Maria Margarida Ventura Santos Silva

Platelet Profile after Pediatric Heart Surgery
Maria Margarida Ventura Santos Silva
Platelet Profile after Pediatric Heart Surgery

Mestrado Integrado em Medicina

Área: Pediatria

Trabalho efetuado sob a Orientação de:
Dra. Marta João Rodrigues da Silva

Trabalho organizado de acordo com as normas da revista:
European Journal of Pediatrics

março, 2014
Eu, Maria Marga eida Ventura Santos Silva, abaixo assinado, nº mecanográfico 2008.012.37, estudante do 6º ano do Ciclo de Estudos Integrado em Medicina, na Faculdade de Medicina da Universidade do Porto, declaro ter atuado com absoluta integridade na elaboração deste projeto de opção.

Neste sentido,确认我决不犯抄袭（即用他人的工作以任何方式，无论是通过忽视，还是通过不承认其作者身份）的错误（无论抄袭者，无论是通过忽视，还是通过不承认其作者身份），我也声明，除了已注明的来源，所有摘录自前人的工作都是经过引用的，或者经过新的词语重写，已注明了该文献的来源。
NOME
Hélea Morgadela Ventura Santos Silva

CARTÃO DE CIDADÃO OU PASSAPORTE (se estrangeiro) E-MAIL TELEFONE OU TELEMÓVEL
13798165 1 7 9 mínaz0159@recl-up.pt 913539342

NÚMERO DE ESTUDANTE DATA DE CONCLUSÃO
6008 01239 19/03/2014

DESIGNAÇÃO DA ÁREA DO PROJECTO
Pediatría

TÍTULO DISSERTAÇÃO/MONOGRAFIA (riscar o que não interessa)
Platelet Profile after Pediatric Heart Surgery

ORIENTADOR
Héela João Rodrigues da Silva

COORDENTADOR (se aplicável)

É autorizada a reprodução integral desta Dissertação/Monografia (riscar o que não interessa) para efeitos de investigação e de divulgação pedagógica, em programas e projectos coordenados pela FMUP.

Faculdade de Medicina da Universidade do Porto, 14/03/2014

Assinatura conforme cartão de identificação: Héela Morgadela Ventura Silva
ABSTRACT

Cardiopulmonary bypass (CPB) during heart surgery is a well-known cause of hematologic dysfunction in the postoperative period and has been linked to a higher incidence of bleeding and platelet disturbances. Little is however known concerning the postoperative platelet profile. The aim of our study was to analyze the platelet count evolution in a pediatric population before and until the 10th postoperative day after cardiac procedures and to relate this evolution with pre-, intra- and post-operative factors. We used a retrospective design to analyze the medical records of 68 patients admitted to our Pediatric Intensive Care Unit. 51.8% patients subjected to CPB developed thrombocytopenia postoperatively. In patients with CPB platelet count fell sharply on postoperative day 1 and continued falling until day 5, when it reached a nadir, steadily increasing from that day onwards. Postoperative thrombocytopenia was significantly related to intraoperative CPB (p=0.001), aorta cross-clamp (p=0.003) and surgery duration (p<0.001) as well as plasma transfusion (p=0.023). Conclusion: a steep decrease in platelet count is to be expected after surgery and until 5 days postoperatively, which might be of great value for physicians working with children in the postoperative period, helping them to assess the severity of platelet levels and to make appropriate clinical decisions.

KEYWORDS

Pediatric, Heart Surgery, Platelet, Cardiopulmonary Bypass

ABBREVIATIONS

CPB – cardiopulmonary bypass
PICU – pediatric intensive care unit
RACHS-1 – risk adjustment for congenital heart surgery
Cardiopulmonary bypass (CPB) during heart surgery is a well-known cause of hematologic dysfunction in the postoperative period and has been linked to a higher incidence of bleeding and platelet disturbances.

We found out that in patients being submitted to heart surgery with cardiopulmonary bypass the platelet count has a steep decrease in the 1st postoperative day, continuing to decrease until the 5th postoperative day.
INTRODUCTION

Congenital heart defects are the most common type of birth defects. A recent systematic review found the worldwide incidence of these defects to be 9.1/1000 live births and 8/1000 in Europe [1]. The advent of extracorporeal techniques such as cardiopulmonary bypass (CPB) largely improved the possibility for these defects to be surgically corrected but despite improving significantly the long-term prognosis of these children [2] it is still a major cause of hemostatic and inflammatory disturbances [3]. These are even more pronounced in the pediatric setting due to their immature hemostatic system, congenital heart disease, surgical complexity and reduced blood volume [2]. CPB has been linked to a steep decrease in coagulation factor levels and platelet counts [4, 5] and to a significant increase in the incidence of bleeding [2,3,6,7] and need for blood product transfusions [2,7-9].

Different studies have addressed platelet behaviour [10-13]. Nonetheless, contradictory results referring to platelet function during CPB have been observed during the pre- and intra-operative periods, with studies pointing to platelet hyporeactivity [13], others to an increase in platelet activity [10,12] and even others to variable responses, with some patients experiencing an increase while others suffer a decrease in platelet aggregability [11]. Regarding platelet count variations have also been reported during the same operative period and several studies described a steep decrease in platelet count immediately after CPB initiation [4,5,10-13], as high as 71% [4,13], remaining throughout the procedure.

Little is however known about these aspects during the postoperative period. Platelet function is not routinely assessed and therefore, routine retrospective data are difficult to acquire. On the other hand, platelet count can be easily recorded. Nevertheless, few studies comprising the postoperative period have been conducted [5,11,14]. A postoperative decrease in platelet count might have an infectious or hemorrhagic cause. Hence, information on platelet behaviour postoperatively could permit a better judgment on when a decrease in platelet count should or should not be expected and, consequently, to act accordingly.

Therefore, this study aimed to describe the platelet count and identify the incidence of thrombocytopenia, preoperatively and until the 10th postoperative day, and to explore possible relations with pre-, intra- and post-operative factors.
METHODS

This was a retrospective study approved by the Institutional Review Board who waived the need for parental informed consent.

Medical records of all children immediately admitted to a Pediatric Intensive Care Unit (PICU) of a tertiary hospital in Oporto, Portugal, after being submitted to a cardiac procedure for a congenital heart defect between January 1, 2013 to December 31, 2013 were selected and analyzed. Records from children aged <28 days were excluded from the study. The number of patients entering the PICU after heart surgery during the study period determined the sample size.

Data were collected from three different places. Patient’s hospital records were used for preoperative data, anesthesia and perfusion flow sheets for intraoperative data and intensive care unit records for postoperative data.

Data on preoperative variables like age, gender, weight and main diagnosis were collected. Intraoperative data comprised type and duration of surgery, plasma, erythrocytes or platelets transfusion and, when applicable, the value of hypothermia, duration of CPB and aortic cross-clamp and Risk Adjustment for Congenital Heart Surgery (RACHS-1) score. Postoperative factors analyzed included PICU and hospital length of stay, the presence or absence of hypothermia, administration of heparin, furosemide, sympathomimetic amines or antibiotics and the need of dialysis or the transfusion of blood products.

Not only the platelet count for each postoperative day was analyzed as we also categorized this variable for the presence or not of thrombocytopenia, <100,000/mm³ or ≥100,000/mm³, respectively. Thrombocytopenia was evaluated in each postoperative day and as its global occurrence in the postoperative period. Patients were also divided in two groups respective to the presence or absence of CPB during surgery.

Both thrombocytopenia and CPB were compared to pre-, intra- and post-operative variables. Mann-Whitney test was used for continuous parameters and categorical variables were analyzed with the Qui-Square and Fisher tests. A p value less than 0.05 was considered significant. Data processing and analyses were performed with SPSS 20.0 software (SPSS Inc, Chicago, IL).
RESULTS

During 2013 there were 91 entrances in the PICU after cardiac procedures. From these 3 patients underwent a pacemaker-related intervention or pericardiocentesis, 7 had surgery for a heart transplant, rheumatic or infectious diseases, 2 patients went to the Cardiothoracic Surgery Unit in the immediate postoperative period due to an impossibility of chest closure, 1 patient died shortly after surgery and 10 medical records were unavailable and were therefore excluded. At the end 68 medical records were analyzed with 56 (82.4%) with CPB. Patients’ demographic and perioperative information is summarized in Table 1.

When compared to patients submitted to surgery without CPB, those undergoing surgery with CPB required more postoperative transfusions (39.3 vs 8.3%, p=0.048) and had a higher incidence of post-surgery thrombocytopenia (51.8 vs 8.3%, p=0.006) (Table 2). Newly developed thrombocytopenia was 41% for all children and 49.9% for the CPB group. Postoperative complications as renal failure or infection showed no relation to CPB procedure. No significant difference was found regarding preoperative platelet values in both groups. However, after surgery, there was a steep decrease on platelet count, significantly more pronounced in the CPB group, reaching a nadir on postoperative day 5, increasing from that day onwards (Figure 1), which occurred irrespective of patients’ age category (data not shown).

From the 64 patients with preoperative platelets count, 2 (3.1%) had preoperative thrombocytopenia. On the other hand, during the postoperative period 30 (44.1%) patients developed thrombocytopenia. Postoperative thrombocytopenia was significantly correlated to intraoperative factors such as aorta cross-clamp (p=0.003), CPB (p=0.001) and surgery duration (p<0.001), plasma transfusion (p=0.023) and RACHS-1 score (p=0.02) and to postoperative parameters such as the need for induced hypothermia (p=0.004), peritoneal dialysis (p=0.034), blood transfusion (p<0.001) and sympathomimetic amines support (p=0.009) but not to infection (p=0.088) (Table 3). Thrombocytopenia was not significantly related to patients’ gender, age or weight. Nor CPB employment or postoperative thrombocytopenia had a significant relation with PICU and hospital length of stay.
Analyzing the platelet count after surgery we observed that for patients being submitted to CPB the median platelet count had a 49.4% decrease in the 1st postoperative day. On the contrary, those not being submitted to CPB had a 6.5% increase in the 1st postoperative day decreasing from that day onwards. The platelet profile followed a similar pattern on both groups, keeping significantly higher values in the non-CPB group. We found an incidence of newly developed thrombocytopenia of 41% globally and of 49.9% in the CPB group, similar to the value of 54.3% reported by others [14]. This decrease on platelet values might be due to hemodilution, contact activation of the hemostatic system or to the systemic inflammatory response after CPB [2,6] and has been observed in other studies [5,11,12].

CPB is a well-known cause of hemostatic dysfunction causing marked platelet disturbances during surgery [4,5,10,12,13] and increasing the postoperative risk for bleeding [2,8,11]. Ignjatovic V and colleagues [10] observed a marked decrease in platelet count accompanied by an increase in their activity during CPB procedures in children up to 6 years. Accordingly Ranucci M and associates [11] describe a diminution in platelet count until the 2nd postoperative day with variable platelet aggregability behaviour in patients until 4 years old. Karagöl B et al [14] went further on the postoperative period studying the platelet count until the 7th postoperative day, both in children with and without Down syndrome. They observed a marked decrease on platelet levels after surgery which persisted until the 3rd postoperative day starting to increase afterwards, albeit not reaching the preoperative values by the end of the study period.

In our study patients undergoing CPB had a reduction of platelet values which persisted until 5 days after surgery, raising thereafter, still not reaching baseline values by the 10th postoperative day. However, late platelet values might be underestimated since analyses were only obtained for patients with a longer hospitalization period, which might comprise those with worst postoperative evolution with consequent lower platelet values. Additionally, patients not undergoing CPB had a sustained increase in platelet count after the 6th postoperative day and exceeded baseline values 8 days after surgery.

Postoperative thrombocytopenia showed a significant relation to other postoperative complications as the need for dialysis, transfusion, hypothermia and sympathomimetic support. It was also correlated to CPB, aortic cross-clamp and surgery duration and intraoperative plasma transfusion, which is in accordance to previous findings [14]. Although CPB procedure significantly correlated to post-surgery thrombocytopenia we found no such relation to the previously stated postoperative complications.
Some limitations of this study need to be acknowledged. First, we had to restrict platelet count information to days where analyses had been ordered instead of getting daily values and not every patient had the same hospital length of stay so, as days went by, fewer patients had analyses values which diminished the strength of the results. Nevertheless, we were able to obtain statistically significant differences between CPB procedure groups for most of postoperative days. Second, the reduced number of records analyzed with only 12 cases referring to non-CPB procedures caused statistically significant differences between both groups harder to achieve. Third, although postoperative thrombocytopenia has consistently been related to patient’s age and weight [2,11], the limited number of our study population may have hampered this relationship.

We were only able to find one study addressing platelet evolution in the postoperative period and it was focused on children with Down syndrome [14]. Since thrombocytopenia is an important cause of morbidity during this period, information regarding platelet count profile may be of much value. Physicians working with children after heart surgery might find themselves uncertain of what to do in the presence of low platelet counts. Therefore, information on what is to be expected in this period may be very important to assess the severity of platelet levels and to make appropriate clinical decisions.

In conclusion, we found out that cardiac surgery seems to cause a marked decrease in platelet count, which is significantly more accentuated in the CPB group that is sustained over time and starts to increase only after the 5th postoperative day.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.
REFERENCES

Table 1 – Patient demographic and perioperative variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>2 (1.1-7.8)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>12.5 (8.6-22.5)</td>
</tr>
<tr>
<td>Male gender</td>
<td>39 (57.4)</td>
</tr>
<tr>
<td>Operation time (min)</td>
<td>279 (182-378)</td>
</tr>
<tr>
<td>Surgery with CPB</td>
<td>56 (82.4)</td>
</tr>
<tr>
<td>CPB time (min)</td>
<td>117 (57-172)</td>
</tr>
<tr>
<td>Cross-clamp time (min)</td>
<td>65 (34-96)</td>
</tr>
<tr>
<td>Temperature, minimum °C</td>
<td>34 (32-35)</td>
</tr>
<tr>
<td>RACHS-1 score</td>
<td></td>
</tr>
<tr>
<td>Undefined</td>
<td>8 (11.8)</td>
</tr>
<tr>
<td>1</td>
<td>16 (23.5)</td>
</tr>
<tr>
<td>2</td>
<td>24 (35.3)</td>
</tr>
<tr>
<td>3</td>
<td>17 (25)</td>
</tr>
<tr>
<td>4</td>
<td>2 (2.9)</td>
</tr>
<tr>
<td>5/6</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

* Values presented as median (interquartile range)* or number (percentage)#
Table 2 – Postoperative parameters from patients with and without intraoperative cardiopulmonary bypass (CPB)\(^a\)

<table>
<thead>
<tr>
<th>Variable</th>
<th>CPB group (N=56)</th>
<th>Non-CPB group (N=12)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICU length of stay (^*)</td>
<td>4 (3-7)</td>
<td>4 (4-7)</td>
<td>0.908</td>
</tr>
<tr>
<td>Hospital length of stay (^*)</td>
<td>8 (7-14)</td>
<td>7 (6-9)</td>
<td>0.350</td>
</tr>
<tr>
<td>Postoperative use of Sympathomimetic amines (^#)</td>
<td>28 (50)</td>
<td>3 (25)</td>
<td>0.115</td>
</tr>
<tr>
<td>Furosemide (^#)</td>
<td>54 (96.4)</td>
<td>10 (83.3)</td>
<td>0.141</td>
</tr>
<tr>
<td>Antibiotics change (^#)</td>
<td>12 (21.4)</td>
<td>2 (16.7)</td>
<td>1</td>
</tr>
<tr>
<td>Dyalisis (^#)</td>
<td>4 (7.1)</td>
<td>0 (0)</td>
<td>1</td>
</tr>
<tr>
<td>Blood products transfusion (^#)</td>
<td>22 (39.3)</td>
<td>1 (8.3)</td>
<td>0.048</td>
</tr>
<tr>
<td>Hypothermia (^#)</td>
<td>14 (25.5)</td>
<td>0 (0)</td>
<td>0.058</td>
</tr>
<tr>
<td>Postoperative thrombocytopenia (^#)</td>
<td>29 (51.8)</td>
<td>1 (8.3)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

\(^a\)Values presented as median (interquartile range)\(^*\) or number (percent of column population)\(^#\)
Table 3 – Pre-, intra- and post-operative parameters from patients with and without postoperative thrombocytopenia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Nonthrombocytopenic cases (N=38)</th>
<th>Thrombocytopenic cases (N=30)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)*</td>
<td>2.5 (1-8)</td>
<td>1.88 (1-7)</td>
<td>0.916</td>
</tr>
<tr>
<td>Weight (kg)*</td>
<td>14.8 (8-23)</td>
<td>12 (8.9-21)</td>
<td>0.961</td>
</tr>
<tr>
<td>Male gender #</td>
<td>22 (58)</td>
<td>17 (57)</td>
<td>0.919</td>
</tr>
<tr>
<td>Operation time (min)*</td>
<td>195 (157-279)</td>
<td>349 (286-449)</td>
<td><0.001</td>
</tr>
<tr>
<td>Intraoperative plasma transfusion #</td>
<td>10 (31)</td>
<td>18 (60)</td>
<td>0.023</td>
</tr>
<tr>
<td>Intraoperative erythrocyte transfusion #</td>
<td>9 (28)</td>
<td>8 (27)</td>
<td>0.898</td>
</tr>
<tr>
<td>Intraoperative platelet transfusion #</td>
<td>12 (36)</td>
<td>16 (53)</td>
<td>0.176</td>
</tr>
<tr>
<td>Surgery with CPB</td>
<td>27 (71)</td>
<td>29 (97)</td>
<td>0.006</td>
</tr>
<tr>
<td>CPB time (min)*</td>
<td>76 (49-111)</td>
<td>156 (117-186)</td>
<td>0.001</td>
</tr>
<tr>
<td>Cross-clamp time (min)*</td>
<td>51 (22-70)</td>
<td>77 (62-116)</td>
<td>0.003</td>
</tr>
<tr>
<td>Temperature, minimum °C*</td>
<td>34 (0-35)</td>
<td>34 (32-34)</td>
<td>0.435</td>
</tr>
<tr>
<td>RACHS-1 score #</td>
<td>1 (3)</td>
<td>0 (0)</td>
<td>0.020</td>
</tr>
<tr>
<td>1*</td>
<td>12 (35)</td>
<td>4 (15)</td>
<td></td>
</tr>
<tr>
<td>2*</td>
<td>9 (27)</td>
<td>15 (58)</td>
<td></td>
</tr>
<tr>
<td>3*</td>
<td>12 (35)</td>
<td>5 (19)</td>
<td></td>
</tr>
<tr>
<td>4*</td>
<td>0 (0)</td>
<td>2 (8)</td>
<td></td>
</tr>
<tr>
<td>5/6*</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>PICU length of stay*</td>
<td>4 (3-7)</td>
<td>5 (3-9)</td>
<td>0.081</td>
</tr>
<tr>
<td>Hospital length of stay*</td>
<td>7 (6-10)</td>
<td>8 (7-16)</td>
<td>0.414</td>
</tr>
<tr>
<td>Postoperative use of Sympathomimetic amines*</td>
<td>12 (32)</td>
<td>19 (63)</td>
<td>0.009</td>
</tr>
<tr>
<td>Furosemide*</td>
<td>34 (90)</td>
<td>30 (100)</td>
<td>0.124</td>
</tr>
<tr>
<td>Antibiotics change*</td>
<td>5 (13)</td>
<td>9 (30)</td>
<td>0.088</td>
</tr>
<tr>
<td></td>
<td>Median (IQR)</td>
<td>Number (Percent)</td>
<td>p-value</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Dyalisis</td>
<td>0 (0)</td>
<td>4 (13)</td>
<td>0.034</td>
</tr>
<tr>
<td>Blood products transfusion</td>
<td>3 (8)</td>
<td>20 (67)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>3 (8)</td>
<td>11 (37)</td>
<td>0.004</td>
</tr>
</tbody>
</table>

* Values presented as median (interquartile range)* or number (percent of column population)*

Figure 1 – Median platelet count preoperatively and during the postoperative period

Title Page
The title page should include:
- The first and last name(s) of all author(s) with their e-mail addresses
- A concise and informative title
- The affiliation(s) and address(es) of the author(s)
- The e-mail address, telephone and fax numbers of the corresponding author

Please note:
- The author’s names should be followed by neither their titles nor their affiliation.
- Affiliations should be marked by numerals after the names and be listed in a footnote.

Abstract
Please provide an abstract with a maximum of 200 words. The abstract should not contain any undefined abbreviations or references. The abstract of each manuscript needs to reflect the essential message of the article, including the results of the quantitative data as well as a sound conclusion. The abstract should not be structured but should end with “Conclusion: …” (Conclusion written in italics) followed by the concluding sentence written with regular fonts.

Keywords
Please provide 4 to 6 keywords which can be used for indexing purposes.
Give a list of Abbreviations in alphabetical order.

"What is Known – What is New" (Authors Summary)
Please indicate for the fast reader "What is Known" and explain "What is New" and please note that this part will be judged by the reviewers but that it will not be printed in the Journal.

Text
Text Formatting
Manuscripts should be submitted in Word.
- Use a normal, plain font (e.g., 10-point Times Roman) for text.
- Use italics for emphasis.
- Use the automatic page numbering function to number the pages.
- Do not use field functions.
- Use tab stops or other commands for indents, not the space bar.
- Use the table function, not spreadsheets, to make tables.
- Use the equation editor or MathType for equations.
- Save your file in docx format (Word 2007 or higher) or doc format (older Word versions).

Manuscripts with mathematical content can also be submitted in LaTeX.
Headings
Please use no more than three levels of displayed headings.

Abbreviations
Abbreviations should be defined at first mention and used consistently thereafter.

Footnotes
Footnotes can be used to give additional information, which may include the citation of a reference included in the reference list. They should not consist solely of a reference citation, and they should never include the bibliographic details of a reference. They should also not contain any figures or tables.

Footnotes to the text are numbered consecutively; those to tables should be indicated by superscript lower-case letters (or asterisks for significance values and other statistical data). Footnotes to the title or the authors of the article are not given reference symbols. Always use footnotes instead of endnotes.

Acknowledgments
Acknowledgments of people, grants, funds, etc. should be placed in a separate section before the reference list. The names of funding organizations should be written in full.

Please note:
• The Manuscript should be given double-spaced.
• Please apply consecutive numbering to all your manuscript lines. Please write the numbers next to the line on the left margin. Do not count each page individually but rather keep counting up across all pages of the manuscript.
Authors should write as briefly and clearly as possible and arrange the manuscript logically:
• Title page
• Abstract
• List of Abbreviations in alphabetical order
• Introduction (to be kept short)
• Materials and methods
• Patients’ medical reports
• Results
• Discussion
• References
• Tables
• Figure legends

Scientific style
Eponyms
Eponyms should be used in their non possessive form (e.g., Marfan syndrome, Crohn disease, and not Looser's zone).

Gene symbols and bacterial species
Gene symbols and bacterial species should be given in italics. Please use OMIM numbers to indicate genetic diseases.

SI units
SI units are preferred, but not mandatory. Whatever units are adopted, consistency within a paper is essential. If SI units are used, it is appreciated if non-SI units (mg, ml etc.) or a conversion factor are provided as well.

References
Citation
Reference citations in the text should be identified by numbers in square brackets. Some examples:
1. Negotiation research spans many disciplines [3].
2. This result was later contradicted by Becker and Seligman [5].
3. This effect has been widely studied [1-3, 7].

Reference list
The list of references should only include works that are cited in the text and that have been published or accepted for publication. Personal communications and unpublished works should only be mentioned in the text. Do not use footnotes or endnotes as a substitute for a reference list.
Reference list entries should be alphabetized by the last names of the first author of each work and numbered consecutively.

- Journal article
 Ideally, the names of all authors should be provided, but the usage of “et al” in long author lists will also be accepted:
- Article by DOI
- Book
- Book chapter
- Online document
Always use the standard abbreviation of a journal’s name according to the ISSN List of Title Word Abbreviations, see ISSN.org LTWA

For authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list.

- All tables are to be numbered using Arabic numerals.
- Tables should always be cited in text in consecutive numerical order.
- For each table, please supply a table caption (title) explaining the components of the table.
- Identify any previously published material by giving the original source in the form of a reference at the end of the table caption.
- Footnotes to tables should be indicated by superscript lower-case letters (or asterisks for significance values and other statistical data) and included beneath the table body.

Integrity of research and reporting

Ethical standards
Manuscripts submitted for publication must contain a statement to the effect that all human and animal studies have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted. These statements should be added in a separate section before the reference list. If these statements are not applicable, authors should state: The manuscript does not contain clinical studies or patient data. The editors reserve the right to reject manuscripts that do not comply with the above-mentioned requirements. The author will be held responsible for false statements or failure to fulfill the above-mentioned requirements

Conflict of interest
All benefits in any form from a commercial party related directly or indirectly to the subject of this manuscript or any of the authors must be acknowledged. For each source of funds, both the research funder and the grant number should be given. This note should be added in a separate section before the reference list. If no conflict exists, authors should state: The authors declare that they have no conflict of interest.