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Abstract— The Unit Commitment (UC) problem is a well-
known combinatorial optimization problem arising in opera-
tions planning of power systems. It is typically formulated as
nonlinear mixed-integer programming problem and has been
solved in the literature by a huge variety of optimizations
methods, ranging from exact methods (such as dynamic pro-
gramming, branch-and-bound) to heuristic methods (genetic
algorithms, simulated annealing, particle swarm). Here, we
start by formulating the UC problem as a mixed-integer optimal
control problem, with both binary-valued control variables
and real-valued control variables. Then, we use a variable
time transformation method to convert the problem into an
optimal control problem with only real-valued controls. Finally,
this problem is transcribed into a finite-dimensional nonlinear
programming problem and solved using an off-the-shelf opti-
mization solver.

Index Terms— optimal control; calculus of variations; maxi-
mum principle; normality; optimality conditions.

I. INTRODUCTION

In this work, we address the Unit Commitment Problem
using Optimal Control methodologies. Despite being an
highly researched problem with dynamical and multi-period
characteristics, it appears that it has not been addressed by
optimal control methods before.

The Unit Commitment (UC) problem plays a key role
in power system operations, not only because its optimal
scheduling might provide huge gains, but also because it
maintains system reliability by keeping a proper spinning
reserve. The thermal UC problem can be divided into
two subproblems: the mixed-integer nonlinear programming
problem of determining the on/off state of the generation
units for each time period over a scheduling horizon and
the nonlinear programming problem of dispatching the load
among on-line units. The UC objective is to minimize
the total operating cost of the generating units during the
scheduling horizon while satisfying a large set of system
and operational constraints. Due to its combinatorial nature,
multi-period characteristics, and nonlinearities, this problem
is highly computational demanding and, thus, it is a hard
optimization task solving the UC problem, for real sized
systems. The UC problem has been extensively studied in the
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literature. Several numerical optimization techniques, based
both on exact or on approximate algorithms are reported.

Several heuristic approaches based on exact methods have
been used such as dynamic programming, mixed-integer
programming, benders decomposition, lagrangian relaxation
and branch and bound methods, see e.g. [17], [9], [30], [4].
The main drawbacks of these traditional techniques are the
high computational time required for large complexity and
dimensionality problems. Dynamic programming [17], [24]
is a powerful and flexible methodology, owever its suffers
from the dimensionality problem, not only in computational
time, but also in storage requirements. Recently a stochastic
dynamic programming approach to schedule power plants
was proposed [26]. In [4] a solution using lagrangian re-
laxation is proprosed. However, the problem becomes too
complex as the number of units increases and there are
some difficulties in obtaining feasible solutions. Takriti [30]
addresses the unit commitment problem by using mixed-
integer programming which is a very hard task when the
number of units increases since it requires large memory and
leads to large computational time requirements. The branch-
and-bound method proposed in [9] uses a linear function to
represent the fuel consumption and a time-dependent start-
up cost, but has a exponential growth in the computational
time with problem dimension.

More recently, several metaheuristics methods such as
evolutionary algorithms and hybrids of the them have been
proposed, see e.g. [32], [11], [28], [7], [3]. These approaches
have, in general, better performances than the traditional
heuristics. The most commonly used metaheuristic methods
are simulated annealing [23], [28], evolutionary program-
ming [15], [25], memetic algorithms (MA)[32], particle
swarm optimization [36], tabu search [22], [33], and genetic
algorithms [16], [29], [10], [27]. For further discussion an
comparison of these methodologies, with special focus on
metaheuristic methods see [27].

Although the UC problem is an highly researched problem
with dynamical and multi-period characteristics, it appears
that it has not been addressed before by optimal control
methods, except trying to solve the dynamic programming
recursion as mentioned. The nearest problems that we have
found in the literature using optimal control methods are for
the dispatch problem (see [35] and references therein) which
considers that it is already decided which are the units that
are on.

So, the formulation of the UC problem as a mixed-
integer optimal control problem, given in section II, is novel.
However, the main contribution is the variable time transfor-
mation method, described in Section III, which converts the
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mixed-integer optimal control problem (OCP) into one with
only real-valued controls .

Most literature on optimal control deals with problems
with only real-valued controls , both the analytical methods
based on variational analysis (see e.g. [34], [8]) and also nu-
merical schemes ([6], [5]). There are, however, some works
that are able to address optimal control problems (OCP) with
discrete control sets (see e.g. [12], [21]), although dealing
directly with the discrete-valued controls is computationally
heavy. The transformation of a mixed-integer optimal control
problem into a problem with only real-valued controls is
not new, nor is new the general idea of a variable time
transformation method. See the classical reference [14] and
also [31], [19], [20], [2], [18]. See also the recent work
[13] for a discussion of several variable time transformation
methods.

Although the approach in [13] could, in principle, be used
for the UC problem, it would require explicit enumeration
of all possible combinations of the control set, which in our
case would lead to 2N (with N being the number of thermal
units) discrete control values and would be impractical. So,
we can consider our variable time transformation a suitable
modification of [13] when the discrete-valued controls are
not scalar, that is valid for the UC problem.

II. THE UNIT COMMITMENT PROBLEM

The schedule of power system involves the solution to
the unit commitment problem and the economic dispatch
problem (EDP), where the UC problem is an integer pro-
gramming problem and the EDP is a nonlinear programming
problem. Both the UC problem and the EDP are usually
referred as the UC problems, which can be modeled as a
nonlinear, non-covex and mixed integer combinatorial opti-
mization problem [10]. The thermal unit commitment (UC)
has been traditionally solved in centralized power systems
to decide when each unit is turned on or turned off along
a predefined time horizon. In addition, for each time period
one needs to decide on how to dispatch online generators.
The objective of the UC problem is the minimization of
the total operating costs over the scheduling horizon while
satisfying the system demand, spinning reserve requirement
and other generation constraints such as the capacity limits,
ramp rate limits and minimum up/down times. Therefore, the
objective function is expressed by the sum of the fuel and
start-up costs. The model has two types of control variables.
On the one hand, binary control variables uj(t), which are
either set to 1, meaning that unit j is committed at time
period t; or otherwise are set to zero. On the other hand, real
valued variables ∆j(t), which enable to control the amount
of energy produced by unit j at time period t. Before giving
the mathematical formulation let us introduce the parameters
and variables notation.

Indexes:
t: Time period index;
j: Generation unit index;

For convenience, let us also define the index sets:
T := {1, . . . , T}
J := {1, 2, . . . , N}

Decision/Control Variables:
∆j(t): Amount of thermal generation of unit j to be
incremented or decremented comparatively to the production
at the previous time period ;
uj(t): Status of unit j at time period t (1 if the unit is on;
0 otherwise);

State Variables:
yj(t): Thermal generation of unit j at time period t, in
[MW ];
T

on/off
j (t):Number of time periods for which unit j has

been continuously on-line/off-line until time period t, in
[hours];
Yj(t): Maximum allowed generation at time period t,
considering the ramp limit of unit j, in [MW ];

Parameters:
T: Number of time periods (hours) of the scheduling time
horizon;
N: Number of generation units;
R(t): System spinning reserve requirements at time period
t, in [MW ];
D(t): Load demand at time period t, in [MW ];
Yminj: Minimum generation limit of unit j, in [MW ];
Ymaxj: Maximum generation limit of unit j, in [MW ];
Tc,j: Cold start time of unit j, in [hours];
T

on/off
min,j : Minimum uptime/downtime of unit j, in [hours];

SH/C,j: Hot/Cold start-up cost of unit j, in [$];
∆

dn/up
j : Maximum allowed output level decrease/increase

in consecutive periods for unit j, in [MW ];

A. Objective Function

The objective of the UC problem is the minimization of
the total costs for the whole planning period, in which the
total costs are expressed as the sum of fuel and start-up costs
of the generating units. Therefore, the objective function is
as follows:

Minimize

T∑
t=1

 N∑
j=1

{Fj(yj(t)) · uj(t) + Sj(t) · (1− uj(t− 1)) · uj(t)}

 .

(1)
where, the generation costs, i.e. the fuel costs, are conven-
tionally given by a quadratic cost function as follows:

Fj(yj(t)) = aj · (yj(t))2 + bj · yj(t) + cj , (2)

with the cost coefficients aj , bj , cj of unit j. The start-up
costs, that depend on the number of time periods during
which the unit has been off, are given by
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Sj(t) =

{
SH,j , if T off

min,j ≤ T off
j (t) ≤ T off

min,j + Tc,j ,

SC,j , if T off
j (t) > T off

min,j + Tc,j ,
(3)

where SH,j is the hot start-up cost and SC,j is the cold
start-up cost of unit j.

The state dynamics in this model are given by the
follows equations:

The thermal production of each unit, at time period t,
depends of the amount of thermal production in previous
time period and is limited by the maximum allowed decrease
and increase of the output that can occur during one time
period

yj(t) = [yj(t− 1) + ∆j(t)] .uj(t), (4)

for t ∈ T and j ∈ J , with ∆j(t) ∈
[
−∆dn

j ,∆up
j

]
.

The number of time periods continuously on-line until time
period t is given by

T on
j (t) =

[
T on
j (t− 1) + 1

]
.uj(t), (5)

for t ∈ T and j ∈ J The number of time periods
continuously off-line until time period t is given by

T off
j (t) =

[
T off
j (t− 1) + 1

]
. (1− uj(t)) , (6)

for t ∈ T and j ∈ J .
Due to the mechanical characteristics and thermal stress

limitations the output variation levels of each online unit in
two consecutive periods are restricted by maximum ramp
rate, both up or down,

Y j(t) =
[
yj(t− 1) + ∆up

j

]
, (7)

for t ∈ T and j ∈ J .

B. Constraints
The constraints can be classified into two sets: the demand

constraints and the operational generator constraints. The
first set of constraints is composed by the load requirements
and spinning reserve requirements, which can be written as
follows:
1) Power Balance Constraints
The total amount of power generated at each time period
must meet the load demand.

N∑
j=1

yj(t) · uj(t) ≥ D(t), t ∈ {1, 2, ..., T} . (8)

2) Spinning Reserve Constraints
The spinning reserve is the total amount of real power
generation available from on-line units net of their current
production level. The reserve power available is used when
a unit fails or an unexpected increase in load occurs.

N∑
j=1

Y j(t) · uj(t) ≥ R(t) +D(t), t ∈ {1, 2, ..., T} . (9)

The second set of constrains includes unit capacity limits
and the minimum number of time periods that the unit must

be continuously in each status (on-line or off-line).
3) Unit Capacity Limits
Each unit has a maximum and minimum output limits.

Y minj · uj(t) ≤ yj(t) ≤ Y maxj · uj(t),

for t ∈ {1, 2, ..., T} and j ∈ {1, 2, ..., N} . (10)

4) Minimum Uptime/Downtime Constraints
The unit cannot be shut down or started-up instantaneously
once it is committed or decommitted. The minimum up-
time/downtime constraints indicate that there is a minimum
time that each unit must be on-line or off-line, respectively.(

T on
j (t− 1)− T on

min,j

)
· (uj(t− 1)− uj(t)) ≥ 0,

for t ∈ {1, 2, ..., T} and j ∈ {1, 2, ..., N} . (11)

(
T off
j (t− 1)− T off

min,j

)
· (uj(t)− uj(t− 1)) ≥ 0,

for t ∈ {1, 2, ..., T} and j ∈ {1, 2, ..., N} . (12)

5) Initial state constraints
The values of T off

j (0) and T on
j (0) are given for the initial

time. The values of uj(0) are defined accordingly (i.e. set to
one if T on

j (0) is positive, set to zero otherwise). The values
of yj(0) can be chosen satisfying

Y minj · uj(0) ≤ yj(0) ≤ Y maxj · uj(0). (13)

III. THE VARIABLE TIME TRANSFORMATION METHOD

The idea here is to develop a variable time transformation
in order to convert the mixed-integer OCP into an OCP with
only real-valued controls.

Consider, for each unit j, a non-decreasing real-valued
function t 7→ τj(t). Consider also a set of values τ̄1, τ̄2, . . .
such that when τj(t) = τ̄k for odd k we have a transition
from off to on in unit j, and when τj(t) = τ̄k for even k we
have a transition from on to off. So, we consider that unit j
is:

• on if τj(t) ∈ [τ̄1, τ̄2) ∪ [τ̄3, τ̄4) ∪ . . . ∪ [τ̄2k−1, τ̄2k);
• off if τj(t) ∈ [0, τ̄1) ∪ [τ̄2, τ̄3) ∪ . . . ∪ [τ̄2k, τ̄2k+1).

An illustrative example is shown in Fig. 1.
It might help to interpret τj to be a transformed time scale

and that the values τ̄1, τ̄2, . . . are switching “times” in the
transformed time scale. We can consider, without loss of
generality, that the values τ̄k are equidistant. Nevertheless, in
real time t, the distance between two events τ̄k and τ̄k+1 can
be stretched or shrunk to any non-negative value, including
zero, depending on the shape of the function t 7→ τj(t).

To simplify exposition, and without loss of generality, let
us consider that τk − τk−1 is constant and equal to 1, for all
k = 1, 2, . . ..

Now, consider that we have the controls

w(t) ∈ [0, 1], t = 0, 1, . . . , T − 1,

that represent the increment from τ(t) to τ(t+ 1) such that

τ(t) = τ0 +
t−1∑
k

w(k)
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Fig. 1. Example of a function τ , the corresponding on/off status, and the
corresponding function w

or

w(t) = τ(t+ 1)− τ(t), with τ(0) = τ0.

Possible values of w in our example are shown in Fig. 1.

A. UC problem as an Optimal Control Problem with real-
valued controls

We recall the index set J and redefine T to be more
consistent with usual discrete-time control formulations.
T := {1, . . . , T} and J := {1, 2, . . . , N}.
In the same spirit, we redefine the control ∆j(t) to be the

amount of thermal generation incremented or decremented
in the next time period (rather than comparatively to the
previous period).

We should note that our controls are all real-valued and
comprise:
∆j(t) ∈

[
−∆dn

j ,∆up
j

]
,

wj(t) ∈ [0, 1] .
Define the sets of time periods:

Ionj := {t ∈ T : τj(t) ∈ [2k − 1, 2k), k ≥ 1},
Ioffj := T \ Ionj ,

Ioff>on
j := {t ∈ T : τj(t) ≥ 2k + 1, τj(t− 1) < 2k + 1, k ≥ 0},
Ion>off
j := {t ∈ T : τj(t) ≥ 2k, τj(t− 1) < 2k, k ≥ 1}}.

Finally, we are able to formulate our OCP:

Minimize

N∑
j=1

 ∑
t∈Ion

j

Fj(yj(t)) +
∑

t∈Ioff>on
j

Sj(t)

 (14)

subject to the dynamic constraints

τj(t+ 1) = τj(t) + wj(t) j ∈ J , t ∈ T (15)

T on
j (t+ 1) =

{
T on
j (t) + 1 j ∈ J , t ∈ Ionj

0 j ∈ J , t ∈ Ioffj ,
(16)

T off
j (t+ 1) =

{
T off
j (t) + 1 j ∈ J , t ∈ Ioffj

0 j ∈ J , t ∈ Ionj ,
(17)

yj(t+ 1) =

{
yj(t) + ∆j(t) j ∈ J , t ∈ Ionj
0 j ∈ J , t ∈ Ioffj ,

(18)

the initial state constraints

T on
j (0) = T on

j,0 (given), (19)

T off
j (0) = T off

j,0 (given), (20)

τj(0) =

{
0 if T on

j,0 = 0
1 if T on

j,0 > 0,
(21)

yj(0) =

{
0 if T on

j,0 = 0
yj,0 ∈ [Y minj , Y maxj ] if T on

j,0 > 0,
(22)

the control constraints

∆j(t) ∈
[
−∆dn

j ,∆up
j

]
, (23)

wj(t) ∈ [0, 1], (24)

and the pathwise state constraints

yj(t) ∈ [Y minj , Y maxj ] j ∈ J , t ∈ Ionj , (25)∑
j∈J

yj(t) ≥ D(t) t = 1, 2, . . . , T, (26)∑
j∈J

Y j(t) ≥ R(t) +D(t) t = 1, 2, . . . , T, (27)

where for each j ∈ J

Y j(t) =

{
min{yj(t− 1) + ∆up

j , Ymaxj} t ∈ Ionj
0 t ∈ Ioffj ,

yj(t) ∈ [Yminj ,max{Yminj ,∆
up
j }] j ∈ J , t ∈ Ioff>on

j

(28)

T on
j (t− 1) ≥ T on

min,j j ∈ J , t ∈ Ion>off
j (29)

T off
j (t− 1) ≥ T off

min,j j ∈ J , t ∈ Ioff>on
j . (30)

An example of a possible realization of the functions
∆j , wj , τj , T

on
j , T off

j , yj , and Y j for a specific unit j is
shown in Fig. 2.

IV. NUMERICAL METHODOLOGY

To construct our nonlinear programming problem (NLP),
we start by defining the optimization variable x containing
both the control and state variables. That is

x = [∆, w, τ, T on, T off , y]

with dimension (6T + 1) ∗ N). (We could have considered
just the controls ∆, w together with the free initial state y(0).
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Fig. 2. Example of possible functions ∆j , wj , τj , T
on
j , T off

j , yj , and Y j

An option which, despite having the advantage of a lower
dimensional decision variable, is known to frequentely have
robustness problems, specially in OCPs with pathwise state
constraints such as ours. For further dicussion see e.g. Betts
[5].)

To facilitate the optimization algorithm, we separate the
constraints that are simple variable bounds, linear equalities,
linear inequalities and the remaining:

• upper/lower bounds: equations (22)-(25);
• linear equalities: (15);
• linear inequalities: (26);
• nonlinear equalities: (16)-(18); and
• nonlinear inequalities: (27)-(30).

Note that (19)-(21) are not implemented as constraints since

these initial values of state variables are considered as
parameters and not variables.

With these considerations the problem is formulated as the
following NLP

Minimizex∈R(6T+1)×NJ(z)

subject to
LB ≤ x ≤ UB

Aeqx = beq

Aineqx = bineq

g(z) = 0

h(z) ≤ 0

and solved with an off-the-shelf NLP solver. For the moment
we have used Matlab fmincon, but we intend in the future
to explore the sparcity of the problem and use another
optimizer such as WORHP [1].

The methodology developed was tested in a problem taken
from the literature ([16]). The first problem consist of ten
units and a time horizon of 24 hours, and the data is given
in the Appendix/ Table X (or can be found in e.g. [27].).
We have obtained for this problem the cost 565827, which
appears (since it is the best value found by several authors)
to be an optimal solution to this problem.

V. CONCLUSIONS

We have addressed the Unit Commitment problem using
optimal control methods, which appears that has not been
done previously. In order to solve the mixed-integer optimal
control problem (OCP), we have converted it into another
OCP with only real-valued controls. This process required a
novel variable time transformation that was able to address
adequately several discrete-valued control variables arising
in the original problem formulation. The transformed real
OCP was transcribed into a nonlinear programming problem
to be solved by a standard nonlinear optimization solver.
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