Exercício na Reabilitação Cardíaca após Enfarte Agudo do Miocárdio. Efeito nos fatores de risco cardiovasculares.

Iracema Pereira da Silva

Dissertação apresentada com vista à obtenção do Grau de Mestre em Ciências do Desporto, na área de especialização em Atividade Física Adaptada, de acordo com o Decreto-lei nº 216/92 de 13 de Outubro.

Com orientação do Professor Doutor José Oliveira.

Porto, 2013

Palavras-chave: DOENÇA DAS ARTÉRIAS CORONÁRIAS, FATORES DE RISCO, EXERCÍCIO, PREVENÇÃO SECUNDÁRIA.
AGRADECIMENTOS

Ao professor José Oliveira pela sua imensa compreensão e orientação. Muito obrigado pela paciência e sabedoria transmitida.

Ao colega de doutoramento Nórton Oliveira pela sua ajuda na elaboração deste estudo e por estar sempre disponível para partilhar os seus conhecimentos.

Ao colega de mestrado e amigo, Mário Esteves, pelo companheirismo e apoio nesta longa jornada, agradecendo profundamente a sua energia positiva contagiantes.

À Terapeuta Leonor, que me incentivou a entrar para o mestrado e me inspirou desde o primeiro momento com o seu profissionalismo.

Aos meus queridos pais, por mesmo à distância me apoiarem, pelo carinho constante e por me ouvirem e compreenderem nos momentos mais difíceis. Obrigado por tudo e por nunca me deixarem desistir.

Às minhas amigas de sempre e para sempre, Mariana, Joana, Inês, Maria, Rola e Carolininha por todas as palavras, telefonemas e apoio nesta fase, que não foi fácil, um obrigado gigante!
ÍNDICE GERAL

AGRADECIMENTOS .. I
ÍNDICE DE QUADROS .. IV
ÍNDICE DE FIGURAS .. V
ÍNDICE DE TABELAS .. VI
RESUMO .. VII
ABSTRACT ... VIII
LISTA DE ABRÉVIATURAS .. IX

1. INTRODUÇÃO ... 1
 1.1. Fatores de Risco Cardiovascular ... 3
 1.1.1. Hipertensão Arterial .. 4
 1.2. Obesidade .. 6
 1.1.2. Dislipidemias .. 8
 1.1.3. Diabetes Mellitus .. 10
 1.1.4. Marcadores bioquímicos: Proteína C-reativa ... 11
 1.2. Reabilitação Cardíaca ... 13

2. PARTICIPANTES E MÉTODOS ... 16
 2.1. Desenho do estudo .. 16
 2.2. Participantes .. 17
 2.3. Variáveis e instrumentos de medida .. 18
 2.3.1. Avaliação antropométrica e de composição corporal .. 18
 2.3.2. Avaliação da aptidão cardiorrespiratória .. 19
 2.3.3. Avaliação hemodinâmica em repouso e função autonómica 19
 2.3.4. Recolha de sangue e análise ... 19
 2.3.5. Programa de treino ... 20
 2.4. Procedimentos estatísticos ... 20

3. RESULTADOS .. 22
4. DISCUSSÃO ... 26
5. CONCLUSÕES ... 30
6. REFERÊNCIAS BIBLIOGRÁFICAS 31
ÍNDICE DE QUADROS

Quadro 1 – Definição e Classificação dos níveis de PA.................................5
Quadro 2 – Classificação da obesidade..7
Quadro 3 – Perímetro Abdominal..7
Quadro 4 – Valores de referência dos níveis séricos de lípidos......................9
Quadro 5 – Valores referência da glicose sanguínea.....................................10
Quadro 6 – Valores dos níveis de PCR segundo o risco CV12
Quadro 7 – Caracterização das fases de um PRC...14
ÍNDICE DE FIGURAS

Figura 1 – Fluxograma descrevendo o desenho de estudo.................................16
ÍNDICE DE TABELAS

Tabela 1 – Características dos participantes do estudo em baseline..................22

Tabela 2 – Informações das variáveis do estudo em Baseline.........................23

Tabela 3 – Modificações nas variáveis antropométricas, na hemodinâmica, na aptidão cardiorrespiratória, no perfil metabólico e no marcador bioquímico...24
O objetivo deste estudo foi avaliar o efeito de um programa de exercício nos fatores de risco tradicionais e não tradicionais em indivíduos com doença coronária após enfarte agudo do miocárdio. A amostra foi constituída por 30 indivíduos do sexo masculino, divididos em dois grupos, o grupo de intervenção (n=15) e o grupo de controlo (n=15). Os indivíduos incluídos no grupo de controlo receberam tratamento médico convencional. Os indivíduos do grupo de intervenção foram sujeitos a um programa de exercício regular supervisionado e a tratamento médico convencional, em simultâneo. O programa de treino com exercício consistiu em 3 sessões/semanais, cada uma com uma duração de 50 minutos, durante 8 semanas. No início e no final da intervenção e em ambos os grupos, foram avaliadas variáveis antropométricas e de composição corporal (peso, IMC, percentagem de massa gorda, perímetro de cintura), variáveis de aptidão cardiorrespiratória e tolerância ao exercício (VO$_{2pico}$, VO$_{2lan}$, FC$_{pico}$), variáveis hemodinâmicas (Fração de ejeção, fração terminal do pro-peptídeo natriurético cerebral tipo B, pressões arteriais sistólica e diastólica, pressão de pulso braquial), o perfil metabólico (colesterol total, colesterol HDL, colesterol LDL, triglicerídeos, glicose, hemoglobina glicada) e um biomarcador de inflamação (Proteína C-reativa).

Em comparação ao GC, os indivíduos do GI aumentaram a tolerância ao exercício (2.8 ± 3.5 vs. -0.2 ± 3.1 ml.kg$^{-1}$.min$^{-1}$, p=0.017) e apresentaram uma diminuição nos níveis séricos de triglicerídeos (-28.6 ± 47.6 vs. 7.4 ± 41.9 mg/dL, p=0.036). Em conclusão, os resultados sugerem que o programa de exercício foi eficaz na redução e controlo dos factores de risco cardiovascular, uma vez que possibilitou o aumento da tolerância ao exercício e a melhoria do perfil lipídico.

Palavras-chave: DOENÇA DAS ARTÉRIAS CORONÁRIAS, FATORES DE RISCO, EXERCÍCIO, PREVENÇÃO SECUNDÁRIA.
ABSTRACT

The aim of the present study was to assess the effects of exercise training on traditional and non-traditional cardiovascular risk factors in coronary artery disease in patients recovering from acute myocardial infarction. Participants encompassed 30 male patients, divided into two groups, intervention (IG, n=15) and the control (CG, n=15). The CG received conventional medical treatment. The IG participated in an 8-week program comprising 3 aerobic exercise sessions per week, each one with a duration of 50 minutes. At the beginning and end of the intervention all the participants were evaluated in anthropometric and body composition parameters (body weight, body mass, waist circumference, % body fat), cardiorespiratory fitness and exercise tolerance (VO$_{2peak}$, VO$_{2lan}$, HR$_{peak}$), hemodynamic parameters (ejection fraction, NT-Pro-BNP, systolic and diastolic blood pressure, Brachial Pulse Pressure), the metabolic profile (total cholesterol, cholesterol HDL, cholesterol LDL, triglycerides, glicose, haemoglobin A1c) and the inflammatory biomarker C-reactive protein was gathered and assessed in both groups. In comparison to the CG, the individuals from the IG improved their tolerance to exercise (2.8 ± 3.5 vs. -0.2 ± 3.1ml.kg$^{-1}$.min$^{-1}$, p=0.017) and showed a decrease on the triglycerides serum levels (-28.6 ± 47.6 vs. 7.4 ± 41.9 mg/dL, p=0.036). In conclusion, the results suggested that the exercise training program was effective in the improvement of cardiovascular risk factors, since the exercise tolerance was augmented and lipid profile was improved.

Keywords: CORONARY DISEASE, RISK FACTORS, EXERCISE, SECONDARY PREVENTION.
LISTA DE ABREVIATURAS

AF Atividade Física
AHA/ACC American Heart Association/ American Cardiac College
APVP Anos Potenciais de Vida Perdidos
AVC Acidente Vascular Cerebral
CT Colesterol Total
DCI Doença Cardíaca Isquémica
DCV Doenças Cardiovasculares
DM Diabetes Mellitus
EAM Enfarte Agudo do Miocárdio
FC Frequência Cardíaca
FHS Framingham Heart Study
FR Fator de Risco
FRCV Fatores de risco cardiovascular
GC Grupo de Controlo
GI Grupo de Intervenção
HCY Homocisteína
HDL High-Density Lipoprotein (Lipoproteína de Alta Densidade)
HTA Hipertensão Arterial
IC Insuficiência Cardíaca
IMC Índice de Massa Corporal
PA Pressão Arterial

PA Ab Perímetro Abdominal

LDL Low Density Lipoprotein (Lipoproteína de Baixa Densidade)

OMS Organização Mundial de Saúde

PAD Pressão Arterial Diastólica

PAS Pressão Arterial Sistólica

PTE Programa de Treino de Exercício

PCR Proteína C-Reativa

PRC Programa de Reabilitação Cardíaca

RC Reabilitação Cardíaca

SPC Sociedade Portuguesa de Cardiologia

TG Triglicerídeos

$\text{Vo}_{2\text{pico}}$ Consumo máximo de oxigénio
1. INTRODUÇÃO

Ao longo da história da civilização, as causas de morte e de incapacidade na espécie Humana variaram de acordo com as transformações sociais, econômicas, e ambientais verificadas em diferentes épocas, assim como em função do avanço do conhecimento sobre a saúde humana e dos cuidados de saúde pública. Em 1971, Omran dividiu as transições epidemiológicas em três idades básicas: a) a pestilência e a fome; b) as pandemias; e c) as doenças degenerativas e provocadas pelo Homem (Gaziano, 2005).

Até à fase de industrialização, acreditava-se que as maiores causas de incapacidade e morte no Homem resultavam de um predomínio de deficiências nutricionais e doenças infecciosas (Yusuf et al., 2001). Ao longo dos últimos dois séculos, com as revoluções industriais e tecnológicas e as transformações econômicas e sociais inerentes, gerou-se uma mudança dramática nesta problemática, passando a ser o cancro, a diabetes e as doenças cardiovasculares (DCV) as principais doenças degenerativas causadoras de morte e incapacidade nos países desenvolvidos, sendo estas causadas pelos hábitos ou estilos de vida do Homem (Gaziano, 2005; Reddy & Yusuf, 1998).

Atualmente as DCV são responsáveis, por ano, por mais de 17,3 milhões de mortes e são a principal causa de mortalidade no mundo, estimando-se que em 2020 o número de mortes possa atingir os 25 milhões (Acevedo et al., 2011; Ceia, 2009; WHO, 2011). Mais de 3 milhões das mortes totais ocorreram antes dos 60 anos de idade e poderiam ter sido, em parte, prevenidas. A percentagem de mortes prematuras por DCV varia de 4% nos países desenvolvidos para 42% em países subdesenvolvidos, levando a uma crescente desigualdade nas ocorrências e resultados de DCV entre países e populações (WHO, 2011).

Na Europa, as DCV apresentam também a principal causa de morte em adultos com idade inferior a 65 anos, representando mais de 680 mil mortes por ano, correspondendo a 31% das mortes nos homens e 26% nas mulheres (Macedo, 2008; Nichols, 2012). Mais concretamente em Portugal são responsáveis por cerca de 40% da mortalidade total e encontram-se entre as principais causas
de morbilidade, invalidez e anos potenciais de vida perdidos (APVP) em toda a população (Abreu, 2010; Perdigão, 2011). Para além de causa de morte, as DCV conduzem a uma variedade de consequências negativas, tais como o aumento dos recursos humanos, materiais e financeiros disponibilizados para o tratamento e perturbações sociofamiliares (Bjarnason-Wehrens et al., 2010; Ceia, 2009). Em termos financeiros, por ano, as DCV custam à economia da UE quase 196 biliões de euros (Nichols, 2012).

Nos últimos 30 anos, as taxas de mortalidade dos indivíduos com DCV têm vindo a cair na maioria dos países da Europa do Norte e Europa Ocidental, onde se inclui Portugal (Nichols, 2012). Paradoxalmente, embora o número de mortes esteja a diminuir, o número de doentes cardiovasculares está a aumentar, devido ao aumento da população, da longevidade e sobrevida destes indivíduos (Pereira et al., 2012; SPC, 2009).

A etiologia da DCV é a aterosclerose quase na totalidade dos casos, desenvolvendo-se insidiosamente ao longo de toda a vida e progredindo frequentemente para um estado avançado quando os sintomas se manifestam (Ceia, 2009; Madamanchi et al., 2005; Perk et al., 2012). O acidente vascular cerebral (AVC), a doença cardíaca isquémica (DCI), o enfarte agudo do miocárdio (EAM) e a insuficiência cardíaca (IC) são as DCV mais frequentes de origem aterosclerótica (Braunwald, 2013; Macedo, 2008).

A aterosclerose carateriza-se por ser uma patologia silenciosa, complexa, crónica e inflamatória que afeta principalmente as artérias de grande e médio calibre, iniciando a sua patogénese sob a forma de “estrias lipídicas”, expressando-se por uma lesão do endotélio e por acumulação de lipoproteínas, principalmente de baixa densidade (LDL) no espaço subendotelial das paredes arteriais (Grant, 2000; Insull, 2009; Leon & Bronas, 2009). Uma vez presente na camada íntima da artéria, a LDL poderá ser oxidada e, posteriormente, fagocitada por macrófagos, formando as foam cells (células esponjosas), as quais são responsáveis, entre outros fatores, pela remodelagem adversa da parede vascular (Madamanchi et al., 2005).
Existem fatores de risco que podem acelerar o processo aterosclerótico, estando estes intimamente associados aos fatores de risco cardiovascular (FRCV) (Insull, 2009). A Organização Mundial de Saúde (OMS/WHO) afirmou que mais de três quartos da mortalidade por DCV poderiam ter sido evitados com mudanças no estilo de vida dos indivíduos, apostando na prevenção dos FRCV (Perk et al., 2012).

1.1. Fatores de Risco Cardiovascular

Em 1948, o *Framingham Heart Study* (FHS) iniciou um ambicioso projeto na área da saúde, no qual o principal objetivo era identificar os fatores ou características comuns que contribuem para o aparecimento de DCV (D'Agostino, 2013). Ao criar a expressão “fator de risco” (FR), o FHS levou a uma mudança na forma como a medicina é praticada (O'Donnella, 2008). Hoje em dia, um fator de risco é definido como uma característica inata ou adquirida de um indivíduo, que se associa ao aumento da probabilidade de este vir a sofrer ou falecer de determinada doença ou condição (O'Donnella, 2008; Vaz, 2005).

Estudar os fatores de risco cardiovascular de forma individual pode tornar-se difícil já que estes muitas das vezes coexistem no mesmo indivíduo. Este fenômeno, denominado de cluster ou agregação leva, por potenciação mútua, a aumentos exponenciais de risco para além do valor observado para cada um deles, de forma independente, tornando, muitas vezes, difícil a quantificação do contributo individual de cada um para o desenvolvimento de determinada(s) doença(s) – raramente existe uma relação um-para-um. Se o FRCV existe já há algum tempo torna-se difícil calcular o seu contributo para a incidência da doença (Pereira, 2005; Vaz, 2005).

Atualmente, o conceito de FRCV é essencial na prática clínica, particularmente na sua vertente preventiva, assumindo-se como elementos preditivos do desenvolvimento de doença, de pré-diagnóstico e como pontos-chave sobre os quais se deve atuar de modo a que as intervenções/estratégias terapêuticas sejam mais efetivas (Vaz, 2005).
Os FR que são mais frequentemente associados à presença de DCV e que podem ser classificados como de tradicionais são: idade, sexo, obesidade, hipertensão arterial (HTA), dislipidemia, diabetes mellitus (DM), tabagismo, stress e sedentarismo (Balagopal et al., 2011; Wang, 2008). Contudo, nem todos os indivíduos que apresentam DCV são expostos a fatores de risco tradicionais. O desenvolvimento de novos marcadores para o diagnóstico e prevenção da DCV é um objetivo importante para a saúde pública, de modo a que exista uma maior compreensão da biologia da doença e que se possa explicar casos que não podem ser justificados pelos fatores de risco tradicionais (Wang, 2008).

Os fatores de risco ditos não tradicionais ou emergentes são: a proteína C-reactiva (PCR), o nível de glicose no sangue em jejum, níveis de homocisteína (HCY), níveis de lipoproteína (a) (Lp(a)), a frequência cardíaca (FC), entre outros marcadores de risco (Force, 2009). Neste estudo iremos abordar os seguintes FR: HTA, obesidade, dislipidemia, DM e PCR.

1.1.1. Hipertensão Arterial

A Hipertensão Arterial (HTA) constitui um sério problema de saúde pública nos países desenvolvidos, sendo a causa de morte de cerca de 12,8% do total de todas as mortes anuais em todo o mundo (WHO, 2011). Em Portugal, um estudo pioneiro coordenado por Polónia (2013) retratou de forma inédita a doença, contando com uma amostra representativa da população do continente de 3720 indivíduos, maiores de 18 anos, representativa da população do continente. Segundo os resultados preliminares deste estudo “PHYSA – Portuguese Hypertension and Salt Study”, cerca de 42% da população adulta de Portugal continental sofre de HTA (Polónia, 2013). Segundo este estudo, 23,8% dos doentes hipertensos portugueses não sabem sequer que realmente sofrem da patologia, apesar desta ser facilmente detetada nos cuidados de saúde primários (Polónia, 2013).
O diagnóstico HTA define-se, em avaliação de consultório, como a elevação persistente, em várias medições e em diferentes ocasiões, da pressão arterial sistólica (PAS) igual ou superior a 140 mmHg e/ou da pressão arterial diastólica (PAD) igual ou superior a 90 mmHg (DGS, 2013). A definição e classificação dos níveis de pressão arterial (PA) estão apresentadas no Quadro 1 segundo a Sociedade Europeia de Hipertensão e a Sociedade Europeia de Cardiologia.

Quadro 1 – Definição e Classificação dos níveis de PA (ESC Guidelines).

<table>
<thead>
<tr>
<th>Categoria</th>
<th>PA Sistólica (mmHg)</th>
<th>PA Diastólica (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressão ótima</td>
<td><120</td>
<td><80</td>
</tr>
<tr>
<td>Pressão normal</td>
<td>120-129</td>
<td>80-84</td>
</tr>
<tr>
<td>Pressão normal Alta</td>
<td>130-139</td>
<td>85-89</td>
</tr>
<tr>
<td>Hipertensão grau 1</td>
<td>140-159</td>
<td>90-99</td>
</tr>
<tr>
<td>Hipertensão grau 2</td>
<td>160-179</td>
<td>100-109</td>
</tr>
<tr>
<td>Hipertensão grau 3</td>
<td>≥180</td>
<td>≥110</td>
</tr>
<tr>
<td>Hipertensão sistólica isolada</td>
<td>≥140</td>
<td><90</td>
</tr>
</tbody>
</table>

A HTA pode ser classificada tendo em consideração a sua etiologia ou os seus valores (Chobian, 2003). No que respeita à sua etiologia a HTA pode ser dividida em secundária ou primária (essencial) (El-Atat, 2004). A HTA primária ou essencial representa estimadamente 95% dos casos e a população que sofre deste tipo de HTA não apresenta uma causa aparente para tal, podendo porém estar associada a estilos de vida, tais como o excesso de consumo de café, sal e bebidas alcoólicas, excesso de peso e inatividade física (Chobian, 2003).

O estudo observacional de Rocha et al., (2003) na área do risco, confirmou que a idade e o peso/índice de massa corporal (IMC) são fatores constitucionais que têm relação com o desenvolvimento da hipertensão e que outros FRCV, como a hipercolesterolemia e a diabetes, são mais frequentes nos hipertensos do que nos normotensos. Isto significa que os hipertensos apresentam um potencial aterogênico elevado que é determinado pela frequente coexistência de dois/três fatores de risco major (Rocha, 2003). Contudo, existem evidências de que a adoção de estilos de vida mais saudáveis e fisicamente ativos
provocam redução da PA (Aronow et al., 2011; Clara, 2007; Macedo, 2008; Perk et al., 2012).

1.2.2. Obesidade

A Obesidade é definida pela OMS como sendo uma doença em que o excesso de gordura corporal acumulada pode atingir valores capazes de afetar a saúde do indivíduo (WHO, 2000). O excesso de gordura resulta de sucessivos balanços energéticos positivos, em que a quantidade de energia ingerida é superior à quantidade de energia despendida. Os fatores que determinam este desequilíbrio são complexos e incluem fatores genéticos, metabólicos, ambientais e comportamentais. Este desequilíbrio tende a perpetuar-se, pelo que a obesidade é uma doença crónica (DGS, 2005). A OMS reconhece que, neste século XXI, a obesidade tem uma prevalência igual ou superior à da desnutrição e das doenças infecciosas. Por tal facto, se não se tomarem medidas drásticas de prevenção e tratamento, mais de 50% da população mundial será obesa em 2025 (WGO, 2009).

Existe um conjunto de fatores associados à obesidade em Portugal que preocupam o Ministério da Saúde, e que fundamentam a necessidade de um Programa Nacional de Combate à Obesidade (DGS, 2011). Entre eles poderão identificar-se a elevada prevalência e a taxa de crescimento anual; a morbilidade e mortalidade muito altas que, direta ou indiretamente, a acompanham; a diminuição da qualidade de vida dos indivíduos que sofrem dela; os elevados custos que determinam o seu tratamento; e a dificuldade no tratamento da patologia.

Hubert et al. (1983) concluíram no estudo de Framingham que a obesidade é um fator de risco independente dos demais para a ocorrência de DCV, mais acentuado em indivíduos do sexo masculino de idade inferior a 50 anos (Hubert et al., 1983). Atualmente, existe evidência que demonstra que um dos componentes da matéria gorda, o tecido adiposo visceral abdominal, é um órgão endócrino metabolicamente ativo capaz de sintetizar e libertar para a corrente sanguínea uma importante quantidade de péptidos e compostos não
peptídeos que podem desempenhar um papel na homeostase cardiovascular (Perk et al., 2012). O diagnóstico de pré-obesidade e de obesidade faz-se através do cálculo do IMC, o qual mede a corpulência e se determina dividindo o peso, em quilogramas, pela altura, em metros, elevada ao quadrado (peso/altura) (Quadro 2) (ACSM, 2010).

Quadro 2 – Classificação da obesidade (ACSM).

<table>
<thead>
<tr>
<th>Classificação</th>
<th>IMC (Kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magreza</td>
<td><18,50</td>
</tr>
<tr>
<td>Peso Normal</td>
<td>18,50-24,99</td>
</tr>
<tr>
<td>Pré Obeso</td>
<td>25,0-29,99</td>
</tr>
<tr>
<td>Obeso classe I</td>
<td>30,0-34,99</td>
</tr>
<tr>
<td>Obeso classe II</td>
<td>35,0-39,9</td>
</tr>
<tr>
<td>Obeso classe III</td>
<td>≥40</td>
</tr>
</tbody>
</table>

A obesidade é uma patologia heterogênea e deve ter em atenção a distribuição da gordura, já que um indivíduo com peso normal pode ser considerado metabolicamente obeso. Para uma correta avaliação devem considerar-se vários fatores tais como: as pregas cutâneas, a bioimpedância e o perímetro abdominal (PAb). Este último é considerado por alguns especialistas como sendo um “sinal vital” (Quadro 3) e deve ser medido num ponto intermédio entre o bordo inferior da última costela e a crista ilíaca (WHO, 2000).

Quadro 3 – Perímetro Abdominal (WHO).

<table>
<thead>
<tr>
<th>SEXO</th>
<th>Nível 1 / Alerta</th>
<th>Nível 2 / Ação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IMC ≥ 25 Kg/m²</td>
<td>IMC ≥ 30 Kg/m²</td>
</tr>
<tr>
<td>Masculino</td>
<td>≥ 94 cm</td>
<td>≥ 102 cm</td>
</tr>
<tr>
<td>Feminino</td>
<td>≥ 80 cm</td>
<td>≥ 88 cm</td>
</tr>
</tbody>
</table>

Dados de alguns estudos epidemiológicos apontam para que a obesidade abdominal seja considerada um FRCV independente – um aumento do perímetro abdominal/ perímetro da cintura pode ser um marcador de aumento de risco cardiovascular mesmo em indivíduos com peso normal (Janssen,
A obesidade está assim fortemente relacionada com os fatores de risco cardiovasculares major, tais como a hipertensão arterial, resistência à insulina, intolerância da glicose, diabetes tipo 2 e dislipidemias (McGee, 2005).

1.1.2. Dislipidemias

As alterações anormais das concentrações de lípidos no sangue e dos níveis de lipoproteínas, devido a fatores genéticos, ambientais ou patológicos são definidas como dislipidemias. Os lípidos (colesterol e triglicerídeos) são constituintes sanguíneos (proteínas) que apresentam várias funções no nosso organismo, como o transporte de gorduras para o fígado, músculo e tecido adiposo, o armazenamento e produção de energia e a absorção de vitaminas (M. Miller et al., 2011). O colesterol pode apresentar-se sob duas formas, a lipoproteína de alta densidade (HDL) que tem como função a remoção de colesterol em excesso para fora das artérias, impedindo que este se deposite na parede arterial e, consequentemente, seja alvo de ataque enzimático e fonte de produção de espécies reativas de oxigénio, de aumento do número de células esponjosas, da formação de placas ateroscleróticas vulneráveis, e de trombos obstruindo o lúmen arterial; a lipoproteína de baixa densidade (LDL) é conhecida por ser a lipoproteína mais aterogénica e é responsável por transportar e depositar o colesterol nas paredes das artérias. As dislipidemias podem ocorrer devido a várias causas: ao aumento do colesterol (total + LDL), do aumento dos triglicerídeos (Acree et al.), do aumento do colesterol e dos triglicerídeos ou da redução do colesterol HDL. As dislipidemias podem ser consideradas primárias ou secundárias. Além desta classificação, as dislipidemias podem ser classificadas de outras formas. As recomendações do National Cholesterol Education Program (NCEP) classificam os níveis dos lípidos de acordo com a gravidade (desejáveis, no limite superior ou elevados) (Quadro 4).
Quadro 4 – Valores de referência dos níveis séricos de lipídios (NCEP III, 2001).

<table>
<thead>
<tr>
<th></th>
<th>Valores de referência (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Desejáveis</td>
</tr>
<tr>
<td>CT</td>
<td><200</td>
</tr>
<tr>
<td>LDL-C</td>
<td><130</td>
</tr>
<tr>
<td>HDL-C</td>
<td>>35</td>
</tr>
<tr>
<td>TG</td>
<td><200</td>
</tr>
</tbody>
</table>

Atualmente, as anomalias lipídicas têm sido um importante alvo de redobrada atenção e controlo, através de estudos científicos e de ações de prevenção primária e de estudos científicos (Lavin, 1994). Tal como a HTA, as dislipidemias são geralmente “silenciosas”, o diagnóstico é feito através de análises de sangue de rotina, quando surge suspeita ou ocorre um evento cardiovascular, já que os níveis altos de colesterol LDL são um fator de risco major para o aparecimento de DCV.

Os triglicerídeos (Acree et al.) são considerados, também, um fator de risco independente havendo evidência que algumas lipoproteínas ricas em triglicerídeos poderão ser potencialmente aterogénicas (Christie M. Ballantyne, 2000).

No geral, o colesterol elevado é a causa estimada de 2,6 milhões de mortes (4,5% do total) e 29,7 milhões de APVP, ou 2,0% do total de APVP. Os níveis de colesterol total elevado são uma das principais causas de doença, tanto em países industrializados como em países em desenvolvimento, apresentando-se como um fator de risco para as DCV. A redução de 10% no colesterol sérico em homens com 40 anos pode resultar numa redução de 50% em doenças cardíacas dentro de 5 anos. A mesma redução de colesterol para os homens com 70 anos pode resultar numa redução média de 20% na ocorrência da doença cardíaca nos próximos 5 anos (WHO, 2013).
1.1.3. Diabetes Mellitus

A Diabetes Mellitus (DM) aparece, também, como uma das principais causas de DCV, tendo um grave impacto a nível mundial visto estar associada a elevados custos sociais e económicos. Esta patologia apresenta-se nos países do ocidente como uma das principais causas de morte, primeira causa de cegueira, primeira causa de amputações não traumáticas e primeira causa de hemodiálise (AHA, 2013).

A DM é uma doença metabólica caracterizada pelo elevado índice de açúcar no sangue (hiperglicemia) ou na urina (glicosúria) e que se desenvolve quando ocorre destruição das células beta das ilhotas de Langerhans do pâncreas, impedindo este de segregar insulina (ADA, 2012; Lavin, 1994; Ryden et al., 2013). A classificação da diabetes é constituída por 4 classes clínicas: diabetes tipo 1 ou DM, que resulta da destruição das células beta e que leva à incapacidade absoluta de secreção de insulina; diabetes tipo 2, em consequência da resistência à insulina e a médio e a longo prazo uma progressiva diminuição da sua secreção; DM gestacional, que é normalmente diagnosticada durante a gravidez; e outros tipos específicos de diabetes devido a outras causas, como por exemplo por defeitos genéticos ou induzidos por drogas ou químicos (ADA, 2012).

A determinação do índice glicémico sanguíneo é realizada através de um exame laboratorial com um jejum de aproximadamente 8 horas. No Quadro 5 estão apresentados os valores de referência para os níveis de glicose no sangue.

Quadro 5 – Valores referência da glicose sanguínea (WHO, 2006).

<table>
<thead>
<tr>
<th>Índice Glicémico Sanguíneo</th>
<th>Categoría</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 60 a 109 mg/dl</td>
<td>Normal</td>
</tr>
<tr>
<td>De 100 a 125 mg/dl</td>
<td>Tolerância à glicose reduzida (pré-diabetes)</td>
</tr>
<tr>
<td>Acima de 126 mg/dl</td>
<td>DM</td>
</tr>
</tbody>
</table>
Em países industrializados, a prevalência de DM apresenta-se elevada e está associada a uma taxa alta de morbidade e mortalidade cardiovascular. Esta patologia apresenta também níveis elevados de incidência, fenómeno que está relacionado com a adoção de estilos de vida menos saudáveis (obesidade e sedentarismo) e com o aumento da esperança média de vida das populações ocidentais (Expósito-Tirado et al., 2012).

Para os indivíduos com DM o risco aterosclerótico é excessivo e pode manifestar-se muito antes do diagnóstico da diabetes visto que as alterações metabólicas que ocorrem na DM (a resistência à insulina, a hiperiglicemia e o excesso de ácidos gordos) podem levar a disfunção arterial/endotelial, contribuindo assim para a instabilidade da placa aterosclerótica (Perk et al., 2012).

A DM aumenta, inequivocamente, o risco de todas as manifestações de DCV cuja patologia subjacente é a aterosclerose, sendo que os doentes com DM têm um risco significativamente aumentado (2 a 4 vezes) de desenvolver DCV comparativamente aos não diabéticos (Insull, 2009; Lavie & Milani, 2005).

1.1.4. Marcadores bioquímicos: Proteína C-reativa

Atualmente, tem havido um crescente interesse no papel fundamental que o sistema imunitário desempenha em todas as fases do processo aterosclerótico, desde a lesão inicial até à ruptura da placa aterosclerótica (Kritchevsky et al., 2005). Na patogénesis da aterosclerose, a inflamação é considerado um componente de fulcral importância. Assim, numerosos marcadores inflamatórios foram avaliados como FR e marcadores de risco para o aparecimento de DCV (Szmitko et al., 2003). O biomarcador inflamatório, estudado de forma mais intensiva em relação à sua associação com o risco de DCV, é a Proteína C-Reativa (PCR) de alta sensibilidade. Mais de 30 estudos epidemiológicos demonstraram que a PCR está associada ao aumento do risco cardiovascular (Silva, 2012). Esta proteína não glicada apresenta um papel importante nos processos inflamatórios, elevando a fagocitose de partículas
antigénicas e de microrganismos, ativando a via clássica do complemento. Estudos científicos recentes reforçam a ideia de que a PCR não é apenas um biomarcador inflamatório, mas também que a molécula participa de forma ativa no processo aterogénico (Ribeiro et al., 2010). Em 2003, Ishikawa et al. concluíram que a PCR se localiza dentro da placa aterosclerótica, revelando ter um papel fundamental na sua vulnerabilidade (Ishikawa, 2003). Os níveis de PCR correlacionam-se diretamente com vários FRCV como: IMC, PAS, níveis de TG e de colesterol total e níveis de glicémia em jejum e de forma inversa com os níveis de colesterol HDL e de PAD, tanto em adultos como em crianças (Silva, 2012). Os níveis de PCR são utilizados como medida de estratificação do risco cardiovascular em adultos com risco intermédio de doença coronária (10-20% de risco a 10 anos), segundo as normas orientadoras (Myers et al., 2009). No Quadro 6 estão os valores dos níveis de PCR de acordo com a classificação.

Quadro 6 – Valores dos níveis de PCR segundo o risco CV (Myers et al., 2009).

<table>
<thead>
<tr>
<th>Risco CV</th>
<th>Baixo</th>
<th>Intermédio</th>
<th>Elevado</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR (mg/L)</td>
<td><1</td>
<td>1-3</td>
<td>>3</td>
</tr>
</tbody>
</table>

Aquando da análise, se os níveis de concentração de PCR for inferior a 3mg/L, não será repetida a medição. Contudo, se a concentração for superior a 3 mg/L deverá ser repetida, num período em que não exista evidência de outros processos inflamatórios ativos, com um intervalo de tempo de 2 semanas. O valor mais baixo das 2 medições será considerado. Os níveis de PCR superiores a 10 mg/L podem sugerir a presença de um processo inflamatório em fase aguda muito significativo, requerendo investigação etiológica (Silva, 2012).
1.2. Reabilitação Cardíaca

Existem várias opções terapêuticas para o tratamento das DCV que, combinadas entre si, vão de encontro a guidelines nacionais e internacionais \(^1\)\(^2\). Neste contexto, a reabilitação cardíaca (RC) surge não só como uma parte integrante do processo de reabilitação dos indivíduos com DCV, mas como principal forma de prevenção secundária das DCV (Acevedo et al., 2011; Ades, 2001; Association, 2004; Balady et al., 2007; Leon et al., 2005). Contudo, apenas os programas que oferecem uma abordagem multidisciplinar e que seguem as recomendações são considerados RC. A American Heart Association (AHA) e a American Association of Cardiovascular and Pulmonary Rehabilitation (AACVPR), referem que todos os programas de reabilitação cardíaca (PRC) devem conter componentes específicos que visam otimizar a redução do risco cardiovascular, reduzir a incapacidade e promover estilos de vida saudáveis (Balady et al., 2007).

Segundo a OMS, a RC é um processo contínuo de desenvolvimento e manutenção do conjunto de mecanismos necessários para assegurar ao indivíduo as melhores condições físicas, mentais e sociais de modo a possibilitar a manutenção e/ou retoma da sua atividade socioprofissional e familiar pelos seus próprios meios (WHO, 1993).

Tendo em consideração as recomendações da AACVPR/ ACC/ AHA, o PRC é um processo contínuo, composto por 4 fases, início com a identificação dos FRCV ou com a admissão do indivíduo num centro hospitalar até ao período de follow-up a médio/longo prazo, como se pode verificar no Quadro 7.

\(^1\) SPC. (2009). Reabilitação Cardíaca: Realidade Nacional e Recomendações Clínicas.
O PRC deve incluir aconselhamento nutricional, intervenção nos FRCV existentes, cessação tabágica, controlo de peso, tratamento psicossocial, aconselhamento de atividade física (AF) e treino de exercício (Acevedo et al., 2011). Na componente de exercício, este é individualizado, tendo por base uma avaliação clínica e com uma prova de esforço máxima ou limitada por sintomas, com estratificação do risco de acordo com as guidelines da AACVPR e tendo em conta eventuais comorbididades associadas (SPC, 2009).

O treino de exercício, deve incluir treino aeróbico e resistido e cada sessão deverá respeitar os períodos de aquecimento, recuperação ativa, treino de flexibilidade, treino aeróbico envolvendo uma quantidade elevada de massa muscular e exercícios dirigidos ao aumento da força e resistência muscular local (ACSM, 2010).

Como forma de prevenção secundária das DCV, os programas de treino de exercício (PTE) assumem um papel fundamental conferindo não só benefícios cardiovasculares, como o aumento da tolerância ao exercício, melhoria dos

Quadro 7 – Caracterização das fases de um PRC.

<table>
<thead>
<tr>
<th>Fase</th>
<th>Contexto de internamento hospitalar; intervenção individual; mobilizações precoces, educação e preparação para a alta hospitalar.</th>
<th>Tempo de duração: menos de 2 semanas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase II</td>
<td>Contexto de ambulatório; supervisão constante por profissionais de saúde: exercício aeróbico em grupo; treino de volume e intensidade progressiva de ligeiro a moderado; apoio psicológico e educativo ao doente e rede familiar.</td>
<td>Tempo de duração: 8-12 semanas.</td>
</tr>
<tr>
<td>Fase III</td>
<td>Na comunidade, supervisionada de forma periódica; manutenção ou melhoria da condição física; individual ou em grupo; volume e intensidade progressiva de moderada a alta.</td>
<td>Tempo de duração: 12 semanas.</td>
</tr>
<tr>
<td>Fase IV</td>
<td>Na comunidade, de forma menos supervisionada que a fase III ou sem supervisão; manutenção por longos períodos; mudança nos estilos de vida.</td>
<td>Tempo de duração: indeterminado.</td>
</tr>
</tbody>
</table>
sintomas cardíacos e redução dos FRCV, mas também como promotores da qualidade de vida dos indivíduos (Acevedo et al., 2011; Association, 2004; Bjarnason-Wehrens et al., 2010).

Deste modo, estudar os efeitos de um PRC baseado no exercício nos FRCV em indivíduos que sofreram uma doença cardíaca, pode ser um contributo para se saber mais acerca do tema e poderá providenciar algumas informações úteis para efetivar a inclusão de PTE no tratamento convencional de indivíduos com DCV.

Assim, este estudo tem como objetivo avaliar o efeito de um programa de treino de exercício nos fatores de risco tradicionais e não tradicionais em indivíduos com doença coronária após enfarte agudo do miocárdio.

Estruturalmente esta dissertação está organizada em diferentes capítulos e subcapítulos. Em primeiro lugar faz-se a introdução procurando contextualizar o problema em estudo e o seu objectivo, fundamentando-os no conhecimento existente. De seguida, no segundo capítulo, é descrita a metodologia de investigação utilizada no estudo que sustenta a presente dissertação. No capítulo 3 são expostos os resultados do estudo. No capítulo 4, interpretam-se e discutem-se os resultados e no capítulo seguinte apresentamos as conclusões. Por último, no capítulo 6, são apresentadas as referências bibliográficas que serviram de suporte teórico a todas as fases do projeto de investigação e à presente dissertação.
2. PARTICIPANTES E MÉTODOS

2.1. Desenho do estudo

O presente estudo tem uma natureza prospetiva, com a amostragem e distribuição em grupos aleatorizada e com controlo. Na Figura 1 é apresentado o desenho de estudo.

Figura 1 – Fluxograma descrevendo o desenho de estudo.
Este estudo foi realizado entre Maio de 2011 e Novembro de 2012 no Centro Hospitalar Gaia/Espinho em Vila Nova de Gaia, Portugal. Após explicados os objetivos do estudo, todos os procedimentos e riscos associados, os indivíduos elegíveis, deram a sua autorização por escrito, conforme as regras da declaração de Helsínquia.

Quatro semanas após o EAM, os participantes foram aleatoriamente alocados para o grupo de intervenção (GI) e para o grupo de controlo (GC). Os indivíduos do GI foram sujeitos a um programa de treino com exercício e a tratamento médico convencional, em simultâneo. Os indivíduos incluídos no GC receberam apenas o tratamento médico convencional (p.e. consultas regulares com o médico cardiologista e medicação) (Figura 1).

Foi utilizada a randomização por blocos e uma sequência de alocação com base num bloco de tamanho fixo de 8 foi gerada com recurso a um computador que gera números aleatórios por um investigador que não estava envolvido no estudo.

Um cardiologista com conhecimento do desenho de estudo realizou o recrutamento e a alocação dos participantes nos grupos. Como a intervenção é composta por exercício regular, não foi possível àqueles que a implementaram serem cegos para a alocação. Contudo, estes foram cegos para a randomização.

Na avaliação inicial e após oito semanas, cada participante, foi sujeito a várias avaliações pela mesma sequência e durante o mesmo período do dia (p.e. de manhã), de modo a evitar o possível viés resultante de diferenças circadianas.

2.2. Participantes

A amostra do estudo foi composta por indivíduos do sexo masculino, que apresentavam idade igual ou superior a 18 anos e que foram encaminhados pelo departamento de cardiologia após terem sofrido um EAM. Os critérios de exclusão incluíam: a) arritmias cardíacas não controladas; b) angina peitoral instável; c) hipertensão não controlada; d) doença valvular; e) diagnóstico de
insuficiência cardíaca; f) doença metabólica não controlada (p.e. diabetes não controlada e problemas na tiroide); g) presença de co-morbididades pulmonares e renais; h) condições limitativas para a prática de AF (p.e. doença arterial periférica, limitações ortopédicas, doenças musculoesqueléticas); i) respostas hemodinâmicas anormais em repouso e em resposta ao exercício; e j) isquemia do miocárdio e/ou arritmias ventriculares graves durante a avaliação inicial do programa de exercício.

Foram excluídos todos os indivíduos com valores de PCR ≥ a 10mg/L visto que concentrações séricas iguais ou acima desse ponto de corte sugerem estados inflamatórios agudos não refletindo então a história inflamatória crónica de baixo grau que nos importa considerar.

2.3. Variáveis e instrumentos de medida

2.3.1. Avaliação antropométrica e de composição corporal

O peso foi medido por uma balança digital, estadiômetro de precisão e fita métrica. O IMC e a percentagem de massa gorda foram medidos utilizando a Tanita Inner Scan BC-522 (Tanita, Tokyo, Japan) com os indivíduos usando roupa leve e descalços. O índice de massa corporal (IMC, kg/m²) foi calculado pela razão de massa corporal e do quadrado da estatura e o perímetro abdominal (PAₐ) foi medido no num ponto intermédio entre o bordo inferior da última costela e a crista ilíaca. O IMC foi dividido em categorias de acordo com as recomendações da OMS: peso normal (18,5 Kg/m² ≥ IMC ≤ 24,9 Kg/m²); excesso de peso (25 Kg/m² ≥ IMC ≤ 29,9 Kg/m²) e obesidade (IMC ≥ 30 Kg/m²). Em relação ao perímetro de cintura, a referência para a categorização de sujeitos em baixo risco para esta variável foi o valor de corte para os indivíduos do sexo masculino de ≤ 102 cm o (WHO, 2000).
2.3.2. Avaliação da aptidão cardiorrespiratória

O consumo máximo de oxigénio (VO\textsubscript{2pico}) foi avaliado por ergoespirometria (Cardiovit CS-200 Ergo Spiro; Schiller, Baar, Switzerland) durante um teste de exercício máximo ou limitado por sintomas em passadeira máximo ou limitado por sintomas, usando o protocolo de Bruce modificado.

2.3.3. Avaliação hemodinâmica em repouso

Para a realização deste tipo de avaliação foi pedido aos indivíduos que evitassem a prática de exercício, o consumo de álcool, ou a ingestão de produtos que na sua composição contivessem cafeína nas 24 horas anteriores à avaliação. A sala onde foi conduzida a avaliação estava silenciosa, semiescura, a uma temperatura média de 22ºC.

Para a determinação da pressão arterial, foram realizadas pelo menos três medições no braço direito, utilizando o esfigmomanômetro digital Colin model BP 8800 monitor (Critikron, Inc., Tampa, FL), com o braço bem apoiado e relaxado e a artéria braquial situada ao nível do coração. Entre as medições foram observados intervalos de 1 minuto. Para o registo foi utilizada a média de todas as medidas. Hipertensão foi considerada quando a tensão arterial > 140/90 mmHg ou quando os indivíduos estavam sujeitos a tratamento antihipertensivo.

2.3.4. Recolha de sangue e análise

As amostras de sangue com jejum de 12h foram colhidas por via venosa através da veia antecubital, para análise dos seguintes parâmetros: glicose plasmática em jejum, colesterol total, colesterol LDL, triglicerídeos e Hemoglobina A1c usando métodos enzimáticos (Synchron LX 20; Beckman Coulter Inc., Fullerton, CA, USA). O colesterol LDL foi calculado usando a equação de Friedwald. Para apurar os biomarcadores da inflamação, 10 mL de sangue foram colhidos e transferidos para tubos com gel separador. Após a
colheita do sangue total e num tempo máximo de 30 minutos, as amostras foram centrifugadas durante 15min a 1000x g. Posteriormente, o soro foi dividido e guardado a -20ºC para futura análise bioquímica. Os critérios para diabetes basearam-se em níveis de glicose no sangue em jejum > 125 mg/dL ou tratamento com insulina ou anti-diabéticos orais. Para a dislipidemia consideraram-se valores de colesterol total em jejum > 175 mg/dL ou uso de estatinas.

2.3.5. Programa de treino

O programa de treino englobou três sessões de exercício supervisionado por semana, durante 8 semanas. Cada uma das sessões de exercício consistiu em 10 minutos de aquecimento, 30 minutos de exercício aeróbio em bicicleta ou passadeira, a 70-85% da FC máxima atingida no teste de exercício máximo ou limitado por sintomas, e 10 minutos de recuperação ativa.

Durante as sessões de exercício, a FC foi monitorizada continuamente por ECG e os níveis de esforço subjetivamente percebido pelos participantes foram avaliados com a escala (6-20 pontos) de Borg (Borg & Noble, 1974). Para além disso, os indivíduos do GI estavam também sujeitos a cuidados médicos convencionais e follow-up, ou seja, com consultas regulares com o médico cardiólogista e medicados apropriadamente.

2.4. Procedimentos estatísticos

Para realizar a análise estatística dos dados foi utilizado o programa informático SPSS (Statistical Package for the Social Sciences), versão 20.0. Procedeu-se a uma análise exploratória dos dados para verificação da normalidade e homogeneidade das distribuições. Utilizou-se a estatística descritiva e inferencial para a descrição dos resultados. Para a análise das diferenças de frequências e proporções em baseline, recorreu-se ao teste do qui-quadrado. Para a comparação entre grupos das
médias das variáveis contínuas, em baseline, e das médias das diferenças entre os valores do final da intervenção e os de baseline, recorreu-se ao t-teste Student para amostras independentes. Para a comparação de médias dentro de cada grupo, entreBaseline e final da intervenção, foi usado o t-teste Student para amostras emparelhadas. O nível de significância estatística foi estabelecido para um valor de \(\alpha = 0,05 \).
3. RESULTADOS

Os indivíduos que compõem a amostra dos dois grupos em estudo eram todos do sexo masculino e possuíam uma média de idades de 52.8 ± 1.3 no GI e de 50.2 ± 1.0 no GC.

Na Tabela 1 apresentam-se as características gerais dos participantes em baseline. Como podemos observar pela leitura da mesma não foram encontradas diferenças significativas entre os grupos GI e GC, para as variáveis da idade, dias de internamento, número de enfartes, número de vasos atingidos, FRCV, intervenções de revascularização e na medicação.

Tabela 1 – Características dos participantes do estudo em baseline.

<table>
<thead>
<tr>
<th>Características gerais</th>
<th>Grupo de Intervenção (n=15)</th>
<th>Grupo de Controlo (n=15)</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idade</td>
<td>52.8 ± 1.3</td>
<td>50.2 ± 1.0</td>
<td>0.135</td>
</tr>
<tr>
<td>Dias de internamento</td>
<td>5.3 ± 4.2</td>
<td>4.0 ± 1.3</td>
<td>0.278</td>
</tr>
<tr>
<td>Número de enfartes</td>
<td></td>
<td></td>
<td>0.638</td>
</tr>
<tr>
<td>1º</td>
<td>13 (86.7%)</td>
<td>12 (80.0%)</td>
<td>1.000</td>
</tr>
<tr>
<td>2º</td>
<td>2 (13.3%)</td>
<td>3 (20.0%)</td>
<td></td>
</tr>
<tr>
<td>Nº de vasos atingidos:</td>
<td></td>
<td></td>
<td>0.327</td>
</tr>
<tr>
<td>1 vaso</td>
<td>11 (73.3%)</td>
<td>14 (93.3%)</td>
<td></td>
</tr>
<tr>
<td>2 vasos</td>
<td>4 (26.7%)</td>
<td>1 (6.7%)</td>
<td></td>
</tr>
<tr>
<td>FRCV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>2 (13.3%)</td>
<td>5 (33.3%)</td>
<td>0.388</td>
</tr>
<tr>
<td>Hipertensão Arterial</td>
<td>4 (26.7%)</td>
<td>8 (53.3%)</td>
<td>0.264</td>
</tr>
<tr>
<td>Obesidade</td>
<td>2 (13.3%)</td>
<td>7 (46.7%)</td>
<td>0.111</td>
</tr>
<tr>
<td>Dislipidemia</td>
<td>10 (66.7%)</td>
<td>11 (73.3%)</td>
<td>1.000</td>
</tr>
<tr>
<td>História Familiar</td>
<td>4 (26.7%)</td>
<td>3 (20%)</td>
<td>1.000</td>
</tr>
<tr>
<td>Intervenções cardíacas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTCA</td>
<td>14 (93.3%)</td>
<td>13 (86.7%)</td>
<td>1.000</td>
</tr>
<tr>
<td>CAGB</td>
<td>1 (6.7%)</td>
<td>1 (6.7%)</td>
<td>1.000</td>
</tr>
<tr>
<td>Medicação</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiagregantes</td>
<td>15 (100%)</td>
<td>15 (100%)</td>
<td>-</td>
</tr>
<tr>
<td>Inibidor ECA</td>
<td>13 (86.7%)</td>
<td>14 (93.3%)</td>
<td>1.000</td>
</tr>
<tr>
<td>Beta-bloqueador</td>
<td>14 (93.3%)</td>
<td>15 (100%)</td>
<td>1.000</td>
</tr>
<tr>
<td>Estatinas</td>
<td>14 (93.3%)</td>
<td>14 (93.3%)</td>
<td>1.000</td>
</tr>
<tr>
<td>Anti-diabético Oral</td>
<td>2 (13.3%)</td>
<td>2 (13.3%)</td>
<td>1.000</td>
</tr>
<tr>
<td>Nitratos</td>
<td>4 (26.7%)</td>
<td>0 (0%)</td>
<td>0.107</td>
</tr>
<tr>
<td>Bloqueador dos canais de cálcio</td>
<td>0 (0%)</td>
<td>1 (6.7%)</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Todos os indivíduos encontravam-se medicados e a terapêutica manteve-se inalterada ao longo de todo o período de estudo nos dois grupos.
A Tabela 2, apresenta as médias e desvio padrão para as variáveis dependentes do estudo como, as medidas antropométricas e de composição corporal (peso, IMC, percentagem de massa gorda, perímetro de cintura), as variáveis funcionais (VO$_{2\text{pico}}$, VO$_{2\text{lan}}$, FC$_{\text{pico}}$), as variáveis hemodinâmicas (Fracção de ejeção, NT-Pro-BNP, PAS, PAD, Pressão de Pulso Braquial), o perfil metabólico (CT, HDL, LDL, TG, glicose, hemoglobina glicada) e o marcador bioquímico (PCR). Para todas as variáveis em baseline, os valores médios eram semelhantes nos dois grupos.

Tabela 2 – Informações das variáveis do estudo em Baseline.

<table>
<thead>
<tr>
<th>Medidas Antropométricas e de Composição Corporal</th>
<th>Grupo de Intervenção</th>
<th>Grupo de Controlo</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso (kg)</td>
<td>77.4 ± 8.9</td>
<td>76.9 ± 13.1</td>
<td>0.891</td>
</tr>
<tr>
<td>IMC (kg/m2)</td>
<td>26.3 ± 2.8</td>
<td>27.3 ± 4.0</td>
<td>0.422</td>
</tr>
<tr>
<td>Percentagem de Massa Gorda (%)</td>
<td>24.0 ± 4.2</td>
<td>25.6 ± 6.0</td>
<td>0.392</td>
</tr>
<tr>
<td>Perímetro de cintura (cm)</td>
<td>94.5 ± 7.7</td>
<td>96.1 ± 8.5</td>
<td>0.602</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variáveis Funcionais</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Duração prova de esforço (s)</td>
<td>583.8 ± 104.2</td>
<td>582.5 ± 127.0</td>
<td>0.975</td>
</tr>
<tr>
<td>VO$_{2\text{pico}}$ (ml/kg/min)</td>
<td>31.5 ± 5.8</td>
<td>30.0 ± 5.6</td>
<td>0.501</td>
</tr>
<tr>
<td>VO$_{2\text{lan}}$ (ml/kg/min)</td>
<td>17.7 ± 3.5</td>
<td>17.1 ± 4.3</td>
<td>0.707</td>
</tr>
<tr>
<td>FC$_{\text{pico}}$ teste de esforço (bpm)</td>
<td>135.7 ± 10.0</td>
<td>133.9 ± 13.4</td>
<td>0.677</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variáveis Hemodinâmicas</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracção de Ejecção (%)</td>
<td>51.3 ± 7.3</td>
<td>55.1 ± 5.2</td>
<td>0.118</td>
</tr>
<tr>
<td>NT-Pro-BNP (pg/ml)</td>
<td>316.5 ± 243.2</td>
<td>401.8 ± 369.3</td>
<td>0.461</td>
</tr>
<tr>
<td>PAS (mmHg)</td>
<td>121.4 ± 16.9</td>
<td>126.9 ± 16.4</td>
<td>0.370</td>
</tr>
<tr>
<td>PAD (mmHg)</td>
<td>70.5 ± 8.1</td>
<td>74.0 ± 10.0</td>
<td>0.295</td>
</tr>
<tr>
<td>Pressão Pulso Braquial (mmHg)</td>
<td>50.9 ± 11.4</td>
<td>52.9 ± 8.7</td>
<td>0.592</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perfil metabólico</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Colesterol total (mg/dL)</td>
<td>137.5 ± 28.3</td>
<td>138.4 ± 23.0</td>
<td>0.927</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>36.9 ± 6.8</td>
<td>39.0 ± 5.1</td>
<td>0.357</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>74.7 ± 20.6</td>
<td>71.6 ± 19.9</td>
<td>0.674</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>131.7 ± 57.8</td>
<td>139.0 ± 55.4</td>
<td>0.728</td>
</tr>
<tr>
<td>Glicose (mg/dL)</td>
<td>91.1 ± 9.1</td>
<td>99.7 ± 23.3</td>
<td>0.201</td>
</tr>
<tr>
<td>Hemoglobina glicada (%)</td>
<td>5.7 ± 1.6</td>
<td>6.3 ± 2.0</td>
<td>0.379</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marcador Inflamatório</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR (mg/L)</td>
<td>1.2 ± 0.8</td>
<td>1.8 ± 1.2</td>
<td>0.131</td>
</tr>
</tbody>
</table>

Na Tabela 3 apresentam-se os valores médios finais e das modificações nos grupos de intervenção e de controlo, nas variáveis dependentes do estudo (variáveis antropométricas, hemodinâmicas, de aptidão cardiorrespiratória, perfil metabólico e marcador bioquímico).
Tabela 3 – Modificações nas variáveis antropométricas, hemodinâmicas, da aptidão cardiorrespiratória, do perfil metabólico e no biomarcador de inflamação crónica.

<table>
<thead>
<tr>
<th>Medidas Antropométricas</th>
<th>Grupo de intervenção (n=15)</th>
<th>Grupo de Controlo (n=15)</th>
<th>Modificação</th>
<th>Modificação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline Média ± DP</td>
<td>Final Média ± DP</td>
<td>Modificação Média ± DP</td>
<td>Baseline Média ± DP</td>
</tr>
<tr>
<td>Peso (kg)</td>
<td>77.4 ± 8.9</td>
<td>76.0 ± 8.5</td>
<td>-1.4 ± 3.1</td>
<td>76.9 ± 13.8</td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td>26.3 ± 2.8</td>
<td>25.8 ± 2.8</td>
<td>-0.5 ± 1.1</td>
<td>27.3 ± 4.0</td>
</tr>
<tr>
<td>Percentagem de massa gorda (%)</td>
<td>24.0 ± 4.2</td>
<td>23.8 ± 4.3</td>
<td>-0.3 ± 2.5</td>
<td>25.6 ± 6.0</td>
</tr>
<tr>
<td>Perímetro de cintura (cm)</td>
<td>94.5 ± 7.7</td>
<td>93.7 ± 8.0</td>
<td>-0.9 ± 3.4</td>
<td>96.1 ± 8.5</td>
</tr>
<tr>
<td>Hemodinâmica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fracção de Ejecção (%)</td>
<td>51.3 ± 7.3</td>
<td>52.6 ± 7.8</td>
<td>0.9 ± 4.0</td>
<td>55.1 ± 5.2</td>
</tr>
<tr>
<td>NT-Pro-BNP (pg/ml)</td>
<td>316.5 ± 243.2</td>
<td>173.2 ± 135.3**</td>
<td>-143.3 ± 200.0</td>
<td>401.8 ± 369.3</td>
</tr>
<tr>
<td>PAS (mm Hg)</td>
<td>121.4 ± 16.8</td>
<td>115.7 ± 8.9</td>
<td>-5.6 ± 11.0</td>
<td>126.9 ± 16.4</td>
</tr>
<tr>
<td>PAD (mm Hg)</td>
<td>70.5 ± 8.1</td>
<td>67.5 ± 5.0</td>
<td>-3.0 ± 7.4</td>
<td>74.0 ± 10.0</td>
</tr>
<tr>
<td>Pressão Pulso Braquial (mmHg)</td>
<td>50.9 ± 11.4</td>
<td>48.3 ± 6.6</td>
<td>-2.7 ± 6.7</td>
<td>52.9 ± 9.0</td>
</tr>
<tr>
<td>Aptidão Cardiorespiratória</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO₂ pico (ml.kg⁻¹.min⁻¹)</td>
<td>31.5 ± 5.8</td>
<td>34.3 ± 7.8**</td>
<td>2.8 ± 3.5</td>
<td>30.0 ± 5.6</td>
</tr>
<tr>
<td>VO₂ atm (ml.kg⁻¹.min⁻¹)</td>
<td>17.7 ± 3.5</td>
<td>17.8 ± 4.4</td>
<td>0.1 ± 2.3</td>
<td>17.1 ± 4.3</td>
</tr>
<tr>
<td>FCpico no teste de esforço (bpm)</td>
<td>135.7 ± 10.0</td>
<td>141.2 ± 15.6</td>
<td>5.5 ± 14.4</td>
<td>133.9 ± 13.4</td>
</tr>
<tr>
<td>Perfil Metabólico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colesterol Total (mg/dL)</td>
<td>137.5 ± 28.3</td>
<td>144.5 ± 25.5</td>
<td>6.9 ± 21.3</td>
<td>138.4 ± 23.0</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>36.9 ± 6.8</td>
<td>40.5 ± 8.4**</td>
<td>3.6 ± 5.1</td>
<td>39.0 ± 5.1</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>74.7 ± 20.6</td>
<td>83.1 ± 22.0</td>
<td>8.4 ± 15.3</td>
<td>72.0 ± 20-0</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>131.7 ± 57.8</td>
<td>103.1 ± 27.0**</td>
<td>-28.6 ± 47.6</td>
<td>139.0 ± 55.4</td>
</tr>
<tr>
<td>Glicose (%)</td>
<td>91.1 ± 9.1</td>
<td>88.5 ± 13.6</td>
<td>-2.6 ± 13.3</td>
<td>99.7 ± 23.3</td>
</tr>
<tr>
<td>Hemoglobina glicada (%)</td>
<td>5.7 ± 1.6</td>
<td>5.8 ± 1.3</td>
<td>0.1 ± 1.9</td>
<td>6.3 ± 2.0</td>
</tr>
<tr>
<td>Marcador bioquímico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR (mg/L)</td>
<td>1.2 ± 0.8</td>
<td>1.9 ± 1.6</td>
<td>0.7 ± 1.3</td>
<td>1.8 ± 1.2</td>
</tr>
</tbody>
</table>

*Diferente significativamente em relação ao GI, p<0.05; **Diferente significativamente em relação a baseline, p<0.05; § GI n=14 e GC n=14.
Pela leitura da Tabela 3, podemos observar que não foram encontradas diferenças significativas entre grupos dos valores médios da modificação das medidas antropométricas, nomeadamente no peso e perímetro de cintura, do indicador ponderal IMC, e da variável de composição corporal percentagem de massa gorda nos dois grupos de baseline para a avaliação final.

No que diz respeito às variáveis hemodinâmicas, foram encontradas diferenças significativas em relação a baseline nos níveis de NT-Pro-BNP, nos dois grupos. No GI, os níveis de NT-Pro-BNP diminuíram em média 143.3 pg/ml em relação a baseline (p=0.015). Também no GC foi encontrada uma diminuição de 261.6 pg/ml em relação aos valores médios da avaliação inicial (p=0.005). Porém, a comparação das modificações observadas nos dois grupos não alcançou significância estatística.

Em relação à aptidão cardiorrespiratória, foram encontradas diferenças significativas entre grupos (p=0.017) na modificação do VO₂pico. O GI teve um aumento de 2.8ml.kg⁻¹.min⁻¹ (p=0.007) relativamente aos valores de baseline, enquanto no GC foi observada uma diminuição de 0.2ml.kg⁻¹.min⁻¹ (p=0.036).

No perfil metabólico, para ambos os grupos, não foram observadas modificações nas variáveis colesterol total, LDL, glicose e hemoglobina glicada. Contudo, a média do valor de modificação dos TG no GI foi significativamente diferente da registada no GC. De fato, os valores dos triglicerídeos, diminuíram 28.6 mg/dL, em relação a baseline, nos indivíduos do GI, enquanto no GC os valores não permaneceram praticamente inalterados durante o período do estudo. Os indivíduos do GI aumentaram os níveis de HDL em 3.6 mg/dL (p=0.018) no final da intervenção. Já no GC, os níveis de HDL mantiveram-se sem alteração significativa (p=0.810). Contudo a comparação da modificação entre os grupos revelou-se semelhante do ponto de vista estatístico.

Finalmente, o biomarcador de inflamação crónica PCR não se alterou em ambos os grupos.
4. DISCUSSÃO

O objetivo do estudo foi avaliar o efeito de um PRC baseado no exercício nos FRCV e na aptidão cardiorrespiratória em indivíduos com diagnóstico de EAM. Foram tidos em consideração os FRCV tradicionais (obesidade, DM, alterações no perfil lipídico, HTA) e não tradicionais ou emergentes, nomeadamente um biomarcador sistémico de inflamação crónica de baixo grau (PCR). Os principais resultados do presente estudo indicam que o exercício físico em sessões supervisionadas no âmbito do programa de reabilitação cardíaca foi eficaz para aumentar a aptidão cardiorrespiratória e tolerância ao exercício e na melhoria do perfil lipídico. Estes resultados são concordantes com os de vários estudos conduzidos em populações semelhantes (Giallauria et al., 2006; Leon et al., 2005; Lucini et al., 2002; Montiel-Trujillo et al., 2011; Plüss et al., 2008; Ribeiro et al., 2012a).

Na literatura está descrito o efeito positivo do exercício na hemodinâmica em indivíduos com DCV, produzindo uma diminuição da FC e da PA, e uma melhoria no VO\textsubscript{2\text{pico}} (Acevedo et al., 2011). O aumento dos níveis de VO\textsubscript{2\text{pico}} traduzem a melhoria da tolerância ao esforço e consequentemente em efeitos positivos na capacidade funcional necessária às actividades da vida diária e qualidade de vida dos indivíduos. Para além disso, este aumento poderá ter efeito na redução significativa dos eventos cardiovasculares fatais e não fatais subsequentes, independentes de outros factores de risco (Balady et al., 2007; Leon et al., 2005). No presente estudo, o aumento dos níveis de aptidão cardiorrespiratória induzidos pela prática regular de exercício físico poderão estar relacionados com a melhoria no perfil lipídico dos participantes. Na verdade, Acevedo et al. (2011) e Leon et al. (2005) nos seus estudos concluíram que os efeitos mais conhecidos da intervenção com exercício são o aumento dos níveis plasmáticos do colesterol HDL (de 8%-23%) e uma redução média de aproximadamente 22% nos níveis séricos de TG. Contudo, estes autores reportaram que para o colesterol LDL não foram observadas reduções significativas nos seus níveis após o treino com exercício (Acevedo et
al., 2011; Leon et al., 2005). No presente estudo, observou-se uma elevada percentagem de indivíduos com dislipidemia à admissão (66.7% no GI e 73.3% no GC), o que está de acordo com a literatura (Baessler et al., 2001; Boulay & Prud'homme, 2001). Apesar de a média das diferenças não ter sido estatisticamente diferente nos dois grupos, o aumento significativo dos níveis séricos de HDL nos participantes do GI estão em concordância com os resultados de outros estudos já mencionados e, ainda, confirmam a evidência que o aumento da aptidão cardiorrespiratória induzida pelo exercício é o melhor meio para aumentar este factor negativo para a recorrência de eventos isquémicos agudos e mortalidade prematura (Eisenmann et al., 2005; Lee et al., 2005). De fato, o aumento do colesterol HDL tem uma função importante na remoção do colesterol LDL infiltrado na camada íntima arterial, contribuindo para a mitigação do processo aterosclerótico (Mota dos Santos et al., 2013).

No nosso estudo os níveis séricos de TG diminuíram significativamente nos indivíduos do GI, o que está de acordo com o observado noutros estudos (Michael Miller et al., 2011). Para além disso a melhoria neste importante fator de risco no grupo GI foi alcançado sem que se tenha verificado uma redução significativa no peso corporal, na % de massa gorda corporal total ou do indicador de adiposidade central. Sabendo que os TG são considerados um FR independente para a ocorrência de DCV este resultado confirma o benefício do exercício como estratégia não farmacológica de tratamento de indivíduos com doença coronária.

Na avaliação da hemodinâmica, os níveis de NT-Pro-BNP diminuíram em relação aos resultados obtidos em baseline, nos dois grupos de estudo, GI e GC. O peptídeo natriurético cerebral de tipo B, de origem predominantemente ventricular, é produzido nos cardiomiócitos, como resposta ao aumento da pressão telediastólica ventricular, sob a forma de preproBNP. No sangue periférico, o proBNP divide-se, num peptídeo ativo, o BNP e numa molécula inativa, o NT-pro-BNP (Fonseca, 2004). Os peptídeos natriuréticos com origem cardíaca têm vindo a evidenciar um melhor perfil, podendo ser indicadores mais específicos e sensíveis de disfunção cardíaca. No estudo de Giallauria et al. (2006) observou-se, também, uma diminuição significativa nos níveis de NT-
pro-BNP no grupo que realizou um programa de exercício (Giallauria et. al., 2006). Contudo, também no GC observamos uma diminuição significativa dos níveis do NT-proBNP, o que pode ser explicado pela presença de níveis mais altos em baseline e pelo efeito esperado da terapêutica farmacológica.

Os níveis plasmáticos de proteína-C reativa, estão associados a um aumento do risco para a DCV. Vários estudos têm revelado que em indivíduos que praticam exercício físico regular, os níveis plasmáticos de PCR diminuem, sugerindo um efeito anti-inflamatório, cujo mecanismo parece estar relacionado com a melhoria da função endotelial e a redução do tecido adiposo subcutâneo e visceral (Berry & Cunha, 2010).

Diversos estudos demonstraram que o risco cardiovascular ou de reincidente de complicações aumenta com o incremento dos valores de concentração séricos de PCR. Valores entre 1-3mg/L são considerados valores de risco moderado. Em ambos os grupos, os valores médios encontrados estavam dentro desta categoria em ambos os momentos da avaliação. Assim, podemos afirmar que para a nossa amostra, 8 semanas de exercício não foram suficientes para modificar o nível de risco, mas por outro lado este não aumentou. Os nossos resultado são similares aos observados no estudo de Ribeiro et al. (2012) o qual foi realizado com um desenho semelhante ao nosso e em pacientes com características idênticas (Ribeiro et al., 2012b). Assim sendo, é provável que um PTE com duração de 8 semanas e realizado à intensidade previamente determinada para este estudo não seja suficiente para que se registem alterações significativas neste biomarcador.

Na variável peso corporal, apesar de não terem sido encontradas diferenças estatisticamente significativas em relação a baseline, no final da intervenção os indivíduos do GI reduziram o peso corporal e a % de massa gorda, o que não ocorreu no GC. Verificou-se que o GI apresentou uma redução da média do peso corporal aproximadamente 4 vezes superior à do GC, mas sem significância estatística. Swift et al. (2013) em artigo de revisão de estudos com controlo, afirma que a perda de peso exclusivamente a partir do treino com exercício (sem alterações da dieta) é geralmente reduzida, <3% do peso
corporal, (Swift et al., 2013). Para promover a alteração do peso corporal, vários autores aliam ao exercício a intervenção noutros fatores do estilo de vida, nomeadamente na alimentação (Jakicic & Otto, 2005; Vázquez-Arce et al., 2013). Porém, no presente estudo não controlamos a ingestão de alimentos, e por isso, não podemos afirmar que qualquer variação do peso ou da composição corporal está relacionada com um qualquer efeito do exercício.

No que diz respeito às limitações deste estudo, podemos referir o número reduzido de participantes que compõem a amostra e o fato de esta ser composta apenas por indivíduos do sexo masculino comprometendo a generalização de alguns resultados. Outra limitação do estudo traduz-se no fato dos indivíduos que compõem a amostra apresentarem um baixo risco de eventos cardíacos recorrentes sob tratamento clínico optimizado e com a maioria dos parâmetros medidos em baseline com níveis recomendados. Esta ocorrência limita a generalização dos nossos resultados para indivíduos com alto risco cardíaco. Adicionalmente, baixos níveis de biomarcador inflamatório (PCR) podem limitar a evidência de mudanças significativas, dado o tamanho da nossa amostra. Por último, uma outra limitação deste estudo resulta da ausência de avaliação dos níveis de AF diária para além do programa, os quais poderiam estar, também, associados às modificações observadas no GI. Contudo, o aumento no VO₂pico observado no GI no presente estudo, está dentro da variação esperada para amostras com características semelhantes à nossa (Acevedo et al., 2011; Giallauria et al., 2006; Lucini et al., 2002). Assim, julgamos poder assumir que no presente estudo não terá havido um efeito confundidor da AF realizada em tarefas ocupacionais ou durante o lazer.
5. CONCLUSÕES

Os resultados do nosso estudo revelam que em indivíduos do sexo masculino com história de EAM, um programa de exercício regular supervisionado, é uma estratégia terapêutica com benefícios adicionais e independentes de outras medidas de tratamento. Para além do aumento da tolerância ao exercício, o programa utilizado foi eficaz para a melhoria do perfil lipídico.
Na nossa opinião, este estudo reforça a relevância deste tipo de programas na prevenção secundária das DCV e apoia a sua aplicabilidade na prática clínica.
6. REFERÊNCIAS BIBLIOGRÁFICAS

Treatment Panel III). JAMA: National Cholesterol Education Program Coordinating Committee:

acute myocardial infarction: a randomized controlled study. In Rev Port Cardiol (Vol. 31, pp. 135-141). Portugal.

the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). *Eur Heart J.*

