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ABSTRACT 
 

Listeria monocytogenes (Lm) is a Gram-positive human foodborne pathogen that infects 

mainly high-risk groups, including elderly, immunocompromized individuals, pregnant 

women and neonates. This intracellular facultative bacterium is able to invade, survive and 

multiply inside phagocytic and non-phagocytic cells. To promote cellular infection Lm 

interferes with and manipulates a number of biological processes. It explores the functions 

of cellular receptors to induce its internalization, escapes autophagy, controls the 

expression of the host genome and uses the actin cytoskeleton polymerization machinery 

to disseminate. However, Lm capacity to interfere with the host cell cycle was never 

reported, as it was for other human bacterial pathogens. Considering that pathogens often 

exploit similar pathways to cause infection, we investigated whether Lm interferes with the 

host cell cycle to create a suitable niche to colonize its host.  
Previous studies in our laboratory showed that Lm infection induces DNA strand breaks in 

colon adenocarcinoma Caco-2 cells leading to the activation of DNA damage/replication 

checkpoints. As a consequence, infected host cells exhibit an S-phase delay associated 

with an increase in the overall cell cycle duration, a process favorable to the infection. 

In this project, we performed infection assays in Caco-2 cells with L. innocua expressing 

InlA (Li_InlA), which has the capacity to induce its internalization but remains in the 

phagocytic vacuole. We demonstrate that the effects previously observed on the cell cycle 

upon Lm infection are not dependent on the bacterium adhesion and invasion steps. In 

addition, infection assays performed in another cell line (placenta choriocarcinoma Jeg-3 

cells) showed that the activation of DNA damage checkpoints and the consequent delay 

observed in S-phase, are not specific of Caco-2 cells and occur in other cell lines. We 

further assessed the involvement of ATM and ATR kinases in the Lm-induced activation of 

DNA damage checkpoints. The depletion of these two DNA damage sensors 

demonstrated that they are not essential for DNA damage checkpoint activation in 

response to Lm infection. 
Altogether these results suggest that Lm has the capacity to modulate the host cell cycle, 

probably to insure a beneficial environment that favors its own replication. 
 
Key words: Listeria monocytogenes, cell cycle delay, DNA damage checkpoints, double strand breaks, ATM kinase, ATR 
kinase. 
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RESUMO 
 

Listeria monocytogenes (Lm) é uma bactéria Gram-positiva que, por ingestão de 

alimentos contaminados, infecta grupos de alto risco como idosos, indivíduos 

imunocomprometidos, grávidas e recém-nascidos. Este parasita intracelular facultativo é 

capaz de invadir, sobreviver e multiplicar-se em células fagocíticas e não-fagocíticas, e ao 

nível celular, promove a infeção do hospedeiro interferindo e manipulando um grande 

número de processos biológicos. Para além de explorar as funções de recetores de forma 

a induzir a sua internalização, é também capaz de escapar à autofagia, controlar a 

expressão do genoma do hospedeiro e usar a maquinaria necessária à polimerização da 

actina para disseminar nos tecidos. Ao contrário do que acontece em outras bactérias 

patogénicas, o papel de Lm no ciclo celular nunca foi descrito. Assim, considerando que 

muitos patógenos utilizam mecanismos semelhantes para causar infeção, investigou-se 

se Lm poderá interferir com o ciclo celular do hospedeiro, de forma a criar um ambiente 

adequado para colonizar o mesmo.  

Estudos anteriores realizados no nosso laboratório demostraram que a infeção por Lm 

provoca lesões nas cadeias de ADN em células Caco-2 (linha celular do adenocarcinoma 

do cólon) levando à activação de mecanismos de controlo. Consequentemente, as células 

hospedeiras infetadas apresentam um aumento na duração do ciclo celular associado a 

um atraso na fase S do mesmo. 

Neste projeto, foram realizados ensaios de infeção de células Caco-2 com L. innocua a 

expressar InlA, uma proteína que promove a internalização da bactéria.  A partir destes 

ensaios foi demonstrado que os efeitos anteriormente observados após infeção por Lm 

não são dependentes dos passos de adesão e internalização da mesma. Para além disso, 

ensaios de infeção realizados na linha celular Jeg-3 (células do coriocarcinoma da 

placenta) mostraram que a ativação dos mecanismos de controlo e o consequente atraso 

na fase S do ciclo celular, não são processos específicos das células Caco-2 podendo 

ocorrer noutras linhas celulares. Ainda, foi avaliado o envolvimento das cinases ATM e 

ATR na ativação dos mecanismos de controlo induzida por Listeria. A depleção destes 

dois sensores de dano do ADN demonstrou que as mesmas não são essenciais para 

ativação dos mecanismos de controlo em resposta à infeção.  



 
FCUP 

Effects induced by Listeria monocytogenes infection on the host cell cycle  
8 

          . 
 
De um modo geral, todos estes resultados sugerem que Lm possui a capacidade de 

modular o ciclo celular do hospedeiro, provavelmente, de modo a assegurar um ambiente 

favorável para a sua replicação. 

 
Palavras-chave: Listeria monocytogenes, atraso no ciclo celular, mecanismos de control do ADN, quebras de cadeia dupla, 
cinase ATM, cinase ATR. 
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INTRODUCTION  
 

The coevolution of bacterial pathogens and their hosts has contributed to the development 

of complex and sophisticated functional host-pathogen interfaces (Lara-Tejero and Galan 

2002). Therefore, well-adapted pathogens have evolved a variety of strategies to 

manipulate the host cell functions for their own benefit (Oswald, Nougayrede et al. 2005). 

Bacteria have acquired an enormous evolutionary potential associated with the fact that 

they co-inhabit in a variety of environments that impose different life styles, metabolic 

capacities and ecological niches.  Many pathogens, when infecting a host, evolved 

molecular mechanisms to manipulate host signal transduction pathways promoting their 

survival and replication. Indeed, with the progress in our understanding of the molecular 

mechanisms that bacteria use to, enter into, move within and multiply inside host cells, it 

came to light that microbial pathogens have developed mechanisms to block or subvert 

normal host-cellular processes, thereby contributing to colonization and pathogenesis 

(Nougayrede, Taieb et al. 2005). Thus, the elucidation of host-pathogen interaction 

mechanisms has been one of the major scientific interests in the field of microbiology. 

Listeria monocytogenes has, in 25 years, become a model widely used in infection biology. 

Through the analysis of both its saprophytic life and infectious process, new concepts in 

microbiology, cell biology, and pathogenesis have been discovered (Cossart 2011). This 

enabled extending the knowledge not only in the host-Listeria interaction field but also in 

other host-pathogen interaction areas, since pathogens often exploit similar pathways to 

cause infection.  

In this context, it is highly important to continue studying uncovered molecular 

mechanisms that can help us to provide valuable information for elaborating new 

therapeutic strategies. 
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1- Listeria monocytogenes 
 

General features 
 

Listeria monocytogenes is a Gram-positive bacterial species that occurs ubiquitously in 

nature (Swaminathan and Gerner-Smidt 2007).  This pathogen was isolated for the first 

time by E.G.D. Murray and colleagues in 1926 (Murray, Webb et al. 1926), following an 

epidemics affecting specially rabbits and guinea pigs in animal care houses in Cambridge 

(England) (Fig. 1) (Cossart 2007). They named it originally Bacterium monocytogenes 

since a large number of monocytes were found in the blood of infected animals (Murray, 

Webb et al. 1926). The following year, Pirie isolated an identical bacterium from the liver of 

several gerbils (Iatera lobenquiae) (Pirie 1927) to which he named Listerella hepatolytica, 

in honor of Sir Joseph Lister, a pioneer in the field of bacteriology and antisepsis. In the 

early 40’s the name Listeria monocytogenes was finally adopted (Camejo, Carvalho et al. 

2011).  

 

 

 

 

 

 

 

 

 

 
 

Fig.1 – The original article by E.G.D Murray and portrait of E.G.D Murray (Cossart 2007). 

 

Along with Staphylococcus, Lactobacillus and Brochothrix, the genus Listeria belongs to 

the Firmicutes division, characterized by low GC DNA content (38%) (Camejo, Carvalho et 

al. 2011). Nowadays this genus comprises ten species: L. monocytogenes, L. ivanovii, L. 

innocua, L. seeligeri, L. welshimeri, L. grayi, L. rocourtiae, L. marthii, L. fleischmannii and 

L. weihenstephanensis (Vazquez-Boland, Kuhn et al. 2001; Graves, Helsel et al. 2010; 

Another key contribution to the field was made in the 1970s
by Racz who used a guinea pig infection model to highlight
for the first time that L. monocytogenes has the unusual prop-
erty to invade non-phagocytic cells such as intestinal epithelial
cells and replicate therein [8]. His impressive electron micro-
graphs nearly showed the actin tails that were discovered long
after by Tilney and Portnoy [9] (Fig. 2).

In the mid-1980s, three groups in the world started to use
the molecular biology tools generated to investigate the basic
properties of Escherichia coli, together with cell biology ap-
proaches to address the virulence of L. monocytogenes. Liste-
ria was known to be hemolytic on blood agar plates, a property
routinely used for its identification. Hemolysis was an easy
phenotype to target. Non-hemolytic mutants were the first to
be generated [10e12]. The hemolysin gene, hly was the first
gene of Listeria to be completely sequenced [13]. Converging
studies demonstrated that this gene was critical for virulence
and that the encoded protein listeriolysin O (LLO) was essen-
tial for the escape of the internalization vacuole. LLO is an in-
credibly potent signaling molecule and recent studies continue
to highlight that this protein is essential for the virulence of
Listeria by also contributing to many other aspects of the
infectious process [14]. Of note, LLO expressed in BCG has
greatly improved the efficacy of a tuberculosis BCG vaccine
which is now under clinical trial [15].

The chromosomal region containing the hemolysin gene is
located in the center of a 10-kb virulence gene cluster which
has been and still is the object of important studies in many
laboratories in the world [4]. One of the most fascinating
genes encoded in this region is actA which encodes a protein
polarly distributed on the bacterial surface [16,17]. ActA re-
cruits the cellular Arp2/3 complex which in turn polymerizes

actin monomers on the bacterial pole. By doing so, bacteria
propel themselves in the cytosol and can even spread from
cell to cell. The discovery of the actin-based motility of Liste-
ria [9] and that of ActA [16,17] were instrumental in the dis-
covery of the basic mechanisms allowing mammalian cells to
polymerize actin and move [18]. They illustrate more than any

1926

cellular

immunity

bacterial genetics

  & cell biology

1962 1987

genomics

  & post-genomics

2001

Discovery of

Listeria 

E.G.D. Murray

Fig. 1. Key dates in listeriology.

Fig. 2. Actin tails of Listeria inside infected cells (bacteria in blue labeled with
an anti-listeria antibody; actin in green labeled with an anti-actin antibody).

1144 P. Cossart / Microbes and Infection 9 (2007) 1143e1146
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Leclercq, Clermont et al. 2010). The pathogenic species L. monocytogenes causes 

disease in humans and animals, whereas L. ivanovii only affects animals, mainly sheep 

and cattle. Since the remaining species do not cause disease they are considered non 

pathogenic (Cossart 2007).   

 
 
L. monocytogenes are Gram-positive flagellated, non-spore-forming, non-capsulated and 

facultative anaerobic bacilli (Fig.2) (Parrisius, Bhakdi et al. 1986). These ubiquitous 

bacteria have the ability to grow in a wide range of temperatures (1-45 ºC, with optimal 

growth at 30-37 ºC) and resist to relatively extreme pH and high salt concentrations (pH 

4.5-9 and 10% NaCl) (Grau and Vanderlinde 1990). The resistance of L. monocytogenes 

to those adverse conditions reveals its great adaptive capacity and is the main reason why 

this bacterium is found, and can be isolated, from soil, plants, water and food (Roberts and 

Wiedmann 2003). 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig.2 – Gram coloration of L. monocytogenes (http://bacterio.iph.fgov.be/missions/listeria) 

 

 

Listeriosis 

 
L. monocytogenes is a foodborne human pathogen recognized as the etiological agent of 

listeriosis, an infectious disease with a mortality rate of 20-30 % in certain risk groups 

(Camejo, Carvalho et al. 2011). The first human cases were reported in 1929 in Denmark 

(Nyfeldt 1929) and this potentially fatal disease was long considered as a zoonosis 

(Cossart 2007). The first human listeriosis outbreak, directly linked to the consumption of 
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L. monocytogenes contaminated foodstuffs, was only reported in 1983 by Schlech and 

colleagues, who established for the first time L. monocytogenes as a serious public health 

problem (Schlech, Lavigne et al. 1983). Since 1986 this bacterium is recognized as a 

human foodborne pathogen (Cossart 2011). Despite the high rates of contamination with 

L. monocytogenes, in certain food products, listeriosis is a rare disease compared to other 

foodborne illnesses, such as salmonellosis. Even thought, listeriosis was the most frequent 

cause of death due to the consumption of contaminated food in Europe in 2009 (EFSA 

2011). 

Listeriosis occurs predominantly in well-defined high-risk groups, including pregnant 

women, neonates, immunocompromised individuals and the elderly. Two forms of 

listeriosis are caused by L. monocytogenes: a non-invasive form that in immunocompetent 

individuals develops as a febrile gastroenteritis, and an invasive form that in the high-risk 

groups can manifest as septicemia, meningitis or meningoencephalitis (Swaminathan and 

Gerner-Smidt 2007). Perinatal listeriosis increases the probability of abortion, stillbirth or 

birth of a baby with generalized infection (sepsis), or meningitis, often associated with 

severe sequels (Allerberger and Wagner 2010). L. monocytogenes is also able to induce a 

broad variety of uncommon focal infections; cases of endocarditis (Kelesidis, Salhotra et 

al. 2010), cutaneous infection (Gilchrist 2009), joint infection (Kleemann, Domann et al. 

2009; Sendi, Marti et al. 2009), myocarditis and necrotizing fasciitis (Sendi, Marti et al. 

2009) have been described. Among the L. monocytogenes strains, those of serovars 1/2a, 

1/2b and 4b are responsible for 95% of human infection cases (Swaminathan and Gerner-

Smidt 2007). 

 

As mentioned, L. monocytogenes infects humans through the ingestion of contaminated 

food, via oral route (Lecuit 2007). In the intestine, L. monocytogenes is able to cross the 

intestinal barrier traversing the epithelial cell layer, and if the immune system does not 

control the infection, the pathogen disseminates to the bloodstream and mesenteric lymph 

nodes. L. monocytogenes then reaches the liver and spleen, where it can replicate 

preferentially inside splenic and hepatic macrophages or epithelial cells (Lecuit 2007). If 

not controlled properly by the immune system, notably in the liver and spleen, L. 

monocytogenes infection may cause prolonged and asymptomatic bacteremia where it 

keep on multiplying (Zenewicz and Shen 2007; Freitag, Port et al. 2009). Host survival is 

thus dependent on the development of an effective adaptive immune response, which, if 
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not provided, can allow the bacteria to re-enter the bloodstream. Then the bacterium can 

cross the blood-brain or the maternofetal barrier, reach the brain or the fetus, resulting in 

meningitis or encephalitis mostly in immunocompromised patients, abortions in pregnant 

women, and generalized infections in infected neonates (granulomatosis infantiseptica) 

(Fig.3) (Lecuit 2007; Camejo, Carvalho et al. 2011).  

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
Fig.3 – Sucessive steps of listeriosis (Cossart 2011). 

 

To date, there is no drug of choice or therapy to treat L. monocytogenes infections. In vitro, 

the bacterium is sensitive to penicillin G, chloramphenicol, ampicillin and gentamicin, 

among others. Even thought, the use of penicillin or ampicillin, or the combination of both 

with gentamicin, is the choice for many treatments (Swaminathan and Gerner-Smidt 2007; 

Corr and O'Neill 2009).   

 

Cell biology of infection and virulence factors 
 

Evasion and modulation of the host response is critical for the establishment of a 

successful infection. For that, Listeria employs a large variety of strategies to evade the 

host immunity system and to promote its own survival by exploiting the host cells 

machinery (Corr and O'Neill 2009; Camejo, Carvalho et al. 2011). 

responsible for the intracellular life of L. monocytogenes, is
present in L. ivanovii and absent in L. innocua (18). It is also
absent in L. welshimeri but is partially present in L. seeligeri
(19, 20). Several L. monocytogenes genome sequences are now
publically available. Strain differences can be high, i.e., as high as
15%. The genome of L. rocourtiae, together with those of several
other species, has recently been sequenced (21). The genomes of
L. grayi and L. marthii have not been reported yet. Comparative
genomics has proven to be instrumental in identification of new
virulence factors (as detailed later).

A Diversity of Lifestyles: From Planktonic to Biofilms and L Forms. L.
monocytogenes can adopt a planktonic life or exist as biofilms.
Biofilm formation is in part regulated by PrfA, a major regulator
of virulence genes, suggesting that this requirement may provide
the selective pressure to maintain this regulator when Listeria is in
the environment (22). A third form of life, has been reported, the
L-form. L-forms are peptidoglycan (PG) and cell wall-deficient
derivatives of bacteria. This phenotype was first described in
1935, and L-forms were named (as, of course, was Listeria itself)
in honor of the British surgeon Joseph Lister (1860–1912). A
recent report describes the generation of stable, nonreverting L-
form variants of L. monocytogenes (23). Whether L-forms rep-
resent persistent cells that could be involved in chronic infection
represents a fascinating field for future investigations.

Transcriptional Complexity and RNA Regulation
Most virulence factors are regulated by PrfA, a transcriptional
regulator of the CRP family with a consensus binding site in the -35
region of the promoter (24). PrfA is under the control of a ther-
mosensor, a 5′UTR that adopts alternative secondary structures
depending on the temperature. This results in optimal PrfA ex-
pression at high temperatures and translational repression at low
temperatures, explaining how virulence genes are maximally
expressed at 37 °C (25) (Fig. 4A). The role of sugars in the activity of
PrfA is well established, but the underlying molecular mechanisms
remain elusive (26). Many virulence-associated genes are regulated
by sigma B, one of five sigma factors in Listeria. Knowledge of the
genome sequence allowed determination of complete regulons,
e.g., the partially overlapping PrfA and sigma B regulons and the
VirR regulon (27, 28). VirR, initially identified as a virulence
factor by signature-tagged mutagenesis, is one of the 15 two-com-
ponent regulators in L. monocytogenes. It controls cell wall and
membrane modifications and plays a key role in the interaction
with the host. VirR-regulated genes include dltA, involved in
lipotechoic acid modification, and mprf, required for the lysiny-
lation of phospholipids in listerial membranes, and which confers
resistance to cationic antimicrobial peptides (29). The Fur reg-
ulon has also been examined (30). Fur is the regulator of ferric
iron uptake in many bacteria although the situation in Listeria is
not as simple as in Escherichia coli. Fur can bind DNA in absence
of iron, as in Bacillus subtilis or Helicobacter pylori. As iron is
critical for infection, this regulon deserves more investigation.
A regulon similar to the Agr regulon of Staphylococcus aureus
exists in Listeria and, to some extent, is controlling virulence.
However, RNAIII, a key regulator RNA in S. aureus, does not
have a homologue in Listeria (31, 32). Other regulators affecting
virulence include CtsR, HcrA, and codY (reviewed in ref. 3).
An extra layer of complexity in the regulation of gene expres-

sion was unveiled when tiling arrays were used to analyze the
complete transcriptional landscape of L. monocytogenes during
the transition from saprophytic life to virulence and in different
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Fig. 1. The infection by L. monocytogenes in vivo: bacteria, via contami-
nated food product, reach the intestinal barrier, cross it, and then dissemi-
nate to the brain and placenta (reprinted from ref. 5 with permission from
Elsevier).
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To escape the innate and adaptive immunity, this facultative intracellular pathogen is able 

to invade, survive and multiply inside phagocytic (e.g. macrophages and dendritic cells) 

and non-phagocytic cells (e.g. epithelial cells) (Pizarro-Cerda, Kuhbacher et al. 2012). The 

mechanisms through which L. monocytogenes enters into non-phagocytic cells and 

spreads from cell to cell have been investigated with great detail in the last 2 decades 

(Pizarro-Cerda, Kuhbacher et al. 2012). The L. monocytogenes cell infection cycle (Fig.4) 

involves several sequential steps and it is completed in about 5 hours. Each step relies on 

the expression of several bacterial virulence factors being the major ones under control of 

PrfA (Milohanic, Glaser et al. 2003), the main regulator of virulence gene expression 

(Scortti, Monzo et al. 2007). 

Briefly, following adhesion the bacterium is internalized in a vacuole that is quickly 

disrupted to allow its escape into the host cell cytoplasm, where it can replicate. In this 

compartment, L. monocytogenes employs an actin-based process of motility (forming 

“comet tail” structures) to propel itself within the host cell. During its intracellular 

movement, L. monocytogenes occasionally encounters the cell membrane and induces 

the formation of protrusions in the neighboring cells. The bacteria are then internalized into 

adjacent cells, enwrapped in double membrane vacuoles, which are lysed allowing them to 

get free in the cytosol therefore initiating a new cycle of infection (Camejo, Carvalho et al. 

2011). Detailed description of the different steps of the L. monocytogenes cellular infection 

cycle is provided below. 

 

 

 

 

 

 
Fig.4 – Schematic representation of the L. 
monocytogenes cell infection cycle and 

major virulence factors involved in the 
successive steps (adapted from Camejo, 

Carvalho et al. 2011). 
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a. Adhesion 

The initial step of the L. monocytogenes cell infection cycle is its adhesion to the surface of 

host cells. In this process the bacterium interacts with specific cell receptors and triggers 

the activation of signalling pathways that facilitate cell invasion (Suarez, Gonzalez-Zorn et 

al. 2001). L. monocytogenes adherence to host cells involves the expression of a number 

of bacterial surface adhesins, including Lap, LapB and Ami, among others. The Listeria 

adhesion protein, Lap, interacts with Hsp60, a heat shock protein expressed at the cell 

surface in certain conditions (Jagadeesan, Koo et al. 2010) promoting bacterial adhesion 

into intestinal cells (Wampler, Kim et al. 2004; Burkholder and Bhunia 2010). Lap is an 

alcohol acetaldehyde dehydrogenase essential for full virulence, as confirmed by oral 

administration of lap-deficient strains to mice (Burkholder, Kim et al. 2009). Described in 

2010, LapB is also a surface protein that, via its N-terminal domain, participates in 

adhesion, invasion and virulence. The gene lapB is only present in Listeria pathogenic 

strains and its expression is positively regulated by PrfA (Reis, Sousa et al. 2010). The N-

acetyLmuramoyl-L-alanine amidase Ami is also an adhesion protein in which the C-

terminal domain is responsible for the association of bacteria to the host cell surface 

(McLaughlan and Foster 1998; Jonquieres, Bierne et al. 1999; Milohanic, Jonquieres et al. 

2001; Milohanic, Jonquieres et al. 2004).  

 

b. Invasion 

After adhesion, L. monocytogenes is able to drive its internalization into non-phagocytic 

cells, however, it never reaches the entry rate observed in macrophages (Cossart 2011). 

Whereas the uptake of L. monocytogenes by phagocytic cells is mostly driven by the cell 

itself, in non-phagocytic cells the invasion process is controlled by the bacterium. Indeed, 

the entry into non-professional phagocytes is induced by several Listeria surface proteins 

that interact with specific host receptors promoting bacterial internalization through a 

process denominated “zipper mechanism” (Cossart and Toledo-Arana 2008). The two 

major L. monocytogenes invasion proteins are Internalin A (InlA) and B (InlB), the first 

proteins identified as mediators of Listeria entry into different non-phagocytic cell types 

(Gaillard, Berche et al. 1991; Dramsi, Biswas et al. 1995). InlA recognizes and interacts 

with host E-cadherin (Mengaud, Ohayon et al. 1996), a transmembrane glycoprotein 

involved in cell-cell adhesion (Smutny and Yap 2010). The interaction InlA/E-cadherin is 

species-specific and, in humans, it depends on the presence of a proline residue at 
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position 16 of the E-cadherin molecule. Despite the high homology levels between human 

and mouse E-cadherin, the mouse protein is not recognized by InlA and does not serve as 

L. monocytogenes receptor. This was shown to be entirely due to the absence of a proline 

residue at position 16, that in mouse E-cadherin is replaced by a glutamic acid (Lecuit, 

Dramsi et al. 1999). The InlA/E-cadherin interaction is critical for epithelial cell invasion 

and it was showed that this internalin plays a key role in human listeriosis (Jacquet, 

Doumith et al. 2004) in the crossing of the intestinal (Lecuit, Vandormael-Pournin et al. 

2001) and placental barrier (Lecuit, Nelson et al. 2004). Upon InlA/E-cadherin interaction a 

series of signalling events take place promoting the bacterial internalization. In particular, 

E-cadherin is phosphorylated by Src kinase and ubiquitinated by the ubiquitin ligase Hakai, 

leading to the recruitment of clathrin endocytosis machinery to the bacterial attachment 

sites and providing an initial platform for actin cytoskeleton polymerization (Bonazzi and 

Cossart 2006; Bonazzi, Veiga et al. 2008). Upon InlA binding, Src and cortactin promote 

the recruitment and activation of the Arp2/3 complex to the bacterial entry sites favoring 

dynamic interactions between the E-cadherin cytoplasmic tail and the actin cytoskeleton 

(Fig.5) (Sousa, Cabanes et al. 2007; Bonazzi, Veiga et al. 2008; Pizarro-Cerda, 

Kuhbacher et al. 2012). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.5 - Signaling cascades activated via the InlA-invasion pathway (Pizarro-Cerda, Kuhbacher et al. 2012). 

 

The other major internalin InlB, which has a variety of host receptors (Braun, Dramsi et al. 

1997; Milohanic, Jonquieres et al. 2001). However, c-Met, a receptor tyrosine kinase, 
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known as the physiological receptor for the hepatocyte growth factor (HGF), is considered 

as the most proeminent InlB receptor (Shen, Naujokas et al. 2000; Zenewicz and Shen 

2007). Upon InlB/c-Met interaction a cascade of phosphorylation events is initiated to 

stimulate the actin polymerization and bacterial internalization (Ireton, Payrastre et al. 

1996; Ireton and Cossart 1998). In addition InlB binding induces c-Met ubiquitination by 

Cbl and bacterial internalization via a clathrin-mediated endocytosis mechanism (Zenewicz 

and Shen 2007). In response to InlB and c-Met engagement, actin polymerization at the 

entry site may occurs in two phases: first coordinated by dynamin and cortactin upstream 

the Arp2/3 complex, and subsequently through a signaling cascade taking place 

downstream the PI 3-kinase, which involves the small GTPases Rac1 and Cdc42, abi1, 

WAVE, and N-WASP (Ireton, Payrastre et al. 1996; Ireton and Cossart 1998; Shen, 

Naujokas et al. 2000; Bierne and Cossart 2007)(Fig.6). LIM-K and cofilin play a critical role 

in the depolymerization of actin to allow completion of the bacterial internalization process 

(Bierne, Gouin et al. 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.6 - Signaling cascades activated via the InlB-invasion pathway (Pizarro-Cerda, Kuhbacher et al. 2012) 

 

As described above for InlA, the interaction of InlB with c-Met is also associated to a 

species specificity. In mice, although InlB is important for bacterial colonization of liver and 

spleen it is not involved in the intestinal barrier crossing(Disson, Grayo et al. 2008). In 
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contrast, in guinea pigs and rabbits, there is no virulence attenuation when these animals 

are infected with a ΔinlB deletion mutant (Khelef, Lecuit et al. 2006), indicating that InlB 

does not recognize c-Met from guinea pig and rabbit (Fig.7). L. monocytogenes 

interactions with its host is thus controlled by a double species specificity. 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig.7– Species specificities of InlA and InlB (Cossart and Toledo-Arana 2008). 

 

 

c. Vacuole lysis 

After invasion and prior to the presence in the host cell cytoplasm, Listeria is temporarily 

found enclosed in a phagocytic vacuole. The bacterium is able to delay vacuole maturation 

through inhibition of the host small GTPase Rab5a activity (Alvarez-Dominguez, Madrazo-

Toca et al. 2008). Additionally, it later induces the disruption of primary and secondary 

vacuoles through the activity of a secreted pore-forming toxin Listeriolysin O (LLO) 

(Portnoy, Jacks et al. 1988; Gedde, Higgins et al. 2000; Zenewicz and Shen 2007), one of 

the major L. monocytogenes virulence factors. Pore formation is preceded by 

oligomerization of monomers of toxin to create pore-forming complexes (Cossart 2011). 

These monomers bind to cholesterol-rich domains in the host cell plasma membrane and 

are inserted in the membrane lipid bilayer (Schnupf and Portnoy 2007).  The LLO-

dependent perforation results in transient changes in vacuolar pH and calcium 

concentration, culminating in membrane disruption, vacuole lysis and delivery of free 

bacterium in the cytosol (Hamon, Ribet et al. 2012). Vacuole membrane disruption is 

previously reported critical position in a loop, of amino acid 16
that confers to internalin a species specificity for human E-
cadherin and other cadherins that display a proline at this
position such as guinea pig E-cadherin [19] (see below, Section
3.4). Based on this structure, a ‘‘murinized’’ internalin more
prone to interact with murine E-cadherin has recently been
designed and generated [27].

The first InlB receptor identified was gC1qR/p32 [28]. This is
an intriguing molecule which is very acidic and can trimerize,
and as such can ‘‘sit’’ on a membrane [29]. It is mostly located at
mitochondria and can be detected in the nucleus and on the cell
surface. gC1qR/p32 has been reported to interact with many
viral proteins and recently withPlasmodium falciparum infected
red blood cells interacting with endothelial cells [30].

Probably the most important receptor for InlB is Met,
a tyrosine kinase and the receptor for the hepatocyte growth
factor (HGF) [31]. Interestingly HGF and Met have been
proposed to be critical for Plasmodium invasion. Wounding
of hepatocytes upon Plasmodium invasion would induce the
secretion of HGF which would render hepatocytes susceptible
to invasion. Thus Plasmodium would exploit Met as a medi-
ator of signaling [32]. Yet this role of Met has not been
confirmed by other authors.

Very recently the co-crystal of InlB and a large fragment of
its receptor Met has also been solved. Again it is the concave
face of the InlB leucine-rich repeat region which interacts
tightly with the first immunoglobulin-like domain of the Met
stalk, a domain which does not bind HGF/SF. A second
contact between InlB and the Met Sema domain locks the
otherwise flexible receptor in a rigid signaling competent
conformation [5] (Fig. 3A). Full Met activation requires the
additional C-terminal domains of InlB which induce heparin-
mediated receptor clustering and potent signaling. InlB is not
a structural mimic of HGF.

For both internalin and InlB, it is more a functional
mimicry than a structural mimicry that the bacterium uses to
exploit the properties of its receptors.

3.2. Role of lipid microdomains in bacterial entry

The membrane organization is a key component in the
signaling events that follow the interaction between the

bacterium and the host cell. Cholesterol depletion is generally
used to disrupt membrane organization and the integrity of
membrane microdomains. Interestingly, cholesterol depletion
impairs both the internalin- and the InlB-pathways but does
not affect them in a similar way [33]. E-cadherin clustering
stringently depends on the presence of membrane micro-
domains while the initial interaction of InlB-expressing
bacteria and Met is not affected by cholesterol depletion.
However, downstream events are affected and dissection of the
InlB pathway using FRET demonstrated that Rac activation
downstream from PI3 kinase was inhibited by cholesterol
depletion although phospholipids were normally produced,
suggesting that the phospholipid distribution in the membrane
is critical for InlB-mediated entry, in particular for the Rac-
mediated actin rearrangements [34] (Fig. 2A).

3.3. The unsuspected role of the clathrin-mediated
endocytosis in bacterial-induced phagocytosis

For many years, efforts were made to analyze the mecha-
nisms underlying the actin rearrangements taking place during
entry (Fig. 2A). An important recent finding concerning the
mechanisms underlying invasion has been the discovery that
clathrin, a molecule known to be involved in internalization of
macromolecules or small objects, was involved in the entry of
Listeria. This discovery followed the observation that the Met
receptor is ubiquitinated by the Cbl ubiquitin ligase. Met
ubiquitination is normally coupled to its internalization during
activation by HGF [2]. Additional studies with Listeria
demonstrated that clathrin recruitment during InlB-mediated
entry is necessary for and precedes actin rearrangement
(Fig. 2B) [3]. The present hypothesis is that clathrin mediates
entry by acting early during the entry process. Clathrin would
recruit dynamin which would then recruit cortactin, which
itself would induce actin polymerization via Arp2/3. How
clathrin is recruited to the bacterium is still elusive. Never-
theless, AP1 is an adaptor protein which can bind PI-4P and is
recruited to the bacterial entry site. Knock-down of AP1
impairs entry. However, detection of AP1 is difficult, sug-
gesting that although PI4-kinase is activated during entry [35],
there may be other clathrin adaptors involved. It is clear that
several pathways orchestrate at the plasma membrane to

Fig. 3. (A) Structure of the leucine-rich repeat domains of InlA, interacting with E-cad, InlB, interacting with Met, and InlJ (see text). The internalins are rep-
resented in blue and the corresponding cell receptors in green. (B) Species specificities of InlA and InlB.

1044 P. Cossart, A. Toledo-Arana / Microbes and Infection 10 (2008) 1041e1050
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enhanced by the two bacterial phospholipases PI-PLC (PlcA) and PC-PLC (PlcB) 

(Goldfine and Knob 1992), which cooperate with LLO in the lysis of the primary and 

secondary vacuoles. 

 

d. Intracellular multiplication 

Once it evades from the phagocytic vacuole, L. monocytogenes is able to adapt itself to 

the host cytosol environment and starts to replicate with a doubling time similar to that of 

growing in rich medium in pure culture (Cossart, Pizarro-Cerda et al. 2003). Since bacteria 

require energy to multiply and proliferate, L. monocytogenes uses the cytoplasmic 

glucose-1-phosphate in a metabolic process dependent on the expression of a bacterial 

hexose phosphate transporter protein, Hpt (Goetz, Bubert et al. 2001). Hpt is a structural 

and functional homologue to the eukaryotic glucose-6-phosphate translocase, required to 

transport glucose-6-phosphate from the cytosol into the endoplasmic reticulum (Chico-

Calero, Suarez et al. 2002). Hpt have been shown to be required for L. monocytogenes 

intracellular multiplication and for virulence in mice (Chico-Calero, Suarez et al. 2002; 

Zenewicz and Shen 2007). 

 

e. Intracellular movement and cell-to-cell spreading 

For the progression of the infection, L. monocytogenes needs to disseminate to the 

surrounding cells. The polarized expression of the bacterial surface protein ActA, 

considered one of the major virulence factors of L. monocytogenes, allows the bacterium 

to move inside the host cytoplasm and spread to neighbor cells. ActA mimics the host cell 

actin-nucleating factor WASP (Wiskott-Aldrich syndrome protein) (Campellone and Welch 

2010) and recruits and activates the host Arp2/3 complex at one pole of the bacteria 

(Welch, Iwamatsu et al. 1997; Welch, Rosenblatt et al. 1998). The Arp2/3 complex is then 

able to polymerize actin filaments at one pole of the bacteria, forming a structure 

resembling a comet tail that enables bacterial propulsion, movement in the host cytosol 

and invasion of neighboring cells (Fig. 8) (Kocks, Marchand et al. 1995). ActA is sufficient 

to promote bacterial intracellular motility in the absence of other L. monocytogenes factors 

(Lasa, David et al. 1995; Skoble, Portnoy et al. 2000; Skoble, Auerbuch et al. 2001). 

Internalin C (InlC) contributes to the formation of protrusions through inhibition of Tuba and 

N-WASP activity, probably by hindering the interaction between N-WASP and Tuba, which 

makes tense apical junctions become slack (Rajabian, Gavicherla et al. 2009).  
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Fig. 8  - Polymerization of actin comet tails. A) Immunofluorescence showing the actin cytoskeleton of HeLa cells and the 

polymerization of actin comet tails (in green) by L. monocytogenes (in red). B) Representation of the actin comet tail 

polymerization complex (Pizarro-Cerda and Cossart 2006). 

 

 

The bacterial movement within a cell is random. When, during its intracellular movement, 

L. monocytogenes reaches the cell plasma membrane, it induces the formation of cell 

protrusions and internalization into a recipient cell. This leads to the formation of a 

secondary vacuole with a double membrane that, as mentioned before, requires the 

concerted activity of LLO and PC-PLC to be lysed.  

 

The successive intra- and intercellular cycles of infection allow tissue dissemination, 

without the need of bacteria to pass through the extracellular environment, thus being 

protected from host immune defenses (Vazquez-Boland, Kuhn et al. 2001; Dussurget, 

Pizarro-Cerda et al. 2004; Cossart and Toledo-Arana 2008). 

 A B 
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2- Cell cycle  
 
General features 

 
The cell cycle or cell division cycle is the orderly sequence of events by which a cell 

duplicates its genetic material and divides into two identical daughter cells. This process is 

divided in four phases, G1 (Gap1), S (synthesis of DNA), G2 (Gap 2), and M (mitosis) that 

were discovered and defined in 1953 by Swift and by Howard and Pelc (Howard and Pelc 

1953). Subsequent pioneering work on cell physiology provided more details concerning 

the cell cycle and rapidly established that the duration between cell divisions takes about 1 

day (G1 - 8 h, S - 8 h, G2 - 2 h, M - 1 h). Biochemistry and molecular biology approaches 

allowed the identification of cyclins, a family of closely related proteins that appear and 

disappear during the cell cycle phases in a strictly controlled “cyclic” pattern (Sherr 1996). 

The abundance of these proteins varies throughout the cell cycle and their activity is 

controlled at different levels: protein synthesis, activation status mainly via phosphorylation 

events, and protein degradation (Minshull, Pines et al. 1989). Nurse and colleagues 

identified the Cyclin dependent kinases (Cdks) (Norbury and Nurse 1992), a family of 

serine/threonine protein kinases necessary for the cell cycle progression. Cdks are 

activated by cyclins and phosphorylate specific substrates at specific points in the cell 

cycle. The transition from one cell cycle phase to the next is controlled by different Cdks 

that are activated in a cell cycle and stage-specific manner, being the main engines that 

drive the cell cycle forward (Morgan 1997; Malumbres and Barbacid 2001; Vermeulen, 

Berneman et al. 2003). 

 

Different phases of the cell cycle 
 

As mentioned above, the cell cycle is divided into four distinct phases. During the G1 

phase, the cell needs to grow before proliferation and needs to be prepared for DNA 

replication that will occur in the following phase. Thus, important regulatory mechanisms 

act during G1: if a cell does not reach its homeostatic size, it will not receive the necessary 

signal for proliferation and is protected by a specific anti-mitogenic signal (Tessema, 
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Lehmann et al. 2004). S-phase is the second stage of the cell cycle during which the 

duplication of the genetic material of a cell occurs (Malumbres and Barbacid 2001). During 

G2 phase, the intermediate stage between DNA duplication and cell division (Molinari 

2000), cell prepares to enter in the M phase, in which the duplicated chromosomes are 

distributed equally into the two daughter cells. Since this replication is strikingly important, 

regulatory mechanisms need to be present ensuring the fidelity of the process. 

Responding to signals from the extra- or intracellular environment, cells decide either to 

start a new round of cell division or withdraw from the cell cycle to become quiescent or 

terminally differentiated in a resting stage termed as G0 (Fig. 9)(Ravitz and Wenner 1997; 

Douglas and Haddad 2003). Detailed description on each cell cycle stage is provided 

below. 

 

 

 

 

 

 

 

 

 

 
 

Fig.9 – Schematic representation of the cell cycle and the DNA damage checkpoints.  

 

a. The G0 State 

In vivo, adult organisms cells are quiescent and only few are actively dividing at any time 

(Molinari 2000). In vitro, some cell lines can be made quiescent by cell-cell contacts at 

high density or by serum or nutrient deprivation. They require anchorage to a solid surface 

for growth, and in suspension are arrested in G0. Quiescent cells generally have 

unduplicated DNA, but they differ from G1 cells, which are actively expressing growing and 

proliferation factors (Ford and Pardee 1999). However, cells in G0 can re-enter the cycle 

once stimulated by extracellular proliferative factors. 
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b. Gap-1 phase (G1-phase) 

Besides G0-phase, G1-phase is the only stage where cells respond to extracellular 

proliferative stimulation. Therefore, cells in G1-phase are the most common target for 

mitogenic signals (e.g. epidermal growth factor, EGF, and insulin-like growth factor, IGF), 

responsible for cell-cycle entry or progression, and anti-proliferative signals, responsible 

for cell-cycle arrest or exit (Tessema, Lehmann et al. 2004). Growth factors act by binding 

extracellularly to their specific transmembrane receptor proteins. The engagement of these 

receptors, often receptor tyrosine kinases, initiates a multistep signal transduction cascade 

that involves products of many genes including, Ras, MAP and PI-3 kinases (Kerkhoff and 

Rapp 1998). Consequetly, these signalling pathways lead to the accumulation of D- and E-

type cyclins (Molinari 2000) (Fig. 10) that allow the cells to overcome the inhibition of Cdks 

activity, thus initiating events necessary for the progression into S-phase. The final 

commitment to proceed with the cell cycle is made near the end of the G1-phase and is 

named the G1/S transition checkpoint (see DNA damage Checkpoints section below). This 

represents a “point of no return” because, beyond this checkpoint, cells no longer respond 

to external signals and proceed with the cycle until completion (Sherr 2000).  

 

c. DNA Synthesis phase (S-phase) 

S-phase is the stage of the cell cycle in which accurate duplication of chromosome occur 

(Dalton 1998). It starts when proteins required for DNA replication reach a sufficient level. 

Importantly, chromosomes are replicated only once during this stage, successive rounds 

of duplication cannot occur (Kelly and Brown 2000). The re-replication of DNA before 

proper completion of cell division is prevented by the so-called replication licensing system 

(Chong and Blow 1996). Like in G1, the licensing process and progression during S-phase 

is strictly regulated by Cdk activities (Kelly and Brown 2000; Nishitani and Lygerou 2002). 

Early in S-phase, cyclins D and E are targeted by ubiquitination to be degraded by 

proteasomes (King, Glotzer et al. 1996; Elledge and Harper 1998). At this time, cyclin A 

levels rise, which activates Cdk2 and enables DNA replication and thus, S-phase 

progression (Fig. 10). After complete duplication of all the chromosomes, the cell cycle 

enters the second gap phase. 
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d. Gap-2 phase (G2-phase) 

Cells at G2 stage contain replicated chromosomes consisting of two sister chromatids. 

During this phase, cells check if all the genetic material and cellular structures are properly 

duplicated before starting the process of cell division itself. Damaged DNA and/or 

incomplete duplication during the S-phase triggers checkpoint pathways that initiate cell-

cycle arrest in the G2-phase (see DNA damage Checkpoint section below). During this 

phase, an increase in the levels of cyclin A (mostly involved in S-phase events, but also 

essential for cells to enter mitosis) and cyclin B are detected (Fig. 10). Cyclin B is believed 

to be the main mitotic cyclin and, although forming a complex with Cdk1 in G2-phase, this 

complex is only activated early in mitosis, when it translocates from the cytoplasm to the 

nucleus (Jackman, Firth et al. 1995).  

 

e. Mitotic phase (M-phase) 

The M-phase can be sub-divided in mitosis where the segregation of the cellular 

components occurs, and cytokinesis, the final division process where the cell is divided 

into two daughter cells. As already mentioned, entry into mitosis is induced by increased 

activity of Cdk1/Cyclin B complex (Jackman, Firth et al. 1995; Lee and Yang 2001). This 

activity is tightly controlled by both complex localization and phosphorylation (Jackman 

and Pines 1997). Once Cdk1/Cyclin B complex is fully activated, occurs a large increase in 

the phospho-protein content of the cell, believed to be important for the dramatic 

morphological changes accompanied with mitosis. These changes include nuclear 

envelope breakdown, chromosome condensation, disassembly of the microtubule network 

and rearrangement into mitotic spindles and reorganization of the cytoskeleton. These 

events prepare the cell for division and make the M-phase the most dynamic stage of the 

cell cycle.  

Mitotic progression, sister chromatid separation and exit from mitosis are controlled by the 

anaphase-promoting complex (“APC”), an ubiquitin-protein ligase that targets key proteins 

for proteolysis allowing the cell coming to the end of the cycle (Scholey, Brust-Mascher et 

al. 2003). When this complex is activated, mitotic cyclins are degraded in a defined order: 

the degradation of Cyclin A precedes that of Cyclin B (Fig.10). Soon after the Cyclin B 

degradation, cells can exit mitosis (Koepp, Harper et al. 1999). 
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Fig.10 Distribution of cyclin proteins along the cell cycle (Bardin and Amon 2001). 

 
 
DNA damage checkpoints 
 

During the cell cycle, the progression from one stage to another is thoroughly controlled. 

Checkpoints control the order and timing of cell-cycle transition and ensure that critical 

events, such as DNA replication and chromosome segregation, are completed accurately. 

They serve as a brake to pause the cycle in case of DNA damage (e.g. UV light exposure, 

ionizing irradiation, chemical exposure) or errors made in the replicative process (e.g. 

cellular metabolism and replication errors) (Hartwell and Weinert 1989; Elledge 1996; 

Malumbres and Barbacid 2001; Nyberg, Michelson et al. 2002). When the DNA is 

damaged, eukaryotic cells respond to this injury with a multifaceted response, ensuring 

survival and propagation of accurate copies of the genome to subsequent generations. 

This response coordinates cell cycle progression with DNA repair, chromatin remodelling, 

some metabolic adjustments or cell death. The arrest or delay of cell cycle progression, 

that provides time for DNA repair, is mediated by a network of signalling cascades (Lukas 

and Bartek 2004). These biochemical cascades include sensor proteins (e.g. ATM (Ataxia 

telangiectasia mutated protein) and ATR (ataxia telangiectasia and Rad3-related protein)) 

that sense the damage and help to generate the proper signals to activate the DNA 

damage checkpoints. These signals are amplified and propagated by adaptors/mediators 

(e.g. γH2A.x and p53-binding protein 1 (53BP1)) that activate signal transducers (e.g. 

Chk1 and Chk2), which in turn activate the downstream checkpoint effectors (e.g. p53 and 

Cdc25). The connection between checkpoint sensors and the core cell cycle machinery is 

Cyclin A Cyclin D/E Cyclin B Cyclin D/E 
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made by these effector proteins (Fig. 11) (Sancar, Lindsey-Boltz et al. 2004). Checkpoint 

signalling components are commonly shared and used to generate responses to diverse 

stimuli. Thus, despite the general hierarchical arrangement, cell cycle checkpoint 

mechanisms do not operate as simple and linear pathways. Instead, the terms upstream 

and downstream, in the strict biochemical sense, are difficult to discriminate. Further, the 

DNA damage checkpoints are not only activated by DNA damage, but rather are 

biochemical pathways operative under normal growth conditions that can be amplified 

upon an increase in DNA injury (Sancar, Lindsey-Boltz et al. 2004). 

These signalling cascades are defined by the transition between phases: G1/S- and G2/M-

phase checkpoints; or within the S phase: Intra-S checkpoint (Fig.9). Although these 

checkpoints are distinct, they all respond to DNA damage and share many proteins. The 

intra-S-phase checkpoint differs from the G1/S and G2/M checkpoints since it also has to 

recognize and deal with replication intermediates and stalled replication forks. In 

conclusion, the DNA damage response, during any phase of the cell cycle, has the same 

pattern: after detection by sensor proteins, signal transducers are activated by mediator 

proteins transducing the signal to effectors. These effector proteins launch a cascade of 

events that cause cell cycle arrest, apoptosis, DNA repair, and/or activation of damage-

induced transcription programs (Houtgraaf, Versmissen et al. 2006). 
 
a. G1/S checkpoint 

The G1/S checkpoint prevents cells from entering in the S-phase, inhibiting the initiation of 

replication in the presence of DNA damage (Pardee 2002). After DNA injury, the ATM 

and/or ATR transducers are activated and phosphorylate many target molecules, notably 

the transducer proteins Chk2 and Chk1, respectively, and also p53. These 

phosphorylations result in the activation of two signal transduction pathways, one to initiate 

and one to maintain the G1/S arrest (Bartek and Lukas 2001). The phosphorylation of 

Chk2 and also Chk1, in turn leads to the subsequent phosphorylation of Cdc25A 

phosphatase, causing its inactivation by nuclear exclusion and ubiquitin-mediated 

proteolytic degradation (Molinari 2000; Falck, Lukas et al. 2001) and leading to the arrest 

of cells between G1 and S phases of the cell cycle (Fig.11).  
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Fig.11-The major components of the DNA damage checkpoint activation cascade. Black arrows represent activation 
and the magenta ones inhibition. 

 

b. Intra-S-Phase Checkpoint  

The intra-S-phase checkpoint is activated by damage encountered during the S-phase or 

by unrepaired damages that escape the G1/S checkpoint and leads to a blockage in 

replication (Paulovich and Hartwell 1995; Nasmyth 1996). When the damage is a double-

strand break resulting from replication of a nicked or gapped DNA, ATM is required for the 

activation of the checkpoint (Howlett, Taniguchi et al. 2002)In contrast, when DNA is 

damaged by UV or chemicals that make bulky base lesions, the damage is sensed by ATR 

protein (Abraham 2001; Cortez, Guntuku et al. 2001). ATR binds to RPA-coated single-

stranded DNA (Zou and Elledge 2003), generated from the repair or replication of these 

lesions, and becomes activated. Activated ATR phosphorylates Chk1, which in turn 
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phosphorylates and down-regulates Cdc25A inhibiting the DNA replication and 

progression in the S-phase (Heffernan, Simpson et al. 2002). Although ATM and ATR are 

recruited by different types of lesion in the DNA their signalling cascades are 

interconnected. Indeed, DSBs can originate ssDNA (single-stranded-DNA) by DNA end 

resection or nucleotide excision repair (NER) and single strand breaks (SSBs) can 

originate DSBs by nuclease cleavage (Fig.12). 

 

 

 

 
 
 

 
 

Fig.12 – Interconversion of ATR- and ATM-activating DNA damage. (A) ssDNA activates ATR. Nucleases can cleave 

this structure causing DSBs to forms which activate ATM. (B) DSBs activate ATM but will also activate ATR as a 

consequence of DNA end resection or nucleotide excision repair (Cimprich and Cortez 2008).  

 

c. G2/M checkpoint 

The G2/M checkpoint prevents cells from undergoing mitosis in the presence of DNA 

damage. Depending on the type of DNA damage, the ATM-Chk2 signal transduction 

pathway and/or the ATR-Chk1 pathway is activated to arrest the cell cycle (Brown and 

Baltimore 2003). As in other checkpoints, with certain types of DNA lesions, such as those 

created by UV light, ATR-Chk1 signalling initiates cell-cycle arrest, but the maintenance of 

the arrest is then performed by ATM-Chk2 signalling (Abraham 2001). With other types of 

lesions, such as ionizing radiation-induced double-strand breaks, the order of action is 

reversed (Brown and Baltimore 2003). In any event, checkpoint kinases inhibit the entry 

into mitosis by down-regulating Cdc25C, which leads to inhibition of Cdk1/CyclinB activity 

(Yarden, Pardo-Reoyo et al. 2002). 

 

 

Figure 4. Inter-conversion of ATR- and ATM-activating DNA lesions

(A) Stalled replication forks activate ATR. Nucleases can cleave stalled forks causing DSBs

to form which activate ATM. The rate at which DSBs form at stalled forks is greatly increased

in cells with defective ATR signaling. (B) DSBs activate ATM but will also activate ATR as

a consequence of DNA end resection. This process is ATM- and cell cycle-dependent such

that most ATR activation by double-strand breaks occurs in S and G2 phase cells. CHK1 and

CHK2 are primarily ATR and ATM substrates respectively.

Cimprich and Cortez Page 28

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2009 March 31.
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3- Modulation of the host cell cycle by bacterial pathogens 
 

During the last 20 years, there has been a remarkable progress in the understanding of 

the interaction of bacterial pathogens with their hosts (Galan and Cossart 2005). It is not 

surprising that pathogens that have evolved an intimate functional interface with their hosts 

have improved mechanisms to modulate a variety of vital processes. This is particularly 

the case for pathogens that have undergone long-standing associations with their hosts, 

allowing evolutionary forces to shape many molecular machines and strategies in their 

own benefit.  

The cell cycle is involved in many processes in mammalian organisms such as cellular 

differentiation, immune responses and maintenance of epithelial barrier functions (Oswald, 

Nougayrede et al. 2005). These processes affect the growth and colonization of 

pathogenic bacteria and thus need to be overcome in infectious processes. A number of 

studies reported a diversity of mechanisms used by pathogens to induce cell cycle 

alterations favoring their own survival. Indeed, alterations on the regulation of cell growth 

are important for the establishment of many bacterial infections and, in fact, residence 

within host cells may provide unique advantages to pathogens.  

The release of genotoxins is the main strategy used by pathogens to manipulate host cell 

cycle functions, inhibiting or promoting cell cycle progression (Jones, Jonsson et al. 2007). 

As they modulate the host cell cycle, this growing family of Gram-negative bacterial 

effectors is named ‘cyclomodulins’ (Nougayrede, Taieb et al. 2005). Many bacteria as 

pathogenic Escherichia coli, Campylobacter sp, Shigella dysenteriae and Actinobacillus 

actinomycetemcomitans produce an inhibitory cyclomodulin named citolethal distending 

toxin (CDT) (De Rycke and Oswald 2001; Lara-Tejero and Galan 2001) that leads to arrest 

of host cells between the G2 and M phases (Peres, Marches et al. 1997; Taieb, 

Nougayrede et al. 2006; Iwai, Kim et al. 2007). Additionally, in some cases the cell cycle 

arrest was shown to be due the activation of the G2/M checkpoint. CDT was the first 

bacterial genotoxin to be described and its name concerns the distension and enlargement 

of the nuclei observed in CDT-treated cells (Fig.13). 
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Fig.13 - Effect of Escherichia coli CDT on cultured epithelial HeLa cells.  CDT leads an enlargement of the nuclei (left 

panel, stained with DAPI) when comparing treated with untreated cells. Flow cytometry analysis (right panel) showed that the 

majority of CDT-treated cells are arrested in the G2 stage of the cell cycle (4n chromosomes) (Nougayrede, Taieb et al. 

2005). 

 

Other bacteria as Neisseria gonorrhoeae and Porphyromonas gingivalis also inhibit the 

cell cycle progression, however in another stage of the cell cycle, the G1-phase (Jones, 

Jonsson et al. 2007; Kato, Tsuda et al. 2008; Inaba, Kuboniwa et al. 2009; Pischon, 

Rohner et al. 2009). Furthermore, it has been shown that Chlamydia trachomatis slows the 

progression of the host cell cycle, causes cytokinesis failure (Campbell, Richmond et al. 

1989; Greene and Zhong 2003; Brown, Knowlton et al. 2012) and induces DNA damage 

coupled to impaired repair mechanisms (Chumduri, Gurumurthy et al. 2013).  

Since many pathogens have the capacity to alter the host cell cycle, it is thought that this 

modulations can favor infection by impairing epithelial barrier integrity and thus, allowing 

the entry of bacteria into the organisms or prolonging their local existence by blocking 

shedding of epithelia (Nougayrede, Taieb et al. 2005). In addition, cell cycle arrest can limit 

the lymphocyte expansion, thereby promoting immune evasion. 

Besides bacteria that inhibit the cell cycle progression, Helicobacter pylori (Hatakeyama 
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2004) and Yersinia pseudotuberculosis (Nougayrede, Taieb et al. 2005) are pathogens 

that stimulate host cell proliferation by the expression of cell cycle-promoting 

cyclomodulins. The stimulation of cellular proliferation can lead to an increase in the 

number of infected cells enhancing and favoring the infection. Helicobacter pylori is able to 

produce the cyclomodulin CagA that activates the Ras-MEK-ERK pathway involved in 

growth, survival, differentiation and proliferation of cells. Thus, this bacterium is able to 

induce gastric epithelial cell proliferation (Peek, Blaser et al. 1999), which is directly related 

to the risk to develop cancer.  

All these mechanisms used by bacteria to promote infection were observed only in Gram-

negative pathogens. Recently, the Gram-positive Staphylococcus aureus was shown to 

induce a delay in the G2/M phase transition in host epithelial cells, increasing its infective 

potential (Alekseeva, Rault et al. 2013). 
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4 - Project presentation 
 

L. monocytogenes is one of the best models to study host-pathogen interactions and has 

become a paradigm for the study of bacterial adaptation to mammalian hosts. In addition, 

during the last decades this opportunistic intracellular pathogen has proved to be an 

outstanding model in biology providing the suitable tools to address fundamental 

processes in cell biology. L. monocytogenes is able to manipulate several host proteins, 

signalling pathways and cellular events to promote infection. It explores functions of 

cellular receptors to induce its internalization, escapes autophagy, controls the expression 

of the host genome and uses the actin cytoskeleton polymerization machinery to 

disseminate. Thus, this pathogen has been considered a dynamic tool used to explore the 

crosstalk between intracellular pathogens and the host cell during infectious processes 

(Hamon, Bierne et al. 2006; Pizarro-Cerda, Kuhbacher et al. 2012). 
Considering that pathogens often exploit similar pathways to cause infection and regarding 

the current knowledge on the Listeria infection process, we investigated whether Listeria 
interferes with the host cell cycle to create a suitable niche to colonize its host. 

The research proposal for this Master Thesis was based in previous solid results obtained 

in our laboratory that are detailed in Box 1, 2 and 3 for a better understanding of the 

scientific issues addressed here. Previous studies in our laboratory showed that L. 

monocytogenes infection of Caco-2 cells induces host cell DNA strand breaks (Box 1) 

leading to the activation of DNA damage/replication checkpoints. In addition, infected 

Caco-2 cells exhibit an S-phase delay leading to longer cell cycle duration (Box 2). The 

override of checkpoint pathways prevents the L. monocytogenes-induced cell cycle delay 

(Box 3) and reduces the number of infected cells and bacterial load. These findings 

indicate that the capacity of L. monocytogenes to hijack those pathways is required for its 

full infection potential, creating an advantageous environment for bacterial replication.  

Based on these observations, the research project that I developed aimed to investigate 

whether the effects on cell cycle observed upon L. monocytogenes (hereafter named Lm) 

infection: 1) are driven solely by the bacterial internalization step, 2) can be observed in 

other cell types and 3) involve ATM and ATR signaling kinases. 
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Box 1 
Lm induces DNA strand breaks in human Caco-2 cells  

 
Induction of host DNA strand breaks upon Lm 

infection 

The host DNA integrity was assessed upon Lm 

infection. Both DSB and SSB were measured in non-

infected (NI) and Lm-infected cells (Inf), by single-

cell gel electrophoresis (SCGE). Comet-like 

structures obtained by this technique were analyzed 

by fluorescence microscopy and the tail intensity of 

these comet-structures was quantified. Each dot 

represents the tail intensity of a single cell. The 

higher tail intensity correlates with the presence of 

more DNA strand breaks. Etoposide-treated (Etop) and γ-irradiated (IR) cells were used as positive controls. 

The number of comets analyzed for each condition is indicated below the graph. It was found that Lm-infected 

cells (Inf) have more DNA damage than non-infected cells (NI). * p-value < 0.05 by one-way ANOVA (Leitão et 

al, Submitted, available in annex). 

 

 

 

Box 2 
Lm infection alters the cell cycle duration and stage distribution of host cells  
 

A – Listeria induces an increase on the cell cycle duration 

To investigate whether Listeria-infected cells were able to 

undergo consecutive division cycles, live-cell imaging was 

performed on Caco-2 cells infected with GFP-expressing L. 

monocytogenes for 72 h. The cell cycle duration of Lm-

infected (Inf) and non-infected (NI) cells was determined by 

measuring the time elapsed between two consecutive 

metaphase plates on the performed phase contrast 

movies. Each dot represents one cell and the total number 

of cells analyzed is indicated below the graph. It was found 

that the cell cycle duration was 3.5 h longer in Lm-infected 

(23.8 ± 0.7 h) as compared to NI cells (20.3 ± 0.4 h) corresponding to a 17% increase in the overall cell cycle 

duration. *** p-value < 0.001  by Student's t-test (Leitão et al, Submitted, available in annex).   
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Box 2 

 
B – Lm induces a S-phase delay in the cell cycle of infected Caco-2 

cells  

The increase in cell cycle duration induced by infection led to the 

hypothesis that Lm infection could trigger the accumulation of cells in 

a specific cell cycle stage. To assess this, Caco-2 cells were left 

uninfected (NI) or infected for 17 h with Lm (Inf) and their flow 

cytometric DNA histograms were generated (lower graphs) allowing 

the quantification of cells in each cell cycle stage (upper graphs). As 

compared to NI cells, DNA histograms obtained for infected Caco-2 

cells revealed an increase of 4% and 3% of cells in S-phase and 

G2/M-phases, respectively. Concomitantly, a 7% decrease in G1/G0 

cell fraction was observed. ** p-value < 0.01, *** p-value < 0.001  by 

Student's t-test (Leitão et al, Submitted, available in annex). 

. 
 

Box 3  
Lm hijacks the DNA damage checkpoints machinery to favor infection  
 

Caffeine prevents the effect induced by Lm infection on the host cell cycle  

Taking into account that Listeria induces host DNA strand breaks and a consequent delay in S-phase and an 

increase in the cell cycle duration, 

we hypothesized that Lm could 

induce the activation of DNA 

damage checkpoints. To determine 

if the effects observed were related 

to a physiological response to Lm-

induced DNA strand breaks, cell 

infection experiments were 

conducted in the presence of 

caffeine, an extensively used 

inhibitor of DNA damage checkpoint responses (Cortez, 2003). In the presence of this compound, both Lm-

infected (Inf) and non-infected (NI) cells showed similar cell cycle stage distributions, thus indicating that 

caffeine prevents the effect of Lm infection on the host cell cycle. The use of γ-irradiated cells (IR) as a positive 

control confirmed that caffeine was inducing the override of the DNA damage checkpoint. Thus, it was shown 

that Lm infection affects the progression of the host cell cycle through the activation of DNA damage 

checkpoints. * p-value < 0.05 by Student's t-test (Leitão et al, Submitted, available in annex).  
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MATERIAL AND METHODS 

 

1- Bacterial strains, cell lines and growth conditions  

Listeria monocytogenes EGDe (ATCC BAA-679), Listeria monocytogenes constitutively 

expressing GFP (EGDe-cGFP) (Balestrino, Hamon et al. 2010) and Listeria innocua 

expressing InlA (Li_InlA) (Lecuit, Ohayon et al. 1997) were grown in Brain Heart Infusion 

(BHI, Difco Laboratories) at 37°C under aerobic conditions with shaking. For EGDe-cGFP 

and Li_InlA, BHI was supplemented with 7 µg/ml chloramphenicol. Escherichia coli K-12 

Invasin (K12_Inv) (Isberg and Falkow 1985) was grown in LB medium (1% tryptone, 0.5% 

yeast extract, 1% NaCl) supplemented with 100 µg/ml ampicillin at 37⁰C under aerobic 

conditions with shaking. Human colorectal adenocarcinoma cell line Caco-2 (ATCC HTB-

37) was propagated in complete growth medium [Eagle's Minimum Essential Medium 

(EMEM), 20% (v/v) fetal bovine serum (FBS), 1 mM sodium pyruvate, 0.1 mM non-

essential amino acids], at 37°C in a 7% CO2 humidified atmosphere. Human 

choriocarcinoma cell line Jeg-3 (ATCC HTB-36) was cultured in similar conditions except 

that medium was supplemented with only 10% FBS. Cell culture medium and supplements 

were purchased from Lonza. Whenever stated, cells were treated with 40 µM etoposide 

(Sigma), or exposed to γ-rays (5 Gy) using a 137Cs source (Gammacell 1000 irradiator, 

Nordion) to induce DNA strand breaks. 

 

2- Infection assays 

Caco-2 or Jeg-3 cell suspensions were seeded at 6×105 cells per 60 mm dish (Nunc) and 

propagated for 48 h. Overnight cultures of EGDe, EGDe-cGFP and Li_InlA were diluted in 

fresh medium (1:10) and agitated at 37°C to reach an optical density at 600 nm (OD600) 

of 0.7. Bacteria were washed three times in EMEM and prepared for infections at different 

multiplicities of infection (MOI) considering that 1 ml of bacterial suspension at OD600 = 

0.7 contains 109 bacteria. Cells were washed twice with EMEM, and incubated with EGDe 

or EGDe-cGFP suspension at a MOI ranging from 0.1 to 0.5, or with Li_InlA or K12_Inv at 
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MOI 50. After 1 h invasion at 37°C in a 7% CO2 humidified atmosphere, cells were cultured 

for 16-19 h in complete medium supplemented with 50 µg/ml gentamicin, to eliminate 

extracellular bacteria and prevent re-infection. The control non-infected cells were 

incubated in the same conditions. Whenever stated, non-infected and infected cells were 

incubated in complete medium supplemented with 50 µg/ml gentamicin plus 2 mM caffeine 

(Sigma). Cells were washed, harvested by trypsinization and processed for further 

analyses. Intracellular bacteria were quantified by enumeration of viable bacteria (colony 

forming units, CFUs) after cell lysis in 0.2% Triton X-100 and plating of serial dilutions on 

BHI agar plates as described elsewhere (Reis, Sousa et al. 2010).   

 

3- Flow cytometry analyses  

Cells were washed twice with Ca2+- and Mg2+-free PBS and detached from culture 

dishes with trypsin/EDTA for 10 min at 37°C. Trypsinization was stopped by addition of 

complete medium to the cells. To assess cell viability and quantify infected cells, unfixed 

cells were washed and centrifuged (1200 rpm) during 4 min at 4°C, and resuspended in 

200 µl of PBS supplemented with 2% FBS plus 2.5 µg/ml propidium iodide (PI) which 

specifically labels dead/dying cells and allows their exclusion from the analysis. 

Percentage of infected cells (%GFP+) was evaluated on a GFP-A/PE-A plot, following the 

exclusion of debris (FSC-A/SSC-A), cell doublets (FSC-A/FSC-W) and dead cells (PE-

A/PerCP-Cy5-A). For DNA histogram analysis, cells were washed twice with cold Ca2+- 

and Mg2+-free PBS, pelleted by centrifugation (1200 rpm) at 4°C during 4 min, and fixed 

overnight in 70% ethanol. To measure the DNA content, cells have to be stained with a 

fluorescent dye that binds to DNA in a manner that reflects accurately the amount of DNA 

present in the cells. PI is a red fluorescent dye that can be detected in the PE-575/26 nm 

channel of the cytometer BD FACS Canto II and allows the distinction between G1/G0 

phase cells (2n amount of DNA, first peak on the DNA histogram), G2/M phase cells (4n 

amount of DNA, second peak on the DNA histogram) and S-phase cells (between 2n and 

4n amount of DNA). Thus, after overnight fixation with ethanol, cells were washed twice in 

PBS and then were labelled with 40 µg/ml PI and treated with 20 µg/ml ribonuclease A 

(RNase A) (to eliminate the RNA-signal since RNA is also stained by PI) for 3 h at 37°C. 
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Alternatively, to minimize the quenching of GFP signal caused by the standard ethanol 

fixation protocol, cells were fixed following a combined paraformaldehyde (PFA):ethanol 

fixation method. Single cell suspensions were fixed for 1 h at 4°C in the dark with 4-fold 

diluted Cytofix (BD Biosciences), corresponding to 1% (w/v) PFA solution. Afterwards cells 

were washed with 1% of bovine serum albumin (BSA) in PBS, fixed with ethanol 70% for 

30 min and washed again prior to the incubation with PI and RNaseA. Cells were filtered 

and at least 10,000 gated events were acquired in a FACS Canto II flow cytometer (BD 

Biosciences). Flow cytometric DNA histograms were obtained on a PE-A histogram with 

linear scaling after the exclusion of debris (FSC-A/SSC-A), and cell doublets (PE-A/PE-W). 

For samples fixed with both PFA and ethanol, GFP+ (infected) and GFP- (bystander) 

populations were discriminated on a GFP-A/FSC-A plot, allowing the generation of 

independent DNA histograms for each population. Data were analyzed using FlowJo 

software (TreeStar, Inc.). The percentage of cells in each cell cycle phase was obtained 

after applying the Watson pragmatic model. 

 

4- Immunofluorescence analyses 

Caco-2 cells grown on top of coverslips were infected or left uninfected, and fixed with 3% 

PFA (15 min) at room temperature and washed with PBS. Sample-autofluorescence was 

quenched in 50 nM NH4Cl (30 min). Fixed cells were washed once with PBS and 

permeabilized in 0.1% Triton X-100 during 5 min. To quantify the percentage of cells 

infected with Li_InlA, cells were incubated with rabbit anti-L. innocua antibody R6 (Dramsi, 

Levi et al. 1998) diluted 1:250 in blocking solution (1% BSA plus 20% FBS in PBS), 

followed by incubation with AlexaFluor488-conjugated anti-rabbit antibody (Invitrogen) 

diluted 1:150, phalloidin-TRITC (Sigma) diluted 1:500 and 2 ng/ml DAPI (Sigma). 

Coverslips were mounted with Mowiol mounting medium (Kuraray Specialties Europe 

GmbH). K12_Inv infected cells were incubated with mouse anti-E.coli LPS antibody 

[2D7/1] (ab35654, Abcam) diluted 1:200 in blocking solution, followed by incubation with 

AlexaFluor488-conjugated anti-mouse antibody (Invitrogen) diluted 1:150, phalloidin-

TRITC (Sigma) diluted 1:500 and 2 ng/ml DAPI (Sigma). Cells infected by EGDe-cGFP, 

cells were incubated with phalloidin-TRITC and DAPI in blocking solution. The 
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quantification of the percentage of infected cells was performed by visual inspection under 

an epifluorescence Olympus BX53 microscope.  

 

5- Immunoblot analyses 

Cells were washed with ice-cold PBS and centrifuged (1800 rpm) at 4⁰C during 4 min, and 

resuspended in Laemmli buffer 1x (3% glycerol, 5% β-mercaptoethanol, 2% SDS, 0.1% 

blue bromophenol in 1 M Tris-HCl pH 6.8). Lysates were sonicated for 5 s to shear DNA 

and were heated at 95⁰C during 5 min. Samples were resolved in a 4%-15% Mini-

Protean®TGX™ PreCast Gel (BioRad Laboratories) and transferred onto a nitrocellulose 

membrane [Trans-Blot®Turbo™ Transfer Pack, midi format 0,2 µm nitrocellulose 

membrane (BioRad Laboratories)] during 1 h at 0.6 A in a TransBlot®Turbo System 

(BioRad Laboratories). After blocking with 5% non-fat dry milk in Buffer A (150 mM NaCl, 

20 mM Tris-HCl pH 7.4 and 0.1% Triton X-100), at least 1 h at room temperature, 

membranes were immunoblotted overnight at 4⁰C with primary antibodies monoclonal 

mouse anti-ATM (sc-23921, Santa Cruz Biotechnology) diluted 1:100 and polyclonal goat 

anti-ATR (sc-1887, Santa Cruz Biotechnology) diluted 1:500, both in 5% non-fat dry milk. 

Membranes were washed three times in 2.5% non-fat dry milk in Buffer A and incubated 

during 1 h at room temperature with the following secondary antibodies: HRP-conjugated 

anti-mouse IgG (PARIS Biotech) diluted 1:2000, or HRP-conjugated anti-goat IgG (PARIS 

Biotech) diluted 1:2000, both in 5% milk in Buffer A. After washing antibody signal was 

revealed by chemiluminescent autoradiography using Pierce® ECL Western Blotting 

Substrate (Thermo SCIENTIFIC).  

 

6- Transfection assays 

The expression of the kinases ATM and ATR was reduced following a siRNA approach 

using two different transfection methods. Amaxa® Cell Line Nucleofector® Kit T (Lonza) 

was used as recommended by the manufacturer to electroporate Caco-2. Briefly, 5x105 

cells were resuspended in 100 µl Nucleofector® Solution at room temperature, and mixed 

with 2 µL of each siRNA: the control CtrD siRNA (10 µM sc-44232 S, Santa Cruz 

Biotechnology), the ATM specific siRNA (10 µM sc-29761, Santa Cruz Biotechnology) or 
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the ATR specific siRNA (10 µM, sc-29763 Santa Cruz Biotechnology). Cell suspensions 

were then transferred into certified cuvettes which were inserted into the Nucleofector® 

Cuvette Holder to proceed to the transfection. Afterwards, 500 µl of the complete culture 

media was added and the total cell suspension was transferred to 60 mm dishes (Nunc) 

containing 2 ml of culture media (EMEM supplemented with 10% of FBS) at 37°C. 

Alternatively, Caco-2 cells were transfected using INTERFERin® kit as described. Cells 

were seeded at 4×105 cells per T25cm2 (Corning) and propagated for no longer than 19 h 

before transfection. Cells were transfected with Opti-MEM (Gibco) transfection medium 

supplemented with INTERFERin® (Polyplus) and 100 nM ATM specific siRNA sc-29761 

(Santa Cruz Biotechnology) or 100 nM ATR specific siRNA sc-29763 (Santa Cruz 

Biotechnology) or 100 nM control CtrD siRNA (sc-44232 S, Santa Cruz Biotechnology). 

After 24 h, transfection medium was replaced by fresh EMEM supplemented with 10% of 

FBS medium and cells were incubated for more 24 h and infected as previously described. 

The efficiency of ATM and ATR silencing was evaluated by western blot.  

 

7- Statistical analyses 
 
Statistical analyses were performed with Prism 5 software (GraphPad software, Inc.). One-

way ANOVA with post hoc testing analyses (Neuman-Keuls, Bonferroni) was used for pair-

wise comparison of means from three of more unmatched groups. Two-tailed unpaired 

Student's t-test was used for comparison of means between 2 samples. The differences 

between samples were considered to be not statistically significant for p value > 0.05. 
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RESULTS 
 

1- Listeria infection alters the cell cycle stage distribution of 
host cells 
 

Role of Listeria internalization on the progression of host cell cycle  
 

As mentioned before, previous results obtained in the laboratory, revealed that Caco-2 

cells infected by Listeria monocytogenes (Lm) are able to undergo successive rounds of 

division. Each infected cell gives rise to two daughter cells that inherit equivalent number 

of bacteria (Leitão et al, Manuscript submitted provided in Annex). Interestingly, the cell 

cycle of Lm-infected Caco-2 cells was found to be longer, as compared to the non-infected 

cells, which is associated with the accumulation of Lm-infected cells in the S-phase (Box 

2). These results suggested that, even though Lm-infected cells are able to accomplish the 

entire division cycle, Lm modulates the host cell cycle progression during the infectious 

process. In this context, we were interested to evaluate whether Lm-induced effects on 

host cell cycle stage distribution described above (Box 2), required merely bacterial 

adhesion and invasion or were dependent on any other step of Lm infection. 

To assess this issue, Caco-2 cells were left uninfected (NI) or infected with either Lm (Inf) 

or Listeria innocua expressing InlA (Li_InlA). This modified version of the non-invasive 

species (L. innocua) mimics Lm adhesion and invasion of Caco-2 cells, but does not 

accomplish the remaining cell infection steps (Gaillard, Berche et al. 1991). DNA 

histograms of cells were generated by flow cytometry and the percentage of cells in each 

cell cycle stage was determined for each condition. Because the validity of the data 

generated is highly dependent on the percentage of infected cells, the conditions of 

infection were optimized to obtain a similar percentage of Lm- and Li_InlA-infected cells. 

Quantification of infected cells was performed by immunofluorescence microscopy 

(Fig.14). In 5 independent experiments we obtained in average 77% of Lm-infected cells 

and 70% of cells infected by Li_InlA. It was thus possible to generate and compare flow 

cytometric DNA histograms to quantify the fraction of cells in each cell cycle stage. 
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Fig. 14 – Assessment of the percentage of infected cells by immunofluorescence microscopy. Caco-2 cells were 

incubated for 1 h with Lm (MOI 0.5) or Li_InlA (MOI 50), and subsequently maintained for 16 h in complete medium 

supplemented with gentamicin. Immunofluorescence images are representative of 100 cells quantified for each condition. 

Nuclei are stained with DAPI (blue), bacteria are shown in green, and the actin network is visualized in red in a merged panel 

at the right . 
 
We observed that, 17 h post-infection, NI and Li_InlA-infected cells showed similar cell 

cycle stages distribution (Fig. 15) whereas, as previously observed (Box 2), Lm-infection 

induces a significant accumulation of cells in S-phase accompanied by a decrease in the 

percentage of cells in G1/G0-phases. These results indicate that intracellular Li_InlA does 

not affect the distribution of cells across the different cell cycle stages, as it occurs in 

response to Lm infection. Thus, bacterial adhesion and entry, as well as InlA-activated 

signaling pathways are not sufficient to induce the cell cycle stage alterations observed in 

Lm-infected Caco-2 cells. 
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Fig. 15 – Cell cycle stage distribution upon Lm and Li_InlA infection of Caco-2 cells. Caco-2 cells were left uninfected 

(NI) or incubated for 1 h with Lm (MOI 0.5) or Li_InlA (MOI 50), and subsequently maintained for 16 h in complete medium 

supplemented with gentamicin. Quantitative analysis of flow cytometric DNA histograms obtained from ethanol-fixed cells. 

Results are means ± SE from five independent experiments. * p- value < 0.05, *** p-value < 0.001 by Student's t-test.    
 
To evaluate whether the results described above are specific for Li_InlA or could be 

extrapolated to any non-pathogenic agent modified to invade cells, we performed similar 

experiments on Caco-2 cells using an invasive E. coli K12 strain, which expresses the 

invasin of Yersinia pseudotuberculosis (K12_Inv). As Li_InlA, the strain K12_Inv is able to 

interact with receptors at the surface of the host cell inducing its own internalization, but it 

is not able to accomplish any other step of the Y. pseudotuberculosis cell infectious 

process (Isberg and Falkow 1985). Surprisingly, K12_Inv appeared to modulate the host 

cell cycle causing a significant decrease in number of cells in G1/G0-phases, and a slight 

(statistically non-significant) increase in the percentage of cells in S-phase (Fig.16). The 

percentage of infected cells was determined by immunofluorescence microscopy as 

described. The results shown in Fig.16 were obtained from cellular populations comprising 

88% of Lm-infected cells or 78% of cells with intracellular K12_Inv. Contrarily to our 

findings with Li_InlA invasion experiments, these results indicate that, in the case of an 

infection by K12_Inv, the cellular invasion step would be sufficient to modulate the cell 

cycle progression of a host-infected cell. 
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Fig.16 - Cell cycle stage distribution upon Lm and K12_Inv infection of Caco-2 cells. Caco-2 cells were left uninfected 

(NI) or incubated for 1 h with Lm (MOI 0.5) or K12_Inv (MOI 50), and subsequently maintained for 16 h in complete medium 

supplemented with gentamicin. Quantitative analysis of flow cytometric DNA histograms obtained from ethanol-fixed cells. 

Results are means ± SE from three independent experiments. * p- value < 0.05, by Student's t-test. 

 

 

Listeria-induced effects can be observed in different cell lines 
 
Lm is able to virtually infect any human tissue and cell, including those that are supposed 

to act as tight barriers (such as intestinal and placental cells). In the adult, only few and 

very specifically localized cells are actively dividing. This project gains thus a clinical 

relevance if issues are addressed and results are gathered in cells that are part of actively 

dividing or renewing tissues. In this context, and because Lm is able to infect the placenta 

and fetus in pregnant women, we addressed the effects of Lm-infection on the host cell 

cycle progression of the human trophoblastic cell line Jeg-3. 

To address this question, Jeg-3 cells were left uninfected (NI) or infected for 17 h with Lm-

expressing GFP and their flow cytometric DNA histograms were generated as previously 

described. As compared to NI cells, DNA histograms obtained for Lm-infected Jeg-3 cells 

revealed a slight but statistically significant increase of 2% in S-phase with a concomitant 

3% decrease in G1/G0 cell fraction (Fig.17). These data suggest that, in Jeg-3 cells, Lm 

interferes with the host cell cycle delaying cells in S-phase, as previously found for Caco-2 
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cells. Thus, the interference of Lm with the host cell cycle seems to be a broad 

phenomenon that occurs in different cell types. 

 
 

 

 

 

 

 

 

 

 

 
Fig. 17 – Jeg-3 cell cycle stage distribution upon Lm infection. Jeg-3 cells were left uninfected (NI) or incubated for 1 h 

with Lm (MOI 0.1) and subsequently maintained for 16 h in complete medium supplemented with gentamicin. Quantitative 

analysis of flow cytometric DNA histograms obtained from ethanol-fixed cells. Results are means ± SE from five independent 

experiments. * p- value < 0.05, and ** p- value < 0.01 by Student's t-test. 

 

 

DNA histograms mentioned above (Fig.17) were generated from a mixed population of 

cells arising from flasks incubated with Lm that comprise cells with intracellular bacteria 

(infected) and non-infected bystander cells. As the fixation method used to generate DNA 

histograms destroys GFP fluorescence emitted by the bacteria, the percentage of infected 

cells was determined by flow cytometric analysis of live cells. Data showed for Jeg-3 cells 

in Fig.17 were generated from a population of cells in which only about 57% of the cells 

(average of 5 independent experiments) harbored intracellular bacteria. In such conditions, 

the effects of Lm on Jeg-3 cell cycle stage distribution shown in Fig.17 are probably 

underestimated and would be more pronounced if we analyze only the cells containing 

intracellular bacteria. To further evaluate the outcome of Lm infection discriminating 

infected (Inf GFP+) from bystander (Inf GFP-) cells, we adapted the fixation method to 

preserve GFP fluorescence thus allowing the generation of DNA histograms from three 

different cell subsets: NI, Inf GFP- and Inf GFP+. As expected, DNA histograms generated 

solely from Inf GFP+ Jeg-3 cells (Fig.18) showed a strengthened accumulation of cells in 

S-phase (7%) and a 7% decrease in G1/G0-phase cell fraction. Differences revealed by 
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the analysis of mixed cell populations appeared thus reinforced by the separate analysis of 

infected and bystander cells. Importantly, NI and bystander cells (Inf GFP-) showed similar 

DNA histograms and thus comparable cell cycle stage distributions (Fig.18). 

 

 
 
 
 
 
 
 
 
 
 

Fig.18 – Jeg-3 cell cycle stage distribution upon Lm infection – discriminating infected (Inf GFP+) from bystander 
(Inf GFP-) cells. Quantitative analysis of flow cytometric DNA histograms obtained from Jeg-3 cells subjected to combined 

PFA:ethanol fixation, 17 h post-infection. Results are means ± SE from three independent experiments. Asterisks (*) indicate 

statistical comparisons between NI and Inf GFP+ populations; hashes (#) indicate statistical comparisons between Inf GFP- 

and Inf GFP+ populations. *p-value < 0.05, **p-value < 0.01, *** and ### p-value < 0.001 by one-way ANOVA. 

 

 

Effect of short time Listeria infections on the host cell cycle 

 
Jeg-3 cells usually accomplish a full cycle faster than Caco-2 cells. Taking this into 

account we hypothesized that in Jeg-3 cells the effect of Lm infection that we reported at 

17 h post-infection (Fig. 17), could probably be detected after shorter periods of infection. 

To test our hypothesis, Jeg-3 cells were left NI or infected with Lm for 11 h and their DNA 

histograms were generated and quantified. As described above we performed the analysis 

of the full population comprising infected (53%) and bystander cells (Fig.19) and also 

generated separated DNA histograms for Inf GFP- and Inf GFP+  (59%) cellular 

populations (Fig.20). Both analyses showed a statistically significant accumulation of cells 

in S-phase and a decrease in G1/G0 cell fraction, similar to the effects observed 17 h post-
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infection of Jeg-3 and Caco-2 cells. In addition, cellular distribution across the cell cycle 

stages of NI and Inf GFP- cells were very similar, thus confirming our previous findings. 

These results suggest that, even after shorter periods of infection, Lm interferes with the 

Jeg-3 cell cycle, delaying cells in S-phase.   

 

 
 
 
 

 
 
 
 

 

 
Fig.19 – Jeg-3 cell cycle stage distribution upon an 11 h Lm infection. Jeg-3 cells were left uninfected (NI) or incubated 

for 1 h with Lm (MOI 0.2) and subsequently maintained for 10 h in complete medium supplemented with gentamicin. 

Quantitative analysis of flow cytometric DNA histograms obtained from ethanol-fixed cells. Results are means ± SE from two 

independent experiments. * p- value < 0.05 and ***p- value < 0.001 by Student's t-test. 

 

 

 
 
 
 
 
 

 

 

 

 
 

 
Fig.20 – Jeg-3 cell cycle stage distribution upon an 11h Lm infection – discriminating infected (Inf GFP+) from 

bystander (Inf GFP-) cells..  Quantitative analysis of flow cytometric DNA histograms obtained from Jeg-3 cells subjected to 

combined PFA:ethanol fixation 10 h post-infection. Results are means ± SE from three independent experiments. Asterisks 

(*) indicate statistical comparisons between NI and Inf GFP+ populations; hashes (#) indicate statistical comparisons 

between Inf GFP- and Inf GFP+ populations. * and # p-value < 0.05, by one-way ANOVA.  
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As 11 h of infection appeared already sufficient to detect an accumulation of infected cells 

in S-phase, we repeated the same experiments but reducing the overall duration of the 

infection to 5 h. In those conditions, cell cycle distribution profiles of NI and Lm-infected 

cells remained the same (Fig.21). Even the analysis of infected (Inf GFP+) and bystander 

(Inf GFP-) cells separately did not show any difference (Fig.22). The percentages of 

infected cells in those experiments were 45% to the full population and 44% for Inf GFP+, 

which should be sufficient to observe an effect. 
 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

Fig.21 – Jeg-3 cell cycle stage distribution upon a 5h Lm infection. Jeg-3 cells were left uninfected (NI) or incubated for 

1 h with Lm (MOI 2) and subsequently maintained for 4 h in medium supplemented with gentamicin. Quantitative analysis of 

flow cytometric DNA histograms obtained from ethanol-fixed cells. Results are means ± SE from five independent 

experiments. 
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Fig.22 – Jeg-3 cell cycle stage distribution upon a 5h Lm infection – discriminating Infected (Inf GFP+) from 
bystander (Inf GFP-) cells.  Quantitative analysis of flow cytometric DNA histograms obtained from Jeg-3 cells subjected to 

combined PFA:ethanol fixation 4 h post-infection. Cell cycle stage distribution was obtained after applying the Watson 

pragmatic model. Results are means ± SE from three independent experiments.  

 
Together, these data indicate that a complete Lm cellular infection cycle is required to alter 

the cell cycle stage distribution of diverse cell lines. We also conclude that these 

alterations on the host cell cycle are independent of any cellular or Lm-secreted factor 

acting from the extracellular milieu and they are time-dependent since no effects were 

observed 5h post-infection. 

 

 
2- Listeria hijacks the machinery of DNA damage checkpoints 

 
 
Lm infection induces activation of DNA damage checkpoints 
 

As previously shown in the laboratory and described in our submitted manuscript (Leitão et 

al, Submitted, available in annex), during infection of Caco-2 cells Lm induces host DNA 

strand breaks, which probably account for the accumulation of cells in S-phase and the 

increased cell cycle duration. In addition, Lm induces the activation of host DNA damage 

checkpoint to favor infection (Leitão et al. and Box 3). Here, we performed experiments in 

Jeg-3 cells in order to validate the results obtained in Caco-2 cells and assess whether Lm 

interferes with the same pathways in different cells lines. Next we wanted to evaluate if in 
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Jeg-3 the Lm-induced alterations in cell cycle distribution required the activation of host 

DNA damage checkpoints. For that we conducted infection experiments in the presence of 

caffeine, an inhibitor of DNA damage checkpoint responses (Cortez 2003) that promotes 

their override and the progression in the cell cycle, even in the presence of extensive DNA 

damages. As control we used Jeg-3 γ-irradiated cells (IR) that display extensive DNA 

injury. 

In accordance with our results described above (Fig.17), in the absence of caffeine, Lm 

infection of Jeg-3 cells induced the accumulation of cells in S-phase and the decrease of 

cells in G1/G0-phase (Fig.23). In addition, as expected the γ-irradiation had a dramatic 

effect on the cell cycle distribution profile, blocking the majority of cells in G2/M-phases. 

However, in the presence of caffeine, DNA histograms of Lm-infected and NI Jeg-3 cells 

were very similar and the cellular distribution across the different cell cycle stages 

remained the same. In addition, in the presence of caffeine even the IR cells were able to 

progress through the cell cycle, thus confirming the role of caffeine in the override of the 

DNA damage checkpoint. Thus, we conclude that the effect of Lm infection was abrogated 

by caffeine (Fig. 23).  

 These data, together with previous data obtained in the laboratory, indicate that Lm 

infection affects the progression of the host cell cycle through the activation of DNA 

damage checkpoints. Therefore we hypothesize that cell cycle delay induced by Lm is 

related to its ability to cause host DNA injury and the consequent activation of cell cycle 

checkpoints. 
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Fig.23 – Caffeine prevents the effects induced by Lm on the host cell cycle of Jeg-3 cells. Quantitative analysis of flow 

cytometric DNA histograms obtained 20 h post-infection from ethanol-fixed Jeg-3 cells. Cells were left uninfected (NI) or 

infected with Lm (Inf, 1 h, MOI 0.1), and subsequently maintained for 19 h in medium supplemented with gentamicin in the 

presence or absence of 2 mM caffeine (Caff). γ-irradiated cells (IR) were used as controls. Results are means ± SE from two 

independent experiments. * p-value < 0.05, by one-way ANOVA. 

 
 
 

Role of ATM and ATR kinases on the activation of DNA Damage 

checkpoints upon Listeria infection  
  
Our results suggest that Lm has the ability to trigger the activation of DNA damage 

checkpoints. In addition, we previously observed an increase in the levels of γH2A.x (a 

DNA injury marker involved on the activation of DNA damage cascade) upon Lm infection 

(described in Leitão et al.). Taking this into account, we investigated the role of upstream 

sensor kinases involved in activation cascades of DNA damage checkpoints (Fig.11), 

which possibly could be involved in the delay in S-phase induced by Listeria infection. 

ATM and ATR are considered as the main upstream kinases in the signaling of DNA 

damage. These proteins are the main DNA damage response transducers and their 

activation initiates a phosphorylation cascade leading to cell cycle arrest/delay at specific 

checkpoints (Lopez-Contreras, Gutierrez-Martinez et al. 2012). To unravel the possible 
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involvement of ATM and ATR kinases in the activation of checkpoints in response to Lm 

infection, we interfered with their expression following a siRNAs approach. Caco-2 cells 

were transfected with specific siRNAs to silence, simultaneously, the expression of ATM 

and ATR. Because Caco-2 cells are very difficult to transfect we tested and used two 

different methods of transfection (the Amaxa system and the INTERFERin reagent). 

siRNA CtrD was used as a control non-target siRNA. Two days after transfection cells 

were left uninfected (NI) or infected with Lm, the cell cycle distribution was then assessed 

by flow cytometry and quantified, as previously described. 

The efficiency of silencing was assessed by western blot on total cell extracts (Fig. 24). 

We observed that, in cells transfected with the siRNA CtrD, expression levels of both ATM 

and ATR remain the same in NI and Lm-infected conditions. In addition, ATM and ATR 

protein were undetectable in cell lysates obtained from cells transfected with specific 

siRNAs for ATM (siATM) and ATR (siATR). These results showed that we were able to 

efficiently reduce the expression levels of both proteins. 

 

 
 
 
 
 
 
 
 
 
 
 
Fig.24 – Western blot analysis of ATM and ATR silencing (by the INTERFERin reagent) efficiency. Caco-2 cells were 

transfected and left non-infected (NI) or incubated with Lm and harvested 17h post-infection. Levels of ATM (left panel) and 

ATR (right panel) were detected by immunoblot. GAPDH protein levels served as loading control. MW corresponds to the 

molecular weight marker ran in the gel.   
 
DNA histograms from cells subjected to siRNA were generated in NI or Lm infection 

conditions and quantified to obtain the corresponding cell cycle distribution profiles. This 

analysis was performed for cells transfected following the Amaxa (Fig.25) or INTERFERin 

(Fig.26) methods, and similar results were obtained. First we observed that cell distribution 

profiles of non-infected non-transfected (NI-NT) and non-infected siCtrD-transfected (NI 

siRNA CtrD) cells were very similar, indicating that the transfection per se does not affect 

the cell cycle distribution. When comparing NI with Lm-infected cells previously treated 

Lm NI  
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with siRNA CtrD (NI siRNA CtrD and Lm siRNA CtrD, respectively) a slight increase in S-

phase cell fraction and a decrease in G1/G0-phases (both statistically significant following 

Amaxa system transfection). These effects are comparable to those observed for NT cells 

(Fig.23 and Box 2), indicating that the transfection process by itself does not affect the 

usual cell cycle alterations detected upon Lm infection. Furthermore, we also detected the 

Lm-induced accumulation of cells in S-phase and the consequent decrease in the 

percentage of cells in G1/G0 in cells transfected with ATM/ATR specific siRNAs (Lm 

siRNA ATM/ATR).  
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Fig.25 
– ATM 

and ATR kinases inhibition (by Amaxa system) does not prevent the cell cycle alterations induced by Lm infection. 
Quantitative analysis of flow cytometric DNA histograms obtained 17h post-infection and 3 days post-transfection, from 

ethanol-fixed Caco-2 cells. Cells were transfected with siRNA for ATM and ATR proteins using as a control siRNA CtrD. 

After two days cells were left uninfected (NI siRNA CtrD and NI siRNA ATM/ATR) or infected with Lm (Lm siRNA CtrD and 

Lm siRNA ATM/ATR, 1 h, MOI 0.5), and subsequently maintained for 17 h in medium supplemented with gentamicin. Non-

transfected cells were not transfected and were left uninfected (NI-NT). Results are means ± SE from three independent 

experiments. * p-value < 0.05, **p-value < 0.01 by one-way ANOVA. 
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Fig.26 – ATM and ATR kinases inhibition (by IRTERFERin reagent) does not prevent the cell cycle alterations 

induced by Lm infection. Quantitative analysis of flow cytometric DNA histograms obtained 17h post-infection and 3 days 

post-transfection, from ethanol-fixed Caco-2 cells. Cells were transfected with siRNA for ATM and ATR proteins using as a 

control siRNA CtrD. After two days cells were left uninfected (NI siRNA CtrD and NI siRNA ATM/ATR) or infected with Lm 

(Lm siRNA CtrD and Lm siRNA ATM/ATR, 1 h, MOI 0.5), and subsequently maintained for 17 h in medium supplemented 

with gentamicin. Non-transfected cells were not transfected and were left uninfected (NI-NT). Results are means ± SE from 

two independent experiments. * p-value < 0.05 by one-way ANOVA. 
 
 
 
Altogether these results suggest that ATM and ATR are not essential for the DNA damage 

checkpoint activation occurring in response to Lm infection.  



 
FCUP 

Effects induced by Listeria monocytogenes infection on the host cell cycle  
61 

          . 
 

DISCUSSION 
 
It has long been known that to promote cellular infection Listeria monocytogenes (Lm) 

interferes with and manipulates a number of biological processes. However, the interplay 

between Lm and the host cell nucleus was only reported at the epigenetic point of view 

(Hamon, Batsche et al. 2007), disregarding the possible outcome of the infection on the 

host cell cycle fate. Recently in our laboratory, it was demonstrated that Lm induces host 

DNA strand breaks, therefore hindering the progression of the host cell cycle and inducing 

an increase in the overall cell cycle duration. The delay induced by Lm on the host cell 

cycle relies on the activation of DNA damage checkpoints and favors its infection capacity 

(Leitão et al, Submitted).  

 

Here, we demonstrate that the effects observed on the cell cycle upon Lm infection are not 

dependent on the bacterium adhesion and invasion steps. In addition, we show that the 

delay observed in S-phase, as well as the activation of DNA damage checkpoints are not 

Caco-2 cell specific, occurring in other cell types as Jeg-3 cells. Finally, regarding the role 

of this pathogen on the activation of the DNA damage checkpoints we revealed that ATM 

and ATR are not essential for the DNA damage checkpoint activation occurring in 

response to Lm infection.  
 

1- A complete Lm cellular infection cycle is required to alter 
the cell cycle stage distribution of infected host cells 
 

In this project, and regarding the previous results, we first evaluated whether Lm induced 

effects required merely bacterial adhesion and invasion or were dependent on any other 

step of the Lm infectious process. Using an invasive but non-pathogenic Listeria strain, our 

data indicate that bacterial adhesion and entry are not sufficient to induce alterations in the 

host cell cycle stage distribution. It is possible that an active and massive bacterial 

multiplication in the cytosol of the infected cell is required to induce the cell cycle delay. 

Indeed, one can suppose that free-bacteria in the host cell cytosol could secrete bacterial 

factors or interfere with cellular proteins that would act directly in the nucleus interfering 

with host DNA and delaying cell cycle progression. Nevertheless, contrarily to what we 
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observed for the non-pathogenic Listeria strain, we showed that the cellular invasion step 

would be sufficient to modulate the cell cycle progression of host cells infected by K12_Inv 

bacteria. Pathogenic E. coli express and secrete, to the extracellular milieu, cyclomodulins 

(CDT, Cif and colibactin toxins), which within host cells, induce double strand breaks in the 

DNA (Nougayrede, Homburg et al. 2006), trigger genomic instability (Cuevas-Ramos, Petit 

et al. 2010) and lead to the G2 arrest of the host cell cycle (Comayras, Tasca et al. 1997; 

Taieb, Nougayrede et al. 2006). Thus, we hypothesize that the non-pathogenic K12_Inv 

could also express a toxin that is able to modulate the host cell cycle. In such conditions, 

the effect that we observed on the host cell cycle progression would be caused by the 

secretion of one of these proteins and unrelated to the invasion of the cells allowed by the 

expression of invasin. Whether K12 E. coli expresses a cyclomodulin deserves to be 

investigated. In the context of Lm infection, our findings suggest that the crosstalk between 

Lm and the host cell cycle occurs at some point when the bacterium is free in the host 

cytosol, following its escape from the phagocytic vacuole. Since after infection no effect 

was detected in cells without intracellular bacteria (bystander cells), it appears that effects 

exerted by Listeria on the host cell cycle are independent from any cellular or bacterial 

protein secreted to the extracellular milieu, which could interact with host cell surface 

proteins and stimulate a common cellular response to infection. 

 
2- Listeria induces effects on the cell cycle of various human 

cell lines 
Lm is able to invade, survive and multiply in both phagocytic and non-phagocytic cells and 

has the capacity to cross three tight physiological barriers: the intestinal, the blood-brain 

and the maternofetal barriers (Lecuit 2005). This Lm property leads bacterium to infect its 

mammalian host and to cause a range of severe pathologies (Vazquez-Boland, Kuhn et al. 

2001; Lecuit 2005; Lecuit 2007) It is therefore crucial to unravel whether this foodborne 

pathogen manipulates the cell cycle of cells from epithelial barriers to take progress in the 

infection. Caco-2 cells, derived from a colon adenocarcinoma, are similar to enterocytes 

from the small intestine (Rousset 1986; Gaillard and Finlay 1996; Valenti, Greco et al. 

1999). Grown under standard culture conditions, they undergo dramatic changes over 

time, which mimics the maturation process of epithelial cells during crypt-to-villus migration 

(Gaillard and Finlay 1996). This cell line became over the years a good model to study 
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cellular and molecular mechanisms that take place during host-pathogen interaction at the 

level of the intestine. As already mentioned above, it was previously demonstrated that Lm 

play a role on the modulation of the Caco-2 cell cycle (see also Box 1 and Box 2). 

Therefore, it became imperative to discover whether Lm induced effects on the host cell 

cycle were specific for Caco-2 cells or could be also observed in other cell lines. In this 

context, and because in vivo Lm specifically targets the placenta and fetus in pregnant 

women, we used here the human trophoblastic cell line Jeg-3. It is accepted that in vivo 

placenta cells are actively dividing making this cell line highly relevant for the present study 

and a good model to investigate if Lm infection could eventually interfere the placenta 

growing/maturation and the fetus development. Interestingly, we demonstrate that Lm 

interferes with the Jeg-3 cell cycle progression, inducing similar effects that we described 

previously for Caco-2 cells, even in shorter periods of infection (11h). These observations 

suggest that the S-phase delay induced by Lm is a broad event that takes place in 

different cell lines. Nevertheless, upon 5 h of infection any effect was detected. Since it is 

necessary that cells progress through the cell cycle to analyze whether they are 

arrested/delayed in a particular cell cycle stage or not, we believe that 5 h of infection are 

most probably not sufficient to reveal any effect, even during this time frame the pathogen 

already started to exert its effects at the molecular level. To better address this issue, we 

could infect cells synchronized in a specific cell cycle stage and follow the effects of Lm 

infection on cell cycle progression. However, several technical limitations need to be taken 

into account: 1) Lm infects preferentially cells in specific phases of the cell cycle 

(unpublished results) and 2) the drugs used to synchronize the cells can play a restrictive 

role in Lm infection. 

 

3- Listeria hijacks the machinery of DNA damage checkpoints 
during infection on diverse cell lines 
The slower progression of infected cells through the S-phase suggested that DNA 

replication takes longer due to Lm infection. DNA replication can be perturbed by several 

factors such as DNA damage, DNA-bound proteins and repeated or compacted DNA 

structures (Branzei and Foiani 2007). Many pathogens have been shown to induce host 

DNA damaged affecting cell cycle progression to their own benefit. Gram-negative 

bacteria as S. dysenteriae, E. coli, Haemophylus ducreyi, Salmonella enterica, 

Campylobacter and Helicobacter spp. produce cytolethal distending toxins (CDTs), which 
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exhibit features of type I deoxyribonucleases (Lara-Tejero and Galan 2000) inducing DSBs 

and activating DNA repair complexes. These events compromise cell proliferation that 

occurs at slower pace and lead to the arrest of host cells in different cell cycle stages. Lm 

is the first Gram-positive bacteria shown to be able to induce host DNA injury, in particular 

DSBs, generating increased levels of γH2A.x (Leitão et al, Submited).  

Caffeine is an in vitro inhibitor of phosphoinositide-3 kinase-like kinases  activity (Sarkaria, 

Busby et al. 1999; Zhou, Chaturvedi et al. 2000; Block, Merkle et al. 2004). In cultured 

cells, caffeine was shown to induce the override of the DNA damage checkpoint (Cortez 

2003) inducing the progression of the cell cycle even in the presence of DNA damage. 

Previous experiments carried out in the presence of caffeine indicated that Lm infection 

elicits the activation of DNA damage/replication checkpoints, since the caffeine was 

capable to override the Listeria-induced S-phase delay (Leitão et al, Submitted). To 

address and evaluate whether Lm manipulates the same pathways in different cell lines, 

we also performed analogue experiments in Jeg-3 cells in the presence or absence of 

caffeine. In these cells the effect of Lm infection on the cell cycle was also abrogated by 

caffeine, suggesting that Lm induces DNA DSBs, activating DNA damage checkpoints and 

probably leading to the host cell cycle delay that we observed in infected cells. Free in the 

host cell cytosol, Lm multiplies as fast as in rich culture media (Gaillard, Berche et al. 

1987; Portnoy, Jacks et al. 1988) acquiring available nutrients from the host, thereby 

rerouting part of the energy available for the host cell metabolic pathways to promote 

bacterial replication. As host cell proliferation is a highly energy-demanding process, the 

Lm-induced host cell cycle delay could offer bacteria an extra energy resource favoring its 

own proliferation (Leitão et al, Submitted). 

 

 

4- ATM and ATR are not essential to activation of the DNA 
damage checkpoint in response to Lm infection 
It was already described that after induction of host DSBs, many pathogens trigger the 

recruitment of proteins that are involved in DNA damage responses. For instance, H. 

pylori, N. gonorrhoeae and C. trachomatis (Toller, Neelsen et al. 2011; Vielfort, Soderholm 

et al. 2012; Chumduri, Gurumurthy et al. 2013) induce the accumulation of 

activated/phosphorylated H2A.x (γH2A.x) that is a mediator involved in the activation of the 
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DNA damage response. Increased levels of this protein were also observed in Lm infected 

cells. Signaling pathways rely on cascades of protein phosphorylation. Such cascades can 

be initiated by the activation of an upstream protein kinase that is sufficient to mobilize an 

extensive signaling network (Shiloh and Ziv 2013). The Ser/Thr protein kinases ataxia-

telangiectasia mutated (ATM) and RAD3-related (ATR), which have been described as 

regulators of DNA damage responses to maintain genome integrity (Cimprich and Cortez 

2008), are a prime example of this principle. ATM is the best known for its role as a chief 

mobilizer of the cellular response to DNA lesions, mainly, DSBs (McKinnon 2012; 

Perlman, Boder Deceased et al. 2012). On the other hand, ATR, which is also one of the 

major players in responses to genotoxic stresses, has a key role sensing and responding 

to many types of DNA damages and replication stresses including breaks, crosslinks and 

base adducts. Moreover, ATM and ATR have overlapping but non-redundant functions in 

the DNA damage response. Crosstalk between these pathways often occur as a 

consequence of inter-conversion of the activating DNA lesions (Mordes and Cortez 2008). 

Regarding this, to figure out the molecular mechanisms that lead to the activation of the 

intra-S checkpoint upon Lm infection, the role of this two major DNA damage sensor 

kinases was assessed. Our data indicate that these proteins are not essential for the DNA 

damage checkpoint activation occurring in response to Lm infection since when depleting 

these proteins it is still possible to observe the reported Lm-effects. Nevertheless, we 

cannot assert that these kinases are not involved on the signaling pathway that leads to 

the delay of infected cells in the S-phase of the cell cycle. It is possible that in conditions 

where ATM and ATR are depleted other kinases would be involved replacing ATM and 

ATR and masking the possible effects of their depletion. 

 

In conclusion, we have demonstrated that, in different human cell lines, intracellular 

Listeria probably free in the cell cytosol activates DNA damage/replication checkpoint 

pathways, apparently without activating the upstream protein sensors of the checkpoint 

activation cascades, ATM and ATR. This host response assures a delay in the cell cycle 

progression that appears to provide a beneficial environment usurped by L. 

monocytogenes to favor its own intracellular replication.  
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SUMMARY 

Listeria monocytogenes is a facultative intracellular pathogen widely used to 

understand the mechanisms evolved by pathogens to establish infection. However, its 

capacity to interfere with the host cell cycle has never been reported. We show that L. 

monocytogenes infection induces host DNA strand breaks and DNA 

damage/replication checkpoints activation. Consequently, infected cells exhibit an S-

phase delay resulting in longer cell cycle duration. The override of the checkpoint 

pathways reduces the number of infected cells and bacterial load indicating that the 

usurpation of checkpoints is required for full infection. We also show that L. 

monocytogenes infected cells undergo several rounds of division and that intracellular 

bacteria are equitably distributed in daughter cells. To our knowledge L. 

monocytogenes is the first Gram-positive human pathogen reported to induce host 

DNA damage favoring infection. Our data open new perspectives in the study of the 

crosstalk between intracellular pathogens and the host cell nucleus. 

 

HIGHLIGHTS 

-‐ Listeria infection delays S-phase increasing host cell cycle duration 

-‐ Listeria infected cells undergo several rounds of division 

-‐ Listeria is the first Gram-positive pathogen reported to induce host DNA injury 

-‐ Listeria activates DNA damage/replication checkpoints to favor infection 

  

sandrasousa
Confidential



3	  
	  

INTRODUCTION 

Listeria monocytogenes is a Gram-positive foodborne pathogen. This facultative 

intracellular bacterium causes listeriosis, a severe human disease with high mortality 

rate in immunocompromized individuals (Swaminathan and Gerner-Smidt, 2007). The 

development of the disease relies on its ability to cross three tight barriers (intestinal, 

blood-brain and placental) and to spread from cell to cell. L. monocytogenes employs 

an arsenal of virulence factors to invade, survive and multiply in both phagocytic and 

non-phagocytic cells (Camejo et al., 2011), hijacking host proteins and signalling 

pathways to establish and sustain infection (Pizarro-Cerda et al., 2012). 

Several bacterial pathogens were shown to subvert the host cell cycle to support their 

survival and growth within the host. Bacterial effectors that modulate the eukaryotic cell 

cycle (cyclomodulins) were described for Gram-negative bacteria (Nougayrede et al., 

2005; Oswald et al., 2005). These proteins can have either inhibitory or stimulatory 

effects on the host cell cycle, playing roles in bacterial pathogenicity and 

carcinogenesis. Blockage of the host cell cycle may favor infection by 1) limiting 

lymphocyte expansion, thereby promoting immune evasion; 2) jeopardizing epithelial 

barrier integrity, or 3) impairing shedding of epithelia prolonging bacterial colonization 

(Nougayrede et al., 2005). While Shigella and pathogenic Escherichia coli block host 

cells in the transition from the G2 to M phase of the cell cycle (Iwai et al., 2007; 

Marches et al., 2003; Nougayrede et al., 2006; Taieb et al., 2006), Neisseria 

gonorrhoeae and Porphyromonas gingivalis inhibit cell proliferation by inducing a G1 

arrest (Inaba et al., 2009; Jones et al., 2007; Kato et al., 2008; Pischon et al., 2009). 

Reversely, pathogenic bacteria can stimulate host cell proliferation thus increasing the 

number of infected cells and the risk of developing cancer. This is the case for 

Helicobacter pylori that enhances gastric epithelial cell proliferation by stimulating cell 

cycle progression (Peek et al., 1999). In addition, H. pylori was reported to induce host 

DNA double strand breaks (DSBs) contributing to genetic instability and chromosomal 

aberrations characteristic of gastric cancer (Toller et al., 2011). Chlamydia trachomatis 
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was epidemiologically linked to an increased risk of developing cervical cancer 

(Koskela et al., 2000). Although it slows the progression of host cells through the cell 

cycle (Balsara et al., 2006), this bacterium affects genome stability via several 

mechanisms: multipolar spindles (Grieshaber et al., 2006; Johnson et al., 2009), 

spindle assembly checkpoint override (Knowlton et al., 2011), cytokinesis failure 

(Brown et al., 2012; Campbell et al., 1989; Greene and Zhong, 2003; Sun et al., 2011), 

and induction of DNA damage coupled to impaired repair mechanisms (Chumduri et 

al., 2013). 

Even though manipulation of the host cell cycle is a common strategy used by 

pathogens in their own benefit, possible effects of L. monocytogenes infection on the 

host cell cycle are understudied. Albeit Listeria remains mostly cytosolic, it disturbs the 

nucleus and interferes with histone modifications (Hamon et al., 2007; Hamon and 

Cossart, 2011; Schmeck et al., 2005) and chromatin regulatory factors (Lebreton et al., 

2011) to modulate host gene expression. 

Considering that pathogens often exploit similar pathways to cause infection, we 

investigated whether Listeria interferes with the host cell cycle progression to create a 

suitable niche to colonize its host. Here, we demonstrate that L. monocytogenes 

induces DNA strand breaks in host cells, leading to the activation of DNA damage 

checkpoints, thus causing a delay in the host cell cycle that favors infection. 
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RESULTS 

Listeria-infected cells show increased cell cycle duration 

To investigate whether Listeria-infected cells were able to undergo consecutive division 

cycles, we performed live-cell imaging of Caco-2 cells infected with GFP-expressing L. 

monocytogenes (Lm) for 72 h. Cells were seeded at low density to allow consecutive 

rounds of cell division before reaching confluency and being arrested in G1/G0. Two 

days later, cells were incubated with a highly diluted Lm suspension (multiplicity of 

infection, MOI 0.1) to initially produce few bacterial infection foci. Over time, due to the 

cell-to-cell spreading capacity of Lm, bacteria propagated to the entire cell layer, 

without jeopardizing cell viability at least during 40 h (Movie S1). Phase contrast 

images were acquired at 10 min intervals, and Lm infection was confirmed by 

acquisition of intracellular GFP signal every 40 min. Analysis of three independent sets 

of movies revealed that infected Caco-2 cells were able to undergo successive division 

cycles (Movie S2). Figure 1A shows consecutive events of the cell division process of a 

Lm-infected cell giving rise to two infected daughter cells. In addition, we observed that 

Lm is excluded from the mitotic spindle during mitosis (Figure 1B) as previously 

described (Sanger and Sanger, 2012), and the two daughter cells appeared to inherit 

equivalent number of bacteria. 

The cell cycle duration of Lm-infected (Inf) and non-infected (NI) cells was determined 

by measuring the time elapsed between two consecutive metaphase plates on phase 

contrast movies. We found that the cell cycle duration was 3.5 h longer in Lm-infected 

(23.8 ± 0.7 h) as compared to NI cells (20.3 ± 0.4 h) (Figure 1C), corresponding to a 

17% increase in the overall cell cycle duration. Together these data indicate that, even 

though infected cells are able to divide, Lm modulates host cell cycle progression. 

 

Listeria infection alters the cell cycle stage distribution of host cells 

The increase in cell cycle duration induced by infection led us to hypothesize that Lm 

infection could trigger the accumulation of cells in a specific cell cycle stage. To assess 
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this, non-synchronized Caco-2 and Jeg-3 cells were left uninfected (NI) or infected for 

17 h with Lm (Inf) and their flow cytometric DNA histograms were generated allowing 

the quantification of cells in each cell cycle stage. As compared to NI cells, DNA 

histograms obtained for Lm-infected Caco-2 cells revealed an increase of 4% and 3% 

of cells in S-phase and G2/M-phases, respectively (Figure 2A, left panel). 

Concomitantly, a 7% decrease in G1/G0 cell fraction was observed. Similarly, Lm-

infected Jeg-3 cells showed a statistically significant accumulation of cells in S-phase 

and a reduction in G1/G0 cell fraction (Figure 2A, right panel). Importantly, we 

observed that sub-G1 peaks corresponding to hypodiploid or apoptotic cells are 

negligible and do not differ between infected and NI cells (Figure 2A). In addition, NI 

and Lm-infected cells did not differ with respect to the percentage of viable cells (Figure 

S1, upper panels). 

To evaluate whether the Lm-induced effects on host cell cycle stage distribution 

required merely bacterial adhesion and invasion, we performed similar infection assays 

using Listeria innocua expressing internalin A (InlA). This modified version of the non-

invasive species mimics Lm adhesion and invasion of Caco-2 cells, but does not 

accomplish the remaining cell infection steps (Gaillard et al., 1991). Non-synchronized 

Caco-2 cells were left uninfected (NI) or infected with either Lm or L. innocua InlA (Li-

InlA). Similar percentages of infected cells were obtained (77% for Lm and 70% for Li-

InlA), as quantified by immunofluorescence microscopy. We observed that, 17 h post-

infection, NI and Li-InlA-infected cells showed similar cell cycle stages distribution 

(Figure 2B). This result demonstrates that bacterial adhesion and entry, as well as InlA-

activated signalling pathways are not sufficient to induce the cell cycle stage alterations 

observed in Lm-infected cells. 

Above-mentioned DNA histograms (Figure 2A) were generated from a mixed 

population of cells arising from flasks incubated with Lm that comprise cells with 

intracellular bacteria (infected) and non-infected bystander cells. The percentage of 

infected cells was determined by flow cytometric analysis of live cells. Data showed for 
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Caco-2 cells were generated from a population of 75% infected and 25% bystander 

cells (Figure S1, lower panels), while in Jeg-3 only about 57% of the cells were infected 

(data not shown). In Caco-2 cells, the effects induced by Lm infection on the cell cycle 

were still detected in populations with percentages of infected cells as low as 33% 

(Figure S2). To further evaluate the outcome of Lm infection discriminating infected (Inf 

GFP+) from bystander (Inf GFP-) cells, we adapted the fixation method to preserve 

GFP fluorescence thus allowing the generation of DNA histograms from three different 

cell subsets: NI, Inf GFP- and Inf GFP+. As expected, DNA histograms generated 

solely from Inf GFP+ Caco-2 (Figure 2C, left panel) or Jeg-3 cells (Figure 2C, right 

panel) showed strengthened accumulation of cells in S-phase and decrease in G1/G0-

phase cell fractions. Differences revealed by the analysis of mixed cell populations 

appeared thus reinforced by the separate analysis of infected and bystander cells. 

Importantly, NI and bystander cells (Inf GFP-) showed similar DNA histograms and 

thus comparable cell cycle stage distributions (Figure 2C). 

Together, these data indicate that a complete Lm cellular infection cycle is required to 

alter the cell cycle stage distribution of infected host cells and that this effect is 

independent on any cellular or Lm-secreted factor acting from the extracellular milieu. 

 

Listeria-infected cells are delayed in S-phase 

The accumulation of Lm-infected cells in S-phase suggested that infection could be 

delaying the progression throughout this phase. To verify this hypothesis we followed 

the entry and progression in S-phase of Lm-infected and NI cells. Caco-2 cells were 

synchronized at the G1/S-phase boundary by a double thymidine block, released from 

cell cycle arrest by thymidine washout and simultaneously infected with Lm and 

analyzed 2 h and 5 h post-infection. Despite the low percentage of infected cells, 12% 

and 54% at 2 h and 5 h post-infection, respectively, the analysis of flow cytometric DNA 

histograms showed a delayed S-phase progression in Lm-infected cells as compared 

to NI cells (Figure 3A). Using the Watson algorithm we analyzed the split S-phase 
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statistics (S1, S2, S3, and S4, ranging from lower to higher DNA content) of DNA 

histograms obtained 5 h post-release/infection. We found an increase of Lm-infected 

cells in S1/S2, and a decrease in S3/S4 as compared to NI cells (Figure 3B). 

Altogether, our data showed that Lm infection induces a delay in S-phase of host cells, 

which should account for the increase in the cell cycle duration. 

 

Listeria induces DNA strand breaks in host cells  

We further evaluated the impact of Lm infection on host cell DNA integrity, a key factor 

affecting the progression through the S-phase. Caco-2 cells were incubated with Lm 

and host DNA integrity was assessed. Inducers of DNA strand breaks (etoposide and 

γ-irradiation) were used as positive controls. To assess the capacity of Lm to induce 

host DNA injury, we measured both single and double strand breaks (SSBs and DSBs) 

in individualized cells by single-cell gel electrophoresis (SCGE), Comet-like structures 

were analyzed by fluorescence microscopy and scored. Lm-infected cells showed a 

significant increase in the percentage of comet tail intensity (17.6 ± 1.3%) as compared 

to NI cells (12.9 ± 1.0%) (Figure 4A), indicating that Lm-infected cells suffer more DNA 

strand breaks. As expected, etoposide and γ-irradiation induced higher tail intensity 

percentages (21.9 ± 1.5 and 25.4 ± 1.5%, respectively), which correlate to higher levels 

of DNA injury. To further corroborate these results we performed pulse-field gel 

electrophoresis (PFGE), which allows the separation of intact genomic DNA from 

fragmented DNA. Genomic DNA plugs from NI and Lm-infected cells were subjected to 

electrophoresis. The band corresponding to the fragmented DNA was more intense in 

Lm-infected than in NI samples, reflecting a higher amount of undersized molecules of 

chromosomal DNA upon infection (Figure 4B). In etoposide-treated and γ-irradiated 

cells, other bands of lower molecular weight were detected, revealing the higher extent 

of DNA damage. To exclude the presence of DNA from bacterial origin in the band 

identified as fragmented DNA in infected samples, genomic plugs were prepared 

containing different amounts of Lm. Figure S3 shows that Lm genomic DNA was 
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undetectable even in highly concentrated samples (108 bacteria). These data rule out 

the possibility that, in infected cells, Lm genomic DNA could account for the 

appearance of an intensified band corresponding to fragmented DNA, and confirmed 

that Lm infection induces damage on host cell DNA. 

DNA injury was also monitored by the level of histone H2A.X phosphorylation on serine 

139 (γH2A.X), which occurs promptly in response to DNA damage. Immunoblot assays 

showed that levels of γH2A.X, normalized to total H2A.X, were augmented by 32% in 

Lm-infected as compared to NI cells (Figure 4C). Control etoposide-treated cells 

exhibited over 6-fold more γH2A.X than NI cells (Figure S4). The quantification of 

γH2A.X levels by immunofluorescence also showed a 2-fold increase in the number 

and intensity of γH2A.X foci in Lm-infected as compared to NI cells (Figure 4D). In 

accordance with SCGE and PFGE data, these assays confirmed that Lm infection 

induces host DNA strand breaks. 

 

Listeria hijacks the machinery of DNA damage checkpoints to favor infection 

Taking into account that Lm induces host DNA strand breaks, we hypothesized that it 

could induce the activation of DNA damage checkpoints. To determine if the effects we 

observed were related to a physiological response to Lm-induced DNA strand breaks, 

we conducted cell infection experiments in the presence of caffeine, an extensively 

used inhibitor of DNA damage checkpoint responses (Cortez, 2003). Caco-2 cells were 

incubated with Lm in the presence or absence of caffeine and DNA histograms were 

generated. In the presence of caffeine, both Lm-infected and NI cells showed similar 

cell cycle stage distributions, thus indicating that caffeine prevents the effect of Lm 

infection on the host cell cycle (Figure 5A). Using γ-irradiated cells (IR), that display 

extensive DNA damage, we confirmed that caffeine was inducing the override of the 

DNA damage checkpoint. These data show that Lm infection affects the progression of 

the host cell cycle through the activation of DNA damage checkpoints. 
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To verify whether the increase in cell cycle duration of Lm-infected cells (Figure 1C) 

was due to checkpoint activation, we quantified the cell cycle duration of NI and Lm-

infected Caco-2 cells in presence or absence of caffeine. The increase in cell cycle 

duration induced by Lm was abrogated when checkpoint responses were inhibited by 

caffeine (Figure 5B). This result indicates that cell cycle delay induced by Lm is related 

to its ability to cause host DNA injury and the consequent activation of cell cycle 

checkpoints. 

We then investigated if the activation of DNA damage checkpoints is advantageous for 

Lm infection. Flow cytometric analysis revealed that the inhibition of DNA damage 

checkpoints by caffeine added after invasion, leads to a 20% decrease in the number 

of infected (GFP+) cells (Figure 5C). In addition, in the presence of caffeine, Lm-

infected cells showed only 60% mean fluorescence intensity (MFI) as compared to 

non-caffeine-treated infected cells, suggesting the presence of fewer bacteria per cell. 

In agreement, enumeration of colony forming units revealed that caffeine significantly 

decreased the number of intracellular bacteria to about 42%, as compared to non-

treated cells (Figure 5D). We verified that caffeine had no effect on Lm growth in vitro 

in pure culture (Figure S5). Altogether, our results demonstrate that the ability of Lm to 

induce the activation of DNA damage checkpoint is important to achieve its full 

infection potential. 

 

DISCUSSION 

The interplay between Listeria and the host cell nucleus has been addressed from an 

epigenetic point of view, disregarding the possible outcome of the infection on the host 

cell cycle fate. In this study, we evaluated whether L. monocytogenes interferes with 

the host cell cycle progression to create a suitable niche for colonizing the host. We 

demonstrated that Listeria induces host DNA strand breaks, therefore hindering the 

progression of the host cell cycle and inducing an increase in the overall cell cycle 

duration. The delay induced by Listeria on the host cell cycle relies on the activation of 
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DNA damage checkpoints and favors its infection capacity. Our data indicate that the 

effects exerted by Listeria on the host cell cycle are independent from any cellular or 

bacterial protein secreted to the extracellular milieu, which could interact with host cell 

surface proteins and stimulate cellular responses to infection. In addition, we showed 

that bacterial adhesion and entry are not sufficient to induce alterations in the host cell 

cycle stage distribution. Together, these findings suggest that the crosstalk between 

Listeria and the host cell cycle occurs at some point when the bacterium is free in the 

host cytosol, following its escape from the phagocytic vacuole. 

While Listeria-infected cells proliferate for consecutive rounds and give rise to infected 

daughter cells, several other pathogenic bacteria have been shown to arrest the cell 

cycle in specific phases. In comparison, Listeria induces thus a moderate phenotype 

delaying specific phases of the cell cycle. Here we focused on the S-phase delay, 

although in some experiments we also detected an increase in the G2-phase cell 

fraction. This increase deserves further studies to unravel whether it results from the 

direct hindrance of the progression through the G2-phase or is merely the 

consequence of the delayed S-phase. 

The slower progression of infected cells through the S-phase suggested that DNA 

replication takes longer due to Listeria infection. DNA replication can be perturbed by 

several factors such as DNA damage, DNA-bound proteins and repeated or compacted 

DNA structures (Branzei and Foiani, 2007). We show here that Listeria infection 

induces host DNA strand breaks, which probably accounts for the increased cell cycle 

duration. Other pathogenic bacteria have been shown to induce host DNA strand 

breaks and affect cell cycle progression. As we demonstrated here for Listeria, C. 

trachomatis induces DNA DSBs generating increased levels of γH2A.X (Chumduri et 

al., 2013), without compromising cell proliferation that occurs at a slower pace (Balsara 

et al., 2006). Pseudomonas aeruginosa infection generates oxidative DNA damage 

thus triggering the base excision DNA repair pathway (Wu et al., 2011). Other Gram-

negative pathogenic bacteria, such as S. dysenteriae, E. coli, Haemophylus ducreyi, 
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Salmonella enterica, Campylobacter and Helicobacter spp. produce cytolethal 

distending toxins (CDTs), which exhibit features of type I deoxyribonucleases (Lara-

Tejero and Galan, 2000) inducing DSBs and activating DNA repair complexes. In 

addition, E. coli from the phylogenetic group B2 produces colibactin, a cytotoxin that 

causes DNA DSBs, generating genomic instability and ultimately causing cell cycle 

arrest and cell death (Cuevas-Ramos et al., 2010; Nougayrede et al., 2006; Putze et 

al., 2009). H. pylori was also shown to compromise the integrity of host DNA, inducing 

DSBs triggering the recruitment of repair factors and H2A.X phosphorylation (Toller et 

al., 2011). N. gonorrhoeae was recently shown to cause DNA damage, leading to 

accumulation of γH2A.X at repair foci and impaired G2-phase progression (Vielfort et 

al., 2013). So far, all pathogenic bacteria reported to induce host DNA strand breaks 

are Gram-negative species. Here, we identify Listeria has the first Gram-positive 

bacteria able to induce host DNA injury. 

During infection, Listeria was shown to modulate host gene expression via two 

virulence factors, LntA and LLO (Hamon et al., 2007; Hamon and Cossart, 2011; 

Lebreton et al., 2011; Schmeck et al., 2005). If chromatin targeting occurs during S-

phase, one could postulate that transcription and DNA replication machineries would 

compete for the access to DNA, thus delaying S-phase progression. In particular, LntA 

accesses the nucleus and manipulates a host chromatin regulatory factor promoting 

transcription of a number of genes (Bierne et al., 2009; Lebreton et al., 2011). 

Moreover, LntA has been suggested to trigger chromatin unwinding in specific 

promoter regions and thus, it could affect DNA replication. In early phases of infection, 

extracellular LLO induces histone modifications that correlate with modulated 

transcription of a subset of host genes (Hamon et al., 2007). However, as mentioned 

above, our data do not support the role for bacterial secreted proteins acting from the 

extracellular milieu. Moreover, LLO is rapidly degraded once Listeria escapes from the 

vacuole, being unlikely to exert its effect on host histones once the bacteria are in the 

cell cytoplasm (Hamon et al., 2007). Nevertheless, it is plausible that Listeria-induced 
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DNA strand breaks result from the crosstalk between host gene expression modulation 

and host DNA transcription. In fact, stalled replication forks may become inherently 

unstable and prone to collapse, breaking or rearranging, and activating elements 

shared by DNA damage and DNA replication checkpoint cascades. Our data indicate 

that Listeria infection elicits the activation of DNA damage/replication checkpoints, 

which delay cell cycle progression to allow possible DNA repair and/or fork protection. 

Alternatively, and similarly to other pathogenic bacteria, Listeria infection could impair 

the capacity of host cells to repair DNA injuries. Indeed, H. pylori infection induces host 

DNA injury by combining increased oxidative DNA damage and deregulation of central 

DNA repair pathways (Machado et al., 2010), Shigella was also reported to impair host 

DNA repair response (Bergounioux et al., 2012) and recently, C. trachomatis infection 

was shown to suppress DNA damage response despite the generation of DSBs 

(Chumduri et al., 2013). It is thus possible that Listeria uses one of these strategies or 

evolved a yet unknown mechanism to induce host DNA damage. 

Free in the host cell cytosol, Listeria multiplies as fast as in rich culture media (Gaillard 

et al., 1987; Portnoy et al., 1988) acquiring available nutrients from the host, thereby 

rerouting part of the energy available for the host cell metabolic pathways to promote 

bacterial replication. As host cell proliferation is a highly energy-demanding process, 

the Listeria-induced host cell cycle delay could offer bacteria an extra energy resource 

favoring its own proliferation. C. trachomatis that, similarly to Listeria, slows host cell 

cycle progression (Balsara et al., 2006), multiplies in the host cell cytoplasm inside 

inclusion bodies that contain up to several hundreds of bacteria (Brunham and Rey-

Ladino, 2005), thereby demanding high amounts of host cell energy to fulfill its life 

cycle. It is possible that these pathogens share a common strategy to manipulate the 

host, ultimately culminating in a favored bacterial growth and multiplication. However, 

one can foresee that bacterial overload might become a threat for host cell survival. It 

is possible that Listeria overcomes this hindrance by allowing cell division to proceed 

instead of fully arresting the cell cycle. For bacteria this might provide a dual advantage 
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as it allows the infection of the two daughter cells and the consequent reduction of the 

total intracellular bacteria to damage-limiting numbers that would avoid cell death. 

In conclusion, we have demonstrated that L. monocytogenes induces host DNA strand 

breaks. Infected cells sense the damaged DNA, and as a way to prevent genomic 

instability, they activate DNA damage/replication checkpoint pathways. This host 

response assures a delay in the cell cycle progression aiming at DNA repair and/or 

protecting replication forks. However, it appears to also insure a beneficial environment 

usurped by L. monocytogenes to favor its own intracellular replication. 	  
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EXPERIMENTAL PROCEDURES 

Bacterial strains, cell lines and growth conditions 

Please refer to the Supplemental Experimental Procedures. 

 

Infection assays 

Infection assays of non-synchronized and synchronized cells are described in 

Supplemental Experimental Procedures.	  

 

Flow cytometry analyses 

To assess cell viability and quantify infected cells, unfixed cells were washed and 

resuspended in phosphate-buffered saline (PBS) supplemented with 2% FBS and 2.5 

µg/ml propidium iodide (PI, for exclusion of dead/dying cells). Percentage of infected 

cells (%GFP+) and their mean GFP fluorescence intensity were evaluated on a GFP-

A/PE-A plot, following the exclusion of debris (FSC-A/SSC-A), cell doublets (FSC-

A/FSC-W) and dead cells (PE-A/PerCP-Cy5-A). To generate DNA histograms, cells 

were fixed with 70% ethanol, washed and incubated at 37°C for 3 h in PBS containing 

40 µg/ml PI and 10 µg/ml ribonuclease A (RNase A). Alternatively, to minimize the 

quenching of GFP signal caused by the standard fixation protocol, cells were fixed 

using a combined paraformaldehyde (PFA):ethanol fixation method. Single cell 

suspensions were fixed for 1 h at 4°C in the dark with 4-fold diluted Cytofix (BD 

Biosciences), corresponding to 1% (w/v) PFA solution. Afterwards cells were washed, 

fixed with ethanol 70% for 30 min and washed again prior to the incubation with PI and 

RNaseA. Cells were filtered and at least 10,000 gated events were acquired in a FACS 

Canto II flow cytometer (BD Biosciences). Flow cytometric DNA histograms were 

obtained on a PE-A histogram with linear scaling after the exclusion of debris (FSC-

A/SSC-A), and cell doublets (PE-A/PE-W). In addition, for samples fixed with both PFA 

and ethanol, GFP+ (infected) and GFP- (bystander) populations were discriminated on 

a GFP-A/FSC-A plot, allowing the generation of independent DNA histograms for each 
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population. Data were analyzed using FlowJo software (TreeStar, Inc.). The 

percentage of cells in each cell cycle phase was obtained after applying the Watson 

pragmatic model, and split S-phase statistics were quantified whenever stated. 

 

Time-lapse microscopy 

Caco-2 cell suspensions were seeded at 2 × 104 cells per Ibitreat µ-dishes (Ibidi), 

allowed to grow for 24 h, and left uninfected or incubated with Lm suspension at MOI 

0.1. After 1 h of invasion, both non-infected and Lm-infected Caco-2 cells were cultured 

in phenol red-free medium supplemented with gentamicin, plus caffeine (whenever 

stated), and followed by live-cell imaging until 72 h post-infection. Images were 

acquired using an inverted epi-fluorescence Axiovert 200M microscope (Zeiss) 

equipped with a NanoScan Piezo Z stage (Prior Scientific Instruments). An 

environmental control chamber was used to maintain cells at 37°C in a 7% CO2 

humidified atmosphere. Shutters, filter wheels and point visiting were driven by Micro-

Manager 1.4 software (Edelstein et al., 2010) and images captured using a CoolSNAP 

HQ camera (Roper Scientific). Phase contrast images were acquired every 10 min, 

while GFP fluorescence pictures were obtained every 40 min, at multiple points for 72 h 

with a 20x (0.30 NA) objective lens. Fiji software (Schindelin et al., 2012) was used to 

compile time-lapse images, merge phase contrast with GFP signal and analyze the 

resulting movies.  

 

Single-Cell Gel Electrophoresis (SCGE or Comet assay)  

DNA damage was measured by alkaline single-cell gel electrophoresis according to 

methods previously described (Duarte et al., 2007). Approximately 104 cells harvested 

by trypsinization were suspended in 0.6% low melting point agarose prepared in PBS. 

The mixture was dispensed onto glass microscope slides previously coated with 1% 

normal melting point agarose, and allowed to set on ice under a coverslip. Coverslips 

were removed and slides were kept overnight in ice-cold lysis buffer [10 mM Tris, 
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100 mM disodium EDTA, 2.5 M NaCl, pH 10, with 1% Triton X-100 (v/v) freshly added], 

and washed in ice-cold distilled water. In a horizontal electrophoresis tank, slides were 

kept submerged in ice-cold alkaline electrophoresis solution (300 mM NaOH, 1 mM 

disodium EDTA) for 20 min. Electrophoresis was performed for 1 h (0.66 V/cm, 

300 mA) at 4°C. Slides were neutralized with PBS for 20 min and washed with double-

distilled water, before drying at 37°C. All procedures were carried out under subdued 

light to minimize background DNA damage. Slides were re-hydrated in distilled water, 

stained with 2.5 µg/ml PI for 20 min, washed for 30 min and allowed to dry at 37°C. 

Comets were visualized under an Axioskop fluorescence microscope (Zeiss) at 200x 

magnification, and images were captured by an AxioCamMR camera (Zeiss). 

Approximately 150 cells were analyzed per sample, 50 per triplicate slide. Comet 

Assay IV™ software (Perceptive Instruments) was used to score the percentage of 

DNA in the comet tail (% tail intensity). The intensity of the tail relative to the head 

reflects the extent of DNA breaks (Collins, 2004). 

 

Pulse-Field Gel Electrophoresis (PFGE) 

Detection of DNA double strand breaks (DSBs) by PFGE was performed according to 

previously described methods (Hanada et al., 2007; Toller et al., 2011) with 

modifications. Trypsinized cells were washed, and 0.75% agarose plugs of 5 x 105 cells 

were prepared with CHEF Mammalian Genomic DNA Plug Kit following the 

manufacturer’s instructions (BioRad Laboratories). Plugs were incubated with 

proteinase K overnight at 50°C without agitation, washed and submitted to 

electrophoresis for 21 h at 14°C in 0.9% (w/v) SeaKem Gold Agarose (Lonza) prepared 

in 0.5x Tris/boric acid/EDTA (TBE, BioRad Laboratories) using a BioRad CHEF DR III 

apparatus with three consecutively executing blocks of run conditions (block 1:  9 h, 

included angle 120°, switch time 30 to 18 s, 5.5 V/cm; block 2:  6 h, included angle 

117°, switch time 18 to 9 s, 4.5 V/cm; and block 3:  6 h, included angle 112°, switch 

time 9 to 5 s, 4.0 V/cm). Under these conditions, mammalian genomic DNA fragments 
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of lower molecular weight enter the gel, while high molecular weight DNA remains in 

the well. Gels were stained with ethidium bromide and images acquired under UV 

transillumination using a Molecular Imager Gel Doc™ XR+ System (BioRad 

Laboratories).  

 

Immunoblot analyses 

Please refer to the Supplemental Experimental Procedures. 

 

Immunofluorescence analyses 

Caco-2 cells grown on top of coverslips were infected or left uninfected, and fixed with 

3% PFA (20 min), quenched with 50 mM NH4Cl (30 min) and permeabilized with 0.1% 

Triton X-100 (5 min). To quantify the cells infected by L. innocua InlA, cells were 

incubated with rabbit anti-L. innocua antibodies R6 (Dramsi et al., 1998) diluted 1:250 

in blocking solution (1% BSA and 20% FBS in PBS), followed by incubation with 

AlexaFluor488-conjugated anti-rabbit antibody (Invitrogen) diluted 1:150, phalloidin-

TRITC (Sigma) diluted 1:500 and 2 ng/ml DAPI (Sigma). Coverslips were mounted with 

Mowiol mounting medium (Kuraray Specialties Europe GmbH). For Lm-infected cells 

quantification, cells were incubated with phalloidin-TRITC and DAPI in blocking 

solution. Quantification of infected cells was performed by visual inspection under an 

Olympus BX53 microscope. For γH2A.X quantification, cells were incubated with 

mouse anti-pSer139 histone H2A.X, clone JBW301 (Millipore) diluted 1:500 in blocking 

solution, followed by incubation with Cy3-conjugated anti-mouse antibody (Jackson 

ImmunoResearch) diluted 1:150 and DAPI. Images were acquired with a 20x (0.17NA) 

objective, and Image J software (Schneider et al., 2012) was used to quantify images 

corresponding to approximately 500 cells in each sample. Analyses were performed by 

quantifying the integrated density of pixels, corresponding to γH2A.X foci and 

normalizing values to the total number of nuclei.  
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Statistical analyses 

Statistical analyses were performed with Prism 5 software (GraphPad software, Inc.). 

One-way ANOVA with post hoc testing analyses (Neuman-Keuls, Bonferroni) was used 

for pair-wise comparison of means from three of more unmatched groups. Two-tailed 

unpaired Student's t-test was used for comparison of means between 2 samples. The 

differences between samples were considered to be not statistically significant for p 

value > 0.05. 
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FIGURE LEGENDS 

	  

Figure 1. Lm-infected cells are able to undergo consecutive rounds of division 

although with increased duration. 

(A-C) Caco-2 cells were left uninfected (NI) or infected with Lm (Inf, 1 h, MOI 0.1), 

incubated with gentamicin and followed by live-cell imaging during 72 h. Lm infection 

was confirmed by simultaneous acquisition of intracellular GFP signal and phase 

contrast images. (A) Selected images from time-lapse microscopy video (Movie S1) 

showing a Lm-infected Caco-2 cell dividing into two infected daughter cells. Upper 

panel: phase contrast pictures; lower panel: merge of phase contrast with GFP signal 

image. Cell undergoing division and resulting daughter cells are indicated by arrows. 

Several stages of the cell cycle are depicted: interphase (0 min), nuclear envelope 

breakdown (80 min), (pro)metaphase (200 min), late anaphase (240 min), daughter 

cells in interphase (370 min). Partial time is indicated (0 corresponds to 29 h 40 min 

post-infection). Scale bar = 15 µm. (B) Inset of Figure 1A showing Lm (in green) 

excluded from the mitotic spindle. Merged images, phase contrast image and GFP 

signal image (from left to right). (C) Quantification of the cell cycle duration of Lm-

infected (Inf) and non-infected (NI) Caco-2 cells. The period of time elapsed between 

two consecutive metaphase plates was quantified in time-lapse images. Each dot 

represents one cell and the total number of cells analyzed is indicated below the graph. 

Results are representative of five independent experiments. ***p-value < 0.001 by 

Student's t-test.  

 

Figure 2. Lm infection induces alterations in the cell cycle stage distribution of 

Caco-2 and Jeg-3 cells. 

(A and C) Caco-2 or Jeg-3 cells were left uninfected (NI) or infected (Inf, 1 h, MOI 0.5 

and 0.1, respectively), and subsequently maintained for 16 h in medium supplemented 

with gentamicin. (A) Quantitative analysis of flow cytometric DNA histograms obtained 
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from Caco-2 and Jeg-3 cells fixed with ethanol (upper panels). Cell cycle stage 

distribution was obtained after applying the Watson pragmatic model. Results are 

means ± SE from five independent experiments. Representative flow cytometric DNA 

histograms are shown (lower panels; 2N: G1/G0 cells; 4N: G2/M cells). * p-value < 

0.05, ** p-value < 0.01, *** p-value < 0.001  by Student's t-test. (B) Caco-2 cells were 

left uninfected (NI) or incubated for 1 h with Lm (MOI 0.5) or L. innocua-InlA (Li-InlA, 

MOI 50), and subsequently maintained for 16 h in medium supplemented with 

gentamicin. Quantitative analysis of flow cytometric DNA histograms obtained from 

ethanol-fixed cells. Results are means ± SE from five independent experiments. * p-

value < 0.05, *** p-value < 0.001 by Student's t-test. (C) Quantitative analysis of flow 

cytometric DNA histograms obtained from Caco-2 and Jeg-3 cells subjected to 

combined PFA:ethanol fixation 17 h post-infection (upper panels). Cell cycle stage 

distribution was obtained after applying the Watson pragmatic model. Results are 

means ± SE from four (Caco-2) or three (Jeg-3) independent experiments. 

Representative flow cytometric DNA histograms are shown (lower panels). Asterisks (*) 

indicate statistical comparisons between NI and Inf GFP+ populations; hashes (#) 

indicate statistical comparisons between Inf GFP- and Inf GFP+ populations, and 

section signs (§) indicate statistical comparisons between NI and Inf GFP- populations. 

* and § p-value < 0.05, ** and ## p-value < 0.01, *** and ### p-value < 0.001 by one-way 

ANOVA.  

 

Figure 3. Lm induces a delayed S-phase progression in Caco-2 cells. 

(A-B) Caco-2 cells synchronized at G1/S-phase transition by double thymidine block 

were released from the cell cycle arrest (0 h), left uninfected (NI) or infected with Lm 

(Inf, 1 h, MOI 10), and DNA histograms were generated 2 and 5 h post-infection from 

ethanol-fixed cells. (A) Representative flow cytometric DNA histograms of two 

independent experiments. 2N: G1/G0 cells; 4N: G2/M cells. (B) Analysis of split S-
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phase statistics (S1, S2, S3 and S4, ranging from lower to higher DNA content) 

representative of two independent experiments. 

 

Figure 4. Lm induces DNA strand breaks in host cells. 

(A-D) Caco-2 cells were left uninfected (NI) or infected with Lm (Inf, 1 h, MOI 0.5), and 

subsequently maintained for 19 h in medium supplemented with gentamicin. 

Etoposide-treated (Etop) and γ-irradiated (IR) cells were used as positive controls. (A) 

DNA strand breaks measured by Single-Cell Gel Electrophoresis (SCGE) in 

individualized cells. Representative images of comets with respective Comet Assay IV 

software screenshots for each condition are shown in left panels. Quantification of 

comet tails intensity is shown on the right panel. The extent of DNA breaks was 

determined by measuring comet tail intensity relative to the head. Each dot represents 

the measured tail intensity percentage for a single comet. The number of comets 

analyzed for each condition is indicated below the graph. Data are representative of 

three independent experiments. * p-value < 0.05 by one-way ANOVA. (B) DNA integrity 

assessed by Pulse Field Gel Electrophoresis (PFGE). Bands corresponding to intact 

and fragmented genomic DNA are indicated. Data are representative of three 

independent experiments. (C) Quantification of the DSBs marker γH2A.X by 

immunoblot. Levels of γH2A.X were normalized to total H2A.X, the ratio obtained for NI 

was arbitrarily fixed to 100 and the ratio for infected cells was expressed as a relative 

value. Graph shows means ± SE from four independent experiments. (D) 

Quantification of γH2A.X levels by immunofluorescence. Representative 

immunofluorescence images showing γH2A.X foci (red) in DAPI-stained nuclei (blue) 

(left panel). Scale bar = 20 µm. Graph shows means ± SE from four independent 

experiments (right panel). Approximately 500 nuclei were analyzed for each condition, 

and integrated density of pixels corresponding to γH2A.X foci were normalized to the 

total number of nuclei. NI was arbitrarily fixed to 100 and the ratio for infected cells was 

expressed as a relative value. * p-value < 0.05 by one-sample t-test. 
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Figure 5. Lm hijacks the DNA damage checkpoints machinery to favor infection. 

(A-D) Caco-2 cells were left uninfected (NI) or infected with Lm (Inf, 1 h, MOI 0.5), and 

subsequently maintained for 19 h in medium supplemented with gentamicin in the 

presence or absence of 2 mM caffeine. γ-irradiated cells (IR) were used as controls. 

(A) Quantitative analysis of flow cytometric DNA histograms obtained 20 h post-

infection from ethanol-fixed cells (upper panel). Results are means ± SE from four 

independent experiments. Representative flow cytometric DNA histograms are shown 

(lower panels). * p-value < 0.05 by one-way ANOVA. (B) Quantification of the cell cycle 

duration of Lm-infected (Inf) and non-infected (NI) Caco-2 cells, in the presence or 

absence of caffeine. The period of time elapsed between two consecutive metaphase 

plates was quantified in time-lapse images. Each dot represents one cell and the total 

number of cells analyzed is indicated below the graph. Results are representative of 

two independent experiments. **p-value < 0.01 by Student's t-test. (C and D) 

Quantification of the percentage of infected cells (GFP+) and the mean GFP 

fluorescence intensity (GFP+ MFI) performed by flow cytometric analysis of unfixed 

cells. Intracellular levels of bacteria were quantified by enumeration of viable bacteria 

after cells lysis. (C) Representative experiment showing the percentage of infected 

cells (GFP+ population) and their mean GFP fluorescence intensity (dotted line) 

evaluated by flow cytometry on a GFP/PE density plot. (D) Graphs showing means ± 

SE of the percentage of infected cells (left panel), mean GFP fluorescence intensity 

(GFP+ MFI, middle panel) and intracellular bacteria (right panel) from three 

independent experiments. Values are given relative to that of the infection in the 

absence of caffeine, which is arbitrarily fixed at 100. * p-value < 0.05, ** p-value < 0.01 

by one-sample t-test.	  
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SUPPLEMENTAL INFORMATION 

 

Experimental Procedures 

 

Bacterial strains, cell lines and growth conditions 

Listeria monocytogenes EGDe-cGFP (Balestrino et al., 2010) (designated here as Lm) 

and Listeria innocua InlA (Lecuit et al., 1997) were grown in Brain Heart Infusion (BHI, 

Difco Laboratories) supplemented with 7 µg/ml chloramphenicol, at 37°C under aerobic 

conditions with shaking. Human colorectal adenocarcinoma cell line Caco-2 (ATCC 

HTB-37) was propagated in complete growth medium [Eagle's Minimum Essential 

Medium (EMEM), 20% (v/v) fetal bovine serum (FBS), 1 mM sodium pyruvate, 0.1 mM 

non-essential amino acids], at 37°C in a 7% CO2 humidified atmosphere. Human 

choriocarcinoma cell line Jeg-3 (ATCC HTB-36) was cultured in similar conditions 

except that medium was supplemented with 10% FBS. Cell culture medium and 

supplements were purchased from Lonza. Whenever stated, cells were treated with 40 

µM etoposide (Sigma) for 17-20 h, or exposed to γ-rays (5 Gy) using a 137Cs source 

(Gammacell 1000 irradiator, Nordion) to induce DNA strand breaks.  

 

Infection of non-synchronized cells 

Caco-2 or Jeg-3 cell suspensions were seeded at 6 × 105 cells per 60-mm dish (Nunc) 

and propagated for 48 h. Lm or L. innocua InlA were grown to an optical density at 600 

nm (OD600) of 0.7, washed and diluted in EMEM. Cells were washed with EMEM, and 

incubated with Lm suspension at a MOI of 0.1-0.5, or with L. innocua InlA at MOI 50. 

After 1 h invasion, both non-infected and infected cells were cultured for 16-19 h in 

complete medium supplemented with 50 µg/ml gentamicin to eliminate extracellular 

bacteria and prevent re-infection, plus 2 mM caffeine (whenever stated). Cells were 

washed, harvested by trypsinization and processed for further analyses. Intracellular 
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bacteria were quantified by enumeration of viable bacteria after cells lysis in 0.2% 

Triton X-100 and plating on BHI agar as described previously (Reis et al., 2010).  

 

Infection assay of synchronized cells 

Caco-2 cell suspensions were seeded at 4 × 105 cells per 60-mm dish and 

synchronized at the G1/S-phase boundary by a double thymidine block (2 mM 

thymidine for 18 h, released 8 h, and a second arrest with 2 mM thymidine for 18 h). 

Cells were released from G1/S block and incubated for 1 h with Lm suspension at MOI 

10, and allowed to progress into S-phase for 1 and 4 h in complete medium 

supplemented with 50 µg/ml gentamicin. Cells were washed, harvested by 

trypsinization and processed for flow cytometry analyses. 

 

Immunoblot analyses 

Cells were washed with ice-cold PBS and lysed [50 mM Tris-HCl pH 7.4, 150 mM 

NaCl, 1 mM EDTA, 1% sodium deoxycholate, 1% SDS, 1% NP-40; protease 

(Complete) and phosphatase (PhosStop) inhibitor cocktails (Roche Pharmaceuticals)] 

for 1 h at 4°C. Cell debris were removed by centrifugation at 16,000 g for 15 min at 

4°C, and lysates were sonicated for 5 s to shear DNA. Protein samples were boiled in 

SDS-PAGE loading buffer containing 5% β-mercaptoethanol, resolved in a 15% SDS-

PAGE gel, and transferred onto nitrocellulose membrane. After blocking with 5% non-

fat dry milk in TBS-T (20 mM Tris-HCl, pH 7.4, 137 mM NaCl, 0.1% Triton X-100), 

membranes were immunoblotted with anti-pSer139 histone H2A.X, clone JBW301 

(Millipore) diluted 1:4500, and anti-histone H2A.X C-20 (sc-54606; Santa Cruz 

Biotechnology) diluted 1:1000, followed by incubation with horseradish peroxidase-

conjugated secondary antibodies, and chemiluminescent autoradiography. Band 

intensity was quantified using Image Lab 3.0 software (BioRad Laboratories). 
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Preparation of Lm genomic DNA plugs for PFGE 

Plugs containing only Lm (106-108 bacteria per plug) were prepared using the same 

protocol described in Experimental Procedures. 

 

In vitro growth of Lm 

Lm growth curves were obtained in BHI medium at 37°C with agitation, in the presence 

or absence of 2 mM caffeine. The optical density at 600 nm (OD600) was assessed at 

45 min intervals until stationary phase. 
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Movie S1 (related to Figure 1). Lm-infected cells undergo cell division originating 

two infected daughter cells. 

Caco-2 cells were infected (Inf, 1 h MOI 0.1), subsequently maintained in medium 

supplemented with gentamicin and followed by live-cell imaging during 72 h. Lm 

infection was confirmed by simultaneous acquisition of GFP signal and phase contrast 

images. Scale bar = 50 µm. Frame rate: 15 frame per second (MP4). 

 

Movie S2 (related to Figure 1). Lm-infected cell undergoing consecutive rounds 

of division. 

Caco-2 cells were infected (Inf, 1 h MOI 0.1), subsequently maintained in medium 

supplemented with gentamicin and followed by live-cell imaging during 72 h. Lm 

infection was confirmed by simultaneous acquisition of GFP signal and phase contrast 

images. Scale bar = 25 µm. Frame rate: 15 frame per second (MP4). 

 

Figure S1 (related to Figure 2). Lm infections of Caco-2 cells do not interfere with 

cell viability.  

Caco-2 cells were left uninfected (NI) or infected with Lm (Inf, 1 h, MOI 0.5), and 

subsequently maintained for 16 h in medium supplemented with gentamicin. 

Representative flow cytometric density plots are shown. Viability was examined using 

unfixed cells in the presence of propidium iodide on a flow cytometric PE-A/PerCP-

Cy5-A plot (upper panel). After exclusion of dead cells, the percentage of infected cells 

(GFP+ population) was determined on a GFP-A/PE-A plot (lower panel). Graphs show 

means ± SE from five independent experiments (same as in Error!	  Reference	  source	  not	  

found.A, left panel). 

 

Figure S2 (related to Figure 2). Lm-induced alterations in the host cell cycle are 

detected even at low percentages of infection.  
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Caco-2 cells were left uninfected (NI) or infected with Lm (Inf, 1 h, MOI 0.5), and 

subsequently maintained for 16 h in medium supplemented with gentamicin. Similar to 

Figure 2A, except that average infected cells is 33%. Results are means ± SE from five 

independent experiments. * p-value < 0.05, ** p-value < 0.01 by Student's t-test. 

 

Figure S3 (related to Figure 4). Fragmented DNA detected in the PFGE from Lm-

infected cells is not from bacterial origin.  

Plugs containing different quantities of Lm (Lm-only) were prepared, and after 

electrophoresis, gel images were acquired. Plugs containing Caco-2 uninfected (NI) 

and infected (Inf) Caco-2 cells were used as controls. 

 

Figure S4 (related to Figure 4). Levels of γH2A.X are highly increased in 

etoposide-treated cells.  

Levels of γH2A.X were analyzed by immunoblot in non-infected (NI) and etoposide-

treated (Etop) cells (40 µM, 19 h), and normalized to total H2A.X. NI value was 

arbitrarily fixed to 100 and the value for Etop cells was expressed as a relative value 

 

Figure S5 (related to Figure 5). In vitro growth of Lm is not affected by caffeine.  

Growth curve of Lm in BHI medium under aerobic conditions at 37°C with agitation, in 

the absence (CTR) or presence of 2 mM caffeine. Data are representative of four 

independent experiments. 
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