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Abstract  

One of the most emblematic genus of the Fungi Kingdom is the Amanita. This containing 

not only some of the most toxic species as others gastronomically very appreciated. 

Amanita ponderosa is one of the most charismatic species of the Iberian Peninsula. With 

high commercial value it suffers a strong pressure of harvest during the fruiting period. 

Little is yet known about this and other species of mushrooms and which impact can 

cause the exploitation of this resource. The aims of this study are therefore to carry out   

an assessment of the fitness of populations of A. ponderosa throughout their Iberian 

distribution through identification of a battery of molecular markers (SNPs ) that allow us 

to access phylogeographic patterns of this species in the Iberian Peninsula; Infer the 

species complex that compose the group of A. ponderosa in order to better understand 

which patterns allow us to distinguish them among themselves. And finally identify 

potential areas and environmental factors that allow us to determine the occurrence of 

the species and locate priority areas for the conservation. Restriction-site associated 

sequencing (RAD-seq) was used for markers identification. The distribution model of the 

species followed principle of maximum entropy (Maxent) through 201 occurrences 

records and 9 predictive variables. 201 SNP were identified in Amanita ponderosa and 

247 in Amanita cf pseudovalens. Through analysis of the ITS rDNA and SNP data was 

identified a new species in Lepiotoides species complex, here dubbed Amanita cf 

pseudovalens. There was a weak structure of populations on the Peninsula showing a 

strong gene flow between populations. The variables most prevalent in species 

distribution are related to rainfall, temperature and land cover. The priority areas for the 

conservation of the species are located in the north and northeast of the peninsula. This 

study allowed us to increase the knowledge of this species therefore is an important tool 

to incorporate into future management plans of this resource. 
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Resumo  

Um dos géneros mais mediáticos do Reino Fungi é o género Amanita, contendo não só 

algumas das espécies mais tóxicas como outras extremamente apreciadas 

gastronomicamente. A Amanita ponderosa é uma das espécies mais características da 

Península Ibérica. Esta tem um elevado valor comercial sofrendo por isso uma forte 

pressão de colheita. Pouco se sabe ainda sobre esta e outras espécies de cogumelos 

e qual o impacte causado pela exploração deste recurso. Pretende-se por isso com este 

estudo realizar uma avaliação do fitness das populações de A. ponderosa em toda a 

sua distribuição Ibérica, através da identificação de uma bateria de marcadores 

moleculares (SNP) que nos permitam analisar padrões filogeográficos desta espécie na 

Península Ibérica; inferir sobre a complexidade de espécies que compões o grupo da A. 

ponderosa de forma a melhor compreender quais os padrões que nos permitem 

distingui-las entre sí; e por fim identificar potenciais factores ambientais que nos 

permitam determinar a ocorrência da espécie e localizar áreas prioritárias para a 

conservação da mesma. A técnica de sequenciação utilizada foi a sequenciação 

massiva de segmentos associados a sítios de restrição, uma técnica de última geração 

que permite a identificação dos marcadores moleculares. O modelo de distribuição da 

espécie seguiu o princípio da máxima entropia (Maxent) através de 201 registos de 

ocorrências e 9 variáveis preditivas. Foram identificados 201 SNP in Amanita ponderosa 

e 247 in Amanita cf pseudovalens.. Através da análise do ITS rDNA foi identificado uma 

nova espécie próxima da Amanita curtipes, aqui apelidada de Amanita cf pseudovalens. 

Observou-se uma fraca estruturação das populações na Península evidenciando um 

forte fluxo genético entre populações. As variáveis mais preponderantes com a 

distribuição da espécie estão relacionadas com precipitação, temperatura e ocupação 

do solo. As áreas mais prioritárias para a conservação da espécie são situadas a norte 

e nordeste da península. Este estudo permitiu aumentar o conhecimento sobre esta 

espécie sendo por isso uma ferramenta importante para incorporar em futuros planos 

de gestão do recurso. 
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1. General Introduction  

1.1 – Fungal Biodiversity: The Amanita 

The world fungal diversity was estimated conservatively to be at least 1.5 million species 

(Hawksworth 1991) of which only ~7% have been described (Kirk et al. 2008). Of the 1.5 

million estimated fungi, 140,000 species produce fruiting bodies of sufficient size and 

suitable structure to be considered macro fungi, which can be called mushrooms 

(Hawksworth 2001). The kingdom of fungi encompasses a tremendous biological 

diversity, with members including a wide array of lifestyles, forms, habitats, and sizes 

(Branco 2011). They play some essentials and indispensable ecological roles in the 

balance of the concerned environment, most notably due decomposition processes, but 

also involved in important symbiotic associations which may be so extreme that they 

could become parasites (Alexopoulus et al. 1996). 

Those who we can actually call mushrooms, are organized mainly in two main divisions, 

Ascomycota and Basidomycota. The latter being representative of the most typical 

shaped mushrooms with cap (pillius) and stem (stipe) (Kirk et al. 2008). One of the most 

familiar and conspicuous genus belonging to the Basidiomycota is the Amanita Pers.. 

This genus comprising about 400 species worldwide ranging from edible to deadly 

poisonous fungi (Weiß et al. 1998). Many mycologists have contributed to the 

systematics and taxonomy of the group, since Persoon introduced the genus in 1797, 

splitting it into smaller genera (Roze 1876; Earle 1909; Gilbert 1940) or suggesting 

infrageneric classification concepts (Gilbert & Kühner 1928; Konrad & Maublanc 1948; 

Singer 1951; Garcin 1984). These systems are mainly based on morphological 

characters such as Corner & Bas (1962) and Bas (1969) that proposed a separation of 

the group into two subgenera, Lepidella and Amanita based on spore amyloidity (spore 

reaction with Melzer’s reagent), cap striation, and form of lamellule. As result of this 

division four sections were recognized within Lepidella: Amidella, Validae, Phalloideae, 

Lepidella and two sections within Amanita: Vaginatae, and Amanita. Weiß et al. (1998) 

confirmed this division with the analysis of the large subunit ribosomal rDNA (LSU) of 

fifty Amanita species suggesting a further division in the section Vaginatae, becoming 
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Ceasareae and Vaginatae. Currently the search for the more accurate organization 

continues in the genus Amanita being now represented into two subgenera, four 

sections, seven subsections and eight series according to Neville & Poumarat (2004).  

The genus Amanita is very well represented in Iberian Peninsula, with at least 45 taxa 

(Castro 1998) since Atlantic to Mediterranean biogeographical region. One of the most 

typical and characteristic is Amanita ponderosa Malençon & R. Heim (Fig 1), an edible 

mushroom harvested by locals in all of its distribution area. 

 

 

 

 

 

 

 

 

1.2 – Lifestyle 

As a consequence of the fungal diversity heretofore known, different life styles can be 

recognized being the resultant of a long evolutionary path, very well adapted to the 

environment and to the communities (Tedersoo et al. 2010). One of these life styles is 

the mycorrhizal symbiosis with vascular plants. Mycorrhizas are highly evolved 

mutualistic associations between soil fungi and plant roots (Smith & Read 1997). The 

most common associations are vesicular-arbuscular mycorrhizas, (VAM) also known as 

endomycorrhizas (Fig 2a) The endomycorrhiza occurs when fungi produce arbuscules, 

hyphae and vesicles within root cortex cells while ectomycorrhizas fungi (EcM) (Fig 2b) 

form a mantle around roots and between root cells (Brundrett 2009). In this symbiosis, 

neither the root nor the fungus function independently but form a unit with adapted 

metabolic pathways and controlled exchange of metabolites. It is a common notion that 

in this type of symbiosis, mutual benefit between the partners is due to the exchange of 

plant-derived carbohydrates in exchange for amino acids, nutrients and water supplied 

by the fungus (Harley & Smith 1983; Smith & Read 1997).  

 

 

Fig 1 Amanita ponderosa Malençon & R. Heim 
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The fungi that produce mushrooms during a part of its life cycle, and in which the genus 

Amanita is included, are mainly ectomycorrhizal (Morris et al. 2008; Egli 2011). The 

mushroom it-self, is just a result of a production of aggregate hyphae, which are the 

filamentous and vegetative stage of the fungus that produce pseudo tissues with 

differentiated compartments, developing specialized structures, and eventually 

differentiate meiotic spores. Summarizing the fruit body of the fungi (mushroom) is just 

a part of the fungi life cycle (Fig 3) with a principal concern on sexual reproduction, 

ensuring the spore production (Bon 2004).  

a) b) 

Fig 2 Types of mycorrhiza: (a) Ectomychorriza; (b) Arbuscular mycorrhiza (Bonfante & Anca 2009) 

Fig 3  Mushroom life cycle. Stage I) vegetative, II) symbiotic, III) reproductive. i) spore germination (n); ii) hyphal growth 
(primary mycelium); iii) plasmogamy; iv) mycelium growth (secundary); v) anastomosis; vi) karyogamy; vii) 2n nuclei; viii) 
meiosis and ix) free spore. (Adapted from Courtecuisse & Duhem 2011) 
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The EcM fungi life cycle still being discussed (Verbruggen & Kiers 2010; Simard et al. 

2012) but there are three stages already in consensus: (I) a vegetative stage which 

corresponds to the hyphal growth in the underground soil ecosystem; (II) a symbiotic 

stage when the mycorrhizal association is established; and (III) a reproductive stage 

leading to the organization of fruiting bodies (Murat et al. 2008).  

In A. ponderosa scenario, the 3rd stage of its life cycle lead to the formation of the semi- 

hypogeous fruit body, with partial development underground (Fig. 4a) in the beginning of 

the fruiting resulting in subsequent maturation above ground (Fig. 4b; Courtecuisse & 

Duhem 2011). 

A. ponderosa belong to the symbiotic group of Amanita sp, and is described that is 

usually hosted in Mediterranean forests of Quercus ilex, Q. suber, Cistaceae shrub type 

(Cistus ladanifer, C. crispus, C. monspeliensis and C. salvifolius), Arbutus unedo, Myrtus 

communis, Erica arborea, Phyllyrea sp., and rarely in forest of Eucalyptus sp., and Pinus 

sp. always together with a cistaceae shrubs (Moreno et al. 2007), very typical from the 

south-west corner of the Iberian Peninsula.  

The environmental and climatic variables appear to influence not only their presence or 

absence, but also their fruit body production. Some of these variables are the 

precipitation, atmospheric and soil temperature as well as the water availability in the soil 

(Daza et al. 2007). A. ponderosa is a spring species and its fruiting period is comprised 

from January to April, getting the climax production in March and occasionally can occur 

in October (Santos-Silva et al. 2011). The fruiting can occur isolated or more frequently 

in groups (Tulloss 2005).  

Henriques (2010) identified very well these bio-climatic patterns and its influence in A. 

ponderosa fruit-body production along four years in Cabeço de Mouro – Natural Park of 

International Tagus River (Portugal). He reported that is crucial the occurrence of at least 

Fig 4 A. ponderosa semi- hypogeous development: a) partial development underground; b) maturation above ground 

a) b) 
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~15mm of precipitation during the 15 days before fruiting period and the  temperature 

values superior to 12ºC to guarantee a continuous production flow.  

1.3 – Habitat and Distribution 

A. ponderosa is a typical heliophile species occurring usually in acid pH soils 

predominantly with a strong component in schist’s rocky types. Occasionally it can arise 

in sandy and deeper soil types. These soil types are usually depleted in organic matter 

contents (Costa et al. 1998). Because of the specificity in the mycorrhizal associations 

with the species mentioned above (see section 1.2 Life style) the occurrence A. 

ponderosa is mostly reported in the montado ecosystem (Fig. 5a) or in typical 

Mediterranean Shrub land (Fig 5b) (Azul et al. 2009). The montado ecosystem is 

characterized by agroforestry areas in open woodlands with holm oaks and cork oaks 

with extensive areas of rock-rose. The extensive regime of management of these 

systems allied to the high flora diversity turn this habitat of excellence to A. ponderosa 

and also to other mushroom species (Azul et al. 2009; Louro et al. 2009; Morgado et al. 

2011; Arraiano-Castilho et al. 2013). 

 

 

 

 

 

 

 

 

According to Curreli (1994) and Daza et al. (2002) the distribution area of A. ponderosa 

is restricted to southwest of Iberian Peninsula, some regions in North Africa, South 

France and Italy mainly in Sardinia and Sicily. The same author’s classify this species 

as endemic from these regions (Fig 6) supported by the local harvest records.  

  

 

 

 

Fig 5 Amanita ponderosa typical habitat: a) open woodland montado, b) Mediterranean shrub land 

a) b) 
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The distribution of A. ponderosa presented nowadays is the result observation of the 

places with greater harvest tradition. Therefore to better understand the species 

behaviour and its interaction with the environment it is extremely important determine 

species current distribution (Austin 2002) that still unknown. The most common 

technique to predict a species occurrence is the species distribution modelling (SDM) 

also known as climate envelope-modelling, habitat modelling, or environmental or 

ecological niche-modelling (Sillero 2011). The most commonly used are the correlative 

distribution models (Kearney et al. 2010). That predict the realized niche of a species 

(Guisan & Zimmermann 2000; Pearson & Dawson 2003) by associating spatial 

environmental data with species abundance or presence records (presence-true-

absence records; presence-pseudoabsence; presence-only) to provide values of 

suitability for each point in space (Sillero 2011). Thus there are three categories of 

correlative models depending on the type of data used: presence-absence, presence-

pseudoabsence and pesence-only models. 

Presence-absence models relate the presence or the absence of a species with a set of 

ecogeographical variables modelling the suitable conditions for the presence of a 

species and the unsuitable conditions for its absence. Presence-pseudoabsence models 

use only presence records and attribute suitable conditions to areas where a species 

Fig 6 A. ponderosa spatial distribution. Light green represent the occurrence data from herbarium and historical records; 
dark green represents where the harvest is most intensively with high socio-economic importance (adapted from Moreno 
et al. 2007) 
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record exists and pseudoabsence conditions to areas where no records exist (Phillips et 

al. 2006). Presence-only models uses only presence records and overlap them with 

maps of the ecogeographical variables deducing the range of conditions suitable for 

species survival. These models may be advantageous over presence-absence ones 

because the latter are prompted to introduce errors since absences may have traces of 

biotic interactions, dispersal constraints and disturbances which may impede the 

accurate modelling of distributions. Presence-only models may also bring some 

inaccuracy in species predicted distribution since species may be absent from an area 

with suitable conditions due to past events that caused local extinctions (Elith et al. 

2011). 

1.4 – Species complex (taxonomy) 

The organization in section Amidella (Weiß et al. 1998) of the genus Amanita remain 

unclear, especially regarding the species that corresponding to the Lepiotoides complex. 

This complex contains Amanita curtipes E.J. Gilbert, Amanita lepiotoides Barla and 

Amanita ponderosa Malençon & R. Heim (Fig 7). These species were the subject of a 

study conducted by Pinho-Almeida (1994) where she attempted to characterize them 

evaluating macro and microscopic characters. According with the author of this study 

this species complex is very well established by the characteristics of the species which 

it is composed. However, when one intends to distinguish each species within the 

complex difficulties arise when trying to set boundaries that distinguish them as species. 

These difficulties come from the different characterizations from different authors thus 

making it difficult the correct species identification. The concerns begin more evident 

when one intends to distinguish between A. ponderosa and A. curtipes due to the 

possibility of habitat overlapping and coincidence of the fruiting period. Through the 

analysis of the complete ITS and D1-D2 regions of ribosomal DNA (rDNA), Moreno et 

al. (2007) show that A. ponderosa and A. curtipes are clearly two distinct species and 

discard the controversial treatment of A. ponderosa and A. curtipes as synonyms or 

varieties of a single species, as suggested by some authors. Castro (1997) included A. 

curtipes and A. valens (J.-E. Gilbert) Bertault (another species of this complex) in a single 

species, A. curtipes, and proposed a new combination for A. ponderosa as a variety of 

A. curtipes, A. curtipes var. ponderosa. Other authors have suggested that A. ponderosa 

is just a giant form of A. curtipes (e.g. Kühner & Romagnesi 1953; Mesplède 1980).  
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Neville & Poumarat (2004) in his landmark work about Amanitaceae had previously 

considered A. ponderosa and A. curtipes as two distinct species defining two different 

forms in A. ponderosa, Amanita ponderosa f. ponderosa Malençon & R. Heim and 

Amanita ponderosa f. valens (E.-J. Gilbert) with some differences mainly on the size of 

fruit body. All these difficulties demonstrated by these authors are very illustrative of the 

lack of studies and knowledge about these species. 

1.5 – Socio-Economic importance 

Fungi have been known and used by humans for centuries, but mycology (the scientific 

study of fungi) traces its beginnings to the 18th century, with the development of the 

microscope (Ainsworth 1976). Nowadays we know that mycological resource, beyond 

the important role in the balance of ecosystems, plays others as agents of social and 

economic development, through the food, biotechnology, tourism and other economic 

activities (Castro 2009). 

A. ponderosa is considered the wild mushroom par excellence in the areas where it 

occurs. Local people use this mushroom for gastronomic purposes being a delicacy 

much appreciated. When sold, the price can be very variable, depending on supply and 

demand, reaching at the beginning of the season  values between 25 and 30 € (euros) 

per kg, decreasing to 10 to 15 € per kg at the middle of the season. An experienced local 

harvester can reach 15 to 20 kg of A. ponderosa per week making it an important source 

of extra income. 

The purchase and sale of wild mushrooms behaves differently in the two countries where 

the demand of this resource is the highest, Portugal and Spain. In Portugal there is no 

authority of regulation or certification of this market. Direct sales occur between 

harvesters and consumers, with the existence, in many cases, of intermediate resellers 

buying from many small harvesters and selling in both the domestic and the exporting 

market.  

Fig 7 Lepiotoides species complex adapted from Neville & Poumarat (2004): a) Amanita lepiotoides; b) Amanita curtipes; 
and c) Amanita ponderosa 

a) b) c) 
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A very first consequence of the absence of regulation, supervision and monitoring of the 

buying and selling of this species are the constant poisoning cases that occur annually. 

Morgado et al. (2006) studied some cases of poisoning by ingestion of mushrooms that 

were admitted in the emergency service of the district hospital (Hospital Espírito Santo 

in Évora, Portugal) and observed that most of the cases were due to confusion between 

A. ponderosa and other toxic species.  

In Spain have also been reported some cases of poisoning derived from the confusion 

of A. ponderosa with others macroscopically similar (e.g. Amanita verna, Amanita 

phalloides var. alba) (Piqueras-Carrasco 2013). However when it comes to regulation 

and market certification, Spain positively stands out relatively to Portugal. As this country 

does not have a specific market classification for wild mushrooms, these are certified 

and sold in the category of fruits and vegetables (Fig. 8) (in Real Decreto 30/2009 – 

16/01) 

  

 

 

 

 

 

 

 

 

 

1.6 – State of the art: The role of new approaches  

During the last decades research in A. poderosa, as well as other mushroom species 

focused in taxonomic and systematic issues with the propose of catalogue the fungal 

diversity (Bridge et al. 2005). Nowadays mycology is less of a catalogue process than it 

once was. DNA-based molecular techniques as the polymerase chain reaction (PCR) 

played a key role in discovery of molecular markers providing new tools for research 

(Bellemain et al. 2010) 

Fig 8 Amanita ponderosa selling in Huelva Market 



FCUP 20 
Assessing phylogeographic traits and distribution patterns of Amanita ponderosa in Iberian Peninsula  

 
The most popular locus for DNA-based mycological studies is the internal transcribed 

spacer (ITS) region of the nuclear ribosomal repeat unit (Fig.9) (Horton & Bruns 2001; 

Bridge et al. 2005). The ITS region includes the ITS1 and ITS2 regions, separated by 

the 5.8S gene, and is situated between the 18S (Small subunit-SSU) and 28S (Large 

subunit-LSU) genes in the rDNA repeat unit. The large number of ITS copies per cell 

makes the region an appealing target for sequencing when the quantity of DNA present 

is low (Bellemain et al. 2010). This multi-copy, tripartite segment combines the 

advantages of resolution at various scales: ITS1 rapidly evolving, 5.8S: very conserved, 

ITS2 moderately rapid to rapid; (Hillis & Dixon 1991; Hershkovitz & Lewis 1996). This 

locus has been used massively not only with regard to phylogenetics and taxonomy, but 

also in connection to development of diagnostic strategies for species identification 

(Nilsson et al. 2008; Begerow et al. 2010; Conrad et al. 2012). Currently, ∼172,000 full-

length fungal ITS sequences are deposited in GenBank, and 56% are associated with a 

Latin binominal, representing ∼15,500 species and 2,500 genera, derived from ∼11,500 

scientific studies in ∼500 journals (Schoch et al. 2012). 

 

Fig 9  Nuclear ribosomal repeat unit with the most common used set of primers (Bellemain et al. 2010) 

The other methodology for species identification widely used in fungal research was the 

PCR-RFLP (Restriction Fragment Length Polymorphism) technique, coupling two known 

procedures to detect polymorphisms in DNA regions which have been amplified by 

specific oligonucleotide primers and restricted with different endonucleases where each 

species shows a specific cutting pattern  (Gardes et al. 1991; Erland et al. 1994; Henrion 

et al. 1994; Farmer & Sylvia 1998; Gomes et al. 1999; Glen et al. 2001).  

Presently, the large improvement of widely use of the Next-generation DNA sequencing 

techniques triggered the design of new tools that certainly permit a more complete 

understanding of numerous process that we never been able to work on (Mardis 2008). 

This great leap forward, not only permitted to solve the old and classical riddles but went 

beyond encouraging the scientific community to pose new questions.  
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An excellent example of these new tools is the restriction site associated DNA 

sequencing (RADseq) (Miller et al. 2007), also called Genotyping by Sequencing – GBS 

(Elshire et al. 2011). RAD markers were initially used together with low cost microarray 

genotyping resources (Miller et al. 2007), but the advent in next-generation sequencing 

technologies and concomitant drop in sequencing costs lead to the integration of short-

read sequencing with RAD genotyping (Baird et al. 2008). This sequencing technique 

provides an efficient method to discovery thousands of single nucleotide polymorphisms 

(SNPs) (Rowe et al. 2011) markers that just change a single base in a DNA sequence, 

with a usual alternative of two possible nucleotides at a given position (Vignal et al. 2002). 

The applications of RAD sequencing technique are numerous divided into investigation 

of genome organization and population-level studies aimed at understanding the 

organization of intra-specific variation, identification of population structure, regions 

experiencing selection in particular environments, migration patterns and speciation 

(Rowe et al. 2011).  

The RAD markers discovery is now intrinsically related with the Illumina sequencing 

approach. Rowe et al. (2011) review give us a good perspective how these markers can 

be generated (Fig. 10). In small steps, RAD-Seq is a complexity reduction system, 

digesting the genome with a restriction nuclease and attaching a series of adapters to 

the resulting DNA fragments, thereby large numbers of genetic variations such as SNPs 

can be readily identified from analysis of high-throughput sequence data. 
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Fig 10:  Restriction-site associated DNA sequencing. At the beginning genomic DNA should be digested with specific and 
very well known endonucleases in small fragments. Comprising that a modified adapter containing the Illumina P1 
amplification and sequencing primer and a DNA barcode will be ligated to these fragments. After that, samples are pooled, 
sheared into 300 to 800bp libraries and ligated to a second adapter P2. Sequencing is performed as single end (one 
sequence of 36-108 bp per fragment) or paired end (two sequences of 36-108 bp per fragment). In single end assemblies 
barcoded sequences are assembled into overlapping stacks. Paired-end sequencing allows the assembly of larger contigs 
on the sheared end of the fragment, whose size depends on the length of the Illumina sequences and the size of the 
sheared fragments isolated. Adapted from: http://floragenex.com/floragenex-radseq-bioinformatics-genotyping-
technology.php 
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1.7 – Objectives 

The lack of knowledge about the Lepiotoides species complex still being the principal 

reason for the contempt of this resource. Therefore, the main goals of this study are: 

o Identify a significant number of SNP markers in Amanita ponderosa; 

o Infer about the species complex to better understand the differences between 

each species; 

o Analyse the phylogeographic patterns in Amanita ponderosa using SNP markers; 

o Identify the most important factors related to Amanita ponderosa occurrence; 

o Determine the Amanita ponderosa current distribution in Iberian Peninsula; 

o Locate priority areas for species conservation. 
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Next-generation RAD sequencing: a tool for evaluati on of 
population structure of Amanita ponderosa in Iberian 
Peninsula 

 

 

2.1 Abstract  

Amanita ponderosa is the most charismatic fungal species in Iberian Peninsula. Despite 

its high socio-economic value little is known about this species. Here is presented a study 

that contemplates a way to better understand the relation with between A. ponderosa 

and sister species and infer some phylogeographic patterns in Iberian Peninsula. For 

better understand the genetic architecture of this species in Peninsula, a battery of SNP 

markers were generated through RAD-sequencing. It has found application in wild 

populations and non-traditional study species, and promises to become an important 

technology for ecological population genomics. A cryptic species from the Lepiotoides 

species complex was identified and classified as Amanita pseudovalens through the 

analysis of 247 SNP. Two populational clusters were found in that species. Amanita 

ponderosa don’t shown any population structure across Iberian Peninsula through the 

analysis of 201 SNP. A distinct cluster was identified corresponding to Amanita 

ponderosa f. valens. RAD sequencing proved to be a powerful tool to identify loci in that 

mushroom species. The main cause for the unstructured populations in these species is 

due to the high spore dispersal leading to great connectivity between all populations.   

. 

Keywords 

Amanita ponderosa; RAD sequencing; Phylogeography 

2.2 Introduction 

Phylogeography seeks to explain the geographic distribution of genetic lineages along 

species evolutionary history. The last two decades it has experiencing the boom of the 

PCR and Sanger sequencing era (Puritz et al. 2012). Recent improvements in the speed, 

cost and accuracy by the Next-Generation sequencing (NGS) and advances in the 

accompanying bioinformatic tools are revolutionizing the opportunities for generating 

numerous genetic resources (Helyar et al. 2011). These advances in sequencing have 

radically expanded the reach of genetic studies to non–model organisms and wild 

populations, making this an exciting area to watch. Now the type and amount of data 

generated leads us to the genomics era exploring all genome and leaving behind the era 
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of genetics with high knowledge and a model organism requirements (Nosil & Buerkle 

2010). The revolution of the population genomic analyses require multi-locus data sets 

from multiple populations and allow identify non-neutral or outlier loci by contrasting 

patterns of population divergence among genetic regions. Generate and analyse these 

data sets is nowadays a promising field of research (McKenna et al. 2010; Nekrutenko 

& Taylor 2012) 

A novel and efficient genotyping approach for marker generation based on Illumina 

sequencing of libraries is Restriction-site Associated DNA (RAD) (Miller et al. 2007; Baird 

et al. 2008). RAD sequencing, a NGS based technique that generates short sequence 

reads at thousands of regions adjacent to restriction endonuclease recognition sites 

across the genomes of multiple individuals (Hohenlohe et al. 2011). This technique allow 

us to identify a large number of SNPs across genome and as being used in a broad 

range of studies in non-model organisms with different proposes, such as hybridization 

in rainbow trout (Hohenlohe et al. 2011) and parallel adaptation in threespine stickleback 

(Hohenlohe et al. 2010).  

Despite nowadays already be quite frequent the approach to non-model organisms, it 

was not always like and relatively little is known about the patterns and distributions of 

SNPs in these organisms, including most fungi, thus opening up an excellent research 

opportunity. Here is presented a population genomic analysis in one of the most 

prominent wild edible mushroom of Iberian Peninsula. Amanita ponderosa, also known 

as silarca, púcarinha, tortulho, gurumelo between others. Endemic from south-west 

peninsula, some regions of north Africa and west coast Italy (Daza et al. 2007) and 

ectomicorhyzical of cork and holm oaks preferentially, very typical in Montado 

ecosystems characterized by agroforestry areas in open woodlands (Moreno et al. 

2007). The fruiting period of this species occurs between January and April reaching the 

climax in March when precipitation and temperature conditions are more favourable 

(Henriques 2010). Very few studies has been conducted in this and other mushrooms 

species constraining our knowledge about the effect of the harvest pressure in the fitness 

of populations and how this interferes with the balance of the ecosystems. Xu et al. 

(2007) is one of the few that described and discovery 178 SNP sites in Tricholoma 

matsutake, a wild edible mushroom with high expression in East Asia. These SNPs were 

identified through analysis of a shotgun genomic library in order of evaluate the 

population structure and shown the effect of harvest and habitat loss in this species. 

Other studies like the one conducted by Pringle et al. (2009) demonstrated the invasive 

character of the deadly poisonous mushroom Amanita phalloides in North America 

through the analysis of a microsatellite data set providing a strong evidence for a 

European origin of North American populations. Like others mushroom species, A. 
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ponderosa is highly and intensive harvested by locals due to its large gastronomical 

value. At present the absence of good harvesting practices practiced by locals may be 

problematic for species conservation. Here arises a good research opportunity to 

evaluate the Iberian populations fitness conditions. For this the main goals of this study 

are: i) identify a set of SNP markers in Amanita ponderosa through RAD-sequencing; ii) 

infer about the Lepiotoides species complex to better understand the differences 

between each species and iii) analyse phylogeographic patterns in Amanita ponderosa 

using SNP markers. 

 

2.3 Materials and methods 

2.3.1 Sampling 

The sampling was performed in order to cover all known spatial distribution of species in 

Iberian Peninsula according to Daza et al. 2007. Sampled regions were Baixo-Alentejo, 

Alto Alentejo, Ribatejo and Beira Baixa in Portugal and Extremadura and Andaluzia in 

Spain (Fig. 11). Two hundred and sixty nine samples were collected between February 

and April 2013 and preserved partially in 96% ethanol for posterior DNA extraction. All 

collected samples were dried at lower temperature for posterior herbarium storage. 

Seventeen external Herbarium specimens were joined to the data set (10 from 

Herbarium Real Jardin Botânico-Madrid, 4 from Dept. of Animal and Plant Biology and 

Ecology of University of Jaen and 3 from personal collection of Nicola Amalfi (Sicily - 

ITA). Samples of two different species were added, one Amanita ovoidea and one 

Amanita verna from personal collections for outgroup propose.  All samples used in this 

study are illustrated in Tab 1.  To avoid self-sampling of the same individual each sample 

was collected in a range of 5 meters between them (Taylor et al. 2012) 

2.3.1 DNA extraction & quantification 

DNA was extracted from dried and 96% ethanol preserved samples using the JETquick 

Tissue DNA Spin Column DNA extraction kit (Genomed GmH; Bad Oeynhausen, 

Germany) with some modifications. Samples preserved in ethanol were extracted with a 

digesting period extended to 48 hours in 200μl of extraction buffer T1 + 25μl Proteinase 

K at 56ºC with a reinforcement of 25μl Proteinase K after 24 hours. The pellet and 

undigested material were rejected and the supernatant transferred to a new tube. Then 

200μl of T2 were added (mixing by gentle inversion) and incubated at 70ºC for 10 min. 

After 1 minute at room temperature 200μl of ethanol at -20ºC were added and the entire 

volume transferred to a Spin column to centrifuge at 8000 rpm for 1 minute. The flow 
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Location  Cod n Host  Land cover  Soil type  Storage  
Aracena Ap_arc 16 Q. ilex C.ladanifer Schists ETOH  
Cabeça Gorda Ap_cbg 16 Q. suber C.salvifolius Schists ETOH 
Erra Ap_cco_e 19 Q. ilex C.ladanifer Sandy ETOH 
Pavia Ap_cco_p 5 Q. ilex C.ladanifer Schists ETOH 
Moura (contenda) Ap_cntd 21 Q. ilex & P. 

pinea 
C.ladanifer Schists ETOH 

Malpica Ap_mlpc 13 Q. suber C.ladanifer Sandy ETOH 
Montargil Ap_mntg 7 - - - ETOH 
Mértola Ap_mrtl 30 Q. ilex C.ladanifer Schists ETOH 
Odemira Ap_odm 14 - - - ETOH 
Proença-a-Nova Ap_pan 26 Q. ilex C.ladanifer Granitic ETOH 
Portel Ap_prl 17 Q. suber C.ladanifer Schists ETOH 
Redondo Ap_red 6 Q. ilex C.ladanifer Schists ETOH 
São Barnabé Ap_sbe 28 Q. suber C.ladanifer Schists ETOH 
Talayueda  Ap_tlyd_t 4 Q. ilex - Sandy ETOH 
Robledillo-de-la-
Vera 

Ap_tlyd_r 9 Q. pyrenaica - - ETOH 

Valencia d'Alcántara Ap_vda 19 Q. ilex C.ladanifer Schists ETOH 
Vilanueva del 
Fresno 

Ap_vnf 10 Q. ilex C.ladanifer Schists ETOH 

Tomar Ap_tmr 9 P. pinea & 
Eucalyptus 

C.ladanifer & 
salvifolius 

Schists ETOH 

Huelva Ap_huel 2 - - - Dried 
Cicilia (ITA) Ap_ita 3 - - - Dried 
Jaen  Ap_jaen 2 - - - Dried 
Salcé Ap_zam 1 Q. ilex C.ladanifer - Dried 
Membrio  Ap_mem 1 Q. ilex - - Dried 
Villa del Prado Ap_vdp 2 Q. ilex - Sandy Dried 
Valverde del  
Camino 

Ap_vlvc 1 Q. ilex & Q. 
suber 

- - Dried 

Azuaga Ap_ba 1 Q. ilex C.ladanifer - Dried 
Salorino Ap_sal 1 Q. suber - - Dried 
Sigüenza Ap_sig 1 - - - Dried 
Arenas de San 
Pedro 

Ap_asp 2 Q. ilex - - Dried 

Portel Ao_prl 1 Q.suber C. salvifolius Limestone ETOH 
Couço Av_cço 1 Q.suber C. salvifolius Sandy ETOH 

 Total: 288     

Table 1  List of samples used in this study. n represents the number of samples collected by site; Host indicates the most 
probably tree associated; Land cover the shrub type; Soil type, the main composition of the soil and finally how the samples 
were stored before the DNA extraction. Data deficient represented by “-” 
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was discarded and the centrifugation step was repeated with the addiction of 500 μl of 

standard solution TX at 13000 rpm for 3 minutes. At the end the spin columns were 

eluted with warm elution buffer (10 mM tris (hydroxymethyl) aminomethan hydrochloride) 

at 70ºC for 5 min.  

Quantification of extracted DNA was performed with Qubit 1.0 (Invitrogen, Carlsbad, CA, 

USA) 

2.3.2 Species Identification 

All samples were identified in the field by macro-morphological characteristics according 

to Pinho-Almeida (1994); Moreno et al. (2007). Posterior species confirmation was 

performed by DNA sequences analysis according to Moreno et al. 2007. The ITS region 

from rDNA (ribosomal DNA) was amplified according the following procedure: Each 20-

μl reaction consisted of PCR-water, DNA (2μl), primers  (0.6 μM primer forward ITS1-F: 

CTT GGT CAT TTA GAG GAA GTA A (Gardes & Bruns 1993) and 0.6 μM primer reverse 

ITS4-B: CAG GAG ACT TGT ACA CGG TCC AG (Gardes & Bruns 1993)), dNTPs (10 

mM each), 10× buffer [200 mM Tris–HCl (pH 8.4), 500 mM KCl], BSA  (0.5 μg/μl), MgCl2 

2 mM and Platinum® Taq DNA Polymerase ((0.3 U); Invitrogen™). PCR reaction was 

performed in Applied Biosystems Veriti 96 well Thermal cycler according with the 

following program: 10min of initial denaturation at 94ºC following 35 cycles with 30s 

Fig 11 Sampling sites in Iberian Peninsula represented by Blue dots  
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Desnaturation at 94ºC, 30s Hybridation at 57ºC and 30s Extension at 72ºC. Finally 10 

min at 72ºC for final extension.  

Consensus sequences were adjusted with SeqMan package of DNAStar software 

(Lasergene) and aligned following Clustal W algorithm in MEGA5 v. 5.2 (Tamura et al. 

2011). All sequences were blasted against reference sequences in NCBI – GeneBank. 

2.3.3 Restriction site associated DNA library preparation 

RAD library preparation followed the protocol of Baird et al. (2008); Hohenlohe et al. 

(2010) with further modifications. Around 150ng (5ng/ul) of genomic DNA from each 

individual was eluted in a digestion mix (4.5ul H2O, 5ul NEBuffer 4 (10x) and 0.5ul of SbfI 

restriction enzyme) at 37ºC for 60min. The enzyme was inactivated after at 65ºC for 

20min. Next, 2ul of the appropriate barcoded SbfI P1 RAD adapter (50 nM) was added 

to each sample and 8ul of the corresponding ligation mix (5.9ul H2O, 1ul NEBuffer 4 

(10x), 0.6ul rATP (100nM, Fermentas R0441) and 0.5ul T4 DNA ligase (NEB M0202M)). 

Again incubated at 20ºC for 60min and the enzyme inactivated at 65ºC for 20min. All the 

samples sequenced together were pooled in the same library according to Miller et al., 

(2012). The pooled samples were submitted to Bioruptor on high with cycles of 30 

seconds on and 1 minute off for 15 minutes to produce fragments with an average size 

of 500 bp. All the entire sample was loaded in a 1% agarose gel to extract from each 

pool the fragments corresponding to 400-600bp followed by purification with a Qiagen 

MinElute column. The column was after eluted with 20ul of elution buffer. To blunt and 

repair each pool the following reagents were added by the following order, 2.5ul Bluting 

buffer (10x), dNTP mix (1nM) and Bluting Enzyme Mix (NEB E1201L). Incubation at 20ºC 

for 60 minutes. The fragments were after purified with Quiagen MinElute PCR 

Purification Kit and eluted in 43ul of elution buffer. The A-overhangs were added to the 

fragments by adding the following reagents to the pool in order, 5ul NEBuffer 2 (10x), 1ul 

dATP (10nm), 2ul Klenow Fragment (3’-> 5’ exo-) (NEB M0212L) and incubated at 37ºC 

for 60minutes. A new purification process was performed with Quiagen MinElute PCR 

Purification Kit and eluted with 44ul of elution buffer. The P2 adapter was ligated to the 

fragments by adding the following reagents to the pool in order, 5ul NEBuffer 2 (10X), 

1ul P2 RAD adapter (10uM), 0.5ul rATP (100nM, Fermentas R0441), 0.5ul T4 DNA 

ligase (NEB M0202M) and incubated at 20ºC for 30minutes. Another purification with 

Quiagen MinElute kit with final elution of 50ul.  

Final a PCR reaction was performed according with the following conditions: 98ºC for 

30sec, 14x (98ºC for 10sec, 65ºC for 30 sec, and 72 º C for 30 sec), 72ºC for 5min, hold 

at 10ºC. The PCR mix prepared was 38ul H2O, 50ul 2X Phusion Master Mix (NEB F-

531L), 4ul P1 adapter primer (10uM), 4ul P2 adapter primer (10uM) and 4ul of purified 
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pool sample from last step. The PCR product was purified with Quiagen MinElute kit with 

final elution of 14.5ul and loaded in agarose gel for low molecular weight adapter and 

primer junk removal by cut. The fragment removed was around 400-600bp. Quiagen 

Buffer QG was used to dissolve the gel chunk. One last purification procedure was 

conducted with the Quiagen MinElute column. To the final elution with 14.5ul was added 

1.5ul of elution buffer containing 1% Tween-20.  

In the end the pool sample was quantified and diluted with elution buffer containing 0.1% 

Tween-20 in order to obtain a final concentration of 10nM. 

2.3.4 Marker generation 

First of all the individuals were identified according with specific barcode sequence. The 

SNP discovery and genotyping was performed using custom Perl scripts and the 

alignment program Novoalign (Novocraft Technologies, Selangor, Malaysia). Bad quality 

reads and with potential sequencing errors were filtered running QualityFilter script. After 

run the quality filter was selected a sub-set of 125K of sequences from each sample, to 

reduce even more potential sequencing errors. Candidate SNP were selected from a 

subset of individuals selected based on the frequency histogram (number of 

sequences/frequency) and applying a cut line of 20 to filter bad quality sequences. Nine 

individuals were selected from Amanita sp. group and 13 individuals from Amanita 

ponderosa. SNP discovery was developed aligning all the selected individuals each other 

within groups. The posterior operation involves searching for these SNP in remaining 

individuals of each group aligning them with the previously selected group  

2.3.5 Population genetic and phylogenetic analyses 

Preliminary phylogenetic analysis based on rDNA was performed in MEGA5 and 

phylogenetic tree produced according to Maximum Likelihood approach with 1000000 

bootstrap replication. Thirteen other sequences present in NCBI-GeneBank from 

different amanitas were included representing the major sections of the genus Amanita.  

Section Amanita was represented by Amanita muscaria EU071957.1 and Amanita 

pantherina AB015701.1, Section Volvatae sub-section Validae with Amanita rubescens 

AJ889922.1 and Amanita flavoconia AY325847.1, sub-section Phalloidinae with Amanita 

phaloides GQ221843.1 and the series focus of this study, Section Volvatae, sub-section 

Validae, series Amidella, represented by Amanita ponderosa AY486234.2; AY486233.2 

and EF653962, Amanita curtipes EF653963.1, AY486235.2, AY486236.1, Amanita 

volvata JF723273.1 and Amanita avelanosquamosa AY436447.1. Limacella glioderma 

FJ478086.1 was used to root the tree.  
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The covariance standardized method of a Principal Coordinate Analysis (PCoA) was 

conducted in GenAlex (Peakall & Smouse 2006). The analysis of population structure 

was performed in STRUCTURE 2.3.4 (Pritchard et al. 2000) with the following 

parameters; Burnin sequences 50000 and repeat Monte Carlo Marcov Chain 100000; 

establish a K=1 to K=6. 

2.4 Results 

2.4.1 Species Identification 

Amplification and sequencing of ITS1, 5.8s and ITS2 was successful for al specimens. 

The size of DNA fragments varies between 790 and 810bp being last the most common. 

The Blast analysis in NCBI-Genebank results in 286 confirmations which 271 were A. 

ponderosa matching with AY486234.2; AY486233.2 and EF653962.1 from Moreno et al. 

(2007) and 17 other amanitas with no reference.  

2.4.3 Marker generation 

A total number of 247 loci was discovered in a total of seventeen Amanita sp. individuals 

and a total of 201 loci in a total of one hundred sixty-three individuals. 

2.4.4 Population genomics and phylogenetic analyses 

rDNA – ITS1, 5.8s, ITS2 analysis  

The preliminary results of phylogenetic analysis (Fig. 12) display clearly the genus 

Amanita as expected according to Neville & Poumarat 2004. The majority of specimens 

collected for this study cluster together with the reference sequences described in 

Moreno et al. (2007), forming Amanita ponderosa cluster. A new clade has shown 

representing the specimens that did not meet with any other Amanita sp. in preliminary 

BLAST analysis. According with these results this clade is more related with Amanita 

curtipes than Amanita ponderosa. 

SNP analysis 

The first alignment with all individuals performed in Novoalign highlighted the previous 

observation in ITS analysis. Again the individuals with no matches in NCBI do not aligned 

with either belonging to A. ponderosa clade, forming together a distinct group.  
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Fig 12 Phylogenetic tree based on ITS1, 5.8s and ITS2 of rDNA, generated in MEGA5 according Maximum likelihood approach, 100000 
bootstrap replicates. A sequence of Limacella glioderma was used to root the tree. Bootstrap values are indicated above or at the branches. 
The scale bar indicates the nucleotide substitution rate. Others (274) represent all the others sequences of A. ponderosa present in Tab 1. 
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PCoA 

Because the distinction between the two groups the PCoA analysis was performed 

separately for both groups. Both graphs are plotted below (Fig 13).  

 

The individual AP_odm11A was removed from the analysis due to low coverage of SNP. 

PCoA show in the Amanita sp. two different groups of individuals and one isolated 

individual (Ap_prl3B). These two main groups that individuals from Mértola (Ap_mrtl*) 

are clearly distinct from the others (Ap_odm*, Ap_cntd*, Ap_sbe* and Ap_prl*). The 

percentage of variance was 33.21%, 17.89%, 12.78% in the 1st, 2nd and 3rd axis.  
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Fig 13 – PcoA outputs from GeneAlex a) Amanita sp. and b) Amanita ponderosa.  
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PCoA from Amanita ponderosa illustrates that all the individuals chosen are clustered 

together except a group of five from Valência de Alcântara (Ap_vda3B, Ap_vda4B, 

Ap_vda5B, Ap_vda6B and Ap_vda8B). The percentage of variance was 5.92%, 5.21% 

and 4.89% and it was pretty identical when removing the low coverage loci and 

individuals.  

Structure analysis 

The structure analysis was also conduced for diferente species groups. The most likely 

number of clusters (K) when likelyhood is maximized Amanita sp. show two distinct 

clusters (K=2) (Fig. 14). The indivuals provenient from Mértola (Ap_mrtl) represented by 

the color red are clearly distinct from the others represented in green. The individual 2 

(Ap_prl3B) besides to shown to be an outliers in the previous PCoA analysis shown to 

be more related to Mértola cluster than the other.    

 

Fig 14 Clustering assignments of all individuals of Amanita sp.. Each vertical line represents an individual, 
and colors represent the different clusters. The amount of color represents the proportion of association to 
a cluster. 

The Amanita ponderosa structure analysis was performed with 153 individuals, removing 

the ones with low coverage (high missing data). The most likely number of clusters (K) 

when likelyhood is maximized in Amanita ponderosa show three distinct clusters (K=3) 

(Fig. 15). It is easily identified the cluster with the color green corresponding to five 

individuals belonguing to Valência de alcântara group. They are the same that were 

presented in the PCoA of the Amanita ponderosa. Concernig the rest of the individuals 

they do not show any pattern or structure having individuals form the same “populations” 

in both clusters. 
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Fig 15 Clustering assignments of all individuals of Amanita ponderosa. Each vertical line represents an 
individual, and colors represent the different clusters. The amount of color represents the proportion of 
association to a cluster. The individual’s correspondence is present in supplementary materials Table S1. 

 

2.5 Discussion 

The interesting results obtained in the analysis of rDNA in fact show that there is still 

much to deepen concerning the Lepiotoides species complex. In addition to Amanita 

lepiotoides, Amanita ponderosa and Amanita curtipes Neville & Poumarat (2004) make 

reference to other two taxa intrinsically connected to Amanita curtipes. They are Amanita 

curtipes f. curtipes and Amanita curtipes f. pseudovalens. Amanita curitpes f. curtipes is 

illustrated as a typical form of Amanita curtipes with slight differences of the 

pseudovalens form. The differences between them are in terms of morphological 

dimensions in stipe and pilleus diameter and shape, pilleus coloration and smell as we 

can see in Fig 13. Amanita curtipes f. pseudovalens is reported with a pilleus and stipe 

more plumb and robust than the f. curtipes. The absence of brownish tonalities and 

washed out looks also link to f. pseudovalens.  It will be important to deepen the 

taxonomic characterization of these individuals, with special attention to microscopic 

characters as spore and basidia sizes as well as the pileipellis (hypha organization from 

the mushroom cap surface) structures. Neville & Poumarat (2004) observed a distinct 

cutis (horizontal hypha organization with gelatinized tissue) in f. curtipes that is not 

present in f. pseudovalens, the latter presenting an ixocutis (horizontal hypha 

organization without gelatinized tissue). 
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Besides that, the strong evidence of two very distinct morphotypes and genotypes, could 

directly reveal the presence of a cryptic species within the complex lepiotoides. For this 

it is proposed for that new specie a designation of Amanita pseudovalens, regarding the 

previous macroscopic and microscopic characterization, the divergence to Amanita 

ponderosa and the affinity to Amanita curtipes demonstrated by the ITS and SNP 

analysis. The opportunity to realize this study with all of these distinct species may have 

been a matter of chance. The factor that can major contribute for the occurrence of this 

species in the data set could be the seasonality. All the samples were collected between 

the months of February to April being the ones that shown the Amanita pseudovalens 

genotype collected in the beginning of the field work (February). None was presented in 

the “populations” sampled during the rest sampling campaign. This could reveal a 

seasonal fruiting pattern of this species complex. Thus the Amanita pseudovalens tends 

to fruiting in the colder months anticipating spring wile Amanita ponderosa tends to be 

more termophilic fruiting in the warmer months during the spring wet season. This pattern 

was already empirical learned by the local harvesters that traditionally consume that 

species. There are reports that this species occurring in the first spring months (locals 

call this Janeirinhas, from January) has a different taste but yet it is edible and is 

consumed. The results that come out from the PCoA and STRUCTURE shown a 

potential population structure but the data collected could be insufficient to infer the 

populations structure of this species. Besides that even with just a few individuals of 

Amanita pseudovalens in the dataset it is observed that Mértola (Ap_mrtl*) group all 

together, results also shown by STRUCTURE. It will be necessary to increase the 

number of individuals to validate this cluster. 

The PCoA in the Amanita ponderosa show a clearly distinct out-group composed only 

by five individuals from Valência de Alcántara. This could raise the possibility of some 

population structure but a more detailed analysis of the STRUCTURE output results 

show that are unrelated individuals from the same “population” in other clusters. In fact, 

the individuals that are present in the green cluster don’t have any kind of admixture with 

2 cm 

Fig 16 Amanita curtipes a) f. curtipes and b) f. pseudovalens with notorious morphological differentiation. 

a) b) 
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other clusters, which can evidence significant differences between this groups. The most 

likely occurrence that can explain this differentiation could be a presence of a distinct 

form of Amanita ponderosa. Regarding the SNP analysis even this cluster totally distinct 

from the others, it seems to be more closely related with Amanita ponderosa than 

Amanita curipes or even Amanita pseudovalens. One of the two forms proposed by 

Neville & Poumarat (2004) to Amanita ponderosa seems to fit perfectly in the morphotype 

of these individuals, the Amanita ponderosa f. valens. Having the same ecological 

restrictions and sharing the same habitat the only macroscopic difference between them 

is the size, being the f. valens much more small than the f. ponderosa. Some individuals 

out of this cluster seems to have some proportions of signature with the cluster of the 

Amanita ponderosa f. valens. This could evidence the closer relation between these two 

forms enabling the cross between them.  

The absence of a pattern of population structure could be related with high spore 

dispersal rate between all populations sampled. This seems to be the most contributive 

factor for gene flow in this organisms as Vincenot et al. (2012) shown in this survey in 

Laccaria amenthystina gene flow across Eurasian.  
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Table S1 Individual correspondence for Amanita ponderosa Structure Plot  

 

 

 

Plot Id Individual Plot Id Individual Plot id Individual Plot Id Individual 

1 Ap_arc4B     41 Ap_tlyd5B    81 Ap_arc15A    121 Ap_mlpc2A    

2 Ap_sbe3B     42  Ap_cbg1     82 Ap_mlpc12A   122 Ap_mlpc9A    

3 Ap_cco4B     43 Ap_cbg10     83 Ap_pan13A    123 Ap_tmr7B     

4 Ap_mrtl3A    44 Ap_pan2B     84 Ap_pan8B    124 Ap_mntg3A    

5 Ap_tlyd1B    45 Ap_arc1B     85 Ap_mlpc5A    125  Ap_Jaen    

6 Ap_tlyd9A    46 Ap_arc9B     86 Ap_tmr3B     126 Ap_pan22A    

7  Ap_cbg6     47 Ap_cco1A     87 Ap_vnf2A     127 Ap_mrtl13A   

8 Ap_cntd4     48 Ap_cco10B    88  Ap_ita1    128 Ap_mrtl29A   

9 Ap_vda2B     49 Ap_mrtl8A    89 Ap_mntg6A    129 Ap_pan18A    

10 Ap_arc5B     50 Ap_tlyd6B    90 Ap_red3A     130 Ap_mlpc3A    

11 Ap_sbe4B     51  Ap_cbg2     91 Ap_arc16A    131 Ap_mlpc10A   

12 Ap_cco5B     52 Ap_cntd1B    92 Ap_mlpc13A   132 Ap_tmr8B     

13 Ap_mrtl4     53 Ap_cntd9B    93 Ap_mrtl17A   133 Ap_mntg4A    

14 Ap_tlyd2B    54 Ap_vda7B     94 Ap_mrtl25A   134 Ap_red0A     

15 Ap_tlyd10B   55 Ap_pan3A     95 Ap_pan14A    135 Ap_mrtl14A   

16  Ap_cbg7     56 Ap_arc2B     96 Ap_pan9B     136 Ap_mrtl30A   

17 Ap_cntd5B    57 Ap_arc10B    97 Ap_mlpc6A    137 Ap_pan19A    

18 Ap_prl4B     58 Ap_cco2A     98 Ap_tmr4B     138 Ap_mlpc4A    

19 Ap_arc6B     59 Ap_mrtl1A    99 Ap_vnf3A     139 Ap_tmr1B     

20 Ap_sbe5B     60 Ap_mrtl9A    100  Ap_ita2     140 Ap_tmr9A     

21 Ap_cco6B     61 Ap_tlyd7B    101 Ap_mntg7A    141 Ap_vnf9A     

22 Ap_mrtl5B    62  Ap_cbg4     102 Ap_tlyd13B   142 Ap_mntg5A    

23 Ap_tlyd3B    63 Ap_cntd2     103 Ap_mrtl26A   143 Ap_arc14     

24 Ap_tlyd11B   64 Ap_cntd10B   104 Ap_pan15A    144 Ap_mlpc11B   

25  Ap_cbg8     65 Ap_pan4A     105 Ap_pan10     145 Ap_mrtl15A   

26 Ap_cntd6B    66 Ap_arc3B     106 Ap_mlpc7A    146 Ap_mrtl23A   

27 Ap_prl12B    67 Ap_cco3B     107 Ap_tmr5A     147 Ap_pan11A    

28 Ap_arc7B     68 Ap_mrtl2A    108 Ap_vnf4A     148 Ap_pan20A    

29 Ap_cco7B     69 Ap_mrtl10B   109  Ap_ita3     149 Ap_vda3B     

30 Ap_mrtl6B    70  Ap_cbg5     110 Ap_huel1A    150 Ap_vda4B     

31 Ap_tlyd4B    71 Ap_vda1B     111 Ap_mrtl11A   151 Ap_vda5B     

32 Ap_tlyd12B   72 Ap_vda9B     112 Ap_mrtl27A   152 Ap_vda6B     

33  Ap_cbg9     73  Ap_pan5     113 Ap_mlpc1A    153 Ap_vda8B     

34 Ap_cntd7B    74 Ap_pan6B     114 Ap_tmr6A        

35    Ap_S1    75 Ap_pan7B     115 Ap_vnf5A        

36 Ap_prl24A    76 Ap_tmr2A     116 Ap_mntg1A       

37 Ap_arc8B     77 Ap_vnf1A    117 Ap_huel2A       

38 Ap_sbe8B     78 Ap_vnf10A    118 Ap_tlyd15A      

39 Ap_cco8A     79 Ap_pan21A    119 Ap_mrtl12A      

40 Ap_mrtl7B    80 Ap_red2B     120 Ap_mrtl28A       
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Assessing distribution patterns of Amanita ponderosa in 

Iberian Peninsula  

3.1 Abstract 

Environmental factors constrain the distribution of species and their interactions with the 

environment. Determining the most influencing factors is important to understand their 

range limitations. Here, a Species Distribution Model is produced following the maximum 

entropy approach in order to determine the current distribution of Amanita ponderosa, 

one of the most emblematic fungal species in Iberian Peninsula. A total of nine predictive 

variables were used (six climatic, two topographic and one land uses) and 201 species 

presence records. The most important variables conditioning the distribution of Amanita 

ponderosa were the precipitation, temperature and land use. The distribution model 

predicted a higher occurrence of A. ponderosa mostly in the southwest corner of Iberian 

Peninsula with some occasional occurrences in north and northeast. This study 

contributes to a better understanding of the ecology of a high valuable mushroom 

species, which can be integrated in a resource management plan. Nevertheless model 

can be improved with the increase of the sampling records and also with the integration 

of more predictive variables.  

Keywords 

Amanita ponderosa, Maxent, Species Distribution Model, Ibeiran Peninsula 

 

3.2 Introduction 

Predicting species distributions has become an important component of conservation 

planning in recent years, and a wide variety of modelling techniques have been 

developed for this purpose (Guisan & Thuiller 2005). These are called Species 

distribution models (SDM) and commonly combine associations between environmental 

variables and known species occurrence/absence records to identify for instance, 

suitable habitat and environmental conditions (Elith & Leathwick 2007), the effects of 

climate changes on species distribution, the biogeographic relationships between other 

species, the presence of hotspot areas and high diversity areas (Guisan & Zimmermann 

2000; Peterson 2006; Sillero et al. 2009).  The spatial distribution of environments that 

are suitable for the species can then be estimated across a study region (Pearson 2007). 

This approach has proven to be valuable for generating biogeographical information that 
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can be applied across a broad range of fields, including conservation biology, ecology 

and evolutionary biology.  

SDM’s have been widely used in a wide range of taxonomic groups such as animals 

(Ferreira et al. 2013; Brito et al. 1999) and plants (Elith 2002), but still rarely used in 

fungi. In fact there are just a few studies regarding fungi spatial distribution and 

requirements (e.g. Bendiksen et al. 2004; Mathiassen & Økland 2007). More recently 

Wollan et al. (2008) tested if the temperature and related parameters were the primary 

determinants of the regional distribution of macrofungi in Norway. In general the lack of 

ecological biogeographical studies in macrofungi is probably caused mainly by practical 

difficulties related to their largely cryptic life cycles. Their fruiting bodies are normally 

ephemeral and thus their detection and collection are difficult. Also, a correct 

identification relies mostly on microscopic analyses. The maximum entropy model 

(Maxent; Phillips et al. 2006) show promising results in predicting the distribution of 

species based in presence-only data (Elith et al. 2006). Because of that, this method is 

particular beneficial for fungi since that the obtaining of reliable absence data is largely 

impracticable due to their largely cryptic life cycles. 

Amanita ponderosa has one of the most cryptic life cycle due to its semi-hypogeous initial 

development, therefore very difficult to detect. Beside this it is one of the most harvest 

edible mushrooms in Iberian Peninsula. According to Curreli (1994) and Daza et al. 

(2002) the distribution area of A. ponderosa in peninsula is restricted to southwest 

corner, with some occasional and very restricted occurrences in others places with the 

same bioclimatic conditions. A. ponderosa is therefore classified as thermophilic due to 

their tendency to grow in areas with hot and dry climate, with an average annual 

precipitation of 500 mm concentrated during the cold rainy season. It withstands large 

diurnal and annual temperature ranges, with cold winters and hot summers (Santos-Silva 

et al. 2011). It is now generally agreed that A. ponderosa as Ectomicorryzal species is 

also restricted to their host geographical distribution in the Continental Mediterranean 

climate parameters characterized by temperature ranges very well defined, hot summers 

and severe winters with some precipitation (Costa et al. 1998). Despite the potential 

regional distribution of this species is generally known, have become imperative specify 

the current distribution in order to better understand the relation between species and 

the environment. This is particularly relevant in a species that is subjected to a severe 

harvest pressure and without any management measures aiming species conservation.  

According with this scenario the following study was conducted towards to i) better 

understand which climatic variables contribute more for A. ponderosa distribution; ii) 
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define the environmental limits in which this species occurs; and iii) determine the current 

distribution of this species in the Iberian Peninsula.    

3.3 Materials and methods 

3.3.1 Study area and sampling 

The study was conducted in south-west corner of Iberian Peninsula according to local 

harvest records. Sampling regions were Baixo-Alentejo, Alto Alentejo, Ribatejo and Beira 

Baixa in Portugal and Extremadura and Andaluzia in Spain. A total of 201 records were 

used where 136 were collected in season of 2013 and 65 were from personal collection 

2009 to 2012 (Table 2). All the records were obtained with a Global Positioning System 

(Garmin Oregon 450), represented on the WGS84 grid in a georeferenced database and 

displayed using ArcMap 9.3 GIS (ESRI 2009). 

Table 2  Sampling locations used to predict species distribution model 

 

3.3.2 Environmental factors  

Because of the absence of scientific information about factors related to A. ponderosa 

(and Fungi in general) species range, distribution types and ecological preferences, a 

wide array of possible predictive variables (PV), 36 in total (Table S1), were selected for 

modelling potential species distribution (Santos-Silva et al. 2011; Daza et al. 2002 & 

2007; Moreno et al. 2007; Henriques 2010; Wollan et al. 2008). Climatic variables with a 

Location  Cod n Host  Land cover  Soil type  
Aracena Ap_arc 3 Q. ilex C.ladanifer Schists 
Cabeça Gorda Ap_cbg 16 Q. suber C.salvifolius Schists 
Couço Ap_cco 21 Q. suber C.ladanifer Sandy 
Moura (contenda) Ap_cntd 18 Q. ilex & P. 

pinea 
C.ladanifer Schists 

Malpica Ap_mlpc 13 Q. suber C.ladanifer Sandy 
Montargil Ap_mntg 1 Q. suber C.ladanifer - 
Odemira Ap_odm 1 Q. suber - Schists 
Proença-a-Nova Ap_pan 1 Q. ilex C.ladanifer Granitic 
Portel Ap_prl 48 Q. suber C.ladanifer Schists 
Redondo Ap_red 3 Q. ilex C.ladanifer Schists 
São Barnabé Ap_sbe 28 Q. suber C.ladanifer Schists 
Talayueda  Ap_tlyd 21 Q. ilex - Sandy 
Valencia d'Alcántara Ap_vda 7 Q. ilex C.ladanifer Schists 
Vilanueva del Fresno Ap_vnf 15 Q. ilex C.ladanifer Schists 
Tomar Ap_tmr 2 P. pinea & 

Eucalyptus 
C.ladanifer & 
salvifolius 

Schists 

Huelva Ap_huel 2 - - - 
Jaen  Ap_jaen 1 - - - 
 Total: 201    
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resolution of 30 arc-seconds (~1 km spatial resolution) were obtained from the WorldClim 

data base in the datum WGS84 (Hijmans et al. 2005; http://www.worldclim.org/). A Digital 

elevation model (DEM) was obtained from Shuttle Radar Topography Mission, SRTM 

(SRTM 2010) and used to derive others topological parameters as slope, aspect and 

solar direct radiation. Land uses information was obtained from Corine Land Cover, 

v.2006 (EEA 2010). Evapotranspiration values were obtained from International Water 

Management Institute (IWMI; Zomer et al. 2006). All values of PV in each species 

location were obtained by interception with Xtools (DataEast) in GIS environment 

ArcMap 9.3. The principle of parsimony applied to statistical modelling recommends a 

model utilization with k-1 predictive variables instead a model with k variables (Crawley 

2007). Thus a correlation test was performed to avoid high correlation values between 

all potential predictive variables in sampled sites. Pearson correlation coefficient was 

calculated with SPSS Statistics v.21 (IBM Corp.) between all variables (Snelder & 

Lamouroux 2010). All correlations with absolute values above 0.8 was excluded (cf. 

Snelder & Lamouroux 2010) 

3.3.3 Species distribution model 

Species distribution model for current conditions was generated using Maxent software 

version 3.3.3k available at http://www.cs.princeton.edu/~schapire/maxent/. This 

software calculates the realised niche of species (Sillero 2010) by using the 

environmental data from the only-presence records and the background sample (finite 

number of points from the landscape to which values of climatic variables are associated) 

to estimate the ratio “probability density of covariates across locations within landscape 

where the species is present”/”probability density of covariates across landscape” (Elith 

et al. 2011). This is done by choosing the statistical model with the maximum entropy 

(Phillips et al. 2004; Phillips et al. 2006; Phillips 2012). Pixels with no presence records 

are not treated as absences. Maxent makes a post-transformation of the raw output 

providing a logistic output that makes assumptions about prevalence and sampling effort 

to achieve a better estimate of the suitability of the environment for a species presence 

rather than the probability of occurrence (Phillips 2012). The final model was the average 

of 20 replicates which were run with random seed (i.e a different random train was made 

and a different random subset of the background points was used for each run). A 

random test percentage of 30% was chosen so that the program sets aside 30% of the 

sample records for testing (n=60) and uses 70% as training (n=141) data set on each 

run. The test data set is used to evaluate the performance of the model. The sampling 

technique employed was bootstrap. This is a Monte Carlo statistical method that takes 

sampling with replacement from the original sample, hence being more accurate than 

sampling without replacement in terms of simulating chance as it samples the impacts 
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of the real sample size (Wintle et al. 2005). Each sample is created independently from 

the other samples and the number of samples is equal to the total number of presence 

points. Model was run with auto features and recommended default values and options 

were used (Phillips et al. 2006). The output was in logistic format which gives an estimate 

of suitability between 0 and 1.  

Model was tested with the area under the curve (AUC) of the receiver operating 

characteristics (ROC) plot as it is a measure of individual model fit (Fielding & Bell 1997). 

A ROC plot is produced by relating the proportion of presences correctly predicted 

(sensitivity) with the proportion of pseudo-absences incorrectly predicted (1-specificity). 

Higher values of AUC may translate the proportion between the total size of the 

distribution area of the species and the size of the study area: the larger the proportion 

the larger the value of AUC (Lobo et al. 2008). The relevance of each variable to the 

Maxent prediction was determined by Jackknife analyses of the training and test gain 

and of AUC. In Jackknife analysis each PV is excluded in turn and a model is created 

with the remaining variables; then another model is created using each variable in 

isolation; and finally, a model is created using all variables. The value of the gain for each 

PV indicates if the variable contributes more in predicting the suitability than a uniform 

distribution (which would have zero gain) (Miller 1974; Pearson et al. 2006). Response 

curves of each PV were performed to also assess the importance of each PV in 

predicting the suitability of habitat. The values of the 20 replicates of each PV were 

averaged and represented by a tendency curve adjusted by a polynomial equation of 

sixth degree. These curves give the probability of contribution of PV for the raw prediction 

of the models which indicate the values of the PV suitable for each species (following 

Martínez-Freiría et al. 2008). 

 

3.4 Results 

From 36 PV previously selected, 9 were included (Pearson<0.8) (Table 3) to predict 

species distribution in Iberian Peninsula. The variable with the higher contribution for 

model prediction was the Land Cover while Aspect was the one that less contributes. All 

the percentage contributions of the PV are expressed in Table 4. Together Land Cover 

and Mean Temperature contribute to more than a half of the prediction. The results of 

Jackknife analyses corroborate these findings and were concordant (Fig 14). Jackknife 

analyses shown that removing the Land Cover (clc) from the model it will decrease the 

training and test gain (Fig 14 a) and b)) which indicates that clc contain the most 

contributive information that is not present in other variables. The proportion of 
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presences correctly predicted by the model show promising results with the AUC values 

closer to 1, and the Training and Test AUC values being of 0.991 and 0.988 respectively. 

Table 3  Predictive variables selected (P<0.8) and used to model species distribution. 

Variable  cod  
Aspect aspect 
Land Cover clc 
Elevation dem 
Evapotranspiration evapo 
Annual Mean Temperature meantemp 
Precipitation September presep 
Precipitation wettest Quarter  prewetq 
Temperature January tempjan 
Mean temperature wettest quarter tmeanwetq 

 

Table 4  Contribution of each predictive variables (%) and mean training and test AUC for the 20 Maxent 
models of Amanita ponderosa in Iberian Peninsula. Minimum and maximum values within brackets. 

  Average  Min - Max 

P
re

di
ct

iv
e 

va
ria

bl
es

 

aspect 1.354 (0.485 - 3.306) 

clc 30.190 (26.390 - 33.922) 

dem 11.376 (3.561 - 21.268) 

evapo 9.044 (4.499 - 15.592) 

meantemp 22.573 (6.88 - 29.129) 

presep 4.313 (0.961 - 11.843) 

prewetq 2.103 (0.741 - 4.498) 

tempjan 4.933 (0.320 - 15.337) 

tmeanwetq 14.110 (9.688 - 18.727) 

T
es

t 

Training AUC 0.991 (0.988 - 0.994) 

Test AUC 0.988 (0.981 - 0.995) 

Test Gain 3.826 (3.459 - 4.173) 

  
 

Response curves (Fig 15) generated by the model show that A. ponderosa preferentially 

occurs in south exposed areas (i.e aspect values between 100º and 230º) and 

preferentially at low altitudes, peaking at 100 to 200 m. Concerning the temperature 

variables, A. ponderosa distribution area is mostly characterized by annual mean 

temperature of 15-17ºC, mean temperature of the wettest quarter 10-12ºC and mean 

temperature of January 9-10ºC. The precipitation values not discloses a harmonious 

pattern throughout the gradient and can lead to some difficulties of interpretation. 

Precipitation of September reaches the maximum response at 25mm corresponding to 

65% of probability of presence while the mean precipitation of the wettest quarter shows 

values between 200 and 300mm corresponding to ~60% probability of presence.  
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Fig 17 Jackknife of AUC (a) Regularized Test Gain (b) and (c) Training of Amanita ponderosa model 
distribution 

a) 

b) 

c) 



FCUP 50 
Assessing phylogeographic traits and distribution patterns of Amanita ponderosa in Iberian Peninsula  

 
 

 

 

 

 

 
Fig 18 Response curves of each predictive variable to the Amanita ponderosa distribution model. The 
curves show the mean response of the 20 replicate Maxent runs (red) and the mean +/- one standard 
deviation (blue)  
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The response curve corresponding to Land Cover shows the predominant occurrence of 

this species is in the agro-forestry areas (clc code 22), broad-leaved forest (clc code 23), 

coniferous forest (clc code 24) and transitional woodland-shrub (clc code 29). Higher 

values of evapotranspiration (~1200mm) increase the probability of occurrence of A. 

ponderosa.  

The mean model prediction evidence clearly the probability of occurrence of A. 

ponderosa in southwest Iberian Peninsula (Fig 16). The areas with higher probability 

values (>60%) in Portugal were the Algarve mountain range of Caldeirão and 

Monchique, the Guadiana river valley, the mountain range of Portel, Ossa and Grândula, 

some areas in Sorraia river basin and finally the region delimited by Campina de Idanha-

a-Nova converging with the Spanish San Pedro mountain range. In Spain the higher 

probability of occurrence is represented throughout the bordering area with Portugal in 

the regions of Estremadura and Andalusia. In Estremadura is also very evident the high 

values in the southern part of the Iberian central mountain range corresponding to the 

Sierra de Gredos. Lower values of probability of occurrence (<60%) are represented in 

west side of Penibético mountain system corresponding to Natural Park of Sierra de 

Grazalema and in mountain range of Sierra Morena. The model prediction evidence also 

some remote areas with probability values inferior to 30%. These areas were the 

International Douro River Natural Park and the Ebro Valley.    

 

Fig 19 Model prediction of probability of occurrence of Amanita ponderosa in Iberian Peninsula. 
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3.5 Discussion 

Areas with high probability of A. ponderosa occurrence in Iberian Peninsula follow the 

general distribution patterns previously identified by others authors Curreli (1994); Daza 

et al. (2002) and Moreno et al. (2007). Nevertheless, this model allowed the definition of 

accurate suitable habitats for species that were previously considered widespread from 

all southwest peninsula. The model was developed considering a restricted range 

environmental conditions in relation to the total distribution of A. ponderosa, which may 

have induced spatial biases in estimates of occurrence probability. It is therefore 

necessary increase the sampling area to better estimate the current species distribution. 

Nevertheless the model prediction and the value of AUC (0.99) shows a very good fit for 

the model. The results obtained in this work corroborate the previous studies concluding 

that distribution patterns of fungal species are closely related to Temperature and 

Precipitation (Wollan et al. 2008). Ulf et al. (2012) also linked climate variability to 

mushroom productivity and phenology, showing the importance of climate not only in 

distribution but also in abundance. Their results shown that precipitation amounts and 

temperature means determined fungal activity. A. ponderosa distribution scenario in 

Iberian Peninsula revealed the importance of Mean Temperature and Mean 

Temperature of the wettest quarter in terms of most important climatic variables. Despite 

some variables have been rejected in the model in consequence of the correlation tests, 

we can infer, through the detailed analysis of the climatic parameters in the 

Mediterranean Temperate Climate, that areas with higher mean temperatures are also 

areas with low mean precipitation rates (Baldi et al. 2013). The topography of the 

southwest corner of the Iberian Peninsula is also a very important parameter regulating 

the majority of the climatic variables. Due to this it is known that the increase of the 

precipitation values and the decrease of temperature are highly positive correlated with 

the elevation (Fig S1). This assumption clearly determines the thermophilic pattern of 

this species (Santos-Silva et al. 2011) occurring only in areas with higher annual mean 

temperatures and low precipitation rates.  

The character of highly specification of this species forming mycorrhizal associations 

with a restrict number of plant species was printed by the influence of the Land Cover 

(clc) in model prediction. The four most selected categories by the model (Agro-forestry 

areas (22), Broad-leaved forest (23), Coniferous forest (24) and Transitional woodland-

shrub (29)), fits very well on the species distribution with all previous observations. Agro-

forestry areas (22) are characterized by annual crops or grazing land under the wooded 

cover of forestry species matching with typical Montado ecosystems as well as Broad-

leaved forest (23) (EEA 2010). Montado is an artificial system highly intervened by 

human activities which sometimes due to intensification and overexploitation presents 
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substantial losses in soil quality. Despite Coniferous forest (24) having expressed high 

values in model contribution, it is unlikely that A. ponderosa was associated to this host. 

All the coniferous forest surveyed for this study were dominated by Mediterranean shrubs 

like the one belonging to Cistaceae family and this is reported by Parra & Domínguez 

(2012) as the most likely host species. The Cistaceae are also the most likely shrub in 

the Transitional woodland-shrub (29) what makes this habitat also suitable for the 

occurrence of this species.  

The model predictions with lower probability of occurrence, like in areas like Natural Park 

of International Douro River and Ebro Valley, should require more attention in future 

works. It is known that A. ponderosa is present on these areas, although in small isolated 

islands (Personal records). Due to its small size, these islands cannot be predicted in 

this model. It is very important collect more information about these areas in order to 

better understand which variables are promoting the species occurrence. Besides this 

the maximum entropy model revealed to be a powerful method to evaluate the current 

distribution of this species skirting the difficulties related with sampling species with 

cryptic life cycles.  

Hereafter, in addiction of the increment of the sampling area (described above) other 

issues should be taken into account in future predictions as the relation fungus-host, 

regarding the distribution of potential A. ponderosa host. It is crucial add geological 

information (as soil types and composition) and similarly derived as chemical 

composition to better understand the distribution patterns of this species. 
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3.6 Supplementary materials  

Table S2  Predictive variables selected to modelling Amanita ponderosa in Iberian Peninsula.  

Variable  Cod Resolution  Description  Source  

Elevation (m) dem 1x1km Altitude relative to the mean sea level SRTM, 2010 

Slope (º) slope 1x1km Maximum variation of the altitude concerning its 8 
neighbouring cells 

- 

Aspect (º)  aspect 1x1km Downslope direction of the maximum rate of 
change in value from each cell to its neighbours 

- 

Radiation (MJ/m2) rad 1x1km Represents the insolation at specific locations. - 

Temperature January (ºC) tempjan 1x1km 

Average of the maximum temperature registered 
by month during the period of 1950 to 2000 

 

Worldclim 

Temperature February (ºC) tempfeb 1x1km Worldclim 

Temperature March(ºC) tempmar 1x1km Worldclim 

Temperature April (ºC) tempapr 1x1km Worldclim 

Temperature May (ºC) tempmay 1x1km Worldclim 

Temperature June (ºC) tempjun 1x1km Worldclim 

Temperature July (ºC) tempjul 1x1km Worldclim 

Temperature August (ºC) tempaug 1x1km Worldclim 

Temperature September (ºC) tempsep 1x1km Worldclim 

Temperature October (ºC) tempoct 1x1km Worldclim 

Temperature November (ºC) tempnov 1x1km Worldclim 

Temperature December (ºC) tempdec 1x1km Worldclim 

Annual Mean Temperature(ºC) meantemp 1x1km Annual mean temperature registered during the 
period of 1950 to 2000 

Worldclim 

Minimum Temperature of coldest 
month (ºC) 

tmincoldm 1x1km Average of the minimum temperature in the 
coldest month during the period of 1950 to 2000 

Worldclim 

Mean Temperature of the Wettest 
Quarter (ºC) 

tmeanwetq 1x1km Average of the mean temperature in the wettest 
quarter of the year during the period of 1950 to 
2000 

Worldclim 

Precipitation January (mm) prejan 1x1km 

Average of the maximum precipitation registered 
by month during the period of 1950 to 2000 
 

Worldclim 

Precipitation February (mm) prefeb 1x1km Worldclim 

Precipitation March (mm) premar 1x1km Worldclim 

Precipitation April (mm) preapr 1x1km Worldclim 

Precipitation May (mm) premay 1x1km Worldclim 

Precipitation June (mm) prejun 1x1km Worldclim 

Precipitation July (mm) prejul 1x1km Worldclim 

Precipitation August (mm) preaug 1x1km Worldclim 

Precipitation September (mm) presep 1x1km Worldclim 

Precipitation October (mm) preoct 1x1km Worldclim 

Precipitation November (mm) prenov 1x1km Worldclim 

Precipitation December (mm) predec 1x1km Worldclim 

Annual Mean  Precipitation (mm) meanpre 1x1km Annual mean precipitation registered during the 
period of 1950 to 2000 

Worldclim 

Precipitation of the driest month (mm)  predrim 1x1km Average of the precipitation in the driest month 
during the period of 1950 to 2000 

Worldclim 

Mean  Precipitation Wettest Quarter 
(mm) 

prewetq 1x1km Average of the mean precipitation in the wettest 
quarter of the year during the period of 1950 to 
2000 

Worldclim 

Land Cover clc 1x1km Land uses and occupation by natural and non-
natural areas.  

EEA 

Evapotranspiration (mm) evapo 1x1km Potential evapotranspiration is the sum of 
evaporation and plant transpiration  
from the Earth's land surface to atmosphere. 

IWMI (Zomer 
et al 2006) 
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Table S3  Land cover adapted from CORINE Land Cover EEA, 2010 

 

Group Grid 
Code 

CLC 
code  Sub-group Type 

Artificial 
surfaces 

1 111 Urban fabric Continuous urban fabric 
2 112 Urban fabric Discontinuous urban fabric 
3 121 Industrial, commercial and transport units Industrial or commercial units 
4 122 Industrial, commercial and transport units Road and rail networks and associated land 
5 123 Industrial, commercial and transport units Port areas 
6 124 Industrial, commercial and transport units Airports 
7 131 Mine, dump and construction sites Mineral extraction sites 
8 132 Mine, dump and construction sites Dump sites 
9 133 Mine, dump and construction sites Construction sites 

10 141 Artificial, non-agricultural vegetated areas Green urban areas 
11 142 Artificial, non-agricultural vegetated areas Sport and leisure facilities 

Agricultural 
areas 

12 211 Arable land Non-irrigated arable land 
13 212 Arable land Permanently irrigated land 
14 213 Arable land Rice fields 
15 221 Permanent crops Vineyards 
16 222 Permanent crops Fruit trees and berry plantations 
17 223 Permanent crops Olive groves 
18 231 Pastures Pastures 
19 241 Heterogeneous agricultural areas Annual crops associated with permanent crops 
20 242 Heterogeneous agricultural areas Complex cultivation patterns 

21 243 Heterogeneous agricultural areas 
Land principally occupied by agriculture, with significant areas of 
natural vegetation 

22 244 Heterogeneous agricultural areas Agro-forestry areas 

Forest and 
semi natural 

areas 

23 311 Forests Broad-leaved forest 
24 312 Forests Coniferous forest 
25 313 Forests Mixed forest 

26 321 Scrub and/or herbaceous vegetation 
associations Natural grasslands 

27 322 Scrub and/or herbaceous vegetation 
associations Moors and heathland 

28 323 Scrub and/or herbaceous vegetation 
associations Sclerophyllous vegetation 

29 324 Scrub and/or herbaceous vegetation 
associations Transitional woodland-shrub 

30 331 Open spaces with little or no vegetation Beaches, dunes, sands 
31 332 Open spaces with little or no vegetation Bare rocks 
32 333 Open spaces with little or no vegetation Sparsely vegetated areas 
33 334 Open spaces with little or no vegetation Burnt areas 
34 335 Open spaces with little or no vegetation Glaciers and perpetual snow 

Wetlands 

35 411 Inland wetlands Inland marshes 
36 412 Inland wetlands Peat bogs 
37 421 Maritime wetlands Salt marshes 
38 422 Maritime wetlands Salines 
39 423 Maritime wetlands Intertidal flats 

Water bodies 

40 511 Inland waters Water courses 
41 512 Inland waters Water bodies 
42 521 Marine waters Coastal lagoons 
43 522 Marine waters Estuaries 
44 523 Marine waters Sea and ocean 

No Data 48 999 No data No data 

Unclassified 
49 990 Unclassified terrestrial surfaces  Unclassified terrestrial surfaces 
50 995 Unclassified Water bodies  Unclassified Water bodies 
255 990 Unclassified Unclassified 
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Fig S1 Graphical representation of the predictive variables used in species distribution model. i) Digital 
elevation model; ii) Evapotranspiration; iii) Precipitation of the wettest quarter; iv) Precipitation of September; 
v) Temperature of January; vi) Mean temperature of the wettest quarter; vii) Annual mean temperature and 
viii) Aspect. 

i) ii) 

iii ) iv) 

v) vi ) 

vii ) viii ) 

N 
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4. Final considerations 

The results of this study reveal very well some of the difficulties that have arisen 

nowadays and are intrinsically related with the distinction of some cryptic species 

complex in the fungi kingdom. Here I will summarise the main conclusions of this work 

and there relative importance.  

The revolution caused by the emergence of genomics in the research field of non-model 

organisms seems to play nowadays a very important role. The tools that we have now 

allow us to infer questions than heretofore was completely disabled. Providing a genome 

“complexity-reduction” system, RADSeq allied to improvement of sequencing techniques 

makes possible population genomic studies with unprecedented depth and complexity. 

The number of SNP discovered here allow us to deepen knowledge and cross the barrier 

of the mysterious world of fungi and learn more about the organization and the 

relationships between them. Even talking about small genome organisms like fungi, the 

number of markers seems to be reasonable. These SNP data provide the first genetic 

evidence for the taxonomic validity of the two endemic species Amanita ponderosa and 

Amanita pseudovalens in Iberian Peninsula. At the same time, it was highlighted the 

power of next generation sequencing technologies to resolve old questions in mycology.  

The Lepiotoides species complex still being one of the most difficult to interpret, but with 

the conduction of this study some issues seems to get more sense. The casual harvest 

of individuals from the difference species here focused was rather contributing to the 

success of this work. So it is important to note that prior to this study little was known 

about the relationship between these species and now it was shown that are other 

species conducting an important role in the local harvest tradition.  

This work proved to be a very important tool for the development of a management plan 

mycological resource, combining genetic and ecological data. This approach seemed to 

be very interesting reconciling different perspectives and fields of research for better 

interpretation of the results. 

Much work remains to be done to better understand the relationship between these 

species and their habitat. Besides the sampling for this study propose have been carried 

out carefully some other issues should be taken into account, as related with micro 

habitat. It is important to devise a sampling strategy throughout the fruiting period in order 

to understand better the seasonality of each species. Since this is a highly economically 

profitable resource is recommended to continue the research to ensure its sustainability. 
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