La production de textes :
quels processus sont activés lors des pauses deproduction et des phases d’écriture ?

T. Olive
Université de Poitiers
CNRS
thierry.olive@univ-poitiers.fr

R.A. Alves et S.L. Castro
Universidade do Porto, Portugal
ralves@fpce.up.pt

RÉSUMÉ

Lors de la production d’un récit au moyen d’un clavier, si tous les processus rédactionnels (planification, mise en texte, révision) peuvent être mobilisés pendant la transcription ; la mise en texte l’est plus particulièrement (Alves et al., sous presse). De plus, ce mode de coordination des processus n’est pas affectée par l’habileté dactylographique. L’expérience présentée ici vise à répliquer ces résultats dans le cas de la production manuscrite. Un groupe d’étudiants a rédigé un récit avec une écriture familière, automatisée, et un autre groupe avec une écriture « majuscule cursive » (très coûteuse). Tous les participants devaient régulièrement indiquer, au moyen d’une verbalisation, les processus qu’ils étaient en train de mettre en œuvre. Dans le groupe avec écriture familière, nous avons répliqué les résultats obtenus par Alves et al.. Nous avons, de plus, observé que le groupe qui utilisait une écriture coûteuse en ressources a modifié sa stratégie d’écriture en passant d’une coordination des processus rédactionnels simultanée à la transcription à un mode plus séquentiel.

MOTS-CLÉS
Production de textes, processus rédactionnels, stratégies, pauses, écriture.

1 INTRODUCTION

Rédiger un texte implique trois processus majeurs (pour une revue voir Alamargot & Chanquoy, 2002) : les processus de conceptualisation (la planification), de formulation linguistique (la mise en texte) et de contrôle (la révision). La mise en œuvre de ces processus impose de fortes demandes en mémoire de travail (Kellogg, 1996 ; Olive, 2004 pour une revue). La façon dont les rédacteurs gèrent ces processus pendant une rédaction est donc cruciale car cela permet d’exploiter au mieux la capacité de la mémoire de travail sans la dépasser. Plusieurs travaux ont donc analysé les caractéristiques de mise en œuvre de ces processus pendant la rédaction d’un texte afin de déterminer les stratégies utilisées par les rédacteurs (pour des revues, Olive, Kellogg & Piolat, 2002 ; Piolat & Olive, 2000). De façon générale, il apparaît que la mise en texte est très sollicitée et de façon constante ; la planification l’est moins et elle décline vers la fin de la production ; la révision, qui est autant sollicitée que la planification, l’est cependant plus vers la fin de la rédaction. La façon dont les rédacteurs alterner ces processus semble déterminante pour la qualité des textes produits (Levy & Randsell, 1995). De même, le moment de mise en œuvre de ces processus est important. Par exemple, Breetvelt, van den Berg et Rijlaarsdam (1994) ont observé une corrélation positive avec la qualité des textes lorsque les processus de structuration des contenus sont utilisés au début de la rédaction, alors que cette corrélation devient négative lorsque ces processus sont activés vers la fin de la rédaction. Comprendre les caractéristiques de mise en œuvre des processus rédactionnels est ainsi un objectif de recherche important qui devrait
conduire vers une meilleure compréhension des différences entre rédacteurs experts et novices. De façon plus théorique, ces recherches devrait permettre de préciser les modèles de la production verbale écrite du point de vue de leurs aspects fonctionnels.

La recherche présentée ici s’inscrit dans cette perspective et vise à préciser l’articulation des processus de planification, de mise en texte et de révision avec ceux d’exécution motrice. Les résultats présentés ci-dessus ont analysé les caractéristiques des processus rédactionnels sans toutefois prendre en compte l’activité du rédacteur. Or, la production d’un texte peut aussi être décrite du point de vue de ses caractéristiques temporelles, et en particulier à partir des pauses et des périodes d’exécution.

De façon générale, au moins la moitié du temps de rédaction est dévolue aux pauses (voir exemple, Strömquist & Ahlén, 1999). Quels facteurs déterminent ces pauses ? Pour Schilperoord (2002), le rédacteur peut s’arrêter pour des raisons cognitives, pour des raisons motivationnelles (par exemple l’appréhension à écrire) ou encore pour des raisons physiques (par exemple pour changer de feuille ou à cause de la fatigue). D’un point de vue cognitif, les pauses peuvent résulter d’une compétition des processus de transcription et de haut niveau pour se partager les ressources de la mémoire de travail, d’une interférence entre des traitements communs, ou encore de la perte en mémoire d’une trace (Torrance & Galbraith, 2006). Quelle que soit l’origine des pauses, elles constituent un moment privilégié pour mettre en œuvre les processus rédactionnels les plus coûteux. Il est ainsi généralement admis que la planification et la révision sont essentiellement mises en œuvre pendant les pauses (Foulin, 1995). Ainsi Matsumashi (1981) a montré que la durée moyenne de pause augmente lorsque le texte produit implique une plus grande planification. Van Waes et Schellen (2003) ont pour leur part constaté que plus de la moitié des pauses supérieures à 3 secondes étaient suivies par de la révision.

Les périodes d’exécution sont déterminées par l’absence d’une longue pause pendant une phase d’exécution motrice (écriture manuscrite ou frappe au clavier). Lorsque ces processus sont automatisés comme c’est le cas chez les adultes, il est fort probable que certains processus rédactionnels de haut niveau soient activés simultanément comme le suggèrent les résultats de Olive et Kellogg (2002). Ces auteurs ont montré que chez des enfants, l’effort cognitif mesuré pendant la transcription dans une tâche de copie ne différait pas de l’effort cognitif associé à la transcription lors de la composition d’un texte. En revanche, chez des adultes, un tout autre type d’effort cognitif était observé : l’effort cognitif associé à la transcription était plus élevé lors de la composition que lors de la copie. Les auteurs en ont induit une mise en œuvre probablement simultanée des processus rédactionnels de haut niveau et de transcription. Ils n’ont toutefois pas pu préciser la nature des processus activés simultanément à la transcription graphique.

Dans ce cadre, l’expérience présentée ci-après vise à spécifier la nature des processus mis en œuvre lors des phases de pause et d’exécution. Une expérience (Alves, Castro & Olive, sous presse) a montré que lors de la production d’un texte narratif au moyen d’un clavier (dactylographie), la mise en texte est sollicitée essentiellement lors de la transcription, alors qu’aucun processus ne semble spécifiquement mobilisé. L’expérience présentée ici visait à répéter ces résultats en étudiant la production écrite calligraphisée (papier-crayon) et en manipulant le niveau d’automatisation de la transcription graphique. Pour cela, nous avons demandé à deux groupes d’étudiants de rédiger un texte avec leur écriture habituelle (familière, donc automatisée) ou avec une écriture dite « majuscule cursive » (très peu familière et donc coûteuse ; Bourin & Fayol, 1994 ; Olive & Kellogg, 2002). L’hypothèse était qu’une augmentation du coût de la transcription conduirait les rédacteurs à adopter des stratégies de rédaction différentes.

Pour tester cette hypothèse, nous avons couplé une tâche de temps de réaction à une verbalisation dirigée (Piola, Olive, Roussey, Thunin, & Ziegler, 1999). Dans cette méthode, les participants rédigent un texte et sont régulièrement interrompus par un signal sonore auquel ils doivent réagir le plus rapidement possible. Juste après cette réaction, ils doivent indiquer le processus rédactionnel qui a été interrompu. Une phase préliminaire d’entraînement à la verbalisation dirigée est réalisée en début d’expérience. En associant chaque temps de réaction à une verbalisation, il est ainsi possible d’analyser le coût cognitif des processus rédactionnels. En analysant le nombre de désignations de chacun des processus rédactionnels (selon différentes phases de rédaction), il devient possible d’analyser les stratégies de mise en œuvre des processus rédactionnels. Pour étudier ces stratégies en fonction de l’activité de pause ou de transcription du rédacteur, nous avons demandé aux participants de rédiger leur texte sur une tablette graphique. Le logiciel qui gérant la tâche de temps de réaction et
la verbalisation analysait également l’activité du rédacteur au moment de l’interruption par le signal sonore. Enfin, dans une dernière tâche, les participants devaient copier leur texte tout en réalisant uniquement la tâche de temps de réaction. L’analyse des temps de réaction collectés dans cette tâche lorsque le participant transcrivait son texte a permis d’évaluer le coût de la transcription.

2 METHODE

2.1 Participants

Quarante étudiants de psychologie ont participé à cette expérience (âge moyen = 22,2 ans, S = 3,2). Pour composer et copier leur texte, la moitié des participants a utilisé une écriture habituelle (condition standard), l’autre moitié a utilisé une calligraphie majuscule cursive (condition Majuscule).

2.2 Tâches et matériel

2.2.1 Production, tâche secondaire de temps de réaction et verbalisation dirigée

Pour collecter les informations sur l’activité de pause ou de transcription, les participants ont rédigé leur texte sur une tablette graphique. Les pauses étaient définies comme des interruptions longues d’au moins 250 ms. En effet, en dessous de ce seuil, les pauses ne reflètent pas la mise en œuvre des processus réactionnels de haut niveau mais seulement des mouvements liés à la production par exemple d’un point sur un i ou à un changement de ligne. L’activité de transcription comprenait donc les pauses inférieures à 250 ms et l’activité proprement dite de transcription.

Le récit à été produit à partir de sept images décrivant un enfant s’achetant un ballon puis le perdant. Les consignes demandaient aux rédacteurs de produire un récit structuré, bien formulé et à destination d’enfants. Pour cela, les participants disposaient de 30 minutes (avec minimum 20 minutes). Les textes ont ensuite été tapés puis jugés par deux juges ignorant les conditions expérimentales. Deux dimensions des textes ont été évaluées : le style et le contenu (avec une échelle allant de 1, très faible, à 7, très bon). L’accord inter-juges était supérieur à .76 (p < .01) pour les deux dimensions évaluées.

Pendant qu’ils rédigeaient leur texte, les participants devaient effectuer une tâche de temps de réaction (TR) et une verbalisation dirigée (pour des revues, voir Olive, Kellogg, & Piolat, 2002 ou Piolat & Olive, 2000). Précisément, les rédacteurs étaient interrompus en moyenne toutes les 30 secondes par un signal sonore et ils devaient réagir le plus rapidement possible à ce signal en appuyant sur un dispositif de réponse avec leur main non-dominante. Après chaque réaction, ils devaient indiquer l’activité (planification, mise en texte, révision, "Autre") qui était en œuvre au moment du signal sonore en appuyant sur une touche du clavier d’un ordinateur. La consigne de rapidité de concernait pas cette désignation. Une phase d’entraînement préalable à la verbalisation dirigée permettait de s’assurer que les rédacteurs maîtrisaient la tâche de verbalisation. Cet entraînement consistait dans un premier temps à expliquer aux participants les définitions des processus réactionnels. Dans un deuxième temps, les participants voyaient des exemples de verbalisation libre de rédacteurs et ils devaient les catégoriser selon les processus étudiés. Cet entraînement durait en moyenne 15 minutes. Ces tâches ont ainsi permis d’obtenir un TR associé à chacun des processus réactionnels ainsi que les pourcentages de désignations de ces processus.

Une première tâche de temps de réaction (TR) en condition de simple tâche a été effectuée afin de mesurer le TR moyen de base de chaque participant. Pour cette tâche, 30 signaux sonores étaient distribués toutes les 10 secondes en moyenne. Par la suite, ce TR moyen de base a été retranché de chacun des TRs obtenus en situation de double tâche afin de prendre en compte les différences individuelles de rapidité de réaction motrice des participants. La latence ainsi obtenue a été considérée comme reflétant le coût cognitif associé au processus interrompu par le signal pendant la rédaction, et au coût de la transcription pendant la tâche de copie.

Une version modifiée du logiciel ScriptKell (Piolat, Olive, Rousscy, Thunin & Ziegler, 1999) a été utilisée afin de collecter les TRs et les verbalisations des participants et de les associer à l’activité de pause ou de production du texte en analysant l’activité du rédacteur sur la tablette graphique.
2.2.2 Copie du récit

Les participants ont copié leur texte, après l'avoir lu deux fois, en utilisant la tablette graphique. Les consignes indiquaient qu'il s'agissait de copier le texte tel sans le modifier et sans corriger les erreurs éventuellement détectées au cours de la copie. Cette tâche durait 10 minutes. Pendant cette tâche, seule la tâche de TR a été réalisée et seuls les TRs associés à l'activité de transcription ont été analysés afin d'évaluer le coût du mode de transcription (standard ou majuscules). Les signaux sonores apparaissaient toutes les 30 secondes en moyenne et, comme lors de la rédaction du récit, le TR moyen de base du participant était retranché des TRs obtenus lors de la copie.

2.3 Procédure

La passation de l'expérience était individuelle. L'expérience commençait par un entraînement à la verbalisation dirigée puis par la tâche de temps de réaction de base. Ensuite les participants produisaient le récit tout en réalisant simultanément les tâches de temps de réaction et de verbalisation dirigée. Lorsque le texte était rédigé, les participants le lisaient deux fois, puis ils le copiaient. Au total, l'expérience durait au maximum une heure.

3 RÉSULTATS

Pour des raisons d'espaces, nous présentons dans cette partie uniquement les pourcentages de verbalisations dirigées des rédacteurs et l'impact de la calligraphie utilisée sur l'effort cognitif de la transcription graphique et sur les textes produits.

3.1 Temps de réaction de base et TR secondaire lors de la copie

Les temps de réaction de base n'étaient pas significativement différents dans les groupes avec écriture standard (M = 414 ms, S = 89) ou majuscule (M = 423 ms, S = 83), t(38) = -0.321, p > .05.

En ce qui concerne les temps de réaction collectés durant la copie qui étaient intervenus seulement lorsque le participant était en train de transcrire son texte, l'analyse montre que les rédacteurs de la condition Standard ont eu un TR plus court (M = 208 ms, S = 74) que celui des rédacteurs de la condition Majuscule (M = 383 ms, S = 90), t(38) = -6.68, p < .0001. Cela indique que l'utilisation d'une écriture majuscule est plus coûteuse que l'écriture utilisée habituellement par les rédacteurs. La question se pose alors, compte tenu de la diminution des ressources disponibles en mémoire de travail qui résulte de cette "désautomatisation" de la transcription graphique, de l'impact sur la coordination des processus rédactionnels lors des pauses et des phases de transcription et sur divers indices de performance rédactionnelle.

3.2 Occurrences des processus rédactionnels

Une ANOVA avec le facteur inter-sujet Calligraphie (standard, majuscule) et les facteurs intra-sujets Processus (planification, mise en texte, révision) et Activité du rédacteur (pause, transcription) a été réalisée sur les pourcentages d'occurrences des processus rédactionnels (voir Figure 1).

L'analyse indique un effet principal de l'activité, F(1, 38) = 4.791, MSE = 58.93, p = .03. Plus de processus ont été désignés pendant les pauses (M = 17.8%, S = 9.8) que lors des phases de production (M = 15.5%, S = 12). Toutefois, cet effet provient probablement du fait que les rédacteurs passent généralement plus de temps en pause (Alamargot et al., 2007; Alves et al., 2007) et donc que les signaux sonores étaient susceptibles d'être plus fréquents lors des pauses que lors de la transcription. Un effet principal du facteur Processus a également été observé, F(2, 76) = 14.668, MSE = 160.58, p < .0001. Les comparaisons post-hoc révèlent que la mise en texte était plus fréquente (M = 21.9%, S = 11) que la révision (M = 11.1%, S = 8.7) mais pas que la planification (M = 17%, S = 9.7), ces deux derniers processus n'étant pas significativement différents. Par ailleurs, l'interaction Calligraphie x Processus x Activité est significative, F(2, 76) = 5.135, MSE = 74.04, p = .008. Par conséquent, des analyses séparées des condition Standard et Majuscule ont été réalisées.

Dans la condition Majuscule, seul l'effet principal du facteur Processus est observé, F(2, 19) = 5.089, MSE = 149.23, p = .01. Les comparaisons post-hoc indiquent que la mise en texte était plus fréquente (M = 20.1%, S = 9.6) que la révision (M = 12.1%, S = 8.6) mais pas que la planification (M = 17.1%, S = 8.7), ces deux derniers processus n'étant pas significativement différents.

68
Figure 1. Occurrences des processus rédactionnels selon l’activité de pause ou de transcription du rédacteur et selon la calligraphie utilisée.

Dans la condition Standard, les processus rédactionnels sont aussi activés différemment, $F(2, 38) = 9,831$, $MSE = 171,94$, $p = .0004$. Les comparaisons post-hoc indiquent le même patron de résultats que dans le groupe majuscule : la mise en texte était plus fréquente ($M = 23,1\%$, $S = 12,2$) que la révision ($M = 10\%$, $S = 8,9$) mais pas que la planification ($M = 17\%$, $S = 10,7$), ces deux derniers processus n’étant pas significativement différents. Le facteur activité n’a pas révélé d’effet significatif, $F(1, 38) < 1$. L’interaction Activité x Processus est significative, $F(2, 38) = 12,401$, $MSE = 97,412$, $p < .0001$. Comme l’indiquent les comparaisons post-hoc, la mise en texte était plus activée lors des phases de transcription. Le résultat inverse est observé pour la planification et la révision : ces processus étaient plus activés lors des pauses que lors de la transcription, même si la différence d’activation entre ces deux activités était moindre que celle observée pour la mise en texte. Pendant les pauses, la planification et la mise en texte étaient aussi fréquentes que la mise en texte, alors que pendant la transcription, ce processus était plus fréquent que la planification et la révision.

3.3 Performance rédactionnelle

Débit. Pendant la tâche de copie, les rédacteurs de la condition Standard ont produit plus de mots par minute que les rédacteurs du groupe majuscule, $r(38) = -10,64$, $p < .0001$ (voir Tableau 1). Pendant la tâche de rédaction, le débit est également plus rapide chez les rédacteurs de la condition Standard comparativement à la condition Majuscule, $r(38) = -1,349$, $p < .0001$ (voir Tableau 1).

Tableau 1. Débits et qualité des textes dans les deux conditions (standard et majuscule) de transcription (entre parenthèses les écarts-types).

<table>
<thead>
<tr>
<th></th>
<th>Débit Copie</th>
<th>Composition</th>
<th>Style</th>
<th>Contenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>23 (3,5)</td>
<td>15,2 (2,3)</td>
<td>3,8 (0,3)</td>
<td>3,9 (0,4)</td>
</tr>
<tr>
<td>Majuscule</td>
<td>12,2 (2,6)</td>
<td>7,7 (2)</td>
<td>2,8 (0,2)</td>
<td>3 (0,3)</td>
</tr>
</tbody>
</table>

Nombre de fautes d’orthographe. Nous avons calculé le nombre de fautes d’orthographe lexicale et grammaticale pour cent mots (voir Tableau 1). Une ANOVA avec le facteur inter-sujet Calligraphie
(standard, majuscule) et le facteur intra-sujet Type de fautes (lexicale, grammaticale) a été réalisé. Cette analyse montre que la calligraphie n’a pas d’impact significatif sur les fautes d’orthographe, \(F(1, 38) = 1.32, MSE = 0.41, p = .25 \). Les rédacteurs ont toutefois fait plus de fautes d’orthographe grammaticale que lexicale, \(F(1, 38) = 4.45, MSE = 0.21, p = .04 \). Aucun interaction n’est observée, \(F(1, 38) < 1 \).

Qualité des textes. Les scores de qualité sont indiqués dans le Tableau 1. Une ANOVA avec le facteur inter-sujet Calligraphie (standard, majuscule) et le facteur intra-sujet Qualité (style, contenu) a été réalisée. La calligraphie n’a un impact significatif sur la qualité des textes, \(F(1, 38) = 1.32, MSE = 0.41, p = .25 \). Les textes des rédacteurs de la condition Standard sont jugés de meilleure qualité que les textes produits par les rédacteurs de la condition Majuscule. Les échelles de style et de contenu ne sont pas significativement différentes \(F(1, 38) < 1 \). L’interaction n’est pas significative, \(F(1, 38) < 1 \).

4 **DISCUSSION**

Cette expérience a analysé comment les processus rédactionnels de planification, de mise en texte et de révision sont activés lors des pauses et des périodes de transcription. Premièrement, il apparaît que la modalité de production n’affecte pas la façon dont ces processus sont mis en œuvre. En effet, nous avons répliqué, dans une tâche de production manuscrite, les résultats de Alves et al. (sous presse) qui avaient été obtenus dans la cadre d’une production avec un clavier d’ordinateur. Nous avons observé que, durant les pauses, la planification, la mise en texte et la révision sont activés dans une amplitude équivalente (entre 15 % et 20 %). Aucun de ces processus n’est donc typique des pauses de production. Pendant les phases de transcription, la mise en texte domine (30 %), même si la planification et la révision sont aussi mises en œuvre, mais dans une ampleur moindre (13 % et 6 % respectivement). Par ailleurs, chaque processus semble activé principalement durant une phase de rédaction particulière : la planification et la révision durant les pauses et la mise en texte simultanément à la transcription graphique. Cette stratégie de rédaction semble être générale puisqu’elle a également été observée dans le cas de la production d’un texte plus coûteux et plus complexe : l’argumentation (Olive, Alves & Castro, 2007).

Le fait que les processus rédactionnels puissent, dans des conditions normales de production, être activés en parallèle à la transcription graphique a déjà été suggéré dans la littérature. Par exemple, Foulin, Fiset et Chanquoy (1989) ont montré que le débit de production est plus rapide dans la dernière partie d’une phrase que dans la première partie de cette phrase. Ces auteurs ont interprété ces résultats comme indiquant une planification conceptuelle et linguistique en début de phrase et une simple transcription du contenu déjà formulé vers la fin de la phrase. De même, les analyses de l’effort cognitif ont permis de supposer ce mode parallèle de gestion des processus réactionnels (Olive & Kellogg, 2002). Enfin, l’analyse des mouvements oculaires des rédacteurs a récemment fourni des résultats allant dans le même sens. Ainsi Alamargot et al. (2007) ont observé des prises d’informations visuelles lors de lectures du texte produit en même temps que la transcription. Comment concevoir alors l’articulation des processus rédactionnels ?

Une conception strictement séquentielle du flux de l’information entre les processus rédactionnels ne correspond pas aux observations faites dans les études de pauses et de débit. En effet, une telle conception implique de nombreuses pauses très longues. Or, la production d’un texte est effectuée avec de nombreuses pauses très courtes (Foulin, 1995; Shilperoort, 2002). Par ailleurs, un fonctionnement séquentiel ne permettrait pas l’interactivité entre les différents processus rédactionnels alors qu’une telle interaction est fondamentale pour une rédaction réussie (McCutchense, 1988). Une conception en cascade semble donc plus adaptée car elle permet d’utiliser au mieux les ressources de la mémoire de travail tout en permettant cette interactivité des processus. De plus, ce mode de fonctionnement a depuis longtemps été mis en évidence pour la production orale du langage où les processus de formulation linguistique chevauchent ceux d’articulation (Kempen & Hoenkamp, 1987; Rapp & Goldrick, 2000).

Contrairement à Alves et al. (sous presse) un effet du niveau d’automatisation de la transcription sur la stratégie d’écriture graphique a été mis en évidence dans cette expérience. Lorsque les rédacteurs ont utilisé une calligraphie majuscule cursive, la mise en texte était moins activée en parallèle à la transcription. Il semble donc qu’une augmentation des ressources cognitives allouées aux processus de bas niveau ne permette pas d’activer simultanément des processus de haut niveau et donc coûteux. Les

70
rédacteurs ont alors changé de stratégie, en basculant d'une stratégie de coordination parallèle des processus rédactionnels de haut niveau et des processus de transcription à une stratégie plus séquentielle. Même si la mise en texte est peu coûteuse en ressources de la mémoire de travail, l'écriture majuscule consommerait toutes les ressources disponibles et empêcherait ainsi un autre processus d'être activé simultanément.

La calligraphie majuscule a aussi affecté le débit de production des rédacteurs. En effet, quand ils ont utilisée une calligraphie majuscule, les rédacteurs ont composé leur texte plus lentement, c'est-à-dire en produisant moins de mots par minute que les rédacteurs qui ont utilisé leur écriture habituelle. Cette lenteur de l'écriture provient directement de la calligraphie majuscule, qui demande un tracé plus long mais qui est aussi peu, voire pas du tout, automatisée. La plus faible lenteur de ces rédacteurs, également observée lors de la tache de copie qui n'impliquait pas les processus rédactionnels de haut niveau, confirme que la réduction du débit proviendrait essentiellement des processus de transcription et non de l'impact de cette calligraphie sur les processus rédactionnels.

On ne peut toutefois pas rejeter l'hypothèse que l'utilisation de la calligraphie majuscule n' pas eu d'impact sur les processus rédactionnels de planification, mise en texte et révision. En effet, le coût cognitif de la réduction a augmenté dans cette condition (ce résultat n'a pas été présenté ici, voir Olive, Alves & Castro, soumis) indiquant une répercussion de la transcription majuscule sur la gestion des processus rédactionnels. Par ailleurs, les textes produits ont également été affectés par la calligraphie majuscule. Les textes ont été jugés de moins bonne qualité dans ce groupe. Cela résultats conforte l'idée que l'utilisation de la transcription majuscule a certainement eu des répercussions sur l'ensemble de la production. De façon générale, on peut dire que le changement de stratégie consécutif à une transcription peu familière n'a pas permis aux rédacteurs d'utiliser de façon optimale toutes les ressources dont ils disposent.

5 BIBLIOGRAPHIE

