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Resumo 

 

Os recentes progressos da química bioanalítica conduziram a diversas aplicações 

de uso generalizado. Neste âmbito destacam-se as técnicas bioluminescentes, com franco 

desenvolvimento nos últimos anos, nas quais as luciferases, denominação genérica de 

enzimas que, agindo sobre o seu substrato natural, luciferina, promovem uma reacção 

bioquímica na qual ocorre libertação de fotões de luz visível, têm um papel dominante. 

Este projecto teve como objectivo o desenvolvimento de métodos bioanalíticos visando 

determinar espécies de interesse biológico, farmacêutico e ambiental baseando-se na 

luciferase do pirilampo norte-americano Photinus pyralis (EC 1.13.12.7) e aplicando 

metodologias de desenho experimental estatístico. Os analitos escolhidos foram os 

pesticidas organofosforados, sulfato inorgânico, óxido nítrico (•NO) e ácidos gordos livres. 

Em paralelo procedeu-se à análise estrutural de compostos semelhantes à luciferina de 

Fridericia heliota, uma minhoca siberiana cujas características bioluminescentes foram 

recentemente descobertas e que pode constituir um novo sistema bioanalítico de 

interesse. 

O método bioluminescente acoplado para pesticidas organofosforados apresenta 

uma gama linear entre 2,5-15 M, com limite de detecção (LD) de 1,5 M e limite de 

quantificação (LQ) de 5,0 M, e foi testado em águas de poços domésticos. O método 

bioluminescente para sulfato inorgânico, por sua vez, apresenta uma gama linear entre 

14-134 mg·mL-1, com LD de 10 mg·mL-1 e LQ de 34 mg·mL-1, e foi testado também em 

águas de poços domésticos. Relativamente ao •NO, o método desenvolvido apresenta 

uma gama linear entre 10-100 nM, LD de 4 nM e LQ de 15 nM, e foi testado em saliva 

humana e meio de cultura de microalgas. Por fim, o método bioluminescente para ácidos 

gordos livres apresenta uma gama linear entre 1-20 M, LD de 1,3 e LQ de 4,5 M, e foi 

testado em plasma sanguíneo. 

Devido à reduzida quantidade de luciferina de Fridericia heliota que se consegue 

extrair, não foi ainda possível estabelecer a sua estrutura química. No entanto, foram 

realizados estudos utilizando-se compostos semelhantes à luciferina, que serviram como 

modelos. Estes compostos foram informalmente denominados CompostoX (CompX) e 

AsLn (acompanhante similar à luciferina). AsLn parece estar intimamente relacionado com 

a verdadeira luciferina, como um sub-produto ou um intermediário na sua biossíntese, 

enquanto CompX é um fragmento de AsLn.
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Abstract 

 

Recent advances in bioanalytical chemistry led to several general purpose 

applications. In this context the focus is on the bioluminescent techniques, with a fast 

development in recent years, in which luciferases, generic name for enzymes that, by acting 

on its natural substrate, luciferin, promote a biochemical reaction which release photons of 

visible light, have a dominant role. The purpose of this project was the development of 

bioanalytical methods to determine species of biological, pharmaceutical and 

environmental interest based on luciferase from the North-American firefly Photinus pyralis 

(EC 1.13.12.7) and applying statistical experimental design methodologies. The chosen 

analytes were organophosphorus pesticides, inorganic sulfate, nitric oxide (•NO) and free 

fatty acids. In parallel proceeded the structural analysis of luciferin-related compounds from 

Fridericia heliota, a Siberian earthworm whose bioluminescent features were recently 

discovered and which may constitute a new interesting bioanalytical system. 

The coupled bioluminescent method for organophosphorus pesticides has a linear 

range between 2.5-15 M, with a limit of detection (LOD) of 1.5 M and a limit of 

quantitation (LOQ) of 5.0 M, and has been tested in water from domestic wells. The 

bioluminescent method for inorganic sulfate, in turn, shows a linear range between 14 to 

134 mg·mL-1, LOD 10 mg·mL-1 and LOQ 34 mg·mL-1 and was also tested in domestic wells’ 

water. Regarding •NO, the developed method has a linear range of 10-100 nM, LOD 4 nM 

and LOQ 15 nM and was tested in human saliva and microalgae culture medium. Finally, 

the bioluminescent method for free fatty acid has a linear range between 1-20 M, LOD 1.3 

M and LOQ 4.5 M and was tested in blood plasma. 

Due to the reduced amount of Fridericia heliota luciferin obtained in extracts, it was 

not yet possible to establish its chemical structure. However, studies were performed using 

compounds similar to the luciferin, which served as models. These compounds were 

informally called CompoundX (CompX) and AsLn (accompanying similar to luciferin). AsLn 

appears to be closely related to the true luciferin, as either a by-product or an intermediate 

in its biosynthesis, whereas CompX is a fragment of AsLn. 
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Structure of the Thesis 

 

This Thesis is divided into four sections, the introduction, the presentation of the 

developed methods, the studies made on Fridericia heliota’s luciferin-related compounds, 

and a conclusion and future perspectives. Each section, by its turn, is composed of 

chapters, corresponding to papers already published or manuscripts intended to be 

submitted for publication in specialized peer-reviewed international journals. 

The introduction section presents one chapter (Chapter one), in which 

photochemical concepts, luciferases’ reaction mechanisms and bioluminescent techniques 

principles are described, together with selected examples of applications. This section ends 

with a brief description of the main objectives of the project that led to the Thesis. 

The second section encompasses four chapters corresponding to the 

bioluminescent methods for organophosphorus pesticides (Chapter two), inorganic sulfate 

(Chapter three), nitric oxide (Chapter four) and free fatty acids (Chapter five). 

The third section has three chapters, dealing with preliminary analyses on AsLn 

(Chapter six) and the structural characterization of CompX (Chapter seven) and AsLn(2) 

(Chapter eight). 

The fourth and last section presents the main conclusions of the performed work, 

as well as a book chapter addressing the development of novel bioluminescent methods 

using nanomaterials (Chapter nine). 
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Abstract 

 

Bioanalytical chemistry has been attracting much attention in recent years due to the growing interest in 

biomolecules in the biochemical, biological, biomedical, pharmaceutical and environmental contexts, allowing 

detailed and sensitive analysis from the molecular up to the whole-body level. This review focuses on the 

application of luciferases, a generic name for enzymes whose biochemical reactions lead to a particular 

phenomenon called bioluminescence, concerning bioanalytical chemistry and biomedicine. Several powerful 

techniques employing luciferases were developed, among which bioluminescence resonance energy transfer 

(BRET) assays, split luciferase assays and bioluminescence imaging (BLI) stand out. Luciferase bioluminescent 

methods were successfully applied to gain insights into drug screening, gene-mediated therapy evaluation, 

infection progression, cancer therapy, cell tracking, biosensors, basic research and biomedical engineering, which 

will be illustrated through representative examples. 

 

Keywords: Luciferase; Bioluminescence; Bioanalytical chemistry; Biomedicine; Bioluminescence imaging; 

Bioluminescence resonance energy transfer; Split luciferase; Quantum dot 

 

Abbreviations: BLI, bioluminescence imaging; BRET, bioluminescence resonance energy transfer; max, 

wavelength of maximum emission 

 

1. Introduction 
 

1.1. When analytical chemistry meets life 

sciences 

Bioanalytical chemistry can be 

regarded, in simple terms, as the result of 

applying the concepts and techniques of 

“classical” analytical chemistry towards the 

study of biomolecules like nucleic acids, 

proteins, lipids, drugs and antibodies [1]. It is an 

interdisciplinary field, meeting the interest of 

chemistry, biochemistry, molecular and cell 

biology, biomedicine and clinical analysis, 

environmental toxicology, forensic sciences, 

food chemistry, industrial and pharmaceutical 

research, and so forth. Some well-established 

analytical techniques such as chromatography, 

mass spectrometry, spectrophotometry and 

nuclear magnetic resonance are also employed in 

bioanalysis, taking into account the specificities 

of biomolecules. Other techniques were 

developed owing to biomolecule studies, namely 

the enzyme linked immunosorbent assay 

(ELISA), the polymerase chain reaction (PCR) 

and electrophoresis [1]. 

Bioanalytical methods have to meet 

essential requirements in order to be suitable for 

bioanalysis, namely an enhanced sensitivity, 

robustness and specificity. Nowadays, with their 

widespread use in clinical and pharmaceutical 

analysis, it is also desirable that they can be 

suitable for high-throughput screening, ease to 

perform, commercially available and moderate- 

to low-cost. In this context the enzyme luciferase 

is an invaluable tool [2], and this review aims to 

present its most recent application in outstanding 

research areas. 

 

2. Bioluminescence and luciferases 

 

2.1. Basic photochemical and photophysical 

concepts 

Before focusing attention to the 

bioluminescence phenomenon itself, it may be 

convenient to expose some basic concepts on 

photochemistry and photophysics. 

There are two relevant forms of 

electromagnetic radiation (light) emission, 

incandescence and luminescence. Originally they 

were called “hot light” and “cold light” 

respectively, since incandescence involves the 

conversion of vibrational energy into radiant 

energy as a consequence of a raise in the 

temperature [3],  whereas  luminescence is about  
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electronic transitions [4]. But actually, the main 

differentiation criterion between incandescence 

and luminescence should not be heat, but instead 

whether the light emission involves transitions in 

electronic energy levels among atoms or 

molecules, in the case of incandescence, or 

transitions in electronic energy levels within 

atoms or molecules, in the case of luminescence 

[5].  

Regarding the energy source 

responsible for the formation of the 

electronically excited state, luminescence can be 

classified into different types. For example, 

photoluminescence is the result of absorption of 

photons and re-emission of photons of lower 

energy; electroluminescence occurs due to an 

electric current; and crystalloluminescence refers 

to the release of light as a result of the 

crystallization of a substance [6]. 

Chemiluminescence designates the process in 

which a chemical reaction produces the 

electronically excited substance. When these 

reactions are encountered in biological systems 

the effect is then known as bioluminescence [6]. 

All processes which occur within 

excited substances can be graphically presented 

through a Jablonski diagram (Figures 1a and 1b) 

[4]. In photoluminescence, an electron in the 

electronic ground state (S0, Figure 1a) is excited 

(E, Figure 1a) to one of the many vibrational 

levels in the electronic excited state (S1 and S2, 

Figure 1a) as a consequence of absorption of 

photons. Typically, those are excited singlet 

states (S), so that the electrons remain spin-

paired. Once in the excited electronic state, there 

are many possible ways in which energy can be 

released to return the electron to its ground state. 

A molecule in an excited state can lose energy to 

other molecules through collisions, or distribute 

its excess energy to its own vibrations and 

rotations (VR, Figure 1a) [4]. The electron can 

also undergo internal conversion (IC, Figure 1a), 

placing it from a higher vibrational level (S2) to a 

lower one (S1). It is also possible that the 

molecule loses its energy in other processes that 

do not lead to light emission, called non-

radiative transfer of energy (NRT, Figure 1a). 

Finally, an electron in excited singlet states can 

also return to the ground state by emitting a 

photon (F, P, Figure 1a). If the emission comes 

from singlet states it is called fluorescence (F, 

Figure 1a). The other possibility for the electron 

is to change its spin in a process called 

intersystem crossing (ISC, Figure 1a). This 

results in a triplet excited state. From the triplet 

state the electron must change its spin again 

before returning to the ground state. If this is 

done along with the emission of a photon, the 

process is called phosphorescence (P, Figure 1a). 

It is also possible for the triplet state to return to 

the ground state by non-radiative transfer (NRT, 

Figure 1a) [4]. Analogous processes occur in 

bioluminescence (Figure 1b), except that the 

initial excited state is created by a biochemical 

reaction. The corresponding emission of photons 

(Em, Figure 1b) is regarded as bioluminescence 

emission, although it is indistinguishable from 

fluorescencent emission. 

Another important concept is the 

quantum yield (Φ). It can be defined as the 

number of defined events occurring per photon 

absorbed by the system (1) [6]: 

Φ = 

 (1) 

 

For example, in fluorescence processes 

it can be specifically stated as the ratio between 

the number of photons emitted to the number of 

photons absorbed, and in chemiluminescence or 

 
 

Figure 1. Jablonski diagrams for (a) photoluminescence and (b) bioluminescence. Photoluminescenc (a) is 

initiated by the absorption of electromagnetic radiation (wavy blue arrow), whereas in bioluminescence (b) an 

excited state product is generated in a biochemical reaction; its decay to the ground state releases photons of 

visible light. See text for more details. 
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bioluminescence it is the amount of photons 

emitted to the amount of reactant consumed or 

product formed [6]. In those latter cases, Φ can 

be divided into three components: (1) the 

fraction of the reaction that produces the light 

emitter, Φr; (2) the fraction of emitter that is 

formed in a excited state, Φex; and (3) the 

fraction of those excited states that emit light,    

Φfl (quantum yield for fluorescence) [7, 8]; the 

overall efficiency resulting is then Φ = Φr Φex Φfl 

[7, 8]. In this sense, the quantum yield can be 

viewed as a measure of the efficiency of the 

system. 

 

2.2. It is only bioluminescence with luciferases 

As it was seen above, bioluminescence 

can be regarded as a particular case of 

chemiluminescence. The main difference is that 

bioluminescent chemical reactions must be 

catalyzed by specific enzymes. These enzymes 

are generally called luciferases, whose name is 

derived from the Latin words lucem ferre, 

meaning “light-bearer”. In the same sense, the 

corresponding substrates are the luciferins. All 

bioluminescent reactions are oxidations with 

molecular oxygen, and they may also require co-

factors such as adenosine-5’-triphosphate (ATP), 

magnesium ions or reduced flavin 

mononucleotides (riboflavin-5’-phosphate, 

FMNH2). Some reactions involve additional 

proteins, which will be described later. 

Bioluminescence is ubiquitous in 

nature. Several creatures developed their 

luciferase-luciferin systems, for example bacteria 

(Photobacterium, Xenorhabdus, Vibrio), 

dinoflagellates (Gonyaulax, Noctiluca, 

Pyrocystis), coelenterates (Aequorea, Renilla), 

annelids (Diplocardia, Fridericia), mollusks 

(Latia), crustaceans (Cypridina, Metridia, 

Gaussia), fungi (Panellus, Mycena, Omphalotus) 

and insects (Photinus, Photuris, Luciola, 

Pyrophorus, Phrixothrix, Pyrearinus, 

Arachnocampa) [9-12]. 

However, for practical purposes, the 

main luciferases in use are those from bacteria, 

from the marine copepod crustaceans Gaussia 

princeps, Cypridina noctiluca and Cypridina 

hilgendorfii, from the coelenterate Renilla 

reniformis and from the North American firefly 

Photinus pyralis, which will be the focus from 

this point on. 

 

3. Bacterial luciferase 

 

Bacterial luciferase is classified as 

alkanal, FMNH2: oxygen oxidoreductase (1-

hydroxylating, luminescing), EC 1.14.14.3. All 

bacterial luciferases isolated so far are 

heterodimers composed of two non-identical 

subunits, an  subunit with molecular weights 

between 40-42 kDa and a  subunit between 37-

39 kDa, giving a global molecular weight about 

76 kDa [10, 12]. The bioluminescent reaction 

involves the oxidation of FMNH2 and a saturated 

long-chain aliphatic aldehyde with more than ten 

carbon atoms, preferably tetradecanal [12]. The 

aldehyde is considered to be the bacterial 

luciferin, producing the corresponding 

carboxylic acid, oxidized flavin (FMN), a 

molecule of water and light in the blue region of 

the visible spectrum [wavelength of maximum 

emission ( max ) = 490 nm] in vitro, with a 

quantum yield between 0.10 and 0.16 [10, 12]. 

For the bioluminescent reaction to 

begin, FMNH2 must be produced in bacterial 

cells from FMN, by reduction with the enzyme 

flavin reductase using nicotinamide adenine 

dinucleotide reduced (NADH) as the reducing 

agent (Figure 2a) [10, 12, 13]. The free form of 

FMNH2 is extremely unstable in the presence of 

oxygen, being instantly oxidized. In the presence 

of bacterial luciferase, however, FMNH2 bounds 

to it and is deprotonated at a nitrogen atom, 

forming an FMNH2-luciferase complex that is 

more stable than free FMNH2 (Figure 2a). The 

deprotonated flavin in the complex is readily 

attacked by molecular oxygen, giving a 

hydroperoxide (intermediate I, Figure 2a). In the 

presence of a long-chain aldehyde (bacterial 

luciferin), intermediate I is converted into 

intermediate II, which contains a 

peroxyhemiacetal of flavin (Figure 2a). The 

decomposition of intermediate II, through 

several steps, yields the excited-state 

hydroxyflavin-luciferase complex (intermediate 

III) and the corresponding fatty acid. Although 

the aldehyde is regarded as the luciferin, the light 

emitter is considered to be the luciferase-bound 

hydroxyflavin (intermediate III, Figure 2a). Light 

is emitted when the excited state intermediate III 

falls to the ground state, generating water and 

FMN, which is regenerated by flavin reductase 

to enter a new reaction cycle [10, 12]. In the 

same way, the produced carboxylic acid can be 

reduced again to the corresponding aldehyde. 

With purified bacterial luciferases, the maximum 

emission is similar for different species and 

occurs at 490 nm, but a completely different 

pattern is seen in vivo [10, 12]. In fact, in vivo 

emission maxima range from 472 to 545 nm, 

depending on the bacterium species [12]. This 

phenomenon is explained by the presence of 

accessory proteins, namely bacterial blue 

fluorescent lumazine protein (LumP) and 

bacterial yellow fluorescent protein (YFP), 

which absorb the light energy produced by 

bacterial luciferases and re-emits in longer 

wavelengths [10, 12]. This process,  

 7
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Figure 2. Schematic biochemical reactions catalyzed by (a) bacterial luciferase, (b) Renilla and Gaussia luciferases, (c) Cypridina luciferase and (d) firefly luciferase. In general terms, 

those reactions involve specific substrate, luciferins, which react with molecular oxygen to generate intermediates I; afterwards, those intermediates originate the energy-rich intermediates 

II, either by the reaction with long-chain aldehydes (a) or by the formation of four-membered ring dioxetatones (b-d); finally, the excited state light emitter intermediates III are produced, 

which release photons of light and leads to the oxidized ground-state final products. 

 8



GLOBAL JOURNAL OF ANALYTICAL CHEMISTRY  

 

245 

 

Global Journal of Analytical Chemistry | Volume 2 | Issue 6 | 2011  
 www.simplex-academic-publishers.com 

© 2011 Simplex Academic Publishers. All rights reserved. 

 

bioluminescence resonance energy transfer 

(BRET), will be explained in section 8.6. 

Bacterial luciferase genes (lux genes) 

are arranged in an operon, luxCDABE [14]. The 

luxA and luxB genes code for the subunits of 

bacterial luciferase, whereas luxC, D and E code 

for an enzyme, fatty acid reductase, responsible 

for the biosynthesis of the aldehyde. Other lux 

genes may be found in certain species, like the 

regulatory genes luxI and luxR, or luxH involved 

in riboflavin synthesis [14]. This genetic 

organization of the bioluminescent system genes 

in bacteria opens up the interesting possibility of 

constructing self-illuminating cells and 

organisms through the introduction of the whole 

luxCDABE operon, as it codes for both bacterial 

luciferase itself and the enzymes to synthesize 

bacterial luciferin [15]. 

 

4. Renilla reniformis (Renilla) luciferase 

 

The luciferase from the sea pansy 

Renilla reniformis is one of the best 

characterized luciferase-luciferin system from a 

marine organism. Its systematic name is Renilla-

luciferin: oxygen 2-oxidoreductase 

(decarboxylating), EC 1.13.12.5. Purified Renilla 

luciferase has a molecular weight of about 35 

kDa [10, 12]. In vitro, the bioluminescent 

reaction presents a pHoptimal at 7.4, at 32 ºC and in 

the presence of a salt like NaCl or KCl. It 

generates photons in the blue range ( max = 480 

nm) with a quantum yield of about 0.06-0.07 

[10, 12]. Renilla luciferin is coelenterazine, an 

imidazopyrazinone common to other 

bioluminescent and non-bioluminescent marine 

organisms [12, 16]. 

Regarding the in vivo bioluminescent 

reaction, coelenterazine is stored in the form of 

coelenterazine enol-sulfate [12]. Part of the 

coelenterazine sulfate stock is subjected to 

sulfate removal by a luciferin sulfokinase, 

allowing coelenterazine to bind to 

coelenterazine-binding protein, a protein akin to 

calmodulin in its capacity to bind calcium ions. 

When calcium concentration is raised, by nerve 

stimulation, three calcium ions bind to 

coelenterazine-binding protein, triggering the 

release of coelenterazine [12]. From this point 

coelenterazine binds to Renilla luciferase, where 

it will react with oxygen producing a peroxide 

intermediate (intermediate I, Figure 2b) [12]. 

This intermediate undergoes a cyclization to 

form an energy-rich dioxetanone intermediate 

(intermediate II, Figure 2b), whose breakage 

leads to carbon dioxide (CO2) and the oxidized 

form of coelenterazine, coelenteramide, in the 

excited state (intermediate III, Figure 2b) [10, 

12]. Like in the bacterial bioluminescent system, 

in Renilla’s system there is also an accessory 

protein, Renilla green fluorescent protein (Not to 

confuse with the better known green fluorescent 

protein from the jellyfish Aequorea victoria, 

whose discovery and development granted the 

Nobel Prize in Chemistry in 2008) [10, 12]. In 

the presence of Renilla green fluorescent protein, 

the energy of the excited state coelenteramide is 

transferred, by BRET, to the fluorescent protein, 

resulting in the emission of green light ( max = 

509 nm); in the absence of the fluorescent 

protein or in in vitro conditions, however, blue 

light (λmax = 480 nm) is emitted [10, 12]. 

 

5. Gaussia princeps (Gaussia) luciferase 

 

Gaussia luciferase, from the 

homonymous marine crustacean species Gaussia 

princeps, is one of the latest luciferases being 

used in bioanalytical applications. It is the 

smallest luciferase found to date, with a 

molecular weight about 19.9 kDa [12, 17-19]. It 

is naturally secreted, in vivo and in vitro, due to a 

secretory sequence peptide. Moreover, Gaussia 

luciferase is a coelenterazine-dependent 

luciferase, and its bioluminescent reaction 

mechanism is believed to equal that of Renilla 

luciferase, namely the oxidative decarboxilation 

of coelenterazine to yield excited-state 

coelenteramide and photons of blue light ( max = 

470 nm) (Figure 2b) [12, 17-19]. Like other 

coelenterazine-dependent luciferases, this 

luciferase has a tendency to self-aggregate into 

inactive forms [12]. In vitro, the bioluminescent 

reaction presents a pHoptimal at 7.7, and its activity 

is highly dependent upon the concentration of 

monovalent cations. Nonetheless, Gaussia 

luciferase is very resistant to high temperatures 

(that is, it is a thermostable enzyme) and to 

extreme acidic and basic conditions, which is 

important for technological applications [12, 17-

19].  

Contrary to early discovered luciferases, 

which were subjected to decades of studies 

before cloning, genetic engineering 

improvements and assignement to molecular 

biology and bioanalytical applications, Gaussia 

was readily recruited to practical applications. 

Indeed, Gaussia luciferase is currently 

commercially available as plasmids (Figure 3). 

Furthermore, it was already subjected to genetic 

enhancements. One such important feature 

includes a recombinant biotinylated version of 

Gaussia luciferase [20]. Biotin is a small vitamin 

which is used in laboratorial studies as a 

biological “hook” to separate proteins [21]. This 

compound is chemically linked to a protein of 

interest. After that, the sample                                       

with  the  biotinylated  protein   is incubated with  
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straptavidin or avidin immobilized into a 

support. Both of them bind strongly and 

specifically to biotin, allowing the separation of 

the biotinylated protein from solution [21]. A 

biotinylated Gaussia luciferase facilitate its 

purification, reduces its inactivation due to 

conjugation with other molecules and facilitates 

its use as a bioprobe [20]. Another improved 

Gaussia luciferase is a “humanized”, codon-

optimized version which produces 200- (in vivo) 

to 1000-fold (in vitro) higher bioluminescence 

signals in mammalian cells compared to Renilla 

and firefly luciferases [22]. 

 

6. Cypridina luciferase 

 

Cypridina luciferase is obtained from 

marine crustaceans (sea fireflies) of the species 

Cypridina noctiluca [23] and Cypridina 

hilgendorfii (also known as Vargula 

hilgendorfii) [12, 24]. Its classification is 

Cypridina-luciferin: oxygen 2-oxidoreductase 

(decarboxylating), EC 1.13.12.6. The    

bioluminescent    substrate is Cypridina luciferin, 

sometimes called vargulin, an 

imidazopyrazinone chemical compound distinct 

from the other luciferins described so far [12]. 

The bioluminescent reaction also requires 

molecular oxygen, yielding CO2 and oxidized 

vargulin [12]. Cypridina luciferase is a 61-62- 

kDa enzyme, emitting blue light ( max = 452 nm) 

in vivo, although the color can vary in vitro 

according to the buffer used. The pHoptimal is 7.7 

and the optimum temperature is about 30 ºC 

[12]. Salts like NaCl or CaCl2 are important to 

enhance the reaction output. In vivo, it is secreted 

to the medium [12], as well as in in vitro assays 

[25]. 

The Cypridina bioluminescenct reaction 

proceeds according to the scheme shown in 

Figure 2c [12]; the imidazopyrazinone part of 

Cypridina luciferin is negatively charged when 

the luciferin is bound to luciferase, making it 

easily oxygenated by molecular oxygen, and 

leading to a peroxide anion (intermediate I, 

Figure 2c). Analogously to Renilla biolumescent 

reaction, the peroxide cyclizes, forming a 

dioxetanone ring (intermediate II, Figure 2c), 

which instantly decomposes by a concerted 

splitting of the 4-membered ring into CO2 plus 

an amide oxidized Cypridina luciferin in an 

excited state (intermediate III, Figure 2c).  Light 

is emitted when the excited state falls to its 

ground state. The quantum yield is about 0.3 

[12]. 

 

7. Photinus pyralis (firefly) luciferase 

 

Firefly luciferase, or Photinus-luciferin: 

oxygen 4-oxidoreductase (decarboxylating, 

 
 

Figure 3. Principle of luciferase reporter gene assay. A plasmid containing the luciferase gene and the genetic 

element under study is constructed (1). These plasmids also contain several genetic elements to allow the 

correct processing of luciferase gene, like selectable markers and promoters. Once this plasmid is processed by 

the the cell’s DNA replication machinery, luciferase is transcribed (that is, an mRNA is produced) and 

translated (2) into functional luciferase (3). By adding luciferin (4), light is emitted (5). 
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ATP-hydrolysing), EC 1.13. 12.7, from the 

North American firefly (Photinus pyralis), is the 

most popular luciferase so far regarding 

bioanalytical applications. It is also one of the 

best studied and characterized luciferase, thanks 

to the work of William McElroy and colleagues 

during several decades, although some details 

regarding its biochemical mechanism are not yet 

clear [26]. 

Firefly luciferase is a 62-kDa [27, 28] 

enzyme bearing a peroxisome targeting peptide 

in its native form [29]. The firefly luciferin is the 

D- enantiomer of a benzothiazolyl-thiazole, [(S)-

2-(6’- hydroxy-2’-benzothiazolyl)-2-thiazoline-

4-carboxylic acid], or simply D-luciferin [30]. 

The same way coelenterazine is common to 

several marine organisms, so all the 

bioluminescent beetles (order Coleoptera; 

families Elateridae, for example click beetles; 

Phengodidae, like railroad-worms; and 

Lampyridae, the fireflies) share this luciferin in 

their bioluminescent reaction [10, 12, 26, 30, 

31]. 

Contrary to the other luciferases 

described so far, firefly luciferase requires ATP, 

along with a divalent metallic cation, most 

frequently magnesium ions, to proceed. Unlike 

the common sense, however, ATP does not have 

an energetic role, but rather to provide a good 

leaving group, adenosine-5´-monophosphate 

(AMP), which facilitates the subsequent steps of 

the bioluminescent reaction [10]. In vivo, yellow-

green light is emitted; in vitro, however, the 

emission peak can be the same as in vivo ( max = 

562 nm), as firefly’s bioluminescent system does 

not have accessory fluorescent proteins, but only 

at basic media (pH about 7.5-7.8) [10, 12, 26, 30, 

31]. In fact, firefly luciferase is pH-sensitive, and 

acidic media (pH about 5-6) can shift the 

emission to the red ( max = 620 nm), along with 

higher temperatures or heavy metal cations [10, 

12, 26, 30, 31]. The pHoptimal is about 7.8 at 23-25 

ºC. The formation of inhibitory by-products can 

hamper the emission from luciferase. The 

addition of coenzyme A (CoA) leads to the 

conversion of these inhibitory by-products to a 

less inhibitory form, thus stabilizing and 

prolonging the light emission [10, 12, 26, 30-32]. 

The detailed mechanism of the 

bioluminescent reaction catalyzed by firefly 

luciferase is somewhat complex, and its full 

presentation is not under the remit of this review 

(interested readers may consult ref. [26, 30, 31]). 

In short, the reaction emcompasses the activation 

of D-luciferin by ATP-Mg
2+

, generating 

inorganic pyrophosphate (PPi) and a luciferase-

bound adenylated intermediate (Figure 2d), an 

anhydride formed between the carboxyl group of 

D-luciferin and the phosphate group of AMP [10, 

12, 26, 30, 31]. The adenylate is oxidated by 

oxygen in the air, forming a hydroperoxide 

intermediate (intermediate I, Figure 2d) which, 

by its turn, produces the dioxetanone ring-

bearing intermediate II by the departure of AMP. 

As this high-energy ring is very unstable, it 

quickly breaks down, yielding CO2 and 

oxyluciferin in an excited state (intermediate III, 

Figure 2d). The excited state oxyluciferin release 

its energy as photons, leaving oxyluciferin in the 

ground state [10, 12, 26, 30, 31]. The quantum 

yield of this reaction is about 0.41-0.48 [33, 34].  

 

8. Bioanalytical methodologies based on 

luciferases – then and now 

 

This section aims to present the basic 

principles underlying the diversified luciferase-

based methods established for bioanalytical 

purposes, preceding the presentation of 

demonstrative examples of their application. 

 

8.1. Luciferase assay 

In initial studies about luciferase, as 

early as 1947, McElroy observed that the 

duration of the emitted light by firefly luciferase 

in vitro was directly proportional to the amount 

of ATP added [35]. Although at that time the 

role of ATP in the bioluminescent reaction was 

unknown, and only a qualitative relationship 

between light and ATP could be inferred [35], it 

was a hint of the potential of luciferase for ATP 

assay. And indeed this was the case. In the 

incoming years, the major application of firefly 

luciferase was in luciferase assays for ATP [36]. 

In the simplest assays, a reaction mixture is 

prepared, composed of luciferase, luciferin and 

magnesium cations (like MgCl2) in a buffer 

system at pH 7.6-7.8. Sometimes CoA is also 

added to stabilize the light emission. A 

calibration curve with ATP is obtained and the 

sample is tested. The emitted light is recorded on 

luminometers, a specific device equipped with 

photomultiplier tubes with variable degrees of 

sensitivity. With time, a more complete 

knowledge of firefly luciferase bioluminescent 

reaction was achieved, and thus more 

sophisticated methods were developed [2], for 

example the ATP measurement inside cells with 

genetically encoded luciferases (see next 

section), along with the development of assays 

for other analytes which participate in the 

reaction, namely CoA [37] and PPi [38]. 

Likewise, analytes other than ATP could be 

assessed with bacterial luciferase, as its reaction 

allows the assay of long-chain aldehydes [39], 

NADH [40, 41] and FMN [40]. 

 

 11



GLOBAL JOURNAL OF ANALYTICAL CHEMISTRY  

 

248 
 

Global Journal of Analytical Chemistry | Volume 2 | Issue 6 | 2011  
 www.simplex-academic-publishers.com 

© 2011 Simplex Academic Publishers. All rights reserved. 

 

8.2. Luciferase reporter gene assay 

Reporter gene can be defined as “a gene 

with a readily measurable phenotype that can be 

distinguished easily over a background of 

endogenous proteins” [42, 46]. Reporter gene 

technology is, then, a molecular biology tool in 

which a reporter gene is introduced into cells, 

together with a genetic entity of interest and, 

once it is translated into protein, it can be readily 

detected, giving information about molecular or 

cellular events under study (Figure 3) [43]. The 

reporter gene and the genetic entity under study 

are placed together in the same DNA construct, 

usually in the form of a circular DNA molecule 

called a plasmid (Figure 3), prior to their 

introduction into cells. The most commonly 

studied processes are the following [42, 43]: 1) 

the expression of a gene of interest. In this case 

the reporter is directly attached to the gene of 

interest, being the two genes under the control of 

the same promoter elements and being 

transcribed into a single messenger RNA 

(mRNA). The mRNA is then translated into the 

protein, and the localization of the protein can be 

traced by assaying the reporter, for example by 

adding its substrate when the reporter is an 

enzyme; and 2) the activity of a particular 

promoter or other regulatory element, like an 

enhancer. In this case there is no separate "gene 

of interest"; the reporter gene is simply placed 

under the control of the target promoter or 

element, and its transcriptional strength is then 

estimated quantitatively from the in vitro activity 

of the reporter gene product, considering that the 

action of the promoter upon the reporter will be 

the same as that upon the native gene [42, 43]. 

The onset of this technology dates back 

early 1980’s, for both prokaryotic and eukaryotic 

cells [44, 45]. At this time popular reporter genes 

were the enzymes chloramphenicol 

acetyltransferase, -galactosidase and alkaline 

phosphatase [46, 47]. Firefly luciferase was 

introduced as a reporter gene a few years after its 

cloning in 1985 [28], for example in plant cells 

and transgenic whole plants [48], for the study of 

the cauliflower mosaic virus 35s RNA promoter 

[49], for the analysis of the interleukin-2 

promoter [50] and for the study of estrogen 

regulatory elements in a Xenopus (aquatic frog) 

model [51]. In the same sense, bacterial 

luciferase was then applied as reporter, for 

example in the study of genetic recombinatory 

mechanisms in prokaryotes [52].  

 

8.3. Bioluminescent Enzyme Immunoassay 

(BLEIA) 

An enzyme immunoassay (EIA) is a 

biochemical technique used mainly in 

immunology to detect the presence of an 

antibody or an antigen in a sample. In simple 

terms, a specific antibody is added to a sample 

with an unknown amount of the antigen or vice-

versa. This antibody is linked to an enzyme and, 

in the final step, a substrate is added so that the 

enzyme can convert it into some detectable 

signal, most commonly a color change [53, 54]. 

When the enzyme is luciferase, the assay is 

called bioluminescent enzyme immunoassay 

(BLEIA) [55]. 

Regarding the most common procedure, 

a buffered solution of the antigen to be tested is 

added to each well of a microtiter plate, where 

the antigen will adhere. A solution of a non-

reacting protein, such as bovine serum albumin 

(BSA) or casein, is added to block any plastic 

surface in the well that remains uncoated by the 

antigen. Next, a primary antibody is added, 

which binds specifically to the test antigen that is 

coating the well. This primary antibody could 

also be in the serum of a donor, in which case it 

will be tested for reactivity towards the antigen. 

Afterwards, a secondary antibody is added, 

which will bind the primary antibody. This 

secondary antibody often has an enzyme 

attached to it, which should have a negligible 

effect on the binding properties of the antibody. 

A substrate for this enzyme is then added. Often, 

this substrate changes color upon reaction with 

the enzyme. The color change shows that 

secondary antibody has bound to primary 

antibody, which strongly implies that the donor 

has had an immune reaction to the test antigen. 

The higher the concentration of the primary 

antibody which was presented in the sample, the 

stronger is the color change [53, 54]. Often a 

spectrometer is used to give quantitative values 

for color strength. In other formulations the 

primary antibodies can be added to the microtiter 

plate first, followed by the antigen sample and 

the secondary antibodies. Also, chemically 

modified antigens can be marked with the 

enzyme, instead of the antibody, and mixed to an 

antigen sample. The labeled antigen competes 

for primary antibody binding sites with the 

corresponding sample antigen (unlabeled). The 

more antigens in the sample, the less labeled 

antigen is retained in the well and weaker is the 

signal [53, 54]. 

 

8.4. Coupled Bioluminescent Assay (CBA) 

A coupled enzymatic assay refers to the 

determination of a substrate or enzyme activity 

by coupling one or more enzymatic reaction with 

another one whose final product is more easily 

detected. The product of the first reaction is the 

substrate for the subsequent reaction, and so 

forth, until the last reaction. In coupled 

bioluminescent assays, luciferase catalyzes the 
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last reaction, and the final output is the 

measurement of the emitted photons (Figure 4) 

[55]. This method is often applied when the 

enzyme-catalyzed reaction or product of interest 

is difficult to assay directly. 

Regarding luciferase, this method is 

well-established, both in custom-made 

developed assay, for example for the assay of 

enolase [56], as well as commercial standard kits 

[55]. 

 

8.5. Bioluminescence Imaging (BLI) 

Bioluminescence imaging (BLI) is a 

technology developed over the past decades 

which allows the study of the light emitted from 

living entities to produce an image, where a 

profile of the emitted light can be visualized and 

biological information can be inferred [57-60]. 

This concept was first sketched in early 1990’s 

for single cell measurements [61] and evolved up 

to the whole body imaging in small laboratory 

animals in 1995 [62]. It encloses, therefore, 

molecular imaging, which is “the visualization, 

characterization, and measurement of biological 

processes at the molecular and cellular levels in 

humans and other living systems” [63], to whole-

body imaging in small animals. Today it has a 

widespread use. 

Conceptually, it can be viewed as a 

fusion between bioluminescent reporter gene and 

optical imagiology (Figure 5a). First, the gene 

encoding the luciferase is incorporated into a 

plasmid (Figure 5a, 1), which is then inserted 

into cells or other genetic material carriers, like 

liposomes or viruses (Figure 5a, 2). Then they 

are transferred to living small animals like mice 

(Figure 5a, 3). It is given time for functional 

luciferase to be produced from the gene and the 

image is taken [57-60]. The animals are placed in 

light-tight chambers and, immediately before 

imaging, they are anesthetized to keep them still. 

Gas anesthesia with isoflurane or intraperitoneal 

injection of ketamine and xylazine are safe 

methods for short-term immobilization, as it is 

the case of BLI [57-60]. Luciferin, when 

necessary, is then injected (Figure 5a, 4). 

Generally, D-luciferin is injected 

intraperitoneally, whereas coelenterazine is 

administered via lateral tail vein [57-60]. A 

normal photography of the animal, in grayscale, 

is acquired under weak illumination to serve as 

an anatomic reference. After that, the 

bioluminescent signal is captured in complete 

darkness by an ultra-sensitive charge-coupled 

device (CCD) camera mounted on the top of the 

chamber (Figure 5a, 5) [57-60]. The duration of 

the imaging is variable, ranging from a few 

seconds up to several minutes (maximum of 2 

minutes for Renilla luciferase, and 5 minutes for 

firefly luciferase) [57-60]. The signal intensity is 

computationally recorded, treated by specific 

softwares and finally represented as a 

pseudocolor image superimposed on the 

greyscale reference photo. The signal intensity is 

normally quantified as photons per second per 

cm
2
 per steradian with a color scale from blue 

(lowest intensity) to red (highest intensity) [57-

60]. 

 
 

Figure 4. Principle of coupled bioluminescent assay. In a chemical or biochemical reaction, catalyzed by 

enzyme 1, product 1 is formed. Product 1 will enter into a second reaction cycle with enzyme 2, by its turn 

generating product 2. The last reaction in the sequence is catalyzed by a luciferase, and the emitted light is 

measured. A correlation between the intensity of the emitted light and the concentration of the initial reagent 

(analyte) is inferred and quantitative results can be calculated. 
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The distinctive component of this 

technology is the CCD cameras, since they must 

be capable of detecting very low levels of 

emitted light [64]. This sensitivity can be 

enhanced by, for example, cooling the CCD chip 

to below -100°C, which significantly reduces 

background dark current signals, and are referred 

as cooled CCD [57, 64]. Several systems are 

commercially available; moreover, some models 

were specifically designed to measure light 

emission from small animals, for example the 

IVIS™ imaging system (Xenogen Corporation) 

with improved functionalities, like the imaging 

of groups of several animals simultaneously or 

the incorporation of nose cones to deliver 

gaseous anesthetics to animals during the course 

of imaging [57, 58]. 

 

8.6. Bioluminescence Resonance Energy 

Transfer (BRET) 

 
8.6.1. The BRET phenomemon 

In sections  3 and 4, it was stated that 

there are marked differences among the various 

bacterial species and strains concerning the in 

vivo bioluminescence spectra versus the in vitro 

one. The emission maxima are spread mostly in 

a range from 472 to 545 nm in vivo, whereas the 

in vitro bioluminescence spectra measured with 

purified luciferases obtained from various 

bacterial species and strains are all similar ( max 

about 490 nm) [12]. Likewise, the Renilla’s 

bioluminescent system emits blue light ( max = 

480 nm) in vitro, a value that is shifted to green 

light ( max = 509 nm) in vivo [12]. These spectral 

shifts of light emission could indicate the 

occurrence of some energy transfer process 

involving the luciferase and a chromophore. 

Today it is known that such process is resonance 

energy transfer (RET). 

RET was observed in the laboratorial 

context as well as biological systems, like the 

carotenoid-to-chlorophyll RET in marine 

diatoms [65]. A theory of RET was proposed by 

the German scientist Theodor Förster in the 

1940’s [66], and hence the common acronym 

Förster resonance energy transfer (FRET) by 

which this phenomenon is also known. 

According to the theory, RET is a photophysical 

process involving two chromophores, a “donor” 

and an “acceptor”. The “donor”, initially in an 

electronically excited state, can transfer 

excitation energy to an “acceptor” molecule. 

 
 

Figure 5. Bioluminescence imaging (BLI). (a) Principle of BLI. A plasmid (1) containing a luciferase gene is 

introduced into vectors, such as cells, viruses or liposomes (2). These vectors are injected into a living test 

animal (3). Prior to the analysis, luciferin is injected (4) and the animal is transferred to a chamber mounted 

with a camera (5). The emitted photons are registered by the device’s software and displayed as colored spots 

upon the animal’s picture. (b) An example of a BLI analysis. In this study, mice were treated with a powder 

formulated for pulmonary gene delivery, containing luciferase as a reporter gene. Both its dry and soluble 

form were tested and, through a BLI analysis, it was verified that the dry powder is more efficient in 

delivering the gene to the lungs. Figure 5b adapted from ref. [103] and reproduced with permission from 

Elsevier. 
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This intermolecular energy transfer occurs by 

dipole-dipole coupling, and not by electron 

transfer, whereby it is non-radiative [65-67] 

(Figure 6a). 

Bioluminescence resonance energy 

transfer (BRET) is a particular case of RET in 

which the “donor” molecule is a luciferase [67] 

(Figure 6a). In vivo, the “acceptor” is a 

fluorescent protein, like the bacterial blue 

fluorescent proteins (LumPs), containing 

lumazine as their chromophores, and bacterial 

yellow fluorescent proteins (YFPs), containing a 

chromophore of FMN or riboflavin [12], or the 

green fluorescent protein from Renilla reniformis 

[12].  

In order to RET occur, at least two 

conditions must be fulfilled: firstly, the emission 

spectrum of the “donor” must overlap with the 

excitation spectrum of the “acceptor” (Figure 

6b);   secondly,   the   two   molecules must be in  

close proximity, from 1 to 10 nm at maximum 

[65, 67]. This last requirement was readily 

recognized as a possible application to evaluate 

protein-protein interactions. 

 

8.6.2. The BRET technology 

As an analytical method, the first RET 

methods involved a fluorescent protein coupled 

to another fluorescent protein capable of emitting 

at a different wavelength [68]. In this case, the 

method is called fluorescent resonance energy 

transfer (FRET). This denomination refers, 

hence, to the nature of the “donor”-“acceptor” 

pairs, and not to the mechanism of light transfer. 

In both FRET and BRET, to investigate protein-

protein interactions, one protein of the pair is 

genetically fused to the “donor”, and the second 

protein to the “acceptor” (Figure 7a). The 

“donor” protein is excited and, if the two 

proteins do not interact, only one light signal, 

corresponding to the “donor” emission, is 

registered (Figure 7a, 1); however, when the two 

proteins interact, RET can occur and an 

additional light signal, corresponding to the 

“acceptor” emission, is detected (Figure 7a, 2) 

[69]. The “donor” and “acceptor” reporters can 

be fused to a single protein, and in this case an 

intramolecular signal can be monitored, which is 

useful to study conformational changes upon the 

binding of a ligand, for example (Figure 7b) 

[70]. The RET signal can be displayed in several 

formats, depending on the purpose of the study 

(Figure 7c). 

Although the occurrence of BRET in 

nature is established a long time ago [71], 

technological applications of BRET in 

bioanalysis was not done until 1999, when it was 

used to demonstrate that the circadian clock 

protein KaiB, from a cyanobacterium, forms 

homodimers, by genetically fusing it to Renilla 

luciferase and a modified green fluorescent 

protein [72]. Since then, a “boom” of 

applications based on BRET were developed. 

For example, FRET- and BRET-based method 

were extensively applied to study the interactions 

of cellular receptors with their corresponding 

ligands, for example the interaction between G 

protein-coupled receptors (GPCR) and trimeric 

G protein upon addition of the receptor’s agonist, 

norepinephrine [73], or to verify receptor’s 

dimerization [74, 75].  

A variant of the BRET methodology 

recently described is the conjugation of 

luciferases and quantum dots [76]. Quantum dots 

 
Figure 6. The bioluminescence resonance energy transfer (BRET) principles. (a) Jablonski diagram showing 

the “donor” and “acceptor” coupling and resonance energy transfer. (b) Spectral overlap requirement for the 

occurrence of BRET. A “donor” molecule is excited at its specific wavelength and light emission will occur. 

If the “donor” emission matches the energy required for a nearby molecule to be excited, energy transfer by 

BRET will occur and the “acceptor” will posteriorly re-emit this energy as photons. 
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are tiny fluorescent and semiconductor crystals 

of inorganic elements, like cadmium and 

tellurium, with dimensions in the nanoscale, 

typically from 3 to 100 nm [77-79]. At this scale, 

quantum dots present properties differing from 

the bulk material they came from. In fact, 

quantum dots have unique optical properties like 

high quantum yields, large molar extinction 

coefficients, large excitation spectra, narrow 

emission spectra, size-dependent tunable 

emission and high photostability, which make 

them appealing fluorescent probes for imaging 

[77-79].  

The principle of luciferase-quantum 

dots BRET is the same as already described 

(Figure 8a). The first reported protocol was 

published in 2006, using a genetically modified 

Renilla luciferase with improved stability and 

light output [80]. To obtain such luciferase, eight 

mutations were performed, and so this mutant 

was called Renilla luciferase8 [81, 82]. 

The major advantage is that quantum 

dots can be produced within a wide emission 

wavelength, from blue to near-infrared [77-79], 

which is the desired range for BLI in small living 

animals. In fact, the interaction of light with 

tissues involves several kinds of processes 

(Figure 9). When light is emitted in a 

bioluminescent reaction inside a living animal, 

photons passing through the tissues can be 

scattered by cell and organelles membranes or 

absorbed by intrinsic cellular chromophores like 

 

 
Figure 7. The BRET technology. (a) To assess protein-protein interactions, each protein of the presumably 

interacting pair is genetically fused to a luciferase and to an “acceptor”, which can be a fluorescent protein, a 

quantum dot or an organic dye (in this scheme, a fluorescent protein is represented). If the two proteins do not 

interact, or if they are far apart from each other, BRET will not occur and a single signal, corresponding to the 
luciferase, will be registered (1); on the other hand, when the two proteins interact, BRET will occur between 

the luciferase and the “acceptor” and two signals will be recorded, one from the luciferase and a novel peak 

corresponding to the emission of the “acceptor” (2). (b) Schematic representation of intramolecular BRET. 

Two BRET pairs are genetically fused to the same protein. By adding its agonist (orange circles), for example, 

the protein will undergo structural changes, bringing the two BRET pairs into close proximity and allowing 

the occurrence of BRET. (c) BRET data representation. According to the purpose of the analysis, the BRET 

results can be displayed under several formats. 
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water, hemoglobin, collagen, flavins and 

melanin, leaving lesser light to be transmitted 

[57, 58, 83]. Furthermore, fluorescent proteins 

and quantum dots require external excitation by a 

laser beam (Figure 8a). This beam will not only 

be scattered by tisses but it will also induce their 

autofluorescence, generating a strong 

background which lowers the sensitivity of the 

assay [57, 58]. This way, little light will be 

available for excite quantum dots and fluorescent 

proteins, thus limiting imaging at superficial 

locations inside the animal, as the more tissue 

between the reporter and the detector, the more 

light is lost [57, 58]. Blue and green light 

(shorter wavelengths) are largely absorbed by 

tissues, especially by hemoglobin, but red light 

(longer wavelengths) is less affected. So, shifting 

the emission to the red region of the spectrum 

and above would be greatly beneficial for all 

optical imagiology modalities. 

Originally described as a proof-of-

principle method for BLI [80], luciferase-

quantum dot bioconjugate also found application 

as protease and nucleic acid biosensor (see 

section 9.6.). 

 

8.7. Split luciferase / Protein Complementation 

Assay (PCA) 

 

Protein-fragment complementation 

assay (PCA) consists in the splitting of a 

monomeric reporter protein into two separate 

fragments [84-87]. These fragments are, 

consequently, inactive, but the reporter can 

regain its function by non-covalent reassembly 

and folding when the fragments are brought in 

close proximity. If a pair of interacting proteins 

is genetically fused to each of the fragments, the 

reporter will be reactivated upon association of 

the proteins (Figure 10a) [84-87]. This way, 

PCA is another technique to assay protein-

protein interactions. In parallel, if the split 

reporter is fused to a single protein, it can 

monitor conformational changes (Figure 10b). If 

the reporter is a luciferase, the technique is called 

split luciferase, and when it involves the 

reconstitution of fluorescent proteins it is named 

bimolecular fluorescence complementation 

(BiFC) [84-87]. 

This technology resembles the yeast 

two-hybrid system (Y2H) screening, a molecular 

biology technique to assay protein-protein 

interactions and protein-DNA interactions [85, 

88]. This method consists in the activation of 

transcription of a downstream reporter gene by 

the binding of a transcription factor onto an 

upstream activating sequence that will drive the 

transcription of the reporter gene. For two-hybrid 

 
 

Figure 8. Luciferase-quantum dot conjugates for BRET. (a) A quantum dot is excited by an external light 

source (dotted blue line in the graph) and emits at a characteristic wavelength (red line). By coupling it to 

luciferases, and adding luciferin, the luciferase will emit light (blue line), and part of this energy will be 

transferred to the quantum dot, thus avoiding the need for external illumination. By introducing this luciferase-

quantum dot conjugate into an animal, an image can be obtained. (b) Schematic representation of a protease 

assay based on luciferase-quantum dot BRET. A luciferase is genetically fused to an amino acid link 

recognized by a protease under study. Later, this luciferase is chemically coupled to a quantum dot and BRET 

will occur (red line graph). In the presence of the protease, the amino acid link will be cleaved, luciferase and 

the quantum dot will get far apart and the BRET signal will disappear, being registered only the emission from 

the luciferase (blue line graph). This assay can be performed in a microplate format. 
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screening, the transcription factor is split into 

two separate fragments, called the binding 

domain (BD) and activating domain (AD) [88]. 

The BD is the domain responsible for binding to 

the activating sequence, whereas the AD is the 

domain responsible for the activation of 

transcription itself. One protein under study is 

fused to the BD domain (“bait”), the other 

protein partner to the AD domain (“prey”). By 

their own, none of these constructs are sufficient 

to activate the transcription of the reporter gene, 

but when the proteins interact the AD and BD of 

the transcription factor are brought together, it 

became functional, the reporter is transcribed and 

a signal is measured [88]. Such a system using 

Cypridina luciferase as the reporter gene is 

described in the literature [89]. 

 

 
 

Figure 10. Principle of the split luciferase assy for protein-protein interactions and protein structural changes. 

(a) Intermolecular split luciferase assay. A luciferase is genetically dissected into two separate fragments and 

fused to each protein from a pair of interacting proteins. When the two proteins are not interacting, luciferase 

cannot emit light. When the two proteins interact, luciferase regains its activity and light is emitted. (b) 

Intramolecular split luciferase assay. Split luciferase fragments are genetically fused to one protein. By adding 

the protein’s ligand (orange circles), the protein will undergo structural changes, bringing the two fragments 

close enough to luciferase regain its activity. 

 
 

Figure 9. Schematic representation of light-tissues interactions. When a beam of light (thick arrow) is applied 

upon a living animal, part of the light can be refracted (thin arrow). When the light penetrates deeper into the 

animal, another part of it can be scattered (wavy arrows) or absorbed by chromophores (short thick arrow). 

Light will also provoke autofluorescence (purple shaded area). Finally, a fraction of the initial light will reach 

the fluorescent target and result in luminescence (colored circle), being registered by the detector (long thin 

arrow). Bioluminescence produced by luciferases within the animal is also subjected to these phenomena.  
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9. Bioanalytical and biomedical applications 

of luciferases 

 

9.1. Drug screening 
The need for new-generation drugs is 

paramount in today’s world, to account for 1) 

cases of drug resistance, 2) cases of emerging 

new diseases and 3) to improve already-existing 

therapies. The pharmaceutical industry demands 

a combination of a high number of tested 

compounds in lesser time and with minimum 

costs, the so-called high-throughput screening. In 

this context, the development of luciferase 

bioanalytical methods for drug screening can be 

a good option [90-92]. 

Such bioluminescent methods were 

applied in the screening of inhibitors compounds 

for West Nile virus, a pathogen that causes 

meningoencephalitis and whose presence is 

spreading through both developed and 

developing countries [93]. It is a cell-based assay 

in which Vero cells were transfected with West 

Nile virus genes and Renilla luciferase gene. 

Then test compounds were added, along with the 

luciferase substrate coelenterazine, and 

bioluminescence was measured. The more active 

the compound in inhibiting West Nile virus 

replication, the more reduced was the emitted 

light. Beginning with almost 100,000 test 

compounds, at the end only five of them were 

selected and further tested to identify their mode 

of action by other techniques. Other targets 

include other viruses like dengue virus [94] and 

human immunodeficiency virus (HIV) [95], and 

parasites such as Plasmodium, the causative of 

malaria [96], or Leishmania, the agent of 

leishmaniasis [97, 98]. 

Besides the drug screening at the 

cellular level, one line of investigation aims the 

therapeutics at the molecular level. BRET-based 

methods are being adopted for such purpose, for 

example in the quest for cyclic AMP (cAMP) 

antagonists as the enzyme it regulates, cAMP-

dependent protein kinase, is associated with 

several diseases [99], or to the study of insulin 

receptors interaction, which are potential targets 

for improved diabetes therapies [100,101].  

 

9.2. Gene-mediated therapy evaluation 
The possibility of correct or modulate 

genetic defects that leads to maladies, instead of 

treating their outcome, the so-called gene 

therapy, may be the ultimate achievement in 

medicine in the XXI century. Much work is 

being made in this field due to progresses in 

molecular biology and genetic engineering. 

Luciferase reporter gene systems coupled with 

BLI are valuable tools for assessing therapy 

efficacy, namely gene expression and 

localization inside target cells, where luciferase 

replaces the therapeutic gene [102]. For example, 

to test a new formulation of a dry powder for 

pulmonary gene therapy, firefly luciferase 

activity was measured in vivo and in real time in 

mice (Figure 5b) [103]. Unlike in vitro assays, 

all the complexity of a living organism was 

maintained, which allows the scientists to obtain 

results much closer to the real situation. 

A branch of gene therapy is gene-

mediated therapy, which follows the principles 

of gene therapy but with other gene entities. An 

entity that has granted a lot of attention in recent 

years is RNA interference (RNAi) [104, 105]. 

This is a novel gene control mechanism in which 

fragments generated from RNA can locate 

sequences complementary to its own in mRNA 

and establish base-pairing, preventing the 

translation of the RNA and the consequent 

production of proteins [104, 105]. Sometimes the 

RNA fragment is the target itself, and in this case 

anti-RNAi oligonucleotides were developed 

[106]. It is known that some microRNAs 

(miRNAs) inhibit the synthesis of tumor 

suppressor proteins by binding to their 

corresponding mRNA, which leads to cancer 

proliferation. However, anti-microRNA 

oligonucleotides bind to microRNAs and 

abrogate their effect (Figure 11). Such 

oligonucleotides were synthesized and tested 

[106].  A nucleotidic sequence recognized by the 

tested microRNA was fused to luciferase, and 

their processing resulted in the corresponding 

mRNA molecule (Figure 11, 1). When the 

microRNA binds to this sequence in the mRNA, 

luciferase synthesis is inhibited and no light is 

measured (Figure 11, 2). By contrast, when 

adding anti-microRNA, the microRNA is 

inactivated, luciferase synthesis is re-started and 

light output increases (Figure 11, 3) [106]. This 

was a proof-of-principle study but, recently, it 

was demonstrated that RNAi could indeed be 

observed in human cells [107, 108], thereby 

opening the possibility to a new cancer therapy 

based on RNAi inhibition and with luciferase 

assessment [109, 110]. 

 

9.3. Infection progression 
To obtain better clinical treatments, it is 

important to know how precisely a disease-

causing agent, either viruses, bacteria or 

protozoan, spreads inside an organism. The 

standard procedure consists of inoculating test 

animals (mice) with the studied agent and follow 

its spread over time through the sacrifice of the 

animals and analyzing the contaminated tissues 

ex vivo.   This   approach,  however,   has several  

drawbacks: firstly, lots of animals need to be 

inoculated and killed to  obtain  useful  statistical  
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data which, besides the ethical issues raised, is 

expensive and time-consuming; secondly, if a 

disease is already characterized, and its target 

organs are well-known, only they will be the 

focus of detailed analysis, thus missing 

unexpected sites of attack. BLI can overcome at 

least part of these issues; a whole-body analysis 

ensures that all sites of infection are detected, 

and statistical analyses are facilitated since only 

one animal can be followed in the course of the 

experiment [58, 111-115]. Such approach was 

employed to visualize the germination of 

Bacillus anthracis spores in living mice using 

engineered Bacillus that express bacterial 

luciferase [116]. It was possible not only to 

detect the primary site of infection - the lungs - 

but also to discover the germination onset (about 

18 h in living animals but as early as 30 minutes 

if the animals are immediately euthanized) [116]. 

Furthermore, it was demonstrated that 

macrophages play an important role in the 

infection process since these cells are recruited to 

deal with spores, which in fact germinate inside 

macrophages [116]. Other relevant target is 

Mycobacterium tuberculosis, the causative agent 

of tuberculosis. The complete host-parasite 

dynamics was monitored in vivo with genetically 

modified bioluminescent mycobacteria [117]. 

Recently, three luciferase genes, those from 

Gaussia, bacteria and firefly, were optimized 

towards their application with mycobacteria 

[118]. Good results were obtained, namely the 

production of self-illuminating mycobacteria 

with lux genes [118]. 

Viruses can also be monitorized this 

way. A murine gammaherpesvirus was 

engineered to express firefly luciferase, as a 

model for human viruses that can persist for a 

lifetime in the organism leading to several 

diseases, like Epstein-Barr and Kaposi’s 

sarcoma-associated herpesvirus [119]. When 

introduced into mice, the host-parasite dynamics 

could be studied in a prolonged way, leading to 

the discovery of new sites of infection, the 

process of local organs clearance and the 

possibility of infection reactivation by 

immunosupressors [119]. 

 

9.4. Cancer therapy 
Cancer has always been a field of 

intense research. The major focuses have been 

the localization of tumors and metastasis, the 

follow up of the disease’s evolution and the 

assessment of the response to treatment. The use 

 
 

Figure 11. Principle underlaying the luciferase reporter gene assay applied to RNA interference (RNAi). A 

messenger RNA (mRNA) molecule (green structure) is produced based on the luciferase gene. Luciferase is 

produced from mRNA and addition of luciferin leads to light emission (1). If the mRNA contains a nucleotide 

sequence complementar to a micro RNA (miRNA) fragment (red structure), this miRNA will bind to it and 

hamper the production of functional luciferase and, hence, the light emission (2). An in vitro synthesized anti-

miRNA molecule (purple structure), with the same sequence of the mRNA, will bind the miRNA, freeing the 

mRNA to be processed and produce luciferase (3). RNAi could be the basis for novel gene-mediated therapies. 
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of animal models is a standard procedure, which 

now can be improved with BLI [120-122]. For 

instance, the synthetic analogue of hemiasterlin - 

a natural product of a marine sponge with 

antiproliferation properties - was tested as a 

potential novel chemotherapeutic agent against 

bladder cancer [123]. Human cancer cells were 

transfected with firefly luciferase and an in vivo 

study demonstrated that the bioluminescent 

signal decreased in a time- and dose-responsive 

manner to hemiasterlin analogue, thus indicating 

the compound’s efficacy. In another application, 

several tumors and metastasis were imaged by 

injecting bioluminescent Escherichia coli in 

living mice [124]. Taking into account that 

bacteria were indeed found in excised tumors 

from patients, this could be a selective probe for 

early detection of malignancies [125]. 

As already described for drug screening 

(see section 9.1.), in cancer research much 

attention is being paid to molecular targets, like 

the chemokine receptors CXCR4 [126] and 

CXCR7 [127], the heat shock protein 90 [128, 

129], the protease furin [130], the apoptose 

effector caspases 3/7 [131] and microtubules 

[132]. Alternatives to “classical” chemotherapy 

are also being pursued, for example with a 

biopolymer gel for controlled delivery of drugs 

[133] and the establishment of immune cell 

therapies [134], both of which can be assessed by 

BLI in living animals. 

 

9.5. Cell tracking 
The fate of single cells or even 

molecules can be tracked through modern 

technology, using luciferases as biomarkers. This 

tracking is especially important in cell-based 

therapies like T-cell traffic toward tumor sites 

[135] or in the recent field of stem cell 

technology [136-139]. In the first example, mice 

were inoculated with several tumors and firefly 

luciferase-bearing T cells were injected into 

them. Bioluminescence was detected in vivo and 

co-localized with tumors [135]; in the second 

one, myoblasts were removed from genetically 

modified mice expressing luciferase [139]. When 

transferred to muscle-challenged mice, it was 

possible to monitor, by BLI, not only 1) their 

correct localization but also 2) the proliferation 

of such cells, due to an increase in the 

bioluminescent signal, and 3) the minimal 

number of cells that must be transferred to allow 

their self-renewal [139]. 

 

9.6. Biosensors 
The detection and quantification of 

biologically relevant analytes or cellular 

processes is often accomplished by biosensors.  

Strictly speaking, a biosensor is “a device that 

uses specific biochemical reactions mediated by 

isolated enzymes, immunosystems, tissues, 

organelles or whole cells to detect chemical 

compounds usually by electrical, thermal or 

optical signals” [140]. Luciferase acts as the 

biological sensing element, either directly 

interacting with the analytes or consuming a by-

product generated by coupled reactions, 

generating a bioluminescence output 

proportional to the concentration of the analyte 

or to the extension of the cellular and molecular 

process under study. 

Perhaps one of the most popular 

biosensor utilizes either genetically engineered 

bioluminescent bacteria or natural 

bioluminescent bacteria to sense pollutants in 

toxicological and environmental contexts, for 

instance in drinking water [141-143]. 

The classical architecture of a biosensor 

may not always follow the expected pattern, as 

the biological sensing element could be added in 

solution to the sample or be genetically coded, 

and so it will not be integrated within the 

transducer or detector. Such biosensor 

methodologies include luciferase reporter gene 

assays, coupled bioluminescent assays, 

bioluminescent immunoassay, BRET and split 

luciferase assays. 

Several luciferase-based biosensors for 

analytes of biological concern are described in 

the literature. They include extracellular 

adenosine [144], carcinogens [145], 

prostaglandin E2 [146], ADP-ribose [147], L-

cysteine [148], calcium [149], S-Equol (an 

estrogenic compound) [150], nitric oxide [151], 

stress hormones [152], c-Myc (a transcription 

factor protein) [153], rapamycin (an 

immunosuppressant drug) [154], cAMP [154], 

2’, 5’-oligoadenylate 5’-triphosphate (an effector 

in the interferon antiviral system) [155], 

interferon [156], glycans in the cell membrane 

[157], glucose [158] and nucleic acids [159-161]. 

Regarding this latter example, it is curious to 

note that there are methods for nucleic acid 

detection based on RET [159], luciferase-

quantum dot BRET [160] and split luciferase 

[161], althought these concepts are traditionally 

applied to assay protein-protein interactions. In 

the luciferase-quantum dot BRET method, two 

oligonucleotide probes are constructed in vitro, 

one coupled to Renilla luciferase and the other, 

with a complementary sequence of the target 

nucleic acid, is coupled to a quantum dot [160]. 

In the absence of the target nucleic acid, the two 

probes will hybridize, under certain conditions, 

and a BRET signal will be measured after 

addition of coelenterazine. In the presence of 

target nucleic acid, this and the luciferase probe 

will compete to bind to the quantum dot probe. 
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The more nucleic acid in the sample, the more 

extense will be the hybridization with the 

quantum dot probe and the weaker will become 

the BRET signal [160]. The split luciferase 

method is similar, except that the two probes 

each contain a fragment of a Renilla luciferase 

[161], instead of a complete luciferase and a 

quantum dot. 

In the medical context the focus is on 

monitoring pathogenic compounds, for instance 

bacterial endotoxin [162] and hepatitis B virus 

surface antigen [163], as well as whole organism 

like lytic bacteriophages [164] and to 

differentiate bacterial strains [165]. 

The activity of numerous enzymes can 

be assayed with luciferase biosensors. To quote a 

few, there are biosensors for acetate kinase 

[166], pyruvate phosphate dikinase [166], 

thymidylate kinase [167], glutathione S-

transferase [168], protein methyltransferases 

[169], plant -oxidase [170], phospholipase C 

[171] and proteasome enzymes, namely 

chymotrypsin, trypsin and caspases [172]. 

Proteases have been receiving much attention, as 

it was demonstrated that their activity is 

generally disregulated in several types of cancer. 

Some biosensors are based on split luciferase 

assays [173, 174], but another series of such 

biosensors are based on the BRET technology, 

either with sole genetically encoded sensing 

elements, the luciferase and a fluorescent protein 

[175], or with the chemical coupling of 

luciferases with nanomaterials, namely quantum 

dots [176] and gold nanoparticles [177]. In the 

former case, a thrombin assay was created by 

generating a plasmid containing a thrombin-

cleavage sequence between the “donor” (Renilla 

luciferase) and the “acceptor” (green fluorescent 

protein) genes. When coelenterazine was added, 

the emitted light was specific of the “acceptor” 

protein due to the occurrence of BRET but, in 

the presence of thrombin, the sequence that links 

the two proteins was cleavaged, the two proteins 

got apart from each other and the emitted light 

became specific of the luciferase. By quantifying 

the ratio of “acceptor” / “donor”  emission, the 

concentration of thrombin could be calculated. In 

regard of luciferase-quantum dots, a similar 

procedure was pursued, except that the plasmid 

only contains the protease amino acid sequence 

fused with Renilla luciferase8 gene [176] (Figure 

8b). In vitro, this fused protein was 

bioconjugated to the selected quantum dot. This 

strategy was applied for the quantification of 

matrix metalloproteinases. The luciferase-gold 

nanoparticles biosensor presents a different 

principle. Herein, the gold nanoparticles quench 

the emission from Renilla luciferase8, and hence 

little or no light is detected. Cleavage of the 

amino acid sequence between the nanoparticles 

and luciferase8 diminishes the quenching, 

enhancing the bioluminescent emission. Once 

more, this biosensor was constructed towards 

measurement of a matrix metalloproteinase 

activity [177]. 

In cellular biology, the study of 

physiological processes within living cells and 

organisms is very relevant, and so is the 

construction of specific biosensors for protein-

protein interactions and dynamics [178-182], 

sodium channel activity [183] and mitochondrial 

fusion [184], among others. Also, the post-

translational regulation of proteins, which tags 

these proteins to specific fates or functions in the 

cellular environment, deserves special 

consideration. Such well-studied modification is 

protein ubiquination by the covalent attachment 

of the small peptide ubiquitin. A BRET-based 

assay involves the fusion of green fluorescent 

protein to ubiquitin and Renilla luciferase to the 

target protein, for example -arrestin [185]. 

When -arrestin is ubiquitinated, Renilla 

luciferase and green fluorescent protein become 

close to each other and a BRET signal (emission 

of green light by the fluorescent protein instead 

of emission of only blue light by luciferase) is 

detected [185]. Recently, a novel ubiquitin-like 

post-translational entity was discovered, the 

small ubiquitin-like modifier (SUMO) [186, 

187], followed by a BRET-based biosensor for 

SUMOylation using Renilla luciferase fused to 

SUMO and enhanced yellow fluorescent protein 

fused to the target protein [188]. 

 

9.7. Basic research 

Basic, fundamental or pure research 

aims to increase knowledge about the principles 

underlying a field of research [189]. As a 

consequence of its definition, basic research does 

not seek to obtain a direct applied output. 

Nevertheless, it is a proven fact that many 

techniques, products and new lines of 

investigation owe their existence to basic 

research [189]. 

Many methods applied in basic research 

rely upon luciferases. For example, as a gene 

reporter, firefly luciferase was applied to study 

gene regulation in the parasitic protozoan 

Leishmania [190]. In this study, it was 

discovered a novel genetic element responsible 

to control gene expression, at the mRNA level, 

leading to a differential gene expression pattern 

according to the developmental stage of the 

parasite, either in its obligatory intracellular 

stage or extracellular free-live stage [190]. This 

was possible by constructing plasmids in which 

firefly luciferase gene was placed under the 

control of this genetic element, transfecting 
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Leishmania cells and performing luciferases 

assays after active luciferase was produced in 

vivo [190]. In another interesting study, it was 

discovered a single mRNA molecule in an insect 

(silkworm) that codes for three proteins, that is, a 

polycistronic mRNA [191]. Although this 

phenomenon is common in prokaryotes, it is 

relatively rare in eukaryotes and, whenever it 

occurs, it is mainly in the form of dicistronic 

mRNA. Each of these three genes was replaced 

with firefly luciferase in an artificially 

constructed mRNA molecule and translated in 

vitro [191]. Likewise, firefly luciferase was used 

as a reporter gene in studies regarding higher 

eukaryotes, such as for the study of genetic 

regulatory elements within mRNAs of the rat 

brain-derived neurotrophic factor (BDNF) gene 

[192] and human dihydrofolate reductase gene 

[193]. 

Another important line of investigation 

is related to receptor-ligand associations and 

structural organization, which allows their 

subsequent study as therapeutic targets. In this 

context, BRET-based assays are the choice par 

excellence. For example, such studies 

demonstrated dimerization of the human 

follitropin receptor [194], the interaction of 

dopamine and 5-hydroxytryptamine receptors to 

constitute a heteromer [195], the assembly of 

Kir3 channels with G protein [196] and 

conformational changes in the TrkB receptor by 

binding of its agonist [197]. 

In immunological studies, 

bioluminescent Escherichia coli with bacterial 

lux gene was applied to analyze the complement 

system [198], which is a defence mechanism 

against bacterial invasion [199]. 

The mechanism of action of anesthetics 

is not fully understood. Fundamental research in 

this area has been relying upon model proteins. 

Firefly luciferase was first introduced as a model 

in 1984 [200, 201] and, since then, it is one of 

the best model systems for studying anesthetic-

protein interactions [202]. It has several 

interesting features such as the ability to bind a 

large range of anesthetics at over a 100,000-fold 

range of potencies and displaying concentration 

sensitivities very close to those found in 

anesthetized animals [200-202]. Computational 

simulation with luciferase and other proteins, 

based on previously obtained crystallographic 

data of the protein-anesthetic complexes, will 

also bring new insights to this theme [203, 204]. 

 

9.8. Biomedical engineering 

The area of bioengineering can be 

defined in the following way: “Bioengineering 

integrates physical, chemical, or mathematical 

sciences and engineering principles for the study 

of biology, medicine, behavior, or health. It 

advances fundamental concepts, creates 

knowledge for the molecular to the organ 

systems levels, and develops innovative 

biologics, materials, processes, implants, 

devices, and informatics approaches for the 

prevention, diagnosis, and treatment of disease, 

for patient rehabilitation, and for improving 

health" [205]. Under this definition it is clear the 

focus on biomedicine, albeit this discipline has a 

broader scope, covering other areas of life 

science [205]. 

Examples of luciferase application in 

biomedical engineering can be found in the 

literature. They include the BLI of luciferases in 

bone-tissue engineering [206], the evaluation of 

bacterial infection in bioengineered materials, 

also by BLI [207], and the evaluation of an 

enhanced system to produce recombinant 

proteins with pharmacological applications, 

using luciferase as a reporter gene [208]. 

 

10. Final remarks on luciferases in 

bioanalytical chemistry 

 

10.1. Advantages and drawbacks of Luciferase 

methodologies  

This review presented representative 

examples of applications of luciferase systems in 

bioanaytical and biomedical research, as well as 

some of the principles underlying them. It is not 

intended to be a thorough compendium of all the 

possible applications of luciferases, as more and 

more examples are published almost every day, 

but rather to state the potential of luciferase in 

modern bioanalytical chemistry and biomedicine. 

The advantages of any luciferase assay 

are the high sensitivity and selectivity, the 

absence of luciferase activity background in non-

bioluminescent organisms, the wide dynamic 

range for analyte quantification, reduced assay 

time, low costs of both reagents and equipments 

and no special training to perform analysis. 

Furthermore, each luciferase presents specific 

interesting features. Gaussia and Cypridina 

luciferases are naturally secreted, which avoid 

the cell lysis to assay luciferase’s 

bioluminescence; Gaussia is the smallest 

luciferase cloned so far, which diminishes steric 

hindrance when fused to other proteins, like in 

BRET assays; bacterial luciferases do not require 

the exogenous supply of luciferin, as do the other 

luciferases. 

From the initial research with firefly 

luciferase it did not take long for scientists to 

realize the potential of this enzyme in ATP 

assays. In fact, as an ubiquitous energy source in 

living organisms, ATP quantification is 

important for detection of bacterial 
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contamination in food [209], for diagnostic 

purposes [210] and to study metabolic shifts in 

living cells [211]. The reporter gene technology 

was also greatly benefited with luciferases, so 

that countless applications of luciferase reporter 

genes were reported. The luciferases described in 

this review require no post-translational 

modification for enzymatic activity, are non-

toxic, and can be expressed in both prokaryotic 

and eukaryotic systems.  

BLI is becoming a widespread-use 

technique, especially for the study of biological 

processes in small laboratory animals [212]. This 

technology combines the advantages of a 

reporter gene assay with the possibility of non-

invasive, real-time and in vivo whole-body 

optical imaging [57-59], which makes it 

competitive with other well-established imaging 

techniques like magnetic resonance imaging 

(MRI), computerized tomography (CT) or 

positron-emission tomography (PET) for animal 

use [137]. However, in markedly contrast with 

these techniques, BLI is not prone to be used in 

human patients due to low transmission of the 

generated photons through tissues and concerns 

about luciferin dynamics in humans. However, 

even if BLI never reaches human diagnostics, at 

least it has the merit of decrease the demand for 

experimental animals. The only invasive steps in 

BLI are the anesthesia and the luciferin injection, 

and after the imaging the animals are removed 

from the chamber and allowed to recover [27-

59]. As signals from the same animal can be 

measured over a number of time points, the 

animals serve as their own controls [57-59]. This 

way, being impossible to completely abolish 

animal testing in scientific experiments, at least 

more animals are spared. 

BRET is another successful example of 

a bioanalytical method employing luciferases. 

Sundry studies have shown that BRET is 

superior to FRET, the most widespread RET 

method, regarding sensitivity [175, 213, 214]. 

However, as any bioanalytical technique, it has 

some drawbacks. A BRET assay requires a 

careful planning and data treatment to obtain 

reliable results, for example to discard BRET 

signals due to non-specific interactions [69]. But 

as long as these requirements are fulfilled, a 

rigorous experiment can be performed. In the 

same sense, split luciferase assays present a 

crucial requirement: the splitted fragments 

should not associate spontaneously in the 

absence of the binding proteins, as this would 

render the method less reliable due to the 

presence of false positives [86]. Studying the 

self-assembly of fragmented reporters, it has 

been concluded that, if they are expressed at high 

levels, in certain cases, the fragments can indeed 

self-associate with each other regardless of the 

protein-protein interaction [86]. Thus, it is 

important to perform appropriate controls in split 

luciferase assays to ensure the specificity of the 

detected signal and to express the protein fusions 

at low levels, close to those of the endogenous 

counterparts to avoid self-association [86]. 

Albeit the great utility of luciferases as 

biomarkers, there are other important 

alternatives, namely fluorescent proteins [215-

217], organic dyes [218] and quantum dots [78, 

219, 220]. Fluorescent proteins have the 

drawback of requiring an external light 

excitation, which can elicit tissue 

autofluorescence, and requires a certain time 

period for its intrinsic chromophore to be formed 

inside living cells [215-217]. Organic dyes, like 

fluorescein or Cy3, are generally small 

molecules and, hence, present less steric 

hindrance, combined with interesting chemical 

and photophysical properties [218]. Nonetheless, 

they lack the specificity conferred by an 

enzymatic reaction and cannot be genetically 

coded, thus limiting their range of applications. 

Finally, quantum dots are attracting much 

attention for bioanalytical applications [219, 

220], but there are serious concerns about their 

biostability and toxicity, demanding more studies 

on it (see section 10.2.3.). Like organic dyes, 

quantum dots cannot be genetically coded. 

The contribution of luciferases in 

biomedical applications is astonishing. However, 

many of the publications are proof-of-principles 

studies. There is a pressing need for luciferases 

methods to be validated and become standard 

procedures. 

 

10.2. Current and future improvements 

 

10.2.1. Novel luciferases 

Currently the most used luciferases are 

those from firefly and Renilla, but this scenario 

is probably going to change as new luciferases 

are cloned and characterized, by one hand, or 

previously described luciferases with scarce 

applications regain attention, by the other hand. 

The most promising ones include: 

1) Fridericia luciferase – This 

luciferase was discovered in Fridericia heliota, a 

Siberian bioluminescent earthworm [221]. Little 

is known about its bioluminescent system, but 

studies are currently being made. For example, it 

is already known that this is an ATP-dependent 

luciferase, which suggests a novel biosensor for 

ATP like firefly luciferase, emitting a blue-green 

light with a maximum at 478 nm [222]. The 

presence of anions, cations of divalent metals, 

detergents and certain lipids, as well as changes 

in pH and temperature, may alter the emission 
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profile in vitro [223]. The structures of both 

luciferase (a 70-kDa enzyme [224]) and luciferin 

also need to be clarified, and these studies are on 

their way regarding luciferin [225]. 

2) Dinoflagellate luciferase – 

Dinoflagellate luciferase, obtained from the 

species Pyrocystis lunula, is a 140-kDa 

luciferase emitting blue light ( max = 474 nm) 

with dinoflagellate luciferin, a tetrapyrrole ring 

similar to chlorophyll [226, 227]. Its cloning and 

expression in mammalian cells suggest that this 

could be a novel luciferase reporter gene [227]. 

3) Metridia luciferases – Metridia 

luciferase comes from the marine crustaceans 

Metridia longa [228] and Metridia pacifica 

[229]. Both organisms emitt blue light ( max = 

485 nm) with coelenterazine. Metridia longa 

possesses a sole luciferase with a molecular 

weight about 24 kDa [228], whereas in Metridia 

pacifica two luciferase genes were cloned, 

resulting in two luciferase isoforms of about 20 

and 23 kDa and a remarkable thermostability 

[229]. They are secreted in vivo and in vitro, a 

fact that prompted their use as reporter gene in 

non-disruptive conditions, that is, without the 

need to cell lysis in order to detect luciferase 

activity [228, 229]. 

4)  Railroad-worm luciferases 

(Phrixothrix) – Railroad-worms of the genus 

Phrixothrix are peculiar creatures in the sense 

that a sole specimen naturally displays two 

bioluminescent colors, yellow-green and red. In 

fact, a green luciferase was cloned from 

Phrixothrix vivianii ( max = 542 nm), and a red 

one from Phrixothrix hirtus ( max = 636 nm) [12, 

230]. These luciferases were subjected to genetic 

engineering to allow and improve their 

expression in mammalian cells [231] and 

proposed as reporter gene in the analysis of clock 

gene transcription [232]. It would be expected 

that the red-emitting luciferase from Phrixothrix 

hirtus would have a widespread use, as it is one 

of the rare naturally red-emitting luciferase, but 

that is not the case, dut to its low activity and 

stability [233]. However, recently this luciferase 

was subjected to site-directed mutagenesis to 

produce mutants with both enhanced activity and 

better stability [233]. Also, its quantum yield 

was measured, and a value of 0.15 was obtained 

[234]. This way, this railroad-worm luciferase is 

prone to gain popularity.  

5) Click beetle luciferases 

(Pyrophorus, Pyrearinus) – A representative 

species of click beetle is the Jamaican click 

beetle Pyrophorus plagiophthalamus. Just like 

Phrixothrix, individual specimens in vivo display 

two sets of colors, green to yellow-green in the 

head and green to orange in the abdomen [235]. 

In 1989 four isoforms of luciferase were cloned 

form the abdomen of specimens of Pyrophorus 

plagiophthalamus, yielding luciferases with 

emission of green ( max = 546 nm, molecular 

weight of 61 kDa), yellow-green ( max = 560 nm, 

molecular weight 60 kDa), yellow ( max = 578 

nm, molecular weight 60 kDa) and orange light 

( max = 593 nm, molecular weight 60 kDa) [235]. 

The major interest in such a variety of colors is 

the possibility of formulating multicolor assays 

to detect several analytes at the same time. For 

instance, a biosensor to evaluate the action of 

agonists and antagonists upon their binding in 

the corresponding receptors was developed with 

green ( max = 540 nm) and orange ( max = 610 

nm) Pyrophorus luciferases [236]. A split 

luciferase assay for protein-protein interactions 

was also reported with those same luciferases 

[237]. 

In the meantime, another Brazilian click 

beetle species, Pyrearinus termitilluminans, was 

studied [238]. It possess a 61-kDa green light-

emitting luciferase ( max = 538 nm) [238], which 

is also pH-insensitive in the range of pH 8 to pH 

10 and with higher thermostability compared to 

other beetle luciferases, like firefly’s [238]. But 

the most remarkable feature is its quantum yield, 

calculated as 0.61 [234], one of the highest 

among the known luciferases. This luciferase 

was genetically modified to enhance its 

expression level and brightness compared to 

firefly luciferase in mammalian cells [239], thus 

increasing its versatility in bioanalysis. 

It is worth to remember that railroad-

worm and click beetle luciferases use firefly D-

luciferin as a substrate. This fact avoid the 

purchase of different luciferin in laboratories 

where firefly luciferase is well-established and 

facilitate the use of these luciferases with firefly 

luciferase in multiplex analysis, as the addition 

of the substrate will activate all the luciferases at 

once.  

 

10.2.2. Luciferase and luciferin improvements 

The improvement of current-use 

luciferases and the corresponding luciferins is 

always a goal to keep in mind. Some of the most 

important improvements are listed below. 

1) Luciferin derivatives and their 

delivery – The chemical synthesis of derivatives 

of firefly D-luciferin aimed to improve its 

stability and bioacculation in vivo [240], to 

augment its light output in the bioluminescent 

reaction [241], to alter the color emission, 

especially for red-shifted wavelengths [242, 243] 

and to produce “caged” luciferins that require an 

activation step in order to react with firefly 

luciferase at a defined time and cellular 

localization [244]. Besides firefly D-luciferin, 

native coelenterazine underwent several 
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chemical modifications, yielding successful 

analogues as coelenterazine 400-a (DeepBlue 

C™), coelenterazine-v, coelenterazine-h, 

coelenterazine-f, coelenterazine-e, ViviRen™, 

among others [245-248], with higher resistance 

to oxidation, higher bioaccumulation and red-

shifted light colors. 

Actually, the extended availability of 

luciferins in vitro and in vivo is a hot topic of 

research, as it leads to longer analysis times. 

Two main approaches are used to achieve this 

goal: accessory proteins to recycle firefly 

oxyluciferin or to help stabilize coelenterazine; 

and novel delivery systems. The recycling of 

oxyluciferin by a luciferin regenerating enzyme 

(LRE) was reported some years ago [249]. Such 

enzyme was cloned from the bioluminescent 

Japanese fireflies Luciola cruciata and Luciola 

lateralis [250], the Iranian firefly Lampyris 

turkestanicus [251] and the North American 

firefly Photinus pyralis [252]. In an in vitro 

study, it was showed that this enzyme can indeed 

induce a more prolonged light emission [251]. 

Other possibility reported is the coupling of 

coelenterazine to a coelenterazine-binding 

protein [253]. As it was demonstrated, not only 

this protein did avoid the oxidation of 

coelenterazine but also increased the sensitivity 

of the assay: since low concentrations of 

coelenterazine are required, lower background 

interference is produced [253]. 

The development of safer and more 

biocompatible delivery systems are useful in 

bioluminescent assays. As examples, 

polyethylene glycol (PEG) molecules were 

covalently attached to 6-amino-D-luciferin [254], 

or D-luciferin was encapsulated into liposomes 

[255]. In both cases, light was registered for 

several hours after injection of these conjugates. 

2) Additives to improve 

luciferase’s activity – CoA was one of the first 

compounds added to firefly luciferase’s reaction 

mixture to promote or alter the light emission 

pattern. It participates in a side-reaction where 

inhibitory compounds, generated in the 

bioluminescent reaction, react with CoA, leading 

to less inhibitory products and freeing luciferase 

for another reactional cycle [32]. Other 

compounds include ethylenediaminetetraacetic 

acid (EDTA, a quelant agent for metal ions such 

as Ca
2+

 and Fe
3+

), glycerol (an anti-freeze and 

cryoprotectant), bovine serum albumin (to 

stabilize enzymes) or sodium azide (a 

preservative). Recently a research paper showed 

that synuclein, a small protein whose 

accumulation in neuronal tissues has been 

associated to Parkinson’s disease, Alzheimer’s 

disease, and several other neurodegenerative 

illnesses [256], can interact and bind to firefly 

luciferase, leading to an enhancement in the light 

emission [257]. On the other hand, some 

chemicals act by structurally stabilizing firefly 

luciferase, namely trehalose and magnesium 

sulfate [258], or by protecting it against 

proteolytic degradation, an effect exerted by 

osmolites like sucrose, glycine and dimethyl 

sulfoxide (DMSO) [259]. 

Another line of research deals with the 

identification of inhibitors of firefly luciferase 

[260]. A detailed list of inhibitors, together with 

their potency and mode of action, can aid in 

eliminating interferences from reaction mixtures 

and samples. 

3) Genetic engineering and site-

directed mutagenesis – The application of 

genetic engineering techniques to firefly 

luciferase aims to improve features like 

thermostability [261-264], pH tolerance [262, 

264], protease resistance [265] and catalytic 

activity [266, 267]. These objectives also hold 

true for other luciferases like Renilla [81, 268] 

and Gaussia [269, 270], in which increased 

stability, photon emission rate and catalytic 

activity were achieved. 

The most recent interventions are 

concerned with producing red-shifted luciferases 

for BLI applications, in order to raise the number 

of photons that can cross cells and tissues and 

reach the detector. To this end, sundry firefly 

luciferase mutants were engineered with 

maximum wavelength emissions ranging from 

610 to 617 nm [271-273]. Likewise, a mutant of 

Renilla luciferase had its natural light color 

shifted from blue ( max = 480 nm) to green with 

natural coelenterazine ( max = 547 nm) and even 

to orange with coelenterazine-v ( max = 588 nm), 

and also presented greater stability and higher 

light emission than native Renilla luciferase 

[253, 274]. 

Finally, bacterial luciferase was 

subjected to genetic improvements. For a long 

time, the use of bacterial luciferase as reporter 

gene was restricted to prokaryotic systems. 

Recently, however, an efficient expression in 

mammaliam cells was presented [275]. After this 

great achievement, other features like self-

bioluminescence in mammalian cells [276] and 

an “upgrade” in its performance through the 

splitting of the lux operon [277] were reported, 

thus expanding its analytical potential. 

4) Luciferases’ immobilization – 

Traditionally, luciferase assays are performed 

with free luciferase in solution or, when 

genetically coded, luciferase is soluble in the 

cytoplasm. However, several studies have shown 

that the immobilization of luciferases in specific 

supports could lead to an increase in their 

stability along time and increased light output. 
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For example, as early as 1976, bacterial 

luciferase and FMN reductase were immobilized 

on glass beads and used as a biosensor for 

NADH [278]. Other common matrices include 

polymer gels of starch and gelatine for bacterial 

luciferase [279], and agarose gels (Sepharose) 

[280], glass strips [281], and cationic liposomes 

with cholesterol [282, 283], all for firefly 

luciferase. A slightly different strategy involves 

the engineering of luciferases to be expressed 

with biotin, which can then be coupled to 

streptavidin, resulting in firefly’s 

immobilization. In an elegant experiment, 

derived from this basic concept, firefly luciferase 

was genetically fused to a biotin-ligand protein, 

expressed in cells and chemically biotinylated. 

Later, this luciferase was attached to streptavidin 

beads of about 1 m in diameter. Finally, those 

biotinylated luciferase-streptavidin beads were 

added to cells previously biotinylated. The beads 

became attached to the cells’ surface through 

uncovered streptavidin sites on the beads. The 

whole conjugate was applied in the measurement 

of ATP release from astrocyte cells using a CCD 

camera in real time and with improved 

sensitivity [284]. 

The fabrication of optical biosensors 

and microfluidics devices offers favourable 

features like the cost-effectiveness, the 

optimization of reaction’s conditions, the 

portability and ease of use. Whole-cell 

biosensors with naturally or genetically modified 

bioluminescent bacteria are being tested in 

regard to the best material and protocol for 

immobilization. For this purpose, fibers like 

cotton, polyester, viscose, rayon and silk were 

tested [285]. Also, the optical properties of 

bacterial luciferase were studied in a biochip 

model [286]. Firefly luciferase was reported to 

be immobilized in optical fibers for ATP 

detection [287], and incorporated into a 

microfluidic device [288]. Further developments 

in biosensors fabrication must focus on obtaining 

longer sensing operation, faster response time 

and good signal reproducibility. 

The rise of nanochemistry and 

nanotechnology will bring benefits to this area 

(see also section 10.2.3.). For example, firefly 

luciferase was incorporated into nanostructured 

monolayers of colloidal poly(dimethyldiallyl 

ammonium chloride), which were 

simultaneously deposited onto 520 nm-diameter 

polystyrene beads and tested for their ability to 

assay ATP [289]. Enhanced time stability and 

activity compared to bare luciferase were found 

[289]. 

5) Improved methodologies – 

Taking into account the growing interest in the 

BRET technology, researches have been 

applying a lot of effort in finding novel and 

improved BRET pairs. Such pairs involve green-

emitting luciferases as “donors”, rather than the 

blue-emitting Renilla luciferase, and red 

fluorescent proteins as “acceptor”, for example 

in the combination firefly luciferase-Discosoma 

red fluorescent protein [290, 291] and click 

bettle luciferase-tdTomato [292]. Returning to 

Renilla and Renilla luciferase8 systems, their 

coupling with yellow fluorescent proteins and 

Renilla green fluorescent protein, rather than the 

widespread Aequorea victoria green fluorescent 

protein, have been reported [293]. These novel 

systems displayed superior sensitivity compared 

to established BRET pairs [293]; Likewise, the 

stability of the well-known Renilla luciferase8-

quantum dot conjugate was improved by 

encapsulating the luciferase into polymeric 

polyacrylamide gel [294]. Interesting recent 

proposals involve intramolecular BRET by 

chemically labeled luciferases with red or 

infrared fluorescent organic dyes, for instance 

between Cypridina luciferase and an indocyanine 

derivative with an emission maximum of 675 nm 

[295] or between recombinant firefly luciferase 

and Alexa Fluor near-infrared dyes derivatives 

with emission maxima of 705 and 780 nm [296]. 

The discovery in nature of novel fluorescent 

proteins [297], even in the near infrared range 

[298], will certainly boost the design of new 

BRET pairs. 

The improvement of BLI in small 

animals also attracts attention. For example, it 

was analyzed a better way of administering 

luciferin [299], whereas other study shed light on 

luciferin dynamics in plasma [300]. 

A better understanding of the 

complexity of whole cellular and molecular 

physiology, like in proteomics, genomics, 

lipidomics and metabolomics, can only be 

achieved by the combination of several 

techniques at a single analysis to monitor 

multiple events simultaneously, the so-called 

multiplex screening. In this regards, several 

studies were published concerning multiplex 

imaging in BRET and BLI [176, 301, 302], the 

combination of BLI and split luciferase assay 

[174], the combination of BRET and split 

luciferase assay [178] and a sequential BRET-

FRET technique (SRET) [303]. 

 

10.2.3. Luciferases and nanomaterials 

Nanomaterials are the result of the 

technological application of nanochemistry 

concepts. They are designed, synthesized or 

fabricated for specific purposes, and arise from 

conventional bulk materials like carbon, metals 

or semiconductors, but their dimensions are 

restricted to the nanoscale, where the substances 
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are governed by quantum mechanics phenomena 

and, this way, their properties are notably 

different from the starting bulk materials [304]. 

Actually, improved or even novel properties are 

obtained. These materials have innumerable 

applications, having been recruited in bioanalysis 

[305, 306] and suggested in biomedicine [307-

309]. 

The coupling of luciferase-

nanomaterials is a fruitful field. Some significant 

examples includes the luciferase-quantum dot 

BRET conjugates for BLI [80] and biosensing of 

nucleic acids [160] and proteases [176], 

luciferase-gold nanoparticles biosensor for 

proteases [177], all already described, and firefly 

luciferase-carbon nanotubes for detection of ATP 

[310]. Curiously, the benefits are mutual: Renilla 

luciferase8 was used as a scaffold to mediate the 

growing of PbS quantum dots capable of 

emitting near infrared light by BRET with the 

luciferase [311]. This way, this hybrid 

nanostructure not only allowed the attainment of 

the desired quantum dot but also resulted as a 

novel BRET-based sensor with luciferase. 

In spite of those promising features, the 

application of nanomaterials inside cells has 

raised relevant questions regarding biosafety and 

biocompatibility [312, 313]. Some studies point 

out to cellular damages to the nucleus and 

mitochondria in cell cultures by exposure to 

quantum dots [313]. The synthesis of quantum 

dots with more biocompatible materials like 

carbon, instead of the “traditional” metals like 

cadmium or selenium, can overcome part of this 

drawback [314, 315]. Another strategy is the 

capping of quantum dots with biocompatible 

molecules [306, 316]. A bioassay using 

bioluminescent bacteria was already proposed to 

evaluate the toxicity of quantum dots [317]. This 

method could become potentially useful if the 

utilization of quantum dots become more and 

more widespread. And this looks like to be 

exactly the case, as several nanobiotechnological 

companies have been created to commercialize 

these nanoproducts. Such an example is Zymera, 

Inc, which sells the Renilla luciferase8-red-

emitting quantum dot under the trademark 

BRET-Qdot® [318]. 

 

11. Conclusions 

 

Nowadays, luciferases stand out as 

versatile tools in bioanalytical chemistry. Several 

luciferases are well-characterized and have found 

distinctive applications, namely bacterial, firefly, 

Renilla, Gaussia or Cypridina luciferases. 

Beginning with simple ATP assays with firefly 

luciferase, a plethora of techniques was 

developed, like luciferase reporter gene 

technology, BLI, coupled bioluminescent assay, 

split luciferase and BRET. In biomedicine, 

luciferases proved their importance with 

indispensable features like cost-effectiveness, 

easiness to perform, freedom from radioactive 

substrates and high sensitivity and selectiveness. 

They also allow non-invasive and real-time 

imaging in living animals. With luciferases, the 

foundations for improved bioanalytical 

techniques and corresponding astonishing 

discoveries are assured. 
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Objectives 

 

This project encompasses two major objectives, the development and application 

of novel bioanalytical methods based on firefly luciferase and the study of Fridericia 

heliota’s bioluminescent system. 

For each of the proposed methods, aiming the detection and quantitation of 

organophosphorus pesticides, inorganic sulfate, nitric oxide and free fatty acids, multi-

enzymatic reactions that produce or consume ATP, thus enhancing or decreasing the 

bioluminescent signal catalyzed by firefly luciferase, will be presented. Posteriorly, the 

bioluminescent methods will be characterized in terms of limits of detection and 

quantitation, linear range, repeatability and interferences, and finally tested in samples 

selected by their biological, environmental or clinical interest. 

Purified extracts of Fridericia heliota, obtained by Valentin N. Petushkov and co-

workers, will be subjected to instrumental techniques such as high-performance liquid 

chromatography, mass spectrometry and nuclear magnetic resonance, to uncover the 

ultraviolet-visible properties and chemical structure of its luciferin. Later on, the proposed 

structure will be confirmed by chemical synthesis. Finally, luminometric studies with purified 

F. heliota’s luciferase will determine their potential application in novel bioluminescent 

methods. 
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Quantitative analysis of organophosphorus
pesticides in freshwater using an optimized
firefly luciferase-based coupled
bioluminescent assay
SM Marques and JCG Esteves da Silva*

ABSTRACT: In this paper, a coupled bioluminescent assay, relying on the coupling of the enzymes acetylcholinesterase,
S-acetyl-coenzyme A synthetase and firefly luciferase, for the detection and quantitation of organophosphorus pesticides,
is presented. Using malathion as a model organophosphorus pesticide, the assay was optimized through statistical experimen-
tal design methodology, namely Plackett–Burman and central composite designs. The optimized method requires only 20 μL of
sample. The linear range for the assay was 2.5–15 μM of malathion, with limits of detection and quantitation of 1.5 and 5.0 μM,
respectively. This simple, fast and robust method allows samples to be analyzed at room temperature and without any
pretreatment. Copyright © 2013 John Wiley & Sons, Ltd.

Supporting Information may be found in the online version of this article.

Keywords: bioanalytical chemistry; enzymatic assay; bioluminescence; luminometry; experimental design

Introduction
Organophosphorus pesticides are a wide class of synthetic
derivatives of phosphorus and thiophosphorus acids with
organic substituents. Their main application is in insect control,
both in crops and in urban areas, and include the commercial
pesticides malathion (Fig. 1), parathion, phosmet and trichlorfon
(1,2). They act by inhibiting acetylcholinesterase, the enzyme
responsible for hydrolyzing the neurotransmitter acetylcholine,
thus interfering with the normal nerve impulse finalization (3).
Because of their widespread use, many concerns about safety
and toxic exposure are raised, and therefore their detection
and quantitation, as well as their degradation subproducts in
food and in the environment, are of great importance. The use
of domestic wells intended for consumption and recreation is
still common in both developed and developing countries,
especially in less urbanized areas. However, this practice
presents risks because this water may not be subjected to
regular analysis by official agencies. As many domestic wells
are close to or within cultivation fields, possible contamination
with pesticides is relevant. Alternatives to the use of pesticides
are being proposed, for example, biopesticides (4). Nonetheless,
it is not known whether they may replace the current pesticides
in the near future. In fact, although malathion has been banned
by the European Union since 2008, it was reintroduced into the
market in 2010 (5), demonstrating that more research is needed
in this area.

Many of the analytical methods used in pesticide identifica-
tion, separation and quantitation are based on instrumental
techniques, especially gas (6,7) and liquid chromatography
(8,9), sometimes coupled to mass spectrometry (10–12). They
often also include sample pretreatment and concentration by
solid- or liquid-phase extraction. Despite their high sensitivity

and the possibility of high-throughput analysis, these
techniques are time-consuming and not suitable for the in situ
evaluation of samples. Furthermore, theoretical knowledge and
training are required.
Other methods rely on biochemical reactions, either acetyl-

cholinesterase-catalyzed reactions (13) or immunoassays
(14,15). For example, a very simple assay was created by
immobilizing acetylcholinesterase in commercial pH indicator
strips, where the presence of the pesticides is detected by
colorimetry due to pH changes conferred by the reaction
products (16). Another approach employs electrochemical
biosensors, with acetylcholinesterase immobilized in appropri-
ate matrices (17,18). These methods have the sensitivity and
specificity associated with either enzymatic assays or antibodies,
but biosensors may become nonresponsive over time due to
loss of enzyme activity, loss of the enzyme itself or saturation
with debris. Immunoassays may be time-consuming and
expensive. Recently, the use of nanomaterials has led to a novel
class of biosensors, for example, using gold nanoparticles (19),
carbon nanotubes (20) and enzyme-coupled quantum dots
loaded onto carbon electrodes (21). However, laboratory synthe-
sis and characterization can be problematic , and they may also
lose stability over time due to degradation. This last point is of
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utmost importance because many studies suggest that they may
lead to biological and environmental contamination (22,23).

This paper presents the establishment and optimization of a
coupled bioluminescent assay (24) for organophosphorus pesti-
cides using malathion, diethyl 2-[(dimethoxyphosphorothioyl)
sulfanyl]succinate (Fig. 1), as a model pesticide and the reaction
catalyzed by S-acetyl-coenzyme A synthetase as a consumer of
ATP. In this coupled bioluminescent assay, the first reaction is
catalyzed by acetylcholinesterase, generating acetate and cho-
line (equation 1). Acetate, the product of this first reaction, is
one of the substrates for S-acetyl-coenzyme A synthetase, along
with ATP and coenzyme A (equation 2). The final coupled reac-
tion is catalyzed by firefly luciferase, requiring the substrate fire-
fly luciferin and ATP. However, because ATP was consumed in
the previous reaction, the bioluminescent reaction is impaired
(equation 3). The presence of an organophosphorus pesticide
will inhibit the first reaction, thus favoring the bioluminescent
reaction. Some reports suggest that herbicides (25) and aromatic
pesticides (26) can also inhibit the bioluminescent reaction, as
well as fatty acids, alcohols, anesthetics, luciferin analogues
and side-products of the bioluminescent reaction (27).

Acetylcholineþ H2O→
acetylcholinesterase acetateþ choline (1)

Acetateþ ATP-Mg2þþcoenzyme A→
S�acetyl�coenzyme A synthetase

acetyl-coenzyme Aþ AMP-Mg2þþPPi-Mg2þ

(2)

AMP-Mg2þ þ firefly luciferinþ O2→
firefly luciferase

no light produced

(3)

A multivariate experimental design methodology based on com-
putational software was used for the method's optimization (28,29).

Experimental

Reagents

The enzymes firefly luciferase (from Photinus pyralis, EC 1.13.12.7;
product code L9506, lot 014K7430), acetylcholinesterase (from
Electrophorus electricus type VI-S, EC 3.1.1.7; product code
C3389, lot 047K7010) and S-acetyl-coenzyme A synthetase (from
baker's yeast, EC 6.2.1.1; product code A1765, lot 31K1717), as
well as the reagents acetylcholine chloride (product code
A6625), coenzyme A sodium salt hydrate (from yeast, product
code C3144), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid
(Hepes, product code H3375), adenosine 5ʹ-triphosphate
disodium salt (ATP, from a bacterial source, product code
A2383) and firefly luciferin (synthetic firefly D-luciferin, product
code L9504) were purchased from Sigma (Steinheim, Germany).
Magnesium chloride hexahydrate (product code 63064) and

malathion (Pestanal® analytical standard, product code 36143)
were purchased from Fluka (Buchs, Switzerland). All reagents
were used without further purification. A stock solution of firefly
luciferase was prepared by dissolving the whole content of the
flask (~ 43 mg of lyophilized powder, corresponding to 10 mg
of pure luciferase, or ~ 21% protein/mg powder, according to
the manufacturer's information) in Hepes buffer 0.5 M, pH 7.5.
The concentration was checked by UV/Vis spectroscopy using
the molar extinction coefficient of 39,310 L/mol cm-1 at a
wavelength (λmax) of 280 nm and considering a molar mass of
60,745 g/mol. Analogously, a stock solution of acetylcholinester-
ase was prepared by dissolving the whole content of the flask
(~ 4.7 mg of lyophilized powder, ~ 62% protein/mg powder,
according to the manufacturer's information) in Hepes buffer
0.5 M, pH 7.5. The concentration was confirmed by UV/Vis spec-
troscopy using the molar extinction coefficient of 505,120 L/mol
cm-1 at λmax = 280 nm and considering a molar mass of 287,204
g/mol. Finally, the stock solution of S-acetyl-coenzyme A
synthetase was prepared by dissolving the whole content of the
flask (~ 5 mg of protein, or~ 21% protein/mg powder, according
to the manufacturer's information) in Hepes buffer 0.5 M, pH 7.5.
The concentration was checked by UV/Vis spectroscopy using
a molar extinction coefficient of 336,570 L/mol cm-1 at λmax =
280 nm and considering a molar mass of 237,386 g/mol. The
molar masses were calculated by gathering information from
the BRENDA database (30,31) and the UniProt Protein
Knowledgebase (32,33). The values of the molar extinction
coefficients were calculated using the ProtParam tool (protein
physical and chemical parameters) from the ExPASy Proteomics
Server (34,35). The values of molar masses were also confirmed
using this software. Hepes was prepared by dissolving the
corresponding mass in deionized water, and the pH was adjusted
to 7.5 by adding drops of a 10 M sodium hydroxide solution. Fire-
fly luciferin stock solutions were prepared in deionized water with
intense stirring for ~1 h, protected from the air and light. The con-
centration was confirmed by UV/Vis spectroscopy using a molar
extinction coefficient of 18,200 L/mol cm-1 at λmax = 327 nm (36).
Stock solutions of malathion, acetylcholine, coenzyme A, magne-
sium chloride and ATP were prepared in deionized water without
pH adjustment. The concentrations of ATP and coenzyme A were
confirmed by UV/Vis spectroscopy using a molar extinction
coefficients of 15,400 L/mol cm-1 at λmax= 259 nm (37) and
14,328 L/mol cm-1 at λmax = 258 nm (38), respectively. To ensure
that the same conditions are used throughout the development
and optimization of the method, and to avoid multiple freeze–
thaw cycles, stock solutions were prepared in large volumes and
subsequently aliquoted in small volumes and stored at �20°C
with the exception of malathion, which was stored at 4°C. A
commercial acetylcholinesterase assay kit (aCella™, AchE biolumi-
nescence non-radioactive assay for monitoring acetylcholinester-
ase activity) was purchased from Cell Technology, Inc. (Mountain
View, CA, USA).

Experimental design formulation

Experimental designs were created using The Unscrambler®
version 9.2 (CAMO AS, Oslo, Norway). Screening designs were
performed using Plackett–Burman designs from scratch with
ten continuous design variables at two level values (see Table 1)
and one nondesign (response) variable, which was set as
malathion at 1, 5, 10 and 20 μM (initial concentration). For
the experimental procedure, it was set at one replication

Figure 1. Chemical structure of malathion.
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per experiment, three centre (control) experiments and without
randomization, with a total of twelve testing experiments plus
the three control experiments. Optimization designs were
performed using central composite designs from scratch with
two continuous design variables at two level values (see Table 1)
and one nondesign (response) variable, which was set as
malathion at 5 μM (initial concentration). The star point distance
from centre was settled at 1.41. For the experimental procedure,
it was set at one replication per experiment, five centre
experiments and without randomization, with a total of eight test-
ing experiments plus the five control experiments.

Coupled bioluminescent assays

Screening and optimization designs. Bioluminescent assays
were performed in a homemade luminometer using a
photomultiplier tube (HCL35, Hamamatsu, Middlesex, New
Jersey, USA) inside a light-tight dark chamber coupled to an
automatic microburette (Crison MicroBU Model 2030, Crison
Instruments, Barcelona, Spain) equipped with a 2.5-mL glass
syringe (GASTIGHT® Syringes 1000 Series, Model 1002, Hamilton
Bonaduz AG, Bonaduz, Switzerland). The stock solutions of
reagents and enzymes were diluted in deionized water or Hepes
buffer 0.5 M, pH 7.5, respectively, and kept on ice until use.
Coupled reactions were performed in three steps (Fig. 2). The
first, preincubation, was performed by adding 2 μL of acetylcho-
linesterase to 20 μL of malathion standards in 0.6-mL boil-proof
microcentrifuge tubes and maintaining them at room
temperature for the times and concentrations indicated in

Table 1. Preincubation was stopped by transferring the tubes
onto ice. The second step was the coupled reaction in which
2 μL of S-acetyl-coenzyme A synthetase was added to the
acetylcholinesterase–malathion tubes, followed by the reac-
tion mixture (3 mM magnesium chloride, ATP, coenzyme A
and acetylcholine, at the concentrations indicated in Table 1,
4 μL each. Total volume added 16 μL, intermediate reaction
volume 40 μL). Tubes were incubated at the temperatures
and times indicated in Table 1. For temperatures other than
room temperature, tubes were incubated in a water bath using
an immersion thermostat (ET Basic Yellow Line, IMLAB,
Boutersem, Belgium). The reaction was stopped by transferring
the tubes onto ice. The third and final step consisted of the
bioluminescent detection. To the mixture, 10 μL of firefly
luciferase was added at the concentrations indicated in Table 1,
the mixture was transferred to transparent test tubes, intro-
duced into the dark chamber at room temperature and the
baseline was recorded (t = 00:30 seconds, Fig. 2) at a integra-
tion interval of 0.1 s. At T = 1 minute, 50 μL of firefly luciferin,
at the concentrations listed in Table 1, was injected from the
automatic burette (final reaction volume 100 μL). The light out-
put was recorded for another 30 s. Concentration values refer
to the intermediate reaction volume for steps 1 and 2 and to
the final reaction volume for step 3.

Optimized coupled assays. The optimized assays were
performed as described above, using the following optimized
conditions: 10 nM acetylcholinesterase, 2 min preincubation
time, 15 nM S-acetyl-coenzyme A synthetase, 80 μM ATP;

Table 1. Selected factors and the corresponding levels analyzed in Plackett–Burman and central composite designs

Factor Levels

Plackett–Burman design
Acetylcholinesterase concentration (nM) 10 20 30
Preincubation time (min) 2:30 5:00 7:30
S-Acetyl-coenzyme A synthetase concentration (nM) 15 30 45
Acetylcholine concentration (μM) 20 40 60
Coenzyme A concentration (μM) 30 60 90
ATP concentration (μM) 30 60 90
Incubation time (min) 5 10 15
Temperature of incubation (°C) room 25 35
Firefly luciferase concentration (nM) 10 15 20
Firefly luciferin concentration (μM) 30 45 60
Central composite design
ATP concentration (μM) 17.5736 30 60 90 102.4264
Firefly luciferase concentration (nM) 7.9289 10 15 20 22.0711

Figure 2. Schematic representation of the experimental steps of the optimized coupled bioluminescent assay.

Coupled bioluminescent assay for malathion
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30 μM coenzyme A; 20 μM acetylcholine; incubation at room
temperature, 5 min reaction time, 10 nM firefly luciferase and
30 μM firefly luciferin. Magnesium chloride maintained a fixed
concentration of 3 mM. Calibration curves were made using
malathion standards from 0 to 25 μM (20 experimental points),
to screen the linear range, and from 0 to 15 μM (six
experimental points for each curve) to obtain figures of merit
and samples’ assays. To test the influence of malathion on
firefly luciferase activity, malathion standards ranging from 1
to 150 μM were prepared in deionized water. Pure deionized
water was used as a control. Twenty microliters of each stan-
dard was added to 20 μL of a reaction mixture containing
ATP and magnesium chloride in the optimized concentrations.
Bioluminescent detection was performed as in the final step of
Fig. 2 using optimized concentrations of firefly luciferin and
firefly luciferase.

Sample assay. Water was collected in polypropylene flasks
from three domestic wells within the municipalities of
Matosinhos (one well) and Maia (two wells), and stored at room
temperature protected from light. Samples were assayed
without any pretreatment under the conditions previously
described. Using the method of standard additions, 20 μL ali-
quots of sample were added to 4 μL of malathion standard solu-
tions from 0 to 15 μM (initial concentrations). The volumes of
magnesium chloride, ATP, coenzyme A and acetylcholine were
reduced to 3 μL each. For the spike-and-recovery assay, 20 μL
of samples were spiked with 4 μL of malathion standards at 3,
9 and 15 μM and assayed as described above. A calibration
curve was simultaneously made under the same conditions for
3–20 μM of malathion standards (n= 5). For the comparative
kit assay, a calibration curve was set up with malathion
standards from 0 to 15 μM. To 50 μL of either samples or
malathion standards was added 50 μL of component A (which
contains acetylcholinesterase), the mixture was transferred to
transparent test tubes, introduced into the dark chamber at
room temperature and preincubated for 2 min, at a intermediate
reaction volume of 100 μL. After that, 50 μL of component B

(which contains detection reagent, acetylcholine and coupled
enzyme reaction) was injected from an automatic burette, at
a final reaction volume of 150 μL. Baseline recording began
at 1 min 30 s after the addition of component A and stopped
5 min after addition of component B. Integration time was set
at 0.1 s.

Statistical analysis

Data obtained from the experimental designs were analyzed
using The Unscrambler® software. For the screening designs
(Plackett–Burman), an analysis of effect was performed. Results
were expressed as an effects overview, using the significance
testing methods higher order interaction effects (HOIE) and
Center. For the optimization designs (central composite) a
response surface analysis, which includes a two-way analysis of
variance (ANOVA) table, residuals calculation and response
surface, was applied. All those parameters were evaluated
through the F-ratios and p values. Regarding the variables, the
B coefficients and their corresponding standard errors were also
taken into account. Residuals were evaluated through a normal
probability plot. Linear regression was performed with a
Microsoft® Excel® spreadsheet. Each experimental point corre-
sponds to the peak of the bioluminescent signal, defined as
the point when firefly luciferin is injected into the reaction
mixture, from which the baseline, defined as the average of
signal registered previously to the addition of firefly luciferin,
was subtracted (Fig. 3 inset). Results were expressed as relative
light units (RLU). From calibration curves set up using the method
of least squares, the limits of detection (LOD) and quantitation
(LOQ) were calculated using the following criteria: LOD= (a+3
Sy/x) and LOQ= (a+10Sy/x), where a is the intercept of the calibra-
tion curves and Sy/x is the random error in the y-direction (29).
When the method of standard additions was used, the concentra-
tion of pesticide was given as the ratio between the intercept and
the slope of the regression line. Recovery (R) was calculated using
the expression:

Figure 3. Typical calibration curve for malathion using the optimized coupled bioluminescent assay. (Inset) The corresponding raw luminogram, in which each of the peak
maxima correspond to individual points in the calibration curve (see Experimental section). RLU, relative light units.
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R %ð Þ ¼ ½ðConcentration of fortified sample

–Concentration of sampleÞ
=Concentration of fortification� � 100:

To analyze statistically significant differences between firefly
luciferase activity with or without malathion, one-way ANOVA
and Student's t-test were performed (29). Results are expressed
as pesticide concentration ± 95% confidence limits (95% CL) of
the concentration (n= 5 for this assay and n= 3 for the kit assay)
for the assay of pesticides in samples, or as mean± standard
deviation (SD) for recoveries values. A value of p <0.05 was
considered as statistically significant.

Results and discussion

Experimental designs

The overall optimization process included two steps, screening
to identify which factors have statistically the most influence
on the method's response and the subsequent determination
of the levels at which these factors must be kept to optimize
the method's response. Taking into account the various reagents
and steps in the method, 10 factors were selected for screening
and, to keep the number of experiments to a minimum, a
Plackett–Burman design was selected (Table 1). The
concentrations of the factors were selected by considering time
and solubility constraints and to conserve the most expensive
reagents, specifically the enzymes. After the experiments were
performed the results showed that, in the presence of 5 μM

malathion and using the testing method Center, the
concentrations of ATP and firefly luciferase were likely the most
significant factors (see Table S1). Using the significance testing
method HOIE none of the factors were considered significant
(Table S1).
With this information, a central composite optimization

design was established to uncover the best ATP and firefly lucif-
erase concentrations, and to determine if their interactions are
also important for the method's response, which was not possi-
ble with the previous design. The remaining factors were kept to
their most convenient values, in this case the lowest values of
concentration, the shortest times of preincubation and
incubation and the performing of the assay at room tempera-
ture. From the ANOVA table (Table 2) it was confirmed that
ATP and firefly luciferase concentrations are important factors,
showing significant F-ratios (p< 0.05) and presenting standard
errors of the regression coefficient lower than the regression
coefficient itself. Besides, the interaction ATP vs. firefly luciferase
(A-B in Table 2) and the quadratic response firefly luciferase ×
firefly luciferase (BB in Table 2) are also significant. According
to their F-ratios, the model is significant, whereas the lack of fit
is not (p< 0.05 and p> 0.05, respectively), which shows that
the experimental measurements fit the model. Finally, a normal
probability plot of the residues showed that they lie along a
straight line, meaning that there are no outliers (Fig. S1). The
response surface curve (Fig. 4) shows that the concentrations
of ATP and firefly luciferase should be kept at the highest values
tested to obtain the maximum bioluminescent signal. However,
although higher concentrations of firefly luciferase are desirable
whenever high sensitivity is needed, it also raises the cost of the
assay. Taking that into consideration, the concentrations of both
ATP and firefly luciferase were set to the saddle values

Table 2. Analysis of variance (ANOVA) for the central composite optimization design

SS df MS F-ratio p B coefficient SEb Saddle point

Summary
Model 6.746 × 1010 5 1.349 × 1010 45.924 0.0000
Error 2.057 × 109 7 2.938 × 108

Adjusted Total 6.952 × 1010 12 5.793 × 109

Variable
Intercept 8.214 × 1010 1 8.214 × 1010 279.601 0.0000 1.282 × 105 7.665 × 103

ATP (A) 3.254 × 1010 1 3.254 × 1010 110.755 0.0000 2.126 × 103 201.999 79.026
Firefly luciferase (B) 2.588 × 1010 1 2.588 × 1010 88.084 0.0000 1.137 × 104 1.212 × 103 6.687
AB 4.627 × 109 1 4.627 × 109 15.750 0.0054 2.267 × 104 5.713 × 103

AA 2.257 × 108 1 2.257 × 108 0.768 0.4098 �3.798 × 103 4.332 × 103

BB 3.871 × 109 1 3.871 × 109 13.177 0.0084 1.573 × 104 4.332 × 103

Model Check
Main 5.842 × 1010 2 2.921 × 010 15.750 0.0054
Int 4.627 × 109 1 4.627 × 109 7.516 0.0181
Int + Squ 4.416 × 109 2 2.208 × 109 7.516 0.0181
Squ 4.416 × 109 2 2.208 × 109

Error 2.057 × 109 7 2.938 × 108

Lack of Fit
Lack of Fit 8.783 × 108 3 2.928 × 108 0.994 0.4810
Pure Error 1.178 × 109 4 2.946 × 108

Total Error 2.057 × 109 7 2.938 × 108

SS, Sum of Squares; df, degrees of freedom; MS, Mean Squares (ratio between SS and df); F-ratio, ratio between ‘between-
measurements’ MS and ‘within-measurements’ (residual) MS; p, probability of getting the F-ratio under the null hypothesis at
95%; B coefficient, regression coefficient from a multiple linear regression analysis; SEb, standard error of b.

Coupled bioluminescent assay for malathion

Luminescence 2013 Copyright © 2013 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/luminescence

 47



suggested by the ANOVA table rounded up, that is 80 μM and 10
nM, respectively.

Method figures of merit

Using the optimized conditions, the coupled bioluminescent
assay was characterized in terms of linear range, LOD and
LOQ and precision at several concentrations of malathion
standards.

The linear response interval was obtained through calibration
curves with malathion standards. Because no previous informa-
tion was available for this interval, calibration curves with a
relatively broad concentration range, 0–25 μM of malathion,
were tested. It was verified that below 1 μM and above 15 μM
malathion the signals were not proportional to the malathion
concentration (data not shown). Below 1 μM the concentration
of malathion may be too low to quantitatively inhibit
acetylcholinesterase using the method's optimized conditions,
and above 15 μM there is saturation, since the increase in
malathion concentration leads to a constant signal. In the 1–15
μM malathion range the response was directly proportional to
the concentration of the standards. Calibration curves covering
only this interval were obtained and the results were confirmed.
From these calibration curves (Fig. 3), the linear range was
settled from 2.5 to 15 μM malathion. Using also calibration
curves, the LOD and LOQ were calculated as 1.5 and 5.0,
respectively (r2 varying from 0.989 to 0.996, average of three
independent measurements, see Experimental section). The
precision of the method was estimated from relative standard
deviation, and showed values of 3.8% at 3 μM malathion, 7.4%
at 6 μM malathion and 5.1% at 15 μM malathion (average of
two independent experiments, each concentration value
measured in triplicate).

The inhibitory effect of malathion on firefly luciferase activity
was tested. The bioluminescent reaction catalyzed by firefly
luciferase will produce the detected signal, therefore it is
important to assure that it will not be affected. The results
showed that, using the optimized conditions, no statistically
significant (at the significant level of 5%) inhibitory effect was
observed (Fig. S2).

Sample assay

Water collected from residential wells within the Metropolitan
Area of Porto was assayed for the presence of organophospho-
rus pesticides using this new optimized method. The results
showed that the malathion content is below either the LOD or
LOQ (data not shown). To confirm that the method is capable
of detecting pesticides in contaminated samples, a spike-
and-recovery assay was performed, the results of which are
presented in Table 3. Good recoveries were obtained, with
average values above 80%.

The same samples were tested using a commercial
acetylcholinestease assay kit and the results are in good
agreement with the optimized method.

To assess the possible interference of the matrix, samples
were also assayed by the method of standard additions. No
interferences were found (data not shown).

It is important to highlight that, although the method was
developed using malathion, in real samples other pesticides
may be present in the same sample. The method is based
on the inhibition of acetylcholinesterase and, in this sense,
it is specific for any pesticide able to inhibit acetylcholinester-
ase, namely organophosphorus. Other pesticides, even at
higher concentrations, would not interfere with the assay if
they cannot inhibit acetylcholinesterase. However, if the
sample contains several different organophosphorus
pesticides, the method will respond, but will be unable to
quantify each separately. In this case, and if needed, other
techniques, like chromatographic separation, should be
employed following the bioluminescence assay.

Figure 4. Response surface landscape plot for the most important method's factors, ATP and firefly luciferase concentrations, tested in a central composite design.

Table 3. Spike-and-recovery of malathion standards in well
water samples

Sample Low spike
(3 μM)

Medium
spike (9 μM)

High spike
(15 μM)

Matosinhos well 87.0 86.1 101.7
Maia well #1 85.7 89.6 91.6
Maia well #2 75.7 87.6 83.4
Mean recovery (± SD) 82.8 ± 6.2 87.8 ± 1.8 92.2 ± 9.2
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Conclusions
This paper presented the establishment and optimization of a
coupled bioluminescent assay for organophosphorus pesticides.

The significance of this works stands in its portability and its opti-
mization through statistical experimental design methodology.

Instrumental methods such as chromatography and
electrophoresis have high sensitivity and the possibility of
high-throughput analysis, but may be time-consuming, not
suitable for the in situ evaluation of samples, and demand
specialized apparatus and personnel training. In the case of
assays employing nanomaterials, there is the risk of toxicity, as
suggested by several studies. Enzymatic assays have the
advantages of being sensitive and specific, but may become
expensive if large volumes of enzyme are necessary, or when
commercial kits are to be used. Furthermore, to the best of our
knowledge, few of these methods were subjected to optimiza-
tion. Experimental design methodology makes it possible to
determine the variables needed to obtain the most sensitive
and robust method, requesting a relatively small number of
experiments to achieve it. In fact, using optimized conditions,
even small deviations from the optimal values will not seriously
affect the response. The optimized method, relying on the
acetylcholinesterase-catalyzed reaction, is also specific towards
organophosphorus pesticides, safe, simple to perform and
economic, despite the use of several enzymes and reagents,
because of their reduced volumes. Although the volumes of
reagents and the reaction mixture were not proposed for
optimization because since they were considered adequate
already, users can still adapt them to their needs, for example,
if too little sample is available.

The portability of the method is due to the fact that it does not
require any sample pretreatment, uses low volumes of both
sample and reagents, all reagents and a portable luminometer
are commercially available, the reagents do not need further
purification prior to use and their solutions are stable for several
months when stored at �20°C and also stable at room tempera-
ture. Although we used a single-tube luminometer, the method
is also suitable for multiplate assays, thus allowing the simul-
taneous testing of several samples. One major disadvantage of
this method is its relatively reduced sensitivity, in the order of
μM. This, however, is adequate for the proposed application, that
is, the in situ analysis of organophosphorus pesticides in freshwa-
ter. Furthermore, the loss in sensitivity is compensated for by the
other features, such as simplicity and reduced costs. If necessary,
more sensitive assays may be performed in the laboratory. Finally,
the validation with water from domestic wells confirmed the ap-
plicability of the method to real samples.

Supporting Information
Supporting Information may be found in the online version of
this article.

Figure S1. Normal probability plot of the residuals of the central
composite optimization design.

Figure S2. Evaluation of the inhibitory effect of malathion on
firefly luciferase activity. RLU, relative light units.

Table S1. HOIE and Center significance testing methods results for
the Plackett–Burman screening designs at several malathion levels.
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Table S1. HOIE and Center significance testing methods results for the Plackett-Burman 

screening designs at several malathion levels 

 

 
Malathion 1 M Malathion 5 M Malathion 10 M Malathion 20 M 

 

HOIE* 

 

Center 

 

HOIE 

 

Center 

 

HOIE 

 

Center 

 

HOIE 

 

Center 

Acetylcholinesterase 

concentration NS NS 
NS NS NS NS NS NS 

Preincubation time NS NS NS NS NS NS NS NS 

S-Acetyl-coenzyme A 

synthetase 

concentration 

NS NS NS NS NS NS NS NS 

Acetylcholine 

concentration 
NS NS NS NS NS NS NS NS 

Coenzyme A 

concentration 
NS NS NS NS NS NS NS NS 

ATP concentration NS NS NS + NS NS NS NS 

Incubation time NS NS NS NS NS NS NS NS 

Temperature of 

incubation 
NS NS NS NS NS NS NS NS 

Firefly luciferase 

concentration 
NS NS NS + NS NS NS NS 

Firefly luciferin 

concentration 
NS NS NS NS NS NS NS NS 

*HOIE, Higher Order Interaction Effects 

Significance of each effect at 95% level: NS, not significant; from + to +++, positive 

effect; from - to - - -, negative effect 
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Figure S1. Normal probability plot of the residuals of the Central Composite 

optimization design. 
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Figure S2. Evaluation of the inhibitory effect of malathion on firefly luciferase activity. 

RLU, Relative Light Units. 
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An optimized bioluminescent assay for inorganic sulfate
quantitation in freshwater†

Simone M. Marques and Joaquim C. G. Esteves da Silva*

In this paper an optimized enzymatic assay for inorganic sulfate (SO�24 ) detection and quantitation in

freshwater, relying on adenosine-50-triphosphate sulfurylase catalyzed reaction coupled to

bioluminescent detection by firefly luciferase, is described. Inorganic sulfate is converted, by adenosine-

50-triphosphate sulfurylase, into adenosine-50-phosphosulfate and inorganic pyrophosphate, with

consumption of adenosine-50-triphosphate. The remaining adenosine-50-triphosphate is used as a co-

factor in the reaction catalyzed by firefly luciferase generating, as a co-product, photons of visible light.

The light output is inversely proportional to the inorganic sulfate content. Using sodium sulfate as a

model, the assay was optimized through a statistical experimental design methodology and validated in

water samples from domestic wells from two municipalities within the Metropolitan Area of Porto plus

tap water as control. The optimized method requires 20 mL of sample in a final reaction volume of 100

mL. It is linear in the range from 14 to 134 mg L�1 of inorganic sulfate, with limits of detection and

quantitation of 10 and 34 mg L�1, respectively. Repeatability, expressed as relative standard deviation, is

7.23% at 34 mg L�1, 6.87% at 68 mg L�1 and 4.67% at 96 mg L�1. The inorganic sulfate concentration

in the wells is approximately 124, 182 and 182 mg L�1, whereas it was found to be a value of about

200 mg L�1 in tap water. Samples can be quantified by calibration curves without any pre-treatment

other than dilution. The optimized method is fast, simple to perform and robust.

Introduction

Firey luciferase [Photinus-luciferin: oxygen 4-oxidoreductase
(decarboxylating, adenosine-50-triphosphate-hydrolysing)],
from the North-American rey species Photinus pyralis, cata-
lyzes the conversion of its natural substrate, rey D-luciferin, in
the presence of adenosine-50-triphosphate complexed with
magnesium ions (ATP-Mg2+) and molecular oxygen (O2) into
oxyluciferin and the by-products adenosine-50-monophosphate
(AMP), inorganic pyrophosphate (PPi), carbon dioxide (CO2)
and photons of visible light (eqn (1)).1

D-LuciferinþATP�Mg2þ þO2 �����!luciferase
oxyluciferin

þAMP�Mg2þ þ PPi�Mg2þ þ CO2 þ photon (1)

Firey luciferase is an invaluable tool in bioanalytical
chemistry, either in single reactions, for example as a reporter
gene or in quantifying analytes which direct or indirectly
participate in the bioluminescent reaction, such as ATP and

coenzyme A, or coupled to other enzymes whose reactions
generate or consume ATP, a method called coupled biolumi-
nescent assay.2 Such an example of this coupling is the enzy-
matic luminometric inorganic pyrophosphate detection assay
(ELIDA)3 for the quantitation of inorganic pyrophosphate. It
relies on the conversion, by adenosine-50-triphosphate sulfur-
ylase, of adenosine-50-phosphosulfate (APS) and inorganic
pyrophosphate into inorganic sulfate (SO�24 ) and ATP (eqn (2)).
The produced ATP is then consumed in the bioluminescent
reaction (eqn (1)).

APSþ PPi�Mg2þ ���������!ATP sulfurylase
SO4

2� þATP�Mg2þ (2)

ELIDA is also the base of Pyrosequencing�,4,5 a method for
real-time sequencing of DNA6 and DNA-related products,7 since
the formation of new nucleic acid chains releases inorganic
pyrophosphate.

In this paper anoptimizedbioluminescentmethod for sulfate
quantitation in freshwater, relying on the enzymes adenosine-50-
triphosphate sulfurylase and rey luciferase, is presented. The
method is based on the reverse of eqn (2) (eqn (3)). The
remaining ATP is used in the reaction catalyzed by rey lucif-
erase (eqn (4)). Thus, the more sulfate in the sample, the greater
is the ATP consumption, and lower is the light output.

SO4
2� þATP�Mg2þ ���������!ATP sulfurylase

APSþ PPi�Mg2þ (3)
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D-Luciferinþ remaining ATP�Mg2þ þO2 �����!luciferase

light output proportional to ATP (4)

The World Health Organization, through the publication
‘International Standards for Drinking-Water’ in 1958, proposed
sulfate concentration limits between 200 and 400 mg L�1, or
between 500 and 1000mg L�1 if magnesium and sodium sulfate
coexist in a sample.8 In this document, sulfate was considered
as a chemical which may affect the potability of water, but it is
not dangerous or toxic. By its turn, the European Union,
through the Council Directive 98/83/EC, of November 3rd 1998,
proposed the monitoring of sulfate with a parametric value of
250 mg L�1.9 This Directive was transposed into the Portuguese
national Law in 200110 and revised in 2007.11 In its more recent
report, ‘Guidelines for Drinking-Water Quality’, the World
Health Organization conrmed that sulfate is ‘not of health
concern at levels found in drinking water’.12 It is also
mentioned, however, that some people reported a noticeable or
even unpleasant taste when sulfate is present at concentrations
above 250 mg L�1, as well as laxative effects above 1000 mg L�1,
especially in the sensitive sub-population such as the elderly,
children and travelers.

Inorganic sulfate levels in water depend on several factors,
such as the geographical location and the type of water reservoir
(groundwater, rivers and lakes, among others). Values of 0 to
230mg L�1 sulfate in groundwater are reported.13 Another study
reported Finnish deep (213–891 m) groundwater sulfate levels
between 2.27 and 795 mg L�1, but no correlation was found
between the depth and sulfate level.14 In the Metropolitan Area
of Porto, for example, the average groundwater sulfate content
ranges between 5 and 30 mg L�1.15 Although tap water is sub-
jected to regulation, other non-tested common water sources
may expose the users to high levels of sulfate. For instance, wells
are a source of drinking water in Portugal, especially in less
urbanized areas, and in many developing countries as well.

The analytical methods available for sulfate quantitation are
based on gravimetry,16 volumetry,17,18 potentiometry,19 spectro-
photometry/turbidimetry,20–23 ion chromatography24–26 and
capillary14,27 and microchip electrophoresis.28 In line with the
recent evolution in nanomaterials, a colorimetric assay using
gold nanoparticles capped with cysteamine was proposed.29

Bioluminescent assays for sulfate are also described, for
example a whole-cell biosensor using non-bioluminescent
bacteria engineered with the bacterial luciferase gene cassette
luxCDABE from Photorhabdus luminescens30 or the photoprotein
aequorin genetically split into two fragments and attached to a

sulfate binding protein.31 When sulfate binds to the protein, the
two fragments come together, and light is emitted.

Instrumental methods such as chromatography and elec-
trophoresis have high sensitivity and the possibility of high-
throughput analysis, but may be time-consuming, not prone to
in situ evaluation of samples, and demand specialized appa-
ratus and personnel training. In the case of assays employing
nanomaterials, there is the risk of their toxicity, as suggested by
several studies.32 Enzymatic assays have the advantages of being
sensitive and specic, but may become expensive if large
volumes of enzymes are necessary, or when commercial kits are
to be used. Furthermore, to the best of our knowledge, few of
these methods were subjected to optimization. By using this
methodology, with a relatively small number of experiments, it
is possible to determine the variables which must be taken into
account to obtain the most sensitive and robust method. In fact,
using the optimized conditions, even small deviations from the
optimal values will not seriously affect the response.

Using sodium sulfate as a model, the assay was optimized
through a statistical experimental design methodology and
validated in water samples from domestic wells from two
municipalities within the Metropolitan Area of Porto plus tap
water as control, which rendered a fast, simple to perform and
robust method.

Experimental
Chemicals and reagents

The enzymes (see Table 1) and the reagents 4-(2-hydroxyethyl)
piperazine-1-ethanesulfonic acid (HEPES, Product Code
H3375), ATP disodium salt hydrate (from bacterial source,
Product Code A2383) and rey D-luciferin (synthetic rey
D-luciferin free acid, Product Code L9504) were purchased from
Sigma (Steinheim, Germany). Magnesium chloride hexahydrate
(Product Code 63064) was purchased from Fluka (Buchs, Swit-
zerland) and sodium sulfate was obtained from Pronalab (Lis-
bon, Portugal).

All reagents were used without further purication. Stock
solutions of the enzymes were prepared by dissolving the whole
content of the asks in HEPES buffer 0.5 M, pH 7.5. Concen-
trations were checked by ultraviolet-visible spectroscopy
considering the molar extinction coefficient and molar masses
in Table 1. Molar mass values were calculated using the infor-
mation from the BRENDA database33,34 and the Universal
Protein Resource (UniProt).35,36 The values of molar extinction
coefficients were calculated using the ProtParam tool (protein
physical and chemical parameters) from the ExPASy Proteomics

Table 1 Commercial and physico-chemical properties of the enzymes used in the bioluminescent method for sulfate quantitation in freshwater

Enzyme Source EC
Product
code Lot

Molar extinction
coefficient/L mol�1 cm�1

(lmax ¼ 280 nm)
Molar mass/
g mol�1 References

Firey luciferase Photinus pyralis 1.13.12.7 L9506 060M7400 39 310 60 745 33–38
ATP sulfurylase Saccharomyces cerevisiae 2.7.7.4 A8957 129K7680V 367 860 346 257
Inorganic pyrophosphatase Saccharomyces cerevisiae 3.6.1.1 I1891 057K8618 98 780 64 581

1318 | Anal. Methods, 2013, 5, 1317–1327 This journal is ª The Royal Society of Chemistry 2013
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Server.37,38 Molar mass values were also conrmed using this
soware.

HEPES was prepared by dissolving the corresponding mass
in deionized water, and the pH was adjusted to 7.5 using 10 mM
sodium hydroxide solution. A stock solution of ATP was
prepared in deionized water and the concentration was
conrmed by ultraviolet-visible spectroscopy using a molar
extinction coefficient of 15 400 L mol�1 cm�1 at lmax ¼ 259
nm.39 Stock solutions of magnesium chloride were prepared in
deionized water without pH adjustment. Firey D-luciferin stock
solutions were prepared in deionized water with intense stirring
for about 1 hour protected from the air and light. The concen-
tration was conrmed by ultraviolet-visible spectroscopy using a
molar extinction coefficient of 18 200 L mol�1 cm�1 at lmax ¼
327 nm.40 Finally, for the preparation of sodium sulfate stock
solutions, the salt was previously heated in an oven at 100 �C for
12 hours, then transferred to a desiccator lled with cobalt(II)
chloride until it cooled to room temperature and the corre-
sponding mass was weighed and dissolved in deionized water.

All the stock solutions were aliquoted in small volumes and
stored at �20 �C.

Experimental design formulation

Experimental designs were created using The Unscrambler�
version 9.2 (CAMO AS, Oslo, Norway) and performed according
to Scheme 1.

Bioluminescent assays

Preliminary studies. Bioluminescent assays were performed
in a homemade luminometer using a photomultiplier tube
(HCL35, Hamamatsu, Middlesex, USA) inside a light-tight dark
chamber coupled to an automatic microburette (Crison
MicroBU Model 2030, Crison Instruments, Barcelona, Spain)
equipped with a 2.5 mL glass syringe (GASTIGHT� Syringes

1000 Series, Model 1002, Hamilton Bonaduz AG, Bonaduz,
Switzerland).

The stock solutions of reagents and enzymes were diluted in
deionized water or HEPES buffer, 0.5 M, pH 7.5, respectively,
and kept in ice until use. Assays were performed according to
Scheme 2.

To test the inuence of sodium sulfate on rey luciferase,
sodium sulfate standards ranging from 0 to 96 mg L�1 were
prepared and assayed in triplicate. Deionized water was used as
control and adenosine-50-triphosphate sulfurylase was replaced
by deionized water. To test the inuence of the enzymes aden-
osine-50-triphosphate sulfurylase and inorganic pyrophospha-
tase on rey luciferase, the following mixtures were prepared:
2 mL deionized water plus 2 mL adenosine-50-triphosphate sul-
furylase 0–50 nM; 2 mL deionized water plus 2 mL inorganic
pyrophosphatase 0–50 nM; 2 mL adenosine-50-triphosphate
sulfurylase 0–50 nM plus 2 mL inorganic pyrophosphatase 0–50
nM; and 4 mL deionized water as control. Finally, to test the
method's response to sulfate, two assays were performed using
the conditions described in Scheme 2 with 0 to 96 mg L�1 of
sodium sulfate standards (high range) or with 0 to 19 mg L�1 of
sodium sulfate standards (low range), plus 2 mL of adenosine-50-
triphosphate sulfurylase 20 nM and 2 mL of inorganic pyro-
phosphatase 30 nM.

Screening and optimization designs. The screening and
optimization of assays were performed as described in Scheme
2, using the concentrations in Table 2. For temperatures other
than the room temperature, tubes were incubated in a water
bath using an immersion thermostat (ET Basic Yellow Line,
IMLAB, Boutersem, Belgium).

Method's characterization. The optimized assays were per-
formed as described in Scheme 2.

Calibration curves were made using sodium sulfate stan-
dards from 0 to 134 mg L�1 (eight experimental points for each
curve, each point measured in triplicate). In parallel, control

Scheme 1 Experimental design formulation flowchart.
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tubes with deionized water without sulfate and HEPES buffer
0.5 M, pH 7.5 in place of adenosine-50-triphosphate sulfurylase
were assayed, in triplicate, before and aer the measurement of
the calibration points.

For the estimation of the method's repeatability, assays were
made using the optimized conditions with sodium sulfate

standards at 34, 68 and 96 mg L�1 (each concentration
measured in quintuplicate).

Sample assay. Water was collected in polypropylene asks
from three domestic wells within the municipalities of Mato-
sinhos (one well) and Maia (two wells), and stored in room
temperature protected from light.

Prior to performing the assay, samples were tested for the
order of magnitude of their sulfate content with test strips
(MQuant� 110019 Sulfate Test, Merck, Darmstadt, Germany)
and diluted with deionized water. Assays were performed under
the conditions described in Scheme 2 through calibration
curves and the method of standard additions. Analysis with
calibration curves was performed by using sodium sulfate
standards from 0 to 134 mg L�1 (ve experimental points for
each curve, each point measured in triplicate) and 20 mL of each
sample was measured in quintuplicate.

Using the method of standard additions, 20 mL aliquots of
sample were added to 4 mL of sodium sulfate standard solutions
so that the combined concentrations (sample plus standard)
ranged from 0 to 134 mg L�1, approximately (ve experimental
points for each curve, each point measured in triplicate). The
volumes of magnesium chloride and ATP were reduced to 6 mL
each. For the spike-and-recovery assay, 10 mL of water fromMaia
well #1 was spiked with 10 mL of sodium sulfate standards at 34,
68 and 96 mg L�1 (each concentration measured in quintupli-
cate). A calibration curve was made within the spike-and-
recovery assay from 0 to 134 mg L�1 (ve experimental points
for each curve, each point measured in triplicate).

Samples were assayed, for comparison purposes, according
to the method described in ref. 41 with the following modi-
cation: the concentration range of the calibration curve was
settled to 0 to 35 mg L�1, because above this value a deviation
from linearity was veried.

Statistical analysis

Data obtained from the experimental designs were analyzed
using The Unscrambler� soware. For the screening designs,
an Analysis of Effect was performed. Results were expressed as

Scheme 2 Bioluminescent assay flowchart.

Table 2 Selected factors and the corresponding levels analyzed in Fractional
Factorials, Full Factorial and Box Behnken designs

Factor

Levels

Low Central High

Fractional Factorial design I
ATP concentration/mM 25 50 75
ATP sulfurylasea concentration/nM 10 20 30
Inorganic pyrophosphatase
concentration/nM

0 15 30

Incubation time/minutes 5 10 15
Temperature of incubation/�C Room 25 30
Firey luciferase concentration/nM 10 15 20
Firey D-luciferin concentration/mM 25 37.5 50

Fractional Factorial design II
ATP sulfurylase concentration/nM 10 20 30
Inorganic pyrophosphatase
concentration/nM

0 15 30

Incubation time/minutes 5 10 15
Temperature of incubation/�C Room 25 30

Full Factorial design
ATP concentration/mM 25 50 75
ATP sulfurylase concentration/nM 10 20 30
Firey luciferase concentration/nM 10 15 20
Firey D-luciferin concentration/mM 25 37.5 50

Box Behnken design
ATP concentration/mM 25 50 75
Firey luciferase concentration/nM 10 15 20
Firey D-luciferin concentration/mM 25 37.5 50

a ATP sulfurylase, adenosine-50-triphosphate sulfurylase.

1320 | Anal. Methods, 2013, 5, 1317–1327 This journal is ª The Royal Society of Chemistry 2013
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Effects Overview, using the signicance testing methods
Comparison with a Scale-Independent Distribution (COSCIND)
and Center for Fractional Factorial designs, and Higher Order
Interaction Effects (HOIE) and Center for the Full Factorial
design. For the Box Behnken optimization design, a Response
Surface Analysis, which includes a two-way Analysis of Variance
(ANOVA) table, residuals calculation and response surface, was
applied. From the ANOVA table, the analyzed parameters were
the Summary (evaluation of the global model), the Variable
(evaluation of the signicance of the variables tested), the
Model Check (evaluation of the global quadratic model) and the
Lack of Fit (degree of mistting of the experimental data to
the model). All those parameters were evaluated through the
F-ratios and the p-values. Regarding the variables, the B-coeffi-
cients and their corresponding standard errors were also taken
into account. Residuals were evaluated through a normal
probability plot.

Linear regression was performed with a Microso� Excel�
spreadsheet. Each experimental point corresponds to the peak
of the bioluminescent signal, dened as the point when rey D-
luciferin is injected into the reaction mixture, from which the
baseline, dened as the average of signals registered previously
to the addition of rey D-luciferin, was subtracted (see Fig. 3,
inset). Results were expressed as Relative Light Units (RLUs).
From calibration curves settled by the method of least squares,
the limits of detection (LOD) and quantitation (LOQ) were
calculated using the following criteria: LOD ¼ (a + 3Sy/x) and
LOQ ¼ (a + 10Sy/x), where a is the intercept of the calibration
curves and Sy/x is the random error in the y-direction.42 When
the method of standard additions was used, curves were settled
by calculating corrected signal values using the expression
corrected signal ¼ [average signal of blank (in triplicate) �
average signal of sample plus sulfate standard (in triplicate)]/
average signal of blank, wherein the blank was prepared with
deionized water without sulfate addition. The concentration of
inorganic sulfate was given as the ratio between the intercept
and the slope of the regression lines. Recovery (R) was calcu-
lated using the expression R(%) ¼ [(concentration of fortied
sample � concentration of sample)/concentration of fortica-
tion] � 100. To test whether there is a signicant difference
between the results obtained by this method and the reference,
a paired t-test was performed.42

Results are expressed as sulfate concentration � 95%
condence limits of the concentration (n ¼ 5). A p-value <0.05
was considered as statistically signicant.

Results and discussion
Overview

This paper presented the establishment of an optimized
bioluminescent assay for inorganic sulfate quantitation in
freshwater, relying on adenosine-50-triphosphate sulfurylase
and rey luciferase. The novelty of this assay is not only the use
of adenosine-50-triphosphate sulfurylase to quantify inorganic
sulfate instead of inorganic pyrophosphate, but most impor-
tantly its optimization based on the experimental design
methodology. This optimized method is safe, simple to perform

and economic despite the use of several enzymes and reagents
because of the reduced volumes of enzymes required. All
reagents are commercially available, do not need further puri-
cation prior to use and their solutions are stable for several
months when stored at �20 �C. Although we used a single-tube
luminometer, the method is applicable to multiplate assays,
thus allowing the simultaneous testing of multiple samples.
Also, as no pre-treatment of the samples other than dilution is
necessary, and regarding the low volumes needed, in situ anal-
yses are possible with portable commercial luminometers. Two
possible disadvantages were considered. On one hand, the
assay has a higher detection limit compared to some other
methods (mg L�1 versus mg L�1 for this method). The loss in
sensitivity, however, is compensated by the other described
features, like simplicity and possibility of in situ analyses.
Another concern with the use of enzymes is that they may lose
activity over time. This problem is common to all methods
employing enzymes, and may also vary according to the enzyme
in use. For example, rey luciferase is sensitive to long-term
assays at room temperature, whereas adenosine-50-triphosphate
sulfurylase is not. The use of additives during the preparation of
solutions of rey luciferase enhances its stability. For the sake
of simplicity, we chose not to add any additive to our rey
luciferase stock preparation, but readers can add them if
necessary, especially when longer assay times are to be applied
(over two hours).

Preliminary assays

Preliminary assays were done to study the possible inuence of
inorganic sulfate on rey luciferase activity in the absence of
adenosine-50-triphosphate sulfurylase. It was veried that a
spike in luminescence occurs both in deionized water and at a
low concentration of sulfate (Fig. 1A). This feature is not
uncommon in rey luciferase catalyzed reactions, and may be
due to the natural variability of its enzymatic activity. A recent
report demonstrated that the addition of magnesium sulfate to
the reactionmixture could stabilize rey luciferase.43 However,
the present results did not reveal any signicant inuence of
sulfate (Fig. 1A). This could be explained by a difference in
experimental conditions, for example in the concentration
values. They used rey luciferase at 6 mg mL�1 (about 99 nM)
with a magnesium sulfate concentration ranging from 0 to
1.2 M (0 to 115 276 mg mL�1), with an average of 10 mM of
magnesium sulfate (about 960 mg mL�1). Furthermore, they
performed medium- to long-term analysis, where rey lucif-
erase was assayed for its bioluminescence over a one hour
period, whereas in the present work the bioluminescent
recording lasts only 1 minute and 30 seconds (see Experimental
section). Both rey luciferase and inorganic pyrophosphatase
require magnesium ions to function. In this regard, we have
chosen to use magnesium chloride as a source of magnesium
ions, instead of magnesium sulfate, to avoid a double acting of
the latter. The inuence of the enzymes adenosine-50-triphos-
phate sulfurylase and inorganic pyrophosphatase on rey
luciferase activity, in the absence of their substrates, was also
tested. Inorganic pyrophosphatase catalyzes the cleavage of
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inorganic pyrophosphate into two phosphate ions. In this
regard, the coupling of this reaction could aid in driving the
reaction catalyzed by adenosine-50-triphosphate sulfurylase into
completion. The results showed no differential response to the
presence of these enzymes (Fig. 1B), either alone or as a couple.

The subsequent step was to verify preliminary working
ranges for sulfate quantitation. Two concentration intervals

were assayed, 0 to 96 mg L�1 of sodium sulfate standards (high
range) and 0 to 19 mg L�1 of sodium sulfate standards (low
range). No response was detected below 14 mg L�1, but the
decrease of the bioluminescent signal was proportional to the
sulfate concentration above this value (data not shown).
Therefore, a provisory range of 0 to 96 mg L�1 was settled for the
method.

Fig. 1 Response of firefly luciferase to the presence of (A) inorganic sulfate and (B) the enzymes adenosine-50-triphosphate sulfurylase and inorganic pyrophos-
phatase. RLU, Relative Light Units; ATP sulfurylase, adenosine-50-triphosphate sulfurylase.

1322 | Anal. Methods, 2013, 5, 1317–1327 This journal is ª The Royal Society of Chemistry 2013

Analytical Methods Paper

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
id

ad
e 

do
 P

or
to

 (
U

P)
 o

n 
22

 M
ar

ch
 2

01
3

Pu
bl

is
he

d 
on

 1
0 

Ja
nu

ar
y 

20
13

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

3A
Y

26
25

5C
View Article Online

 62



Experimental designs

On the basis of these results the method was optimized using
the experimental design methodology. The overall optimization
process included two steps: a screening to identify which factors
have statistically the most inuence on the method's response
and the subsequent determination of the levels at which these
factors must be kept to optimize the method's response. Taking
into account the various reagents and steps in the method,
seven factors were initially selected for screening and a Frac-
tional Factorial design was selected (Table 2). The concentra-
tions of the factors were selected by considering time and
solubility constraints and to conserve the most expensive
reagents, in this case the enzymes. In the case of magnesium
chloride, the value of 3 mM was selected based on the literature
as the best value for adenosine-50-triphosphate sulfurylase
activity.44 Results showed that, in the presence of 19 mg L�1 of
inorganic sulfate and using the testing method Center, the
concentrations of ATP, rey luciferase and rey D-luciferin
were likely the most signicant factors (ESI, Table S1†).
Furthermore, they exert a positive inuence, that is, the higher
are the concentrations, the higher is the response (the plus
signal for the factors, see ESI, Table S1†). Using the signicance
testing method COSCIND, none of the factors were considered
signicant (ESI, Table S1†). The signicant factors were more

related to the bioluminescent detection, which can be explained
as the response was the light output. To evaluate the factors
more related to the adenosine-50-triphosphate sulfurylase
reaction, a second Fractional Factorial design with four factors
was built (Table 2). In the presence of 19 mg L�1 of inorganic
sulfate and using the testing method Center, the concentration
of adenosine-50-triphosphate sulfurylase was likely the most
signicant factor with a negative inuence: the lower is its
concentration, the higher is the response (the minus signal for
the factors, see ESI, Table S1†). Using the signicance testing
method COSCIND, adenosine-50-triphosphate sulfurylase
concentration was also determined to be signicant (ESI, Table
S1†). Once again, as adenosine-50-triphosphate sulfurylase
causes depletion of ATP, higher concentrations lead to reduced
light emission, thus the need to lower its concentration. Before
the optimization step, a Full Factorial design with these four
factors was created to conrm the results (Table 2). Results
showed that, in the presence of 19 mg L�1 of inorganic sulfate
and using the testing method HOIE, the concentrations of ATP,
rey luciferase and rey D-luciferin were again the most
signicant factors, as well as the interaction ATP concentration
� rey luciferase concentration (ESI, Table S1†), meaning that
a change in one of these two factors has a positive inuence on
the response. Using the signicance testing method Center
none of the factors were considered signicant (ESI, Table S1†).

Table 3 Analysis of Variance (ANOVA) table for the Box Behnken optimization design

SSa DF MS F-ratio p-value B-coefficient SEb Saddle point

Summary
Model 8.109 � 109 9 9.011 � 108 5.176 0.0425
Error 8.705 � 108 5 1.741 � 108

Adjusted total 8.980 � 109 14 6.414 � 108

Variable
Intercept 1.466 � 1010 1 1.466 � 1010 84.190 0.0003 6.990 � 104 7.618 � 103

ATP (A) 2.787 � 107 1 2.787 � 107 0.160 0.7056 74.665 186.597 46.952
Luciferase (B) 1.737 � 109 1 1.737 � 109 9.976 0.0251 2.947 � 103 932.984 15.953
Luciferin (C) 4.574 � 109 1 4.574 � 109 26.274 0.0037 1.913 � 103 373.194 26.164
AB 5.558 � 105 1 5.558 � 105 3.192 � 10�3 0.9571 �213.000 3.770 � 103

AC 4.533 � 106 1 4.533 � 106 2.604 � 10�2 0.8781 608.286 3.770 � 103

BC 8.370 � 108 1 8.370 � 108 4.808 0.0798 8.266 � 103 3.770 � 103

AA 4.280 � 107 1 4.280 � 107 0.246 0.6410 1.946 � 103 3.924 � 103

BB 7.003 � 107 1 7.003 � 107 0.402 0.5538 �2.489 � 103 3.924 � 103

CC 7.905 � 108 1 7.905 � 108 4.541 0.0863 8.361 � 103 3.924 � 103

Model check
Main 6.339 � 109 3 2.113 � 109 1.612 0.2984
Int 8.421 � 108 3 2.807 � 108 1.778 0.2675
Int + Squ 9.287 � 108 3 3.096 � 108 1.778 0.2675
Squ 9.287 � 108 3 3.096 � 108

Error 8.705 � 108 5 1.741 � 108

Lack of Fit
Lack of Fit 6.428 � 108 3 2.143 � 108 1.883 0.3654
Pure error 2.276 � 108 2 1.138 � 108

Total error 8.705 � 108 5 1.741 � 108

a SS, Sum of Squares; DF, degrees of freedom; MS, Mean Squares (ratio between SS and DF); F-ratio, ratio between ‘between-measures’ MS and
‘within-measures’ (residual) MS; p-value, probability of getting the F-ratio under the null hypothesis at 95%; B-coefficient, regression coefficient
from a multiple linear regression analysis; SEb, Standard Errors of b.
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Fig. 2 Response surface landscape plots for the most important method's factors, ATP, firefly luciferase and firefly D-luciferin concentrations, tested in a Box Behnken
Design. (A) Firefly luciferase concentration vs. ATP concentration; (B) Firefly luciferase concentration vs. firefly D-luciferin concentration; (C) Firefly D-luciferin concen-
tration vs. ATP concentration.
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With this information, a Box Behnken optimization design
was built to uncover the best ATP, rey luciferase and rey
D-luciferin concentrations (Table 2), and to discover if their
interactions are also important for the method's response. The
remaining factors were kept of lowest concentration, the
shortest time of incubation and to perform the assay at room
temperature. From the ANOVA table (Table 3) it was conrmed
that rey luciferase (B) and rey D-luciferin (C) concentra-
tions are important factors, showing signicant F-ratios
( p < 0.05) and presenting standard errors of the regression
coefficient lower than the regression coefficient itself. On the
other hand, the ATP concentration (A), the interaction between
factors (AB, AC and BC) and the quadratic responses (AA, BB
and CC) were not signicant. According to their F-ratios, the
Model is signicant whereas the Lack of Fit is not (p < 0.05 and
p > 0.05, respectively), which shows that the experimental
measurements t the model. Finally, a normal probability plot
of the residues showed that they lie along a straight line,
meaning that there are no outliers (ESI, Fig. S1†). The response
surface curves (Fig. 2) show that the concentrations of rey
luciferase and rey D-luciferin should be kept at the highest
values tested to obtain the maximum signal (bioluminescence
emission), whereas any concentration of ATP can be chosen
since it is not a signicant factor in this design. However,
although higher concentrations of rey luciferase are desir-
able whenever high sensitivity is needed, it also raises the cost
of the assay. Taking that into consideration, the concentrations
of ATP, rey luciferase and rey D-luciferin were settled to the
saddle values suggested by the ANOVA table rounded up, that
is 50 mM of ATP, 15 nM of rey luciferase and 30 mM of rey
D-luciferin.

Furthermore, although the volumes of reagents and the
reaction mixture were not proposed for optimization, since they

were considered already adequate, the users can still adapt
them according to their needs, for example if too little sample is
available.

Method gures of merit

Using the optimized conditions, the bioluminescent assay was
characterized in terms of linear range, limits of detection and
quantitation and repeatability at several concentrations of
inorganic sulfate.

To obtain the linear interval, calibration curves using a
concentration range from 14 to 134 mg L�1 of inorganic sulfate
were analyzed. It was veried that a linear trend occurs at this
interval [product–moment correlation coefficient (r2) varying
from 0.989 to 0.999, an average r2 of 0.996; average of seven
independent measurements] (Fig. 3). Based on calibration
curves, the limits of detection and quantitation were estimated
as 10 and 34 mg L�1, respectively. The repeatability of the
method was estimated from the relative standard deviation, and
showed values of 7.23% at 34 mg L�1, 6.87% at 68 mg L�1 and
4.67% at 96 mg L�1 of inorganic sulfate (average of three
independent experiments). As a method based on ATP deple-
tion, it is important to assure that the loss of signal is not due to
enzyme deactivation over time, since rey luciferase is rela-
tively unstable at prolonged use in room temperature.43 In this
regard, control tubes were assayed at the beginning and at the
ending of every calibration curve assay. It was veried that rey
luciferase has indeed lost some of its activity, even with utmost
care, in the order of 27%, based on differences in the peak
maximum, during a one hour period of use. On the other hand,
when coupled to adenosine-50-triphosphate sulfurylase cata-
lyzed reaction, the reduction in the bioluminescent signal with
the raise in sulfate concentration was about 43%, thus
demonstrating the effect of ATP depletion.

Fig. 3 Representative standard calibration curve for inorganic sulfate in the optimized bioluminescent assay. Inset: the corresponding luminogram. RLU, Relative Light
Units.
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Sample assay

Water collected from residential wells within the Metropolitan
Area of Porto was assayed for their content of inorganic sulfate
using this new optimized method. Results are presented in
Table 4. The content of inorganic sulfate is between 124 and
183 mg L�1. On the other hand, the tap water sulfate concen-
tration was below the regulated level of 250 mg L�1,10,11 indi-
cating that the water is suitable for consumption.

To assess the possible interference of the matrix, samples
were also assayed by the method of standard additions. No
interferences were found (p < 0.05) (Table 4). To further conrm
these results, a spike-and-recovery assay was performed with the
Maia #1 water well. Good recoveries were obtained, with 86.7%
for a spike of 34 mg L�1 (low spike), 95.6% for a spike of 68 mg
L�1 (medium spike) and 94.5% for a spike of 96 mg L�1 (high
spike). Besides matrix effects, endogenous ATP is an interfering
compound and must be eliminated prior to the assay. Our
samples were assayed for the presence of endogenous ATP, with
negative results (data not shown). However, if a sample is sus-
pected to contain ATP, adenosine-50-triphosphatase (EC 3.6.1.3)
may be added to the sample, incubated and denaturated by
high temperatures prior to the assay.

Finally, the bioluminescent method was compared to
another method described in the literature and commonly used
for sulfate analysis. This method uses barium sulfate, which
makes the sample cloudy and raises its absorbance. Samples
were quantied by both turbidimetry and spectrophotometry at
lmax 420 nm. As can be seen in Table 4, no signicant differ-
ences were found among the methods (p < 0.05). Although the
spectrophotometric/turbidimetric determinations are easy to
perform, they require much higher sample and reagent volumes
(100 mL versus 20 mL with our method).

Conclusions

In this work the optimization of a bioluminescent assay for
inorganic sulfate quantication was achieved. It is linear in the
range from 14 to 134 mg L�1 of inorganic sulfate, with limits of
detection and quantitation of 10 and 34 mg L�1, respectively.
Samples can be quantied by calibration curves without any
pre-treatment other than dilution. The optimized method is
fast, simple to perform and robust. Validation with water from
domestic wells conrmed the applicability of the method to real
samples.
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Table S1 Center, COSCINDa and HOIEb significance testing methods results for the screening 

designs  

 

 Fractional Factorial 

Design I 

Fractional  

Factorial Design II 

Full Factorial 

Design 

Center COSCIND Center COSCIND Center HOIE 

ATP concentration / 
µM (A) + NS   NS ++ 

ATP sulfurylasec 
concentration / nM (B) NS NS - 5% NS NS 

Inorganic 
pyrophosphatase 
concentration / nM 

NS NS NS NS   

Incubation time / 
minutes NS NS NS NS   

Temperature of 
incubation / ºC NS NS NS NS   

Firefly luciferase 
concentration / nM (C) + NS   NS ++ 

Firefly  D-luciferin 
concentration / µM (D) 

+ NS   NS ++ 

AB     NS NS 

AC     NS + 

AD     NS NS 

BC     NS NS 

BD     NS NS 

CD     NS NS 

aCOSCIND, Comparison with a Scale-Independent Distribution  
bHOIE, Higher Order Interaction Effects 
c ATP sulfurylase, adenosine-5´-triphosphate sulfurylase 

Significance of each effect at 95% level: NS, not significant; from + to +++, positive effect; from - to 

- - -, negative effect 
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Fig. S1. Normal probability plot of the residuals of the Box Behken optimization design.  

Electronic Supplementary Material (ESI) for Analytical Methods
This journal is © The Royal Society of Chemistry 2013
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Nitric oxide quantitative assay by a glyceraldehyde 3-phosphate 

dehydrogenase/phosphoglycerate kinase/firefly luciferase optimized 

coupled bioluminescent assay 

 

 

 

A novel optimized coupled bioluminescent assay for nitrogen monoxide free radical (nitric 

oxide, •NO), an important environmental and physiological molecule, is presented. The 

method is based on the reaction catalyzed by glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), whose product is used as a substrate for phosphoglycerate kinase (PGK), 

generating adenosine 5’-triphosphate (ATP), which is an essential cofactor for the firefly 

luciferase (LUC) bioluminescent reaction. Inhibition of GAPDH by •NO hampers the 

coupled reactions, leading to a depletion of ATP and hence a decrease in the 

bioluminescent signal. Using diethylamine NONOate (DEA-NONOate) as the •NO donor, 

the assay was optimized through statistical experimental design methodology, namely 

Plackett-Burman (screening) and Box Behnken (optimization) designs. The optimized 

method requires 5 L of sample per tube in a final reaction volume of 100 L. It is linear in 

the range from 10 to 100 nM of •NO, with limits of detection and quantitation of 4 and 15 

nM, respectively. As a proof-of-principle, human saliva and microalgae culture medium 

were assayed by the method of standard additions. Major features include its simplicity of 

execution, low reagent volumes, sensitivity and robustness, and the possibility to adapt it 

to multiplate assay and in situ analysis. 

 

 

 

Keywords: Analytical biochemistry; Luminometry; Experimental design; Enzymatic assay 
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1. Introduction 

 

Nitrogen monoxide, commonly known as nitric oxide (•NO), is a small gaseous and 

free radical molecule containing one unpaired electron with an enormous importance in the 

environmental, biological and pathological contexts.1-4 It is mainly recognized as an 

atmospheric pollutant, along with its derivative nitrogen dioxide (NO2), and as an intra- and 

extracellular signaling molecule with relevant roles in inflammatory, carcinogenic, 

cardiovascular, immune response, neurodegenerative and neurotransmission, and pain 

generation processes.1-4 

Methods for •NO detection and quantitation may be direct or indirect. In indirect 

methods, the •NO amount is estimated through its derivatives, nitrite (NO2
−), nitrate (NO3

−) 

or NO2. Assuming that all the •NO in a sample tends to be converted into the more stable 

products nitrate and nitrite, a widespread indirect method is the Griess test for nitrite.5 

Nitrate may also be quantified by its previous conversion to nitrite, for example by using 

nitrate reductase. Although simple to perform, this methodology may not reflect the 

endogenous •NO content, which originates from nitric oxide synthase reactions with the 

amino acid L-arginine,2 because other sources may affect the results, for example dietary 

intake.6 Other popular methods are based on fluorescence,7 ultraviolet-visible (UV-vis) 

spectrophotometry,8 electrochemical sensors,9-11 chemiluminescence with ozone,12, 13 spin 

trapping coupled to electron paramagnetic resonance (EPR) spectroscopy14, 15 and 

membrane inlet mass spectrometry (MS).16 Recent approaches for •NO quantitation 

include the use of nanomaterials to create novel electrochemical sensors,17-21 the synthesis 

of novel fluorescent probes, 22, 23 the bioimaging of •NO in living cells and small animals,23, 

24 and coupled enzymatic assays.25 Those methods are in general highly sensitive, with 

limits of detection (LOD) varying from the nanomolar range, 0.3117 up to 95 nM,21 to the low 

micromolar range, 0.120 up to 3 M.7 However, some problems are worthy to note. EPR 

and MS equipment are not portable, involve high costs of acquisition and maintenance, and 

may require specialized personnel to operate. The dyes used in fluorescent and UV-vis 

methods may participate in side reactions, either reducing their free amount to react with 

•NO or leading to other fluorescent or coloured products which interfere with the assay.26, 

27 The use of nanomaterials is very promising, but some concerns regarding their toxicity 

are still under discussion. 28, 29 Lastly, most of the proposed new methods were not tested 

in real samples, nor they were subjected to optimization. In this chapter, an optimized 

coupled bioluminescent assay for •NO will be presented. 

Coupled enzymatic assays refer to analytical methods in which several enzymatic 

reactions, one of which using the desired analyte, occur sequentially to generate a 
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measurable signal.30 A first reaction generates one product that will be used in a second 

coupled reaction as a substrate. The second reaction will generate another product that 

may be used as substrate in a third coupled reaction and so on, until a final product that is 

measured. When the measured product are photons, the assay is termed coupled 

bioluminescent assay.30 Coupled enzymatic assays are useful when the enzymatic reaction 

consuming or producing the desired analyte does not lead to an easily measurable product. 

Furthermore, they may lead to signal amplification. On the other hand, if one of the 

enzymes is inactivated, or the concentration of one of the reagents is too low, the coupling 

is hampered, which requires the careful evaluation of each enzyme and reagent prior to the 

assay. 

In the presented method, the first reaction of the coupling is catalyzed by 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), producing 1,3-

bisphosphoglycerate (1,3-BPG) in the presence of its substrate, glyceraldehyde 3-

phosphate (G3P), and the cofactors -nicotinamide adenine dinucleotide (NAD+) and 

phosphate ions (Pi) (Scheme 1). The product, 1,3-BPG, is used as a substrate for 

phosphoglycerate kinase (PGK), producing 3-phosphoglycerate (3-PG). In the course of 

this reaction its cofactor, adenosine 5’-diphosphate (ADP), is phosphorylated into 

adenosine 5’-triphosphate (ATP), which is an essential cofactor for the bioluminescent 

reaction catalyzed by firefly luciferase (LUC). In the presence of ATP, molecular oxygen 

(O2) and its natural substrate, firefly D-luciferin (D-LH2), LUC generates adenosine-5’-

monophosphate (AMP), inorganic pyrophosphate (PPi), carbon dioxide (CO2), oxyluciferin 

and photons of visible light which are recorded in a luminometer. •NO is known to inhibit 

GAPDH, presumably by acting on a thiol group from an enzyme’s active site cysteine, albeit 

this is still under discussion.31-36 By inhibiting GAPDH, the production of ATP is impaired, 

decreasing the light output. 
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Scheme 1. Coupled enzymatic reactions. •NO, nitric oxide; G3P, glyceraldehyde 3-phosphate; Mg2+, magnesium ions; 

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; NAD+, -nicotinamide adenine dinucleotide; Pi, phosphate ions; 

NADH + H+, -nicotinamide adenine dinucleotide (reduced form); 1,3-BPG, 1,3-bisphosphoglycerate; PGK, phosphoglycerate 

kinase; 3-PG, 3-phosphoglycerate; ADP-Mg2+, adenosine 5’-diphosphate complexed with magnesium ions;  ATP-Mg2+, 

adenosine 5’-triphosphate complexed with magnesium ions; LUC, firefly luciferase; D-LH2, firefly D-luciferin; O2, molecular 

oxygen; CO2, carbon dioxide; AMP-Mg2+, adenosine 5’-monophosphate complexed with magnesium ions; PPi-Mg2+, inorganic 

pyrophosphate complexed with magnesium ions; h, photons; -SH, GAPDH thiol group; -S•, GAPDH thiyl radical. 

 

With the exceptions of LUC and D-LH2, the reagents and enzymes in this method 

are abundant in cells. Several strategies must be taken into account to avoid interference, 

especially from ATP, since the detection method is based on ATP depletion. Centrifugation 

may be used to separate cells, which contain the bulk of biological compounds, from 

supernatant. The remaining ATP may be removed through enzymatic reactions that 

consume or degrade ATP. An example of such reaction is catalyzed by ATP sulfurylase in 

the presence of sulfate ions (SO4
2-), giving adenosine 5’-phosphosulfate (APS) and PPi 

(equation 1).37 

 

 SO4
2-

 + ATP-Mg2+ 
ATP sulfurylase
↔            APS + PPi-Mg2+     (1) 

 

By its turns, PPi must also be removed, not only to favor the consumption of ATP 

but also because PPi interferes with the bioluminescent reaction. 38 This can be achieved 

by adding inorganic pyrophosphatase (PPase) to the medium (equation 2).37 

 

PPi-Mg2+ + H2O 
PPase
↔    2 Pi-Mg2+        (2) 
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Another approach consists of using the method of standard additions.39 This is a 

type of data analysis in which several standards of rigorously known concentration of the 

analyte are added to all but one aliquots of samples. The signal is measured for all samples 

and a calibration curve is obtained. The original concentration of the analyte is obtained by 

reading the absolute value of the x-intercept for the zero signal. The method has some 

disadvantages, namely it is more time-consuming because every sample has to have its 

own curve, it demands larger quantities of samples and most of the time it is not possible 

to separate samples from the standards after the procedure. Nevertheless, it is the method 

of choice for biological samples where matrix effects often occur. 

The compound (Z)-1-[N,N-diethylamino]diazen-1-ium-1,2-diolate (diethylamine 

NONOate, DEA-NONOate, Figure 1) was used as a •NO donor. NONOates are prepared 

in alkaline solutions and, by lowering the pH, under defined temperature and concentration 

conditions, they dissociate to the free amino and •NO according to a defined stoichiometry. 

These features make them a versatile and convenient choice for an ever greater number 

of studies.40, 41 

 

 

 

 

 

Figure 1. Chemical structure of DEA-NONOate in its sodium salt hydrate formulation. 

 

2. Experimental 

 

Note: All experiments were performed at room temperature (approximately 20 ºC). 

Concentration values are final. 

 

2.1. Reagents and solutions 

 

2.1.1. Reagents 

 

The enzymes (see Table 1) and the reagents 4-(2-hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES, product code H3375), G3P (G5251), NAD+ (N0632), DEA-
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NONOate (D184), ADP (A5285), ATP (A2383), D-LH2 (L9504), glycine (410225) and 

magnesium chloride (MgCl2, 63064) were purchased from Sigma-Aldrich® (Steinheim, 

Germany). Sodium sulfate (Na2SO4) was obtained from Pronalab (Lisbon, Portugal). 

Sodium hydroxide (NaOH) was purchased from Moura Drugstore (Porto, Portugal). Sodium 

dihydrogen phosphate monohydrate (NaH2PO4·H2O) was obtained from Merck (Darmstadt, 

Germany). Nitrogen (Alphagaz™ Smartop N2) was obtained from Air Liquide Portugal 

(Algés, Portugal). 

A commercial •NO assay kit, ‘Nitric Oxide Assay Kit (Colorimetric)’, ab65328, was 

purchased from Abcam® (Cambridge, U.K.). 

 

Table 1. Commercial references of the enzymes used in the method 

 

2.1.2. Solutions 

 

All reagents were used without further purification. Stock solutions of the enzymes 

were prepared by dissolving the whole content of the flasks in HEPES buffer 0.5 M, pH 7.5, 

with the exception of PGK, which was purchased as an ammonium sulfate suspension. 

HEPES was prepared by dissolving the corresponding mass in deionized water, 

and the pH was adjusted to 7.5 using a 10 M NaOH solution. Phosphate buffer 150 mM, 

pH 6.9 was prepared by dissolving the corresponding mass of NaH2PO4·H2O in deionized 

water and adjusting the pH to 6.9 using a 10 M NaOH solution. G3P was purchased as an 

aqueous solution. Stock solutions of NAD+, ADP, ATP, MgCl2 and glycine were prepared 

Enzyme Source EC 
Product 

code 
Lot 

Glyceraldehyde 3-phosphate 

dehydrogenase 

Saccharomyces 

cerevisiae 
1.2.1.12 G5537 030M7715V 

Phosphoglycerate kinase 
Saccharomyces 

cerevisiae 
2.7.2.3 P7634 061M7674V 

Firefly luciferase Photinus pyralis 1.13.12.7 L9506 060M7400 

ATP sulfurylase 
Saccharomyces 

cerevisiae 
2.7.7.4 A8957 129K7680V 

Inorganic pyrophosphatase 
Saccharomyces 

cerevisiae 
3.6.1.1 I1891 057K8618 
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in deionized water without pH adjustment. D-LH2 stock solutions were prepared in deionized 

water with intense stirring for about 1 hour protected from the air and from the light. 

Concentration was confirmed by UV-vis spectrophotometry using an Unicam Helios  

spectrophotometer (Cambridge, U.K.) and considering a molar extinction coefficient of 

18,200 L·mol-1·cm-1 at the maximum wavelength (max) of 327 nm.42 For the preparation of 

Na2SO4 stock solutions, the salt was previously heated in an oven at 100 ºC for 12 hours, 

then transferred to a desiccator filled with cobalt (II) chloride until it cooled to room 

temperature and the corresponding mass was weighted and dissolved in deionized water. 

DEA-NONOate solutions were freshly prepared by dissolving the corresponding mass in a 

10 mM NaOH solution previously bubbled with a nitrogen stream in capped polypropylene 

tubes. Concentration was confirmed by UV-vis spectrophotometry using the molar 

extinction coefficient of 6,500 L·mol-1·cm-1 at max 250 nm, according to the manufacturer’s 

information. 

To ensure that the same conditions were achieved throughout the work, and also 

to avoid multiple freezing-thawing cycles, stock solutions were prepared in large volumes, 

aliquoted in small volumes and stored at -20 ºC with the exception of PGK, which was 

stored at 2 ºC. 

 

2.2. Preliminary assays 

 

2.2.1. UV-vis spectrophotometric assays 

 

2.2.1.1. GAPDH and PGK activity assay 

 

GAPDH and PGK activities were assayed by a spectrophotometric assay based on 

the ‘Enzymatic Assay of 3-Phosphoglyceric Phosphokinase (EC 2.7.2.3) from Baker’s 

Yeast’ protocol available from the manufacturer with modifications. Briefly, the test, GAPDH 

blank and PGK blank reaction mixtures contained 1,725 L of phosphate buffer 50 mM, pH 

6.9 (Pi), 75.0 L of G3P 0.83 mM, 37.5 L of NAD+ 0.3 mM, 37.5 L of ADP 0.2 mM, 188 

L of MgCl2 4.2 mM, and 750 L of glycine 133 mM in a 3,500-L Hellma® QS Suprasil® 

quartz cuvette (Müllheim, Germany). To the reaction mixtures, 37.5 L of GAPDH 3.9 

g·mL-1 (test and PGK blank) or Pi (GAPDH blank) was added. The reagents were mixed 

by inverting the cuvette and introduced into the spectrophotometer. The absorbance was 

monitored at max 340 nm until constant. One hundred and fifty microliters of PGK 0.011 

g·mL-1 (test and GAPDH blank) or Pi (PGK blank) was added. Absorbance was recorded 

for 30 minutes. 
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2.2.1.2. DEA-NONOate releasing assay 

 

DEA-NONOate releasing was assayed by a spectrophotometric assay. Briefly, 

3,325 L of Pi was pipetted to the cuvette. Then 175 L of DEA-NONOate in NaOH 10 mM, 

corresponding to a concentration of 10 M •NO, was added, the reagents were mixed by 

inverting the cuvette and introduced into the spectrophotometer. The absorbance was 

monitored at max 250 nm until no further changes in the absorbance values were observed. 

 

2.2.2. Bioluminescent assays 

 

2.2.2.1. ATP contamination in reagents and enzymes 

 

ATP contamination in reagents and enzymes was evaluated by luminometry using 

a homemade luminometer with a Hamamatsu HCL35 photomultiplier tube (Middlesex, N.J., 

U.S.A) inside a light-tight dark chamber coupled to a Crison MicroBU 2030 automatic 

microburette (Barcelona, Spain) equipped with a 2.5 mL Hamilton GASTIGHT® 1002 glass 

syringe (Bonaduz, Switzerland). 

The stock solutions of reagents were diluted in deionized water, DEA-NONOate 

standard solutions were diluted in NaOH 10 mM, and the enzymes were diluted in HEPES 

buffer 0.5 M, pH 7.5, and kept on ice until use. 

Briefly, 10.00 L of MgCl2 4.2 mM was added to 30.0 L of each of the reagents 

and enzymes in polypropylene transparent test tubes. Concentrations of the regents were 

as follow:  DEA-NONOate 1 mM, Pi 50 mM, G3P 0.83 mM, NAD+ 0.3 mM, ADP 0.2 mM, 

glycine 133 mM, GAPDH 3.9 g·mL-1 and PGK 0.011 g·mL-1. Controls were made by 

assaying ATP 0.2 mM without the reagents or enzymes and adding LUC and D-LH2, by 

replacing MgCl2, the reagents and the enzymes with deionized water and adding LUC and 

D-LH2, and by replacing MgCl2, the reagents and the enzymes with deionized water and 

adding only D-LH2. Ten microliters of either LUC 6 g·mL-1 or deionized water (controls) 

was added to the mixtures, the tubes were introduced into the dark chamber and the 

baseline register by the equipment was turned on, at an integration interval of 0.1 seconds. 

After 30 seconds, 50 L of D-LH2 8.7 M was injected from the automatic burette. The light 

output was recorded for more 30 seconds. 
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2.2.2.2. Reagents and enzymes influence on LUC activity 

 

The influence of the reagents and enzymes on LUC activity was assayed by 

luminometry as described in subsection 2.2.2.1. with the following alterations: 10.00 L of 

MgCl2 4.2 mM plus 10.00 L of ATP 0.2 mM were added to 20.0 L of each of the reagents 

and enzymes. NaOH 10 mM was also tested. Controls were made by assaying ATP and 

MgCl2 without the reagents or enzymes and adding LUC and D-LH2, by replacing ATP and 

MgCl2 with deionized water and adding LUC and D-LH2, and by replacing ATP and MgCl2 

with deionized water and adding only D-LH2. 

 

2.2.2.3. Evaluation of the enzymatic reactions coupling and the effect 

of •NO on GAPDH 

 

To confirm the reactions coupling and the effect of •NO on GAPDH, a 

bioluminescent assay was performed. Briefly, DEA-NONOate solutions with final 

concentrations corresponding to 1 nM, 1 M and 1 mM of •NO, considering a ratio of 1.5 

moles of •NO per parent compound, according to the manufacturer’s information, were 

prepared in NaOH 10 mM in capped polypropylene tubes. The solutions were diluted 1:20 

in Pi in capped tubes and incubated at room temperature for 20 minutes before starting the 

assay to allow the release of •NO. Controls were made by replacing DEA-NONOate with 

deionized water (positive control) and by replacing GAPDH with deionized water (negative 

control). Reaction mixtures contained 450 L of Pi, 25.0 L of G3P 0.83 mM, 12.5 L of 

NAD+ 0.3 mM, 12.5 L of ADP 0.2 mM, 62.5 L of MgCl2 4.2 mM, 250 L of glycine 133 

mM, 12.5 L of GAPDH 3.9 g·mL-1 or deionized water, 50.0 L of D-LH2 8.7 M and 25.0 

L of LUC 6 g·mL-1. Fifty microliters of each DEA-NONOate solutions or deionized water 

was transferred to transparent test tubes, the reaction mixture was added and the tubes 

were introduced into the dark chamber, one at a time. The baseline register by the 

equipment was turned on, at an integration interval of 1 second. After 50 seconds, 50 L 

of PGK 0.011 g·mL-1 was injected from the automatic burette. The light output was 

recorded for more 10 minutes. 
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2.3. Experimental designs 

 

2.3.1. Experimental design formulation 

 

Experimental designs were created using The Unscrambler® version 9.2 from 

CAMO (Oslo, Norway). Screening designs were created using Plackett-Burman designs 

with eleven continuous variables at two levels and one nondesign (response) variable, 

which was set as •NO 5 nM (Table 2). For the experimental procedure, it was chosen one 

replication per experiment and three centre (control) experiments, with a total of twelve 

testing experiments plus the three control experiments. Optimization designs were created 

using Box Behnken designs with five continuous variables at two levels and one nondesign 

variable, which was set as •NO 5 nM (Table 2). For the experimental procedure, it was 

chosen one replication per experiment and five centre experiments, with a total of forty 

testing experiments plus the five control experiments. 

 

Table 2. Selected factors and the corresponding levels analyzed in the Plackett-Burman screening design and the Box 

Behnken optimization design 

 

 Levels 

Factor low central high 

Plackett-Burman Design    

[Pi] / mM 9 50 90 

[G3P] / mM 0.15 0.83 1.5 

[NAD+] / mM 0.05 0.3 0.50 

[ADP] / mM 0.036 0.20 0.36 

[MgCl2] / mM 0.76 4.2 7.6 

[Glycine] / mM 24 133 240 

[GAPDH] / g·mL-1 0.71 3.9 7.1 

[D-LH2] / M 1.58 8.7 15.8 

[LUC] / g·mL-1 1 6 11 

[PGK] / g·mL-1 0.0020 0.011 0.020 

Preincubation time / minutes 0 5 15 

Box Behnken Design    

[Pi] / mM 9 50 90 

[G3P] / mM 0.15 0.83 1.5 

[ADP] / mM 0.036 0.20 0.36 

[MgCl2] / mM 0.76 4.2 7.6 

Preincubation time / minutes 0 5 15 
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2.3.2. Experimental design execution 

 

Experimental designs were performed by luminometry. Briefly, a DEA-NONOate 

solution with concentration corresponding to 5 nM of •NO was prepared in NaOH 10 mM in 

a capped polypropylene tube. The solution was diluted 1:20 in Pi in capped tubes and 

incubated at room temperature for 20 minutes. The reaction mixture contained 25.0 L of 

Pi, 2.50 L of G3P, 1.25 L of NAD+, 1.25 L of ADP, 6.25 L of MgCl2, 20.0 L of glycine, 

5.00 L of D-LH2 and 2.50 L of LUC, which were prepared at the concentrations indicated 

in Table 2. Five microliters of DEA-NONOate solution was transferred to a transparent test 

tube and preincubated with 1.25 L of GAPDH at the concentrations and for the times 

indicated in Table 2. The reaction mixture was added and the tube was introduced into the 

dark chamber. The baseline register by the equipment was turned on, at an integration 

interval of 1 second. After 30 seconds, 30 L of PGK at the concentrations indicated in 

Table 2 was injected from the automatic burette. The light output was recorded for more 3 

minutes. The Box Behnken design was performed using the concentrations in Table 2 for 

Pi, G3P, ADP, MgCl2 and preincubation time plus the following reagents and enzymes:  

NAD+ 0.3 mM, glycine 133 mM, GAPDH 3.9 g·mL-1, D-LH2 8.7 M, LUC 6 g·mL-1 and 

PGK 0.011 g·mL-1. 

 

2.4. Optimized coupled bioluminescent assays 

 

2.4.1. General optimized protocol 

 

The optimized assays were performed as described in Scheme 2. Briefly, DEA-

NONOate solutions were prepared in NaOH 10 mM in capped polypropylene tubes. 

Solutions were diluted 1:20 in Pi in capped tubes and incubated at room temperature for 

20 minutes. The reaction mixture contained 25.0 L of Pi 30 mM, 2.50 L of G3P 0.83 mM, 

1.25 L of NAD+ 0.3 mM, 1.25 L of ADP 0.3 mM, 6.25 L of MgCl2 4.2 mM, 20.0 L of 

glycine 133 mM, 1.25 L of GAPDH 3.9 g·mL-1, 5.00 L of D-LH2 8.7 M and 2.50 L of 

LUC 6 g·mL-1. Five microliters of the DEA-NONOate solutions was transferred to 

transparent test tubes, the reaction mixture was added and the tubes were introduced into 

the dark chamber, one at a time. The baseline register by the equipment was turned on, at 

an integration interval of 1 second. After 30 seconds, 30 L of PGK 0.011 g·mL-1 was 

injected from the automatic burette. The light output was recorded for more 3 minutes. 
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Scheme 2. Optimized coupled bioluminescent assay flowchart. 

 

2.4.2. Method figures of merit 

 

Preliminary calibration curves were made according to the procedure described in 

subsection 2.4.1. using DEA-NONOate standards corresponding to •NO concentrations 

from 0 to 1,000 M (ten experimental points for each curve, each point measured in 

triplicate). To evaluate precisely the linear range of the method, calibration curves were 

made using DEA-NONOate standards corresponding to •NO concentrations from 0 to 100 

nM (eleven experimental points for each curve, each point measured in triplicate). For the 

estimation of the method’s repeatability, assays were made with DEA-NONOate standards 

corresponding to •NO concentrations at 10, 50 and 100 nM (each concentration measured 

in quintuplicate in each assay). 

 

2.4.3. Samples’ assays 

 

2.4.3.1. Sample handling and maintenance 

 

Resting whole saliva was freshly collected using a swab at least 90 minutes after a 

morning meal and stored in capped polypropylene tubes. A laboratorial culture of Chlorella 

vulgaris was inoculated in a 250-mL glass Erlenmeyer previously boiled in deionized water 

with Z8 medium, constant aeration and a 16h light / 8h dark photoperiod. Freshly prepared 
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culture medium was added to the Erlenmeyer once a week to replace evaporated medium. 

Aliquots were taken when the microalgae reached the exponential grown phase. 

 

2.4.3.2. ATP quantitation assay 

 

ATP was quantified in samples by luminometry through a calibration curve of ATP 

standard solutions. Briefly, ATP standard solutions ranging from 0 to 50 M were prepared. 

To 5.00 L of either samples or ATP standards 35.0 L of MgCl2 4.2 mM was added in 

polypropylene transparent test tubes. Ten microliters of LUC 6 g·mL-1 was added to the 

mixtures, the tubes were introduced into the dark chamber and the baseline register by the 

equipment was turned on, at an integration interval of 0.1 seconds. After 30 seconds, 50 

L of D-LH2 8.7 M was injected from the automatic burette. The light output was recorded 

for more 30 seconds. 

 

2.4.3.3. Samples influence on LUC activity 

 

The influence of the samples on LUC activity was assayed by luminometry as 

described in subsection 2.2.2.2. with the following alterations: 17.5 L of MgCl2 4.2 mM and 

17.5 L of ATP 0.2 mM was added to 5.00 L of either samples or deionized water as 

control. 

 

2.4.3.4. •NO quantitation 

 

2.4.3.4.1. Removal of endogenous ATP 

 

Endogenous ATP in samples was removed by an enzymatic reaction using ATP 

sulfurylase, PPase and inorganic sulfate.37 Eight microliters of MgCl2 3 mM, 4.00 L of ATP 

sulfurylase 20 nM, 8.00 L of PPase 30 nM and 10.00 L of Na2SO4 500 M were added 

to 20.0 L of samples in a capped polypropylene tube for 5 minutes. Reaction was stopped 

by transferring the tubes to ice. The tubes were boiled in a water bath using an IMLAB ET 

Basic Yellow Line immersion thermostat (Boutersem, Belgium) for 2 minutes. Afterwards 

the tubes were allowed to cool, centrifuged (10,000 x g, 15 minutes) in an Eppendorf 5415D 

workbench centrifuge (Hamburg, Germany) and the supernatants were transferred to novel 

tubes. The remaining ATP was assayed according to the procedure described in 

subsection 2.4.3.2. with ATP standards ranging from 0 to 50 nM. 
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2.4.3.4.2. •NO quantitation using the optimized coupled 

bioluminescent assay 

 

Assays were performed under the conditions described in subsection 2.4.1. through 

calibration curves and the method of standard additions. Analysis with calibration curves 

were performed by using DEA-NONOate standards corresponding to •NO concentrations 

from 0 to 100 nM (eleven experimental points for each curve, each point measured in 

triplicate) and 5.00 L of each sample was measured in triplicate. Using the method of 

standard additions, 5.00 L aliquots of sample were added to 5.00 L of DEA-NONOate 

standards corresponding to •NO concentrations from 0 to 60 nM (seven experimental points 

for each curve, each point measured in triplicate). The volume of PGK was reduced to 25 

L. A blank, in which the sample plus DEA-NONOate standard was replaced with deionized 

water, was measured in triplicate. 

 

2.4.3.4.3. •NO quantitation using a commercial kit 

 

One hundred and fifty microliters of samples was pipetted to 5-mL capped 

polypropylene tubes and 700 L of assay buffer was added. Blank tubes were made by 

replacing the samples with 850 L of assay buffer. A calibration curve ranging from 0 to 

31.75 M of nitrate was made by pippeting 0, 20, 40, 60, 80 or 100 L of the 1-mM nitrate 

standard solution to the tubes and completing the volume to 850 L with assay buffer. The 

blank tubes received 1,150 L of assay buffer and were put aside. To convert nitrate to 

nitrite, 50.0 L of nitrate reductase and 50.0 L of enzyme cofactor were added to the 

sample and calibration curve standard tubes. The tubes were covered and incubated for 1 

hour. Fifty microliters of enhancer was added and the tubes were incubated for another 10 

minutes. Finally, the reaction of nitrite to produce color was achieved by adding 500 L of 

Griess reagent R1 plus 500 L of Griess reagent 2 and incubating for 10 minutes. The 

content of each tube was transferred to a cuvette and the absorbance was read at max 540 

nm. 

 

2.5. Statistical analysis 

 

2.5.1. Preliminary assays 

 

Note: Data treatment and calculations were performed with a Microsoft® Excel® 

spreadsheet. 
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2.5.1.1. Bioluminescent assays 

 

2.5.1.1.1. ATP contamination in reagents and enzymes 

 

Evaluation of the amount of ATP in reagents and enzymes was achieved by 

calculating, for each of them, the corrected peak of bioluminescence, expressed in relative 

light units (RLU). This value is obtained by selecting the maximum of the luminogram, 

corresponding to the moment at which D-LH2 is injected into the mixture, and subtracting 

the baseline, defined as the average registered bioluminescence in the first 30 seconds of 

record (Figure 2A). Results are presented as mean ± standard deviation (SD) (n = 3), and 

percent of light emission compared to the control with ATP, of two independent assays.  

 

 

Figure 2. Bioluminescent ATP quantitation assay. (A) Typical luminogram and (B) the corresponding ATP calibration curve. 

The arrow in (A) indicates the peak of bioluminescence due to D-LH2 injection. RLU, relative light units. 

 

2.5.1.1.2. Reagents and enzymes influence on LUC activity 

 

Evaluation of the influence of the reagents and enzymes on LUC activity was 

achieved by calculating, for each of them, the corrected peak of bioluminescence as 

defined in subsection 2.5.1.1.1.. Results are presented as mean ± SD (n = 3), and percent 

of light emission compared to the control with ATP, of two independent assays. Differences 

between the values were evaluated by one-way analysis of variance (ANOVA) followed by 

the Dunnett’s multiple-comparison test. 
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2.5.1.1.3. Evaluation of the coupling 

 

Evaluation of the inhibitory effect of •NO was achieved by calculating the initial rate 

of bioluminescence generation. The initial rate of bioluminescence generation was obtained 

by plotting the recorded bioluminescence, after the subtraction of the baseline, as a function 

of time (in seconds), and calculating the slope of the linear portion of the plot, which 

corresponds to the first 60 seconds of reaction (Figure 3A). Baseline was defined as the 

average recorded bioluminescence prior to the injection of PGK, which corresponds to the 

first 30 seconds of record. Results are presented as mean ± SD (n = 3), and percent of light 

emission compared to the positive control without DEA-NONOate, of two independent 

assays. Differences among the values were evaluated by one-way ANOVA followed by the 

Dunnett’s multiple-comparison test. 

 

2.5.2. Experimental designs calculations 

 

Data obtained from the experimental designs was analyzed using The 

Unscrambler® software. For the Plackett-Burman screening design, an analysis of effect 

was performed. Results were expressed as effects overview, using the significance testing 

method center. For the Box Behnken optimization design, a response surface analysis, 

which includes a two-way ANOVA table, residuals calculation and response surface, was 

applied. From the ANOVA table, the analyzed parameters were the summary (evaluation 

of the global model), the variable (evaluation of the significance of each of the variables 

tested), the model check (evaluation of the global quadratic model) and the lack of fit 

(degree of misfitting of the experimental data to the model). All those parameters were 

evaluated through the F-ratios and the corresponding p-values. A p-value <0.05 was 

considered as statistically significant. 

 

2.5.3. Optimized coupled bioluminescent assays 

 

Note: Data treatment and calculations were performed with a Microsoft® Excel® 

spreadsheet. 

 

2.5.3.1. General optimized protocol 

 

Quantitation of •NO is achieved through calibration curves, set up by the method of 

least squares, by plotting the initial rate of bioluminescence generation, as described in 

subsection 2.5.1.1.3., as a function of the concentration of •NO standard solutions. Results 
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are presented as •NO concentration ± 95% confidence limits (95% CL) of the concentration, 

of at least two independent assays. 

 

2.5.3.2. Method figures of merit 

 

The method figures of merit linear range, LOD and limit of quantitation (LOQ) were 

obtained through calibration curves settled by the method of least squares (Figure 4). LOD 

and LOQ were calculated using the following criteria: LOD = (a + 3Sy/x) and LOQ = (a + 

10Sy/x), where a is the intercept of the calibration curves and Sy/x is the random error in the 

y-direction.39 Precision was expressed as relative standard deviation (RSD) calculated with 

the expression (SD / mean) x 100 (n = 3), of two independent assays. 

 

2.5.3.3. Samples’ assays 

 

2.5.3.3.1. ATP quantitation assay 

 

Calibration curves were set up by the method of least squares by plotting the values 

of corrected peak of bioluminescence, as described in subsection 2.5.1.1.1., as a function 

of the concentration of the ATP standards (Figure 2B). Results are presented as ATP 

concentration ± 95% CL of the concentration, of two independent assays. 

 

2.5.3.3.2. Samples influence on LUC activity 

 

Evaluation of the influence of the samples on LUC activity was achieved as 

described in subsection 2.5.1.1.2.. 

 

2.5.3.3.3. •NO quantitation 

 

2.5.3.3.3.1. Removal of endogenous ATP 

 

Assessment of the remaining ATP in samples after enzymatic treatment was 

achieved as described in subsection 2.5.3.3.1.. 
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2.5.3.3.3.2. •NO quantitation using the optimized coupled 

bioluminescent assay 

 

The •NO content in samples was assayed by both calibration curves and the method 

of standard additions. Calibration curves were settled as described in subsection 2.5.3.1.. 

When the method of standard additions was used, curves were settled by plotting either 

the initial rate of bioluminescence generation as a function of the concentration of NO 

standard added (Figure 5A), as defined in subsection 2.5.1.1.3., or by calculating and 

plotting the corrected initial rate of bioluminescence generation using the expression 

{corrected initial rate of bioluminescence generation = [average signal of blank (in triplicate) 

– average signal of sample plus DEA-NONOate standard (in triplicate)]/average signal of 

blank}, wherein the blank was prepared without DEA-NONOate addition and without 

sample (Figure 5B). The concentration of •NO was given as the ratio between the intercept 

and the slope of the regression line in Figure 5B. Differences in the curves obtained from 

both methods were evaluated through F-tests using the slopes variances. Results are 

expressed as •NO concentration ± 95% CL of the concentration (n = 3), for two independent 

assays. Concentrations values obtained from both methods were compared through t-tests. 

A p-value <0.05 was considered as statistically significant. 

 

2.5.3.3.3.3. •NO quantification using a commercial kit 

 

The •NO content in samples was assayed by calibration curves, set up by the 

method of least squares, by plotting the corrected absorbance as a function of the 

concentration of nitrate standards. The corrected absorbance is defined as the measured 

value of absorbance to which the blank signal was subtracted. Results are presented as 

total nitrate/nitrite concentration ± 95% CL of the concentration, of two independent assays. 

 

3. Results and discussion 

 

3.1 Preliminary assays 

 

The proposed method is based on the coupling of three enzymatic reactions, with 

the detection based on the linear decrease of bioluminescent signal due to a reduction in 

ATP generation. Before proceeding to its optimization, characterization and application to 

samples, preliminary assays were made. 

The activity of both of the enzymes GAPDH and PGK, as well as the release of •NO 

from DEA-NONOate, were evaluated through UV-vis spectrophotometry. The GAPDH 
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catalyzed reaction produces NADH + H+ (Scheme 1), which presents an absorption band 

at max 340 nm. The continuous production of NADH + H+ leads to an increase in 

absorbance monitored at this wavelength. In the absence of GAPDH and the presence of 

PGK (blank GAPDH), the absorbance is constant and the values are reduced to a 

minimum, indicating no production of NADH + H+ (Supplementary data, Figure S1). In the 

presence of GAPDH and the absence of PGK (blank PGK), the absorbance is still constant, 

but with values about ten times higher. This may indicate that some NADH + H+ was 

produced by GAPDH, but because PGK was not available to further drive the reaction, the 

concentration remained constant. Only with both GAPDH and PGK in the reaction mixture 

(test) an increase in absorbance over time was observed, indicating continuous production 

of NADH + H+. It was then confirmed the integrity and correct coupling of the enzymes. 

Intact DEA-NONOate has an absorption band at max 250 nm. When the molecule 

dissociates to the free amine and •NO, the absorbance registered at this wavelength 

decreases over time. In Supplementary data Figure S2, a representative DEA-NONOate 

decomposition spectrum of a solution corresponding to 10 M of •NO diluted 1:20 in Pi is 

shown. The compound is completed dissociated within 15 minutes, as the absorbance 

reaches zero, indicating that DEA-NONOate solution is in good conditions. 

As already mentioned, it is mandatory to avoid exogenous ATP because it will 

interfere with the assay. Furthermore, because the method involves decrease in light 

detection, it is important to verify that this is not due to an inhibitory effect of some of the 

reagents or enzymes on LUC. With this aim, two bioluminescent assays were devised. One 

of the assays aimed to verify any interference of the emitted light in the presence of 

reagents or enzymes compared to a control without them. The other was done without 

exogenously added ATP, so that any produced light would be due to ATP contamination 

within reagents or enzymes. Results showed no contamination of ATP in reagents and 

enzymes (Supplementary data, Table S1). The maximum value registered was from ADP 

but, even so, it was only 0.71% of the control. Regarding the influence on LUC activity, it 

was detected a slightly inhibition of light production from Pi (90% of the light emitted by the 

control) and DEA-NONOate (93% of the light emitted by the control) (Supplementary data, 

Figure S3). Because pure NAOH was not interfering (Figure S3), the effect was due to 

DEA-NONOate itself or some •NO released upon contact to LUC, since the enzyme is at a 

lower pH value (7.5) compared to the DEA-NONOate solution (about 12). It was reported 

that •NO could inhibit the transcription of the luc gene,43 but no reports of its action on the 

mature enzyme is available, to the best of our knowledge. Furthermore, it was 

demonstrated that •NO activate the flashing of fireflies in vivo, but only through the inhibition 

of O2 usage by mitochondria in photocytes, and not due to a direct action upon the 
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enzyme.44-48 The inhibition of Pi was not expected, since this buffer is used in 

bioluminescent assays with LUC.49 The effect may be due to the Pi-induced precipitation 

of Mg2+ cations.50 Pi has three functions in this assay, as a source of phosphate ions for 

the coupled reaction, as a preferential buffer for GAPDH and as a medium to DEA-

NONOate dissociation. Its substitution for another buffer with all these features was not 

possible. The last preliminary assay was to evaluate, by luminometry, the enzymatic 

reactions coupling and the effect of •NO on GAPDH (Figure 3). The choice for D-LH2 and 

LUC concentration values was based on solubility constraints of D-LH2 and the costs of the 

enzyme, respectively. The concentrations of the remaining reagents and enzymes were 

based on the ‘Enzymatic Assay of 3-Phosphoglycerate Phosphokinase (EC 2.7.2.3) from 

Baker’s Yeast’ protocol by the manufacturer. Light is produced in the presence of the 

complete reaction mixture and absence of both •NO and ATP (Figure 3A). By eliminating 

GAPDH, no light is produced, confirming that ATP is produced via the coupled reactions. 

Addition of •NO significantly reduced (p < 0.05) light output. At 1 nM •NO, light is reduced 

to about 93% of that of the control, and the percentage is reduced to only 25% when •NO 

concentration is raised to 1 M (Figure 3B). However, when raising again the •NO 

concentration to 1 mM, the percentage remains at 25% of the control, probably due to 

enzyme saturation at the tested concentrations of reagents and enzymes (Figure 3B). 

Thus, the possible working range for •NO quantitation, using the method’s chosen 

conditions, lies between the nanomolar up to the low micromolar range. 

 

Figure 3. Preliminary evaluation of the enzymatic reactions coupling and the effect of •NO on GAPDH. (A) Representative 

coupled bioluminescent assay luminograms and (B) the corresponding values of initial rate of bioluminescence generation. 

Positive controls were made in the absence of •NO, while negative controls were made in the absence of GAPDH. Asterisks 

indicate statistically significant difference as compared with the positive control (p < 0.05). The dashed lines in (A) indicate 

the linear portion of the luminograms, whose slopes correspond to the initial rates of bioluminescence generation (see 

Experimental for further details). RLU, relative light units. 
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3.2. Experimental designs 

 

On the basis of the preliminary results, the method was optimized using an 

experimental design methodology. The overall optimization process included two steps, a 

screening, to identify which factors have statistically the most influence on the method’s 

response, and the subsequent determination of the levels at which these factors must be 

kept to optimize the method’s response. Taking into account the various reagents and steps 

in the method, eleven factors were initially selected for screening and a Plackett-Burman 

design was selected (Table 2). The concentrations of the factors (reagents and enzymes) 

were the same as in the preliminary coupled assay, but volumes and the percentage of Pi 

were reduced, from a final volume of 1,000 L to a final volume of 100 L, and to 45% of 

Pi (v/v) to 25%, respectively. When testing the effect of DEA-NONOate on LUC activity, a 

relatively large volume of this compound was tested, 20 L in 100-L final reaction volume, 

or a 1:5 dilution factor. However, the •NO releasing conditions in the experimental design 

assay require a higher dilution factor: DEA-NONOate is diluted 1:20 in Pi, then 5 L of this 

solution is assayed in a final reaction volume of 100 L. These conditions are expected to 

reduce the interfering effect on LUC. Because PGK was injected using an automatic 

burette, it was not possible to largely reduce its volume, so that the volume of PGK was 

altered from 50 L in the preliminary assay to 30 L. Furthermore, the time of reaction was 

reduced from 10 minutes in the preliminary assay to 3 minutes and 30 seconds in the 

experimental design assay, because it was verified that a direct proportion of light 

production over time only occurs in the first minutes of reaction. Results showed that, in the 

presence of 5 nM of •NO and using the testing method Center, the concentrations of Pi (--

), G3P (-), ADP (++), MgCl2 (+), and the pre-incubation time (-) were likely the most 

significant factors (Supplementary data, Table S2). The factors with minus signal exerted 

a negative influence, that is, the higher their value, the lower was the response, whereas 

the plus signal indicated that the higher their value, the higher was the response. The 

number of minus or plus signals indicates the extension of their effects. Overall, the factors 

that could boost light generation (ADP and MgCl2) revealed a positive effect, whereas those 

which could impair ATP generation (preincubation time) had a negative one. Once again 

the negative influence of Pi over the method’s response was verified, together with a 

negative effect from G3P, which does not have a clear pattern in either enhancing or 

reducing the ATP generation (Table S2). 

With this information, a Box Behnken optimization design was built to uncover the 

best Pi, G3P, ADP and MgCl2 concentrations, together with the best preincubation time, 
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and to discover if their interactions are also important for the method’s response. The 

remaining factors were kept at their intermediary concentrations. From the ANOVA table 

(Supplementary data, Table S3), it was verified that only the ADP concentration ([ADP], C), 

the preincubation time (E) and the quadratic factor preincubation time x preincubation time 

(EE) are important factors, showing significant F-ratios (p<0.05). According to their F-ratios, 

the model is significant whereas the lack of fit is not (p<0.05 and p>0.05, respectively), 

which shows that the experimental measurements fit the model. The response surface 

curve (Supplementary data, Figure S4) shows that the concentration of ADP should be kept 

at the highest value tested (0.36 mM) to obtain the maximum signal (bioluminescence 

emission), whereas the preincubation time should be kept to a minimum. Taking these into 

consideration, the concentrations were kept to the central values tested in the screening 

design with the exceptions of ADP, whose concentration was raised to 0.3 mM, and Pi 

which, although not considered a significant factor according to the ANOVA results, the 

concentration was lowered to 30 mM to avoid any inhibitory effect. To the sake of simplicity, 

preincubation was excluded from the optimized protocol. 

 

3.3. Optimized coupled bioluminescent assay 

 

Using the optimized conditions, the coupled bioluminescent assay was 

characterized in terms of linear range, LOD and LOQ and repeatability at low, medium and 

high concentrations of •NO. 

The preliminary assay (Figure 3) indicated that the method is responsive in the 

nano- to low micromolar range, yet the precise interval was not known. To account for it, 

exploratory calibration curves in a relatively enlarged interval (0 to 1,000 M of •NO) were 

performed (Figure 4). It was verified that a linear trend occurs between 0 to 100 nM (Figure 

4, inset). Novel curves were set up in this interval, to which LOD and LOQ were calculated 

as 6.5 and 17.5 nM of •NO, respectively. The repeatability of the method was estimated 

from the relative standard deviation, and showed values of 3.84% at 20 nM, 5.70% at 50 

nM and 4.28% at 100 nM of •NO (Supplementary data, Figure S5). 
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Figure 4. Representative exploratory curve for •NO. Inset Amplification of the zone with linear response. RLU, relative light 

units. 

 

As a proof-of-principle, human whole saliva and microalgae culture medium were 

assayed using this new optimized method. These samples were chosen as examples of a 

clinical application, in the case of saliva, and as an important technological and biological 

product, the microalgae. Proceeding like in the preliminary assays, those samples were 

tested for their possible effect on LUC activity and their content in ATP through ATP 

calibration curves (Figure 2B). No interference in LUC activity was observed (data not 

shown). On the other hand, and as expected, their content in ATP is in the low micromolar 

range, 916 nM for saliva and 864 nM for microalgae culture medium. Before the quantitation 

of •NO, samples were subjected to an enzymatic assay to remove ATP. After the reaction, 

the ATP content dropped to 19 nM in saliva and 7 nM in microalgae culture medium (data 

not shown), which could still interfere with the method. To test if this or other interference 

were exerted by the samples’ matrices, the coupled bioluminescent assay was performed 

by either plain calibration curves and curves set up by the method of standard additions 

(Figure 5, example for microalgae culture medium). The •NO content is presented in Table 

3. The results obtained by either method (calibration curve or standard additions) are 

statistically different (p<0.05), which confirms matrix effects. To avoid such effects, it is 

recommended that biological samples be quantified by the method of standard additions. 

The LOD and LOQ for the curves obtained by this methodology are similar to the values 
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obtained in the method’s characterization using simple calibration curves, 5 and 16 nM for 

saliva and 4 and 14 nM for microalgae culture medium, respectively. 

 

Figure 5. Representative standard additions curves for the •NO assay in microalgae culture medium. (A) Standard additions 

curve using the initial rate of bioluminescence generation. (B) Standard additions curve using the corrected initial rate of 

bioluminescence generation. The horizontal dashed line in (A) indicates the value of the blank (without both sample and DEA-

NONOate standard addition). RLU, relative light units. 

 

Finally, for comparison purposes, samples were tested using a commercial •NO 

detection kit. This kit is an indirect spectrophotometric method relying on the conversion of 

nitrate to nitrite followed by the Griess reaction. As the method measures total nitrate/nitrite, 

higher values compared to the bioluminescent assay were expected. In fact, from 

calibration curves, the total nitrate/nitrite content in samples were in the micromolar range 

(Table 3). The LOD and LOQ of the curves were calculated as 0.8 and 2.7 M, respectively, 

which are close to the LOD value of 1 M according to the manufacturer. The large 

difference in •NO amount obtained by the two methods stresses the importance of direct 

methods to measure •NO, instead of its metabolite products. Furthermore the method, 

albeit simple to perform, is much less sensitive compared to the presented method, 

demands more volume of reagents and takes a longer time to be concluded. 
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Table 3. •NO quantitation in samples using the optimized coupled bioluminescent assay and a commercial kit 

Sample 

•NO / total nitrate and nitrite concentration 

Coupled bioluminescent assay / nM Commercial kit / M 

Calibration curve Standard additions Calibration curve 

Saliva 67.24 ± 0.03 60.79 ± 7.13 22.00 ± 0.02 

Microalgae culture medium 85.30 ± 0.04 80.75 ± 7.39 69.71 ± 0.06 

 

4. Conclusions 

 

This chapter presented the establishment of an optimized coupled bioluminescent 

assay for •NO quantitation. The novelty of this assay is not only the use of coupled 

enzymatic reactions with detection by luminometry, but also its optimization based on an 

experimental design methodology and test in real samples. This optimized method is 

sensitive, safe, simple to perform and economic despite the use of several reagents and 

enzymes because of their reduced volumes. All reagents and enzymes are commercially 

available, do not need further purification prior to use and their solutions are stable for 

several months when stored at -20 ºC. Although we used a single-tube luminometer, the 

method is applicable to multiplate assay. Portability of the assay for in situ analysis is also 

possible, albeit preferentially for samples with simpler matrices, like water, to avoid or 

minimize the pre-treatment steps. 
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Table S1. Evaluation of the ATP contamination in the reagents and enzymes used in the coupled bioluminescent assay 

a Values are expressed as mean ± SD (n = 3). 

 

 

 

 

Reagent or enzyme Bioluminescence / RLUa % of the control (ATP) 

ATP 1,062,116 ± 51,808 100 

D-LH2 without LUC 12 ± 2 0.001 

D-LH2 13 ± 2 0.001 

DEA-NONOate 694 ± 42 0.07 

Pi 21 ± 2 0.002 

G3P 1,305 ± 34 0.12 

NAD+ 81 ± 9 0.01 

ADP 7,522 ± 134 0.71 

MgCl2 387 ± 24 0.04 

Glycine 98 ± 8 0.01 

GAPDH 85 ± 4 0.008 

PGK 76 ± 3 0.01 
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Table S2. Center significance testing method results for the Plackett-Burman screening design 

a Significance of each effect at 95% level: NS, not significant; from + to +++, positive effect; from - to - - -, negative effect. 

 

Factor Effect in the presence of •NO 5 nMa 

[Pi] / mM -- 

[G3P] / mM - 

[NAD+] / mM NS 

[ADP] / mM ++ 

[MgCl2] / mM + 

[Glycine] / mM NS 

[GAPDH] / g·mL-1 
NS 

[D-LH2] / M NS 

[PGK] / g·mL-1 
NS 

[LUC] / g·mL-1 NS 

Preincubation time / minutes - 
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Table S3. Analysis of Variance (ANOVA) table for the Box Behnken optimization design  

 SSa DF MS F-ratio p-value B-coefficient SEb 

Summary        

Model 4.580 x 105 20 2.290 x 104 4.350 0.0004   

Error 1.263 x 105 24 5.264 x 103     

Adjusted total 5.843 x 105 44 1.328 x 104     

        

Variable        

Intercept 1.453 x 106 1 1.453 x 106 275.944 

 

0.0000 539.000 32.447 

[Pi] (A) 7.439 x 103 1 7.439 x 103 1.413 0.2462 -0.532 0.448 

[G3P] (B) 0.250 1 0.250 4.749 x 10-5 

 

0.9946 -0.185 26.872 

[ADP] (C) 2.318 x 105 1 2.318 x 105 44.042 0.0000 743.055 111.967 

[MgCl2] (D) 60.062 1 60.062 1.141 x 10-2 0.9158 0.567 5.304 

Preincubation time (E) 1.665 x 105 1 1.665 x 105 31.622 0.0000 -13.600 2.418 

AB 6.250 1 6.250 1.187 x 10-3 0.9728 -0.455 13.192 

AC 650.250 1 650.250 0.124 0.7283 4.636 13.192 

AD 156.250 1 156.250 2.968 x 10-2 0.8647 2.273 13.192 

AE 1.225 x 103 1 1.225 x 103 0.233 0.6339 -6.364 13.192 

BC 9.000 1 9.000 1.710 x 10-3 0.9674 0.545 13.192 

BD 182.250 1 182.250 3.462 x 10-2 0.8540 -2.455 13.192 

BE 16.000 1 16.000 3.039 x 10-3 0.9565 -0.727 13.192 

CD 42.250 1 42.250 8.062 x 10-3 0.9294 -1.182 13.192 

CE 121.000 1 121.000 2.299 x 10-2 0.8808 2.000 13.192 

DE 25.000 1 25.000 4.749 x 10-3 0.9456 -0.909 13.192 

AA 2.438 x 103 1 2.438 x 103 0.463 0.5026 -6.295 9.250 

BB 4.975 x 103 1 4.975 x 103 0.945 0.3407 -8.992 9.250 

CC 1.905 x 104 1 1.905 x 104 3.620 0.0692 -17.598 9.250 

DD 1.415 x 103 1 1.415 x 103 0.269 0.6089 4.795 9.250 

EE 2.649 x 104 1 2.649 x 104 5.032 0.0344 -20.750 9.250 

        

Model check        

Main 4.058 x 105 5 8.116 x 104     

Int 2.433 x 103 10 243.325 4.622 x 10-2 1.0000   

Int + squ 4.973 x 104 5 9.947 x 103 1.890 0.1336   

Squ 4.973 x 104 5 9.947 x 103  0.1336   

Error 1.263 x 105 24 5.264 x 103     

        

Lack of fit        

Lack of fit 1.201 x 105 20 6.007 x 103 3.879 0.0985   

Pure error 6.194 x 103 4 1.549 x 103     

Total error 1.263 x 105 24 5.264 x 103     

a SS, Sum of squares; DF, degrees of freedom; MS, mean squares (ratio between SS and DF); F-ratio, ratio between 

‘between-measures’ MS and ‘within-measures’ (residual) MS; p-value, probability of getting the F-ratio under the null 

hypothesis at 95%; B-coefficient, regression coefficient from a multiple linear regression analysis; SEb, standard error of b. 

 

.
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Figure S1. UV-vis absorbance spectra of GAPDH and PGK coupled reactions generating NADH + H+. a.u., arbitrary units. 

 

 

Figure S2. UV-vis absorbance spectrum of the decomposition of DEA-NONOate. a.u., arbitrary units. 
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Figure S3. Evaluation of reagents and enzymes influence on LUC activity. Control was made in the absence of any reagent or 

enzyme. Asterisks indicate statistically significant difference as compared with the control (p < 0.05). RLU, relative light units. 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Response surface landscape plot for the most important method’s factors, the concentration of ADP ([ADP]) and the 

preincubation time, tested in a Box Behnken design. 
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Figure S5. Evaluation of the optimized coupled bioluminescent assay repeatability. (A) Presentation of the experimental 

values by each •NO concentration tested. (B) Presentation of the experimental values by individual tubes within each 

concentration. RLU, relative light units. 
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Chapter five 

 

An optimized firefly luciferase bioluminescent assay for free fatty acids 

quantitation in biological samples 
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An optimized firefly luciferase bioluminescent assay for free fatty acids 

quantitation in biological samples 

 

 

 

A firefly luciferase (LUC) based bioluminescent assay for free fatty acids (FFA) is 

presented. LUC converts FFA into fatty acyl-adenylates, with consumption of adenosine 5’-

triphosphate (ATP). Posteriorly, by adding LUC’s substrate, firefly D-luciferin (D-LH2), any 

remaining ATP can be quantified. A linear decrease in the bioluminescent signal is 

proportional to the amount of FFA. Using FFA standard mixtures containing myristic (14:0), 

palmitic (16:0), stearic (18:0), oleic (18:1) and arachidonic acid (20:4) in ethanol, the assay 

was optimized through statistical experimental design methodology, namely fractional 

factorial (screening) and central composite (optimization) designs. The optimized method 

requires 2 L of sample per tube in a final reaction volume of 50 L. It is linear in the range 

from 1 to 20 M, with limits of detection (LOD) and quantitation (LOQ) of 1.3 and 4.5 M, 

respectively. As a proof-of-principle, a fingertip drop of blood plasma was assayed by 

calibration curves. The method proved to be simple to perform, demands low reagent 

volumes, it is sensitive and robust and may be adapted to high-throughput screening. 

 

 

 

Keywords: Analytical biochemistry; Luminometry; Experimental design; Enzymatic assay 
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1. Introduction 

 

Firefly luciferase [Photinus-luciferin: oxygen 4-oxidoreductase (decarboxylating, 

ATP-hydrolyzing), EC 1.13.12.7] (LUC), which catalyzes a bioluminescent reaction, is an 

important bioanalytical tool.1-3 The reaction proceeds thought two steps, the conversion of 

its natural substrate, firefly D-luciferin (D-LH2), into the intermediate D-luciferyl-adenylate (D-

LH2-AMP) with the consumption of adenosine 5’-triphosphate (ATP) and the release of 

inorganic pyrophosphate (PPi), and the subsequent oxidative decarboxylation of D-LH2-

AMP into oxyluciferin, carbon dioxide (CO2), free adenosine 5’-monophosphate (AMP) and 

photons of visible light (Scheme 1A).1-3 Oba et al. have demonstrated the ability of LUC to 

synthesize fatty acyl-coenzyme A in the presence of fatty acids, ATP and coenzyme A 

(CoA) via the intermediate fatty acyl-adenylate (Scheme 1B).4 This reaction consumes 

ATP, albeit not generating light, which prompted us to develop a bioluminescent method 

for the detection and quantitation of free fatty acids (FFA) by measuring the decrease in 

the bioluminescent signal after the addition of D-LH2 to solutions with increasing amounts 

of fatty acids. To the best of our knowledge, this is the first bioluminescent method for FFA 

quantitation. 

 

 

Scheme 1. Schematic representation of firefly luciferase (LUC) catalyzed reactions. (A) In the presence of its natural 

substrate, firefly D-luciferin (D-LH2). (B) In the presence of a fatty acid. 

 

Fatty acids are carboxylic acids with a hydrocarbon chain, and they include the 

saturated (without double bonds) lauric (12:0), myristic (14:0), palmitic (16:0) and stearic 

(18:0) acids and the unsaturated (with one or more double bonds) palmitoleic (16:1), oleic 
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(18:1), linoleic (18:2), linolenic (18:3) and arachidonic (20:4) acids, among others.5 These 

biomolecules play important biological, clinical and biotechnological roles. For example, 

fatty acids are a source of energy in living organisms,6 whereas arachidonic acid is a 

precursor of the eicosanoids paracrine hormones,7, 8 and their circulation in blood is 

considered a nutritional status marker.9 They are applied in energy storage and releasing 

devices such as solar heating and air-conditioning systems,10 thermoplastic polymers11 and 

biodiesel.12 In this sense their detection, profiling and quantitation is paramount. The 

methods described in the literature are mainly based on instrumental techniques, namely 

high-performance liquid chromatography (HPLC) and gas chromatography (GC), 

sometimes coupled to mass spectrometry (MS).13-17 These methods are very sensitive and 

allow the profiling of the different FFA present in complex samples such as blood. However, 

they demand specialized equipment, which may involve high costs of acquisition and 

maintenance, and also require specialized personnel to operate. Furthermore, they 

consume large volumes of potentially harmful eluents. The proposed method was 

conceived to avoid these drawbacks. It was optimized through a statistical experimental 

design methodology, characterized in terms of linear range and limits of detection (LOD) 

and quantitation (LOQ), and tested in human fingertip blood plasma as a proof-of-principle 

for biological samples. 

 

2. Experimental 

 

Note: All glass material was rinsed with acetone to avoid contamination. All 

experiments were performed at room temperature (approximately 20 ºC). Concentration 

values are final. 

 

2.1. Reagents and solutions 

 

2.1.1. Reagents 

 

LUC (product code L9506, lot SLBD4220) and the reagents 4-(2-

hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES, H3375), ATP (A2383), D-LH2 

(L9504), magnesium chloride (MgCl2, 63064) and myristic (M3128), palmitic (P0500), oleic 

(O1008), stearic (85680) and arachidonic (10929) acids were purchased from Sigma-
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Aldrich® (Steinheim, Germany). Nitrogen (Alphagaz™ Smartop N2) was obtained from Air 

Liquide Portugal (Algés, Portugal). Acetone was obtained from Fisher Chemical 

(Loughborough, U.K.). Ethanol was from Panreac (Barcelona, Spain). Hexane was 

obtained from VWR (Fontenay Sous Bois, France). 

A commercial FFA quantitation kit, ‘Free Fatty Acid Quantitication Kit’, ab65341, 

was purchased from Abcam® (Cambridge, U.K.). 

 

2.1.2. Solutions 

 

All reagents were used without further purification. A stock solution of LUC was 

prepared by dissolving the whole flask content in HEPES buffer 0.5 M, pH 7.5. The 

concentration was confirmed by ultraviolet-visible (UV-vis) spectrophotometry using an 

Unicam Helios  spectrophotometer (Cambridge, U.K.), and considering a molar extinction 

coefficient of 39,310 L·mol-1·cm-1 at the maximum wavelength (max) of 280 nm and a 

molecular mass of 60,745 Da. HEPES was prepared by dissolving the corresponding mass 

in deionized water, and the pH was adjusted to 7.5 by using a 10 M NaOH solution. Stock 

solutions of ATP and MgCl2 were prepared in deionized water without pH adjustment. D-

LH2 stock solutions were prepared in deionized water with intense stirring for about 1 hour 

protected from the air and from the light. Concentration was confirmed by UV-vis 

spectrophotometry considering a molar extinction coefficient of 18,200 L·mol-1·cm-1 at max 

327 nm. FFA standard solutions were prepared by dissolving the corresponding masses in 

ethanol. 

To ensure that the same conditions were achieved throughout the work, and also 

to avoid multiple freezing-thawing cycles, stock solutions were prepared in large volumes, 

aliquoted in small volumes and stored at -20 ºC. 

 

2.2. Experimental designs formulation 

 

Experimental designs were created using The Unscrambler® version 9.2 from 

CAMO (Oslo, Norway). A screening design was created using a fractional factorial design 

with five continuous variables at two levels and one nondesign (response) variable, which 

was set as a 1 M FFA standard mixture. For the experimental procedure, one replication 

per experiment and three centre (control) experiments were chosen, with a total of eleven 

testing experiments plus the three control experiments. The factors and their levels were 

as following: preincubation time, 0 to 30 minutes; preincubation temperature, room 

temperature to 30 ºC; ATP concentration, 5 to 25 M; LUC concentration, 5 to 25 nM; and 
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D-LH2 concentration, 5 to 25 M. When appropriate, tubes were incubated in a water bath 

using an IMLAB ET Basic Yellow Line immersion thermostat (Boutersem, Belgium). An 

optimization design was created using a central composite design with two continuous 

variables at two levels and one nondesign variable, which was set as a 1 M FFA standard 

mixture. The star point distance from centre was settled at 1.41.For the experimental 

procedure, one replication per experiment and three centre experiments were chosen, with 

a total of eleven testing experiments plus the three control experiments. The factors and 

their levels were as following: ATP concentration, 5 to 25 M; and D-LH2 concentration, 5 

to 25 M. 

 

2.3. Optimized bioluminescent assays 

 

2.3.1. General optimized protocol 

 

Bioluminescent assays were performed by luminometry using a homemade 

luminometer with a Hamamatsu HCL35 photomultiplier tube (Middlesex, N.J., U.S.A.) 

inside a light-tight dark chamber coupled to a Crison MicroBU 2030 automatic microburette 

(Barcelona, Spain) equipped with a 2.5 mL Hamilton GASTIGHT® 1002 glass syringe 

(Bonaduz, Switzerland). 

The stock solutions of reagents, FFA standard mixtures and LUC were diluted in 

deionized water, ethanol or HEPES buffer 0.5 M, pH 7.5, respectively, and kept on ice until 

use. 

The optimized bioluminescent assay is performed as follow: pipette 2.00 L of 

sample or FFA standard mixture to a polypropylene transparent test tube and add 6.50 L 

of ATP (18 M) and 6.50 L of MgCl2 (4 mM). Set a chronometer to start at the moment of 

addition of 5.00 L of LUC (5 nM), insert the tube into the luminometer and start to record 

the bioluminescent signal. One minute after the addition of LUC, inject 30 L of D-LH2 (17 

M) and record the light output for another 30 seconds, at an integration interval of 0.1 

seconds. 

Calibration curves were made according to the procedure described above using 

FFA standard mixtures with concentrations from 1 to 20 M (each point measured in 

triplicate). 
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2.3.2. Samples’ assays 

 

Blood fingertip drops were freshly collected after an overnight fasting period. The 

forefinger was cleaned up with alcohol 70% and the finger was minced with a disposable 

lancet. The drop was collected with a micropipette and poured into a capped polypropylene 

tube. Plasma was obtained by centrifugation at 2,500 x g for 10 minutes using an Eppendorf 

5415D workbench centrifuge (Hamburg, Germany). FFA were extracted according to a 

previously described procedure with the following modification: the organic phase was dried 

by passing a stream of nitrogen and reconstituted in ethanol.18, 19 

Assays were performed under the optimized conditions described in subsection 

2.3.1. through calibration curves. Samples were also assayed using a commercial kit under 

the manufacturer’s instructions. 

 

2.5. Statistical analysis 

 

2.5.1. Experimental designs calculations 

 

Data obtained from the experimental designs was analyzed using The 

Unscrambler® software. For the fractional factorial screening design, an analysis of effect 

was performed. Results were expressed as effects overview, using the significance testing 

methods center and higher order interaction effects (HOIE). For the central composite 

optimization design, a response surface analysis, which includes a two-way analysis of 

variance (ANOVA) table, was applied. From the ANOVA table, the analyzed parameters 

were the summary (evaluation of the global model), the variable (evaluation of the 

significance of each of the variables tested), the model check (evaluation of the global 

quadratic model) and the lack of fit (degree of misfitting of the experimental data to the 

model). All those parameters were evaluated through the F-ratios and the corresponding 

p-values. A p-value <0.05 was considered as statistically significant. 

 

2.5.2. Optimized bioluminescent assays 

 

Note: Data treatment and calculations were performed with a Microsoft® Excel® 

spreadsheet. 

 

Calibration curves, for obtaining the method’s figures of merit and for quantitation of 

FFA, were set up by the method of least squares by plotting the bioluminescence peak 

values as a function of the FFA standard mixtures concentration. The bioluminescence 
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peaks are obtained by selecting the maxima in the luminograms, corresponding to the 

moment at which D-LH2 is injected into the reactional mixture (Figure 1A), and are 

expressed in relative light units (RLU). LOD and LOQ were calculated using the following 

criteria: LOD = (a + 3Sy/x) and LOQ = (a + 10Sy/x), where a is the intercept of the calibration 

curves and Sy/x is the random error in the y-direction.20 Calibration curve points are 

presented as mean ± standard deviation (SD) (n = 3), and sample concentrations as 

concentration ± 95% confident limits (95% CL) of the concentration. Using the commercial 

kit, the FFA content in samples was assayed by a calibration curve by plotting the 

absorbance as a function of the concentration of palmitic acid standards. Results are 

presented as FFA concentration ± 95% CL of the concentration. To test whether there was 

a significant difference between the results obtained by both methods, a paired t-test was 

performed.20 

 

 

Figure 1. The bioluminescent assay light signal registration as a luminogram and the calibration curve setup. (A) A typical 

luminogram. The arrow indicates the bioluminescence peak due to D-LH2 injection. The dashed luminogram represents a 

fatty acid standard mixture with a concentration of 0 M, whereas the solid luminogram represents a fatty acid standard 

mixture with a concentration of 20 M. (B) A typical calibration curve for free fatty acids (FFA) quantitation. 

 

3. Results and discussion 

 

The method was optimized using an experimental design methodology. The overall 

optimization process included two steps, a screening, to identify which factors have 

statistically the most influence on the method’s response, and the subsequent 

determination of the levels at which these factors must be kept to optimize the method’s 

response. Taking into account the various reagents and steps in the method, five factors 
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were initially selected for screening and a fractional factorial design was selected. Results 

showed that, in the presence of a 1 M FFA standard mixture and using the testing methods 

center and HOIE, the ATP and D-LH2 concentrations were the most significant factors (data 

not shown). Both factors exerted a positive influence, that is, the higher their 

concentrations, the higher was the bioluminescent signal (data not shown). With this 

information, a central composite optimization design was built to uncover the best ATP and 

D-LH2 concentrations, and also to verify if their interactions were important for the method’s 

response. The remaining factors were kept at their most convenient disposition, which 

corresponded to the minimum concentrations values, no preincubation and assay at room 

temperature. From the ANOVA table it was verified that both ATP and D-LH2 

concentrations, as well as their quadratic interactions, were important factors, showing 

significant F-ratios (p<0.05) (data not shown). According to their F-ratios, the model was 

significant whereas the lack of fit was not (p<0.05 and p>0.05, respectively), which showed 

that the experimental measurements fit the model (data not shown). The response surface 

curve (Figure 2) showed a maximum at which the concentrations of ATP and D-LH2 should 

be kept to obtain the most robust response, about 18 M for ATP and about 17 M for D-

LH2. 

 

 

Figure 2. Response surface landscape plot for the factors tested in the central composite design. The factors were the 

concentrations of ATP, denoted as ‘[ATP] (A)’, and D-LH2, denoted as ‘[luciferin] (B)’. 
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Using the optimized conditions, the bioluminescent assay was characterized in 

terms of linear range, LOD and LOQ. It was verified that a linear trend occurred between 1 

to 20 M (Figure 1B), and LOD and LOQ were calculated as 1.3 and 4.5 M, respectively. 

As a proof-of-principle, plasma from a fingertip blood drop was assayed for its FFA 

content using this new optimized method. A value of 8.77 ± 0.21 M was obtained. For 

comparison purposes, this sample was simultaneously tested using a commercial FFA 

detection kit. This kit is based on the enzymatic production and posterior oxidation of fatty 

acyl-CoAs, giving rise to a bright pink product that can be measured by either 

spectrophotometry or fluorometry. From spectrophotometric measurements, the sample 

FFA content was 8.90 ± 0.82 M. No significant differences (p<0.05) were found between 

these values. Comparing those two methods, it is clear that the commercial kit is simple to 

perform and demands low volumes of samples and reagents, but it takes a longer time (one 

hour for incubations plus sample preparation and spectrophotometric reading) and it is 

slightly less sensitive (LOD 2 M versus 1.3 M for the bioluminescent assay). 

Some caveats must be addressed. The presented method is based on ATP 

depletion due to the synthesis of fatty acyl-adenylates by LUC. Depletion methods are 

based on the measurement of small changes in the bioluminescent signal in the presence 

of a more or less large pool of ATP still unconsumed, which makes the methodology slightly 

less sensitive compared to other enzymatic reactions, from which LODs are in the 

nanomolar range. Nonetheless, it is still in the range of FFA concentration in biological 

samples. Another drawback is that the method does not allow the profile and quantitation 

of individual fatty acids, but rather the quantitation of total FFA. In this case, the method 

must be regarded as a screening methodology to obtain general information about the FFA 

amount. If further profiling is needed, a chromatographic method described in the literature 

must be selected. A major interfering in the assay is the presence of ATP, since this 

compound is ubiquitous in biological samples. The methodologies for fatty acids extraction 

separate the organic layer enriched in fatty acids from the aqueous layer with ATP, thus 

eliminating this contaminant. Finally, LUC may lose some activity in the course of the assay. 

To avoid this, it is recommended that the enzyme be kept on ice. Furthermore, if the storage 

time or the activity status of the enzyme are unknown, or if longer assay times are expected 

(more than two hours), the addition of additives to stabilize LUC, for example 

polyvynylpyrrolidone, glycine or dithiothreitol, is advised. LUC is also inhibited by 

alcohols.21 Nonetheless, in this method, both the ethanol amount (2 L) and LUC exposure 

time to ethanol (1 minute and 30 seconds) are reduced and, therefore, no effects are 

expected to occur. 
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4. Conclusions 

 

In conclusion, despite the caveats described above, this method presents 

interesting features for the analyst, namely its safety, robustness, simplicity to perform and 

quickness. All reagents are commercially available, nontoxic, do not need further 

purification prior to use and their solutions are stable for several months when stored at -

20 ºC. After their extraction from samples, FFA are assayed without further treatment, 

namely derivatization to become fluorescent. Although we used a single-tube luminometer, 

the method is applicable to multiplate assay. The proof-of-principle quantitation of FFA in 

plasma obtained from a fingertip drop of blood confirmed its applicability to real samples. 

Plasma was selected because of the clinical importance of FFA quantitation, however it is 

expected that other biological, environmental and chemical samples can be successfully 

assayed, because the extraction procedure reduces matrix complexity. 
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a b s t r a c t

This paper presents the main results of RP-HPLC–MS and microscale NMR analysis performed on Accom-
panying similar to Luciferin (AsLn(x)), compounds present in extracts of the bioluminescent earthworm
Fridericia heliota that display similarities with Fridericia’s luciferin, the substrate of the bioluminescent
reaction. Three isomers of AsLn were discovered, AsLn(1), AsLn(2) and AsLn(3), all of which present a
molecular weight of 529 Da. Their UV–Vis absorption spectra show maxima at 235 nm for AsLn(1),
238 and 295 nm for AsLn(2) and 241 and 295 nm for AsLn(3). MSn fragmentation patterns suggest the
existence of carboxylic acid and hydroxyl moieties, and possibly chemical groups found in other lucifer-
ins like pterin or benzothiazole. The major isomer, AsLn(2), presents an aromatic ring and alkene and
alkyl moieties. These luciferin-like compounds can be used as models that could give further insights into
the structure of this newly discovered luciferin.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Bioluminescence refers to a process in which an enzyme, lucif-
erase, catalyses the oxidation of its substrate, luciferin, generating
photons of visible light [1,2]. The most studied bioluminescent sys-
tem is that of the North American firefly Photinus pyralis but other
systems are known, like those of bacteria and coelenterates, which
have important applications in basic and applied research [1,2].

Recently a new bioluminescent Siberian earthworm was de-
scribed, Fridericia heliota (Annelida: Clitellata: Oligochaeta: Enchyt-
raeidae) [3]. Besides the basic components, luciferase, luciferin
and oxygen, its bioluminescent reaction requires the co-factors
ATP and Mg2+, similarly to fireflies, emitting a blue–green light
with a maximum at 478 nm [4]. The presence of anions, cations
of divalent metals, detergents and certain lipids, as well as changes
in pH and temperature, may alter the emission profile in vitro [5].

Little is known about the structures of luciferase and luciferin,
as well as the whole bioluminescent mechanism. Preliminary re-
sults on gel-filtration chromatography have assigned a molecular
weight (MW) close to 70,000 and 500 Da to luciferase and luciferin,
respectively [6]. A major drawback in the study of F. heliota’s
bioluminescent system is the extreme difficulty in obtaining
extracts of luciferase and luciferin. F. heliota has a reduced size
(no more than 2 cm each worm) and a reduced luciferin content

(0.5–0.7 lg/g of biomass, approximately 500 worms) [5]. Further-
more, the collection process is laborious, demanding the picking
up of the earthworms one by one from soil by hand, in the dark
and only during summer (2–3 months per year in Siberia). As a re-
sult it is common to get only 30–50 g of wet clean worms per sea-
son. Since many extraction and purification steps need to be
performed, the luciferin loss is significant. Taking these facts into
account it is useful to find model molecules, similar to luciferin
in terms of structure and chemical properties but present in higher
concentration than luciferin in extracts, and such was the purpose
of the present work.

2. Materials and methods

2.1. Preparation of F. heliota extracts

The separation and purification of different fractions were
achieved according to Scheme 1. Briefly, to obtain a crude total
luciferin fraction 70 mL of crude total extract (cell-free extract) of
F. heliota, prepared from 9.0 g of wet worms, was loaded onto a col-
umn (16 mm � 200 mm) packed with diethylaminoethyl (DEAE)
Sepharose™ Fast Flow (Pharmacia Biotech, Uppsala, Sweden) cou-
pled to the BioLogic™ LP chromatography system (BIO-RAD Labora-
tories, Hercules, USA). The column was equilibrated with
tris(hydroxymethyl)-aminomethane-hydrochloric acid (Tris-HCl)
buffer 10 mM, pH 8.1 (Serva Electrophoresis, Heidelberg, Germany).
Elution was done by a linear gradient elution program of sodium
chloride from 0 to 1 M. Before the second chromatographic step,
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to obtain purified total luciferin fractions, the main luciferin frac-
tions were acidified to pH 3 by adding hydrochloric acid and con-
centrated in a 3 mL disposable C16 extraction cartridge (Diapack-
C16, BioChemMak S&T, Moscow, Russia) which was previously
equilibrated using hydrochloric acid 10 mM with acetonitrile 3%.
The cartridge was rinsed with 15 mL of the equilibration solution,
luciferin was washed off with 3 mL of acetonitrile 75% and then
concentrated to 0.8 mL by vacuum (Vac-Rotor Concentrator Type
350P, Unipan Scientific Instruments, Warsaw, Poland). Reversed-
phase liquid chromatography (RP-LC) was performed using a Mili-
Chrom A-02 chromatograph (EcoNova, Novosibirsk, Russia) with a
2 mm� 75 mm column packed with ProntoSil� 120-5-C18 (EcoNova
Novosibirsk, Russia). Elution was performed using a gradient
elution program. Eluent A was a solution of ammonium formate
0.1%, pH 5, obtained by adding the corresponding acid to deionized
water and dropping ammonium hydroxide to the desired pH.
Eluent B was acetonitrile. The standard gradient program was
5–40% B for 28 min. Both the column and solvents were maintained
at 40 �C, with a flow rate of 0.1 mL/min. Absorbance was monitored
at 210, 230, 250, 270, 290, 310, 330 and 360 nm. To obtain purified
individual component fractions, fractions of each luciferin-like
component obtained from identical chromatograms were collected,
evaporated to minimal volume under low pressure and subjected to
rechromatography under conditions previously described.

2.2. Luciferase activity measurement

The reaction mixture to locate luciferin in chromatograms of
purified total luciferin fractions by measuring luciferase activity
(in arbitrary units) was composed of adenosine 50-triphosphate
10 mM (ATP, 2.5 lL), magnesium chloride 100 mM (2.5 lL), Tri-
ton� X-100 10% (10 lL) (Sigma–Aldrich, St. Louis, USA), Tris-HCl
buffer 20 mM, pH 8.1 (180 lL) and anion-exchange purified lucif-
erase extract (10 lL). The reaction was initiated by adding luciferin

fractions (1 lL) and was performed on a custom-made lumino-
meter (Oberon, Krasnoyarsk, Russia). Each time before the addition
of luciferin fractions the background luminescence was measured
for 20s and subtracted from the total measurement.

2.3. RP-HPLC analysis

The characterization of purified individual AsLn fractions
employed a chromatographic system composed of a HPLC pump
(Finnigan™ Surveyor™ LC Pump Plus), an autosampler (Finnigan™
Surveyor™ Autosampler Plus) and a photodiode array detector
equipped with a LightPipe™ flowcell (Finnigan™ Surveyor™ PDA
Plus Detector) (all instrumentation from Thermo Electron
Corporation, Waltham, USA), together with a silica-based C18

reversed-phase column (Hypersil™ GOLD Column 2.1 mm �
150 mm, particle size 5.0 lm, pore diameter 175 Å, Thermo Scien-
tific, Waltham, USA). In each run 10 lL of samples were injected.
The mobile phase consisted of (A) LC–MS grade deionized water with
formic acid 0.1% and (B) LC–MS grade acetonitrile. Elutions were per-
formed at a constant flow rate of 0.3 mL/min under a gradient elution
program: 0–14 min, 5% B; 14–38 min, 40% B; 38–39 min, 80% B;
39–50 min, 100% B, and 51–60 min, 5% B, and absorbance was
monitored at a total scan mode from 220 to 750 nm.

2.4. MS analysis

The mass spectrometer was a Finnigan™ LCQ™ Deca XP Max
(Thermo Electron Corporation, Waltham, USA) coupled to the HPLC
system. This device was equipped with an electrospray interface as
ionization source and a quadrupole ion trap for MSn experiments,
and was operated both in positive and negative ion modes with
the following conditions: spray voltage, 5 kV; capillary voltage,
�15 V or 15 V in negative and positive ion modes, respectively;
capillary temperature, 300 �C. Full-scan spectra were acquired over
a mass range from 250 to 1500 Da in MS mode, from 135 to 540 Da
in MS2 mode and from 120 to 495 Da in MS3 mode, all in negative
ion mode; from 250 to 1500 Da in MS mode, from 135 to 545 Da in
MS2 mode and from 115 to 480 Da or 85 to 360 Da in MS3 mode for
AsLn(1) or AsLn(2), respectively, all in positive ion mode. The sys-
tem was controlled by Xcalibur™ version 1.4 SR1 and data was
treated using QualBrowser version 1.4 SR1 (both Thermo Electron
Corporation, Waltham, USA). Assignment of some of the main frag-
ments generated during MSn experiences was done using the open
database for mass spectrometry MassBank [7].

2.5. NMR analysis

Nuclear magnetic resonance measurements were performed at
RIAIDT (Rede de Infraestruturas de Apoio à Investigação e ao
Desenvolvimento Tecnológico), Unity of Magnetic Resonance, Sec-
tion of Nuclear Magnetic Resonance, CACTUS Building at University
of Santiago de Compostela (Spain) on a Bruker Avance DRX-500
NMR spectrometer (Bruker Corporation, Billerica, USA) operating
at 500 MHz. Purified individual AsLn fractions (see subsection
2.1.) were lyophilized and 1H and COSY data was recorded in hexa-
deuterated dimethyl sulfoxide (DMSO-d6, CD3SOCD3) with a 1 mm
microprobe. Chemical shifts are given in parts per million (ppm)
and were referenced to the solvent signal at 2.50 ppm. Data was
treated using MestReNova Lite version 6.1.1-6384 (Mestrelab Re-
search, Santiago de Compostela, Spain).

3. Results

Previous results have shown the presence of at least two
compounds in total luciferin fractions, luciferin itself and a

Scheme 1. Sequential chromatographic steps to obtain total and individual
fractions from Fridericia heliota.
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non-identified compound informally called Component X [6]. By
comparing spectral characteristics of peaks after chromatographic
steps (data not shown) a new luciferin-like compound termed
Accompanying similar to Luciferin (AsLn) was identified
(Fig. 1A). Both Component X and AsLn have no luminescence
activity with F. heliota luciferase (data not shown). However, as

they have similar UV–Vis spectral parameters, they could share
a similar structure with luciferin. Due to its reduced concentra-
tion luciferin was not observed in chromatograms. To detect lucif-
erin in those fractions Fridericia’s luciferase was added and its
activity measured. A defined and non-superimposed luciferin
peak was obtained (Fig. 1A).

Fig. 1. (A) Representative chromatogram of purified total luciferin fraction at different absorbance wavelengths (A) with location of F. heliota’s luciferin. The black rectangles
correspond to luciferin. Peak at 7.2 min corresponds to Component X and peak at 15.4 min was assigned to AsLn. (B) Representative chromatogram of purified individual AsLn
fraction. (C) The corresponding MS spectrum in total ion count (TIC) and positive ion mode for sample in (B). AU, absorbance units.
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Having established the luciferin model, AsLn, an attempt to un-
cover its structure was made. Table 1 resumes the main findings
regarding chromatographic and mass spectrometric characteriza-
tion of AsLn(x) in purified individual fractions. Based on retention
time values and UV–Vis spectra, three isomers of AsLn were found
(Fig. 1B). AsLn(1) is the first isomer that appears using RP-HPLC
conditions, with retention times about 13 min. Its UV–Vis spec-
trum has a maximum at 235–238 nm with a shoulder at 268 nm
(Fig. 2). The predominant isomer is AsLn(2), with retention times
about 14 min but a completely different UV–Vis spectrum com-
pared to AsLn(1), presenting two maxima, one at 238 nm (minor)
and the other at 295 nm (major) (Fig. 2). Finally the isomer AsLn(3)
could be detected at retention times about 15–16 min. This com-
pound has a UV–Vis spectrum similar to AsLn(2), with two maxima
at 241 nm (minor) and 295 nm (major) (Fig. 2). In MS analysis, as a
first approach, a total ion count (TIC) analysis was performed,
where a correlation between LC and MS peaks was observed
(Fig. 1C). As a result a molecular weight (MW) of 529 Da based
on [M+H]+ and [M�H]� molecular ions was assigned to AsLn(1)
(see Supplementary data, Fig. S1), a value similar to that prelimin-
ary reported for luciferin [6]. For AsLn(2), the obtained MW was
also 529 Da (Fig. S2). Contrary to AsLn(1) and AsLn(2), AsLn(3)’s
MW was not obtained with the current eluent A (formic acid
0.1%) (Fig. 1C). However, when using ammonium formate 10
mM, pH 5, a MW of 529 Da was assigned (Fig. S3). MSn fragmenta-
tion patterns were obtained for AsLn(1) and AsLn(2) (Figs. S1 and

S2). For AsLn(1) it was found that MS2 and MS3 fragmentation pat-
terns are quite different in negative or positive ion modes (Fig. S1).
The same trend was observed for AsLn(2) (Fig. S2), but remarkably
AsLn(1) and AsLn(2) share a very similar pattern in negative ion
mode (Table 1 and Figs. S1 and S2). The assignment of some chem-
ical groups correlating to the observed fragmentation pattern was
achieved. Both AsLn(1) and AsLn(2) present a 44 Da fragment
(528–484 Da) in MS2 spectra in negative ion mode which could
be attributed to a carboxylate group (COO�). AsLn(1) presents a
61 Da fragment (528–467 Da) which could correspond to the
simultaneous departure of COO� and a hydroxyl (HO) or ammonia
(NH3) group (44 + 17 Da). This fragment is not detected in AsLn(2).
In MS3 spectra both compounds present another 61 Da fragment
(484–423 Da). Additionally a 163 Da fragment is seen (484–
321 Da), which is the same mass of pterin (C6H5N5O). Regarding
positive ion mode, it was verified a 18 Da fragment in MS2 spec-
trum for AsLn(1) (530–512 Da) and MS3 spectrum for AsLn(2)
(349–331 Da), which could be attributed to a water molecule
(H2O) or to an ammonium cation (NHþ4 ). Two other common frag-
ments to AsLn(1) and AsLn(2) in MS2 spectra are 46 Da (530–
484 Da) and 63 Da (530–467 Da), possibly corresponding to formic
acid (COOH2) or a combination of COOH2/HO or COOH2/NH3

(46 + 17 Da), respectively. For AsLn(1) in MS3 spectrum and
AsLn(2) in MS2 spectrum it was observed a 181 Da fragment
(467–286 Da and 530–349 Da, respectively) with the same mass
of 2-methylmercaptobenzothiazole and a similar mass to D-(+)-

Table 1
RP-HPLC–MS results from the analysis of AsLn(x).

Compound UV–Vis maximum absorbance
(nm)

Ion mode Experimental
[M±H]±

Fragments derived from MS2 (m/z) Fragments derived from MS3 (m/z)

AsLn(1) 235 Negative 528.27 321; 467; 484a 484 ? 321a; 338; 423; 425; 467
Positive 530.27 356; 421; 449; 467a; 484; 512 467 ? 268; 286; 356; 421a

AsLn(2) 238/295 Negative 528.20 321; 484a 484 ? 321a; 338; 423; 452
Positive 530.20 331; 349a; 367; 467; 484; 498 349 ? 205; 270; 286; 331a

AsLn(3) 241/295 Negative/
positive

528.33/530.07 – –

a Major fragment.

Fig. 2. UV–Vis absorbance spectra of AsLn(1), AsLn(2) and AsLn(3). These spectra were acquired using QualBrowser v. 1.4 SR1.
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mannose, D-(+)-glucose, D-(+)-fructose and D-(+)-galactose (180 Da
each). Finally the previously described 163 Da fragment was ob-
served for AsLn(2) in its MS2 spectrum (530–367 Da).

Purified individual AsLn(2) fractions were subjected to micro-
scale NMR analysis. The 1H NMR spectrum was characterized by
three regions, a deshielded region from 8.5 to 6.5 ppm with signal

Table 2
1H microscale NMR chemical shifts for AsLn(2) (500 MHz, CD3SOCD3).

Proton number in Fig. 3A 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Chemical shift (ppm) 0.85 1.09 1.15 1.23 1.56 4.44 5.39 6.58 6.65 6.81 7.08 7.56 7.94 8.42

Fig. 3. (A) 1H NMR and (B) COSY spectra of AsLn(2) in CD3SOCD3 (500 MHz).
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typical of aromatic protons, a mid-low field region from 6.5 to
4.5 ppm due to alkene protons and a downfield region assigned
to alkyl groups (Table 2 and Fig. 3A). Because of the low sample
content it was not possible to unambiguously assign peak multi-
plicity and coupling constants, as well as perform 13C analysis. A
COSY spectrum showed a possible correlation between protons 1
and 5, 8 and 12 and 10 and 11 (Fig. 3B).

4. Discussion

In this paper an instrumental analysis of the F. heliota luciferin-
like compound AsLn was presented. The first studies about this
new bioluminescent system focused on luciferin, however no reli-
able data was obtained, since luciferin is present in minute
amounts. This fact prompted us to discover compounds related
to luciferin to act as models in providing useful information about
its structure. The main evidence that AsLn(x) could be good models
for luciferin is, besides the resemblance in spectroscopic data, their
appearance in all purified extracts of luciferin. This suggests that
AsLn(x) could be metabolites of luciferin, either their precursor
or products resulting from the bioluminescent reaction. In fact, in
the P. pyralis bioluminescent system dehydroluciferin (L) and its
adenylated form, dehydroluciferyl-adenylate (L-AMP), are oxidized
forms of luciferin that do not produce light and act as inhibitors of
the bioluminescent reaction, as also occurs for oxyluciferin, the
product of oxidative decarboxylation of luciferin [8–10]. Another
hypothesis is that AsLn(x) could be enantiomers of luciferin, like
D-luciferin and L-luciferin from P. pyralis, the former being the nat-
ural substrate for the bioluminescent reaction and the latter
behaving as an inhibitor [8].

From MSn spectra a few information regarding AsLn(x)’ chemi-
cal structures could be inferred, namely the probable presence of
carboxylic acid and hydroxyl groups. Two fragments with 163
(same mass of pterin) and 181 Da (same mass of 2-meth-
ylmercaptobenzothiazole) could be interpreted by analyzing other
known luciferins. In the first case the luciferin from the biolumi-
nescent millipede Luminodesmus sequoiae presents a pterin moiety
[11], whereas firefly’s luciferin has a benzothiazole moiety [8]. A
possible drawback of these hypotheses is the distant phylogenetic
relationship between millipedes, fireflies and earthworms. None-
theless it was verified that F. heliota’s luciferin seems to be unre-
lated to other bioluminescent earthworms, as the cross-reaction
of F. heliota’s luciferase with luciferin from Diplocardia longa, N-iso-
valeryl-3-aminopropanal, that acts as a common substrate for
other bioluminescent worms, gave a negative result [12,13]. The
other hypothesis is that the 181 Da fragment could be a sugar, like
glucose or mannose although, to the best of our knowledge, no gly-
cosylated luciferin was found yet.

NMR is a powerful technique for assessing chemical structures
but, in the present work, it was necessary to apply a more sensitive
method, microscale NMR [14]. Even so the concentration of
AsLn(2) did not allow to obtain a complete structure, but rather
to propose that aromatic, alkene and alkyl groups could be present.
The minimum compound amount for a 1D proton analysis was
estimated as 10–20 lg, but a fully structural analysis demands
more experiments in multidimensional modes, in which samples’
amount must be in the minimum limit of 50 lg for proton analysis
and 150 lg for 13C analysis, like HMQC or HMBC. Our estimation
points out to about 5–10 lg of AsLn per fraction.

The ongoing work focuses on obtaining enriched samples of
AsLn, or even Component X or luciferin, to confirm and complete
these results.
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Fig. S1. MS
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 spectra of AsLn(1) in negative and positive ion modes. 
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Fig. S2. MS
n
 spectra of AsLn(2) in negative and positive ion modes. 
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a b s t r a c t

A luciferin analog, CompX, was isolated from the extracts of the bioluminescent earthworm Fridericia
heliota. Its structure was determined as (Z)-5-(2-carboxy-2-methoxyvinyl)-2-hydroxybenzoic acid by
spectroscopic data analysis and was confirmed by total synthesis. The (Z)-configuration of the double
bond was established by comparing the ROESY spectra of CompX with those of its synthetic (E)-isomer.
CompX represents a tyrosine analog, not previously found in natural sources, and is probably derived
from tyrosine by deamination, O-methylation of the resulting alpha-keto acid, and carboxylation at the
aromatic core.

� 2013 Elsevier Ltd. All rights reserved.

Bioluminescence is caused by a biochemical reaction in which
an enzyme, generically termed luciferase, promotes the oxidation
of the substrate, luciferin, resulting in the emission of visible light.1

Several bioluminescence mechanisms have been established, for
example, those of beetles, coelenterates, and bacteria, which have
led to their applications in biotechnology, molecular and cellular
biology, and biomedicine.1b

Fridericia heliota Zalesskaja, 1990 (Annelida: Clitellata: Oligo-
chaeta: Enchytraeidae) is a small (15–20 mm in length, 0.5 mm
in diameter and �2 mg in weight), white–yellowish Siberian earth-
worm which emits blue light when gently stimulated.2 Although
the species was first identified in 1990,3 further studies were not
performed until 2003. Initial studies focused on the taxonomic
description2 and in vitro characterization of the bioluminescent
reaction between raw extracts of luciferase and luciferin.4 So far,
it has been demonstrated that the system requires at least five
components, a 70 kDa luciferase, a 0.5 kDa luciferin, atmospheric
oxygen magnesium ions, and adenosine 50-triphosphate (ATP) to
produce visible light with a maximum wavelength (kmax) at
478 nm.4a,b The system is pH- and temperature-sensitive, achiev-
ing the optimum rate at pH 8.2 and 33 �C, respectively.4c It can

be stimulated by nonionic detergents, such as Triton X-100, and
inhibited by anionic detergents, and several anions.4d

Presently, our research is focused on the isolation and structural
characterization of Fridericia heliota luciferin.5 Extracts of luciferin
contained unidentified substances, designated CompX,5a AsLn1,
AsLn2, and AsLn3.5b These compounds demonstrated chromato-
graphic behavior and UV spectral properties similar to those of
luciferin. However, none of them exhibited luminescent activity
when mixed with F. heliota luciferase or any other luciferase. We
hypothesized that these compounds could represent the inactive
analogs of luciferin, for example, its metabolic precursors or degra-
dation products. Taking into account the extremely low luciferin
content in the earthworm (0.5–0.7 lg/g of biomass),5b whereas
the content of CompX is more than ten-fold that of luciferin, we
decided to undertake its structural characterization and synthesis.

A consecutive series of chromatographic experiments allowed
isolation of 0.15 mg of pure CompX from 90 g of F. heliota biomass
(see Supplementary data). The UV–vis spectra (Fig. 1a) demon-
strate pH-dependence in the pH range 2.8–5.0. At pH 2.8, the max-
ima are observed at 234 (local maximum) and 296 nm, whereas at
pH 4.0, the kmax are 230 (local maximum) and 294 nm, and at pH
5.0, the kmax are 228 (local maximum) and 288 nm, which suggests
the presence of an ionizable group with a pKa of about 4. CompX is
fluorescent (Fig. 1b), with a maximum emission wavelength (kem)
in the blue range of the visible spectrum. The fluorescence spectra
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show kem 460 nm in acidic aqueous solution (excitation at
310 nm), and kem = 457 nm in basic aqueous solution (kex = 290
nm). The Stokes shift is large in both acidic (150 nm) and basic
media (167 nm), suggesting extensive electronic delocalization.

The ESI-HRMS of pure CompX showed a molecular ion with m/z
239.0598, the closest molecular formula being C11O6Hþ11, (calcd m/z
239.0550). The 1H NMR spectrum of CompX showed a characteris-
tic pattern of three resonances in the aromatic region (Table 1), a
small doublet (2.2 Hz, H-5), a large doublet (8.5 Hz, H-8), and a
doublet of doublets (2.2 and 8.5 Hz, H-9), all with the same integral
value. This pattern is typical of a phenol ring with three protons,
two neighboring protons (large coupling), and the third in a
meta-position with respect to the first and a para-position with re-
spect to the second, leading to a small coupling and to the absence
of spin–spin coupling, respectively. Two other proton signals oc-
curred as a weak-field singlet at d 6.89 (one proton, C-3) and a
methoxy group at d 3.71 (three protons, C-11) (Table 1). Thus seven
of the ten protons were observable in the 1H NMR spectrum. The
1H NMR spectra of CompX are strongly pH-dependent (data not
shown). All eleven carbon atoms were observed in the 2D HSQC
and the 2D HMBC spectra, which showed eight aromatic/olefinic,
two carboxylic, and one methoxy carbons. An HMBC cross-peak
identified C-2 as the location of the methoxy group. The same car-
bon is among HMBC cross-peaks from the singlet proton H-3,
which, in turn, gave cross-peaks to carbons 1, 2, 5, and 9
(Fig. 2a). The carboxylic group C-10 exhibits a cross-peak with

the H-5 doublet only. Assuming that a HMBC cross-peak should
not be observed through more than three bonds, although weak
four-bond couplings are sometimes visible,6 the only structure
which conforms with the NMR and the mass spectra is that of 5-
(2-carboxy-2-methoxyvinyl)-2-hydroxybenzoic acid (Fig. 2b). The
three protons not observed in the NMR spectrum are those of the
two carboxylic groups and that of a phenolic OH. To determine
the configuration of the trisubstituted double bond we decided
to synthesize both the E- and Z-isomers and compare their ROESY
spectra.

The key synthetic step, the Horner–Wadsworth–Emmons olef-
ination provided both isomers of CompX in a 2:1 (Z/E) ratio
(Scheme 1).7 The major Z-isomer was identical to the natural sam-
ple according to NMR, UV, and chromatography, whereas the min-
or E-isomer demonstrated significantly different properties. The
most remarkable differences were the chemical shifts of C-3 and
the attached proton (D 18.2 and 0.93 ppm, respectively, Table 1).
Also, the unnatural double bond isomer of CompX was non-
fluorescent.

The absolute (Z)-configuration of the CompX double bond was
deduced from the absence of a H3–H11 cross peak in the ROESY
spectrum of CompX and the presence of the corresponding cross-
peak in the ROESY spectrum of its unnatural isomer (Supplemen-
tary data, Fig. S3).

Most probably, CompX is derived from tyrosine via three mod-
ifications, namely deamination to a keto-acid, enolate O-methyla-
tion, and carboxylation ortho to the phenolic hydroxyl. Our
further studies on the F. heliota bioluminescent system will be
focused on structural characterization of the bioluminescent reac-
tion substrate, luciferin. This task, however, is heavily hampered by

Table 1
1H (800 MHz) and 13C (200 MHz) chemical shifts and proton multiplicities of CompX
and the synthetic CompX (E)-isomer (D2O, pH 4.2)

CompX CompX (E)-isomer

dH dC dH dC

Position
1 — 170.4 — 171.0
2 — 146.5 — 151.1
3 6.89 (s) 122.1 5.96 (s) 103.9
4 — 117.8 — 116.1
5 8.15 (d, 2.2 Hz) 132.3 7.70 (d, 2.4 Hz) 129.9
6 — 124.7 — 126.5
7 — 160.4 — 158.4
8 6.95 (d, 8.5 Hz) 116.9 6.86 (d, 8.5 Hz) 116.4
9 7.82 (dd, 2.2 and

8.5 Hz)
135.4 7.35 (dd, 2.4 and

8.5 Hz)
134.0

10 — 174.9 — 174.3
11 3.71 (s) 58.6 3.69 (s) 55.6

Figure 2. Structures of CompX and the CompX (E)-isomer. (a) The observed HMBC
correlations in natural CompX. (b) Carbon atom numbering in CompX as in Table 1.
(c) The synthetic CompX (E)-isomer with the opposite configuration of the C2–3
double bond.

Figure 1. (a) UV–vis and (b) fluorescence emission spectra of CompX at different pH. In (a), the spectra were measured in ammonium formate 0.1% at pH 2.8 (thin line), 4.0
(dotted line), and 5.0 (asterisks line). In (b), the spectra were measured under basic (thick line) and acidic (thin line) conditions. The excitation wavelengths are 290 nm in
basic medium and 310 nm in acidic medium. Spectra were acquired using an Agilent 1260 Infinity LC and Agilent Cary Eclipse software, respectively. a.u., arbitrary units.
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the very low quantity of luciferin available from the earthworm.
Preliminary NMR experiments gave evidence that substituted
CompX is a part of the luciferin chemical structure. Namely, the
1H NMR spectrum of F. heliota luciferin revealed the same aromatic
fragment as in CompX. Further isolation and structural character-
ization of other CompX analogs (AsLn1-3) from F. heliota will hope-
fully shed light on their biosynthetic origin.
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J = 2.1 Hz, 1H, ArH), 7.83 (dd, J = 8.7, 2.2 Hz, 1H, ArH), 6.91 (d, J = 8.7 Hz, 1H,
ArH), 6.87 (s, 1H, CH), 3.70 (s, 3H, OCH3), 3.66 (s, 3H, OCH3). (Z) 1H NMR
(700 MHz, DMSO-d6) d 7.58 (d, J = 2.2 Hz, 1H, ArH), 7.27 (dd, J = 8.6, 2.3 Hz, 1H,
ArH), 6.83 (d, J = 8.6 Hz, 1H, ArH), 6.14 (s, 1H, CH). 3.61 (s, 3H, OCH3), 3.57 (s, 3H,
OCH3).; (b) Synthesis of CompX [(Z)-5-(2-carboxy-2-methoxyvinyl)-2-
hydroxybenzoic acid] and CompX (E)-isomer [(E)-5-(2-carboxy-2-methoxyvinyl)-
2-hydroxybenzoic acid]: A solution of NaOH (2 M, 5 mL) was added to (E/Z)-5-
(2,3-dimethoxy-3-oxoprop-1-en-1-yl)-2-hydroxybenzoic acid (1) (30 mg,
0.12 mmol), and the mixture was stirred for 2 h at 50 �C. After completion of
the hydrolysis (TLC), the mixture was acidified to pH 3.0 with aqueous HCl and
extracted with EtOAc (2 � 15 mL). The solvent was evaporated in vacuo and the
residue was chromatographed on silica gel (CHCl3/MeOH/AcOH, 97:2:1) to give
CompX (14 mg, 49%) and CompX (E)-isomer (7 mg, 25%) as white crystalline
solids.
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Scheme 1. Synthesis of CompX and its unnatural E-isomer.
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 S1 

 

GENERAL 

UV-vis spectra were obtained on the Agilent 1260 Infinity LC chromatograph software. Fluorescence spectra were 

acquired on an Agilent Cary Eclipse spectrophotometer (Agilent Technologies, Moscow, Russia) equipped with a 

Xenon flash lamp in fluorescence mode. The excitation wavelength was set at 290 and 310 nm in basic and acidic 

medium, respectively, and the emission wavelength was scanned from 300 nm to 700 nm. The scan rate was set to 

120 nm/min, with a 5-nm excitation and emission slits. 

High-resolution mass spectra were obtained on an Agilent 6224 TOF LC/MS System (Agilent Technologies, Santa 

Clara, CA, USA) equipped with a dual-nebulizer ESI source. Data acquisition and analysis was performed by the 

MassHunter Workstation software (Agilent Technologies, Santa Clara, CA, USA). 

NMR spectra of natural CompX were acquired in D2O, pH 4.2 at 30_oC on a Bruker Avance III 800 spectrometer 

equipped with a 5-mm CPTXI cryoprobe (Bruker Corporation, Billerica, MA, USA). Spectra of synthetic CompX and 

its double bond isomer were acquired under the same conditions (solvent, pH, temperature) on a Bruker Avance 700 

spectrometer equipped with a 5-mm PATXI warm probe (Bruker Corporation, Billerica, MA, USA). The following 

spectra were used to elucidate structure: 1H, 2D 1H-13C HSQC, 2D 1H-13C HMBC (Jlong = 6 Hz) and 2D ROESY (200 

ms). FID resolution for indirect dimensions was at least 40 Hz (13C) and 30 Hz (1H). Chemical shifts are given in parts 

per million (ppm). Data acquisition and analysis were performed using Bruker TopSpin software. 

 

COLLECTION OF BIOMATERIAL AND COMPX ISOLATION AND PURIFICATION 

 
Specimens of Fridericia heliota were individually hand-collected overnight in the soil forest from Krasnoyarsk 

(Russia) form June to November 2012. The total amount of earthworms (wet weight) collected was ~ 90 g, which 

corresponds to more than 100,000 worms. Before the extraction procedures, the cleaned wet earthworms were frozen at 

-20 °C. Fractions containing CompX were obtained by anion-exchange chromatography. A cell-free extract of F. 

heliota, prepared from ~ 20 g wet worms, was loaded onto a column (16 mm x 200 mm) packed with diethylaminoethyl 

(DEAE) Sepharose™ Fast Flow (Pharmacia Biotech, Uppsala, Sweden) coupled with the BioLogic™ LP 

chromatography system (BIO-RAD Laboratories, Hercules, CA, USA). The column was equilibrated by 15 mM 

tris(hydroxymethyl)-aminomethane-hydrochloric acid (Tris-HCl) buffer, pH 8.1 (Serva Electrophoresis GmbH, 

Heidelberg, Germany). Elution was done by a linear gradient elution program of sodium chloride 0-1 M. The main 

fractions obtained (~ 18 mL) were concentrated by solid-phase extraction. These fractions were acidified to pH 3 by 

adding hydrochloric acid and added to a 3-mL disposable C16 extraction cartridge (Diapack-C16, BioChemMak S&T, 

Moscow, Russia). The column was washed with HCl 10mM containing 3% MeCN (10 mL), then eluted with 75% 

aqueous MeCN and the eluate was concentrated to the volume of 2 mL at the rotary evaporator. The concentrated 

solution obtained was submitted to a three-stages of reversed-phase chromatography at different pHs. A semi-

preparative column (9.4 mm x 250 mm), ZORBAX Eclipse XDB-C18 (Agilent Technologies, Moscow, Russia) was 

coupled with the Agilent 1260 Infinity LC chromatograph (Agilent Technologies, Moscow, Russia). Elution was 

performed on a gradient elution program. In each chromatography, solvent A was 0.1% ammonium formate, pH 2.8, 
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 S2 

4.0 or 5.0, and solvent B was acetonitrile. The gradient program was 5-40% B during 20 min. Both the column and 

solvents were maintained at at 25 °C, with a flow rate of 3 mL/min. Absorbance was monitored at 210, 230, 250, 270, 

290, 310, 330 and 360 nm.  

 

INHIBITORY EFFECT OF COMPX ON THE F. HELIOTA BIOLUMINESCENT REACTION IN VITRO 

 

Inhibitory effect of CompX on the reaction between F. heliota luciferin, luciferase, ATP and oxygen was measured in a 

buffer, containing 20 мМ Tris-HCl рН 8.2, 2.5 mM MgCl2, 0.1 mM ATP and 0.5% Triton X100. Addition of 1000-fold 

excess of CompX with respect to luciferin led to decrease of luminescent signal by 73% (360 arbitrary units before 

addition, 100 arbitrary units after addition). These data suggest that CompX is a weak inhibitor of F. heliota luciferase. 

 

 150



 

 S3 

 

Figure S1. Comparison of 1H NMR spectra: (a) synthetic CompX and (b) natural CompX. Impurities are 

indicated by asterisks, and digits designate atom numbers as indicated in Table 1 and Figure 2b.  
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 S4 

 

 

Figure S2. Comparison of the aromatic region of 2D spectra of natural CompX and synthetic CompX. 

Carbon numbers and the corresponding attached protons are assigned by digits as in Table 1 and Figure 2b. 

The colors refer to: yellow, HSQC of natural CompX; Green, HSQC of synthetic CompX; red, HMBC of 

natural CompX; blue, HMBC of synthetic CompX. Spectra were acquired under the conditions described in 

the notes.9 Note that NMR spectra of natural CompX were obtained at 800 MHz whereas those of synthetic 

CompX were obtained at 700 MHz. 
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 S5 

 

 

 

Figure S3. Comparison of the ROESY spectra of synthetic CompX (left) and CompX (E)-isomer (right). 

Positions of the observed 3-11 cross-peak in CompX (E)-isomer and the absent 3-11 cross-peak in CompX-s 

are highlighted by circles. 
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 S6 

 
Figure S4. 1H NMR spectrum (800 MHz, aromatic region) of F. heliota luciferin in D2O. 
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a b s t r a c t

AsLn2, an unusual modified peptide, was isolated from the bioluminescent earthworm Fridericia heliota
(Enchytraeidae). Its structure, elucidated by NMR and mass spectrometry, includes residues of tyrosine,
CompX (a novel tyrosine modification product, reported in the accompanying paper), and N(omega)-acyl-
ated lysine. Chromatography, UV, and 1H NMR data imply a close structural similarity of AsLn2 with
F. heliota luciferin. AsLn2 appears to be an intermediate or by-product in F. heliota luciferin biosynthesis.

� 2013 Elsevier Ltd. All rights reserved.

The bioluminescence of earthworms has been insufficiently
investigated. Bioluminescent genera are found in three oligochaeta
families: Megascolecidae, Lumbricidae, and Enchytraeidae.1

Among them, only the bioluminescence mechanism of Diplocardia
longa (Megascolecidae) has been established in terms of the chem-
istry of its luciferin.

The Siberian luminous earthworm (Fridericia heliota, only
recently described) belongs to the Enchytraeidae oligochaeta
family.2 Five components were found to be essential for the
luminescence of F. heliota: Fridericia luciferase, Fridericia lucif-
erin, adenosine 50-triphosphate, Mg2+, and atmospheric oxygen.3

Cross-reactions of luciferase or luciferin from Fridericia with
luciferins and luciferases from other organisms, including firefly
Photinus, earthworms Microscolex, Diplocardia, and Henlea, were
all negative, showing the unique nature of the F. heliota biolumi-
nescent system.

An aim of our long-term project is the structural characteriza-
tion of F. heliota luciferin. However, this task has been seriously
hampered by the scarcity of the earthworm biomass (manual
harvesting gives about 30 g/year), and the low content of lucif-
erin (�0.5 lg per gram of wet biomass). In the course of our
extensive efforts on purifying F. heliota luciferin, we observed
two components, the chromatographic and UV spectral

properties of which resembled luciferin, and designated them
CompX and AsLn2.4–6 Both these components are more than ten-
fold abundant compared to luciferin, which allowed us to study
their structures. The present Letter is focused on the structural
characterization of AsLn2, whereas the accompanying Letter4

reports the structure of CompX.
The isolation and purification of AsLn2 were based on anion-

exchange chromatography of crude extracts, obtained from 90 g
of frozen worms, followed by three-stage reverse-phase chroma-
tography (Supplementary data, Fig. S1) and gave �0.1 mg of pure
AsLn2. As mentioned above, the UV–vis spectra of AsLn2 and lucif-
erin were similar (Fig. 1a, Table 1).5 Both AsLn2 and luciferin are
fluorescent (Fig. 1b, Table 1), with emission maxima in the visible
range.

A HRMS study of pure AsLn2 gave an [M+H]+ molecular ion with
m/z = 530.2146, to which the molecular formula C26H31N3O9

matches with an uncertainty of 0.0013 Da (Supplementary data,
Figure S2). The following NMR experiments were used to elucidate
the structure of AsLn2: 1H, 13C, 1H–1H COSY, 1H–13C HSQC, 1H–13C
HMBC, and 1H–15N HMBC. An analysis of the proton NMR spectra
(Supplementary data, Fig. S3) indicated the presence of an aliphatic
chain (CH–CH2–CH2–CH2–CH2), one AMX spin system, one spin
system of two aromatic doublets (2H each), and five protons very
close to those found in the data of CompX (Fig. 2a, see accompany-
ing paper). Characteristic 1H and 13C chemical shifts (Supplemen-
tary data, Fig. S4) together with 2D HMBC connectivities (Fig. 2b)

0040-4039/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
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identified the aliphatic chain as part of a lysine moiety and the
AMX system with two aromatic doublets as a tyrosine residue
(Table 2). The 2D 15N HMBC spectrum displayed only two cross
peaks from the 300 protons of tyrosine to its nitrogen atom (d
121.24, Table 2). The 15N chemical shift provided unambiguous
proof that the tyrosine nitrogen was involved in a peptide bond.
Two other nitrogens were not directly observed due to the very
low sensitivity of 15N NMR spectra, the broad 15N line shape of free
NH2 group, and/or the multiplicities of the protons of the lysine
chain. The 1H and 13C NMR chemical shifts of five protons and

ten carbons, which were not a part of the lysine or tyrosine resi-
dues, were closely similar to the corresponding atoms in CompX.4

Therefore, substituted CompX was postulated to be a part of the
structure of AsLn2. The three fragments, lysine, CompX, and tyro-
sine, were connected via two peptide bonds, as supported by four
three-bond 1H–13C HMBC connectivities (Fig. 2b). The configura-
tion of the double bond in AsLn2 is postulated to be the same as
in CompX for two reasons. Firstly, the chemical shift of vinylic pro-
ton H-30 is 6.74 ppm, whereas the opposite geometry of the double
bond would give about 1 ppm lower value. Secondly, AsLn2 is fluo-
rescent, while the (E)-isomer of CompX as well as its derivatives at
the carboxylic group (esters and amides) is not (data not shown).
The proposed structure, (Z)-N6-(5-(3-((1-carboxy-2-(4-hydroxy-
phenyl)ethyl)amino)-2-methoxy-3-oxoprop-1-en-1-yl)-2-hydrox-
ybenzoyl)lysine, is in agreement with all the NMR data and the
observed molecular ion. Determination of the configurations of
the two stereogenic centers in AsLn2 will be a subject of our
further research.

In conclusion, preliminary NMR experiments on Fridericia lucif-
erin have shown that the substituted CompX moiety constitutes a
part of its structure (Supplementary data, Fig. S5). Also, the

Figure 2. Structures of (a) CompX4 and (b) AsLn2 with atom numbering as in Table 2. Gray arrows outline important 1H ? 13C and 1H ? 15N HMBC connectivities used to
elucidate the structure of AsLn2.

Figure 1. (a) UV–vis, and (b) fluorescence emission spectra of Fridericia luciferin (Ln) (green), AsLn2 (blue) and CompX (red) at pH 4.0 in water.

Table 1
UV–vis and fluorescence maxima of AsLn2 and Fridericia luciferin at different pH
valuesa

Compound Absorption Fluorescence

kmax (local) kmax kexcitation kemission

Luciferin pH 7.0 228 294 290 466
AsLn2 pH 4.0 226 294 330 446
AsLn2 pH 2.8 226 294 290 464

a All values in nm.
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presence of a lysine residue and the absence of a tyrosine residue
can be deduced from comparison of NMR spectra of AsLn2 and
luciferin. However, neither CompX, nor AsLn2 exhibit lumines-
cence activity. These facts suggest that these compounds may be
involved in luciferin biosynthesis or degradation. Their biological
role, biosynthetic origin, and relation to luciferin will be the
subjects of our further studies.

Acknowledgments

The authors wish to thank Dr. Alexander O. Chizhov for record-
ing mass spectra. The Krasnoyarsk and Moscow groups acknowl-
edge support from the Program of the Government of the Russian
Federation ‘Measures to attract leading scientists to Russian educa-
tional institutions’ (Grant no. 11. G34.31.0058), ‘Molecular and
Cellular Biology’ of RAS, President of the Russian Federation
‘Leading science school’ (Grant 3951.2012.4) and the Russian
Foundation for Basic Research (Grant no. 11-04-01293-a). S.M.M.
is grateful to a Ph. D. scholarship (reference SFRH/BD/65109/
2009), co-funded by ESF, through POPH-QREN, and by national
funds from FCT, I.P.

Supplementary data

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.tetlet.2013.11.061.

References and notes

1. (a) Wilson, T.; Hastings, J. W. Annu. Rev. Cell. Dev. Biol. 1998, 14, 197; (b)
Marques, S. M. Esteves da Silva J. C. G. Glob. J. Anal. Chem. 2011, 2, 241; (c)
Shimomura, O. Bioluminescence: Chemical Principles and Methods; World
Scientific Publishing: Singapore, 2006.

2. Rota, E.; Zalesskaja, N. T.; Rodionova, N. S.; Petushkov, V. N. J. Zool. 2003, 260,
291.

3. (a) Petushkov, V. N.; Rodionova, N. S.; Bondar’, V. S. Dokl. Biochem. Biophys. 2003,
391, 204; (b) Rodionova, N. S.; Bondar’, V. S.; Petushkov, V. N. Dokl. Biochem.
Biophys. 2003, 392, 253.

4. For the accompanying paper, see: Petushkov, V. N.; Tsarkova, A. S.; Dubinnyi, M.
A.; Rodionova, N. S.; Marques, S. M.; Esteves da Silva, J. C. G.; Shimomura, O.;
Yampolsky, V. Tetrahedron Lett. 2013. volume, first page.

5. (a) Rodionova, N. S.; Petushkov, V. N. J. Photochem. Photobiol. B-Biol. 2006, 83,
123; (b) Petushkov, V. N.; Rodionova, N. S. J. Photochem. Photobiol. B-Biol. 2007,
87, 130.

6. Marques, S. M.; Petushkov, V. N.; Rodionova, N. S.; Esteves da Silva, J. C. G. J.
Photochem. Photobiol. B Biol. 2011, 102, 218.

Table 2
NMR chemical shifts and proton multiplicities of AsLn2 in D2O, pH 7.0 at 30 �C (600 MHz for 1H and 150 MHz for 13C)

Fragment Carbon 1H chemical shift and multiplicity and 13C chemical shift

dH dC

Lys 1 — — 174.70
2 3.72 dd (5.6 Hz, 6.8 Hz) 54.77
3 1.93, 1.88 m, m 30.19
4 1.46 m 22.02
5 1.67 quint (7.2 Hz) 28.21
6 3.41 t (7.0 Hz) 39.09

CompX 10 — — 165.40
20 — — 146.09
30 6.74 s 120.19
40 — — 117.81
50 7.97 d (1.7 Hz) 130.66
60 — — 123.41
70 — — a

80 6.95 d (8.7 Hz) 118.54
90 7.74 dd (1.7 Hz, 8.7 Hz) 134.77
100 — — 169.41
110 3.47 s 59.27

Tyr 100 — — 177.79
NH a — 15N: 121.24
200 4.53 dd (5.1 Hz, 8.2 Hz) 56.24
300 3.23 dd (5.1 Hz, 14.1 Hz) 36.72

2.97 dd (8.2 Hz, 14.1 Hz)
400 — — 129.49
500 , 900 7.14 d (8.4 Hz) 130.59
600 , 800 6.82 d (8.4 Hz) 115.30
700 — — 154.12

a Not observed.
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 S1 

GENERAL 

UV-Vis spectra were obtained using the Agilent 1260 Infinity LC chromatograph software in 0.1% formic acid pH 

2.8 and 4.0 for AsLn2 and pH 7.0 for luciferin. The pH was adjusted using ammonium hydroxide. Fluorescence 

spectra were acquired on an Agilent Cary Eclipse spectrophotometer (Agilent Technologies, Moscow, Russia) 

equipped with a Xenon flash lamp in fluorescence mode in 0.1% formic acid, pH 2.8 and 4.0, for AsLn2, and pH 7.0 

for luciferin. The pH was adjusted using ammonium hydroxide. The excitation wavelength was set at 290 nm for 

luciferin, pH 7.0, for AsLn2, pH 2.8, and 330 nm, and for AsLn2, pH 4.0. The emission was scanned from 300 nm to 

600 nm for luciferin pH 7.0, from 300 nm to 700 nm for AsLn2, pH 2.8, and from 340 nm to 700 nm for AsLn2, pH 

4.0. The scan rate was set to 120 nm/min, with a 5-nm excitation and emission slits. 

High-resolution mass spectra were obtained on an Agilent 6224 TOF LC/MS System (Agilent Technologies, Santa 

Clara, CA, USA) equipped with a dual-nebulizer ESI source. Data acquisition and analysis was performed by the 

MassHunter Workstation software (Agilent Technologies, Santa Clara, CA, USA). 

NMR spectra of AsLn2 were acquired in D2O, pH 7.0 (as pH-meter readings) at 30 oC on a Bruker Avance III 800 

MHz NMR spectrometer equipped with 5_mm CPTXI cryoprobe (Bruker Corporation, Billerica, MA, USA). The 

following spectra were used to identify the chemical structure: 1H, 13C, 2D COSY, 2D 1H-13C HSQC, 2D 1H-13C 

HMBC (Jlong=7 Hz) and 2D 1H-15N HMBC (Jlong=5 Hz). Free Induced Decay (FID) resolution for indirect dimensions 

was 30 Hz for 13C, 6 Hz for 1H and 95 Hz for 15N. Chemical shifts are given in parts per million (ppm). Data 

acquisition and analysis were performed using Bruker TopSpin software. 

 

COLLECTION OF BIOMATERIAL AND COMPX ISOLATION AND PURIFICATION 

Specimens of Fridericia heliota were individually hand-collected overnight in the soil forest from Krasnoyarsk 

(Russia) form June to November 2012. The total amount of earthworms (wet weight) collected was ~ 90 g, which 

corresponds to more than 100,000 worms. Before extraction, the cleaned wet earthworms were frozen at -20 oC. A 

cell-free extract of F. heliota, prepared from ~ 20 g wet worms, was loaded onto a column (16 mm x 200 mm) packed 

with diethylaminoethyl (DEAE) Sepharose™ Fast Flow (Pharmacia Biotech, Uppsala, Sweden) coupled to the 

BioLogic™ LP chromatography system (BIO-RAD Laboratories, Hercules, CA, USA). The column was equilibrated 

by 15 mM tris(hydroxymethyl)-aminomethane-hydrochloric acid (Tris-HCl) buffer, pH 8.1 (Serva Electrophoresis 

GmbH, Heidelberg, Germany). Elution was done by a linear gradient elution program of sodium chloride 0-1 M. The 

main fractions obtained (~ 18 mL) were concentrated by solid-phase extraction. These fractions were acidified to pH 

3 by adding hydrochloric acid and then added to a 3-mL disposable C16 extraction cartridge (Diapack-C16, 

BioChemMak S&T, Moscow, Russia). Further purification was performed using a semi-preparative column (9.4 mm 

x 250 mm), ZORBAX Eclipse XDB-C18 (Agilent Technologies, Moscow, Russia) coupled to the Agilent 1260 

Infinity LC chromatograph (Agilent Technologies, Moscow, Russia). Elution was done using a gradient elution 

program. Solvent A was 0.1% ammonium formate, pH 5 and solvent B was acetonitrile. The standard gradient 
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program was 5-40% B during 20 min. Both the column and solvents were maintained at 25 ºC, with a flow rate of 3 

mL/min. Absorbance was monitored at 210, 230, 250, 270, 290, 310, 330 and 360 nm. Each fraction was 

rechromatographed on the same system with solvent A being 0.1% formic acid pH 2.8, 4.0 and 7.0. When necessary, 

the pH was adjusted using ammonium hydroxide. To evaluate component content in these fractions, 10 l of each 

fraction was run on a 3.0 mm x 150 mm-ZORBAX Eclipse XDB-C18 column, with the same program described 

above, to integrate the respective peaks at  = 290 nm. Identification of the peaks as CompХ or AsLn2 was inferred 

by their retention times and their specific UV-Vis spectra, and the content of components by their optical density. 

 

LUCIFERIN ACTIVITY ASSAY 

Identification and quantification of luciferase and luciferin fractions was done through enzymatic reaction. The 

reaction mixture for measuring luciferase activity and luciferin content (in arbitrary units) was composed of 10 mM 

ATP (2.5 L), 100 mM magnesium chloride (2.5 L), 10% Triton® X-100 (10 L) (Sigma-Aldrich, St. Louis, USA), 

20 mM Tris-HCl buffer pH 8.1 (180 L) and anion-exchange purified luciferin or luciferase extracts, respectively (10 

L). The reaction was initiated by adding luciferin or luciferase fractions and was performed on a custom-made 

luminometer (Oberon, Krasnoyarsk, Russia). Each time before the addition of luciferin or luciferase fractions, the 

background luminescence was measured for 20 seconds and subtracted from the total measurement. 

AsLn2 showed no appreciable inhibitory activity on bioluminescence reaction at concentrations 1000-fold higher than 

those of luciferin. 
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Figure S1. Anion-exchange chromatogram of cell-free extract (~ 20g worms), using a 16 mm diameter x 200 mm 

long column packed with DEAE Sepharose and equilibrated by 15 mM Tris-HCl buffer, pH 8.1. Elution was done by 

a linear gradient elution program of sodium chloride (NaCl) 0-1 M. Fridericia luciferase and Fridericia luciferin 

peaks were assigned through their chemical reaction (page S2). Colored segments correspond to collected fractions 

enriched in CompX, AsLn2 or luciferin. 230-248 minutes, red segment; fraction 248-266 minutes, dark green 

segment; fraction 266-284 minutes, black segment. a.u., arbitrary units. 

 

Table S1. Total content of components in the fractions collected after anion-exchange chromatography. 

Fraction / minutes Component / optical units 

 CompX AsLn2 Luciferin 

230-248 0.09 0.330 0.01 

248-266 2.170 1.850 0.137 

266-284 3.050 0.08 0.006 

Total amount 5.310 2.260 0.153 
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Figure S2. HRMS spectrum of AsLn2 in positive ion mode.  
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Figure S3 1H NMR spectrum of AsLn2 in D2O, pH 7.0 at 30 oC. 
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Figure S4. 13C NMR spectrum of AsLn2 in D2O, pH 7.0 at 30 oC. 
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Figure S5. 1H NMR spectrum (aromatic region) of F. heliota luciferin in D2O. 
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Future perspectives 

 

As the need for improved methods for an ever growing number of analytes 

continues, novel proposals are expected. Novel methods may rely on luciferase alone or 

coupled reactions, which greatly enhances their scope. Statistical experimental designs for 

screening and optimization of a method’s factors are a valuable tool that offers robustness, 

celerity and reduced costs. Even currently established bioluminescent methods may be 

improved with new bioluminescent systems, such as that from Fridericia heliota. 

The characterization of Fridericia heliota’s bioluminescent system is still at its dawn, 

however the foundations for new developments were set up. Following the structural 

characterization of F. heliota’s luciferin, including its chemical synthesis in a large scale, 

the next focus will be on luciferase. Purified F. heliota’s luciferase may be subjected to 

structural characterization as well, through X-ray diffraction, for example, followed by the 

cloning of its gene and the biotechnological production of the recombinant enzyme in large 

amounts. The reaction’s features like thermal stability and color emission may also be 

improved by means of genetic engineering or the chemical modification of luciferin. 

Finally, the rapidly growing fields of nanochemistry and nanotechnology have led to 

new bioluminescent methods due to the successful coupling of nanomaterials with 

luciferases. This topic will be further described in the next chapter. 
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ABSTRACT 
 

Luciferase is a powerful tool in bioanalysis. Several well-established methods 

employ luciferases, particularly firefly and Renilla luciferases, as reporter genes or 

biosensors in environmental, biomedical and biochemical research. These techniques 

have interesting features for the analyst such as sensitivity, specificity and reduced assay 

time. Nanochemistry and Nanotechnology are disciplines that are gaining much attention 

and evolving rapidly. They allow the development of custom-made nanomaterials with 

the desired properties, starting from conventional bulk materials. Recently, the coupling 

of nanomaterials such as carbon nanotubes, mesoporous silica nanoparticles, metallic 

nanoparticles and quantum dots with luciferases led to new or improved methodologies 

for analyte quantification and enhanced gene delivery strategies. One of the principal 

scopes is to modulate or alter luciferase’s bioluminescence emission, either by stabilizing 

it or tuning it to longer wavelengths. This chapter aims to present state-of-art articles 

regarding new methods based on the coupling of luciferases to nanomaterials, along with 

a brief introduction to Nanoscience. 

 

Keywords: Luciferase; Nanochemistry; Nanomaterials; Nanoscience; Nanotechnology; 

Bioanalytical Chemistry; Bioimaging; Biomedicine; Carbon Nanotubes; Gold 

Nanoparticles; Nanodiamonds; Nanostructured Films; Quantum Dots; Silica 

Nanoparticles 
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INTRODUCTION 
 

Basic Concepts about Nanoscience, Nanomaterials, Nanochemistry and 

Nanotechnology  
 

Nanoscience is a current, although not really novel [1], topic of intense interest and, 

accordingly, of much research. The very first definition of Nanoscience was strictly based on 

size; any material within 1-100 nm would be under the remit of Nanoscience. Today, 

however, the scientific community does not hold this single definition. In fact, in 2004 the 

Royal Society and the Royal Academy of Engineering published a report in which a broader 

definition was proposed [2]: 

 

“Nanoscience is the study of phenomena and manipulation of materials at atomic, molecular 

and macromolecular scales, where properties differ significantly from those at a larger scale.” 

 

This definition highlights the concept of size-dependent properties of a given material. A 

nanomaterial has the same composition of the macroscopic, or bulk, material, but a whole 

different set of properties such as spectroscopic, mechanical, chemical reactivity, among 

others. Usually this shift in properties occurs at the nanometric scale, and then the “nano” 

designation. However, some materials already present bulk properties at a few nanometers in 

size, while others can be regarded as nanomaterials in the micrometer range, and that is one 

reason why the “size only” definition is not an ideal one and that an extended scale from 1 to 

1000 nm is more realistic. Furthermore, at this scale, a defined structure can be observed with 

spectroscopic techniques in true nanomaterials or nanostructured materials (bulk materiais 

with defined forms at nanoscale, as in the case of zeolites), but not in bulk materials in 

general. For example, pure bulk metallic gold is a yellow and inert material whereas colloidal 

gold nanoparticles not only exhibit several different colours according to size and 

concentration but also present catalytic properties [3], as in the oxidation of carbon monoxide 

to carbon dioxide [4]. Beyond nanogold, the semiconductor nanoparticles known as “quantum 

dots” have receiving much attention due to their intense and stable fluorescence and wide 

variety of colours. These unique properties result from a quantic confinement of the 

nanocrystal not found in bulk semiconductors [5, 6]. 

Nanomaterials include, besides nanomaterials themselves and nanostructured materials 

already mentioned, the nanocomposites and nanohybrids. Nanocomposites are a combination 

of at least two different components into a single nanomaterial with final properties that can 

be the same of the original individual components or new ones can emerge. For example, the 

integration of zinc oxide nanoparticles in plain cellulosic paper led to an improved strain 

sensor [7]. By its turn, a nanohybrid is the result of coupling different nanomaterials in which 

their physical integrity is maintained in the final product and new or improved features are 

obtained [8]. As an example, the conjugation of single-walled carbon nanotubes with 

quantum dots not only allowed the study of photochemical processes in which they 

participate but also revealed their potential application in photovoltaic cells [9]. Another 

important attribute of nanomaterials is their high surface area-volume ratio, which is in the 

order of 100 to 1000 m2/g. For this reason, mesoporous nano-sized silica is now being 
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preferred over bulk silica with the same porosity due to the higher superficial area of the 

nanomaterial. 

In the nanoworld, surface is a very important aspect. In bulk materials, surfaces are a 

minor portion of their volume and can be ignored up to some point. But almost all of a 

nanomaterial is surface. To obtain a nanomaterial its size has to be strictly controlled, to avoid 

it becoming bulk. As a result of this control, an incomplete filling of the valence orbitals 

occurs. These “dangling bonds” raise the surface’s energy and explain the extreme reactivity 

of nanomaterials’ surfaces. This reactivity though is not only detrimental; by adding capping 

agents not only this energy is reduced and more stability is obtained but also the 

functionalization of the nanomaterial is achieved. Functionalization is the attachment of 

molecules through covalent or non-covalent (electrostatic, physical adsorption) interactions 

which confers new and improved characteristics to the nanomaterial. For example, the 

functionalization of single-walled carbon nanotube sensors with benzene enhanced their 

sensitivity towards gaseous species derived from sulphur hexafluoride [10]. 

Nanomaterials can be obtained by chemical or physical process. In this context, 

Nanochemistry can be regarded as “the utilization of synthetic chemistry to make nanoscale 

building blocks of different size and shape, composition and surface structure, charge and 

functionality” [11]. It is the contribution of Chemistry to Nanoscience. Traditionally, 

Chemistry deals with molecules, whose dimensions are inferior to nanometers, and so to 

obtain nanomaterials one needs to build it piece by piece, an approach known as “bottom-up”. 

In Physics, on the other hand, one begins with “large” blocks of bulk material, in the 

micrometer range for example, which are then modelled to the desired nanomaterial towards 

miniaturization, a “top-down” approach compared to the sculpture of a statue. This division is 

not absolute, however, as top-down techniques can also be applied in the chemical 

preparation of nanomaterials. For instance, the exfoliation of clay results in separated lamellar 

sheets with different properties from the bulk clay and nanometric dimensions. It is also 

important to note that the real innovation is neither in the building block composition nor in 

the synthesis process but rather in the manner they arrange. In Nanoscience an important 

process is the self-assembly, regarded as the spontaneous generation of higher-order systems 

from pre-existing components that already contain the information for their self-assembly, 

leading to the synthesis of nanomaterials with new or betters properties in relation to the 

starting building blocks [12, 13]. In Nature, the phenomenon of self-assembly occurs in scales 

from the folding of proteins, for example, to the existence of galaxies. Self-assembly is also a 

reversible process, implying the adjustment of the interactions according to novel conditions. 

In Nanochemistry’s bottom up methods, the most popular self-assembly process is the 

molecular self-assembly of atoms, molecules or ions into bigger and ordered structures based 

in commonly known chemical interactions such as ionic, metallic, covalent, electrostatic, 

hydrogen bridges, Van der Waals forces and π-π stacking. However, self-assembly is not 

limited to small molecules aggregates. Non-molecular self-assembly leads to even bigger 

species, from nano to the micrometer range. In this case other forces come into play, like 

capillary effects, Van der Waals and London forces and elastic, electric and magnetic 

interactions, that is, forces that do not hold for individual molecules but requires cooperativity 

among them. In equilibrium, and without external forces, self-assembly occurs by minimizing 

the system’s energy, the so-called static self-assembly. Once formed, the system is stable and 

it is at global or local energy minima [12, 13]. On the other hand, out of equilibrium and in 

the presence of external forces applied to the system, it undergoes a dynamic self-assembly 
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[14]. Usually, these forces are mild, so that in their absence the system does not disaggregate. 

As the research has focused on static self-assembly much is known about it [12, 13]. In 

contrast, dynamic self-assembly demands more studies about its theoretical basis and 

practical applications [14]. 

In Nanoscience research, one theoretically designs a certain nanomaterial with already 

defined characteristics, like enhanced luminescence or mechanical resistence, which is then 

fabricated or synthesized and characterized by appropriate techniques and so, unlike other 

disciplines, fundamental science is in mutual association with experimental science. In fact 

Nanoscience and Nanotechnology evolved almost at the same time, having existed a delay in 

Nanotechnology outcome just due to the need of improved instrumental devices. The big 

challenge is, so, to attribute practical use to them, creating new devices, structures and 

systems for general use through commercial distribution and industrial scale-up.  

 

 

Why Nanomaterials-Luciferase Coupling? 
 

Luciferase is a key tool in biomedical and bioanalytical chemistry [15]. Many efforts are 

made towards improving its features, namely increased catalytic efficiency [16], higher 

luminescence intensity and stability [17-19], new light colours emission [20, 21], and 

enhanced resistance to proteolysis [22] and to elevated temperatures and pH variations [23]. 

So far, these features were mainly accomplished through genetic engineering, mainly by 

mutagenesis in selected amino acid [16-20], by fusion with other enzymes [24] or 

biomolecules [25] and by splitting luciferase into two or more fragments which regain 

activity through protein-protein interactions between the proteins attached to each of the 

luciferase’s portions [26, 27]. In some cases, other improvements were obtained through the 

use of biological or chemical adjuvants which can enhance the biochemical reaction and the 

corresponding light output, for example -synuclein [28], inorganic pyrophosphate [29], 

coenzyme A [30], liposomes [31, 32], magnesium sulfate [33] and other osmolites [34]. 

Chemically modified luciferins also confer distinctive patterns to the bioluminescent reaction 

[35, 36]. 

Regarding Nanoscience and the respective nanomaterials and nanodevices, it soon 

became evident their potential in biological applications [37]. Bionanotechnology encompass 

the study, characterization and application of nanomaterials in living entities. Some 

applications already proposed include photothermal therapy for cancer [38], novel vectors for 

gene delivery [39] and novel probes for bioimaging [40], just to quote a few. 

Following these ideas a logical step would be to bring luciferase and nanomaterials 

together as nanohybrids, improving luciferase’s properties and expanding its range of 

applications, as will now be exposed.  
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NEW METHODOLOGIES BASED ON THE COUPLING OF LUCIFERASE 

WITH NANOMATERIALS 
 

Carbon-Based Nanomaterials 
 

Carbon Nanotubes 

Carbon is an eclectic element concerning nanomaterial production. It appears in several 

forms: 

 

i) graphene nanoribbons, a one atom-thick sheet of conjugated sp2-hybridized carbon 

atoms [41- 44]; 

ii) filamentous carbon (nanotubes if hollow, nanofibers if filled), which can be regarded 

as a graphene sheet rolled around itself to form a cylinder with 0.4-3 nm in diameter 

if composed of only one sheet (a single-walled carbon nanotube), or 2-100 nm in 

diameter if composed of several concentric sheets (a multi-walled carbon nanotube), 

and lengths from nanometers up to micrometers or even several centimetres [41, 44, 

45]; 

iii) fullerenes, spherical C60 or higher [41, 46]; 

iv)  nanodiamonds [41, 47]; and 

v) nanostructured porous carbon replicas, structures based on the utilization of 

templates, commonly mesoporous silica, where the self-assembly of carbon occurs; 

posteriorly, the template is removed and the material will present the inverse of the 

shape of the template and a specific pore size [48-50]. 

 

Carbon nanotubes are a particularly successful carbon-based nanomaterial. They present 

very attractive characteristics like high mechanical strength, excellent chemical, electronic 

and optoelectronic performances, low density, and good heat transmission capacity [41, 44, 

45]. Another important feature is the great diversity of functionalization processes they allow, 

especially at the edges and defects. There is also the possibility of polymer wrapping and 

endohedral encapsulation of molecules by inserting molecular components inside them and 

allowing their self-assembly [51-54]. These processes are exclusive of nanotubes [51-54]. 

Taken together with the high surface areas they possess, the possibilities are astonishing. 

Those improvements have rendered several interesting applications for carbon nanotubes as 

catalysts [55], in electric circuits and devices [56], in solar cells [9], as sensors [10], among 

others. Biomedicine gives much attention to the evolution of these nanomaterials [44, 57, 58], 

and current studies are focused on their biocompatibility [59] and improving their solubility 

in organic solvents and water [60]. 

A biosensor for cellular ATP based on carbon nanotubes and luciferase was proposed 

[61]. It relies upon the immobilization of luciferase into near-infrared fluorescence emitting 

nanotubes through carboxylated poly-ethylene glycol phospholipids wrapped around 

commercial single-walled nanotubes. When the bioluminescent reaction catalyzed by 

luciferase takes place, with concomitant consume of cellular ATP and exogenously-added 

luciferin, the resulting product, oxyluciferin, will adhere to the nanotubes and quench their 

fluorescent emission. It allows the quantification of ATP in roughly 10 minutes at room 

temperature, it is sensitive and selective to ATP, as it does not respond neither to closely 
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related nucleotides as ADP, CTP and GTP nor to the bioluminescent reaction by-products 

AMP and inorganic pyrophosphate, and it allows the spatial and temporal quantification of 

ATP in living cells. On the other hand, it is an irreversible sensor that cannot be regenerated 

after the bioluminescent reaction takes place. With further optimizations this could be a useful 

optical biosensor for ATP. The principal contribution of the nanomaterial in relation to 

previously proposed methods is the enhancement in sensitivity, simplicity and stability that 

they confer to the biosensor [61]. 

 

Nanodiamonds 

Nanodiamonds are allotropes of carbon, with an average diameter of 5 nm, formed from 

the detonation of carbon-bearing explosives such as a mixture of trinitrotoluene (TNT) and 

hexogen, and so they are also called detonation nanodiamonds or ultrafine-dispersed 

diamonds (UDD) [41, 47]. They possess interesting characteristic, namely a large surface 

area, optical transparency and luminescence, increased mechanical strength, and enhanced 

magnetic and electrochemical properties [41, 47, 62]. Their core is composed of crystalline 

carbon with some nitrogen atoms derived from the precursor that, together with a nearby 

lattice vacancy can be regarded as defects responsible for their photoluminescence [47, 63, 

64]. Nanodiamonds are already produced in commercial scale, for example by ALIT, Inc., at 

Kiev (Ukraine) [65]. Recently, however, they are being recruited to biomedical applications 

as drugs, genes and proteins carriers [66, 67], as a cellular scaffold [68], as a bioimaging 

probe [69] and as biosensors [70, 71], provided that they are non-cytotoxic; in fact, they are 

considered the most biocompatible of all carbon nanomaterials [47], and more applications 

are likely to be proposed as they are prone to form nanocomposites and nanohybrid materials 

and to be subjected to further functionalizations [56]. 

A proof-of-principle bioluminescent sensor based on nanodiamonds and bacterial 

luciferase is described in the literature [72]. A biochip was developed by adsorbing the 

nanodiamod-luciferase complex into an aluminium oxide film, and a bioluminescent signal 

was detected. Although this is a preliminary study it points out that the nanodiamonds-

luciferase coupling holds potential for bioanalytical applications. 

 

 

Metallic Nanoparticles 
 

Metals in their nanometric scale are among the first materials to get practical applications 

and posteriorly recognized as materials different from bulk with size-depending properties [1, 

73]. This kind of nanomaterial can be obtained in a variety of shapes and sizes [74-76] and 

their interesting properties grant them lots of studies and proposed applications. The most 

common metallic nanoparticles are made from noble metals like gold, silver, platinum and 

palladium. In the bulk form they are little reactive, but they became reactive in nano form [4, 

73]. On the other hand, metals which are already reactive in the bulk form become so reactive 

as nanometals that are very difficult to work with them. The principal applications are based 

on their optical, magnetic and catalytic properties [73]. For example, the use of silver 

nanoprisms in solar cells enhanced their light harvesting potential [77]. In biological 

applications gold nanoparticles is undoubtedly one of those that receive plenty of attention 

and studies [78-80]. 
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Gold Nanoparticles 

The nanochemistry of gold nanoparticles, or colloidal gold, has old roots, being used 

since ancient times for decoration and as a medicine, for example [1, 81]. Gold nanoparticles 

are formed by metallic gold with dangling bonds at the surface, like other nanomaterials. The 

most distinctive characteristic of their surface chemistry is the high affinity for thiol groups. 

This leads to the formation of self-assembled monolayers (SAM), especially of alkanethiols, 

which stabilized the surface atoms and confers new functionalities to the surface [82]. 

Furthermore, it is possible the synthesis of hybrid nanoparticles, like a silver core covered by 

a gold layer [83], gold nanoparticles conjugate with platinum clusters at their surface [84] or 

the trapping of iron oxide inside gold nanoparticles [85], which enhances their features and 

augment the field of applications.  

In metallic surfaces, the existence of free electrons in movement generates an electric 

dipole at the surfaces, which induces their collective oscillation, the so-called plasmons [86]. 

By irradiating the particles with light at a specific wavelength, they can resonate, giving rise 

to absorption of the radiation and detection of a plasmonic band, responsible for the intense 

color of gold nanoparticles. The frequency at which this plasmonic band occurs depends on 

the shape and size of the nanoparticles, but for gold it is in the visible to near-infrared range. 

For instance, in a recent study, oligonucleotides were immobilized onto gold nanoparticles 

[87]. By shedding light at the plasmonic frequency, the light was absorbed and led to an 

electronic transition from ground state to an excited state. The non-radiative decay to the 

fundamental state released energy as heat. The heat so generated denatured the 

oligonucleotide chains which then exerted their intended activity in this study, gene silencing 

[87]. In phototherapy, nanoparticles could be directed to cancer cells [88] or bacteria [89]; 

their exposition to near-infrared emitting gold nanoparticles causes cellular lysis. Gold 

nanoparticles also present magnetic properties, which could be applied for data storage [90]. 

Many achievements could be obtained with gold nanoparticles’ functionalization with 

biomolecules. For example, the coupling of the enzyme tyrosinase onto gold nanoparticles led 

to a biosensor for phenolic compounds [91]. A biosensor for proteases based on luciferase-

gold nanoparticles is already described [92]. It is based on the quenching, by the 

nanoparticles, of the light emitted by luciferase. A blue-emitting, eight-mutation variant with 

enhanced stability in serum and higher catalytic efficiency luciferase from Renilla reniformis, 

termed Luc8 [17], was coupled to 5 nm-diameter gold nanoparticles previously functionalized 

with carboxylic oligo(ethylene glycol) through a short amino acid sequence recognized by 

matrix metalloproteinase-2 (MMP-2), which was chosen as a test protease due to its relevant 

cellular roles, namely in tumor invasion and metastasis [93]. By acting on its substrate, MMP-

2 will promote the separation between luciferase and the nanoparticles, thus raising the light 

emission [92]. Protease concentrations ranging from 50 ng mL-1 to 1 g mL-1 were assessed. 

This example represents an easy and sensitive way to determine MMP-2 concentration, but 

other proteases could be assayed by just changing the amino acid sequence. Furthermore, it 

relies upon desired features conferred by the nanoparticles such as photostability, 

biocompatibility and large surface area to attach luciferase, which are not easily obtained with 

traditional chemical quenchers. 
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Quantum Dots 
 

Quantum dots (QD) is the common designation of semiconductor colloidal nanocrystals, 

generally measuring 2-6 nm, composed of elements from the periodic groups II and VI (e.g. 

CdSe, CdTe, CdS, ZnSe) or III and V (e.g. InP, InAs), sometimes with a core-shell structure 

like CdSe/ZnS or CdTe/CdS or dopped with another compound, such as Mn: ZnS/ZnS [94]. 

Recently, the production of carbon-dots, the carbon-based counterpart of inorganic QDs [95, 

96], is another bid on QDs’ versatility. They present several unique optical and electronic 

features, like size- and composition-tunable light emission from visible to near-infrared 

wavelengths, broad absorption spectra, narrow and symmetric emission spectra, very high 

levels of brightness and photostability, high quantum yields and high molar extinction 

coefficients [94], being one of the most popular nanomaterial to date.  

QDs have so many applications that refer all of them is beyond the scope of this chapter. 

Illustrative examples include latent fingerprinting detection [97, 98], biosensor for hydrogen 

peroxide [99], and artificial light harvester in solar energy systems [100]. But it is in the 

biomedical field that QDs really stand out [40, 101-105]. They are applied as probes for in 

vitro and in vivo imaging [106-108], in real-time biomolecule tracking [109-111], as 

biosensors for kinases and phosphatases [112] and glucose [113], and so on. However, for 

these biological applications, the issue of biocompatibility and toxicity is always under 

attention. Current studies suggest that QDs can insert cellular damages [114-118], but 

deleterious effects can be diminished through capping with an additional shell, like in the 

core/shell QDs [108], functionalization with ligands [115, 119] and water-soluble QDs 

formulation [107]. Another strategy is the synthesis of QDs devoided of toxic elements, 

especially cadmium [103, 108, 120, 121]. 

Bioimaging is observing an intense development. Application of luciferases as probes are 

desired due to simplicity, costs and versatility. However, a major drawback is encountered: 

the way light interacts with tissues. In biological systems, chromophores molecules like 

hemoglobin, colagen and water could absorb light in certain wavelengths, which are then 

transmitted or scattered [122]. In this way little light can penetrate more than a few inches, 

except for red or near-infrared radiation [122]. Green- or blue-emitting luciferase, like those 

from fireflies and Renilla, are inadequate for such in vivo bioimaging studies. The cloning of 

red light-emitting luciferases or the genetic engineering of the green-emitting ones was a 

possible solution [20, 21]. Recently, however, a novel proposal was made, based on the 

bioluminescence resonance energy transfer (BRET) from the eight-mutation luciferase Luc8 

[17] to a red-emitting quantum dot [123]. Resonant energy transfer is a long-recognized 

phenomenon. A theory to explain it was proposed by the German scientist Theodor Förster, 

and hence the acronym Förster Resonant Energy Transfer, FRET, commonly used [124-126]. 

It involves two chromophores, a donor and an acceptor. The donor, initially in an 

electronically excited state, can transfer the energy to an acceptor as long as they are close to 

each other, between 1-10 nm, and that the donor’s emission spectrum overlaps the acceptor’s 

absorption spectrum. This transfer occurs through dipole-dipole coupling, and not by electron 

transfer, whereby it is non-radiative, or resonant [125, 126]. When both the chromophores are 

fluorescent the term Fluorescent Resonance Energy Transfer applies. If the energy comes 

from a bioluminescent reaction it is called Bioluminescence Resonance Energy Transfer 

[127-129]. There are numerous examples of FRET involving QDs and fluorophores [130], 

fluorescent proteins [131] or nanomaterials [132]. 
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In the proposed system [123], Luc8 (emission maximum at 480 nm) acted as the donor 

molecule and commercial red-emitting QDs (CdSe/ZnS core-shell QDs with emission peak at 

605 and 655 nm, and CdTe/ZnS at 705 and 800 nm) were the acceptors. These QDs have a 

maximum absorption in the blue range, hence a good energy transfer would be expected.  

The QD-Luc8 conjugates were initially characterized regarding coupling efficiency and 

effective BRET occurrence. By adding coelenterazine, a peak at 480 nm was indeed 

registered along with a second peak at 605-800 nm due to BRET. Then they were injected in 

solution in nude mice and the BRET signal was detected with a proper camera. It was verified 

that not only BRET occurred in vivo but also deeper intramuscular injections allowed a 

recordable signal from only 5 pmol of conjugates, compared to little signal registered for 30 

pmol of bare luciferase bioluminescence at the same locations or at subcutaneous injections. 

The same animals were tested for QD-Luc8 fluorescent emission and, although a signal could 

be obtained in subcutaneous injections, as expected, it was very faint in intramuscular 

injections, confirming that bioluminescence detection is more sensitive than fluorescence in 

vivo. At the same study, nude mice were injected simultaneously with QD-Luc8 conjugates 

with different emission maxima, from 605 to 800 nm, and the corresponding signals were 

sequentially detected by using adequate filters to each wavelength, thus confirming the 

possibility of multiplex imaging. Finally it was tested the possibility of monitoring cells 

transfected with those conjugates in vivo, instead of injecting the conjugates in solution or 

buffers. To achieve it, C6 glioma cells were incubated in vitro with QD655-Luc8 conjugates 

and posteriorly injected in nude mice. A strong BRET signal was obtained both in vitro and in 

vivo from these cells, but no fluorescence from the QDs was detected. 

In subsequent studies the system was improved regarding the QD-Luc8 coupling, by 

using HaloTag- [133] and intein-mediated conjugation [134], and enhancing the long-term 

stability of Luc8 by encapsulation in a polyacrylamide gel [135]. Another improvement is the 

luciferase-templated formation of near-infrared emitting (800-1050 nm) PbS QDs [136]. This 

process, biomineralization, involves the incubation of QDs precursors with a solution of 

Luc8, which will serve as template for the self-assembly of the QD-Luc8 nanohybrid, without 

the need of other coupling methods. By BRET the blue light emitted by Luc8 is transferred to 

the so-formed QD and near-infrared light is emitted [136]. 

Initially the QD-Luc system was proposed for applications in bioimaging, but posteriorly 

it was suggested as bio-nanosensor for proteases [134, 137] and nucleic acids [138]. In the 

first case, Luc8 is coupled to the QDs through an animo acid sequence recognized by the 

protease. Without protease, the BRET signal will be detected; in its presence, the cleavage of 

the sequence will release Luc8 from QD and BRET ceases. In the second case, two 

oligonucleotide probes are assembled in vitro, one containing luciferase and the other a QD, 

being the QD-oligonucleotide sequence complementary to the target nucleic acid. Without 

nucleic acid, the two probes will hybridize, under certain conditions, and a BRET signal will 

be produced. In the presence of target nucleic acid, there will be a competition between the 

target and the Luc-probe to hybridize with QD-probe. The more target nucleic acid the more 

extensive will be its hybridization with QD-probe and lesser BRET signal will be produced. 

All of these methods proved to be highly sensitive (limits of detection for the proteases of  

1 ng mL-1 for MMP-2, 5 ng mL-1 for MMP-7 and 500 ng mL-1 for urokinase-type 

plasminogen activator [134], and 20 nM for nucleic acids [138]), simple and rapid 

(demanding one hour of incubation for protease detection and 30 minutes for nucleic acids 

assay) compared to other corresponding methods. They are also versatile, as other proteases 
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and several oligonucleotides can be assayed just by changing the amino acid sequence 

between the luciferase and the QD or the nucleotidic sequence of the nucleic acid. Regarding 

bioimaging, it allowed the record of signals in a region of the electromagnetic spectrum 

where the light is less absorbed by tissues (red to near infrared), leading to improved signal-

to-noise ratio and analysis at deeper locations inside living subjects, without performing any 

genetic alterations in luciferase. In fact, the QD-Luc8 self-illuminating system is so successful 

that are now commercially produced by Zymera, Inc, at San Jose, CA (USA) under the 

designation BRET-Qdot® [139]. 

 

 

Nanostructured Materials 
 

Mesoporous Silica Nanoparticles 

Silica, actually silicon dioxide, is one of the most common substances on Earth. It is 

present in rocks and soil and has important function in life, like in the diatoms. A broad range 

of applications involve silica, from basic pottery to photonic crystals (the self-assembly of 

spherical silica nanoparticles in a compact and periodic arrangement at nanometric scale that 

leads to diffraction of the incident light, resulting in different colours) [140-142]. 

In Nanoscience, silica is important in its colloidal state, in which silica particles (1-1000 

nm) are dispersed in a continuous phase. If this phase is liquid, the system is called a sol. By 

aggregating these particles into a solid structure enclosing a continuous liquid phase the 

system is now called a gel [140]. These concepts are the basis of the sol-gel technology 

widely applied to prepare colloidal silica, for example the Stöber method, based on the basic 

hydrolysis of a silica precursor, leading to spherical and amorphous particles within 0.05-2 

m initially, but can be reduced up to 100-400 nm [140, 143]. 

Compared to other nanomaterials, for example carbon, silica is somehow limited in terms 

of functionalization, being the principal kind of functionalization related to organosilanes that 

will react with silanol groups (free hydroxyl groups derived from non-compensated, 

polymerized Si(HO)4 at the surface) at silica’s surface [140, 144, 145]. When using 

bifunctional organosilanes, one end will react with silanol and the other could have any 

functional group, so enhancing the applications. Furthermore, with a fine control of the 

synthesis process it can be attained the control of particle and pores’ size and morphology, 

along with the insertion of functionalizations [140, 144, 145]. For example, porosity could be 

induced and controlled by using templates, generally surfactants, which are posteriorly 

removed [140, 144, 145]. Hybrid silica nanoparticles are also available, generally consisting 

in the coating of other nanoparticles with silica, for example magnetic hematite [146], or the 

production of nanocomposites, like copper-coated silica nanoparticles for odor removal [147] 

or gold-doped silica nanoparticles for biosensing [148]. 

Regarding luciferase, another method for ATP detection based on the immobilization of 

firefly luciferase into sugar-silica materials prepared form the sol-gel process was created 

[149]. The main improvement in this new method was that luciferase maintained a relatively 

high and stable light emission compared to other matrices like agarose beads and sepharose, a 

characteristic conferred by the covalent linkage of sugars (D-gluconolactone and D-

maltonolactone) to the structure of the chosen silica precursor, (aminopropyl)triethoxysilane. 

The gel-containing luciferase can be re-used after several catalytical cycles, a unique feature 

 184



New Methodologies Based on the Coupling of Luciferase with Nanomaterials 39 

compared to other systems, and it proved to be very sensitive, being able to detect 1 pM of 

ATP. In fact, the issue of enzyme stability upon immobilization needs attention, because this 

factor hampers the development of biosensors and bioreactors. A theoretical study analyzed 

the influence of temperature and composition of nanometric silica upon firefly luciferase’s 

active site [150]. Using molecular dynamics simulation it was observed that nanoporous (6 

nm width) hydrophilic silica can indeed help to stabilize luciferase at room (27 ºC) and high 

(60 ºC) temperatures. 

 

Nanostructured Film 

Another optical biosensor using nanospheres covered with a nanostructured film in which 

luciferase is embedded was proposed [151]. The film’s assembly is based on the layer-by-

layer method, which is based on the alternate adsorption of polycations and polyanions in 

solution to a desired template or substrate, which leads to the formation of multilayers whose 

composition and thickness can be finely controlled [152]. In this example [151], firefly 

luciferase and cationic poly(dimethyldiallyl ammonium chloride) were added to polystyrene 

sulfonated spheres with 520 nm of diameter and, through electrostatic interactions, several 

layers were deposited. Within 15 minutes, a monolayer was assembled. Results [151] showed 

that the immobilized luciferase retained about 70% of its activity compared to free enzymes. 

Furthermore, a sustained bioluminescence was detected during a 7-day analysis, especially if 

the outermost layer is composed of the cation, albeit with a reduced enzymatic activity in this 

particular case. Finally, these nanospheres were exposed to commercial solutions with 

different concentrations of ATP, and a response proportional to the ATP content was 

observed, suggesting a role as ATP sensor. 

 

 

CONCLUSION 
 

Nanoscience in general, and nanomaterials in particular, are the hot topics for the XXI 

century investigation. If it is true that a lot of work is already done, it is also true that many 

efforts are waiting to be solved out. For example, the interaction of nanoparticles with 

biomolecules within cells is poorly understood, although it is of paramount importance as 

more and more nanomaterials are being requested for biomedical applications [153, 154]. 

Although Bionanotechnology (or Nanobiotechnology) is taking its first steps it is already 

regarded as an area with a huge future ahead. In this context, the coupling of luciferases with 

nanomaterials can be regarded as a fruitful partnership. In fact, major advances have been 

observed in luciferase’s enzymatic mechanism and biotechnology, which opened new areas 

for applications of the highly sensitive and selective luciferase-based bioanalytical 

methodologies. The main achievements so far were towards biosensing for ATP, nucleic 

acids and proteases, and bioimaging, but other applications are likely to arise. Carbon-based 

nanomaterials have the most promising potential for biological applications because of their 

biocompatibility and nontoxicity. Coupling these materials with well-established luciferase 

methodologies will undoubtedly be a good bet, not only for the optimization of already 

existing bioanalytical methodologies but also for the designing of new ones. 
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In conclusion nanomaterials, tiny entities which occupy “the region between the atomistic 

and the macroscopic worlds” [8], and luciferase, an indispensable bioanalytical tool, coupled 

to each other, represent the future of Bioanalytical Chemistry and Biomedicine. 
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Conclusions  

 

Two major conclusions for this project may be delineated. On the one hand, four 

novel firefly luciferase-based bioluminescent methods were developed, optimized, 

characterized and tested in real samples. On the other hand, the original aim of uncovering 

the chemical structure of Fridericia heliota’s luciferin and the testing of this bioluminescent 

system as the basis for novel methods was not achieved. This can be explained by the very 

low amount of this compound in a tiny earthworm. Nonetheless the identification, structure 

elucidation and chemical synthesis of model compounds, CompX and AsLn(2), which share 

features with the authentic luciferin, shed lights on this elusive molecule. 

Analytical chemistry is one of the pillars of modern society. From the simplest 

techniques up to the high-technology state-of-the-art equipment, it is present in food 

analysis, industrial production checkpoints, clinical medicine, environmental monitoring, 

basic research, and so on. The development and application of novel, improved 

methodologies is of utmost importance for the continuous evolution of this discipline. 

Attractive features must be encountered in all new proposed methods, such as 

sensitivity, reduced costs, facility of analysis, low assay time, robustness. Of course there 

is not a perfect method, rather each analyst must select and adapt a methodology to her/his 

needs. In this sense, the purposes of this project were fulfilled, and the novel methods here 

presented may certainly constitute valuable tools for the scientific community, and beyond. 


