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Abstract

The success of neurosurgery strongly depends on the pre-neurosurgical evaluation phase, in which
the delineation of the areas to be removed or to be stimulated must be precise.

In the case of Epilepsy, the interpretation of the iEEG data can be enhanced by an exact de-
tection of the position of the electrodes on the cortex. Therefore, the epileptogenic foci and the
eloquent areas can be more accurately delineated. For patients undergoing deep brain stimulation,
the delineation of the target areas prior to surgery and after the implantation is fundamental, as well
as the confirmation of the electrodes implanted in these exact areas. Improvements in the identifi-
cation of target areas and in electrodes positioning leads to a successful surgery and consequently
improve the patient’s outcome and quality of life.

For this study a collaboration was established with Dr. Ricardo Rego from Hospital São João,
for the Epilepsy cases, and with Dr. Verena Rozanski from Munich University Hospital, for the
patients with Parkinson and Dystonia, undergoing deep brain stimulation.

A pipeline and an interface were developed to accurately detect the subdural and deep brain
electrodes, respectively. The positions of the deep brain electrodes were compared with the ones
given by Dr. Verena Rozanski and differences of less than a voxel dimension were observed. Thus,
the interface developed can be widely used to produce automatically the electrodes masks. The
subdural electrodes were also accurately segmented without residues of skull, artefacts or even
beam hardening. In order to enhance the visualization of the strips and grids over the cortex,
cerebellum was removed.

Our tool was used in 3 iEEG epileptic patients and in the last one our results were part of the
surgery decision procedure. A 3D model of MRI dataset, without cerebellum, overlaid with the
subdural electrodes mask was created using MRIcron. The 3D model was used by HSJ for the
pre-neurosurgical evaluation. The patient in which this approach was presurgically applied has
being seizure-free since surgery, performed one month ago. More requests has been made by HSJ
for future patients.

For the segmentation of the target areas for deep brain stimulation and others in the deep
brain area, a recent automatic method available in FSL was used. The execution time of the
automatic segmentation process, for each structure, was less than two minutes. The resulting
structures masks were very congruent in shape and position with the corresponding area in the MRI
dataset from the patient. Furthermore, the results obtained allows us to evaluate the performance
and improve our knowledge of this recent method and therefore estimate their potential in future
applications.
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Resumo

O sucesso das neurocirurgias depende essencialmente da fase de avaliação pre-cirúrgica, onde a
delineação das áreas a remover ou a estimular deve ser precisa. No caso da Epilepsia, a inter-
pretação dos dados fornecidos pelo iEEG pode ser melhorada pela detecção exata dos elétrodos
subdurais. Desta forma, o foco epilético e as área eloquentes podem ser delineadas com um maior
rigor. Para os pacientes submetidos a estimulação cerebral profunda, a delineação das áreas alvo
antes da cirurgia e após a implantação é fundamental, assim como a confirmação da colocação dos
elétrodos nesses alvos. Por se melhorar a identificação das áreas alvo e a posição dos elétrodos
é mais provável que a neurocirurgia seja bem sucedida, conduzindo a melhores resultados para o
paciente e a um aumento da sua qualidade de vida.

Para este estudo, estabeleceu-se algumas colaborações clinicas, nomeadamente com o Dr. Ri-
cardo Rego do Hospital de São João, para doentes de Epilepsia, e com a Dr. Verena Rozanski
do Hospital Universitário de Munique, para o estudo de pacientes com Parkinson e Distonia, sub-
metidos a estimulação profunda cerebral.

Desenvolveu-se um pipeline e uma interface para detectar com maior exatidão os elétrodos
subdurais e profundos, respectivamente. As posições dos elétrodos profundos foram comparadas
com as fornecidas pela Dr. Verena Rozanski, sendo que as diferenças encontradas foram menores
que a dimensão um voxel. Logo conclui-se que esta interface pode ser amplamente usada para
gerar automaticamente máscaras com as posições dos elétrodos. Os elétrodos subdurais foram
também segmentados com bastante exatidão sem que se observasse a presença de resíduos de
crânio, artefatos e beam hardening. Além disso, para melhorar a visualização destes sobre o
cortex procedeu-se à remoção do cerebelo.

Seguidamente, as imagens de MRI sem a presença do cerebelo foram sobrepostas com as
máscaras dos elétrodos numa visualização 3D, usando o MRIcron. Este método foi aplicado nos
três pacientes de Epilepsia e no último os resultados obtidos fizeram parte do procedimento de
delineação pre-cirúrgica. O paciente no qual o nosso método foi usado, demonstrou resultados
pós-cirúrgicos positivos, não demostrando quaisquer crises desde a cirurgia. Dado estes resultados,
mais pedidos foram feitos pelo Hospital para futuros pacientes.

Para a segmentação das áreas alvo da estimulação cerebral profunda e outras na sua vizinhança
foi aplicado um método recente e automático disponível na plataforma FSL. Para cada estrutura
o tempo de segmentação foi menor que dois minutos. As máscaras resultantes permitem-nos
avaliar a performance e melhorar o nosso conhecimento deste novo método de segmentação e
consequentemente estimar o seu potencial para futuras aplicações.
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"Lulled in the countless chambers of the brain, our thoughts are linked by many a hidden chain;
awake but one, and in, what myriads rise"

Alexander Pope
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Chapter 1

Introduction

1.1 Context

Multimodal data fusion is the combination of different imaging modalities to provide a more useful

and accurate information for clinical decision support.

This project is integrated in the Brain imaging network (www.brainimaging.pt) to easily access

databases and toolboxes. An interdisciplinary collaboration of researchers working on this subject

has been established for the achievement of this investigation. The main clinical collaborators

are Dr. Ricardo Rego from Hospital São João (HSJ) and Dr. Verena Rozanski from Klinikum

Großhadern of the Ludwig Maximilians University of Munich.

This investigation will be supporting HSJ and Klinikum Großhadern in pre-neurosurgical eval-

uation for Epilepsy and Parkinson or Dystonia patients, respectively.

1.2 Background

Movement disorders usually lead to a loss of independence for the patients and costs for the health

system [9]. Parkinson’s disease (PD) is one of the most common diagnosed movement disorders,

with symptoms such as essential tremor, rigidity and akinesia. Less frequently diagnosed is Dys-

tonia, which is characterized by a sustained muscle contractions producing writhing movements

and abnormal postures.[6]

When pharmaceutical treatments lose effectiveness, normally in Parkinson and dystonic pa-

tients with longstanding administration of drugs, a neurosurgery is required. In this surgery, deep

brain electrodes are implanted in substructures of basal ganglia (BG) such as the subthalamic nu-

cleus (STN), globus pallidus internus (GPi) and caudal part of the thalamic ventral lateral nucleus.

The stimulation carried by the electrodes allows the inhibition of the activity of these target struc-

tures. After the surgery, the motor and neuropsychological outcomes will depend on the precise

location and trajectory of the electrodes.[6, 10]
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Epilepsy is characterized by an abnormal mental status, uncontrolled movements, seizures

and other psychic phenomena. As in PD, epileptic patients may show drugs resistance and neu-

rosurgery is required. In an initial phase, a clinical electroencephalography (EEG) recording with

scalp electrodes is performed to detect the epileptic focus. However, when no epileptic focus

is identified, intracranial electrodes are implanted for a intra electroencephalography recording

(iEEG).[10, 11, 12]

Following the implantation, the electric activity is correlated with neuroimaging data for pre-

neurosurgical evaluation, and resection boundaries around epileptogenic zones are planned to re-

move the epileptic lesion, and consequently stop the seizures. In this procedure, the success of

the patient’s outcome depends on the exact delineation of the epileptic focus and the surrounding

cortical areas.[13]

1.3 Motivation and objectives

In accordance with World Health Organization (WHO), neurological disorders have become a

significant and growing issue, affecting, in 2010, more than 450 million persons worldwide.[14]

PD and Epilepsy are the most common neurological diseases. Epilepsy reaches 1 in 140 persons

worldwide, which suggests that around 75,000 people in Portugal have this condition and 30%

had refractory epilepsy, requiring at the moment a resection neurosurgery [15]. For Parkinson, the

worldwide epidemiological numbers are less disturbing, since 1 in 1000 individuals suffer from

this disease and, in Portugal around 10,500 persons have this disorder. However, the WHO lists the

neurological degenerative disorders, such as Parkinson, among the most costly group of disorders

since financial costs mostly in terms of drugs and care are extremely high.[16, 14, 17]

Regarding Dystonia, recent epidemiologic studies are not available since this disease is usu-

ally associated with other diseases such as Parkinson, Huntington’s and Wilson’s disease. The

established treatment for refractory dystonia is invasive methods such as pallidotomy and thala-

motomies, in which globus pallidus and thalamus are destroyed. Although dystonic patients have

shown improvements with ablative methods, it has been found after years of the procedure a dis-

ease progression and a decline of the movement functions [18]. GPi deep brain stimulation (DBS)

may be an alternative procedure in comparison with the common invasive approach, considering

that basal ganglia structures are stimulated rather than destroyed. In addition, this procedure has

been shown to be safe with minimal adverse effects. [19]

Therefore, it is implied that more attention and efforts must be performed to enhance the actual

clinical procedures and consequently improve the patients’ quality of life, as well as reducing the

costs associated with drugs and care.

In focal Epilepsy surgeries, patients’ recovery depends highly on the exact position of subdural

electrodes for the interpretation of iEEG data, which will lead to a higher accurate identification of

the epileptic lesions as well as the surrounding cortical areas. At the moment, promising advances

in structural and functional multimodal imaging allow neurosurgeons to maximize the resection

of the epileptogenic area and preserve the eloquent cortex. These advances lead to a reduction
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in surgery complications, a better outcome and the possibility to localize previously undisclosed

cortical abnormalities, for instance subtle focal cortical dysplasia.[13, 25]

As referred in section 1.2, DBS patients’ outcome depends on the accuracy of nucleus targeting

by the implanted electrodes during surgery. Thus, brain atlases and atlas-based segmentation have

been developed to easily target the deep brain structures (DBs) and the exact anatomic location

of the electrodes.[20, 21, 22] Several authors have described an improvement in the target accu-

racy by using multimodal techniques with the fusion of anatomical and functional information.

Such studies integrate in a common space segmented substructures of BG and the coordinates of

the electrodes, using spatial normalization techniques. Although, few studies have correlated the

patients’ outcome with the anatomic position of the electrodes.[22, 23, 24]

Thereby, two major scenarios were identified to assist in pre-neurosurgical evaluation, that

constitutes this thesis.

Can we develop intra-craned electrode accurate positioning method and easily target deep

brain structures based on multimodal brain imaging fusion that can be applied in Epilepsy and

DBS pre-neurosurgical evaluation?

For the Epilepsy scenario, a 3D model of the subdural electrodes will be defined on the cortex,

in order to assist the visualization of the electrodes in relation to brain landmarks and therefore

support the delineation of resection borders for the surgery. The removal of cerebellum from the

structural images can improve the 3D visualization of some subdural electrodes positioned near

this structure. Thereby, the segmentation of cerebellum to be removed from the structural datasets

is other goal proposed for the Epilepsy study.

From the DBS point of view, the aim of this work is to fusion the data of several techniques to

integrate in a common space the exact position of the DBS electrodes and substructures of BG. In

addition, the distance of each DBS electrode to each structure under study will be determined and

consequently related with patients’ outcomes, since few studies have made this correlation.

1.4 Contributions

Considering the objectives proposed a tool will be used to segment DBs for the two scenarios

presented here, using standard parameters validated in previous works.

For the segmentation of the subdural electrodes, several tools will be used by adjusting some

parameters. In case of DBS electrodes segmentation, an algorithm will be designed to estimate the

position of each electrode from the DBS lead. The estimation of DBS electrodes will be achievable

either using a automatic or semiautomatic approach.
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1.5 Dissertation Structure

In addition to the introduction, this dissertation contains 5 more chapters.

The chapter 2, provides a background to understand the principles and procedures used in this

thesis, and present previous works of interest.

Chapter 3 presents the method applied for DBs segmentation either for Epilepsy scenario or

for DBS scenario.

In chapters 4 and 5, the methods adopted to meet the goals proposed for Epilepsy and DBS

cases are described, respectively, as well as the discussion of the results.

The conclusions of this investigation and future work are presented in the final chapter, 6.
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This chapter provides a background on concepts and procedures required for the understanding

of the work presented in this thesis. In addition, some of previous works in the field of pre-

neurosurgical evaluation are presented, as well as a detailed proposal of the several steps required

for this work.

2.1 Epilepsy

2.1.1 Pathophysiology

Epilepsy is defined as an uncontrolled brain activity, when basal electrical activity rises above a

critical thresholding. This disturbance may occur in one part or in the entire central nervous sys-

tem, ceasing spontaneously but with a tendency to recur. Most often this disorder is accompanied

by seizures, which may be focal or generalized.

In focal epileptic seizures, the discharge occurs in only one part of the brain and propagates

to other areas of the brain cortex. In opposition, generalized seizures are characterized by an

abnormal activity involving, from the beginning, large areas of the brain.

Since focal epilepsy is a consequence of a localized lesion or a functional abnormality, such

residual scar tissue, tumors and local disturbed circuits, the resection surgery is usually recom-

mended for these cases.[1]

2.1.2 Clinical Procedure

In order to isolate the epileptic focus in focal epilepsy, either a scalp EEG or a long-term video-

EEG monitoring are performed and correlated with magnetic resonance imaging (MRI) informa-

tion. The epileptic focus includes the exact location of seizure onset, but may even include tissue

recruited for seizure generation (epileptic zone).[26] Usually the resection of this area is sufficient

to prevent the seizures. However when the epileptic zone cannot be determined, or the data from
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EEG is not in agreement with MRI, invasive recordings such iEEG are recommended.[10, 12, 11]

This invasive procedure is also recommended in the situations at which the epileptic zone is adja-

cent to eloquent cortex.

In the surgery the electrodes which can be arranged in grids and strips are stereotactically

implanted and electrically stimulated. The electric stimulation is crucial to locate and lateralize the

eloquent cortex, which includes motor, somatosensory, language and memory functions. For the

eloquent cortex identification and its lateralization, Wada test and the identification of Broca and

Wernicke areas are usually used. Broca area is associated to the speech production and Wernicke

to the understanding of written and spoken language. This is a decisive requirement to plan the

resection surgery.[27]

Noninvasive tests such CT or 1.5T MRI are taken after surgery to confirm the placement of

the grid or the position of the strip using anatomical landmarks. The accurate positioning of iEEG

electrodes and inspection of the electric activity in the cortex is a means to detect lesions and

correlate it with the eloquent cortex in the vicinity.[28] As a result, eloquent functions/areas are

mapped and resection boundaries around epileptogenic zones are planned.[11, 29]

2.2 Parkinson

2.2.1 Pathophysiology

Parkinson pathophysiology is characterized by a generalized degeneration of dopamine cells of the

substantia nigra; each is responsible to send dopaminergic nerve fibers to putamen and the caudate

nucleus, two structures belonging to the BG. Dopamine acts as an inhibitory neurotransmitter of

excitatory signals to the corticospinal motor control system. Thus, in the absence of dopamine the

muscles are excited leading to akinesia and a state of rigidity characteristic of Parkinson.

Figure 2.1: Anatomical relation of BG, cerebral cortex and thalamus [1].

The BG are a motor accessory system that works along with the cerebral cortex and the corti-

cospinal motor system. Anatomically is composed by GPi, substantia nigra, STN, caudate nucleus
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and putamen. These structures have numerous interconnections with each other and with the mo-

tor cortex. As seen in figure 2.1, the association between BG and the corticospinal motor system

is made by nervous fibers that connect the two structures. The area of nerve fibers is known as

internal capsule of the brain.[10, 1]

2.2.2 Clinical Procedure

Most interventions aimed at controlling the symptoms of PD rely on the use of drugs. The common

used drugs are levodopa (L-dopa) and dopamine agonists, but others may also be used since each

person react to medication in different ways.[30]

Figure 2.2: Neuronal networks of substantia nigra [1].

Recently, Parkinson patients who present motor fluctuations and dyskinesias, despite the max-

imal dose of drugs, may be indicated to DBS. Neurostimulation has similar effects to ablative

surgery but does not cause irreversible lesions.

DBS promote functional inhibition as the dopamine, in the BG motor system. In STN stimu-

lation, DBS leads to the substantial dose reduction or even withdrawal of L-dopa. In addition, GPi

stimulation allows to increase the dosage of L-dopa with the alleviation of peak-dose dyskinesias.

The stimulation in other substructures of BG can reduce some of the symptoms, however the most

significant effects were seen with STN and GPi stimulation.[10]

The significant effects in these substructures can be explained by the neuronal networks in BG.

(see annex, figure A.1) The substantia nigra is connected to several substructures of BG by neural

networks, operating as an inhibitory stimulation motor. When this substructure is degenerated the

following substructures in the neuronal network, remain in a state of excitation. As described in

2.2, the substantia nigra has dopamine networks to GPi and putamen. The putamen is responsible

for inhibiting the STN and GPi, which control the stimulation in the thalamus. (see annex, figure
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A.2) Since thalamus is directed connected to corticospinal motor control, their stimulation by STN

or GPi is fundamental to control the symptoms of PD. However the knowledge of these networks

in the basal ganglia is not yet fully understood which may explain the different outcomes and

advantages obtained by STN and GPi.[1]

Figure 2.3: DBS Lead Model 3389 with 4 electrodes at the tip [2].

The common procedure for DBS neurosurgery starts with the definition of the STN area, prior

surgery, using a MRI image as well as standard coordinates in relation to the anterior commissure

(AC) and posterior commissure (PC). [31]

Then the patient enters in the operating room to define with higher precision the STN target

previous deduced. To this purpose, microrecordings and microstimulation are performed. Mi-

crorecordings and microstimulation allows the identification of specific structures based on the

patterns of neuronal activity when the patient is doing specific tasks movements. [31]

Once the final target is identified, DBS lead is implanted and the electrodes position on the

STN are confirmed by a CT scan. The figure 2.3 shows an example of a DBS lead with four

electrodes at the tip. Each electrode is connected to a contact in the upper tip of the lead, which

is attached to the implantable pulse generator (IPG). Each electrode is tested for clinical efficacy

and side effects, and only the one with best efficacy and largest therapeutic width is chosen to

be stimulated by IPG. Electrodes closed to structures, such pyramidal tract, the corticobulbar

tract and optic tract among others, promote acute side effects such as evoking excitation rather

than inhibition.[10, 32] Therefore, accurate localization of electrodes after the surgery is crucial

to confirm that they are not near the above described structure and to choose the one which is

stimulating the target area.

Atlas such as the Schaltenbrand-Wahren, figure 2.4, are used by neurosurgeons to define the

electrodes anatomic position and define the target area to stimulate.[33, 34, 4]
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Figure 2.4: Axial view from the Schaltenbrand-Wahren atlas provided by Dr. Verena Rozanski
zoomed in relation to a axial MRI image from the montreal neurological institute (MNI) space.
The figure shows some structures of BG in particular putamen (blue) and GPi (green).

2.3 Dystonia

2.3.1 Pathophysiology

Dystonia is defined as a neurological movement disorder, which main pathophysiological feature

is co-contraction (when opposing muscles are contracted simultaneously), leading to twisting and

repetitive movements or abnormal postures. During voluntary movements, the symptoms may

become more apparent.

This condition may be due to a derangement of the spinal cord or cortical mechanism. Al-

though, these derangements are not fully understood, studies suggest that, at the cord level, abnor-

malities of the normal coordinate inhibition between agonist and antagonist are the leading cause.

A reduced presynaptic inhibition of the afferent muscle to the inhibitory interneuron was identi-

fied, possibly due to a abnormal descending control or an alteration in the tonic afferent input to

the interneuron from cutaneous and muscle afferents [35].

On the other hand, the abnormal descending control on the presynaptic inhibition is being

related with an irregular neurochemical transmission in the BG, brainstem, or both. The irregular

transmissions were observed mainly in putamen, globus pallidus (GP), thalamus, motor cortex and

somatosensory cortex. [3]

2.3.2 Clinical Procedure

The main treatment for Dystonia is the intramuscular injection of botulinum toxin to denervate the

affected muscles and increase the presynaptic inhibition [35]. According with literature, the toxin

changes the tonic sensory inflow from the injected muscles, improving the derangements seen at

the spinal cord motor system. However, this approach is quite limited when several muscles are
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involved, the movement pattern is complex or in the presence of neutralizing antibodies [36, 35].

Surgical approach such as DBS is an alternative to these cases.

Studies have found a correlation between Dystonia and an activity reduction in the cortical

inhibitory circuits of BG, the red lines found in the figure 2.5. The activity reduction of inhibitory

circuits is being related to an overactivity or hyperfunction of lentiform nucleus (putamen and GP)

[35]. In addition, GPi stimulation was found to be effective for dyskinesias in PD, one of the

symptoms similar to Dystonia.

Therefore, GPi stimulation is currently used for dystonic patients, since a good outcomes with

GPi as target was verified and this stimulation may control the hyperfunction identified due to the

disruption of BG inhibitory control [36, 37].

Most interestingly, there is a difference between ventral and dorsal GPi and the direct and the

indirect motor systems, (figure 2.5), which may explain the co-contraction symptom [38].

The putamen affects differently the motor output, depending on the activated motor systems.

In the direct pathway or system, when the putamen is stimulated, inhibits the GPi and this latter

will disinhibit the thalamus. Then cortex is excited by the disinhibited thalamus. In opposition, in

the indirect pathway, putamen stimulation inhibits the globus pallidus externus which in turn will

disinhibit the STN. When being disinhibited, STN excites the GPi which will inhibit the thalamus,

and consequently reduce the cortical excitation.[3]

When a disruption of BG inhibitory circuits of the two pathways is created, an imbalance is

induced between the direct and indirect motor systems, and therefore the excitation or inhibition

of the cortex may cause the co-contraction, indicative of Dystonia syndrome. In the literature,

different symptoms of dystonia has been connected with either overactivity in the direct pathway

or in the indirect pathway, suggesting once again that this disease is caused by abnormal BG

circuits which create an imbalance between the direct and indirect pathways.[35, 3]

Figure 2.5: BG interconnections, describing the direct and indirect pathway between putamen and
cortex.[3]
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The DBS clinical procedure for dystonic patients is the same as Parkinson’s, with GPi as the

target structure.

2.4 Spatial Normalization

2.4.1 Co-registration

Co-registration is defined as a method for realigning images either for motion correction or for

overlaying images from different modalities, as can be depicted in figure 2.6. It is a useful ap-

proach to visualize implanted electrodes on a structural image or detect lesions that were unable

to be differentiated from adjacent normal brain.

Brain warping or registration is the technique used for realigning images, in which brain land-

marks are mapped by applying geometric transformations to corresponding points on different

images. Some geometric transformations include global scaling, affine transformation, linear,

nonlinear and local deformations. Each one redefines the spatial relationship between points on

the brain images by establish a set of transformation parameters. These parameters contain in-

formation of region similarity and difference between the data, which may allow the analysis of

anatomic regional deformations and consequently brain alterations.

A wide variety of 3D image warping approaches have been designed to handle neuroanatomic

data, such intensity-driven and model-driven approach.[39] Intensity-driven method is based in

the measurement of an intensity similarity between the data, which is then maximized. This

measurement may include cross-correlation, squared differences in pixel intensities among others.

In contrast, model-driven approach use anatomical landmarks between the data to be matched.

Some of these landmarks may be sulcral-ventricular curve, gyral crests or functionally surfaces.

In both strategies, the elements of the original image can dilate, twist or rotate to match

to the reference data, although these transformations are limited by the method used. In rigid

body transformations, such affine transformation, only linear transformations are allowed. As op-

posed, nonlinear transformations considered that the original image is embedded in a 3D elastic

medium, obeying to the laws of continuum mechanics, such Navier-Stokes equilibrium equation

for linear elasticity. A nonlinear transformation guarantees the topological integrity of the original

image.[39]

Partial volume effect, a consequence of anisotropic voxels, may be a drawback of co-registration,

since the fused image resulted by the co-registration may appear flattened or elongated on certain

views. As a result, the image may be blurred, even when anisotropic voxels are geometrically

transformed in relation to an isotropic voxel. In order to obtain isotropic voxels and overcome this

issue, the time required for image acquision may need to be increased. However, in such cases,

the patient is motionless for a long time and the risk of motion artifacts increases.[40, 41, 42]
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Figure 2.6: An example of computed tomography (CT) and MRI co-registration, showing DBS
lead in the structural image [4].

2.4.2 Warping to a template

Brain warping can also be applied to realign images of individual segmented brains in relation to

a standard template or coordinate system.

To construct a brain template, co-registration algorithms are used to align brain MRI images in

relation to a reference brain image. The common templates apply linear followed by a non-linear

registration to overcome the inter-subject anatomical differences in shape, size, and relative ori-

entation. Therefore, anatomical variability is reduced and is feasible to achieve better functional

correspondence of homologous brain regions across patients.[43] There are essentially two types

of atlas: deformable and probabilistic atlases. Deformable atlases are based on the anatomy of

brain structures. The anatomic volumes of the individual data are elastically deformed, in accor-

dance with Navier-Stokes equation, to adapt to the shape of the atlas. This approach can be helpful

to detect pathologies in epilepsy and the detection of substructures in BG, since atlas deformations

contain pre-segmented anatomic models.[44] These models can be applied in the individual new

data, automatically labeling their anatomy. Probabilistic atlases are adequate in the representation

of specific subpopulations, since it contains information of structural and functional variation on

different populations. These atlases are being used in diagnostic for the detection of structural

brain anomalies. [39]

Therefore, warping individual brain data into a common stereotactic space can be useful in

pre-neurosurgical evaluation and in the detection of anomalies.

2.4.3 Brain atlases

In the last decades, several brain atlases was been developed providing data of normal and patho-

logical brains. The most well known atlas are Talairach & Tournoiix and MNI, which differ in

features such the number of the subjects, registration procedure, spatial transformation among

others.[43, 44]
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Nevertheless, only the MNI-152 atlas will be focused in this section since is the one that will

be effectively used for this work.

MNI-152 template was obtained from 3D brain MRI images of 152 normal subjects. For the

registration procedure a linear 9-parameter affine transformation was applied to a target image fol-

lowed by a non-linear registration, to avoid the inter-subject anatomical differences. This template

was the advantage of providing a full head coverage.[43]

A review of structural brain atlases can be found at [43].

2.5 Brain Imaging Software Tool

Several applications of data processing and visualization were studied as tools for the proposed

goals. Some of these applications are listed below:

• 3D Slicer;

• BrainVoyager;

• Osirix;

• MRIcro;

• MRIcron;

• FMRIB Software Library (FSL);

• Statistical Parametric Mapping (SPM).

3D Slicer
3D Slicer is an application of visualization, segmentation, co-registration and quantification in

medical data, such as measure distances, angles, surface areas and volumes in different modalities.

Furthermore, allows the user to extract surfaces and create 3D models. This software supports a

few formats such as DICOM, NIfTi and Analyze.[45, 46]

BrainVoyager
BrainVoyager is a software package for the analysis and visualization of functional and struc-

tural MRI data. Methods for automatic brain segmentation, surface reconstruction and cortex-

based inter-subject alignment are accessible to the user. The software integrates tools for volume

and surface rendering as well.[47]

Osirix
OsiriX is essencially a DICOM images viewer. It integrates several visualization 3D tools for

medical images such 3D surface or volume rendering. For processing, ROIs and co-registration

tools can be applied both in 2D and in 3D view.[48]

MRIcro
MRIcro is a tool for image visualization, in which the user has the possibility to generate

3D volumes and select regions of interest (ROIs). In addition, overlays of different modalities
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are normally used to confirm the co-registration of two images. This software can also convert

DICOM to Analyse format.[49]

MRIcron
MRIcron is basically the MRIcro but with additional features. This application only supports

the NIfTI format as opposed to MRIcro and allows the conversion of DICOM files to NIfTI.[49]

FSL
This software has several tools for brain imaging analysis, visualization and processing. Tools

such as Brain Extraction Tool (BET), FMRIB’s Linear Image Registration Tool (FLIRT), FMRIB’s

Nonlinear Image Registration Tool (FNIRT), FMRIB’s Integrated Registration and Segmentation

Tool (FIRST), FMRIB’s Automated Segmentation Tool (FAST), fslroi, fslstats and others allow

the user to generate 3D regions of interest, to extract the brain, to segment subcortical brain struc-

tures, to apply co-registration in different image modalities and warping the images in distinct

templates. NIfTI format are the common format used as input and output.[50]

SPM
SPM software is a set of MATLAB functions which allow, for instance, the realignment, spatial

normalization to a standard space and smoothing of a sequence of images of different modalities

such functional MRI (fMRI), positron emission tomography (PET), single-photon emission CT

(SPECT), EEG and magnetoencephalography. In addition, it uses the NIfTI file format, a for-

mat incompatible with standard MATLAB software and commonly used to store medical image

data.[51, 46]

A more detailed information for these tools and others not mentioned here can be found at

[46].

2.6 Neuroimaging Techniques

In the pre-neurosurgical evaluation, several modalities are used by physicians in the area of neu-

roscience. The non-invasive techniques are listed below:

• EEG;

• MRI;

• CT;

• PET;

• SPECT;

• Video-EEG monitoring;

• Diffusion tensor imaging (DTI);

• Neuropsychological tests.
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In this section will only focus on the techniques that are effectively used for this work.

MRI is the modality most frequently used in neuroanatomical studies since the resulted images

allow a better understanding of the brain organization and structure, useful for the detection of

pathologies.

In MRI images, each point depends on the magnetic properties of the tissue in that posi-

tion. Since different tissues have different local magnetic properties, images acquired with MRI

have higher sensitivity to anatomic variations and consequently higher contrast than conventional

radiology and CT.[52] Given these characteristics it is usually used as anatomical reference for co-

registration with others modalities.[46] Despite these advantages, 3T MRI exhibit artifacts when

in presence of metal, as the electrodes used in epilepsy, Parkinson and Dystonia surgery, hindering

their detection.

There are two main MRI contrasts scans, T1-weighted and T2-weighted MRI, which will be

the ones used in this work ( figure 2.7). Fluids such cerebrospinal fluid (CSF) in T2 images appear

brighter, as opposed to the T1-images. These differences in the CSF but also in others tissues,

allows for instance to improve the contrast in the borders on different deep brain structures.

Figure 2.7: Example of a T2-MRI scan (right) and T1-MRI scan (left).

In CT several projections are acquired around the area of interest and processed by the com-

puter, after the patient is exposed to X-rays. Compared with conventional radiography, CT has

worse spatial resolution but better contrast resolution, which makes this technique more suited to

perform spatial characterization of bone tissue or other dense materials such as electrodes.[53, 46]

Therefore, only a CT or 1.5T MRI are recommended for the detection of electrodes.

A review of these modalities can be found in the [53].

2.7 3D visualization

To reconstruct a 3D human brain model, either surface or volume rendering are suitable ap-

proaches.

Surface rendering do not retain information deep to the surface, providing a data suitable only

for morphometric measurement. This approach, uses geometric primitives such as polygon meshes

prior to the viewing and shading stages. The surface is represented as a set of discrete nodes which

are connected to one another to form the mesh that will be deformed to the desired shape of the
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brain. Three strategies have been used to generate surface models, which differ in initial surface

model delineation, volume segmentation, contour delineation and surface deformation.[39]

The choice of the layer for surface representation depends on the strategy selected. The most

common layers are the pial surface and gray-white boundary, (the external and internal surfaces

of the cortical gray matter). Although none of them provides an optimal representation of the

cortex surface. Using gray-white boundary, surface reconstruction underemphasizes gyral regions

and overemphasizes sulcal regions near their fundi. In contrast, the opposite occurs using a pial

surface reconstruction. As described in literature, using the midway between the gray-white border

and pia as a layer is advantageous because it ensures that each surface unit has the same volume of

cortex. However, this layer may be difficult to delineate, especially in structural MRI images.[39]

Figure 2.8: Surface Rendering example: showing a brain tumor in the right parietal lobe [5].

Usually, Volume rendering projects volume primitives such as spheres and boxes directly for

shading and viewing.[39] There are three main approaches to do volume rendering: segmentation,

classification and direct visualization. In segmentation, the image volume is divided in different

homogeneous regions based on criteria, which can be binary or fuzzy. Binary methods are disad-

vantageous, since they assume that each voxel belongs to an exact region, not taking into account

the cases in which an object takes up only a fraction of a voxel. As opposed, in fuzzy segmentation

a set of region probabilities are assigned to every voxel.

Classification methods can also be applied to segment the data into components for inclusion

or exclusion in a given view and identified or labeled the regions.

Direct volume visualization, creates the images directly from the volume data, allowing a

combined display of different aspects such as opaque and semitransparent surfaces, cuts, and

maximum intensity projections. For each voxel, a color and opacity is assigned. Opacity is the

result of the product of an object-weighting function and a gradient-weighting function. The

object-weighting function is often dependent on an intensity or a fuzzy segmentation algorithm.

The gradient-weighting function is applied to enhance the surface smoothness. This procedure

is useful since binary decisions are avoided and the resulting images are very smooth and show

a lot of fine details. Furthermore, spatial perception is improved since the entire information of
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the dataset is retained and used for the visualization. However, the approach depends highly of

the parameters for the weighting functions, which, in automatic software’s algorithms can be a

drawback.[5]

Figure 2.9: Volume Rendering: coronal view through the AC, exposing the caudate nucleus, puta-
men and lateral ventricles [5].

Examples of Surface and Volume rendering can be seen in figure 2.8 and 2.9, respectively. A

review of this theme can be found in [5].

2.8 Multimodal data fusion

According to the literature, imaging techniques used alone have poor diagnostic accuracy in com-

parison with a multimodal approach. This approach, as referred in section 1.3, has been improv-

ing the pre-neurosurgical evaluation, either in Parkinson, Dystonia or Epilepsy, in the detection of

brain substructures or pathologies, and in the localization of electrodes position.

The combination of CT with MRI, allows the physician to analyze anatomical structures with

better resolution and with a more accurate position for the electrodes. Better symptom relief and

low morbidity is seen in the patients whose electrodes were accurately detected.[29, 54] Further-

more, CT and MRI fusion images are described to allow optimized electrodes positioning and lead

to a more easily and quicker reprogramming of stimulation parameters in DBS cases.[24, 55]

However, multimodality is not restricted to CT-MRI fusion. Although this study is focused

in these techniques, multimodality has been widely applied in others techniques, especially in

cases of Epilepsy. In some cases, even with CT-MRI fusion, the epileptic lesions are not iden-

tified, probably due to white matter abnormalities, which can’t be detectable by MRI. DTI and

techniques such 18F-fluorodeoxyglucose PET or 11C-flumazenil PET and ictal-interical subtrac-

tion SPECT have been showing positive results, even showing lesions that were not present in

abnormal MRI.[29, 25]

Furthermore, EEG-fMRI fusion has been used as a tool to localize primary motor, somatosen-

sory and language areas, thereby being useful to predict the effects of lobe resection on language

and memory impairment. [29]
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Regarding Parkinson, DTI-MRI fusion is described as a potential tool for detection of Parkin-

son in early stages. Based on the known neuromotor fibers and Schaltenbrand-Wahren atlas, some

of BG substructures are being outlined, such thalamus, corpus callosum, putamen, substancia ni-

gra, STN and GPi [56, 57, 58]. The relation of the proximity of fibers to the DBS electrodes and

the substructures will be a remarkable step for neuroscience, to understand better the patients’

outcome.

As suggest in 2.3, the pathophysiology in Dystonia is largely unclear. DTI-MRI fusion is

being used to enhance the current knowledge of the motor circuits connecting the cortex, BG and

cerebellum, and thereby improve patients’ outcome in the future. [59, 38]

2.9 Proposal

After an analysis of the goals, referred in section 1.3, and the various requirements or considera-

tions to meet them, discussed in this chapter, the various steps and tools to the achievement of this

work were determined.

For the multimodal fusion of electrodes positioning with the DBs for Dystonia and Parkin-

son patients, several steps are required, including the choice of the template to define a common

stereotactic space, segmentation of target structures on the template, accurate segmentation of the

DBS lead and the corresponding electrodes, co-registration of the patient’s multimodal image data

and alignment of the patient’s image data into the common space for comparison with electrodes

position. The relation of the patient’s outcome with the electrodes position will be based on the

segmented masks of the electrodes and the structures estimated by the multimodal fusion method.

Since Parkinson and Dystonia research was being developed in FSL by Dr. Verena Rozanski,

our clinical partner at the University of Munich, this toolbox was preferred. In addition, as com-

pared with the other tools referred above, FSL is functionally more extensive regarding spatial

normalization. SPM and MATLAB were also chosen owing to its built-in functions that allow for

efficient development of algorithms and manipulation of images.

To develop the multimodal imaging pipeline for Epilepsy scenario, FSL were selected since, as

cited above, has a tool to extract the brain which is essential for the visualization of the electrodes

over the cortex in a 3D model and has more co-registration options. MRIcron was chosen since

allows the user to generate 3D renderings and runs in Windows system, in contrast to others

software mentioned above. Furthermore, MRIcron reads NIfTI files which is the output files

format by FSL.
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Chapter 3

Automatic segmentation method for
deep brain structures

In this chapter some of the current automatic segmentation methods for deep brain structures will

be discussed as well as a detailed description of the selected method used either to segment the

cerebellum for the Epilepsy scenario or others deep brain structures for DBS scenario.

3.1 Automatic procedures

The most common methods of segmentation are based on the intensity information and its varia-

tion within a specific structure. However, for DBs the intensity segmentation methods fails due to

the loss of contrast in this region [7].

Therefore, other methods were developed based in a prior knowledge of the shape and position

of these structures. Non-linear and linear registration-based approaches are the major examples of

these procedures.

In the non-linear registration method manual masks are delineated in a template by an ex-

pert, with prior knowledge of the intensity and shape of the specific structures, then the masks

or labels are warped from the template to the individual MRI image using non-linear registration

transformation. There are several non-linear algorithms to perform this spatial warping transfor-

mations such as Automatic Nonlinear image Matching and Anatomical Labelling (ANIMAL) and

Symmetric Image Normalization (Syn).[6]

These procedures are widely used since the segmentation results for the subcortical structures

are very accurate. However, the registration step can take hours.[6]

In contrary, despite linear registration methods do not lead to the accurate results as seen in

the non-linear procedures, the registration step only lasts a few minutes.[6, 60] In linear regis-

tration procedure, manual masks are outlined in the individual space and linear registered to the

template to be used as a labelling templates for each structure. When a new MRI image is added
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the previous linear registration step is applied and the neighbourhood of each voxel of the MRI

image is compared with similar neighbourhoods of the labelling templates. In the patch-based

segmentation, a recent linear registration procedure with good performances, use the neighbour-

hood similarities across all the templates as an weight label function to segment each voxel and

consequently the structures. [60]

FIRST, a tool already referred in section 2.5, is another example of an automatic segmentation

method based on linear registration.

Figure 3.1: Examples of masks obtained by ANIMAL registration, SyN registration and patch-
based method for deep brain structures [6].

3.2 FIRST

FIRST allows the segmentation of some BG structures such as caudate nucleus, putamen, pal-

lidum, nucleus accubens and other DBs such thalamus, amygdala, hippocampus and cerebellum.

The main steps of this algorithm will be discussed in this section.

Basically, this tool combines intensity and shape information of a training dataset to develop a

3D mean model of each structure which is then adjusted by an iterative process to the target struc-

ture of the subject. For the shape and appearance/intensity model development, the principles of

the Active Shape (ASM) and Active Appearance models (AAM) are applied as well as a Bayesian

framework, to obtain intra and inter-structure variability information. [61]

3.2.1 Training dataset

The model resulted by ASM and AAM was trained using 336 manually-labelled T1-MRI, which

comprises data from normal and pathological brains (schizophrenia, Alzheimer’s disease, attention
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deficit disorder and prenatal cocaine exposure). Furthermore, MRI images belongs to children,

adults and elderly subjects. [62]

The variability information for the Bayesian framework is inferred by the models of each

structure of the 336 T1-MRI previously defined and manually segmented by the Center for Mor-

phometric Analysis in Boston.

3.2.2 Registration

The training dataset was aligned to the MNI-152 space using a linear subcortical registration,

to lead to a more accurate alignment of the subcortical structures. Therefore, two-stage affine

registration to MNI-152 space at 1mm resolution was developed by the FIRST developers and

applied in each T1-MRI from the training dataset. In the first stage, an affine registration of

the T1-MRI to the non-linear MNI-152 template was performed using 12 degrees of freedom

(DoF). For the second stage the T1-MRI dataset previously aligned with the MNI-152 template

was linearly transformed with a subcortical mask defined in the MNI space as a reference. These

subcortical masks were obtained from the average of 127 labels of the training dataset, after a

standard affine registration (figure 3.2). [7] These second stage allows to exclude some voxels

outside the subcortical masks and concentrate the registration only in the subcortical alignments.

Figure 3.2: Subcortical mask (blue) used in the second step of the registration overlaid with the
MNI-152 template [7].

For cerebellum segmentation the corresponding subcortical mask is not yet available, so a

brain mask is normally used to exclude voxels outside of the brain and then the cerebellum.

After the training dataset was linearly registered to the MNI space, the intra and inter-structure

variability information of shape and intensity across all the dataset was estimated for the 3D model

development, as detailed in the next section.

3.2.3 Segmentation

As in ASM, FIRST models the surface of each structure by a set of connected vertices. The

vertex location variation across all the training dataset allows to obtain a statistical distribution

inter-vertex, i.e, holds information regarding how vertices vary across the dataset and with respect

to each other for the same subject. This variation is represented as a multivariate Gaussian by

two components, the mean shape and a covariance matrix or modes of variation. The maximum

number of modes of variation available is 336 since the training set comprises 336 T1-MRI images.

[7]
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In addition, as in AAM, to develop a model the intensity distribution along the surface normals

is represented by a mean value and a set of modes of variation as in ASM, after an intensity

normalization step.

The intensity normalization was performed in two steps, a global scaling and an subtraction

of the mode of the intensities within a specified structure. Although for same cases, the mode

of intensities of neighbourhood structures are used to normalize a specific structure. Since cau-

date nucleus, hippocampus and amygdala are susceptible to atrophy in the pathological brains of

the dataset, their intensity mode would vary with their shape/size. Considering that the intensity

normalization is performed within the average models, a constrained shape, the use of mode in-

tensities of others structures such thalamus is favourable. [7] The 3D average model is the average

model from 127 subjects of the training dataset.

The combination of the mean shapes and modes of variations in a Bayesian framework allows

to establish probabilistic relationships between shape and intensity variations among the structures

and within each structure.[61, 62]

When a new image is used to be segmented by FIRST the 3D average model is adjusted within

the variations found with AAM and ASM but limited by the probabilistic relationships between

them.

The segmentation masks resulted by FIRST are labelled with a value for interior voxels and

+100 value for boundary voxels. The classification of the boundary voxels in the volumetric

structure is available in FIRST options. FAST, a FSL tool for tissue segmentation may be selected

for boundary classification and, consequently, deduce a more accurate border to the structures,

since they have borders with grey matter, white matter and CSF. Thereby, FAST classifies the

boundary voxels of the mask on white matter, grey matter or CSF and depending of the result the

voxels can be converted into interior voxels of the structure.

3.2.4 Implementation

FIRST performance was validated using a leave-one-out crossvalidation. Validation provides the

necessary information to estimate the parameters that will lead to a better segmentation for each

structure.

In the table 3.1 is presented the better parameters combination for each structure, estimated by

FIRST developers in previous works. The number of modes of variation on the table were establish

to achieve a good compromise between including enough variation, to capture the structural de-

tails, and avoiding too many modes, which can complicate the optimization stage and significantly

increase the computational cost [62].

The implementation of FIRST for the Epilepsy and DBS scenarios will be carried using the

default values and options presented in the table 3.1. The principles of the algorithm described in

this chapter will be helpful to understand and discuss the results obtained using this recent tool.
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Table 3.1: Number of modes of variation, boundary correction method and the structure to nor-
malize the intensities. [7, 62]

Structures Modes of Variation Boundary Correction Intensity Normalization

Amygdala 50 FAST Thalamus
Caudate nucleus 30 FAST Thalamus
Cerebellum 40 none Putamen
Hippocampus 30 FAST Thalamus
Nucleus Accubens 50 FAST Self
Pallidum 40 none Self
Putamen 40 none Self
Thalamus 40 none Self
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Chapter 4

Epilepsy Scenario

For the Epilepsy it was intended to establish a 3D model with the subdural electrodes over the

cortex, to assist the clinical group from HSJ in the delineation of the epileptic focus and eloquent

areas. The procedure adopted to segment the electrodes and visualize them over the cortex, on a

3D view, is described below, as well as the discussion of the results.

4.1 Methods

Three patients with refractory Epilepsy undergoing surgical implantation of subdural electrodes

for epileptic zone localization were selected by HSJ for this study. All the data provided was

anonymized to preserve the patient’s personal information. The diagnosis and treatment plan for

each patient can be consulted in the section A.2, in the annex. For patient 1 and 2, a post-operative

whole head T1-MRI images were acquired using a 1.5T MRI unit (SIEMENS, Magnetom Sym-

phony Tim) with a voxel size of 0.875 x 0.875 x 0.88mm for patient 1 and 1.09 x 1.09 x 1.09mm

for patient 2. The electrodes position were confirmed by a CT unit (SIEMENS, Somatom Emotion

Duo) with a voxel size of 0.547 x 0.547 x 1mm. In the case of patient 3, two imaging studies were

acquired, before and after the implantation. Structural pre-operative whole head T1-MRI images

were gathered using a 3T MRI unit (SIEMENS, Magnetom Trio Tim) with a voxel size of 1.09

x 1.09 x 1.09mm. To confirm the electrodes position, a CT scan (PHILIPS, Brilliance 16) was

acquired with a voxel size of 0.547 x 0.547 x 1mm.

In order to meet the proposed goals, a method was designed based on FSL and MRIcron for

the pre-processing, processing and 3D visualization stages. The workflow adopted is summarized

in the diagram 4.1. In the section A.3 of the annex the several steps of the workflow adopted can

be consulted in more detail.
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Figure 4.1: Workflow adopted for the Epilepsy cases, describing the several steps performed and
inspired in [8].

4.1.1 Preprocessing

All the data provided were converted from Dicom to NIfTI format using MRIcron, since FSL does

not support Dicom files.

As in the present study is intended to obtain a 3D cortical surface model, the automated skull-

stripping tool BET was used in T1-MRI. BET uses a deformable model that fits to the brain’s

surface, using locally adaptive model forces. Furthermore, the extraction depends highly on the

fractional intensity threshold, which controls the distinction of brain from non-brain and, conse-

quently the centre-of-gravity of the head in which the model surface is initialized. During this

process inner and outer skull surfaces, and outer scalp surface, in the case of a high quality T1, are

also estimated. [63]

Different fractional intensity thresholds were tested to get highly accurate results. Lower

Table 4.1: Comparison between the default values and the ones applied in the Epilepsy pipeline
for the preprocessing and processing stages, using BET and FLIRT tools.

BET FLIRT

Intensity Threshold Geometric transform Angular range Cost function Reslicing method

Default 0,5 Affine (12DoF) -90 to 90 Correlation ratio trilinear
Applied 0,3 Rigid body (6Dof) -30 to 30 NMI trilinear
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thresholds were preferred in relation to the default value, as seen in the table 4.1, for the post-

operative T1 scans, since they produce larger brain estimation and, consequently, preserve the

visualization of the electrodes which were implanted over the cortex. By keeping the visualization

of electrodes on the brain of the post-operative images, the physician can compare the electrodes’

position with the ones given by the electrodes masks, estimated from CT data in the next section.

Figure 4.2: A - Post-operative T1-MRI; B - T1-MRI after skull stripping using BET and C - Fusion
of the images in A and B, where the extracted brain is displayed in blue

4.1.2 Processing

4.1.2.1 Electrodes Segmentation

Co-registration of CT and skull-stripped T1-MRI were applied using a rigid body transformation

with 6 DoF. The geometric transformation was applied using FLIRT with T1 as reference image.

Several parameters were needed to be defined, in order to provide a more accurate CT-MRI

co-registration, as suggested in table 4.1. The angular range over which the initial optimization

search stage is performed was set between -30 to 30 for the x, y and z axes. Since the motion

between images was not significant, the chosen search values were lower to limit the image reori-

entation and thereby prevent unreasonable orientations. The cost function chosen responsible to
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measure the difference between the two images and then minimizing it, was the normalized mu-

tual information (NMI), an entropy-based cost function used for inter-modal alignment. Among

the others cost functions provided in FSL, NMI is described as the one with more accurate results

for inter-modal alignment and rigid multimodal registration [64].

Finally, for the final step in volume registration, the reslicing of the volume of interest, the

interpolation method was not adjusted from the default option, since trilinear interpolation has

been showing good results and a faster performance in other studies. [65, 66]

As a result, a CT dataset aligned with T1-MRI data was obtained as well as the transformation

matrix which includes the x, y, and z translation, pitch, roll and yaw transformations. The accuracy

of the co-registration was visually verified by flicking between the output and the reference images.

CT data was then thresholded and binarized to limit the image information to the electrodes

only, which are shown in red in Figure 4.3. The threshold value was set to eliminate streak (beam

hardening) artifact from the electrodes, brain and the skull.

Figure 4.3: A - CT image with whole head; B - CT mask, after the thresholding and binarization
C - Fusion of CT dataset with CT mask.

4.1.2.2 Cerebellum Segmentation

As cited in the introduction, cerebellum extraction was requested by HSJ to improve the visual-

ization of the electrodes on the cortex.

To segment the cerebellum FIRST was used by selecting the values and options presented in

the table 3.1.

Therefore, FIRST was implemented using the whole head T1-MRI image, the transformation

matrix resulted by the two-stage affine registration, the mode of intensities of putamen for the

intensity normalization and, specifying, 40 modes of variation for the optimization step.

The segmentation cerebellum mask resulted by FIRST was labelled with a value for interior

voxels and +100 value for boundary voxels. For the classification of the boundary voxels, no

boundary correction was selected as suggested in table 3.1. After that, the resulted image was

marked with a single label and binarized.

To obtain a T1-MRI images without cerebellum the resulting masks, from left and right cere-

bellum were multiplied by T1-MRI dataset and then, subtracted to the same images.
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In some cases the cerebellum mask doesn’t cover the entire cerebellum and some of the bottom

borders remain, after the subtraction step. This can be overcome with an addition tool, fslroi, to

extract the resulted brain without the bottom borders.

4.1.3 3D multimodal fusion

For 3D visualization, T1-brain without cerebellum and electrodes mask were added to the MRI-

cron. Thereafter, the volume render option was selected to render a 2D projection of the 3D

dataset.

In particular, in patient 3, some MRIcron options such as search depth and air/skin thresholding

were studied more thoroughly for a better visualization of the electrodes.

4.2 Results and Discussion

As suggested by figure 4.2, when comparing skull-stripped T1-MRI (in blue) with the whole head

it is observed that even using lower fractional intensity threshold to preserve the electrodes on the

cortex skull removal was accurate performed. Although, in some slices some traces of CSF were

observed. In cases in which pre-operative MRI is used and therefore, there are no electrodes, the

threshold can be set to higher values. Figure 4.4 show the differences in the pre-operative T1 using

different thresholds.

Figure 4.4: Skull-stripped pre-operative MRI from Patient 3 using A - a lower threshold and B - a
higher threshold.

An example of resulting images of CT-MRI co-registration can be depicted in figure 4.5 (A).

The figure suggests a fine alignment between CT and T1 datasets, as deduced at the frontal crest.

Therefore, the choices made in the selection of the geometric transform, angular search range and

cost function can be used in future FLIRT applications for CT-MRI co-registration.

Despite the developers of FLIRT tool have pointed failures in the alignment in the presence of

large ventricles, the differences were not significant. As seen in figure 4.5 (B), the patient 3 has

extremely large ventricles, so it would be expected a significant misalignment. However, the worst

misalignment, seen at frontal crest in the slice presented in the figure, were not so distinguished.

This suggests once again that the procedure adopted here for co-registration can be widely used,

even in the presence of large ventricles.
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Figure 4.5: A - CT-MRI co-registration, using FLIRT, (left) in patient 1 and (right) in patient 3; B
- T1 image, showing the size of the ventricles, in the corresponding patients.

The CT image aligned with T1 was then used for electrodes segmentation. The electrodes

masks obtained for all the patients can be seen in figure 4.6. As evidenced by the figure, electrodes

were correctly segmented from the CT images. The threshold used was capable to remove streak

(beam hardening) artifact from the electrodes, brain and skull. The beam hardening removal is

specially confirmed in the sagital view of patient 3.

Although, in this patient the threshold was set to a lower value in order to obtain the same

accuracy of segmentation that was obtained with the other patients. Probably, the correction of

the threshold was inevitable, as the imaging acquisition for this patient was carried in a different

CT machine. Furthermore, in patient 2, an extra pre-processing step was performed. The values

of the intensities were swapped, as shown in Figure 4.7 , so it was necessary to change the sign of

the intensities. The swapped intensities may be due to a mistake taken by the software during the

acquisition of the scans.

As previously mentioned to extract the cerebellum FIRST was used, in which it was indis-

pensable the adjustment of some parameters. As shown in Figure 4.8, the cerebellum was not

completely excluded. The masks resulted from FIRST didn’t cover all the bottom borders of

cerebellum. However, the upper borders, i.e., the ones in contact with the brain were correctly

removed. In order to exclude the bottom borders, the additional tool, fslroi, was applied, as shown

in Figure 4.9.

There are many possibilities that may have interfered in the cerebellum segmentation. First,
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Figure 4.6: Fusion of CT dataset with CT mask, for (A) patient 1, (B) patient 2 and (C) patient 3
data.

Figure 4.7: CT dataset from Patient 2. (Left) - Original CT image (Right) - CT image, after the
correction of the sign of intensities.

FIRST uses a deformable model based in the variations presented in the 336 training images.

Thus, the model can’t represent variations in shape and intensity that are not explicit in the train-

ing data, so the topology of cerebellum may be constrained. Second, the performance of FIRST

may be affected by several algorithm factors, such as: the ability of the multivariate Gaussian

model represent correctly the shape/intensity probabilities; the ability of the optimization method;
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mismatches between the real underlying ground truth and the manual labellings and the number

of modes used in the fitting [62]. Finally, considering that for cerebellum the corresponding sub-

cortical mask was not available the registration stage was incapable to concentrate only on the

subcortical alignment, and the vertex positions of the 3D mean model and the corresponding cere-

bellum in the MRI of the patient may have been misaligned. Since to each vertex of the shape

is associated a statistical variation, the variation of the bottom misaligned vertices may have limit

the model adjustment for this region and therefore the resulting masks.

Figure 4.8: Cerebellum extraction: axial, coronal and sagital view of (A) the initial MRI (B) and
the MRI, after FIRST segmentation and cerebellum removal.

Figure 4.9: MRI without cerebellum: axial, coronal and sagital view of MRI after fslroi was
applied.

At last, MR and CT datasets resulted by the above processing were used to create a 3D com-

bined data model (Figure 4.10), using MRIcron. The results were approved by Dr. Ricardo Rego,

as can be seen in section A.4, in the annex. The only setback was the loss of resolution, when

displaying 3D by MRIcron, possibly due to the application of a Gaussian filter by the software.

In addition, as referred in section 2.7, volume rendering depends highly of the parameters of the

weighting functions, which in automatic rendering software such MRIcron is a drawback to the

image quality. since no adjustments to these functions can be done.

In patient 3, the CT image showed a large swelling at the position where the electrodes were

placed and therefore, the brain was compressed, as seen in Figure 4.6. Since T1-MRI image
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Figure 4.10: A - 3D visualization, using MRIcron, of skull-stripped T1-MRI, from the patient 1,
with the electrodes mask. B - 3D visualization of skull-stripped T1-MRI without cerebellum, from
the patient 1, with the electrodes mask.

used was pre-operative and so no edema was present the overlay of the electrodes, from post-

operative CT mask, on the cortex, from pre-operative T1 dataset, in a 3D model was limiting the

visualization of the electrodes position in relation to the surrounding tissues. However, varying

the search depth of the overlay, (Figure 4.11), in MRIcron, made possible to the physician to see

the electrodes and therefore, do the anatomic relation of electrodes position with the surrounding

tissues.

From all the data used in the Epilepsy scenario, our results were not used in the first two

patients for the clinical decisions since they were used as test examples to validate the pipeline.

After the validation, our results were used for patient 3 in the pre-neurosurgical evaluation. Patient

3 who had, on average, more than a seizure a week, since surgery, performed one month ago, has

been seizure-free.

This outcome is an excellent result for the pipeline developed, since the patient 3, when com-

pared with the others patients results, was the one in which the 3D representation was more limited

by the presence of the edema.

33



Epilepsy Scenario

Figure 4.11: 3D model for patient 3 dataset, using MRIcron, where (A) corresponds to an posterior
view and (B) a lateral view of brain. (1), (2) and (3) corresponds to different search depths, 2mm,
12mm and infinitive depth, respectively.
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Chapter 5

DBS Scenario

For the DBS patients it was intended to delineate STN and GPi to support in the pre-neurosurgical

evaluation prior implantation and to confirm the position of the electrodes in these target areas

after the surgery. Furthermore, it was proposed to determine the proximity of each electrode to the

target areas and others in the deep brain area to establish a correlation with the patients’ outcome.

In this chapter it will be explained the several steps for the detection of the DBS electrodes and for

the segmentation of DBs as well as a detailed discussion of the results.

5.1 Methods

Eight patients with advanced PD and eight patients with focal Dystonia, undergoing DBS were

chosen to this study. The patients were operated under local anesthesia and the electrodes were

implanted in the STN or GPi by MRI-guided stereotaxy. All the patients had electrodes implanted

bilaterally.

The DBS lead position was confirmed by a post-operative CT or T2 scans. A pre-operative

whole head T1-MRI with 0.98 x 0.98 x 1mm of voxel size was also acquired to guide the surgery

and to visualize the target structure. The MRI images were gathered by a 3T-MRI unit(Sigma

Exite MD GE). CT scans were acquired by GE scanner, Brightspeed16 unit. For the implantation

a quadripolar electrode array was used (model 3389, Medtronic Neurological Division,Minnesota,

USA) with 4 electrodes at the tip, spaced 0.5mm apart, delivering stimulation individually or in

combination.

The workflow adopted is summarized in the diagram 5.1, which was inspired in [8]. Section

A.5 of the annex presents in more detail the several steps of the workflow.

5.1.1 Preprocessing

FSL was used to perform co-registration and skul stripping. Considering that FSL does not support

Dicom files all the data provided were converted to NIfTI format using MRIcron.
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Figure 5.1: Workflow adopted for the DBS cases, describing the several steps performed.

For co-registration of CT or T2 scans with T1 as reference image, FLIRT was applied us-

ing a rigid body transformation with 6 DoF. Parameters such angular range search, cost function

and interpolation method were the same as in Epilepsy study. No adaptations were performed

in the procedure since, as in Epilepsy scenario, the motion between images was not significant,

NMI method results in a better inter-modal alignment using rigid body registration and trilinear

interpolation is the fastest method.

Nonetheless, before co-registration BET was applied in the T1 datasets to extract the skull,

which is a pivotal step prior FLIRT application, since FLIRT algorithm only run with brain ex-

tracted images. Different fractional intensity thresholds were tested to get a highly accurate skull

removal. Lower thresholds were incapable to remove the skull completely and higher threshold

were leading to the loss of some brain tissue, in particular cortex. Therefore, a medium threshold

was preferred.

5.1.2 Processing

For DBS lead segmentation and consequently the detection of its electrodes, MATLAB was cho-

sen as the appropriate platform to develop the required algorithms, since the data can be easily

manipulated.

Considering that the files resulted from FSL during the pre-processing stage were in NIfti

format, and no function in MATLAB is capable to read this type of data, SPM package was

loaded. Using SPM the header and the image dataset of each NIfTi file was read.

36



DBS Scenario

Enhancement of the images can be achieved using different types of operators, namely the

punctual operators known as intensity transformation functions. In order to improve the contrast

of the provided images a linear stretching was applied to CT and T2 images. For T1 datasets

the linear stretching was defined to promote the expansion of the higher intensities and thereby

enhance the visualization of the different structures in the brain. Furthermore, a median filter was

used on T1 images to reduce salt and pepper noise. No filters were implemented in CT and T2

datasets due to the induced blur that was promoting the disguise of the bottom tip (BT) of the DBS

lead.

5.1.2.1 DBS lead Segmentation

A binary mask with only the DBS lead is crucial to detect its BT and thereby each position of

the electrodes. An automatic algorithm was developed to do the DBS lead segmentation. The

algorithm can be divided in two main steps, as listed below:

• Intensity threshold and skull removal;

• 3D labelling connected components algorithm.

In the first step all the CT or T2 images were binarized by an intensity threshold, chosen after

an inspection of the histogram. Since in T2 the lower intensities correspond to the DBS lead, as

opposed in CT images, a morphological operator was applied. Therefore dilation was carried in

the T2 masks, resulted from the threshold, to obtain a brain mask without the lead. To this mask

the original binary mask was subtracted, and consequently an DBS lead segmented image was

obtain, as in CT images (figure 5.2 (B)).

The application of the threshold should allow the extraction of the DBS lead and the removal

of brain and skull. Nevertheless, skull was not completely eliminated due to is similar intensities

with the lead. As a result an additional step was required.

For each binary image of the dataset, (figure 5.2 (B)), a new image was estimated, in which

a label was assigned for each connected component. The area and solidity of each label were

determined. The connected components with larger area and with a solidity above 0.5, refined

after some tests, were assumed to be skull and consequently removed from the binary image.

In T2-MRI case, this process was repeated two times to remove inner skull and outer skull. As

opposed in CT datasets, where inner skull and outer skull are not distinguishable, and therefore

the procedure was only performed one time. Although this process almost removed the whole

skull, some residues of skull and other structures remained, specially in T2-MRI (figure 5.2 (C)).

Considering that the aim of DBS lead segmentation is to obtain a mask in which only the lead is

present in order to detect its BT, the second step of the automatic segmentation was developed, a

3D labelling connected components algorithm.

In this algorithm the DBS lead 3D mask is estimated based on the principle that the position

of the lead varies slightly from slice to slice. The main steps for the development of this algorithm

are listed below:
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Figure 5.2: CT (above) and T2-MRI (below) (A) after the enhancement process; (B) after the
intensity threshold was applied and, for the case of T2 datasets, after the intensity threshold and
the subtraction of the brain mask were performed; (C) after the skull removal, based on solidity
and area of the 2D connected components.

• Centroid estimation;

• Distance of each centroid to the centroids in the following slice;

• Keep the combination with minimum distance;

• Distance thresholding;

• Isolated centroids combination removal;

• Centroid connectivity;

• 3D labelling connected components establishment;

• Selection of DBS lead connected components or labels.

First, the centroid of each label on each slice of the segmented mask, (figure 5.2 (C)), was

estimated. The Euclidean distance between centroids from consecutive slices was determined for

every possible combination, as suggested in figure 5.3 (A). However, only the combination with

minimum distance was saved, such that each centroid is only connected to a single centroid in the

following slice, (figure 5.3 (B)). The combination of consecutive centroids that might represent

the 3D lead mask are not missed by keeping only the combination with minimum distance, since

the position of the lead varies slightly from slice to slice. In addition, this condition makes the

computational cost of the process in the following steps less expensive and feasible in terms of

time and memory.
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Figure 5.3: Illustration of the five initial steps of the algorithm A - Representation of the distances
of the centroid of each connect component to the ones in the follow slices; B - The combination
of centroids with minimum distances; C - Combination of the centroids after the distance thresh-
olding was applied; D - Removal of the combination of centroids which were isolated, without
connectivity.

Then, a distance thresholding was applied to eliminate 3D centroids combinations which are

far apart and has no meaning for this work. As a result some centroids lose the connectivity

to the following slice, leading to isolated centroids combination, which were then removed, as

represented in figure 5.3 (C) and (D).

After the centroid connectivity between successive slices was established, a recursive function

connected the centroids based in their relation to the following slices and sets up the 3D connected

components, each one with a different label assigned. Since each centroid is connected to only

one centroid in the following slice, the issue of having centroids repeated in different connected

components is avoided. The recursive function ends the set up of each connected component when

a centroid has no connection with any centroids on the next slide. When all the centroids have a

label assigned and thus integrated into a 3D component the recursive function cease.

3D labels which occupied more slices correspond usually to each DBS lead implanted, since

the leads are localized almost along the entire brain, occupying more slices than others 3D labels,

which were punctual residues that were not removed by the first step of the automatic algorithm.

Using this two steps algorithm a mask of the leads without any residues of skull and other

structures can be selected from all the 3D connected components obtained. Then x, y and z

voxel positions of the BT and upper tip (UT) of each lead is determined and used to generate a

representative straight line of the DBS lead, which is required to measure each electrode position

by a trigonometric deduction.

For the case of automatic segmentation does not produce accurate results, a semiautomatic

segmentation was developed. In the semiautomatic method the user can examine the original CT

or T2 scans and place a cursor over the BT and UT to select them. Then the x, y and z voxel

coordinates resulted from the cursor selection are saved to be used for the measurement of each

electrode position by a trigonometric deduction.
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Voxel to mm space

Saved in the header of the NIfTI file is an 4x4 affine transformation matrix to convert the voxel

coordinates in millimeter (mm) coordinates or vice-versa. Assuming the follow matrices, M and

M−1, as the 4x4 transformation matrix and its corresponding inverted matrix, the transformations

between space coordinates are expressed in the equations 5.1 and 5.2.

M =


x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4
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 M−1 =


x
′
1,1 x

′
1,2 x

′
1,3 x

′
1,4

x
′
2,1 x

′
2,2 x

′
2,3 x

′
2,4

x
′
3,1 x

′
3,2 x

′
3,3 x

′
3,4

x
′
4,1 x

′
4,2 x

′
4,3 x

′
4,4


xmm

ymm

zmm

=

xvoxel

yvoxel

zvoxel

×
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

+

x1,4

x2,4

x3,4

 (5.1)

[
xvoxel yvoxel zvoxel

]
=
[
xmm ymm zmm

]
×

x
′
1,1 x

′
1,2 x

′
1,3

x
′
2,1 x

′
2,2 x

′
2,3

x
′
3,1 x

′
3,2 x

′
3,3

+
[
x
′
1,4 x

′
2,4 x

′
3,4

]
(5.2)

Electrodes Localization

After DBS lead segmentation the x, y and z voxel coordinates of its BT and UT are transformed

to mm by the equation 5.1. In order to detect the exact position of the electrodes a trigonometric

relation were deduced and illustrated in figure 5.4. Assuming that δx, δy and h are the distances

in mm between the BT and UT in x, y and z axes and H is the direction of the DBS lead, it will

be demonstrated the measurements required to determine the x, y and z positions for an figurative

electrode, H1.

Therefore the equations performed to obtain the x, y and z mm coordinates, δx1, δy1 and h1,

for the figurative H1 electrode are listed below:

α = tan(
δy
δx

)−1 (5.3)

d =
δx

cos(α)
(5.4)

β = tan(
h
d
)−1 (5.5)

H =
d

cos(β )
(5.6)

ϕ =
h

cos(ϕ)
(5.7)

d1 = cos(β )×H1 (5.8)

δx1 = cos(α)×d1 (5.9)

δy1 = sin(α)×d1 (5.10)

h1 = cos(ϕ)×H1 (5.11)
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Figure 5.4: 3D representation of the relationships between the lengths and angles for the different
sides of the DBS lead.

Based on the datasheet of the DBS lead used in this study, the distances along H for each

electrode in relation to the BT are the follow: 2.25, 4.25, 6.25 and 8.25mm [2]. To determine the

δx1, δy1 and h1 of each electrode, the value of H1 was adjusted in the above equations to each of

these distances provided in the datasheet.

Then, the positions of each electrode are transformed to voxel coordinates, using equation 5.2.

Since voxels only take integer values, the coordinates were rounded to the nearest value and then

used to create a mask of the electrodes.

Considering that in the case of the automatic segmentation the DBS lead mask was estimated,

only the z voxel coordinates (slice numbers) of each electrode was used to mark, in this mask, the

labels which correspond effectively to the presence of the electrodes. Therefore, a new dataset

of binary images was established in which only the slices of the DBS lead mask in which the

electrodes were identified were marked.

As opposed in the semiautomatic segmentation, considering that no DBS lead mask was gen-

erated the x, y and z voxels coordinates of the centroid estimated for each electrode were used as

center of the electrode. A circle was produced around this centre, with a radius of 1.38 in voxel

coordinates. Such radius corresponds to the mm radius of the electrode given by the datasheet.

Furthermore, since the values for H1 are estimated in relation to the BT, the precise localiza-

tion of this tip is essential for the accurate localization of each electrode. In addition a precise

identification of the UT is not vital, since by selecting other point on the DBS lead is also possible

to estimate its trajectory.

5.1.2.2 Interface

Additionally to the objectives proposed it has become necessary to create an interface in MATLAB

to assist the user in several tasks such as: the choice on the type of image to process, the type of

segmentation to use and the adjustment of some parameters to optimize the process.

Thus the developed interface provides the following options:
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• Reading and pre-processing the datasets;

• Automatic or semiautomatic segmentation;

• Estimation of the masks of the electrodes;

• Exporting datasets;

• Optimization of parameters.

The first task allows the user to choose the type of data to read (CT, T1 or T2) and apply the

pre-processing stage. After reading the dataset the user can analyse it, for instance by verifying

the position of the BT. The images can be explored by passing one slice at a time or by passing 10

slices at once, using the upper buttons. In this initially phase the user can also export the contrasted

images (figure 5.5).

Figure 5.5: (Left) The initial window of the interface (Right) Interface after the choice of the of
dataset, in which the upper buttons can be used to pass the slices and the lateral ones to proceed to
segmentation or exportation.

If the automatic segmentation is chosen the program will run the algorithm described in sec-

tion 5.1.2.1, exposing visually the UT and BT estimated for each lead (figure 5.6 (left)). If the

user agrees with the suggestion given automatically, the mask of the electrodes are generated and

presented for exportation. However, if the tip does not match the BT checked by the user initially,

an adjustment of parameters for the automatic segmentation is available. Nevertheless, semiauto-

matic segmentation can also be chosen if the user is not satisfied with the suggestion given by the

automatic algorithm.

When the semiautomatic segmentation is chosen the user can select the UT and BT directly on

the slices, and the mask of the electrodes are automatically generated (figure 5.6 (right)). There-

after, the masks can be exported as Dicom files. The interface also allows the user to overlap

the structural T1-MRI image with the DBS lead and/or electrodes masks for a better verification

of the segmentation step, figure 5.7. This overlapping is possible since CT images were initially

aligned with T1 using FLIRT, as referred in section 5.1.1. Furthermore, there is in the program an

instruction panel to assist the user in the several options of this interface.
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Figure 5.6: (Left) Interface window after the automatic segmentation is performed, in which the
user can verify the DBS lead segmentation and the positions of the BT and UP; (Right) Interface
for semiautomatic segmentation, in which the user press in the lateral buttons and using the cursor
selects the BT and UP.

Figure 5.7: Automatic segmentation: Electrodes mask (Left) without the corresponding T1-MRI
and (Right) overlaid with T1-MRI.

As shown in figure 5.8, for the optimization of the process the intensity threshold used in

the first step of the automatic segmentation of the DBS lead can be adjusted as well as some

specifications of the lead, such electrode length, electrode spacing, electrode distance, distal tip,

lead diameter and length lead.

Figure 5.8: Interface window with several options to optimize DBS lead segmentation or change
the DBS lead specifications for (Left) the automatic or (Right) the semiautomatic segmentation.
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Image exportation

To export the resulting images and masks, a function was developed to write the 3D data as a stack

of 2D slices in separate Dicom files with the header of the original NIfTI file.

5.1.2.3 Deep Brain Structures Segmentation

As in section 4.1.2.2, FIRST was used to segment some DBs, namely amygadala, caudate nucleus,

hippocampus, nucleus accubens, pallidum, putamen and thalamus. The parameters prior verified

by FIRST developers which lead to accurate results and listed in the table 3.1 were used for this

work. [61, 62]

In opposition to cerebellum segmentation, the second stage of the affine registration of T1-

MRI to the MNI-152 space was carried using subcortical masks, allowing the exclusion of voxels

outside the subcortical regions and a better subcortical alignment.

The centre-of-gravity or centroid of each structure on each side of the brain was estimated to

compare with the positions of the electrodes and then with patients’ outcome. For this estimation,

fslstats, a volumetric analysis tool of FSL was used.

Since in the pre-neurosurgical evaluation some physicians prefer the information in a common

template, all the segmented structures were warped to the MNI space.

Therefore, T1-MRI datasets were warped to the MNI template using a linear followed by a

non-linear registration to overcome the inter-subject anatomical differences in shape, size, and

relative orientation, as referred in section 2.4.2. This registration was carried out using an affine

transformation with 12 DoF to guarantee the topological integrity of the original image, as cited

in section 2.4.1. For the linear transformation, trilinear interpolation, NMI cost function and a

angular search range of -30 to 30 were used due to the reasons mentioned for CT-MRI or T2-T1

co-registration. FNIRT was applied in the T1-MRI datasets using the matrix resulted from the

affine transformation with 12 DoF, in order to obtain a warp-field, which is basically a set the

displacements to place the initial T1-MRI in the MNI space. Then, the warp-field was applied in

the segmented structures to warp them to the MNI space.

5.2 Results and Discussion

As depicted in figure 5.9, when comparing skull-stripped T1-MRI (in blue) with the whole head

it is deduced that the threshold defined to these datasets was capable to preserve the cortex and

remove completely the skull.

Figure 5.10 revealed a fine alignment between T1 and T2 or CT images. Therefore, the pa-

rameters chosen for the co-registration are recommended for inter-modal alignments, rigid body

transformations and datasets in which the motion is not significant.

Despite the patients of this study were elderly and therefore more susceptible to present large

ventricles, no failures were seen in FLIRT performance.
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Figure 5.9: A - Pre-operative T1-MRI; B - T1-MRI after skull stripping using BET and C - Fusion
of the images in A and B, where the extracted brain is displayed in blue.

Figure 5.10: Co-registration of (A) CT with T1 datasets and (B) T2 with T1 datasets. (Left)
Original CT and T2 images; (Center) CT and T2 images aligned with T1 using FLIRT; (Right)
Fusion of CT or T2 images with T1, which is displayed in blue.

Electrodes Segmentation

The CT or T2 datasets aligned with T1 was then used in MATLAB for electrodes segmentation. As

verified in figure 5.11 (A), 3D labelling connected components algorithm was efficient to produce

a mask with only DBS lead data. For the CT images, no residues of other structures distinguished

in the figure 5.2 (C) were seen in the DBS lead mask, after the appliance of the second step of the

automatic algorithm. Nevertheless, in the case of DBS lead segmentation for T2 datasets, it was

observed that usually the segmentation for one of the leads implanted of the brain was correctly

performed but the other lead was not identified and mistaken with other brain region, as shown in

figure 5.12. The principle in which 3D labels that occupied more slices correspond to the leads

is not observed in T2 datasets, probably due to an ineffective performance by the first step of the

automatic algorithm to remove the maximum of skull and structures not belonging to the DBS

lead. In the majority of the cases, the other 3D connected component seen after the automatic
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Figure 5.11: Fusion of CT images with: (A) The DBS lead mask obtained after the 3D labelling
connect components algorithm; (B) electrodes mask obtained by the automatic algorithm; (C)
electrodes mask obtained by the semiautomatic algorithm.

segmentation algorithm was a region near the occipital skull with lower intensities. Thereby, for

T2 datasets only the semiautomatic segmentation was used to generate the electrodes mask. For

CT images the automatic segmentation method provided good results.

Some examples of electrodes mask overlaid with CT image are presented in 5.11 (B) and (C).

As depicted in the figure 5.11, in particular in axial view, when using the automatic method the

electrodes are correctly overlaid on the lead of the CT image. In contrary, the electrodes resulted

from the semiautomatic method show some displacements in relation to the lead.

As the electrodes are displaced from the DBS lead, it can be concluded that the representative

straight line of the lead produced after the selection of the UT and BT was not precise. This

imprecision may be due to random errors introduced by the user in the selection of the tips and

systematic errors due to the voxel resolution, restricting the selection of the center of the tips by

the cursor.

Regarding the automatic method the line representative of the DBS lead was produced based

on the tips of the DBS lead mask returned by the algorithm. However, since in the upper slices

a increased beam hardening has identified is possible to conclude that the estimation of the cen-
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Figure 5.12: Overlay of T2 images with the DBS lead mask obtained with the 3D labelling con-
nected components algorithm.

troid for the UT was affected and leading to some errors in the representation of the trajectory of

the lead, and therefore in the estimation of each electrode position. However, no displacements

between the electrodes mask and the DBS lead were seen, when the automatic method was used,

since the electrodes mask was created based on the DBS lead mask for the z position or slices in

which each electrode was found.

The electrodes position were also estimated by Dr. Verena Rozanski. Using the FSL viewer

environment the BT coordinates were identified manually as well as the angles between the DBS

trajectory and the horizontal plane and sagital plane. Then, the electrodes position were estimated

by a set of trigonometric relations.

The electrodes position given by MATLAB and the estimated by Dr. Verena were compared,

in order to validate the MATLAB algorithm.

Primarily, it was observed a systematic difference in the identification of the BT for some

cases. The parameters chosen for the automatic segmentation were defined to assume the presence

of the BT at the first identification of the lead. Similarly, using the semiautomatic method, the

manual selection was always made in the slice in which the first evidence of the lead was detected.

However, this consideration was not assumed by the collaborated physician in this study, since in

her opinion the first slices may correspond to artefacts and not to the lead. As can be seen in figure

5.13, the manual identification of the BT in FSL by the physician was systematically higher by 1,2

or 3 mm than the considered in MATLAB.

As suggested by the figure 5.13, the automatic algorithm is very sensible for the detection

of the BT as the first point with higher intensities. Although, in the case of the first slices may

correspond to artefacts, they can be avoided by adjusting the intensity threshold on the options

of the interface, and therefore diminish the sensibility in the detection of the BT, assumed by the

interface developers.

Due to these systematic differences, a "normalization" step was performed in the electrodes

position given by MATLAB and by Dr. Verena Rozanski for an appropriate validation of the MAT-
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Figure 5.13: Left BT location: (A) detected by the automatic algorithm and (B) estimated in the
FSL viewer environment by the expert. In this case, the bottom tip estimated by the MATLAB
was 2mm above the one defined manually.

LAB algorithm. All the x, y and z coordinates of electrodes were subtracted to the coordinates

of the BT, in order to obtain normalization distances for each axis and each electrode, regardless

of the BTs selected. Then the normalization distances obtained with MATLAB were subtracted

to the normalized ones by Dr. Verena Rozanski. The absolute value of these differences can be

examined in the tables 5.1 and 5.2.

Table 5.1: The mean and standard deviation of the absolute differences estimated from all dataset,
regardless the method of segmentation used for the electrodes mask establishment.

x (mm) y (mm) z (mm)

Mean 0,507 0,592 0,444
Standard deviation 0,337 0,426 0,366

Table 5.2: The mean and standard deviation of the absolute differences estimated with the auto-
matic and semiautomatic method.

Semiautomatic Automatic

x (mm) y (mm) z (mm) x (mm) y (mm) z (mm)

Mean 0,581 0,557 0,359 0,385 0,678 0,587
Standard deviation 0,362 0,358 0,316 0,258 0,530 0,413

Through the analysis of these tables it is concluded that the differences between the electrodes

measured by Dr. Verena Rozanski and the ones resulted by MATLAB are very low. The semi-

automatic segmentation shown better results for the y and z directions when compared with the

automatic method, probably due to the trajectory of the DBS lead that was less imprecise. Al-

though, using the automatic algorithm and therefore the DBS mask to create the electrodes mask,

the x directions is less affected.

Despite these considerations, the trajectory imprecisions, either with automatic method or the

semiautomatic, are not significant since the differences are lower than the image resolution, 0.98 x
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0.98 x 1mm and thereby less than a voxel dimension. The normalization distances acquired with

MATLAB and Dr. Verena Rozanski can be consulted in the section A.6 of the annex.

Deep Brain Structures Segmentation

Concerning BG segmentation, the main results are presented in the figures 5.14 and 5.15. In

general, the masks were larger than the corresponding structures, in particular for the thalamus.

The shape of the mask and the structures are very congruent, as shown in 5.14 for the caudate

nucleus and putamen and in 5.15 for the hippocampus, nucleus accubens and pallidum.

Some structures such pallidum and amygdala are almost imperceptible in the individual space

and even after the two-stage affine registration to MNI-152 space. Nevertheless, they were ac-

curately segmented possibly due to the Bayesian framework. Since it allows to do probabilistic

relationships between shape and intensity variations across the training stage, the pallidum and

amygdala segmentation were possibly estimated based on the shape and position of others struc-

tures more well defined such putamen and hippocampus.

Figure 5.14: A - MRI image with a contrast enhancement for better distinction of BG structures;
B - T1-MRI image after two-stage affine registration to the MNI space; C - Fusion of the MRI
enhancement images with the caudate nucleus (light blue), thalamus (green) and putamen (pink)
masks estimated with FIRST from Patient 1.

As depicted in figure 5.14 (B) and 5.15 (B), the linearly registration of the T1-MRI to the MNI

space result in a set of images in which the structures are much larger than the individual space,
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Figure 5.15: A - MRI image with a contrast enhancement for better distinction of basal ganglia
structures; B - T1-MRI image after two-stage affine registration to the MNI space; C - Fusion of
the MRI enhancement images with the caudate nucleus (light blue), thalamus (green), putamen
(pink), pallidum (blue), hippocampus (yellow), nucleus accubens (orange) and amygdala (fluores-
cent light blue) masks estimated with FIRST from Patient 1.

possibly due to the inherent smoothness of the 152 T1-MRI images of the template (figure 5.16

(A)). Considering that this registration procedure was the same performed in the training dataset

for FIRST development, the variation information on shape and intensity estimated across all the

training dataset to establish the probabilistic relationships in a 3D model, may have been biased to

overestimate the structures masks.

Therefore, the smoothness of the template which leads to larger structures in the MNI space

may have affected the variation estimations for each vertex of each structure across the training

set, limiting the 3D models vertex combinations to larger masks.

From all the structures the thalamus in the warped T1 images is the one which the MNI

smoothness induce a largest area. This is in accordance with the FIRST results in figures 5.14

(C) and 5.15 (C), since the resulted thalamus masks were much larger than the corresponding

structures in the individual space.

An example of BG structures masks in the MNI-152 space is shown in the figure 5.16.

On the average, the manual segmentation of DBs, such as the ones segmented by FIRST, takes
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Figure 5.16: A - MNI-152 T1 1-mm brain images. B - Fusion of the MNI152 images with the
caudate nucleus (red), thalamus (green), putamen (pink), pallidum (blue), hippocampus (yellow),
nucleus accubens (light blue) and amygdala (purple) masks estimated with FIRST, from Patient 6,
and transformed to the MNI space.

5.26 minutes per structure by an expert.[6] Using FIRST, the execution time of the registration

and segmentation step for each of the 14 structures (7 bilateral structures) was around 1.20 min-

utes. In the literature, the execution time of automatic segmentation methods varies considerably,

and is highly dependent on the registration method. Using non-linear registrations the execution

time varies between 30 minutes to 3 hours.[6] In contrary, using linear registration the execution

time only requires 1 minute and the segmentation 40 seconds.[6, 60] Therefore, using FIRST the

execution time is even lower by a seconds than recent linear methods of segmentation and despite

the overestimated masks, the results were very congruent.

Clinical outcome associated with electrodes positioning in relation to BG structures

In order to establish a relation between patient’s outcome and the structures stimulation by the

electrodes, the centroid of the mask for each structure were estimated in the individual space and

compared with the position of the electrodes. Section A.7 , in the annex, present all the distances

between each electrode to each structure for each DBS patient. Since the target structure of DBS

for Parkinson’s patients was the STN and the segmentation of this nucleus is not available using

FIRST, a manual mask was performed by Dr. Verena Rozanski and compared to the patients’

outcome.

In relation to Dystonia patients, the distance between the electrode, which lead to a better pa-

tient’s outcome, and the centroid of the target structure, pallidum, was on average 5,15±1,88mm.

Nonetheless, as suggested by the high value of standard deviation, establishing a relation between

this distance and a better patient’s outcome is not clinically viable. The distances to the center

of the pallidum which provide a good outcome ranged from 1.43 to 8.03mm. Therefore the DBS

procedure for dystonia is not highly dependent on this distance but instead of the arrangement
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of the fibers of the brain, which establish the interconnections of the basal ganglia, allowing to

control the hyperfunction of the GPi [38].

For Parkinson, the distance between the electrodes which lead to a better patient’s outcome and

the centroid of the target structure was on average 6,47±1,31mm . However, there were at least

three cases in which distances greater than 6,47 in the right side produced better outcomes than the

electrodes placed at the estimated average distance. Thus, we can not assume that the distances

around 6,47 are the optimum distances to the center of the structure, although on average may be

the best. Considering that all the brains are different as well as the disposition of the fibers, the

relation between this distance and the outcome may be inappropriate. Although, it was interesting

to observe than none of the deepest electrodes closer to the center of the target structure, STN,

were chosen since they produce the worst outcomes. Possibly at this closeness, the electric field

produced by the electrodes were stimulating also the substancia nigra, a structure near the STN

which when stimulated can induce hypomania [67, 68].

Regarding the other segmented structures by comparing the tables in section A.7, each elec-

trode is well distanced from the amygdala, hippocampus, thalamus, nucleus accubens and caudate

nucleus, so it is not possible to establish a correlation between the patient’s outcome and the prox-

imity of the electrode to each structure. Nevertheless, the segmentation of these structures are

important to the work of Munich University in which this thesis is included, since in association

of DTI information may improve our knowledge of BG interconnections.

Figure 5.17: A - Electrodes mask overlaid with STN manual mask and T1 scan from patient
1 with Parkinson: (left) Worst patient’s outcome by activating the deepest electrode on the left
side; (right) Better patient’s outcome by activating the 3rd electrode on the left side. B - Electrodes
mask overlaid with pallidum mask and T1 scan from patient 9 with Dystonia: (left) Worst patient’s
outcome by activating the deepest electrodes on both sides; (Right) Better patient’s outcome by
activating the 3rd electrodes on both sides.
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Chapter 6

Conclusions and Future Work

In this chapter is presented a review of the objectives and the work developed to meet these goals.

Some suggestions for future work can also be found.

6.1 Review of Thesis Objectives

In this study, it was intended to develop a multimodal method for the detection of subdural and

deep brain electrodes as well as deep brain structures to assist in the pre-neurosurgical evaluation

of patients with Epilepsy and patients undergoing DBS.

The proposed assistance for the pre-neurosurgical evaluation of DBS patients was intended to

support in the delineation of STN and GPi prior the DBS lead implantation and after the surgery

to correlate the electrodes position with the proximity to these structures and others in the deep

brain area. This guidance may improve the accuracy of the surgery and consequently the patient’s

outcome and quality of life.

For the Epilepsy, it was intended to establish a 3D model with the subdural electrodes over

the cortex. A 3D visualization prior the resection surgery is useful to relate the iEEG data with

the brain anatomical position of the electrodes and therefore delineate with higher precision the

epileptic focus and the eloquent areas. As for DBS, this approach may lead to a more accurate

identification of the potentially epileptogenic tissue and consequently improve the patient’s out-

come and quality of life.

6.2 Meeting Objectives: The contributions of the thesis

To meet the proposed goals a pre-processing pipeline was developed for multimodal co-registration

and brain extraction, for the two diseases. Considering that the parameters chosen have resulted

in fine alignments and an accurate brain extraction, the pipeline is recommended in future studies.
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The processing for electrodes segmentation was different for Epilepsy and DBS cases. For the

detection of the subdural electrodes in epileptic patients, a threshold in FSL was used to extract

only the electrodes data. No beam hardening, artefacts or skull were identified after the intensity

threshold was applied. Therefore, the electrodes mask were fused with the skull-stripping T1-

MRI, without cerebellum, in a 3D representation using volume rendering in the MRIcron. The

resulting T1 without the cerebellum is being useful to the physicians for the improvement of the

visualization of the strips and grids in the 3D visualization. This approach was already tested by

HSJ for one patient, which has been seizure free since surgery. More requests has been made by

HSJ for future patients.

For the DBS cases, an interface in MATLAB was developed with several options such as the

method used to segment the DBS lead, the dataset to be read and the adjustment of some parame-

ters for a better performance. Prior the segmentation of the DBS electrodes, it is necessary to de-

duce a DBS mask and based on their BT stipulate the position of each electrode. A semiautomatic

and an automatic methods were developed to obtain the DBS lead and then the BT coordinates.

The electrodes positions estimated either using the automatic or semiautomatic method were com-

pared by the ones given by Dr. Verena Rozanski. The differences found were less than a voxel

size, so this interface can be useful in future DBS studies to produce automatically the electrodes

masks.

In addition, the creation of the electrodes mask using our tool lasts around 1 minute, which

when compared with the normal procedure by the physicians, which lasts around 40 min, is much

faster. Normally, the physician need to determine manually the BT and some angles in relation to

the DBS trajectory. Thus, the electrodes positions are estimated using for instance Excel, to do the

trigonometric relations. The obtained coordinates for the electrodes are then used to create ROIs.

This entire procedure is very time consuming when compared with the segmentation time of out

tool.

An automatic segmentation procedure, available among FSL tools, was used for the segmen-

tation of brain structures. This tool was the same used to segment the cerebellum in the epileptic

patients. The masks resulted by these procedure are very congruent in shape and position to the

ones in the individual space. Even when some structures were almost imperceptible in the individ-

ual space, such pallidum, the target area of DBS surgery for Dystonia, the procedure was capable

to segment them correctly. However, the resulting masks, in general, were overestimated probably

because they were biased by the MNI space smoothness. Unfortunately, the automatic segmenta-

tion procedure does not have the capacity to segment the STN, so manual masks were estimated

by Dr. Verena Rozanski for the correlation with the electrodes position, specially for Parkinson

cases.

Considering that there are several problems involved with manual segmentation of brain struc-

tures, automatic segmentation methods are most viable. The first issue of the manual segmen-

tation is the time cost associated. For instance, manual brain/non-brain segmentation can lasts

between 15 minutes to 2 hours for one patient [63]. In addition, it requires a expert with sufficient

background of the shape and intensities of the brain structures to segment. Even in this cases,
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subjectivity is always present.

Although the automatic method used in this work overestimates the area of some structures,

it can be a good alternative to manual segmentation due to its fastest performance and a very

congruent shape and position masks. Since the automatic method is based on a linear registration,

the results were expected to be not so precise than the methods based on non-linear registration.

However, by comparing the obtained structures with the ones by the non-linear methods, (figure

3.1), the differences are not significant.

The patient’s outcome relation to the distance of each electrode to the target areas may be clin-

ical infeasible due to the high values of standard deviation. Thereby, we conclude that outcomes

are not only dependent in the distances to the structures, but it also depends of fibers arrangement

of each individual patient.

Therefore, answering the questions raised in the introduction, a method for the detection of

intra-craned electrodes was developed with success either for Epilepsy and Parkinson and an au-

tomatic segmentation method, available in FSL, was applied for the segmentation of some basal

ganglia structures and others of the deep brain area. The discussion of the results obtained with this

tool, allows to evaluate its performance and improve our knowledge about this automatic method

and therefore estimate their potential in future applications.

6.3 Future Work

Further testing are necessary to validate with higher accuracy the pipeline developed for Epilepsy

scenario. An interface in which the physician can run online automatically the pipeline might also

be useful in the future. The interface should have several options such as listed below:

- exchange of the sign of the intensities, if necessary;

- adjustment of the fractional intensity threshold for brain extraction;

- visual verification of the extracted brain;

- visual inspection of the CT-MRI co-registration;

- adjustment of the intensity threshold for electrodes segmentation;

- selection of the ROI area to extract the bottom borders of cerebellum, if necessary.

If a post-operative T2-MRI image is available, the interface may also have an option, for the

physician, to select directly on the image the center of each electrode and, based on the dimensions

of the electrodes given by the datasheet, generate an electrodes mask. A intensity threshold for T2

scans to segment the electrodes can be less precise than this method since the electrodes placed

over the cortex in the T2 scans show less contrast in relation to the medium between cortex and

skull.

In addition, considering that a loss of resolution was seen in the 3D volume rendering, others

software can be explored or even developed to substitute MRIcron in this task. However, since

the volume rendering depends highly of the parameters for the weighting functions, which, in
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automatic software’s algorithms such MRIcron is a setback because they cannot be adjust, the

software chosen or developed must have the possibility to adjust these parameters.

In relation to the DBS results, it would be interesting to compare the obtained masks seg-

mented by the automatic procedures with manual masks marked by at least three experts. In order

to find volumetric differences between manual and automatic masks, dice similarity coefficient

would be recommended [6, 62]. For the structures in which the dice correlation result was lower,

a MATLAB machine learning algorithm could be developed as well as for STN, since for this

structure the automatic segmentation in FSL is not possible.

Furthermore, the development of a template with only Parkinson and Dystonia MRI data could

lead to more precise structures segmentation or even using the French atlas, which covers with

more detail deep brain regions and the contrast between grey and white matter is significant [43].

Regarding the DBS electrodes position, considering that electrodes induce a electric field in the

neighbour tissues, it would be interesting correlate it with the neighbour structures and fibers. This

is a currently emerging area to better understand the BG interconnections and patients’ outcome.

The automatic procedure adopted in this work for structure segmentation has enough potential

to study pathologies and improve the pre-neurosurgical evaluation. In addition to the segmenta-

tion, this tool allows to compare shape and volumetric differences among groups. So it would

be interesting to use it to compare shape and volumetric differences between normal subjects and

individuals with pathologies, not necessarily for Parkinson, Dystonia or Epilepsy.

The segmentation of some of the structures in this work, such nucleus accubens, hippocampus

and amydgada can be also useful in the future for the target delineation prior to surgery in patients

with resistant depression, schizophrenia and mood disorders, respectively [69, 70, 71].
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A.1 Basal Ganglia Interconnections

The following images were taken from the reference [1].

Figure A.1: Relation of BG neuronal circuit with the corticospinalcerebellar system, for movement
control.
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Figure A.2: Putamen and caudate circuit through the BG.

A.2 Epilepsy dataset

A brief diagnosis and treatment plan provided by Dr. Ricardo Rego, for each patient.

Patient 1

"26 year-old right-handed male with focal refractory epilepsy starting at age 24. Etiology was

a low-grade tumor, located at the left inferior temporal gyrus; the center of this lesion was 6 cm

posterior to the temporal pole. During video-EEG monitoring multiple dialeptic or automotor

seizures were recorded, with lateralizing signs to the dominant hemisphere. Ictal patterns were

consistently left temporal, with a maximum at the middle temporal region. In order to better de-

lineate the seizure onset zone and its relation with neighboring language areas, we implanted a

4x8 subdural electrode grid over the left temporal convexity (superior, middle and inferior tem-

poral gyrus) and 2 subtemporal strips, each with 8 contacts: strip 1 was on the basal surface of

the inferior temporal gyrus, below the tumour; strip 2 was directed antero-medially, close to the

amygdala and hippocampus. The invasively recorded seizures originated on the inferior surface of

the tumour (strip 1) with rapid propagation to postero-inferior grid electrodes, behind the lesion.

Cortical mapping by electrical stimulation disclosed language functions over the superior and mid-

dle temporal gyrus. Reading was interrupted upon stimulation of the 2 lateral contacts of strip 1.

An extended lesionectomy was performed, including the visible tumor and adjacent inferior and

posterior cortex. Post-operatively he had transient alexia, which resolved entirely after a few days.

He has been seizure -free for 7 months. The pathological specimen showed features indicative of

a ganglioglioma."

Patient 2

"24 year-old right-handed male with focal epilepsy starting at age 15. Shortly after seizures

began, investigation with MRI disclosed a left temporal pole tumor, which was ressected at an-

other institution. The pathological diagnosis was ganglioglioma. Seizures persisted throughout

subsequent years and were refractory to multiple AED. Follow-up imaging excluded tumor recur-

rence and showed a clastic region on the temporal pole, with a posterior gliotic margin, as well as

atrophy and gliosis of the amygdala/ anterior hippocampal region. He was referred to perform pre-
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surgical epilepsy investigation. During video-EEG monitoring several automotor seizures were

recorded, with lateralizing signs to the dominant hemisphere and seizure patterns over the left

fronto-temporal region, with very rapid contralateral propagation. For the invasive recordings, we

implanted a 4x8 subdural electrode grid over the left anterior temporal convexity (superior, middle

and inferior temporal gyrus) and 2 subtemporal strips: strip 1 had 8 contacts and aimed the hip-

pocampal region (although final placement showed displacement towards the lateral pole); strip

2 had 4 contacts at the basal surface of the inferior temporal gyrus. Interictal spiking was very

prominent on both strips, specially strip 1. Cortical mapping by electrical stimulation showed

language functions on several postero-superior contacts of the grid. No seizures were recorded

after 11 days, at which time invasive monitoring was interrupted and surgery anticipated due to

meningitis. The surgical procedure consisted of a temporal pole resection behind the gliotic mar-

gin (sparing language areas defined by electrical stimulation) and amygdalo-hippocampectomy.

The patient has been seizure-free for 5 months."

Patient 3
"32 year-old left-handed female with refractory epilepsy starting at age 8. Etiology was prob-

ably perinatal ischemia, as suggested by clinical history and an MRI showing bilateral atrophy of

the parietal cortices. Seizures consisted of a somatossensory and complex visual aura (she reported

seeing "funny colors" as well as a "tingling" sensation on the left side of the body), followed by

loss of consciousness and predominantly right-sided automatisms. The patient was referred for

presurgical evaluation. During video-EEG we recorded several of the habitual seizures, which had

a right temporo-parieto-occipital EEG onset. For the invasive study, an 8x6 subdural electrodes

grid was implanted on the temporo-parieto-occipital junction (the more anterior electrodes also

reached the rolandic cortex), as well as a 2x4 grid on the basal surface of the inferior tempo-

ral gyrus and an 8-contact strip aiming the hippocampal region. Seizure onsets and predominant

interictal epileptiform discharges were located on the parietal opercular region, also extending

postero-inferiorly to the temporo-occipital cortex; electrical stimulation of some electrodes on this

region evoked the patient’s habitual auras. Surgery consisted of a corticectomy delineated accord-

ing to these results. The patienty has been seizure-free since surgery (performed only one month

ago, precluding a more reliable evaluation of the procedure’s success)."
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A.3 Epilepsy methods - Workflow

Figure A.3: Workflow applied for the segmentation of the subdural electrodes and for the extrac-
tion of the structural image without skull and cerebellum, using FSL.
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A.4 Validation of Epilepsy results
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A.5 DBS methods - Workflow

Figure A.4: Workflow applied for the segmentation of the DBS electrodes in MATLAB.
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Figure A.5: Workflow applied for the segmentation of DBs and the estimation of their centroid,
using FSL.

Figure A.6: Workflow applied to warp the structural images and the corresponding structures
masks to the MNI space, using FSL.

A.6 Electrodes Positions

In this section is presented all the normalized distances in relation to the BT obtained with MAT-

LAB and by Dr. Verena Rozanski for each electrode, E1, E2, E3 and E4.

A.6.1 Parkinson

• Patient 1;

Left Side

Normalized distances for patient 1 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -10,78 0,94 1,88 2,81 3,75 -11,72 0,95 1,80 2,64 3,49
y 25,85 0,94 1,88 2,81 3,75 25,85 1,06 2,00 2,93 3,87
z 11,61 2,00 4,00 5,00 7,00 12,61 2,04 3,85 5,66 7,48
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Right Side

Normalized distances for patient 1 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 9,84 0,94 1,88 2,82 3,75 8,91 0,95 1,80 2,64 3,49
y 26,79 0,94 1,87 2,81 3,75 23,73 1,45 2,73 4,02 5,30
z 12,61 2,00 4,00 5,00 7,00 13,61 2,04 3,85 5,66 7,48

• Patient 6;

Left Side

Normalized distances for patient 6 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 18,57 0,00 0,94 0,94 0,94 18,57 0,20 0,37 0,54 0,72
y 56,67 0,94 0,94 1,88 2,81 56,42 1,29 2,44 3,58 4,73
z -11,20 2,00 3,00 5,00 6,00 -12,20 2,24 4,23 6,23 8,22

Right Side

Normalized distances for patient 6 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 40,13 0,00 0,94 1,88 2,81 38,26 0,95 1,80 2,64 3,49
y 50,11 0,94 1,87 1,87 2,81 49,86 0,95 1,80 2,64 3,49
z -14,20 2,00 3,00 4,00 6,00 -13,20 2,04 3,85 5,66 7,48
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• Patient 7;

Left Side

Normalized distances for patient 7 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 5,92 0,00 0,00 0,93 0,93 8,74 0,77 1,45 2,14 2,82
y 85,04 1,88 2,81 3,75 5,63 86,30 1,29 2,44 3,58 4,73
z 12,48 2,00 3,00 5,00 7,00 11,48 2,11 3,99 5,87 7,75

Right Side

Normalized distances for patient 7 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 28,42 0,94 0,94 1,88 2,82 29,87 0,77 1,45 2,14 2,82
y 85,98 1,87 2,81 3,75 4,69 88,79 0,95 1,80 2,64 3,49
z 8,48 2,00 3,00 5,00 6,00 8,48 2,11 3,99 5,87 7,75

• Patient 11;

Left Side

Normalized distances for patient 11 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -11,72 0,94 0,94 0,94 1,87 -12,45 0,51 0,96 1,41 1,86
y 24,16 0,94 1,87 1,87 2,81 28,98 0,95 1,80 2,64 3,49
z -39,83 2,00 3,00 5,00 6,00 -39,83 2,19 4,14 6,09 8,04
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Right Side

Normalized distances for patient 11 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 9,48 0,00 0,00 0,94 0,94 10,78 0,43 0,81 1,19 1,57
y 27,91 0,00 0,94 1,87 1,87 33,12 0,95 1,80 2,64 3,49
z -43,83 2,00 3,00 5,00 6,00 -41,83 2,21 4,17 6,14 8,10

• Patient 15;

Left Side

Normalized distances for patient 15 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 4,50 0,93 0,98 1,87 1,87 4,50 0,47 0,88 1,30 1,72
y 73,72 1,87 4,68 4,68 5,62 73,72 1,59 3,01 4,42 5,83
z 19,93 2,00 3,00 5,00 6,00 21,93 2,20 4,16 6,11 8,07

Right Side

Normalized distances for patient 15 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 26,07 0,93 0,93 0,93 1,87 27,00 0,84 1,59 2,34 3,09
y 70,90 0,94 2,82 3,75 4,69 72,78 1,29 2,44 3,58 4,73
z 19,93 2,00 3,00 5,00 6,00 21,93 2,09 3,94 5,79 7,65
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• Patient 16;

Left Side

Normalized distances for patient 16 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -7,97 0,94 0,94 0,94 0,94 -7,97 0,39 0,74 1,09 1,43
y 27,43 0,94 1,87 2,81 3,75 28,37 1,06 2,00 2,93 3,87
z -20,39 3,00 4,00 6,00 8,00 -19,39 2,22 4,19 6,16 8,12

Right Side

Normalized distances for patient 16 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 16,41 1,87 1,87 2,81 3,75 17,34 0,70 1,31 1,93 2,55
y 25,55 0,94 1,88 2,82 3,75 25,55 0,95 1,80 2,64 3,49
z -19,39 2,00 4,00 5,00 7,00 -18,39 2,14 4,04 5,94 7,85

• Patient 17;

Left Side

Normalized distances for patient 17 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -14,53 0,94 1,88 2,81 3,75 -14,53 0,70 1,31 1,93 2,55
y 32,96 0,00 0,94 0,94 1,88 32,96 0,47 0,88 1,30 1,72
z -12,17 2,00 4,00 6,00 8,00 -11,17 2,14 4,04 5,94 7,85
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Right Side

Normalized distances for patient 17 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 7,97 0,00 0,94 0,94 1,87 8,91 0,47 0,88 1,30 1,72
y 31,09 0,00 0,00 0,93 0,93 31,09 0,70 1,31 1,93 2,55
z -11,17 2,00 4,00 6,00 8,00 -10,17 2,20 4,16 6,11 8,07

• Patient 19;

Left Side

Normalized distances for patient 19 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -4,72 0,94 1,88 1,88 1,88 -4,72 0,39 0,74 1,09 1,43
y 31,31 0,94 1,88 1,88 2,82 34,13 0,58 1,10 1,62 2,14
z 52,43 2,00 4,00 6,00 8,00 55,43 2,22 4,19 6,16 8,12

Right Side

Normalized distances for patient 19 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 19,65 0,94 1,88 2,82 3,75 20,59 0,95 1,80 2,64 3,49
y 32,25 0,94 0,94 1,88 2,81 33,19 0,95 1,80 2,64 3,49
z 52,43 2,00 3,00 5,00 7,00 55,43 2,04 3,85 5,66 7,48
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A.6.2 Dystonia

• Patient 2;

Left Side

Normalized distances for patient 2 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -16,84 0,94 0,94 1,87 1,87 -13,90 0,95 1,80 2,64 3,49
y 45,74 0,94 1,88 1,88 2,82 45,74 0,77 1,45 2,14 2,82
z 12,85 2,00 4,00 6,00 8,00 12,85 2,04 3,85 5,66 7,48

Right Side

Normalized distances for patient 2 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 21,60 0,00 0,94 1,87 2,81 20,54 0,58 1,10 1,62 2,14
y 41,06 0,93 1,87 1,87 2,81 41,06 0,95 1,80 2,64 3,49
z 14,85 2,00 4,00 6,00 8,00 17,85 2,17 4,11 6,04 7,37

• Patient 3;

Left Side

Normalized distances for patient 3 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -15,47 0,00 0,94 0,94 1,87 -16,41 0,27 0,52 0,76 1,01
y 44,10 0,00 0,00 0,94 0,00 44,10 0,52 0,76 1,01 0,00
z 18,85 2,00 4,00 6,00 8,00 -20,85 2,23 4,22 6,20 8,19
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Right Side

Normalized distances for patient 3 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 28,59 0,00 0,00 0,94 0,94 27,66 0,39 0,74 1,09 1,43
y 39,41 0,00 0,00 0,00 0,00 37,53 0,35 0,66 0,98 1,29
z 17,85 2,00 4,00 6,00 8,00 18,85 2,22 4,19 6,16 8,12

• Patient 4;

Left Side

Normalized distances for patient 4 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -18,58 0,94 0,00 0,00 0,00 -17,64 0,39 0,74 1,09 1,43
y 41,51 0,94 1,88 2,82 3,75 43,39 1,13 2,13 3,13 4,13
z 12,78 2,00 4,00 6,00 7,00 14,78 2,22 4,19 6,16 8,12

Right Side

Normalized distances for patient 4 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 24,55 0,00 0,00 0,00 0,00 23,68 0,58 1,10 1,62 2,14
y 51,83 0,93 1,87 1,87 2,81 53,70 0,95 1,80 2,64 3,49
z 13,78 2,00 4,00 6,00 8,00 15,78 2,17 4,11 6,04 7,97
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• Patient 5;

Left Side

Normalized distances for patient 5 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -11,81 0,94 0,94 1,87 2,81 -11,81 0,77 1,45 2,14 2,82
y 38,27 0,00 0,93 1,87 2,81 38,27 1,13 2,13 3,13 4,13
z 23,04 2,00 4,00 5,00 7,00 23,04 1,95 3,68 5,41 7,14

Right Side

Normalized distances for patient 5 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 22,88 0,94 0,94 1,87 1,87 22,88 0,58 1,10 1,62 2,14
y 28,89 0,94 1,88 2,81 3,75 28,89 0,95 1,80 2,64 3,49
z 23,04 2,00 4,00 5,00 7,00 23,04 2,17 4,11 6,04 7,97

• Patient 9;

Left Side

Normalized distances for patient 9 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -26,72 0,94 0,94 1,87 1,87 -27,66 0,20 0,37 0,54 0,72
y 30,67 0,00 0,94 0,94 0,94 30,67 0,39 0,74 1,09 1,43
z -3,22 2,00 4,00 6,00 8,00 -3,22 2,24 4,23 6,23 8,22
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Right Side

Normalized distances for patient 9 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 22,84 0,00 0,00 0,94 0,00 24,84 0,08 0,15 0,22 0,29
y 28,80 0,00 0,00 0,94 0,94 28,80 0,20 0,37 0,54 0,72
z -3,22 2,00 4,00 6,00 8,00 -3,22 2,25 4,25 6,25 8,24

• Patient 10;

Left Side

Normalized distances for patient 10 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -17,34 0,00 0,00 0,94 0,94 -18,34 0,27 0,52 0,76 1,01
y 35,34 0,94 0,94 1,87 1,87 36,28 0,58 1,10 1,62 2,14
z 9,53 2,00 4,00 6,00 8,00 9,53 2,23 4,22 6,20 8,19

Right Side

Normalized distances for patient 10 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 21,09 0,00 0,94 0,94 0,94 20,58 0,47 0,88 1,30 1,72
y 32,53 0,00 0,93 1,87 2,81 32,53 0,95 0,00 0,08 0,16
z 8,53 2,00 4,00 6,00 7,00 9,53 2,20 4,16 6,11 8,07
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• Patient 12;

Left Side

Normalized distances for patient 12 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -19,74 0,94 0,94 0,94 1,88 -21,62 0,39 0,74 1,09 1,43
y 41,90 0,00 0,94 0,94 1,88 42,23 0,84 1,59 2,34 3,09
z 14,92 2,00 4,00 6,00 8,00 17,92 2,22 4,19 6,16 8,12

Right Side

Normalized distances for patient 12 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 25,26 0,00 0,93 0,93 1,87 24,35 0,58 1,10 1,62 2,14
y 36,28 0,93 0,93 1,87 1,87 38,21 0,39 0,74 1,09 1,43
z 14,92 2,00 4,00 6,00 8,00 15,92 2,17 4,11 6,04 7,97

• Patient 14;

Left Side

Normalized distances for patient 14 in the left side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x -11,89 0,00 0,00 0,00 0,94 -14,20 0,20 0,37 0,54 0,72
y 33,96 0,94 0,94 1,87 2,81 31,02 0,84 1,59 2,34 3,09
z 53,19 2,00 4,00 6,00 8,00 54,19 2,24 4,23 6,23 8,22
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Right Side

Normalized distances for patient 14 in the right side.

Matlab Verena

BT |BT-E1| |BT-E2| |BT-E3| |BT-E4| BT |BT-E1| |BT-E2| |BT-E3| |BT-E4|

x 26,54 0,94 0,94 1,88 1,88 24,67 0,51 0,96 1,41 1,86
y 25,52 0,00 0,00 0,94 0,94 24,58 0,77 1,45 2,14 2,82
z 52,19 2,00 4,00 6,00 8,00 52,19 2,19 4,14 6,09 8,04

A.7 Distance of electrodes to Deep Brain Structures

In this section it is presented the electrodes position and their distance to hippocampus (Hippo.),

pallidum (Pall.), thalamus (Thal.), nucleus accubens (N.Acc), amygdala (Amyg.), caudate nucleus

(Caud.) and STN.

A.7.1 Parkinson

• Patient 1;

Left Side

Distance of each electrode to the deep brain structures previous segmented, for patient 1 in the left
side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -11,72 26,79 13,61 15,09 12,53 20,09 12,53 25,87 15,04 27,15 7,54
2 -12,66 27,73 15,61 15,77 10,37 18,02 11,51 24,78 15,19 25,09 8,94
3 -13,59 28,66 16,61 16,14 8,76 16,41 11,48 23,92 14,97 23,72 10,19
4 -14,53 29,60 18,61 17,34 6,82 14,48 11,08 23,15 15,74 21,78 12,08

Right Side
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Distance of each electrode to the deep brain structures previous segmented, for patient 1 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 10,78 27,73 14,61 18,23 14,70 22,07 11,29 26,40 18,22 28,77 4,57
2 11,72 28,66 16,61 18,62 12,77 20,21 9,66 25,47 18,41 26,82 6,91
3 12,66 29,60 17,61 18,72 11,23 18,69 9,24 24,70 18,16 25,47 8,52
4 13,59 30,54 19,61 19,60 9,59 17,02 8,39 24,09 18,86 23,64 10,89

• Patient 6;

Left Side

Distance of each electrode to the deep brain structures previous segmented, for patient 6 in the left
side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 18,57 57,61 -9,2 15,39 16,60 24,37 16,78 25,82 15,46 30,27 5,69
2 17,63 57,61 -8,2 14,43 15,72 23,53 15,95 25,96 15,13 29,83 6,51
3 19,51 58,55 -6,2 16,49 14,01 22,26 13,99 24,19 16,01 27,45 6,88
4 19,51 59,48 -5,2 16,73 12,70 21,02 13,34 23,23 15,72 26,13 8,12

Right Side

Distance of each electrode to the deep brain structures previous segmented, for patient 6 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 40,13 51,05 -12,20 12,86 15,82 22,99 15,59 26,04 15,74 30,92 5,17
2 41,07 51,98 -11,20 13,27 14,19 21,42 14,68 24,77 15,29 29,29 4,93
3 42,01 51,98 -10,20 13,17 13,01 20,35 13,68 24,45 15,42 28,31 5,46
4 42,94 52,92 -8,20 14,44 10,97 18,55 12,06 23,23 16,06 26,16 6,11

• Patient 7;

Left Side
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Distance of each electrode to the deep brain structures previous segmented, for patient 7 in the left
side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 5,92 86,92 14,48 17,39 15,58 23,58 14,28 20,30 18,43 28,56 4,89
2 5,92 87,85 15,48 17,95 14,39 22,43 13,76 25,23 18,31 27,20 5,78
3 4,99 88,79 17,48 18,20 12,16 20,26 12,63 24,20 18,06 25,22 7,86
4 4,99 90,67 19,48 19,85 9,94 18,06 12,40 22,28 18,43 22,50 10,19

Right Side

Distance of each electrode to the deep brain structures previous segmented, for patient 7 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 29,36 87,85 10,48 17,74 14,29 21,85 16,34 23,69 13,57 28,52 7,61
2 29,36 88,79 11,48 18,63 13,28 20,84 15,90 22,55 13,82 27,18 8,21
3 30,30 89,73 13,48 19,41 11,09 18,73 14,74 21,34 14,25 24,97 9,53
4 31,24 90,67 14,48 19,90 9,49 17,12 14,61 20,41 14,24 23,47 10,99

• Patient 11;

Left Side

Distance of each electrode to the deep brain structures previous segmented, for patient 11 in the
left side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -12,66 25,10 -37,83 15,53 14,68 23,68 13,82 25,71 18,03 27,98 2,31
2 -12,66 26,03 -36,83 16,14 13,60 22,69 12,94 24,82 18,08 26,65 3,62
3 -12,66 26,03 -34,83 16,86 12,91 22,15 10,98 25,02 19,26 25,56 5,10
4 -13,59 26,97 -33,83 16,92 11,38 20,65 10,35 24,29 18,94 24,18 6,42

Right Side

76



Annex

Distance of each electrode to the deep brain structures previous segmented, for patient 11 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 9,84 27,91 -41,83 15,99 15,62 22,16 17,66 23,98 13,91 28,32 4,89
2 9,84 28,85 -40,83 16,51 14,41 21,05 16,91 22,93 13,86 26,95 4,49
3 10,78 29,78 -38,83 16,56 12,12 19,00 15,35 22,07 14,03 24,86 5,08
4 10,78 29,78 -37,83 16,81 11,52 18,61 14,42 22,05 14,72 24,18 5,11

• Patient 15;

Left Side

Distance of each electrode to the deep brain structures previous segmented, for patient 15 in the
left side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 3,57 75,59 21,93 13,17 11,36 11,43 15,17 23,13 11,21 22,41 8,74
2 3,57 78,40 22,93 15,57 8,93 14,87 15,67 20,33 10,76 22,71 11,31
3 2,63 78,40 24,93 15,85 7,15 13,38 14,34 20,49 12,02 21,50 12,33
4 2,63 79,34 25,93 17,02 5,84 12,21 14,25 19,61 12,71 20,16 13,47

Right Side

Distance of each electrode to the deep brain structures previous segmented, for patient 15 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 27,00 71,84 21,93 14,00 14,39 20,20 15,40 24,05 14,10 26,83 4,20
2 27,00 73,72 22,93 15,36 12,74 18,57 15,06 22,03 13,78 24,78 4,98
3 27,00 74,65 24,93 16,51 11,04 17,06 13,69 20,88 14,64 22,74 5,89
4 27,94 75,59 25,93 16,90 9,39 15,42 13,50 19,92 14,42 21,30 7,48

• Patient 16;

Left Side
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Distance of each electrode to the deep brain structures previous segmented, for patient 16 in the
left side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -8,91 28,37 -18,39 15,74 13,80 21,37 13,90 23,75 15,17 28,95 5,42
2 -8,91 29,30 -16,39 16,80 11,85 19,54 12,66 22,33 15,33 26,82 4,80
3 -8,91 30,24 -14,39 18,07 10,01 17,79 11,70 21,03 15,79 24,70 5,14
4 -8,91 31,18 -12,39 19,51 8,34 16,16 11,11 19,89 16,54 22,60 6,28

Right Side

Distance of each electrode to the deep brain structures previous segmented, for patient 16 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 18,28 26,49 -17,39 16,25 12,68 20,81 10,20 24,06 16,63 26,15 5,73
2 18,28 27,43 -15,39 17,90 11,33 19,47 9,00 22,81 17,21 24,11 6,25
3 19,22 28,37 -14,39 18,37 9,77 17,90 8,89 21,86 16,91 22,60 7,21
4 20,16 29,30 -12,39 19,76 8,11 16,09 8,55 21,00 17,55 20,46 9,15

• Patient 17;

Left Side

Distance of each electrode to the deep brain structures previous segmented, for patient 17 in the
left side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -15,47 32,96 -10,17 15,48 14,75 21,70 14,62 25,20 14,81 29,83
2 -16,41 33,90 -8,17 16,09 12,36 19,37 13,80 23,46 14,12 27,59
3 -17,34 33,90 -6,17 16,75 10,36 17,49 12,64 22,67 14,51 25,81
4 -18,28 34,84 -4,17 17,92 7,98 15,21 12,56 21,22 14,55 23,64

Right Side
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Distance of each electrode to the deep brain structures previous segmented, for patient 17 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 7,97 31,09 -9,17 18,65 16,99 23,56 13,50 24,70 18,04 29,52 1,39
2 8,91 31,09 -7,17 18,55 14,95 21,60 13,63 23,69 17,60 27,61 1,93
3 8,91 32,02 -5,17 19,74 13,32 20,01 12,89 21,95 17,53 25,42 3,49
4 9,84 32,02 -3,17 20,10 11,41 18,16 11,65 22,23 17,61 23,55 5,63

• Patient 19;

Left Side

Distance of each electrode to the deep brain structures previous segmented, for patient 19 in the
left side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -5,66 32,25 54,43 18,34 14,56 21,97 12,75 24,24 17,55 26,72 4,12
2 -6,60 33,19 56,43 18,27 12,20 19,67 11,82 22,71 16,87 24,57 6,05
3 -6,60 33,19 58,43 19,15 10,91 18,48 10,44 22,12 17,68 22,95 7,43
4 -6,60 34,13 60,43 20,34 9,28 16,89 10,10 20,74 18,10 20,79 9,20

Right Side

Distance of each electrode to the deep brain structures previous segmented, for patient 19 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 20,59 33,19 54,43 17,38 11,61 19,60 11,85 21,55 17,67 22,94 9,88
2 21,53 33,19 55,43 17,47 10,40 18,46 11,22 21,23 17,71 22,89 11,15
3 22,47 34,13 57,43 18,71 8,50 16,57 11,04 19,82 17,88 20,54 13,42
4 23,40 35,06 59,43 20,16 6,94 14,84 11,36 18,62 18,38 18,23 15,72

A.7.2 Dystonia

• Patient 2;

Left Side
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Distance of each electrode to the deep brain structures previous segmented, for patient 2 in the left
side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -17,78 46,68 14,85 18,31 4,70 8,98 18,51 20,27 12,84 20,82
2 -17,78 47,62 16,85 19,92 3,16 7,54 17,97 20,08 15,02 19,10
3 -18,71 47,62 18,85 20,68 3,89 7,20 17,45 21,36 16,96 18,67
4 -18,71 48,56 20,85 22,52 4,55 6,77 17,40 21,59 19,13 17,25

Right Side

Distance of each electrode to the deep brain structures previous segmented, for patient 2 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 21,60 41,99 16,85 18,59 4,94 10,49 17,51 19,59 12,53 20,91
2 22,54 42,93 18,85 19,93 2,71 8,35 17,42 19,60 14,42 19,26
3 23,47 42,93 20,85 20,63 1,88 7,08 17,07 20,68 16,16 18,61
4 24,41 43,87 22,85 22,32 2,79 5,57 17,59 21,20 18,26 17,37

• Patient 3;

Left Side

Distance of each electrode to the deep brain structures previous segmented, for patient 3 in the left
side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -15,47 44,10 20,85 15,81 6,46 12,60 17,21 21,88 11,58 23,18
2 -16,41 44,10 22,85 16,51 5,13 11,07 16,74 22,12 13,13 22,11
3 -16,41 43,16 24,85 17,32 4,57 10,77 15,31 22,69 15,32 21,34
4 -17,34 44,10 26,85 18,94 4,18 8,99 16,12 22,58 16,63 20,02

Right Side
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Distance of each electrode to the deep brain structures previous segmented, for patient 3 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 28,59 39,41 18,85 16,32 6,66 9,18 20,10 22,25 10,73 22,56
2 28,59 39,41 21,85 17,44 5,43 7,82 19,27 21,90 12,59 21,08
3 29,53 39,41 23,85 18,73 6,64 6,50 19,33 22,24 14,60 20,01
4 29,53 39,41 25,85 20,12 5,73 5,93 18,89 22,26 16,51 18,75

• Patient 4;

Left Side

Distance of each electrode to the deep brain structures previous segmented, for patient 4 in the left
side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -17,64 42,45 14,78 18,74 8,63 12,77 19,56 23,02 10,55 25,56
2 -18,58 43,39 16,78 20,12 6,84 10,44 19,34 22,39 12,38 23,86
3 -18,58 44,33 18,78 21,88 4,93 8,38 18,82 21,55 14,51 21,91
4 -18,58 45,26 19,78 23,16 4,01 7,08 18,96 20,80 17,71 20,66

Right Side

Distance of each electrode to the deep brain structures previous segmented, for patient 4 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 24,55 52,76 15,78 20,69 6,30 8,97 21,61 21,17 12,59 22,33
2 24,55 53,70 17,78 22,50 5,02 6,94 21,34 20,40 14,69 20,36
3 24,55 53,70 19,78 23,65 3,89 5,79 20,53 20,47 16,67 18,94
4 24,55 54,64 21,78 25,60 4,29 4,36 20,68 20,12 18,79 17,09

• Patient 5;

Left Side
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Distance of each electrode to the deep brain structures previous segmented, for patient 5 in the left
side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -12,75 38,27 25,04 17,80 3,94 10,94 14,56 20,75 13,76 19,44
2 -12,75 39,20 27,04 19,55 2,24 9,67 14,23 20,40 15,54 17,65
3 -13,68 40,14 28,04 20,47 1,20 8,26 14,91 20,42 16,26 16,75
4 -14,62 41,08 30,04 22,10 2,73 7,07 15,46 20,96 18,12 15,57

Right Side

Distance of each electrode to the deep brain structures previous segmented, for patient 5 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 23,82 29,83 25,04 14,16 8,07 12,31 14,32 24,14 14,42 23,11
2 23,82 30,77 27,04 16,13 6,65 10,98 13,50 23,67 15,89 21,40
3 24,75 31,70 28,04 17,42 5,83 9,58 14,12 23,38 16,42 20,30
4 24,75 32,64 30,04 19,46 5,35 8,73 13,86 23,23 18,15 18,75

• Patient 9;

Left Side

Distance of each electrode to the deep brain structures previous segmented, for patient 9 in the left
side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -27,66 30,67 -1,22 17,71 5,03 8,61 17,07 22,64 15,44 20,98
2 -27,66 31,61 0,78 19,90 4,49 6,99 17,13 22,19 17,16 19,08
3 -28,59 31,61 2,78 21,63 5,93 6,58 17,49 23,23 19,16 18,33
4 -28,59 31,61 4,78 23,42 7,02 6,87 17,41 23,82 21,13 17,32

Right Side
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Distance of each electrode to the deep brain structures previous segmented, for patient 9 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 24,84 28,80 -1,22 15,24 7,41 11,08 17,92 23,45 13,17 23,85
2 24,84 28,80 0,78 16,79 6,54 9,86 17,20 23,57 15,02 22,57
3 25,78 29,74 2,78 18,91 6,43 8,12 17,98 23,78 16,65 21,28
4 24,84 29,74 4,78 20,61 5,97 7,47 16,97 23,62 18,57 19,73

• Patient 10;

Left Side

Distance of each electrode to the deep brain structures previous segmented, for patient 10 in the
left side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -17,34 36,28 11,53 15,74 6,49 12,24 12,24 19,67 10,22 21,80
2 -17,34 36,28 11,53 16,62 4,73 11,10 15,49 19,78 12,13 20,53
3 -18,28 37,21 11,53 18,11 3,01 9,08 15,59 19,81 13,84 18,99
4 -18,28 37,21 17,53 19,30 2,29 8,49 14,81 20,33 15,82 17,96

Right Side

Distance of each electrode to the deep brain structures previous segmented, for patient 10 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 21,09 32,53 10,53 13,48 7,74 13,04 15,96 22,63 10,33 23,48
2 22,03 33,46 12,53 15,00 5,90 10,95 15,64 22,15 11,85 21,76
3 22,03 34,40 14,53 16,84 4,09 9,31 15,08 21,44 13,59 19,89
4 22,03 35,34 15,53 18,17 3,01 8,18 15,22 20,76 14,46 18,61

• Patient 12;

Left Side
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Distance of each electrode to the deep brain structures previous segmented, for patient 12 in the
left side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -20,68 41,90 16,92 17,36 4,61 12,58 16,55 22,55 14,75 22,07
2 -20,68 42,84 18,92 19,31 2,97 11,17 16,27 22,00 16,28 20,12
3 -20,68 42,84 20,92 20,71 3,28 10,82 15,48 22,43 18,16 18,92
4 -21,62 43,78 22,92 22,54 4,17 9,54 16,16 22,78 19,74 17,49

Right Side

Distance of each electrode to the deep brain structures previous segmented, for patient 12 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 25,26 37,21 16,92 16,58 5,05 11,75 18,34 23,99 11,57 23,10
2 26,19 37,21 18,92 17,70 3,60 10,10 17,88 24,47 13,29 22,05
3 26,19 38,15 20,92 19,74 1,92 8,58 17,64 23,89 15,06 20,17
4 27,13 38,15 22,92 21,12 2,99 7,45 17,68 24,73 16,95 19,42

• Patient 14;

Left Side

Distance of each electrode to the deep brain structures previous segmented, for patient 14 in the
left side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 -11,89 34,90 55,19 19,65 1,43 7,81 15,53 18,95 15,87 16,94
2 -11,89 34,90 57,19 20,98 1,70 7,35 14,96 19,54 17,83 16,02
3 -11,89 35,83 59,19 22,94 3,45 6,53 15,53 19,77 19,83 14,66
4 -12,83 36,77 61,19 24,62 5,80 6,19 16,65 20,89 20,75 14,23

Right Side
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Distance of each electrode to the deep brain structures previous segmented, for patient 14 in the
right side.

Electrodes x y z Hippo. Pall. Put. Thal. N.Acc Amyg. Caud. STN

1 27,48 25,52 54,19 20,01 2,50 5,45 17,08 17,72 14,18 14,95
2 27,48 25,52 56,19 21,28 2,89 4,99 16,42 18,26 16,15 13,86
3 28,42 26,46 58,19 23,41 5,17 4,16 17,31 18,56 18,28 12,32
4 28,42 26,46 60,19 24,82 6,70 5,33 17,14 19,49 20,25 11,69
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