By contrast, GPx expression
remained unchanged in all groups (Fig. 5B).

4. Discussion

The main findings of this study were that both SHR and WKY
exhibited increased levels of oxidative stress in renal tissue with age
and this was accompanied by similar expression profile of oxidant and
antioxidant enzymes.We hypothesize that the findings reported here,
which apparently conflict with the current view that hypertension is a
state of oxidative stress, might arise from the fact that normotensive
WKY developed obesity with aging. Common mechanisms leading to
oxidative stress may, therefore, underlie hypertension and obesity.



Fig. 4.Expression of SOD1 (A), SOD2 (B) and SOD3 (C) in the renal cortex of 3- and12-month
oldWKY and SHR. Representative immunoblots are depicted on top of the bar graphs. Values
are normalized to the level of GAPDH expression in each condition and expressed as % of
3-month oldWKY rats. Each bar represents themean±SEMof 4 independent immunoblots.
Significantly different from values in 3-month oldWKY (* Pb0.05) and significantly different
from corresponding values in 3-month old rats (# Pb0.05) using the Newman–Keuls test.

Fig. 5. Expression of catalase (A) and glutathione peroxidase (B) in the renal cortex of 3- and
12-month old WKY and SHR. Representative immunoblots are depicted on top of the bar
graphs. Values are normalized to the level of GAPDH expression in each condition and
expressed as % of 3-month old WKY rats. Each bar represents the mean±SEM of 4
independent immunoblots. Significantly different from values in 3-month old WKY
(* Pb0.05) and significantly different from corresponding values in 3-months old rat
(# Pb0.05) using the Newman–Keuls test.
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Oxidative stress is assumed to be an important factor in aging and in
many age-related diseases (Finkel andHolbrook, 2000; Kregel and Zhang,
2007), including essential hypertension (Touyz, 2004;Wilcox, 2002). This
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view isbasedon thepresenceof increasedproductionof superoxideanion
and H2O2, reduced NO synthesis, and decreased bioavailability of
antioxidants, which have been verified in experimental and human
hypertension. As it concerns the SHRmodel, the majority of studies have
been conducted in young/adult animals, ranging from 10 to 24 weeks of
age. Additionally, several conflicting results have been reported in what
concerns themeasurementofdifferentoxidative stressparameters inSHR
and WKY. In the present study, we further confirmed the presence of
oxidative stress in young SHR. The production of H2O2 in the renal cortex
was significantly increased in 3-month old SHR although no differences
were detected in urinary lipid peroxidation products. Oxidative stress in
3-month old SHR might be explained by the upregulation of NADPH
oxidase subunit Nox4 and down-regulation of antioxidant SOD1 and
SOD3enzymes. Previous studies reported similar observations confirming
that at the age of 10 to 12 weeks these rats develop oxidative stress (Adler
and Huang, 2004; Biswas et al., 2008). Overexpression of catalase in
3-month old SHRmight be an attempt to compensate for increased levels
of oxidative stress.

To the best of our knowledge, no previous study has examined the
effects of aging on oxidative stress in kidneys of SHR and WKY. A

image of Fig.�4
image of Fig.�5
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recent work evaluated oxidant handling and energy metabolism in
chronic kidney disease using 3- and 21–24-month old WKY, SHR and
Wistar rats, although with a different approach regarding oxidative
stress measurement. In this study, the expression of hemeoxygenase-
1 was used as a renal marker of oxidative stress. The authors observed
an increased expression of hemeoxygenase-1 in old Wistar and SHR
rats as compared with the young rats (Percy et al., 2009).
Furthermore, in the study of Alvarez et al., comparisons of oxidative
stress levels were made during aging in hearts of Wistar and SHR rats.
These authors reported increased levels of oxidative stress in aged
SHR (Alvarez et al., 2008).

In the present study, we found a significant increase in H2O2

production by the renal cortex of 12-month old SHR. Moreover, these
rats also exhibited a significant increase in urinary TBARS, a frequently
used index of cell lipid peroxidation. Several reports have shown an
age-associated increase in the concentrations of lipid peroxidation
products (Pratico, 2002). Unexpectedly, WKY at the age of 12 months
displayed similar oxidative stress levels as the age-matched SHR. It is
suggested that the increased levels of H2O2 found in the renal tissue of
aged SHRandWKYmay be, at least in part, responsible for the increased
urinary lipid peroxides in these rats. Altogether, the results presented
here indicate that aged rats have increased levels of oxidative stress
compared with young ones. In contrast, recent work demonstrated an
increase in plasma (Zhan et al., 2004a) and urinary (Suzuki et al., 2008)
H2O2 levels in 22/24-week-old SHR compared with age-matchedWKY.
Furthermore, the study of de Cavanagh et al. (2006) reports an increase
in renal mitochondrial H2O2 production in 8-month old SHR compared
with age-matchedWKY. The discrepancy between our study and those
mentioned before in terms of H2O2 production might be explained by
the marked increase in bodyweight of agedWKY, even after correction
for tibia length, suggesting the accumulation of fat in these rats. In fact,
numerous reports have shown that oxidative stress is increased in
animal models of obesity and that the adipose tissue is a major
contributor to ROS production (Davi et al., 2002; Furukawa et al., 2004;
Urakawa et al., 2003). Several studies demonstrated that dietary
restriction is an efficient approach to confront age-related oxidative
damage indifferent rat tissues, decreasingROSandF2-isoprostane levels
as well as the activities of proinflammatory transcription factors (Jung
et al., 2009; Opalach et al., 2010; Ward et al., 2005). It would be of
interest, in future studies, to determine the importance of diet intake
upon oxidative stress parameters in the aged kidney of SHR and WKY.

The NADPH oxidase complex has been described as the main
source of ROS in the kidney, although other ROS-generating enzymes
are also present in this organ (Paravicini and Touyz, 2008; Touyz,
2004). The NAPDH oxidase catalyzes the conversion of molecular
oxygen into superoxide anion and is composed by p22phox and Nox2/
gp91phox membrane subunits and the cytosolic proteins p40phox,
p47phox, p67phox and Rac (Bedard and Krause, 2007; Paravicini and
Touyz, 2008). Nox4 is the most highly expressed NADPH oxidase in
the kidney and does not require cytosolic subunits for its activation
(Bedard and Krause, 2007). Oxidative stress in aged SHR and WKY
was accompanied by increases in the abundance of p22phox and Nox4
proteins, which provides additional support for increased ROS
production in the kidney of aged rats.

The primary lines of defense preventing biological macromolecules
from ROS attack are the antioxidant enzymes. SODs are an ubiquitous
family of enzymes that catalyze the conversion of superoxide anion into
H2O2. In the subsequent step of the detoxifying cascade,H2O2 previously
produced is converted to water and molecular oxygen by catalase or
GPx, which uses reduced glutathione as the hydrogen donor. Increased
levels of ROS in cells and tissues may act as a signal to enhance the
activity and expression of antioxidant enzymes. According to this
hypothesis, an increase in antioxidant enzymes activity and/or
expression with age would be expected, this being an adaptation to
help cells and tissues protect fromoxidative stress. Here,we reported an
increased renal expression of SOD2, SOD3 and catalase in both aged SHR
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and WKY. This finding may occur in response to the increased H2O2

production in aged rats. In addition, the increased levels of H2O2 present
in these rats might modulate mRNA levels of antioxidant enzymes
through activation of redox-sensitive transcription factors such as AP-1
and NF-κB, which can lead to the overexpression of these enzymes in
aged rats. In contrast, expression of GPx remained unaltered during
aging in both SHR and WKY rats, suggesting that this enzyme may be
dysregulateddespite thepresence of oxidative stress. Somestudies have
showndecreases in activity and/or expressionof catalase andGPx,while
other studies showed the opposite trend. Fortepiani and Reckelhoff
(2005) reported a decrease in the expression of both catalase andGPx in
17/19-week old SHR. In contrast, Zhan et al. (2004b) reported increases
in the expression of catalase and GPx in the renal cortex of 24-week old
SHR without changes in enzymatic activity. In the study of Zhan et al.
(2004b), and similar to the present work, a significant increase in body
weight ofWKYwas reported. The cause of the discrepancy between the
results of Fortepiani and Reckelhoff (2005), Zhan et al., (2004b) and the
present study remains at present unclear. It is possible that it rests
simply on the fact that animals of different ages and bodyweights were
used and this is an important aspect to consider. Recent studies carried
out in WKY and Fischer-344 rats (21 to 24 months old) also described
increases in the activity of major antioxidant enzymes with age (Judge
et al., 2005; Lambertucci et al., 2007).

In conclusion, aged SHR and WKY display increased levels of
oxidative stress in renal tissue with similar expression profile of
oxidant and antioxidant enzymes, suggesting the existence of
common mechanisms in hypertension and obesity leading to
oxidative stress. It is suggested that oxidative stress levels in aged
WKY might arise from increased fat mass accumulation which is
operating as a confounding factor.
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A B S T R A C T

This study examined age-related changes in renal dopaminergic activity and expression of amino acid

transporters potentially involved in renal tubular uptake of L-DOPA in Wistar Kyoto (WKY) and

spontaneously hypertensive rats. Aging (from 13 to 91 weeks) was accompanied by increases in systolic

blood pressure (SBP) in both WKY and SHR. The sum of urinary dopamine and DOPAC and the urinary

dopamine/L-DOPA ratio were increased in aged SHR but not in aged WKY. The urinary dopamine/renal

delivery of L-DOPA ratio was increased in both rat strains with aging. LAT2 abundance was increased in

aged WKY and SHR. The expression of 4F2hc was markedly elevated in aged SHR but not in aged WKY.

ASCT2 was upregulated in both aged WKY and SHR. Plasma aldosterone levels and urinary noradrenaline

levels were increased in aged WKY and SHR though levels of both entities were more elevated in aged

SHR. Activation of the renal dopaminergic system is more pronounced in aged SHR than in aged WKY and

is associated with an upregulation of renal cortical ASCT2 in WKY and of LAT2/4F2hc and ASCT2 in SHR.

This activation may be the consequence of a counter-regulatory mechanism for stimuli leading to sodium

reabsorption.

� 2011 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Dopamine is a major regulator of mammalian proximal tubule
salt and water reabsorption. In the mammalian kidney, dopamine
is primarily produced in the proximal tubule (Aperia, 2000; Gomes
and Soares-da-Silva, 2008; Soares-da-Silva and Vieira-Coelho,
1998). The dopamine precursor L-dihydroxyphenylalanine (L-
DOPA) is filtered at the glomerulus and is taken up by the
proximal tubule via luminal transporters and converted to
dopamine by aromatic L-amino acid decarboxylase (AADC), which
is highly expressed in the proximal tubule (Soares-da-Silva and
Fernandes, 1991). The regulation of this non-neuronal dopaminer-
gic system depends mainly on the availability of L-DOPA, on its
Abbreviations: 4F2hc, 4F2 heavy chain; ANOVA, one-way analysis of variance;

COMT, catechol-O-methyl-transferase; Ccr, creatinine clearance; DOPAC, 3,4-

dihydroxyphenylacetic acid; FENa+, fractional excretion of Na+; GAPDH, glyceralde-

hyde-3-phosphate dehydrogenase; GFR, glomerular filtration rate; L-DOPA, L-

dihydroxyphenylalanine; LAT1, L-type amino acid transporter 1; LAT2, L-type amino

acid transporter 2; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel

electrophoresis; SEM, standard error of the mean; SHR, spontaneously hypertensive

rat; WKY, Wistar Kyoto rat.
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decarboxylation into dopamine and on cell outward amine transfer
mechanisms (Pestana and Soares-da-Silva, 1994; Soares-da-Silva
and Fernandes, 1991). In the kidney, dopamine is metabolized
predominantly by catechol-O-methyl-transferase (COMT) and
monoamine oxidase to 3,4-dihydroxyphenylacetic acid (DOPAC),
and to homovallinic acid (HVA) (Pestana and Soares-da-Silva,
1994; Soares-da-Silva and Fernandes, 1991). A considerable
amount of evidence favours the view that dopamine of renal
origin plays a role in the regulation of central blood volume by
reducing the tubular reabsorption of sodium as a paracrine or
autocrine substance (Jose et al., 2003). The mechanisms through
which renal dopamine is thought to produce natriuresis involve
the activation of D1-like receptors that inhibit the activity of both
apical (e.g., Na/H exchange and chloride–bicarbonate exchange
and Na–P cotransport) and basolateral (Na–K-ATPase and NaHCO3

cotransport) transporters (Aperia et al., 1987; Felder et al., 1990;
Jose et al., 1992; Lokhandwala and Amenta, 1991). The availability
of dopamine to activate its specific receptors is determined by
factors affecting renal synthesis, mainly the amounts of L-DOPA
and sodium delivered to the kidney and the degree of degradation
of the amine (Soares-da-Silva et al., 1993).

The spontaneously hypertensive rat (SHR) is a genetic model of
hypertension characterized by the resistance to the natriuretic
effect of dopamine and D1-like receptor agonists, as a result of a
defective transduction of the D1 receptor signal in renal proximal

http://dx.doi.org/10.1016/j.mad.2011.06.003
mailto:pss@med.up.pt
http://www.sciencedirect.com/science/journal/00476374
http://dx.doi.org/10.1016/j.mad.2011.06.003
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tubules (Jose et al., 2010; Sanada et al., 1999; Zeng and Jose, 2011).
It has been suggested that increased oxidative stress in renal
proximal tubules of the SHR could be a mechanism for defective
dopamine D1 receptor/G-protein coupling (White and Sidhu,
1998). Moreover, recent studies have shown the overexpression
of Na+-independent and pH-sensitive amino acid transporter LAT2
(Slc7a8) in the SHR kidney, which might contribute to enhanced L-
DOPA uptake in the proximal tubule and increased dopamine
production (Pinho et al., 2004), as an attempt to overcome the
defect in D1 receptor function.

The aging kidney undergoes structural changes that result in
quantitative alterations in some renal functions, such as a decline
in renal blood flow and glomerular filtration rate (Zhou et al.,
2008). An increasing number of studies have shown that old
animals may present particular deficiencies in the renal handling
of L-DOPA, its subsequent conversion to dopamine (Armando et al.,
1995; Soares-da-Silva and Fernandes, 1991) and at the level of
receptor number or coupling to G proteins (Kansra et al., 1997). In
the presence of age-related diseases, such as heart failure and
hypertension, these changes can be aggravated (Fischer and
O’Hare, 2010).

This study was aimed at evaluating age-related changes in the
activity of the renal dopaminergic system and the regulation of the
amino acid transporters that are potentially involved in the uptake
of L-DOPA: Na+-independent LAT1 and LAT2 and Na+-dependent
ASCT2 in SHR and their normotensive Wistar Kyoto (WKY)
counterparts.

2. Materials and methods

2.1. Animal preparation and experimental design

Five-week old male WKY and SHR were obtained from Harlan-Interfauna Ibérica

(Barcelona, Spain). The rats were housed under controlled conditions (12 h light/

dark cycle and room temperature at 22 � 2 8C) and had free access to tap water and

standard rat chow (PANLAB, Barcelona, Spain). The animals were carefully maintained

and monitored until 13 or 91 weeks of age. Blood pressure (systolic and diastolic) and

heart rate were measured in conscious animals using a photoelectric tail-cuff detector

(LE 5000, Letica, Barcelona, Spain). A minimum of 5 measures were made each time and

the mean values were used for further calculations. All rat interventions were

performed in accordance with the European Directive number 86/609, and the rules of

the ‘‘Guide for the Care and Use of Laboratory Animals’’, 7th edition, 1996, Institute for

Laboratory Animal Research (ILAR), Washington, DC.

2.2. Metabolic study

Forty eight hours before experiments, 13- and 91-week old rats were placed in

metabolic cages (Tecniplast, Buguggiate, Italy) for a 24 h urine collection. The urine

samples were collected in vials containing 1 ml of 6 M HCl to prevent spontaneous

decomposition of monoamines and amine metabolites. After completion of this

protocol, rats were anesthetized with sodium pentobarbital (60 mg/kg, i.p.). The

animals were then sacrificed by exsanguination using cardiac puncture and the

blood collected into tubes containing K3 EDTA for later determination of plasma

biochemical parameters. Before excising the kidneys, a cannula was inserted in the

right ventricle of the heart and animals were perfused with ice-cold saline (0.9%

NaCl) to remove all blood from the kidneys. The kidneys were then excised,
Table 1
Cardiovascular and physiological parameters in 13- and 91-week old WKY and SHR.

Parameter WKY 

13 weeks

n = 6

Systolic blood pressure (mm Hg) 122 � 6 

Diastolic blood pressure (mm Hg) 97 � 3 

Pulse pressure (mm Hg) 25 � 2 

Creatinine clearance (ml/min) 2.64 � 0.26 

Urinary protein excretion (mg/24 h) 14.01 � 0.80 

FENa+ (%) 0.38 � 0.04 

Kidney weight/tibia length (% of control) 100 � 2 

* Significantly different from corresponding values in 13-week old animals (P < 0.05
# Significantly different from age-matched WKY (P < 0.05).
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weighed, decapsulated, and the renal cortex and medulla rapidly separated by fine

dissection. Tissue pieces were immediately frozen in liquid nitrogen and stored at

�80 8C for Western blot analysis.

2.3. Plasma and urine biochemistry

The quantification of sodium and potassium in plasma and urine was performed

by ion-selective electrodes. Creatinine was measured by the Jaffé method (Chromy

et al., 2008). All assays were performed by Cobas Mira Plus analyzer (ABX

Diagnostics, Switzerland). Creatinine clearance (in ml/min) was calculated using

the formula Ccr = (Ucreat � Vu)/(Pcreat � 24 h � 60) where Ucreat and Vu are the

urinary creatinine concentration and urinary 24 h volume and Pcreat is the plasma

creatinine concentration. Aldosterone in plasma samples was performed by

radioimmuno assay (Diagnostic Products Corporation; Los Angeles, CA).

2.4. Assay of catecholamines

The assay of catecholamines in urine (L-DOPA, dopamine, DOPAC and

norepinephrine) and plasma samples (L-DOPA, dopamine and DOPAC) was

performed by HPLC with electrochemical detection, as previously described

(Soares-da-Silva et al., 1994, 1993). The lower limit of detection of L-DOPA,

dopamine, norepinephrine, and DOPAC ranged from 350 to 1000 fmol.

2.5. Western blotting

Renal cortices from 13- and 91-week old WKY and SHR, were lysed in RIPA

buffer containing 150 mM NaCl, 50 mM Tris–HCl, pH 7.4, 5 mM EDTA, 1% Triton

X-100, 0.5% sodium deoxycholate, 0.1% SDS, 100 mg/ml PMSF, 2 mg/ml leupeptin

and 2 mg/ml aprotinin. Protein concentration was determined using a protein

assay kit (Bio-Rad Laboratories, Hercules, CA), with bovine serum albumin as

standard. Lysates were boiled in sample buffer (35 mM Tris–HCl, pH 6.8, 4% SDS,

9.3% dithiothreitol, 0.01% bromophenol blue, 30% glycerol) at 95 8C for 5 min.

Samples containing 50–75 mg of protein, were separated by SDS-PAGE with 10%

polyacrylamide gel and then electroblotted onto nitrocellulose membranes (Bio-

Rad). Blots were blocked for 1 h with 5% non-fat dry milk in PBS (10 mmol/l

phosphate-buffered saline) at room temperature with constant shaking. Blots

were then incubated with the antibodies rabbit polyclonal anti-LAT1 (1:500;

Serotec); goat polyclonal anti-LAT2 (1:500; Santa Cruz Biotechnology); rabbit

polyclonal anti-4F2hc (1:500; Santa Cruz Biotechnology); rabbit polyclonal anti-

ASCT2 (1:500; Chemicon International); mouse monoclonal anti-b-actin

(1:20,000; Santa Cruz Biotechnology) or mouse monoclonal anti-GAPDH

(1:60,000; Santa Cruz Biotechnology) in 5% non-fat dry milk in PBS-T overnight

at 4 8C. The immunoblots were subsequently washed and incubated with

fluorescently labeled goat anti-rabbit (1:20,000; IRDyeTM 800, Rockland);

fluorescently labeled donkey anti-goat (1:10,000; IRDyeTM 800, Rockland); or

the fluorescently labeled goat anti-mouse secondary antibody (1:20,000;

AlexaFluor 680, Molecular Probes) for 60 min at room temperature and

protected from light. The membrane was washed and imaged by scanning at

both 700 and 800 nm, with an Odyssey Infrared Imaging System (LI-COR

Biosciences).

2.6. Drugs

All chemicals were obtained from Sigma (St. Louis, MO) unless otherwise stated.

2.7. Data analysis

Arithmetic means are given with standard error of the mean (SEM). Statistical

analysis was performed by one-way analysis of variance (ANOVA) followed by

Newman–Keuls test. A P value less than 0.05 was assumed to denote a significant

difference.
SHR

91 weeks

n = 6

13 weeks

n = 6

91 weeks

n = 6

148 � 3* 191 � 2# 224 � 5*,#

88 � 3 165 � 2# 132 � 3*,#

60 � 1* 26 � 2 92 � 7*,#

3.9 � 0.23* 1.85 � 0.15# 2.05 � 0.18#

14.77 � 1.21 26.02 � 1.60# 41.06 � 3.38*,#

0.23 � 0.01* 0.37 � 0.04 0.23 � 0.04*

114 � 1* 100 � 1 122 � 2*,#

).
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3. Results

3.1. Blood pressure data and renal function

As expected, the systolic and diastolic blood pressures (SBP and
DBP) determined by the tail-cuff method were significantly higher
in both 13- and 91-week old SHR than in age-matched WKY (Table
1). Moreover, aging was accompanied by increases in SBP in both
WKY and SHR. DBP remained unaltered in aged WKY, but a
significant decrease was observed in aged versus young SHR (Table
1). No difference in pulse pressure (defined as SBP minus DBP) was
found between young WKY and SHR. Pulse pressure increased with
age in both WKY and SHR but at 91 weeks of age SHR had higher
pulse pressure than age-matched WKY (Table 1). Creatinine
clearance (Ccr) levels were decreased in SHR in comparison to
age-matched WKY (Table 1). Urinary protein excretion was
significantly higher in SHR than in age-matched WKY at 13 and
91 weeks of age and increased significantly with age (Table 1).
Moreover, evaluation of FENa+ in WKY and SHR showed a
significant decrease in this parameter at the age of 91 weeks in
both rat strains (Table 1). Kidney/tibia length ratios were assessed
for WKY and SHR (Table 1). Aging was associated with increases in
kidney/tibia length ratio in both WKY and SHR. However, increases
in kidney size were more marked in SHR (Table 1).

3.2. Activity of the renal dopaminergic system

In the present study, the urinary excretion of dopamine and its
metabolite DOPAC was evaluated in 13- and 91-week old WKY and
SHR (Fig. 1). No changes were found in urinary L-DOPA indexed to
urinary creatinine in aged WKY. However, L-DOPA excretion was
decreased in aged SHR, though the difference did not reach
statistical significance (Fig. 1A). Aging was accompanied by slight
increases in urinary dopamine in WKY and SHR, though not
statistically significant. However, urinary dopamine in 91-week
old SHR was higher than that in age-matched WKY (Fig. 1B).
Urinary DOPAC was significantly increased in aged SHR but not in
aged WKY rats (Fig. 1C). More complete information on the L-DOPA
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Fig. 1. Urinary excretion of L-DOPA (A), dopamine (B), DOPAC (C), and sum of urinary dopa

SHR. Each bar represents the mean � SEM of 6 rats. Significantly different from correspo

matched WKY (#P < 0.05) using the Newman–Keuls test.
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renal turnover is obtained when the sum of urinary dopamine and
DOPAC is considered. The sum of urinary dopamine and DOPAC
was found to be increased in aged SHR but not in aged WKY
(Fig. 1D). Furthermore, urinary dopamine + DOPAC was markedly
increased in aged SHR in comparison to age-matched WKY
(Fig. 1D).

The enhanced urinary excretion of dopamine and DOPAC in the
SHR may reflect their enhanced ability to synthesize dopamine.
The urinary dopamine/L-DOPA ratio (a measure of renal L-DOPA
utilization and of renal dopamine-synthesis efficiency) in 91-week
old SHR was markedly higher than in young SHR (Fig. 2A). The
dopamine/L-DOPA ratio was also greater in 91-week old SHR than
in age-matched WKY (Fig. 2A). No differences were detected with
aging in the WKY (Fig. 2A). On the other hand, the ratio between
urinary dopamine and the renal delivery of L-DOPA (another index
of renal dopamine production) was greater in aged WKY and SHR
than in young animals (Fig. 2B). However, the dopamine/renal
delivery of L-DOPA ratio was significantly increased in aged SHR
when compared to age-matched WKY (Fig. 2B). The renal delivery
of L-DOPA, which considers L-DOPA plasma levels and creatinine
clearance (plasma L-DOPA � creatinine clearance), decreased with
age in WKY and SHR, though the difference did not reach statistical
significance in WKY (Fig. 2C). Moreover, the renal delivery of L-
DOPA in 91-week old SHR was significantly lower than in age-
matched WKY (Fig. 2C). As depicted in Table 2, aging was
accompanied by decreases in plasma levels of L-DOPA, dopamine
and DOPAC in both WKY and SHR.

3.3. Renal expression of LAT1, LAT2, 4F2hc and ASCT2

Age-related changes in the amino acid transporters that are
potentially involved in the uptake of L-DOPA were evaluated in the
renal cortex of 13- and 91-week old WKY and SHR. As depicted in
Fig. 3A LAT1 expression levels were downregulated in 91-week old
WKY and SHR rats when compared to young animals. On the other
hand, LAT2 abundance was significantly upregulated in 91-week
old WKY and SHR, as compared to young animals (Fig. 3B). Aging
had no effect on 4F2hc protein abundance in WKY, whereas 4F2hc
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Fig. 2. Urinary dopamine/L-DOPA ratios (A), dopamine/renal delivery of L-DOPA

ratios (B) and renal delivery of L-DOPA (C) in 13- and 91-week old WKY and SHR.

Each bar represents the mean � SEM of 6 rats. Significantly different from

corresponding values in 13-week old animals (*P <0.05) and significantly different

from age-matched WKY (#P < 0.05) using the Newman–Keuls test.
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expression levels were significantly increased at 91 weeks of age in
SHR when compared to 13-week old SHR (Fig. 3C). ASCT2 was
increased at 91 weeks of age in both WKY and SHR when compared
with 13-week old animals (Fig. 3D).

3.4. Neurohumoral parameters

Aging was accompanied by increases in plasma aldosterone
levels in both WKY and SHR. However, at 91 weeks of age SHR had
increased circulating aldosterone levels when compared to age-
Table 2
Plasma levels of L-DOPA, dopamine and DOPAC in 13- and 91-week old WKY and SHR

Parameter WKY 

13 weeks

n = 6

91 w

n = 6

L-DOPA (pmol/ml) 4.07 � 0.31 2.00

Dopamine (pmol/ml) 10.67 � 1.02 0.56

DOPAC (pmol/ml) 4.62 � 0.58 1.75

* Significantly different from corresponding values in 13-week old animals (P < 0.05
# Significantly different from age-matched WKY (P < 0.05).
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matched WKY (Fig. 4A). Plasma aldosterone levels were accompa-
nied by decreases in the UNa+/K+ ratio in both WKY and SHR
though the mineralocorticoid response to endogenous aldosterone
was markedly greater in 91-week old SHR than in age-matched
WKY rats (Fig. 4B). Similar to plasma aldosterone levels, urinary
excretion of noradrenaline was also greater in aged WKY and SHR
than in young animals, but levels in 91-week old SHR were higher
than in age-matched WKY rats (Fig. 4C).

4. Discussion

The present study evaluated age-related changes in dopami-
nergic activity and amino acid transporter expression in WKY and
SHR. The results indicate that aged SHR have increased renal
cortical LAT2/4F2hc and ASCT2 abundance and increased efficien-
cy in the formation of renal dopamine. Moreover, activation of the
renal dopaminergic system is accompanied by an increase in the
activity of the sympathetic and renin–angiotensin–aldosterone
systems.

There are conflicting results concerning the effect of age on
renal dopamine production. Although several studies have shown
an association between age and deficiencies in the renal handling
of L-DOPA (Armando et al., 1995; Kansra et al., 1997; Soares-da-
Silva and Fernandes, 1991; Vieira-Coelho et al., 1999), other
authors have reported no alterations in renal dopamine production
with aging (Komori et al., 1997; Lehmann et al., 1985; Nicolau
et al., 1985). In the present study, no significant changes with aging
were found in urinary excretion of L-DOPA, dopamine and DOPAC
or in the urinary dopamine/L-DOPA ratio in WKY. However, results
indicated that young WKY had increased renal delivery of L-DOPA
when compared to aged rats though the urinary excretion of L-
DOPA was the same. This may have led to the accumulation of
plasma levels of L-DOPA in young WKY. Since the urinary
dopamine/L-DOPA ratio only takes into account levels of urinary
dopamine and L-DOPA no differences were found between young
and aged WKY, regarding the ability to form dopamine. However, a
significant increase in the dopamine/renal delivery of L-DOPA ratio
in aged WKY indicates that the ability to produce dopamine may be
increased in aged WKY.

In comparison to aged WKY, aged SHR had increased urinary
excretion of dopamine and DOPAC. Additionally, urinary dopa-
mine/L-DOPA and urinary dopamine/renal delivery of L-DOPA
ratios were increased in aged SHR, indicating that aged SHR may
have an enhanced ability to produce dopamine than aged WKY.
Previous reports by other authors have shown that dopamine
production and excretion in the SHR were normal or increased
when compared with those in WKY, though most studies were
conducted in young animals (Herlitz et al., 1982; Kuchel et al.,
1987; Racz et al., 1985; Yoshimura et al., 1990). Our group reported
that SHR maintained on a normal-salt diet had, at 4 weeks of age
but not at 12 weeks, overexpression of LAT2 and increased tubular
uptake of L-DOPA (Pinho et al., 2007). Accordingly, the enhanced
ability to take up L-DOPA in the pre-hypertensive SHR was
suggested to take place as an attempt to overcome the deficient
dopamine-mediated natriuresis generally observed in this genetic
.

SHR
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 � 0.21* 5.33 � 0.36# 2.89 � 0.21*
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Fig. 3. Expression of LAT1 (A), LAT2 (B), 4F2hc (C) and ASCT2 (D) in the renal cortex of 13- and 91-week old WKY and SHR. Representative immunoblots are depicted on top of

the bar graphs. Values are normalized to the level of GAPDH expression in each condition and expressed as % of 13 week-old rats. Each bar represents the mean � SEM (n = 4

per group). Significantly different from values in 13-week old animals (*P <0.05) using the Newman–Keuls test.
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model of hypertension (Jose et al., 2002; Pinho et al., 2007).
Moreover, at 4 and 12 weeks of age no differences in the urinary
excretion of dopamine or DOPAC, or in plasma aldosterone levels
were found between age-matched WKY and SHR (Pinho et al.,
2007).

The renal cortical abundance of Na+-independent LAT1 and
LAT2, 4F2hc and Na+-dependent ASCT2, amino acid transporters
potentially involved in renal tubular uptake of L-DOPA, was
evaluated in 13- and 91-week old WKY and SHR rats. The system L-
type amino acid transporters is a major route for providing living
cells with neutral amino acids including several essential amino
acids that cells are unable to synthesize such as leucine, isoleucine,
valine, phenylalanine, tryptophan, methionine and histidine
(Christensen, 1990; Silbernagl, 1979). Although the transport of
leucine by LAT1 in pig LLC-PK1 renal cells has been previously
described (Soares-da-Silva and Serrao, 2004), LAT1 has a very
limited tissue distribution in the kidney (Pinho et al., 2007). Global
gene expression monitoring by cDNA microarrays showed a
decline in the expression of y+LAT1 and B0AT1 with age in the renal
cortex (Melk et al., 2005). Similarly, in the present study aging was
accompanied by decreases in LAT1 abundance in WKY and SHR.
LAT2 is a major Na+-independent amino acid transporter expressed
mainly in transporting epithelia, such as in the kidney and
intestine (Broer, 2008), and its functionality is dependent on the
abundance of 4F2hc (Pineda et al., 1999). The heterodimerization
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of LAT2 with 4F2hc is necessary for the transporter to reach the cell
surface (Nakamura et al., 1999). Therefore, increases in 4F2hc and
LAT2 abundance may translate in increases in LAT2 functionality in
aged SHR. On the other hand, the abundance of 4F2hc does not vary
with age in WKY, which would limit the translocation of LAT2 to the
cell surface. At the apical membrane of renal proximal tubule cells
only Na+-dependent amino acid transporters ASCT2 and B0AT1 are
capable of transporting amino acids with similar characteristics to
substrates transported through system L. Analogous to the LAT2
abundance profile, ASCT2 was found to be upregulated in aged WKY
and SHR. Overall, these results suggest that activation of the renal
dopaminergic system is accompanied by increases in LAT2/4F2hc
functionality and ASCT2 overexpression in aged SHR. In contrast,
LAT2/4F2hc functionality may not have a role in L-DOPA uptake in
the renal cortex of aged WKY.

Plasma aldosterone and renal noradrenaline levels were
higher in aged SHR than in aged WKY, indicating a marked
neurohumoral activation in aged SHR. The result of these
hemodynamic and neurohumoral alterations was an increase in
renal sodium transport (as indicated by a decrease in urinary
UNa+/K+ ratio), proteinuria and reductions of the renal delivery
of L-DOPA in aged SHR. Another indication of aldosterone actions
is the marked increases in kidney size in aged SHR rats.
Aldosterone directly modulates renal cell proliferation and
differentiation via stimulation of rapidly activated protein
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Fig. 4. Plasma levels (pmol/l) of aldosterone (A) changes in urinary Na+/K+ ratio (B) and urinary noradrenaline levels (nmol/mg creatinine) in 13- and 91-week old WKY and

SHR. Each column represents the mean � SEM of 6 rats. Significantly different from corresponding values in 13-week old animals (*P <0.05) and significantly different from age-

matched WKY (#P < 0.05) using the Newman–Keuls test.
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kinase cascades as part of normal kidney development (Thomas
et al., 2010). The renal dopaminergic and renin–angiotensin–
aldosterone systems (RAAS) control renal electrolyte balance
through various receptor mediated pathways with counter-
regulatory interactions. In order to conserve sodium during low
sodium intake, the RAAS is upregulated in order to produce
angiotensin II (Ang II). Stimulation of the principal membrane
bound cell surface receptor for Ang II, the AT1R, leads to sodium
reabsorption. In order to eliminate sodium during high sodium
intake the local renal production of dopamine is increased
leading to inhibition of sodium reabsorption (Felder and Jose,
2006). The natriuretic renal dopaminergic system opposes the
anti-natriuretic activity of the RAAS by downregulating the
AT1R, upregulating the AT2R and inhibiting ROS generation. Each
of the individual dopamine receptors has been shown to oppose
the activity of the AT1R, with the D1R, D3R, and D5R physically
interacting with the AT1R (Gildea, 2009). Taken together, it is
suggested that the renal dopaminergic system might be a
compensatory mechanism activated by stimuli that lead to
sodium reabsorption in aged WKY and SHR. However, this
counter-regulatory mechanism is considerably more enhanced
in aged SHR. A similar mechanism has been shown in patients
with heart failure. Stimuli leading to activation of anti-
natriuretic systems and sodium retention are accompanied by
activation of the renal dopaminergic system characterized by an
increase in the renal utilization of filtered L-DOPA (Alvelos et al.,
2004; Ferreira et al., 2001, 2002).

The specific effects of aldosterone on the expression of 4F2hc
and LAT2 have recently been explored by our group (Pinho et al.,
2009). Eight-week old Wistar rats were submitted to high salt
intake (1% NaCl in their drinking water) and treated chronically
with aldosterone and/or spironolactone, a mineralocorticoid
72
receptor (MR) antagonist. Treatment with aldosterone signifi-
cantly increased LAT2 mRNA expression via the MR (abolished
by spironolactone), though protein levels remained unchanged.
On the other hand, aldosterone treated rats had decreased 4F2hc
protein expression in a spironolactone-independent manner.
These effects of aldosterone were accompanied by decreases in
urinary dopamine and DOPAC in a spironolactone-sensitive
manner (Pinho et al., 2009).

Studies have shown that cardiac function and coronary
hemodynamics progressively deteriorate with aging in both SHR
and WKY and that very old WKY tend to develop a significant
degree of isolated systolic hypertension (Susic et al., 1998,
2001). In the present study SBP was found to be increased in
aged WKY and SHR, displaying the same trend as the plasma
aldosterone levels. Pulse pressure has been reported to increase
significantly with age in SHR but not in WKY (Chamiot-Clerc
et al., 2001). However, these studies were conducted in rats
between 3 and 78 weeks of age. The findings show that aged
SHR has in fact an intense dopaminergic response but SBP and
pulse pressure values remain increased. The cause for this
outcome is possibly related to the defective transduction of the
D1 receptor signal in renal proximal tubules usually attributed
to this strain (Jose et al., 2010). On the other hand, the activation
of the renal dopaminergic system is not as effective in aged WKY
and SBP and pulse pressure are increased in these animals.

In conclusion, aging in WKY and SHR is accompanied by
increases in renal cortical ASCT2 abundance in the former and in
increases in LAT2/4F2hc and ASCT2 abundances in the latter.
Moreover, the dopaminergic response is more enhanced in aged
SHR than in aged WKY and this is probably a result of a
compensatory mechanism activated by stimuli leading to sodium
reabsorption.
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Aging is associated with alterations in renal physiology which may be aggravated by diseases such 
as hypertension. In the present study we hypothesised that age-associated changes in the renal 
aldosterone/mineralocorticoid receptor (MR) system may differ between spontaneously 
hypertensive rats (SHR), and Wistar-Kyoto rats (WKY). WKY became obese; body mass index 
(BMI) significantly increased with age. Fat mass accumulation may operate as a confounding factor 
therefore WKY were submitted to 15% food restriction (WKY-FR). Renal oxidative stress was 
increased in aged WKY and SHR. Long-term FR significantly reduced the BMI and decreased renal 
oxidative stress when compared to age-matched WKY and SHR. The renal medulla of aged WKY 
and SHR had increased MR action, assessed by the urinary Na+/K+ ratio which correlated positively 
with increased plasma aldosterone levels, nuclear MR content and expressions of Na+,K+-ATPase 
α1

 

-subunit and the α-subunit of the epithelial sodium channel (αENaC). In contrast, when compared 
to aged WKY and SHR, aged WKY-FR had decreased plasma aldosterone levels and decreased 
activation of the aldosterone/MR system in the renal medulla. Systolic and diastolic blood pressures 
in SHR increased with age and were significantly higher than that in age-matched WKY. In 
conclusion, renal oxidative stress and plasma aldosterone in aged WKY increased to levels 
observed in SHR but were not sufficient to result in sustained increases in blood pressure. 
Activation of the aldosterone/MR system is intensified by aging in SHR whereas 
hyperaldosteronism in WKY is associated with increases in body fat mass and not with aging per 
se.  

 
 

A broad-spectrum of physiological, 

functional and morphological changes in the 

kidney is associated with age, resulting in an 

almost inevitable decline of renal function 

(Kielstein et al. 2003; Epstein 1996). 

Previous studies have shown renal function 

decline to be associated with both structural 

(glomerulosclerosis, tubular atrophy and 

interstitial fibrosis) and functional (decreases 

in glomerular filtration rate (GFR), 

proteinuria, reduced ability to concentrate or 

dilute urine, impairment of electrolyte and ion 

transport, alteration in hormonal functions, 

reduced drug excretion) changes in the 
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kidney (reviewed in refs (Martin and Sheaff 

2007) and (Zhou et al. 2008)). 

In the presence of age-related 

diseases, such as heart failure and 

hypertension, these changes can be 

accelerated (Fischer and O'Hare). The 

prevalence of hypertension increases with age 

(Mosterd et al. 1999). Hypertension also 

correlates with altered kidney function and 

structure, which has been suggested to play a 

role in the development of this disorder 

(Mullins et al. 2006). This became 

particularly evident with renal cross-

transplantation between normotensive and 

hypertensive strains. Normotensive rats 

receiving a kidney from hypertensive rats 

were found to develop hypertension (Bianchi 

et al. 1974). The spontaneously hypertensive 

rat (SHR) is a genetic model of hypertension 

characterized by the resistance to the 

natriuretic effect of dopamine and D1-like 

receptor agonists, as a result of a defective 

transduction of the D1 receptor signal in renal 

proximal tubules (Jose et al. 2010). It has 

been suggested that increased oxidative stress 

in renal proximal tubules of the SHR could be 

a mechanism for defective dopamine D1 

receptor/G-protein coupling (White and 

Sidhu 1998). Moreover, recent studies have 

shown the overexpression of Na+

Aldosterone is a major regulator of 

extracellular fluid (ECF) volume and is the 

principal determinant of K

-independent 

and pH-sensitive amino acid transporter 

LAT2 (Slc7a8) in the SHR kidney, which 

might contribute to enhanced L-DOPA 

uptake in the proximal tubule and increased 

dopamine production (Pinho et al. 2004), as 

an attempt to overcome the defect in D1 

receptor function. 

+ homeostasis 

(Bhargava et al. 2004). Acting on the 

mineralocorticoid receptors (MR) it 

stimulates Na+ reabsorption, K+ and H+ 

secretion by the distal nephron, particularly in 

the collecting duct (O'Neil 1990). The MR is 

primarily localized in the cytosol of the cell 

in the absence of ligand (Nishi et al. 2001). 

Binding of aldosterone to the MR triggers its 

nuclear translocation and activity as a 

transcription factor (Fuller and Young 2005; 

Loffing et al. 2001). Inappropriate 

aldosterone secretion in relation to sodium 

balance leads to hypertension in the case of 

hyperaldosteronism, or to hypotension in the 

case of hypoaldosteronism (Epstein 2001). 

Although we recently showed that plasma 

aldosterone levels are increased in aged 

WKY (Pinto et al. 2011) the available data on 

the relationship between age and the function 

of the renin-angiotensin-aldosterone system 

in normotensive healthy adults are 

conflicting. Some authors noted diminished 

urinary aldosterone or plasma renin and 

aldosterone values (Weidmann et al. 1975), 

but others reported that plasma aldosterone 

remains unchanged with aging (Abd-Allah et 

al. 2004). Our group has recently reported the 

effects of aging (from 13- to 91-weeks of 
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age) on Na+,K+

 

-ATPase expression and 

activity in the kidney of WKY rats (Silva et 

al. 2010). Furthermore, Simão et al., reported 

that aged WKY and SHR display increased 

levels of oxidative stress in renal tissue that 

were suggested to be related to increases in 

body weight (Simao et al. 2011). In the 

present study we investigated age-related 

changes in the renal regulation of the 

aldosterone/MR system in normotensive 

Wistar-Kyoto (WKY) and spontaneously 

hypertensive rats (SHR). In comparison with 

SHR, aging in WKY was accompanied by 

marked increases in body weight, renal 

oxidative stress and a relative greater increase 

in plasma aldosterone levels. In WKY these 

changes were attenuated by long-term food 

restriction. 

Materials and Methods 

Animal preparation and experimental 

design 

All rat interventions were performed 

in accordance with the European Directive 

number 86/609, and the rules of the “Guide 

for the Care and Use of Laboratory Animals”, 

7th edition, 1996, Institute for Laboratory 

Animal Research (ILAR), Washington, DC. 

Five-week old male WKY and SHR rats were 

obtained from Harlan-Interfauna Ibérica 

(Barcelona, Spain) and carefully maintained 

and monitored until 13 and/or 52 weeks of 

age. One group of WKY rats were either fed 

ad-libitum or subjected to 15% food 

restriction (FR) until 13 weeks of age while 

another group was fed ad-libitum or subjected 

to 15% FR until 52 weeks of age. The rats 

were housed under controlled conditions (12 

h light/dark cycle and room temperature at 

22±2 ºC) and had free access to tap water and 

fed standard rat chow (PANLAB, Barcelona, 

Spain). Blood pressure (systolic and diastolic) 

was measured using a photoelectric tail-cuff 

detector (LE 5000, Letica, Barcelona, Spain). 

Body mass index (BMI) was determined in 

all animals as reported previously by other 

authors (Novelli et al. 2007), using the 

formula: BMI = body weight (g) / length2 

(cm2

 

), where “length” corresponds to the 

“nose-to-anus” length. 

Metabolic study 

Forty-eight hours before the 

experiments, 13- or 52-week old rats were 

placed in metabolic cages (Tecniplast, 

Buguggiate, Italy) for a 24 h urine collection. 

The urine samples were collected in vials that 

were subsequently stored at -80 ºC until 

assayed. After completion of this protocol, 

rats were anesthetized with sodium 

pentobarbital (60 mg/kg, i.p.). The animals 

were then sacrificed by exsanguination using 

cardiac puncture and the blood collected into 

tubes containing K3 EDTA for later 

determination of plasma biochemical 

parameters. Before excising their kidneys, a 

cannula was inserted in the right ventricle of 

the heart and animals were perfused with ice-
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cold saline (0.9 % NaCl) to remove all blood 

from the kidneys. The kidneys were then 

excised, weighed, decapsulated, and the renal 

cortex and medulla rapidly separated by fine 

dissection. 

 

Plasma and urine biochemistry 

All biochemical assays were 

performed by Cobas Mira Plus analyzer 

(ABX Diagnostics for Cobas Mira, 

Switzerland). Plasma aldosterone was 

assayed by radioimmunoassay (Diagnostic 

Products Corporation; Los Angeles, CA).  

 

H2O2

  H

 production by renal medulla and 

cortex 

2O2 was measured fluorometrically 

using the Amplex Red Hydrogen Peroxide 

Assay kit (Molecular Probes Inc., Eugene, 

OR, USA). Amplex Red is a fluorogenic 

substrate with very low background 

fluorescence that reacts with H2O2 with a 1:1 

stoichiometry to produce a highly fluorescent 

reagent. Renal cortex and medulla were cut 

into square pieces and incubated at 37 ºC in 

Krebs-HEPES buffer (in mM: NaCl 118, KCl 

4.5, CaCl2 2.5, MgCl2 1.20, K2HPO4
 1.2, 

NaHCO3 25.0, Na-HEPES 25.0, and glucose 

5; pH 7.4) for 90 min. H2O2 released from 

the tissue was detected using the Amplex Red 

Hydrogen Peroxide Assay kit. Fluorescence 

intensity was measured in a multiplate reader 

(Spectromax Gemini Molecular Devices) at 

an excitation wavelength of 530 nm and 

emission wavelength of 590 nm at room 

temperature. After subtracting background 

fluorescence, the concentrations of renal 

cortical and medullary H2O2 (in pmol/mg) 

were calculated using a resorufin–H2O2 

standard calibration curve generated from 

experiments using H2O2

 

 and Amplex Red. 

Malondialdehyde (MDA) determination 

Briefly, urine samples were combined 

with 8.1% SDS for 10 min. Equal volumes of 

28% trichloroacetic acid (TCA) and 0.6% 

thiobarbituric acid (TBA) were added and 

heated at 95 ºC during 1 hour. After cooling 

at room temperature, a mixture of 

chloroform/methanol (2:1) were added and 

centrifuged at 5000 rpm for 10 min. 

Supernant absorbance was measured at 532 

nm. The content of urinary malondialdehyde 

MDA was calculated using a MDA standard 

calibration curve and results were expressed 

as nanomoles of MDA per 24 h urine volume.  

 

Western Blotting 

Isolated renal cortex and medulla of 

13- and 52-week old WKY, WKY-FR and 

SHR were sliced very thinly and lysed by the 

addition of RIPA buffer containing 150 mM 

NaCl, 50 mM Tris–HCl, pH 7.4, 5 mM 

EDTA, 1% Triton X-100, 0.5% sodium 

deoxycholate, 0.1% SDS, 100 µg/ml 

phenylmethylsulfonyl fluoride (PMSF), 2 

µg/ml leupeptin and 2 µg/ml aprotinin, as 

described previously (Amaral et al. 2009). 
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Nuclear protein was prepared as described by 

other authors (Kanematsu et al.). Briefly, 

renal medullary and cortical tissues were 

homogenized in ice-cold buffer (A) 

containing 10 mM HEPES (pH 7.9), 1.5 mM 

MgCl2, 10 mM KCl, 0.5 mM dithiothreitol 

(DTT), 0.5 mM PMSF, 2 µg/ml leupeptin, 2 

µg/ml aprotinin and 10% Nonidet P-40. After 

centrifugation of the homogenate at 1,000 x g 

for 5 min at 4°C, the supernatants and pellets 

were collected separately. The supernatants 

were centrifuged again at 6,000 x g for 10 

min. For nuclear fraction isolation, the pellets 

from the first centrifugation, which contain 

cell nuclei, were washed with buffer A and 

then incubated with ice-cold buffer (B) 

containing 5 mM HEPES (pH 7.9), 1.5 mM 

MgCl2, 300 mM NaCl, 400 mM KCl, 0.2 

mM EDTA, 0.5 mM DTT, 0.5 mM PMSF, 2 

µg/ml leupeptin, 2 µg/ml aprotinin, and 26% 

glycerol for 30 min to release nuclear 

proteins. Next, the reaction mixtures were 

centrifuged at 24,000 x g for 30 min, and the 

supernatant (containing nuclear-enriched 

protein fraction) was collected and frozen in 

liquid nitrogen until use as nuclear extracts 

for western blot analysis. Protein 

concentrations in nuclear protein enriched 

fractions and homogenates of total protein 

were determined by the Bradford assay. 

Proteins were subjected to SDS-10%PAGE 

and then electroblotted onto nitrocellulose 

membranes (Bio-Rad). Blots were blocked 

for 1 h with 5% non-fat dry milk in TBS (10 

mmol/l tris-buffered saline) at room 

temperature with constant shaking and 

subsequently incubated with antibodies 

mouse polyclonal anti-MR (1:500,(Gomez-

Sanchez et al. 2006); kindly supplied by Dr 

Elise Gómez-Sánchez, (University of 

Mississippi Medical Center, Jackson, 

Mississippi); rabbit polyclonal anti-αENaC 

(1:500, Chemicon); rabbit polyclonal anti-

NHE3 (1:200) (Xu et al. 2000); kindly 

supplied by Dr Pedro A. Jose, (George 

Washington University School of Medicine & 

Public Health, Washington, D.C.); mouse 

monoclonal anti-α1-subunit of Na+,K+-

ATPase (1:1000, Santa Cruz Biotechnology) 

and mouse monoclonal anti-GAPDH 

(1:20,000, Santa Cruz Biotechnology) in 5% 

non-fat dry milk in TBS-T overnight at 4 ºC. 

Mouse monoclonal anti-β-actin (1:20,000, 

Santa Cruz Biotechnology) was used as an 

internal loading control for homogenates of 

nuclear proteins as previously described by 

other authors (Kariagina et al. 2005; Olave et 

al. 2002). Since β-actin expression did not 

vary between the different groups it was 

regarded as a safe loading control. The 

immunoblots were subsequently washed and 

incubated with fluorescently labeled goat 

anti-rabbit (1:20,000; IRDyeTM 800, 

Rockland) or the fluorescently labeled goat 

anti-mouse secondary antibody (1:20,000; 

AlexaFluor 680, Molecular Probes) for 60 

min at room temperature and protected from 

light. The membrane was washed and imaged 
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by scanning at both 700 and 800 nm, with an 

Odyssey Infrared Imaging System (LI-COR 

Biosciences).  

 

Drugs 

All chemicals were obtained from Sigma (St. 

Louis, MO) unless otherwise stated. 

 

Data analysis 

Arithmetic means are given with 

standard error of the mean (SEM). One-way 

ANOVA followed by the Newman–Keuls test 

for multiple comparisons test was used to 

determine differences between single groups 

when more than 2 groups were represented. A 

P value less than 0.05 was assumed to denote 

a significant difference. 

 

Results 

Physiological parameters in aged WKY, 

WKY-FR and SHR 

As expected, systolic (SBP) and 

diastolic (DBP) blood pressures in the SHR 

were significantly higher than that in age-

matched WKY (Figure 1A and 1B). Blood 

pressure in the SHR was found to increase 

with age, whereas SBP and DBP in WKY 

were not significantly affected by aging 

(Figure 1A and 1B). Body weight of WKY 

and SHR increased steadily until 52 weeks of 

age (Figure 1C). By 52 weeks of age WKY 

had significantly greater body weight than 

SHR (Table 1). Moreover, at 52 weeks of age 

WKY had a BMI (g/cm2

FR resulted in a 14% body weight 

reduction at the age of 52 weeks in WKY-FR 

compared to WKY fed ad libitum and in a 

significant decrease in the BMI value (Table 

1). As electrolyte excretion may be 

conditioned by food ingestion, all groups 

were placed in metabolic cages and fed ad 

libitum 48 hours before experiments. No 

differences in the amount of food ingested 

during this time period were observed 

between groups (data not shown). 

) of 0.80±0.01, 

significantly above the considered “normal” 

range (0.45±0.02 to 0.68±0.05) determined 

by other authors for adult Wistar rats (Novelli 

et al. 2007). For this reason WKY were 

submitted to 15% FR (WKY-FR) from 5 to 

13 or 52 weeks of age. WKY-FR had at 13 

weeks of age, similar body weight to those 

fed ad libitum (Table 1).  

Urinary Na+ was lower in 13-week-

old SHR than in age-matched WKY. At 13 

weeks of age WKY-FR had increased urinary 

Na+ when compared to age-matched WKY. 

On the other hand, aging had no effect on 

urinary Na+ levels in WKY, WKY-FR and 

SHR (Table 1). No differences were found in 

urinary K+ levels between young WKY, 

WKY-FR or SHR. Aging was accompanied 

by increases in urinary K+

 

 in all groups.  
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Table 1. Physiological parameters in 13- and 52-week old WKY, WKY-FR and SHR. 
 

 WKY WKY-FR SHR 

 
13 weeks 

 
 52 weeks 

 
13 weeks 

 
52 weeks 

 
13 weeks 

 
 52 weeks 

 
       

Body weight (g) 321±12 578±9 324±8 * 498±10 272±5* # λ 392±6# 

BMI (g/cm

# 

2
 

) 0.60±0.01 
 

0.80±0.01 0.60±0.01 * 0.73±0.01 0.59±0.01 *# λ 0.68±0.01

UNa

*#  

+
 

 (mmol/24h) 1.77±0.11 
 

1.36±0.23 2.33±0.05 1.51±0.08 # 1.32±0.06 1.07±0.13 # 

UK+ 
 

(mmol/24h) 1.10±0.06 1.56±0.10 1.11±0.06 * 1.35±0.05 0.86±0.08 * # 1.30±0.07
 

* # 
      

Plasma cholesterol 
(mg/dl) 78±4 82±7 65±2 65±2# 50±2# λ 51±2# 
Plasma creatinine 
(mg/dl) 

# 
 

0.39±0.04 
 

0.50±0.01
 

* 0.43±0.03 
 

0.57±0.03 0.41±0.03 * 0.51±0.02
 

* 
      

Significantly different from corresponding values in 13-week old animals (*P<0.05).  Significantly different 
from age-matched WKY (#P< 0.05). Significantly different from 52-week old SHR (λP< 0.05). 
 

 

At 52 weeks of age urinary K+

Cholesterol levels were unaffected by 

aging in all WKY groups although levels 

were decreased in young and aged WKY-FR 

animals when compared to age-matched 

WKY (Table 1). Plasma creatinine levels 

increased with age in WKY, WKY-FR and  

 was 

significantly lower in WKY-FR and SHR 

than in age-matched WKY (Table 1). SHR 

had increased levels of urinary protein 

(UPRT) when compared to age-matched 

WKY. Furthermore, while no changes in 

UPRT were observed in aged WKY or WKY-

FR, urinary protein excretion in SHR 

increased with age (Table 1). 

SHR, although no differences were observed 

between age-matched animals (Table 1). 

 

Renal oxidative markers in aged WKY, 

WKY-FR and SHR 

In order to examine the renal 

oxidative status with aging, H2O2 production 

and lipid peroxidation levels were measured 

in the medulla and cortex of 13- and 52-week 

old WKY, WKY-FR and SHR (Figure 2). 

Aging was associated with increases in H2O2 

production in the renal medulla of all rats, 

however, at 52 weeks of age, WKY-FR had 

lower H2O2 production than age-matched 

WKY and SHR (Figure 2A). The production 

of H2O2

 

 in the renal cortex of WKY, WKY-

FR and SHR was similar to that observed in 

the renal medulla (Figure 2B).  
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Figure 1. Changes in systolic (A) and diastolic (B) blood pressure of 13- and 52-week old WKY and SHR. 

Significantly different from values in 13-week old rats (*P<0.05) and significantly different from age-

matched WKY (#P< 0.05) using the Newman–Keuls test. (C) Changes in body weight of WKY, WKY-FR 

and SHR rats as a function of time. Significantly different from WKY at 52 weeks of age (*P<0.05) using the 

Newman–Keuls test. Each bar represents the mean ± SEM of 6-12 rats. Each point represents the mean ± 

SEM of 6–12 rats. 

 

Young WKY-FR had decreased 

H2O2 production in comparison to age-

matched WKY and SHR. Aging was 

accompanied by increases in H2O2 

production in all groups. By 52 weeks of age 

no differences were found between age-

matched WKY and SHR, but WKY-FR had 

lower H2O2

We next measured the concentration 

of urinary malondialdehyde (MDA), a marker 

of lipid peroxidation (Figure 2C). Lipid 

peroxidation levels were similar in 13-week 

old WKY, WKY-FR and SHR. MDA levels 

increased with age in both WKY and SHR, 

but not in WKY-FR. No differences in MDA 

levels were observed between aged WKY and 

SHR. In contrast, lipid peroxidation levels 

were lower in 52-week old WKY-FR than in 

age-matched WKY and SHR 

 production levels than WKY and 

SHR (Figure 2B). 
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Figure 2. Production of H2O2 

 

by renal medulla (A) and cortex (B) of 13- and 52-week old WKY, WKY-FR 

and SHR. Urinary levels of lipid peroxidation (MDA levels) in 13- and 52-week old WKY, WKY-FR and 

SHR (C). Each bar represents the mean ± SEM of 3-7 rats. Significantly different from 13-week old WKY 

(τP< 0.05), significantly different from 13-week old SHR (βP< 0.05), significantly different from 

corresponding values in 13-week old animals (*P<0.05), significantly different from 52-week old WKY (#P< 

0.05) and significantly different from 52-week old SHR (λP< 0.05) using the Newman–Keuls test. 

Plasma levels of aldosterone and the 

urinary Na+/K+ ratio (UNa+/K+

Plasma aldosterone levels were 

greater in 13-week old SHR when compared 

to age-matched WKY (Figure 3A). At this 

age, no differences were found between 

WKY and WKY-FR. Aging was 

accompanied by marked increases in plasma 

aldosterone levels in all groups. By 52 weeks 

of age no differences were observed between 

WKY and SHR. However, WKY-FR had 

significantly lower plasma aldosterone levels 

when compared to age-matched WKY and 

SHR (Figure 3A). The mineralocorticoid 

) 

effect was assessed by the urinary Na+/K+ 

(UNa+/K+) ratio (Figure 3B). The UNa+/K+ 

ratio was significantly increased in 13-week 

old WKY-FR in comparison to age-matched 

WKY and SHR. Aging decreased the 

UNa+/K+ ratio in all animal groups, however, 

at 52 weeks of age WKY-FR had higher 

UNa+/K+ ratio when compared to age-

matched WKY and SHR. No differences in 

the UNa+/K+

 

 were observed between 52-week 

old WKY and SHR (Figure 3B). 
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Figure 3. Plasma levels of aldosterone (pmol/L) (A) and changes in urinary Na+/K+ (UNa+/K+

 

) ratio (B) in 

13- and 52-week old WKY and SHR. Each column represents the mean ± SEM of 6-12 rats. Significantly 

different from 13-week old WKY (τP< 0.05), significantly different from 13-week old SHR (βP< 0.05), 

significantly different from corresponding values in 13-week old animals (*P<0.05), significantly different 

from 52-week old WKY (#P< 0.05) and significantly different from 52-week old SHR (λP< 0.05) using the 

Newman–Keuls test. 

Renal abundance of total and nuclear MR 

in aged WKY, WKY-FR and SHR 

Aldosterone regulates sodium 

reabsorption in epithelial tissues such as the 

kidney via the activation of intracellular MR. 

Therefore, total and nuclear abundance of 

MR was measured in the renal medulla and 

cortex of 13- and 52-week old WKY, WKY-

FR and SHR (Figure 4 and 5). In the renal 

medulla, no differences in total MR 

abundance were found between 13-week old 

WKY, WKY-FR and SHR (Figure 4A). 

Total MR abundance was similar in WKY 

and SHR at 52 weeks of age. Aged WKY-FR 

had higher total MR abundance than age-

matched WKY and SHR (Figure 4A). The 

nuclear content of MR in the renal medulla 

was increased in 13-week old SHR in 

comparison to age-matched WKY (Figure 

4B). Aged WKY, WKY-FR and SHR had 

significantly increased MR nuclear 

abundance when compared to 13-week old 

animals. However, MR nuclear abundance 

was significantly greater in 52-week old SHR 

than in age-matched WKY. Aged WKY-FR 

had lower MR nuclear abundance in 

comparison to age matched WKY and SHR 

(Figure 4B). 

In the renal cortex, no differences 

were observed in the abundance of total or 

nuclear MR between 13-week old WKY, 

WKY-FR and SHR (Figure 5A and 5B). 

Total MR abundance decreased in the renal 

cortex of aged WKY, but increased in aged 

SHR (Figure 5A). In WKY-FR, no age-

related changes in total MR abundance were 

observed. Total MR was greater in 52-week 

old WKY-FR than in WKY. Conversely, total 

MR levels were lower in aged WKY-FR than 

in age-matched SHR (Figure 5A). Nuclear 
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MR content was decreased in the renal cortex 

of aged WKY, WKY-FR and SHR (Figure 

5B). No differences were observed between 

52-week old WKY and SHR. In contrast, 

WKY-FR had significantly higher nuclear 

MR content than age-matched WKY and 

SHR (Figure 5B). 

 

 

 
Figure 4. Total mineralocorticoid receptor (MR) expression (A) and nuclear MR content (B) in the renal 

medulla of 13- and 52-week old WKY, WKY-FR and SHR. Values are normalized to the level of GAPDH or 

β-actin expression for each protein of interest and expressed as percentage of control (13-week old WKY). 

Each column represents the mean ± SEM (n=4 per group). Significantly different from 13-week old WKY 

(τP< 0.05), significantly different from corresponding values in 13-week old animals (*P<0.05), significantly 

different from 52-week old WKY (#P< 0.05) and significantly different from 52-week old SHR (λP< 0.05) 

using the Newman–Keuls test. 

 

The effect of aging on the renal expression 

of aldosterone effectors in WKY, WKY-FR 

and SHR  

We evaluated the expression of 

several sodium transport proteins that have 

been reported  to be regulated by aldosterone, 

such as NHE3, Na+,K+-ATPase α1-subunit, 

and αENaC in the renal medulla and renal 

cortex of 13- and 52-week old WKY, WKY-

FR and SHR. No differences in the renal 

medullary abundance of NHE3, Na+,K+-

ATPase α1

between WKY, WKY-FR, and SHR at 13 

weeks of age (Figure 6). Moreover, no 

significant differences in NHE3 expression 

were found between age-matched WKY, 

WKY-FR and SHR in the renal medulla nor 

did NHE3 abundance change with aging 

(Figure 6B). Expression of Na

-subunit and αENaC were found 

+,K+-ATPase 

α1-subunit in the renal medulla was 

significantly increased in aged WKY and 

SHR, but not in WKY-FR (Figure 6C). No 

differences were found between age-matched 

WKY and SHR (Figure 6C). 
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Figure 5. Total mineralocorticoid receptor (MR) expression (A) and nuclear MR content (B) in the renal 

cortex of 13- and 52-week old WKY, WKY-FR and SHR. Values are normalized to the level of GAPDH or 

β-actin expression for each protein of interest and expressed as percentage of control (13-week old WKY). 

Each column represents the mean ± SEM (n=4 per group). Significantly different from 13-week old WKY 

(τP< 0.05), significantly different from corresponding values in 13-week old animals (*P<0.05), significantly 

different from 52-week old WKY (#P< 0.05) and significantly different from 52-week old SHR (λP< 0.05) 

using the Newman–Keuls test. 

 

Similar to what other authors have 

observed (Tiwari et al. 2009), we identified 

the presence of 3 different MW bands for 

αENaC expression in the renal medulla of 

WKY and SHR (Figure 6). The 65 kDa band 

density for αENaC was greater in aged WKY, 

WKY-FR and SHR than in young rats. 

Furthermore, at 52 weeks of age, WKY-FR 

had significantly decreased 65 kDa band 

density in comparison to age-matched WKY 

and SHR (Figure 6D). Aging was associated 

with decreases in the 75 kDa band density in 

both WKY and SHR, but not in WKY-FR, 

and no differences were found between age-

matched WKY and SHR (Figure 6E). At 52 

weeks of age WKY-FR had significantly 

increased 75 kDa band density in comparison 

to age-matched WKY and SHR (Figure 6E). 

No age-related or strain-related changes in 90 

kDa band density for αENaC in the renal 

medulla were observed (Figure 6F). 
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Figure 6. Representative immunoblots of renal medullary homogenates from 13- and 52-week old WKY, 

WKY-FR and SHRs probed with NHE3, α1-subunit Na+,K+-ATPase, αENaC and GAPDH antibodies (A). 

Protein expression of NHE3 (B) and α1-subunit Na+,K+

 

-ATPase (C). D-F, Quantification of several bands of 

αENaC: 65 kDa (D), 75 kDa (E) 90 kDa (F). Values are normalized to the level of GAPDH expression for 

each protein of interest and expressed as percentage of control (13-week old WKY). Each column represents 

the mean ± SEM (n=4 per group). Significantly different from corresponding values in 13-week old animals 

(*P<0.05), significantly different from 52-week old WKY (#P<0.05) and significantly different from 52-week 

old SHR (λP< 0.05) using the Newman–Keuls test. 

The renal cortical expression profiles of 

NHE3, Na+,K+-ATPase α1

abundance in WKY and SHR but not in 

WKY-FR (Figure 7B). At 52 weeks of age 

WKY-FR had significantly increased NHE3 

abundance in comparison to age-matched 

WKY and SHR (Figure 7B). No significant 

-subunit and 

αENaC of WKY, WKY-FR and SHR were 

also evaluated (Figure 7). Aging was 

associated with decreases in NHE3 
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differences in Na+,K+-ATPase α1-subunit 

abundance in the renal cortex were found 

between WKY and SHR at any age nor did 

FR have an effect on Na+,K+-ATPase α1

decreases in cortical abundance of NHE3 in 

WKY and SHR (Figure 7B) correlated 

positively with the decreases of the 75 and 

90kDa band densities of αENaC (Figure 7D 

and 7E, respectively). 

-

subunit expression (Figure 7C). Age-related 

 

 
 
Figure 7. Representative immunoblots of renal cortical homogenates from 13- and 52-week old WKY, 

WKY-FR and SHRs probed with NHE3, α1-subunit Na+,K+-ATPase, αENaC and GAPDH antibodies (A). 

Protein expression of NHE3 (B) and α1-subunit Na+,K+

 

-ATPase (C). Quantification of αENaC: 75 kDa (D) 

and 90 kDa (E). Values are normalized to the level of GAPDH expression for each protein of interest and 

expressed as percentage of control (13-week old WKY). Each column represents the mean ± SEM (n=4 per 

group). Significantly different from corresponding values in 13-week old animals (*P<0.05), significantly 

different from 52-week old WKY (#P<0.05) and significantly different from 52-week old SHR (λP< 0.05) 

using the Newman–Keuls test. 
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No differences in the 75 and 90kDa 

band densities of αENaC were found between 

age-matched WKY and SHR (Figure 7D and 

7E, respectively). Although the 90kDa band 

density of αENaC did not vary with age in 

WKY-FR (Figure 7E), the 75kDa band 

density was slightly, but significantly, 

decreased in 52-week old versus 13-week old 

WKY-FR (Figure 7D). In this study we 

found that the density of the 65 kDa band for 

αENaC in renal cortex was too low to be 

quantified accurately. 

 

The magnitude of the effect of aging in 

WKY, WKY-FR and SHR  

The modifying effect of age on the 

expression levels of NHE3, α1-subunit 

Na+,K+-ATPase and αENaC in the renal 

medulla and renal cortex of WKY and SHR 

was summarized in Fig 8A and 8B. The data 

was analyzed and plotted as a percent of 

control (respective young animals). The 

effect of age on the renal medullary and 

cortical expression profiles of αENaC, NHE3 

and the α1-subunit Na+,K+-ATPase were very 

similar between WKY and SHR (Figure 8A 

and 8B). On the other hand, in the renal 

medulla, aging was accompanied by greater 

increases in αENaC (65 kDa band) and the 

α1-subunit Na+,K+

 

-ATPase abundances in 

SHR than in WKY-FR (Figure 8A). In the 

renal cortex, age-related decreases in αENaC 

and NHE3 abundances were more 

accentuated in SHR than in WKY-FR 

(Figure 8B).  

 

Discussion 

The findings reported here 

demonstrate that aging in WKY and SHR is 

accompanied by exacerbated oxidative stress 

at the kidney level and increased 

aldosterone/MR system activation. Despite 

similar oxidative stress status and plasma 

aldosterone levels in aged WKY and SHR, 

aged WKY did not develop hypertension. 

Moreover, long-term FR reduced age-related 

increases in renal oxidative stress and 

circulating aldosterone.  

Similarly to results obtained by other 

authors (Natalucci et al. 2003; Ruetten et al. 

1999), this study showed that WKY rats 

become obese with age, which mainly results 

from the accumulation of fat mass. Studies 

have shown that body weight of aging WKY 

rat increases significantly when compared 

with age-matched SHR (Natalucci et al. 2003; 

Ruetten et al. 1999). A 63% weight gain from 

the ages of 12 weeks to 40 weeks in WKY 

rats has been reported while body weight 

remained unaltered in aging SHR (Natalucci 

et al. 2003). SHR are considered hyperactive 

compared to WKY (Hendley et al. 1992). 
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Figure 8. Differences in the magnitude of the effect of aging on the expression of several aldosterone 

effectors in WKY, WKY-FR and SHR in the renal medulla (A) and the renal cortex (B). Each column 

represents the mean ± SEM (n=4 per group). Significantly different from WKY (*P<0.05), significantly 

different from WKY-FR (#P< 0.05) using the Student’s t-test. 

 

In contrast, WKY is particularly 

inactive compared to other often-used rat 

strains and has even been proposed as an 

animal model of endogenous depression 

(Wieland et al. 1986; Will et al. 2003). 

Therefore, the greater increase in body weight 

observed in WKY may be due to reduced 

physical activity energy expenditure, slow 

metabolism and decreased resting energy 

expenditure. In contrast, SHR may burn more 

calories than WKY through increased 

physical activity energy expenditure and an 

increased resting metabolic rate. There is an 

increasing amount of evidence that body fat 

mass is associated with increased aldosterone 

levels (Bomback and Klemmer 2009). Two 

mechanisms have been suggested to explain 

elevated aldosterone levels in obesity. First, 

that human adipose tissue produces several 

components of the renin-angiotensin-

aldosterone system, mainly adipose tissue-

derived angiotensinogen. In line with this 

view, it has been shown that weight loss 

reduces systemic RAS activity (Goossens et 

al. 2007). Second, that increased fatty acid 

production in obese humans, especially 

nonesterified fatty acids, might stimulate 

aldosterone production, in a renin-

independent manner (Goodfriend et al. 1999). 

Adipocyte-derived aldosterone-releasing 

factors, although not yet identified, have been 

found to stimulate aldosterone secretion from 
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adrenocortical cells (Ehrhart-Bornstein et al. 

2003).  

Increased production of H2O2 was 

observed in the medulla and cortex of 52-

week old WKY and SHR, which is in 

agreement with growing evidence implicating 

an age-related decline in activity of 

antioxidant systems (Harman 1998). 

However, no differences in H2O2 production 

in the renal medulla and cortex were observed 

between 52-week old WKY and SHR. 

Moreover, aged WKY and SHR also 

exhibited significantly increased urinary 

MDA levels, a frequently used index of cell 

lipid peroxidation. Several reports have 

shown an age-associated increase in the 

concentrations of lipid peroxidation products 

(Pratico 2002). We propose that oxidative 

stress in WKY may be associated with their 

age-related weight gain. Production of ROS is 

increased in adipose tissue of obese mice, 

accompanied by augmented expression of 

NADPH oxidase and decreased expression of 

antioxidative enzymes (Furukawa et al. 

2004). Accordingly, our results demonstrated 

that renal H2O2

The mineralocorticoid response was 

assessed via the UNa

 levels were decreased WKY-

FR when compared to age-matched WKY 

and SHR fed ad libitum. As previously 

reported, SBP and DBP were significantly 

increased in SHR in comparison to age-

matched WKY (Gerova and Kristek 2008). 

Studies have suggested that hypertension 

might result from increased levels of 

oxidative stress in the renal medulla (Makino 

et al. 2002). Reduction of SOD activity in the 

renal medulla by the chronic infusion of the 

SOD inhibitor DETC into the renal medullary 

interstitium resulted in an increase of 

medullary superoxide anion concentrations, a 

reduction of blood flow to the renal medulla, 

and a sustained increase of blood pressure 

(Makino et al. 2002). Our findings 

demonstrate that despite similar increases in 

renal oxidative stress and plasma aldosterone 

levels, SBP and DBP in WKY were 

significantly lower than age-matched SHR 

and that renal oxidative stress and increases 

in sodium reabsorption may not be sufficient 

to cause hypertension.  

+/K+ ratio in WKY, 

WKY-FR and SHR. The UNa+/K+ ratio has 

been used previously by other authors to 

examine long-term changes in the aldosterone 

response (Hanukoglu et al. 2008). All groups 

were placed in metabolic cages and fed ad 

libitum 48 hours before sacrifice and no 

differences in the amount of food ingested 

during this time period were observed 

between groups. Given that food 

consumption was similar between groups we 

assumed that any potential changes in urinary 

Na+ and K+ excretion would be a result of 

dysregulated renal ion transporters. In our 

study we found that aging from 13 to 52 

weeks was accompanied by a decrease in the 

UNa+/K+ ratio in WKY and SHR and an 

increase in plasma aldosterone levels. This 
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decrease was mainly due to an increase in 

urinary K+ excretion (Na+ remained constant 

with aging). When aldosterone levels are 

elevated the kidney can overcome 

aldosterone's Na+-retaining action by 

activation of the so-called "aldosterone 

escape" mechanism, in which renal tubule 

Na+ reabsorption decreases despite the 

continued presence of aldosterone (Schrier 

2010). Aldosterone initially decreases urinary 

Na+ by increasing sodium retention. 

However, urinary Na+ quickly returns to 

baseline levels through pressure natriuresis 

and decreased proximal Na+

The role of aldosterone in

 reabsorption 

(Schrier 2010).  
 the 

pathogenesis of hypertension is gaining wider 

recognition with the finding that nearly 1 in 

10 hypertensives has 

inappropriate aldosterone activity (Lim 2002). 

In this study we report that SHR, a well 

known experimental model for 

human essential hypertension, develops 

hyperaldosteronism with age which is 

accompanied by increases in MR nuclear 

trafficking at the renal medulla level and 

decreases in the UNa+/K+ ratio. Studies have 

shown that aldosterone induces a rapid 

nuclear accumulation of the MR (Fejes-Toth 

et al. 1998). Aldosterone-bound MR acts as a 

transcription factor, therefore, the 

measurement of nuclear MR content may 

indicate the level of MR signalling. 

Moreover, this method has been used by 

other authors to evaluate MR- and GR 

(glucocorticoid receptor)-mediated signalling 

(Nagase et al. 2007; Kariagina et al. 2005). 

Our results suggest that aging is accompanied 

by increases in nuclear MR trafficking at the 

renal medullary level, as a consequence of 

increased plasma levels of aldosterone. These 

findings correlate with increased expression 

of Na+,K+-ATPase α1-subunit and 65 kDa 

αENaC in the renal medulla of aged rats. In 

agreement with other studies, we observed 

the presence of several MW bands for renal 

αENaC (Tiwari et al. 2009). It has been 

suggested that higher MW bands for αENaC 

may represent immature, uncleaved forms of 

the protein and that the lower bands may be 

“active” forms of the protein (Ergonul et al. 

2006; Guipponi et al. 2002) and that unique 

MW bands for αENaC may be due to 

differential activation by steroids (Tiwari et 

al. 2009). No differences in NHE3 expression 

were found between age-matched WKY and 

SHR, although we had previously reported an 

increase in NHE3 expression in SHR in renal 

proximal tubule epithelial cells at 4 and 12 

weeks of age (Pinho et al. 2007; Pedrosa et al. 

2004) that could be related to differential 

expression in nephron segments other than 

the proximal tubule. We found that aging is 

associated with decreases in MR nuclear 

content, and NHE3 and αENaC expression in 

the renal cortex. These findings may 

correspond to a counter-regulatory 

mechanism activated by increased plasma 
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aldosterone levels. Potentially counteracting 

protective mechanisms may be activated via 

the reduction of cortical nuclear MR and 

ultimately through the reduction of cortical 

αENaC and NHE3 expression in an effort to 

maintain sodium balance in aged WKY and 

SHR. The dramatic decrease in NHE3 protein 

expression levels concurs with previous 

studies that show a decrease in activity and 

abundance of NHE3 in the kidney of aged 

rats (Mac Laughlin et al. 2001). We have 

reported previously that 

immortalized proximal tubular epithelial 

(PTE) cells from 4-12 week old SHR have 

higher Na+-K+ ATPase activity and 

expression than PTE cells from 4-12 week 

old WKY (Pedrosa et al. 2007). However, the 

abundance of the renal α1-subunit of Na+,K+-

ATPase in freshly isolated renal proximal 

tubules from 12-week old SHR was found to 

be similar to that in WKY (Pinho et al. 2007). 

Likewise, in the present study, no differences 

in α1-subunit Na+,K+-ATPase expression 

between 13- and 52-week old age-matched 

WKY and SHR in the renal cortex were 

found. However, confirming our previous 

studies (Silva et al. 2010), α1-subunit of 

Na+,K+

Plasma aldosterone levels and MR 

signalling and functionality in the renal 

medulla were decreased in aged WKY-FR in 

comparison to age-matched WKY and SHR. 

Therefore, it is suggested that in WKY, the 

activation of the aldosterone/MR system is 

related to increases in body fat mass, and not 

to the aging process. On the other hand, 

despite normal body fat mass, SHR already 

had increased plasma aldosterone levels at 13 

weeks of age when compared to age-matched 

WKY, and the aldosterone/MR system was 

further intensified by aging in these animals.  

-ATPase expression was increased in 

the renal medulla with aging.  

In summary, our findings show that age-

related increases in body fat mass may be 

responsible for exacerbated renal oxidative 

stress, hyperaldosteronism, and increased 

renal medullary MR trafficking in WKY. 

Interestingly, despite the existence of 

multiple independent studies suggesting that 

aldosterone and ROS broadly contribute to 

the development of hypertension, blood 

pressure in WKY remained unaltered 

throughout this study. Nevertheless, long-

term FR in WKY had the beneficial effect of 

mitigating ROS production, reducing plasma 

aldosterone levels, and decreasing 

aldosterone/MR system activation in the renal 

medulla. These findings shed light on the 

importance of FR in controlling oxidative 

stress and the renal aldosterone/MR system. 

Additionally, we report the aldosterone/MR 

system is intensified by aging in SHR. The 

importance of aging in the development of 

hyperaldosteronism in SHR is undermined. 

Aging is accompanied by increases in 

oxidative stress levels and renal 

aldosterone/MR system activation, which 
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may play a role in the progression and 

worsening of hypertension in these animals.  
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DISCUSSION AND CONCLUSIONS 

Despite the progress made in the molecular identification of cell membrane 

transport systems, there is still a lack of information on the regulation of renal amino acid 

transporters. In this study we hypothesised that oxidative stress could modulate the 

amino acid transporters that are potentially involved in the uptake of L-DOPA, the 

precursor of dopamine. ROS, originally considered to cause cell damage, are now 

recognized to be key signaling molecules that mediate diverse biological responses such as 

induction of host defense genes, activation of transcription factors, phosphorylation of 

kinases and mobilization of ion transport systems (Droge 2002). On the other hand, it has 

been suggested that ROS are associated with hypertension, at least in animal models and 

that a greater understanding of the (patho)biology of ROS may lead to new mechanistic 

insights and novel diagnostics and treatments for hypertension. The data presented in this 

work suggests that L-DOPA transporters can be regulated by oxidative stress, mainly in the 

SHR, possibly as an adaptive mechanism to maintain sodium homeostasis and decrease 

ROS levels.  

In Chapter I we addressed the question of whether oxidative stress has a role in 

the regulation of ASCT2 in immortalized PTE cells from WKY and SHR. Several established 

cell lines of renal origin have been used previously in our laboratory for analyzing the 

function of renal amino acid transporters that can potentially transport L-DOPA, such as 

opossum kidney (OK) cells (Gomes et al. 1997), LLC-PK1 cells (Soares-da-Silva et al. 2004) 

and immortalized renal PTE cells from SHR and WKY (Pinho et al. 2004). LLC-PK1 cells, a 
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cell line derived from porcine renal tubule epithelial cells that retain several properties of 

proximal tubular epithelial cells in culture (Hull et al. 1976), express both LAT1 and LAT2 

transcripts (Soares-da-Silva et al. 2004). In this cell line, transport of [14C]-L-leucine occurs 

through the sodium-independent pH-insensitive and high-affinity LAT1 transporter, 

whereas [14C]-L-DOPA is mainly transported through the sodium-independent pH-

insensitive and low-affinity LAT2 transporter and a minor component through a sodium-

dependent transporter (Soares-da-Silva et al. 2004). Furthermore, in LLC-PK1 cells, LAT2 

gene silencing was shown to reduce markedly the inward and outward transfer of [14C]-L-

DOPA (Soares-da-Silva et al. 2004). Immortalized renal proximal tubular epithelial (PTE) 

cells from SHR and WKY have been used previously in an attempt to better characterize 

the differences in renal handling of L-DOPA and to evaluate the diversity and regulation of 

amino acid transport systems in hypertension (Woost et al. 1996; Pedrosa et al. 2004; 

Pedrosa et al. 2004). Immortalized renal PTE cells from SHR were found to overexpress 

LAT2 (Pinho et al. 2003). In immortalized WKY PTE cells L-DOPA uptake was almost 

exclusively through LAT2  whereas in immortalized SHR PTE cells 50% of L-DOPA uptake 

occurred through LAT1, 25% through LAT2, and 25% through sodium-dependent 

mechanisms, (Pinho et al. 2004). These sodium-dependent mechanisms may involve 

ASCT2 and B0AT1, which are the only transport systems that are capable of transporting 

amino acids with similar characteristics to substrates transported through system L. The 

rat SLC1A5 gene that codes for ASCT2, is located on chromosome 1 and was associated to 

hypertension by several linkage analysis studies (Clemitson et al. 2002; Lo et al. 2002). 
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Quantitative trait loci (QTLs) were identified in chromosome 1 accounting for salt loading-

induced variance of blood pressure (Yagil et al. 2003). Interestingly, previous studies 

showed that high salt intake-induced increases in urinary dopamine were not 

accompanied by increases in LAT1, LAT2 or 4F2hc expression in 4- and 12-week old WKY 

and SHR (Pinho et al. 2007). These results indicated that sodium-dependent transporters, 

such as ASCT2, may play an important role in the regulation of renal dopamine formation 

during high salt intake.  

As shown in Chapter I, the renal activity and expression of ASCT2 transporter were 

lower in SHR than in WKY PTE cells. In view of the fact that ASCT2 is regulated by NO in 

intestinal Caco-2 cells (Uchiyama et al. 2005), and that NO availability in the kidney is 

decreased in SHR (Adler et al. 2002), it was suggested that oxidative stress might be 

downregulating ASCT2 by decreasing intrarenal NO availability. In order to investigate this 

hypothesis we attempted to explore the short and long term effects of L-NAME (inhibitor 

of NO production), SNAP (NO donor) and carboxy PTIO (NO scavenger) on the inward 

transport of [14C]-L-alanine, an ASCT2 preferential substrate, in monolayers of 

immortalized renal PTE cells from WKY and SHR. No effects were observed with the tested 

concentrations and the treatment times (unpublished data) which may indicate that NO 

may not have a role in the regulation of ASCT2 in renal PTE cells.  

Previous studies in our laboratory have shown that apocynin, a NADPH oxidase 

inhibitor, decreased significantly Na+,K+-ATPase activity and Na+,K+-ATPase α1-subunit 

expression in OK cells (Silva et al. 2007). Furthermore, intracellular H2O2 can amplify the 
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response downstream of α1-adrenoceptor activation (Simao et al. 2008), α2-adrenoceptor 

activation (Simao et al. 2008) and Cl-/HCO3
- exchanger activity (Pedrosa et al. 2008; Simao 

et al. 2010) in immortalized SHR PTE cells. Therefore, we hypothesized that H2O2 or O2 

could modulate ASCT2 activity. Lineweaver–Burk plots from data obtained in the present 

study revealed the presence of high- and low-affinity states for the sodium-dependent 

[14C]-L-alanine uptake processes in both cell lines. At low extracellular sodium 

concentrations, the sodium-dependent [14C]-L-alanine uptake in both WKY and SHR PTE 

cells is a high-affinity low-capacity process and increases in extracellular sodium reduced 

the affinity for the substrate, but increased the capacity to take up [14C]-L-alanine. In 

Chapter I we show that inhibition of H2O2 production by apocynin during cell growth 

significantly reduced Na+-Km and Vmax values of the low-affinity high-capacity component 

of sodium-dependent [14C]-L-alanine uptake in immortalized SHR PTE cells. Therefore, 

when H2O2 levels are reduced the sodium-dependent [14C]-L-alanine uptake by ASCT2 in 

SHR PTE cells functions predominantly as a high-affinity low-capacity transporter. It was 

suggested that oxidative stress may have an effect on the conformations of ASCT2 in SHR 

PTE cells as they proceed through the transport cycle, which may result in differential 

sodium binding and unbinding. In fact, in immortalized SHR PTE cells, H2O2 has been 

shown to stimulate Cl-/HCO3
- exchanger activity via modification of thiol groups of 

intracellular and/or transmembrane proteins. In addition, the oxidized conformation of 

the exchanger enhanced the affinity for HCO3
- in immortalized SHR PTE cells but not in 

WKY PTE cells (Simao et al. 2011). Cysteine residues of proteins are especially susceptible 
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to oxidative stress and, given the important role that disulfides play in protein structure 

and stability, alterations of reactive cysteine thiol groups may change protein function and 

activity. Therefore, we concluded that ASCT2 is expressed in immortalized WKY and SHR 

PTE cells and suggested that H2O2 may regulate the sodium binding process of this 

transporter in immortalized SHR PTE cells only. Further studies are required to determine 

the effect of apocynin on LAT1 and LAT2 in immortalized WKY and SHR PTE cells. 

As indicated in the Introduction section, the dopaminergic system has the ability to 

stimulate antioxidant activity. D1-like receptor agonists were found to suppress platelet-

derived growth factor (PDGF)-BB–mediated increases in oxidative stress in vascular 

smooth muscle cells (VSMCs). Furthermore, in HEK-293 cells heterologously expressing 

human D1 receptor (HEK-hD1), fenoldopam, a D1 receptor agonist was found to inhibit 

NADPH oxidase activity in a time- and concentration-dependent manner (Yu et al. 2011). 

On the other hand, several studies suggest that one of the mechanisms linking oxidative 

stress and hypertension is represented by activation of the RAAS (Fanelli et al. 2011). In 

Chapter I, we demonstrated that in SHR PTE cells, but not in WKY PTE cells, the 

aldosterone-induced increase in NHE1 activity was prevented by apocynin. Therefore, 

whereas H2O2 may have a “detrimental” role by acting with aldosterone to increase 

sodium reabsorption in SHR PTE cells, it concurrently contributes to the presence of a 

more “sophisticated” uptake process for the sodium-dependent [14C]-L-alanine uptake in 

SHR PTE cells. Although speculative, it is suggested that the presence of two components 

for the sodium-dependent [14C]-L-alanine uptake, with different affinities and capacities 
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that vary according to extracellular sodium concentrations, may be more favourable than 

one. Moreover, this potential adaptive mechanism in SHR PTE cells could be a means for 

the cell to take up L-DOPA more efficiently. 

Several factors may contribute to increases in oxidative stress such as the aging 

process and increased NADPH oxidase activity intrinsic to essential hypertension. In this 

setting, the next question we addressed was whether the regulation of the amino acid 

transporters that are potentially involved in the uptake of L-DOPA (LAT1, LAT2 and ASCT2) 

is altered in the kidney of aged WKY and SHR. Our group has reported previously that the 

enhanced ability to take up L-DOPA in the pre-hypertensive SHR was suggested to take 

place as an attempt to overcome the deficient dopamine-mediated natriuresis generally 

observed in this genetic model of hypertension (Jose et al. 2002; Pinho et al. 2003). The 

results presented in Chapter II show that aging, from 3 to 12 months of age, was 

associated with increases in H2O2 levels in renal tissue in both WKY and SHR. Furthermore, 

the abundance of p22phox and Nox4 proteins were increased in the renal cortex of aged 

WKY and SHR, as well as the expression of the antioxidant enzymes SOD2, SOD3 and 

catalase. In contrast to our studies, 22/24-week old SHR was reported to have increased 

plasma (Zhan et al. 2004) and urinary (Suzuki et al. 2008) H2O2  levels when compared to 

age-matched WKY. In 8-month old SHR, renal mitochondrial H2O2 production was also 

found to be increased in comparison to age-matched WKY (de Cavanagh et al. 2006). It 

was suggested that the apparent conflicting results may be related to the marked increase 

in body fat mass of aged WKY. The link between oxidative stress and obesity was further 

106



investigated in Chapter IV. Nevertheless, in this pro-oxidative environmental milieu, the 

renal dopaminergic system was found to be activated in aged WKY and SHR as 

demonstrated in Chapter III, although the dopaminergic response is more enhanced in 91-

week old SHR than in aged-matched WKY. Moreover, aging was accompanied by the 

upregulation of renal cortical ASCT2 in WKY and of LAT2/4F2hc and ASCT2 in SHR.  

Given the pro-oxidant nature of the RAAS and the fact that the dopaminergic 

system can counter-regulate the RAAS by decreasing the production of ROS, another goal 

of this thesis was to evaluate age-related changes in the renal aldosterone/MR system in 

WKY and SHR. Plasma aldosterone increased with age in WKY and SHR (Chapter III and 

Chapter IV). Therefore it was suggested that the upregulation of ASCT2 in aged WKY and 

SHR and LAT2/4F2hc and ASCT2 in aged SHR could be an attempt to increase L-DOPA 

uptake, and consequently dopamine synthesis, in order to normalize sodium levels. There 

is accumulating evidence that supports the view that the dopaminergic system can 

directly counteract the RAAS. The natriuretic renal dopaminergic system opposes the anti-

natriuretic activity of the RAAS by downregulating the AT1 receptor and upregulating the 

AT2 receptor. Each of the individual dopamine receptors has been shown to oppose the 

activity of the AT1 receptor. D1, D3, and D5 receptors even interact physically with the AT1 

receptor (Gildea 2009). In Chapter IV we confirmed that aging in WKY and SHR is 

accompanied by exacerbated oxidative stress at the kidney level and increased 

aldosterone/MR system activation. Similarly to results obtained by other authors (Ruetten 

et al. 1999; Natalucci et al. 2003), this study showed that WKY become obese with age, as 
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a result of fat mass accumulation. In our study 15% food restriction resulted in significant 

weight loss at the age of 52 weeks, which was accompanied by a decrease in renal 

oxidative stress, plasma aldosterone levels and MR functionality. These results were found 

to be in agreement with studies by other authors that have demonstrated that adipose 

tissue can produce several components of the RAAS, mainly adipose tissue-derived 

angiotensinogen. Furthermore, adipocyte-derived aldosterone-releasing factors, although 

not yet identified, have been found to stimulate aldosterone secretion from 

adrenocortical cells (Ehrhart-Bornstein et al. 2003). Therefore, based on the results 

presented in Chapter III and Chapter IV it is proposed that the upregulation of amino acid 

transporters that may be involved in L-DOPA uptake, such as ASCT2 and LAT2/4F2hc, 

could be a counteractive mechanism to overcome increases in renal ROS levels and 

activation of the RAAS during the aging process. However, in aged WKY the exacerbated 

oxidative stress levels and aldosterone/MR activation may be related to increases in body 

fat mass and not with aging per se. Furthermore, our findings demonstrate that although 

52-week old WKY had renal oxidative stress and plasma aldosterone levels similar to those 

observed in age-matched SHR, blood pressure values were significantly lower. Therefore, 

it was suggested that increases in renal oxidative stress and sodium reabsorption may not 

be sufficient to cause hypertension.  

The relationship between aldosterone and the expression of amino acid 

transporters has been previously evaluated by our group in young WKY and SHR (Pinho et 

al. 2007). At 12 weeks of age, high salt intake for 24 hours increased urinary dopamine in 
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SHR, but not in WKY. Changes in urinary dopamine paralleled changes in the uptake of L-

DOPA in isolated renal tubules from 4- and 12-week old WKY and SHR on normal salt and 

high salt intake. At 12 weeks of age, high salt intake was accompanied by decreases in 

LAT1 and LAT2 transcript abundance in WKY and SHR. ASCT2 and B0AT1 expression was 

significantly decreased in both 4- and 12-week old WKY and in 4-week old SHR on high salt 

intake. By contrast, high salt intake increased ASCT2 and B0AT1 expression in 12-week old 

SHR (Pinho et al. 2007). We have demonstrated that 8-week old normotensive Wistar rats 

chronically treated during 8 days with aldosterone had increased renal cortical LAT2 

mRNA levels with no changes in LAT1, 4F2hc and ASCT2 transcript levels (Pinho et al. 

2009). The effect of aldosterone upon LAT2 mRNA levels was completely prevented by 

spironolactone, a mineralocorticoid receptor antagonist. At the protein level, aldosterone 

treatment did not significantly affect LAT1 and LAT2 expression, but markedly reduced the 

abundance of 4F2hc, although levels were not reversed by spironolactone. The decrease 

in LAT2 functionality (related to the decrease of 4F2hc abundance) correlated well with 

the reduction in urinary dopamine (Pinho et al. 2009). Taken together, these results 

suggested that the transcript abundance of amino acid transporters is age dependent and 

that can be modulated by aldosterone levels.  

There is accumulating data supporting a role for oxidative stress in experimental 

hypertension; however, it is suggested that increases in ROS at the renal level may not be 

sufficient to cause hypertension. Moreover, the fact that oxidative stress may have a role 

in the modulation of the amino acid transporters that are potentially involved in the renal 
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tubular uptake of L-DOPA could be a defence mechanism activated in response to 

increases in aldosterone and oxidative stress levels. All together, the work presented in 

this thesis suggests that amino acid transporters can be regulated directly or indirectly by 

the oxidative damage that is associated with hypertension and aging.  
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RESUMO 

 

O papel do stress oxidativo na regulação dos transportadores de aminoácidos renais na 

hipertensão e no envelhecimento 

 

O sistema dopaminérgico renal opõe-se à actividade anti-natriurética do sistema renina-

angiotensina-aldosterona (SRAA) e inibe a formação de espécies reactivas de oxigénio 

(ERO). Neste estudo, colocou-se a hipótese de que o stress oxidativo possa desempenhar 

um papel na regulação dos transportadores de aminoácidos envolvidos na captação de L-

DOPA na hipertensão e no envelhecimento. Verificou-se que a expressão e a actividade do 

ASCT2 são menores nas células epiteliais dos túbulos proximais renais (TPR) imortalizadas 

provenientes de ratos espontaneamente hipertensos (SHR) do que nas dos TPR de ratos 

Wistar-Kyoto (WKY). Nas duas linhas celulares, foram identificados componentes, um de 

alta e outro de baixa afinidade do processo de captação de [14C]-L-alanina (um substrato 

preferencial do ASCT2), dependente de sódio. O tratamento com apocinina, um inibidor 

da NADPH oxidase, inibiu o componente de baixa afinidade do processo de captação de 

[14C]-L-alanina dependente de sódio. Este efeito foi reversível e ocorreu exclusivamente 

nas células dos TPR dos SHR. Estudos in vivo com ratos WKY e SHR indicaram que o 

envelhecimento estava associado a um aumento dos níveis de H2O2 no rim de WKY e SHR. 

As quantidades de p22phox e de Nox4 estavam aumentadas no cortex renal de WKY e SHR 

envelhecidos, bem como a expressão das enzimas antioxidantes SOD2, SOD3 e catalase. O 

processo de envelhecimento também foi acompanhado pelo aumento da expressão de 

ASCT2 no cortex renal dos WKY e de LAT2/4F2hc e ASCT2 nos SHR. Subsequentemente, foi 

demonstrado que o sistema aldosterona/receptor mineralocorticoide estava activado de 

forma semelhante no WKY e SHR envelhecidos mas que a pressão arterial dos WKY 

continuava a ser inferior às dos SHR.  Nos WKY envelhecidos, a restrição alimentar 

prolongada resultou em perdas significativas de peso, diminuição do stress oxidativo renal 
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e redução no nível de aldosterona plasmática. No WKY e SHR a modulação dos 

transportadores de L-DOPA pode ser uma reacção de compensação de activação do SRAA 

e do aumento nos níveis renais de ERO durante o processo de envelhecimento. Os 

resultados apresentados podem contribuir para uma melhor compreensão da regulação 

dos transportadores de aminoácidos renais e do papel das ERO na hipertensão.  
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ABSTRACT 

 

Oxidative stress on the regulation of renal amino acid transporters in hypertension and 

aging 

 

The renal dopaminergic system opposes the anti-natriuretic activity of the renin-

angiotensin-aldosterone system (RAAS) and inhibits reactive oxygen species (ROS) 

generation. In this study we hypothesized that oxidative stress could play a role in the 

regulation of the candidate amino acid transporters for L-DOPA uptake, in hypertension 

and aging. The activity and expression of ASCT2 transporter were found to be lower in 

immortalized renal proximal tubular epithelial (PTE) cells from spontaneous hypertensive 

rat (SHR) than in Wistar-Kyoto (WKY) PTE cells. In both cell lines, high- and low-affinity 

components were identified for the sodium-dependent [14C]-L-alanine (an ASCT2 

preferential substrate) uptake process. In SHR PTE cells, treatment with apocynin, a 

NADPH oxidase inhibitor, inhibited the low affinity component for the sodium-dependent 

[14C]-L-alanine uptake. This effect was found to be reversible and exclusive to SHR PTE 

cells. In vivo studies showed that aging was associated with increases in renal H2O2 levels 

in WKY and SHR. The abundance of p22phox and Nox4 proteins were increased in the renal 

cortex of aged WKY and SHR, as well as the expression of the antioxidant enzymes SOD2, 

SOD3 and catalase. Aging was also accompanied by the upregulation of renal cortical 

ASCT2 in WKY and of LAT2/4F2hc and ASCT2 in SHR. Subsequently, it was shown that the 

renal aldosterone/mineralocorticoid receptor system was activated in aged WKY and SHR. 

However, although renal oxidative stress and plasma aldosterone levels were similar to 

that observed in age-matched SHR, blood pressure values were significantly lower in aged 

WKY. Moreover, in aged WKY long-term food restriction resulted in significant weight loss 

which paralleled decreases in renal oxidative stress and reductions in plasma aldosterone 

levels. In WKY and SHR the modulation of amino acid transporters may be an attempt to 

overcome activation of the RAAS and increases in renal ROS levels during the aging 
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process. The data presented in this thesis may contribute to a better understanding of the 

regulation of renal amino acid transporters and the role of ROS in hypertension.  
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	Plasma aldosterone levels were greater in 13-week old SHR when compared to age-matched WKY (Figure 3A). At this age, no differences were found between WKY and WKY-FR. Aging was accompanied by marked increases in plasma aldosterone levels in all groups...
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	The renal cortical expression profiles of NHE3, NaP+P,KP+P-ATPase αR1R-subunit and αENaC of WKY, WKY-FR and SHR were also evaluated (Figure 7). Aging was associated with decreases in NHE3 abundance in WKY and SHR but not in WKY-FR (Figure 7B). At 52 w...
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