INTRODUCTION

1. Huntington: The Huntington’s disease protein
 1.1. Huntingtin an overview 1, 2
 1.2. Human Huntingtin Gene 3
 1.3. Human Huntingtin Messengers 3, 4
 1.4. Human Huntingtin Protein Structure 4 - 6
 1.5. Huntingtin expression and its subcellular localization 7

2. Huntington’s disease (HD)
 2.1. HD history and first hypothesis of its cause 8 - 10
 2.2. Clinical Genetics 10
 2.3. Diagnosis 10, 11
 2.4. Epidemiology 11
 2.5. Symptomatology 11, 12
 2.6. Neuropathology 13, 14

3. Huntington’s disease: two main lines of research
 3.1. Gain- and Loss-of-function in Huntington’s disease 15, 16
 3.2. Mutant Huntingtin: Gain-of-function 16
 3.2.1. Huntington’s disease Mouse Models 16 - 18
 3.2.2. Nuclear and cytoplasmic effects of Mutant Huntingtin 18 - 24
 3.3. Wild-type Huntingtin: Loss-of-function 25, 26
 3.3.1. Normal huntingtin function in early embryogenesis and
 in neuronal development 26, 27
 3.3.2. Normal huntingtin function in adulthood 27 - 32
 3.3.3. Wild-type huntingtin counteracts mutant huntingtin 33, 34
 3.3.4. Neurotherapeutics in HD 34 - 36
 3.3.5. An alternative way to investigate normal huntingtin function 37
 3.3.5.1. The Phylogenetic approach 37, 38
 3.3.5.2. Huntingtin orthologues 39 - 41
 3.3.5.3. Phylogenetic tree and key organisms 42, 43
 3.3.5.4. Development of biological assays 44, 45
 3.3.5.5. A step towards huntingtin complementation: The first 548
 a.a. of human huntingtin 45 - 47
Aim

4. General Aim 48
 4.1. Specific Aims 48, 49

Results

5. Role of huntingtin in the transcriptional regulation of BDNF gene:
 5.1. BDNF transcription is reduced in R6/2 mice cortex during HD progression. 50, 51
 5.2. Depletion of BDNF mRNA in blood from R6/2 mice follows disease progression and is restored by CEP-1347 treatment 52, 53

6. Identification of wild-type huntingtin functional domains through a Phylogenetic approach:
 6.1. Validation of expression constructs containing the N-terminus from huntingtin orthologues in ES hdh-/- cells. 54, 55
 6.2. Development of read-out assays to identify loss of huntingtin function defects in ES hdh-/- cells. 56 – 61
 6.3. Complementation assays in ES hdh-/- cells expressing the first 548 a.a. of human huntingtin. 62 - 64

Figures

Figure 4 and 5: Results (Section 5.1.)
Figure 6 – 8: Results (Section 5.2.)
Figure 9 – 14: Results (Section 6.1.)
Figure 15 – 31: Results (Section 6.2.)
Figure 32 – 40: Results (Section 6.3.)

General Discussion

Role of huntingtin in the regulation of BDNF gene transcription. 69 - 71

Defining huntingtin functional domains through a Phylogenetic approach. 71 - 75
MATERIAL AND METHODS

- Animals (R6/2 mice)
- RNA extraction from mice cortex
- Radioactive PCR
- Blood recovery from mice and RNA extraction
- RT-PCR and Real-Time PCR
- Cell culture: proliferation of mouse ES cells
- Transient transfection by nucleofection
- Validation of constructs expression: Immunocytochemistry analysis
- Cell Culture and Generation of stable ES cell clones
- MTT and LDH Assay
- Caspase-3/7 multiplexed with Cell Titer-Blue Assay
- Monolayer Neural Differentiation of mouse ES cells
- Cell Counting: Trypan Blue and Cell Coulter Counter
- Markers expression analysis: Western Blot and Immunocytochemistry
- Immunocytochemistry: Table 4
- RNA extraction from Cells
- Qualitative and Quantitative (Real-Time) PCR
- Statistical Analysis

APPENDIX

Paper I
Paper II

REFERENCES

ACKNOWLEDGEMENTS