LIST OF FIGURES AND TABLES

FIGURES

Figure 1 - Protein aggregates and neurodegenerative diseases 4
Figure 2 - Possible mechanisms of pathogenesis in polyglutamine diseases .. 12
Figure 3 - Correlation between severity of the mutation (or size of the trinucleotide repeat expansion), time of onset of the symptoms of the disease and regions of the brain that are affected 16
Figure 4 - Proteins that belong to the Ataxin-1 and HBP1 family 17
Figure 5 - Primary sites of neuronal loss in HD patients 19
Figure 6 - Schematic representation of the Huntingtin amino acid sequence .. 20
Figure 7 - Drosophila life cycle ... 28
Figure 8 - The Gal4/UAS system ... 29
Figure 9 - Schematic view of the genetic screening process and the loss of function and gain of function types of screen .. 31
Figure 10 - Vectors used to generate the different types of piggyBac elements described by (Thibault et al., 2004) ... 32
Figure 11 - How can flies help to study Human diseases? 34
Figure 12 - Schematic representation of the SCA1^{82Q} and Htt^{128Q} constructs ... 37
Figure 13 - Expression of either Ataxin-1^{82Q} or Htt^{128Q} in Drosophila eye cells causes a degenerative phenotype ... 38
Figure 14 - Expression of either Htt^{128Q} in Drosophila eye cells causes shortening of the retina as well as tissue loss ... 39
Figure 15 - Expression of Ataxin-1^{82Q} in Drosophila neurons causes progressive degeneration .. 39
Figure 16 - Expression of Htt^{128Q} in Drosophila promotes its aggregation into NIs .. 40
Figure 17 - Ataxin-1 NIs are also positive for Hsp70, Ubiquitin and Proteasome .. 41
Figure 18 - ari-2 genomic region and localization of the P-element insertion .. 55

Figure 19 – The Ubiquitin Proteasome System (UPS) .. 56

Figure 20 - Loss of function of ari-2 suppresses SCA1^82Q- induced eye phenotype ... 58

Figure 21- Possible interaction map linking Ari-2 and the Ubiquitin-Proteasome Pathway and Imd pathways ... 59

Figure 22- Schematic representation of the Imd signaling pathway in Drosophila and the comparison to the analogous mammalian TNF Pathway .. 60

Figure 23- Overexpression and loss of function of Relish do not modify SCA1^82Q- induced eye phenotype ... 63

Figure 24- DREDD^OE, FADD^OF or dTAK1^OF do not modify SCA1^82Q- induced eye phenotype ... 64

Figure 25 – Sequence homology within the KH domains between different RNA-binding proteins .. 67

Figure 26 – Pasilla alternatively spliced predicted isoforms, ps-A, ps-B, ps-C, and ps-D ... 68

Figure 27 – ps alleles map (by complementation analysis) 69

Figure 28 – Decreased levels of ps improve the SCA1^82Q- induced eye phenotype ... 69

Figure 29 – Loss of function of ps does not affect the Htt^28Q- induced toxicity in the eye ... 71

Figure 30 - Loss of function of ps does not affect the SCA1^82Q mRNA levels ... 72

Figure 31 – Soluble levels of the Ataxin-1^82Q protein are not altered by loss of function of ps ... 73

Figure 32 – Sequence alignment of the KH domains of Nova, hnRNP E and hnRNP K isoforms and respective orthologs in mammals, Drosophila and Saccharomyces cerevisiae .. 76

Figure 33 - Genes that modify SCA1^82Q and Htt^28Q-induced phenotypes similarly ... 82

Figure 34 - Examples of some of the Pro-survival genes in which Akt is involved ... 87
Figure 35 - Akt1 modifies expanded SCA182Q and Htt128Q-induced eye phenotypes differently .. 88

Figure 36 - mub over expression suppresses SCA182Q and enhances Htt128Q eye phenotypes .. 90

Figure 37 - Over expression of vib suppresses SCA182Q and enhances Htt128Q eye phenotypes .. 92

Figure 38 - Over expression of CG14438 is responsible for the suppression of the SCA182Q-induced eye phenotype, but also for the enhancement observed in flies expressing Htt128Q .. 93

Figure 39 - Modification of SCA182Q and Htt128Q neuronal phenotypes in a motor performance assay .. 96

Figure 40 – Schematic representation of the adult brain and ventral ganglion and confocal image of the CD8:GFP pattern of expression using OK107-GAL4 driver in the adult Ventral Ganglion .. 97

Figure 41 – Expression pattern of the OK107-GAL4 driver in the Ventral Ganglion of adult .. 98

Figure 42 – Modifications of the eye phenotype do not correlate with increase or decrease in the formation of nuclear inclusions 100

Figure 43 – Predicted structure of the Nup44A protein 110

Figure 44 – Overexpression of Nup44A suppresses SCA182Q-induced eye phenotype .. 111

Figure 45 – Modifications of the SCA182Q-induced eye phenotype by Nup44AOE does not interfere with the formation of nuclear inclusions .. 112

Figure 46 – Predicted structure of the mub protein .. 115

Figure 47 – mub expression time course .. 115

Figure 48 – mub isoforms 1 and 2 generated in the Botas Laboratory 116

Figure 49 – Molecular map of mub04093 and its associated alleles 118

Figure 50 – X-Gal staining reveals that mub04093 signal match with the predicted mub expression pattern .. 119

Figure 51 – mub is expressed in the mushroom bodies and in the eye discs .. 120

Figure 52 – Altered levels of mub and the variation of the Ataxin-182Q protein levels in cells at the larval stage .. 123
Figure 53 – mub^{OE} modulates Ataxin-1^{82Q} soluble protein in adult flies 126

Figure 54 - mub does not alter CD8-GFP protein levels in adult flies 127

Figure 55 - mub modulates SCA1^{82Q} mRNA levels in adult flies in opposite ways .. 128

Figure 56 - mub^{OE} suppresses SCA1^{100Q} eye phenotype 130

Figure 57 – UAS:CD8-GFP pattern of expression with the OK107-Gal4 driver in the larval brain and ventral ganglion ... 131

Figure 58 - Model for Cellular Pathogenesis ... 136

Supplemental Figure 1 – The modifier genes tested do not alter the eye phenotype of control flies ... 139

TABLES

Table 1. Examples of neurodegenerative diseases characterized by aggregation and deposition of abnormal proteins .. 3

Table 2. Molecular and clinical features of trinucleotide repeat expansion disorders ... 7

Table 3 – Molecular characteristics of SCA1 and HD 15

Table 4 - Partial list of proteins (and respective cellular pathways) interacting with the N-Terminal region of the Human Htt protein 21

Table 5 - Mouse models of HD .. 26

Table 6 – Examples of Some Neuroprotective Genes and Compounds Identified Using Drosophila Models of Disease ... 36

Table 7 – Alleles of the Imd Pathway Tested .. 62

Table 8 – Genes that modify the toxicity of Ataxin-1^{82Q} and Htt^{128Q} similarly ... 81

Table 9 – Genes that modify Ataxin-1^{82Q} toxicity only 85

Table 10 – Genes that modify the toxicity of Ataxin-1^{82Q} and Htt^{128Q} differently ... 86