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Resumo 

Em termos de conhecimento humano, a música pode ser uma das poucas coisas que nos 

segue desde os tempos pré-históricos. Como forma de representação, a notação musical tem 

sido sempre a principal fonte de expressão musical para sistemas não auditivos. Programas 

análogos aos sistemas de reconhecimento de caracteres ópticos, chamados sistemas de 

reconhecimento ótico de música (OMR), têm estado sob intenso desenvolvimento há diversos 

anos. Nos dias de hoje, uma interessante aplicação do OMR consiste no reconhecimento online, 

onde permite uma conversão automática de texto assim que é escrito num aparelho digital 

especial. Tomando em consideração a actual proliferação de pequenos aparelhos electrónicos e 

com o aumento da potência de computação, tal como em tablets ou em smartphones, a 

exploração destes recursos aplicados ao OMR podem ser úteis de forma a ultrappsar as 

limitações do reconhecimento offline. A maior vantagem em usar sistemas online está 

relacionado com: eliminação de problemas de segmentação causados por símbolos sobrepostos 

e extra informação acerca do espaço temporal dos símbolos. 

Esta dissertação representa um paço em frente no estado da arte na área de optical music 

recognition com s seguintes contribuições: Protótipo para capturar símbolos musicais de forma 

livre; construção de uma base de dados de utilizadores com diferente experiência musical; 

análise estatística the símbolos desenhados à mão pelos utilizadores; estudo de um classificador 

usando informação dos desenhos; e estudo comparativo entre os métodos online e offline. 

 

 

 

 



Abstract 

In terms of human past knowledge, music may be one of the few things which we are 

certain that follow us since pre-historic times. As a way of representation, musical score 

notation has always been the main source of musical expression for non-hearing systems. 

Programs analogous to optical character recognition systems, called optical music recognition 

(OMR) systems, have been under intensive development from many years. Nowadays, an 

interesting application of OMR concerns the online recognition, which allows an automatic 

conversion of text as it is written on a special digital device. Taking into consideration the 

current proliferation of small electronic devices with increasing computation power, such as 

tablets and Smartphones, the exploration of such features applied to OMR may be useful in 

order to overcome the limitations of offline recognition. The main advantages in using online 

systems are related to: elimination of segmentation issues caused by overlapped symbols, and 

extra knowledge about spatial-temporal information of symbols.  

 This thesis represents a step forward on the state-of-the art of optical music recognition 

with the following contributions: A prototype for capturing gesture-free of musical symbols; the 

construction of a database collected for a set of users with different musical expertise; statistical 

analyze of the hand-drawn symbols from the users; study of an classifier using information from 

the user strokes; and a comparative study between the online and the offline methods. 
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Chapter 1 

Introduction 

In terms of human past knowledge, music may be one of the few things which we are 

certain that follow us since pre-historic times.  

Over the years, music has increased its importance around the globe, reaching people in 

very different ways (cultural, religious, educational, and so forth), being an important part of 

their lives. In fact, there is no record of any society who does not have a musical culture of his 

own, and its own way to express it, despite all cultural and social known divergences. 

Since very early, people had the need to express themselves in different ways in music and 

for that, save those expressions in a more liable source besides their brain.  

Musical score notation has always been the main source of musical expression for non-

hearing systems. It is a worldwide standard representation of music writing, grouped with a lot  

of different symbols and ways to represent a very diversity of sound representations.  

Being a language that has suffered a lot of changes across the years, it needed to be 

adjusting to the civilization needs, and to the means that were possibly in the time being. 

Technology has grown exponentially along the years, and writing score pieces in paper, 

start to be a secondary option when you have a large fan of possibilities in a computer, such as: 

editable scores, perfectly formatted and archived, immediate sound response and so forth. This 

led to many composers to start use computer as their main way to compose music. 

But it is a fact that most of the composers, in an age of global technology, still use the 

traditional ―pen and paper‖ to write his pieces, saying that it still is the most intuitive, easier and 

faster way to do so [S Macé, 2005].  

Scanning process it is in fact one of the most used ways to preserve the musical culture 

into a computer, where we achieve ease duplication, distribution and digital processing. But a 

system of recognition is imperative if we want use tools like search, recover or analysis.  

A way to change this mood, and still benefits from the traditional computer functionalities, 

is using OMR (or Optical Music Recognition, Music OCR). OMR is the application of optical 



Mobile framework for recognition of musical characters 

 2 

character recognition to interpret sheet music or printed scores into editable or playable form, 

but dealing with user hand-drawn strokes in the context of document it became a complex 

problem, and yet to be solved [ACapela2008,ARebelo2009, Cardoso2009a,Cardoso2009b].  

1.1 OMR: Offline versus Online 

The main objectives of an OMR system are the recognition, the representation and the 

storage of musical scores in a machine-readable format. An OMR program should thus be able 

to recognize the musical content and make the semantic analysis of each musical symbol of a 

music work. In the end, all the musical information should be saved in an output format that is 

easily readable by a computer. An OMR system can be divided according to the input data into 

two categories: offline and online. One of the prominent differences is related to the type of 

music notation: online recognition mandatorily deals with handwritten music works. This 

imposes a high level of complexity in the process due to the wider variability of the objects. 

Besides, while an offline OMR system recognizes the symbols in a digitized music score, 

usually, obtained with a scanner, an online OMR system recognizes the symbols almost 

simultaneously when they are introduced in the system by a pen-based interface, being a real 

time process. The main advantages in these kinds of systems are related to: elimination of 

segmentation issues caused by overlapped symbols, and extra knowledge about spatial-temporal 

information of symbols.  

This work proposes to conjugate the universal ―pen-paper‖ metaphor with the news forms 

of mobile technology, as we see with the growing popularity of portable small devices, such 

smartphones and tablets, and with their power of computing. As pen-based interfaces are in 

wide expansion, there is a lack of applications taking advantage of this intuitive and ergonomic 

way to draw musical scores, where the user composes musical scores in a traditional way by 

drawing the symbols on the screen. The user benefits from the traditional computer 

functionalities and also avoids the loss of quality and neatness of the paper document. 

It may be useful to explore these characteristics in OMR, with the purpose to overcome the 

limitations of the offline mode. 

1.2 OMR System Project 

The project Automatic Recognition of Handwritten Music Scores 

(PTDC/EIA/71225/2006) initiated in 2007 by Instituto de Engenharia de Sistemas e 

Computadores do Porto and Escola Superior de Música e das Artes do Espectáculo was the 

starting point for creating an OMR system that addresses some of the common problems in this 

area with already several published articles (e.g. [ACapela2008, ARebelo2009, 

Cardoso2009a,Cardoso2009b]). Nowadays, an interesting application of OMR concerns the 
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online recognition, which allows an automatic conversion of text as it is written on a special 

digital device. Taking into consideration the current proliferation of small electronic devices 

with increasing computation power, such as tablets and Smartphones, the exploration of such 

features applied to OMR may be useful in order to overcome the limitations of offline 

recognition. 

This thesis is part of a longer project that intends to investigate and develop algorithms to 

recognize musical characters in real time to obtain a digital, easy-to-manage version of the 

original scores. The creation of a tool capable of recognizing music notation anywhere, 

including in rehearsals and while composers, conductors or musicians are on tour, will be very 

important and significant in the advancement of technology. 

The main factors that motivate the research on this area are: (1) the use of both local and 

global information in the recognition procedure in order to assign to the system all the 

knowledge needed to perform at the end a semantic correction; (2) the non-predefined pattern 

technique giving total freedom of writing to the user; and (3) the useful investigation with high 

commercialization potential.  

1.3 Research Objectives 

This thesis has the aim to create an OMR software where users can create music sheets in a 

natural way. This interface should be capable of recognizing an unlimited number of 

calligraphies. In this manner it will encompass detection and recognition of handwritten musical 

symbols in dynamic context. Hence, it aims to overcome the inherent problems of this type of 

writing using the most recent techniques of machine learning and artificial intelligence. 

1.4 Contributions and Related Publications 

This thesis represents a step forward on the state-of-the art of optical music recognition 

with the following contributions: 

1. A prototype for capturing gesture-free of musical symbols; 

2. The construction of a database collected for a set of users with different musical 

expertise; 

3. Statistical analyze of the hand-drawn symbols from the users 

4. Study of an classifier using information from the user strokes 

5. And, a comparative study between the online and the offline methods 

 

The work related to this thesis already resulted in the publication of the following paper: 

―Online database of hand-draw musical symbols‖, Rui Silva, Jaime S. Cardoso, and Ana 
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Rebelo, in 2
nd

 PhD. Students Conference in Electrical and Computer Engineering – StudECE 

2013 [RuiSilva2013]. 

1.5 Technological Description 

All prototype systems are programed in Android developer language, therefore, all 

methods using to draw paths, create or save data, will be using methods specific from android. 

The Code is programed to run to an android system equal or above 2.3.3 (API 10 - 

Gingerbread), which means 95% of the market [APIandroid]. 

In Matlab we will analyze and edit the data from the database, and develop algorithms to 

serve as base of recognition. 

Other important point is using fan of types of classifiers to implement in programmable 

system. We will use a set of methods to segment the data and implement into an ANN 

(Artificial Neural Network) to segment and validate in order to create the classifiers. This will 

be explained with detail along the thesis.  

1.6 Thesis Structure 

This thesis is organized in 6 chapters. After the Introduction, the description of what has 

been done along the years in OMR field, with more focus on the online methods, will be made 

in Chapter 2. 

In Chapter 3 it is made a description of the application done to record hand draw symbols, 

and we also take a closer look to the database, describing the process of creation, record, and 

edition. The technology being use and its importance in this work will be explained in Chapter 

4.  

The Chapter 5 start to describe the process of getting the data from the users draws, 

following by describing the neural network, create the classifiers and show the experimental 

results with a comparative study; both for online and offline mode. 

This thesis finishes with Chapter 6 where conclusions are presented and future work is 

discussed 
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Capítulo 2 

State-of-the-Art 

In this section we will describe what has been done along the years in the OMR field, 

manly on the online recognition process. We also explained a little of music notation. 

2.1 OMR Revision 

For centuries, music has been shared and remembered by two traditions: aural 

transmission and in the form of written documents, normally called musical scores. Programs 

analogous to optical character recognition systems are called optical music recognition (OMR) 

systems and have been under intensive development for many years. However, the results to 

date are far from ideal. Each of the proposed methods emphasizes different properties and 

therefore makes it difficult to effectively evaluate its competitive advantages [Rebelo2012].  

The research field of OMR began with [Pruslin66] and [Prerau1970] and has undergone 

much important advancements since then.  

It have been presented to the scientific community some surveys and summaries: 

[George2004] made a description of the existing methods for online handwritten input of music 

notation; [Jones2008] presented a study in music imagine, which included digitalization, 

recognition and restoration, with a well detailed list of hardware and software in OMR together 

with an evaluation of three OMR systems; [Arebelo2009] presented a pattern recognition study 

applied to music notation; and in [Rebelo2012] a complete overview of the literature concerning 

the automatic analysis of printed and handwritten musical scores was provided. 

Most of the advance commercial products including Notescan in Nightingale, Midiscan 

in Finale, Photoscore in Sibelius, among others, cannot identify all the musical symbols. But 
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still, these products have their main focus on recognition of impress score music, producing 

good results for them, but not with handwriting scores. 

The main objectives of an OMR system are the recognition, the representation and the 

storage of musical scores in a machine-readable format. An OMR system can be dived 

according to the input data into two categories: offline and online. 

One of the main differences is related to the type of music notation: online recognition 

mandatorily deals with handwritten music works. While an offline OMR system recognizes the 

symbols into a digitized music score, and online OMR system recognizes the symbol almost 

simultaneously when they are introduce into the system by a pen-based interface, being a real 

time process. 

2.2 Online Overview 

A method for data input in a digital system through a digital pen applied to musical 

software appeared at the end of the 1990's with the [PalmPilot1997] produced by Pal Inc. The 

pilot was small handheld PDA where musical characters were inserted through a pen using a 

technique called Graffiti [GraffitiPalmOS]. The first approach to the problem was to treat a 

digital pen as an interface of localization and selection, in place of the mouse, as exemplified by 

the work developed by [Silberger1996]. Thereafter, the input data process relied on the concept 

of standard movements. This method depends on the learning of particular movements by the 

user, each on corresponding to a different music symbol [Anstice96, Forsberg98, Miyao2007]. 

However, the question is if this type of interface will be in fact of musical notation, since all the 

methods completely avoid the problem of free written style, restricting the issue to a creation of 

a simplified symbolic musical convention. 

Most of the systems were develop to work with only 1 stroke (unistroke), forcing some of 

them to have its own dictionary of symbols: Presto[Jamie96], a system that makes it possible to 

realize musical scores faster than in the usual way, with a set of gestures designed to be learn 

easily; The Music Notepad [Forsberg98], that allowed the user to edit music with a mix of 

various pen gestures; Macè et al [Smace2005] constrained the pen-input to some predefined 

areas with reference to the note head to recognize the symbols, proposing a set of gestures that 

is almost as the usual ones, not being a completely unistroke system.  

The main goal of an online OMR system should be the full capacity of the digital 

universe to recognize and interpret the dynamic handwriting, regardless of various calligraphies 

and strategies of writing, without restricting the creative process of the composer. The works 

developed by [George2004, Taubman2005] were the first to deal with the ordinary music 

notation in the problem of online recognition. [George2004] proposed a non-parametric 

statistical method for pattern recognition (ANN – Artificial Neural Networks) to guide the 
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identification and classification of the musical symbols, but incapable of recognize new objects. 

Taubman in 2005 present a system called MusicHand[Taubman2005], aiming to help in the 

process of pitch and symbol segmentation, where the system upon entry of an unknown stroke, 

make the decision by comparison with a set of trained gestures, without hesitation or coaxing 

the system. Neither of these uses any knowledge about music rules to help the recognition 

process. In this manner, our proposed methodology aims to overcome this limitation. 

Other authors as [Mitobe2004, Lee2010] used Hidden Markov Models (HMMs) to 

classify handwritten music symbols. Mitobe et al [Mitobe2004] constructed abstract strokes that 

users must learn, whereas Lee et al [Lee2010] proposed a non-gestural process. 

In [Macé2009], it is suggested that is necessary to exploit dedicated recognizers, because 

it is not possible to use a unique recognizer for all symbols that a musical score can contain, so 

that its recognizers be able to interpret subsets of this symbols. Sébastian Macé and Eric 

Anquetil in [Macé2012], propose a different formalism, which they focus on the interpretation 

of online hand-drawn structured documents, i.e., documents that have predefined structure 

(musical scores for instance). Designing a new class of visual grammars, called context-driven 

constraint multiset grammars (CD-CMG) and exploring both structural and statistical 

recognition approaches, they take the imprecise nature of hand-drawing into account 

In overview, most of the documentation uses a unistroke (gestural approach, just one 

stroke) system, forcing the user to learn a new language, being an influence on the process of 

composition. On the existing multistroke (non-gestural approach, more than one stroke) 

systems, there is a lack of important values that are not collected from a specific draw and we 

could benefit with some new features that could exploit more from the dynamic user 

handwriting. Also, most of the systems do not use a full (or almost full) dictionary of symbols, 

confining the user to the most commons ones. 

2.3 Music Notation 

Music score notation is a representation system based on hearing perception through the 

use of symbols. This allows an interpreter to execute a specific music in a determine way; 

define by the composer or person who made the arrangement. 

Music has come from several years ago, and exist diverse types of music notations, since 

Old Greece to Byzantine Empire going to the Arabia world and the beginnings of the Europe. 

Now a days, the more used notation had origin from the Europe classical music, more properly 

the Western graphic system [Williams1903] The modern notation system is based on using 

symbols above a score of 5 lines readied from the left to the right and above to low. Following 

the vertical positions in relation with the lines, it is define the standard frequency of the note (C 
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to B note), and the duration is defined by the shape of the symbol being used, we can see and 

example in figure 1.  

 

This system besides allowing giving characteristics of duration and note, also allows 

representing a diverse set of others characteristics like: intensity, expression or even specific 

technics of instrumental execution. 

Our focus in this project is in symbol classification, and for that we choose a set of 

symbols to be used along the project, that we think are the most important and could represent 

the main composition fundamentals: pitch, rhythm, tempo and articulation. The symbols 

encompasses: lines, clefs, notes, rests, breaks, accidentals, time signatures, note relationships, 

dynamics, articulation marks, ornaments, repetition and codas [Heussenstamm]. 

 

Figure 1 - Example of variation of notes 
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Capítulo 3 

Creation of the Database 

To obtain a robust online recognition system we need in the first place to set-up a dataset 

that can cover as much as possible the different handwritings from different people. This 

process exists in order to have a set of different hand draws, enabling the system to recognize a 

large fan of different handwrite draws.  

Towards this goal we developed an android-based application and in this chapter we will 

describe thoroughly the individual modules of the prototype that resulted from this thesis. 

3.1 Application development 

The application made in android, has 3 main forms: Main Menu, New User and Draw 

Symbols. These forms intent to create and save data of the user hand draw and his personal 

information, we will next describe each one.  

 Main Menu 3.1.1

In the Main Menu of the system is where all users are presented for order of creation. For 

common a user, there are two options in this menu: the user can make a registration for him, 

clicking in the ―New User‖ button, or he can continue the point where he left off by clicking on 

his name. This last option enables a user to finish his drawing in other time, and it is also 

important for safeguard, in a case of an unexpected shutdown of the application. If a user has 

already drawn all of his symbols, the system says that the user has reached the end of his 

process. In this panel it is also where the administrator can reach the edit form to the personal 

information of any user by clicking on his name and then confirming with a specific password. 

We can see an image snapshot of the menu in figure 2. 
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 New User / Update User 3.1.2

Having a system with a user‘s hand draw, it is convenient to save some of the personal 

information of that user. In this section the user has to fill all of the fields, with is personal 

information, in order to advantage to the next stage. In case of any missing field, the systems 

ask to fill the remaining ones. If the point was to Update User, the fields are automatic filled 

with the information of the user being edited, and the administrator has the possibility to change 

what he wants and save the new information. 

The fields will be explained with more detail in the Database section. 

 

 Draw Symbols 3.1.3

Most of the important things of the application happen in this section. The intention here is 

that the user looks at the symbol shown above and tries to copy it below with his own hand 

writing. Besides the representative figure of the symbol, it is also shown the family and the 

name of it, in case of doubts or just curiosity. 

When the user finish his draw and clicks on the ―Save‖ button to record the information of 

the symbol, the system shows another one and clear the space for the user the draw the new 

symbol. This process repeats until the users reach the end and draws all the symbols. 

Figure 2 - Main Menu image snapshot 
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The symbol to draw, the description and even the background of the draw panel, change 

according to the symbol being drawn. 

While the user is drawing, the system records important information about the path made, 

that is also going to be more explain in the Database section, and when he saves the draw, the 

system records that information into the database 

It is a fact that when we give a pen to the user with different thickness, he draws his 

symbols in a different way, according to the thickness of pen. So, for each user we define a set 

of 3 sizes of stroke, to get 3 different types of handwritings, for each symbol. The order of the 

thickness is not always the same for every user; it changes depending on his id, avoiding 

distorted data due to the fatigue, hurry, experience or speed. 

The button ―Delete‖ is used to erase the draw when the user is not happy with it and want 

to re-draw it again; and button ―Back‖ is used to go to the previous draw, where the system re-

draw the symbol made by the user, and let him make changes if he want. We can see a snapshot 

of the window Draw Symbols in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - Drawing window image snapshot 
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3.2 Database 

 Description 3.2.1

In an initial phase, the database was created using SQLite API, recommended by the 

Android documentation, being ideal for structured data. But it became completely inadvisable 

for our purpose when the time to record the data information into the database was between 30 

and 180 seconds for every draw (depending on the size of the draw), which in a user perspective 

way, it is too much time to dispense. Another disadvantage was the problem of division of 

works; when we needed to uninstall the application, the database was also deleted together with 

all the recorded data. We also needed a simpler way to use and edit the database information 

then the SQLite system. For that we decide to save the data files into a txt file, due its 

portability, easy writing, universal recognition, and above all, its speed of reading and writing. 

The files were saved into the internal memory of the device, separated by folders according 

to the users. The ―Users‖ file has all the information from every user, that is: id, name of the 

user, date of registration, reference/institution/school, hand preference (right or left), age, 

country, sex (male or female) and sheet music knowledge (1 to 5). 

Every folder is defined by the id of the user. Inside every folder there is all the symbols 

made by that user and also some additional information about the draws: the size of the stroke 

used, date of the drawing done, the hardware model of the machine and the resolution being 

used. 

Every user needed to draw 252 symbols, repeating 3 times a sequence of 84 symbols, with 

some changes in some symbols (for example, with the leg up or down) and 3 different 

thicknesses. For every draw we collect a stream of points in the draw, and with each one of 

them we define 5 parameters:  

 Action - if the user touch the screen he executes a down action, which we 

represent as 0; if he drags his finger he executes a move action, which we 

represent as 1; and if he lift his finger he executes an up action, which we represent 

as 2; 

 X axis – position X of the point, 1 to the maximum X position of the device  

 Y axis – position Y of the point, 1 to the maximum Y position of the device 

 Pressure – pressure made by the user on the device; this measure is not very 

accurate, but generally ranges from 0 (no pressure at all) to 1(normal pressure), 

although values higher that 1 may be generated depending on the calibration of the 

input device 
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 Time – retrieve the time that the event occurred in Android time base 

―uptimeMillis()‖; this event returns the milliseconds of non-sleep uptime since 

boot. 

When exists an action of ―Up‖ or ―Down‖, the android device recognize immediately that 

information, but when exists a type of ―Move‖, we can only get a certain number of points of 

that movement, what constitutes a consistent stream varies on the type of device. So for every 

type of device we can get a different set of pointers of the stream. 

If a user only draw a single stroke, the database will be formed with one 0, a set of 1s and 

one 2; therefore if he draw a symbol with more than 1 stroke, the file will have more than one 

set of ―0/1/2‖, as we can understand by the representative figure 4. 

With this information, besides the fact that we can re-write the symbol in the future, we 

can get a structural and temporal context of every draw. 

We define a set of 20 classes representing all of the symbols, according to their meaning. 

In the classes with more than 1 symbol, we can define a set of subclasses to find a specific 

symbol into that class. So if we want to find the G clef, we would need to enter the class 4 and 

the subclass 1 to identify that symbol, as we can see in figure 5. In table 2, we show all of the 

symbol classes and subclasses. 

Figure 5 - G clef class and sub class 

Figure 4  - Finger movement 
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 Statistical Study 3.2.2

3.2.2.1 Users 

With information collected, we analyze the data and came with several interesting points. 

We collect data from 50 users with ages between 13 and 70 from different countries and 

different cultures, with an average age of 30 years old. 

We have a high 96% of right handed users in the database and only a 4 % of left handed. 

We have 45 persons from Portugal, and 1 from Iran, Italia, Greece, Argentina and Spain, 

as we can see in the graphic with the figure 6.  

In the database 34 people are men and 16 are women, a rate of 68% to 32%. From all 

people, we separate the people that understand music with 4 or 5, a user who understand more 

or less with 3 and a user who understand very little or nothing with 1 or 2. Based on these 

factors we saw that 22 users understand music, 18 do not and 10 understand more or less, as we 

can see in the figure 7. We also saw the number of men and women with every different 

experience, as we can see in the table 1. 

Table 1 - Music experience by sex 

Music Experience 1 2 3 4 5 

Men 0 0% 9 56% 8 80% 9 75% 8 80% 

Women 2 100% 7 44% 2 20% 3 25% 2 20% 

portugal

Iran

Italia

Greence

Argentina

Espanha

Figure 6 - Graphic of the different countries 
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3.2.2.2 Draws 

 

The drawings made by the users also have some useful information that we can explore. 

All the drawing process for each user took between 17 and 90 minutes, depending on the 

user, but with an average time of 30 minutes. 

We also collect some interesting information like: 

 The smallest draw has only 5 lines 

 The biggest draw has  997 lines with 5 strokes 

 The draw with more strokes has 64 strokes 

In the table 2 we can se the symbols being use in the database, where we show the standard 

image of the symbol, the name of it, as also his class and sub-class. We check the Lowest Stroke 

for a specific class, comparing all the users draws, as well for the Biggest Strokes, Average 

Strokes, Lowest Lines, Biggest Lines, Average Lines, Lowest Time, Biggest Time, and Average 

Time, for all the symbols. Understanding the Strokes as a number of times that the user click and 

lift his finger, the Lines as the number of lines saved in the draw file and the Time as the 

duration of the drawing process. The Biggest Time could be influenced by pauses or 

distractions. 

 

 

 

 

Understand music

Don't understand music

Understand more or less

Figure 7 - Understanding of music by the user 
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Table 2 - list of symbols and their characteristics 

Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

1 

 

Ledger or Leger lines 1 - 1 2 1 12 180 30 184 3363 
581 

2 

 

Bar Lines 2 1 1 2 1 13 181 45 179 5623 
875 

3 

 

Double bar line 2 2 2 4 2 26 179 75 463 4973 
1864 

4 

 

Bold double barline 2 3 1 28 4 33 922 253 606 49875 
5951 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

5 

 

Dotted bar line, 

Dotted barline 
2 4 3 9 5 20 144 51 458 10578 

2461 

6 

 

Accolade, brace 3 - 1 2 1 29 204 84 470 3774 
1558 

7 

 

G clef 4 1 1 3 1 45 511 149 714 8679 
2583 

8 

 

C clef 4 2 1 21 4 56 882 328 1216 45175 
9021 

9 

 

F clef 4 3 3 13 4 40 457 124 1091 15456 
4049 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

10 

 

Breve 5 1 3 9 5 50 418 130 1059 20098 
4161 

11 

 

Semibreve 5 2 1 12 1 23 275 55 383 6805 
959 

12 

 

Minim 5 3 1 4 2 28 227 79 468 6519 
1765 

13 

 

Crotchet 5 4 1 32 2 29 654 195 459 19617 
3925 

14 

 

Quaver 5 5 1 44 3 38 922 207 615 30846 
4772 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

15 

 

Semiquaver 5 6 2 42 4 49 743 213 1025 31495 
5124 

16 

 

Demisemiquaver 5 7 3 29 5 58 864 235 1252 30633 
6121 

17 

 

Hemidemisemiquave

r 
5 8 4 30 6 66 942 270 1606 34575 

7276 

18 

 

Rest Breve 6 1 1 64 4 68 799 290 1238 25634 
6254 

19 

 

Rest Semibreve 6 2 1 30 3 20 479 164 424 18441 
3762 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

20 

 

Rest Minim 6 3 1 28 3 18 595 176 346 14738 
4065 

21 

 

Rest Crotchet 6 4 1 7 1 20 420 100 333 14956 
2471 

22 

 

Rest Quaver 6 5 1 6 1 21 473 104 330 11860 
2251 

23 

 

Rest Semiquaver 6 6 2 10 3 30 479 162 658 17085 
4074 

24 

 

Rest 

Demisemiquaver 
6 7 3 16 4 38 717 226 883 20859 

5675 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

25 

 

Rest 

Hemidemisemiquave

r 

6 8 4 20 6 42 940 286 1130 31447 
7339 

26 

 

Beamed notes 7 1 4 6 4 59 835 174 1420 32631 
5227 

27 

 

Beamed notes 7 2 4 6 4 47 638 106 1426 16967 
3721 

28 

 

Beamed notes 7 3 4 6 4 50 491 109 1259 41533 
3815 

29 

 

Dotted note 8 - 1 5 1 5 147 36 82 5038 
892 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

30 

 

Breath mark 9 1 1 13 1 8 292 62 120 8935 
1476 

31 

 

Caesura 9 2 1 7 2 19 171 37 341 3831 
896 

32 

 

Flat 10 1 1 3 1 25 267 59 384 6043 
1313 

33 

 

Sharp 10 2 4 7 4 41 222 67 841 8626 
1938 

34 

 

Natural 10 3 1 12 3 32 309 77 727 11918 
2139 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

35 

 

Double sharp 10 4 1 14 2 17 362 52 292 11526 
1501 

36 

 

Number 0 11 1 1 2 1 21 143 47 328 3939 
817 

37 

 

Number 1 11 2 1 3 1 15 108 41 267 2990 
874 

38 

 

Number 2 11 3 1 1 1 18 124 46 274 2067 
775 

39 

 

Number 3 11 4 1 1 1 23 133 48 371 2510 
808 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

40 

 

Number 4 11 5 1 4 2 16 165 49 264 4313 
1008 

41 

 

Number 5 11 6 1 3 2 27 144 53 431 3596 
1054 

42 

 

Number 6 11 7 1 2 1 22 108 42 349 1894 
701 

43 

 

Number 7 11 8 1 2 2 18 91 39 266 3399 
857 

44 

 

Number 8 11 9 1 3 1 25 135 60 404 2626 
1058 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

45 

 

Number 9 11 10 1 2 1 20 111 50 313 2081 
870 

46 

 

Common time 12 1 1 7 1 17 458 72 257 9223 
1357 

47 

 

Alla breve or Cut 

time 
12 2 2 4 2 25 365 90 530 8250 

2048 

48 

 

Equal sign 13 - 2 4 2 13 79 27 263 3509 
668 

49 

 

Tie 14 1 1 2 1 16 80 39 265 1726 
699 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

50 

 

Glissando or 

Portamento 
14 2 1 2 1 17 458 79 280 10856 

1438 

51 

 

Tuplet 15 - 1 4 2 32 189 83 508 6490 
1950 

52 

 

Arpeggiated chord 16 - 1 2 1 15 507 81 224 11987 
1542 

53 

 

Piano 17 1 1 3 2 21 312 63 361 7649 
1373 

54 

 

Mezzo piano 17 2 1 7 3 53 376 120 924 12819 
2687 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

55 

 

Mezzo forte 17 3 1 8 3 52 442 115 1082 13751 
2672 

56 

 

Forte 17 4 1 3 3 23 340 54 444 8296 
1120 

57 

 

Sforzando 17 5 1 9 4 60 633 126 1346 16643 
3406 

58 

 

Crescendo 18 1 1 2 1 17 83 37 266 1573 
681 

59 

 

Diminuendo 18 2 1 2 1 17 70 36 255 1883 
647 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

60 

 

Forte-piano 17 6 1 7 3 45 396 103 890 16042 
2673 

61 

 

Staccato 19 1 1 4 1 5 157 38 100 4298 
903 

62 

 

Staccatissimo or 

Spiccato 
19 2 1 15 3 6 492 99 62 10577 

2587 

63 

 

Accent 19 3 1 2 1 14 61 28 212 1455 
530 

64 

 

Tenuto 19 4 1 1 1 7 35 16 77 712 
300 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

65 

 

Marcato 19 5 1 2 1 13 64 31 192 2527 
575 

66 

 

Left-hand pizzicato 

or Stopped note 
19 6 2 4 2 14 58 28 305 2395 

690 

67 

 

Snap pizzicato 19 7 2 6 2 31 136 56 530 6794 
1402 

68 

 

Natural harmonic or 

Open note 
19 8 1 2 1 15 97 34 263 2638 

591 

69 

 

Fermata (Pause) 19 9 2 3 2 22 262 58 427 5578 
1640 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

70 

 

Up bow or Sull'arco 19 10 1 3 1 16 64 28 249 2720 
545 

71 

 

Down bow or Giù 

arco 
19 11 1 17 3 27 395 117 425 9334 

2688 

72 

 

Trill 19 12 1 5 3 30 207 65 621 11075 
1918 

73 

 

Mordent 19 13 1 5 1 27 340 62 437 9681 
1267 

74 

 

Mordent (lower) 19 14 2 6 2 29 244 75 557 9378 
1938 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

75 

 

Turn 19 15 1 7 1 27 291 62 420 9518 
1120 

76 

 

Tremolo 20 1 1 7 3 25 311 47 485 6619 
1282 

77 

 

Repeat sign 20 2 4 18 6 50 643 255 1732 18362 
6845 

78 

 

Simile mark 20 3 3 11 3 24 386 94 784 13341 
2870 

79 

 

Simile mark 20 4 5 17 6 45 669 152 1344 24424 
5531 
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Symbo

l 

Image Name Class Sub-

class 

Lowest 

Strokes 

Biggest 

Strokes 

Average 

Strokes 

Lowest 

Lines 

Biggest 

Line 

Average 

Lines 

Lowest 

Time 

Biggest 

Time 
Average 

Time 

80 

 

Volta brackets 20 5 1 4 1 26 210 68 397 4415 
1230 

81 

 

Da capo 20 6 3 7 5 58 255 105 1202 54453 
3753 

82 

 

Dal segno 20 7 3 7 5 58 254 115 1258 13200 
3427 

83 

 

Segno 20 8 2 8 4 47 997 139 900 23993 
4044 

84 

 

Coda 20 9 3 6 3 54 241 100 915 7119 
2349 
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3.3 Editing User Draws from the database  

When facing information by a hand draw symbol, there are a lot of problems we need to 

face before making a real analysis.  

Despite being an important point to have different kind draws from different people, we 

cannot have control of how the user draws his symbol. From little points made intentional, to 

the lack of experience in touch environment or even the need to write exactly like in a paper, we 

have a lot of data that is not good for analyze. These ―errors‖ must be fixed before entering the 

phase of segmentation, in order to have a most cohesive database. We can see an example of a 

drawing error in image 8. 

 

 

The first approach was to redraw every draw, and see one by one if there was any 

―garbage‖ that needed to be erased from the draw; in this phase we focus essentially in the 

draws done intentionally by the user (at least the ones that we could see). But that was not 

enough because there were still symbols that were too small to be drawn, but enough to be 

recorded. For that, we created a code in Matlab to see in every stroke of every draw, if the 

percentage of ‗1s‘ between the ‗0‘ and the ‗2‘ were too small to even be a draw, and in that 

cases, making that stroke a non-usable stroke. This process made the rate of recognition rise 

dramatically. 

The mistakes done by the user were driven by 5 possible facts: the user is mistaken and 

draws in the wrong place that was not supposed to (example 1 in the figure 9); the user tried to 

draw a single point with a single fast touch (trying to draw a small circle), but the way that the 

Figure 8 - Drawing with “garbage” 
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android system was made, did not make possible to recognize that kind of gesture, forcing the 

user to make another circle beyond the previous one; the system did not recognize the draw at 

the first time; the user exceed the space of drawing (example 2 in the figure 9); or even when 

trying to save the draw in the ―Save‖ button, the user  touch a little above and instead of 

clicking in the button , he touches in the drawing panel (example 3 in the figure 9). 

After that, we were faced with a problem of files with 0 Kb (Quilobyte) of disk size, which 

means that the user save the file without drawing anything. This point could be easily be 

prevented with a condition in the Android application, forcing the user to draw anything in 

order to proceed to the next symbol, but that function was not implemented at the moment. For 

solving this problem we copy one of the other 2 equal symbols created and past it with the name 

of the file with the problem. The solution is not ideal, but taking into account that we did not 

had another chance to be with every drawer in the database for them to redraw, we think that 

was the most viable. For documentation purpose the symbols exchanged can be seen in table 3. 

 

 

Table 3 - Files replaced 

User Number Original Draw Exchanged by 

11 117 201 

18 30 198 

24 36 204 

26 161 245 

38 162 246 

 

Figure 9 – Garbage examples 
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The final problem needed to be fixed, was not directly fault of any user, but more of the 

Android system. When a user draws his symbol in a very slightly way, but not lifting his finger, 

the android system save the parameter ‗Action‘ with values ‗1‘ and then ‗0‘, when is just 

supposed to save only ‗1s‘ until it reaches a ‗2‘, following the logic of 0/1/2, explain in the 

―Creation of the Database‖ section. For that, we just locate all the ‗0s‘, which are not followed 

by ‗2‘ or that start a draw, and substitute for ‗1s‘, creating a normal logic of action. This event 

happens especially with people with less ability (or experience) to draw in the touch screen. 
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Capítulo 4 

Background Knowledge 

In this chapter we will first make a brief description of the technology being use, explained 

the importance of them in this work.  

4.1 Technological Description 

The term pattern recognition encompasses a wide range of information processing 

problems of great practical significance, from speech recognition and classification of 

handwriting characters. Many of these problems are solved effortless by humans, but their 

solution using computer has proved to be immensely difficult [NNBishop]. 

The most general, and most natural, framework in which to formulate solutions to pattern 

recognition problem is a statistical one, which recognize the probabilistic nature both of the 

information we seek to process, and of the form in which we should express the results. 

  Concerning problems with pattern recognition, the majority of the applications use 

several feature methods to achieve his purpose and normally is categorized according to the 

type of learning procedure used to generate the output value. 

We will next describe some of those methods and how we used them in this work. 

4.1.1 Neural Networks Overview 

Neural Network (NNs) are networks of neurons, for example, as found in a real biological 

brain. Artificial Neurons are representations of the neurons found in brains, being physical 

devices, or purely mathematical constructs. Artificial Neural Networks (ANNs) are networks of 

Artificial Neurons, and for that, constitute crude approximations to parts of real brains.  
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From a practical point of view, an ANN is just a parallel computational system consisting 

of many simples processing elements connected together in a specific way in order to perform a 

particular task. [Jaime2005] 

In order to introduce many of the fundamental concepts of statistical pattern recognition, 

we will use the example from Cristopher M. Bishop book [NNBishop], with a problem of 

distinguishing hand-written versions of the characters ‗a‘ and ‗b‘. Supposing that we already 

have the images into the computer, we seek an algorithm that can distinguish as reliably as 

possible between the two characters. We shall suppose that we provided with a large number of 

examples of images corresponding to both ‗a‘ and ‗b‘, which has already been classified by 

human, such collection is referred as a data set. Having a large number of input variables can 

bring some problems for pattern recognition systems. So normally we combine input variables 

together to make a smaller number of new variables called features (construct by hand or be 

derived from the data by automated procedures). In this example we could evaluate the height 

and the width of the character, since the letter ‗a‘ has some differences from the letter ‗b‘ in that 

fields. And for that we might expect that characters ‗b‘ to have larger values of the ratio, than 

the characters corresponding to ‗a‘. But it suffers a problem, that there is still a significant 

overlap of the histograms, as we can see in the image from Bishop book [NNBishop], in figure 

10. 

 

  

So it is possible that some of the symbols would be misclassified. One way to improve the 

situation is to consider a second feature and try to classify new images with both features 

together. We will then see that a few examples are still incorrectly classified, but the separation 

of the patterns is much better, as we can see in the figure 11. 

 

Figure 11 - Separation between C1(letter 'a') and C2 (letter 'b'). [NNBishop] 

Figure 10 - Histogram of C1 (letter „a‟) and C2 (letter „b‟). [NNBishop] 
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We could continue to consider ever larger number of (independent) features in the hope of 

improving the performance indefinitely.  

Adding too many features can lead to a worsening of performance. Furthermore, for many 

real pattern recognition applications, it is the case that some overlap between the distributions of 

the classes is inevitable 

With handwritten characters there is a considerable variability in the way the characters are 

drawn. We are forced to treat the measured variables as random quantities, and we cannot 

expect a perfect classification. Instead we could aim to build a classifier that has the smallest 

probability of making a mistake. 

With the help of a dataset of examples, the mapping is therefore modeled in terms of some 

mathematical function which contains a number of adjustable parameters, whose values are 

determined with the help of the data. 

The importance of neural networks is that they offer a very powerful and very general 

framework for representing non-linear mappings from several input variables to several output 

variables, where the form of the mapping is governed by a number of adjustable parameters. 

The process of determining the values for these parameters on the basis of the data is called 

learning or training, and for these reasons the data set of examples is generally referred to as a 

training set. 

The advantages of using Artificial Neural Networks undergo by: are extremely powerful 

computational devices; massive parallelism makes them very efficient; they can learn and 

generalize from training data – so there is no need for enormous feats of programming; they are 

particularly fault and noise tolerant, so they can cope with situations where normal symbolic 

systems would have difficulty [Jaime2005]. 

One of the basic goals for neural network research goes to the engineering goal of building 

efficient systems for real world applications. This may make machines more powerful, relieve 

humans of tedious tasks, and may even improve upon human performance. 

They adapt the strengths/weights of the connections between neurons so that the final 

output activations are correct, as see in figure 12. 
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Figure 12 - Function example of a neural network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further, we will describe where and when do we use a Neural Network.  

4.1.2 HBF49 

Unlike image based approaches for classification, where the pattern is represented  as a 

purely visual signal, the online nature of input signal, however contains rich information about 

the dynamics of the drawing (order and number of strokes, writing direction, speed and 

pressure). When working with this kind of information we face a problem different from the 

off-line segmentation. We present here a work done by Adrien Delaye and Eric Anquetil, where 

they introduce a set of 49 features, called heterogeneous baseline feature set (HBF49) [HBF49], 

covering diverse aspects of patterns characteristics, and presenting the following properties: 

 Ability to describe unconstrained pen-based input (number of strokes, writing 

order, direction); 

 Comparable/better performance with respect to state-of-the-art results on various 

benchmarking datasets, by using a standard support vector machine (SVM) 

classifier; 

 Dealing with writer-dependent (WD) or writer-independent (WI) experimental 

settings; 

 Limited in size (reasonably low number of 49 features) 
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They do not claim to be the best possible set of features for universal symbol recognition. 

However they are confident that it provides an accurate and robust description of symbols in a 

greater variety of context thanks to a complete coverage of the patterns properties. 

For homogeneous representation, they deliberately chose to exclude features based on 

pressure (pressure variations, and off-strokes measure) or temporal information (speed, 

acceleration). For that the data collected of time and pressure are not information considered in 

these features. However some points can always be detected as pen-up points: they denote 

points of the trajectory where the contact between pen and surface was interrupted. 

The classification in HBF49 is separated into 3 major sections: Preprocessing, Dynamic 

features and Visual features. Prior to the feature extraction itself, they expose the pre-processing 

operations applied on the input patterns. These operations are simple to perform and guarantee a 

better stability of extracted features, for any type of input pattern. They first do a Linear scaling 

and translation where the input pattern is rescaled so that its maximal dimension is equal to a 

normalized size. They chose the normalized dimension as 128 in all experiments. Then they do 

a Trajectory resampling, where they spatially resample the points, so that the points on the 

resampled trajectory are equidistant. The imposed distance between two points in the resampled 

trajectory is fixed to 8, this value being related to the box dimension of 128. 

The Dynamic features, model the writing process, focusing on how the pattern was 

accomplished by the writer, by implicitly or explicitly describing the order of the points, the 

writing direction, the number and order of strokes, and so on. Here we have a total of 14 

dynamic features: Starting and ending points position, First point to last point vector, Angle of 

initial vector, Inflexions, Proportion of downstrokes trajectory and Number of strokes. 

The second type of features is Visual features, in the sense that they do not depend on the 

writing process, but focus on the appearance of the writing result. Here are the mains sections: 

Bounding box diagonal angle, Trajectory length, Deviation, Average direction, Curvature and 

perpendicularity, K-Perpendicularity, K-angle, Absolute angle histogram, Relative angle 

histogram, 2D histogram, Hu moments, Convex hull features. 

HBF49 is designed as a generic representation of symbols, without consideration of 

drawing constraints or domain specificities, can serve as basis for designing universal systems.  

These features can be seen with more detail in the paper [HBF49], or in the formulas 

description in Appendix A. 

 

4.1.3 AvgRF 

In the article ―Online Signature Verification and Recognition‖ [AvgRF] they proposed a 

method of representing online signatures by interval-valued symbolic features, based on 

representing global features of online signatures of a class in the form of interval-valued data. 

Features of samples signatures of a class have considerable intraclass variations. They propose 
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to have an effective representation to capture these variations through their assimilation by the 

use of interval-valued feature vector called symbolic feature vector. 

Let μ, be the mean of the feature values obtained from all the samples of the class: 
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And σ, be the standard deviation: 
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∑ (       )
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The interval representation depends on the mean and standard deviation of respective 

individual features. The interval represents the upper and lower limits of a feature value of a 

signature class in the knowledgebase. This individual‘s feature-dependent threshold forms a 

good measure to compare the features in an online reference for verification and recognition, 

calling it ‗AvgRD‘. 

We believed that this information could improve the rate of recognition if associated to 

HBF49 in the neural network.  

 

 

  

(1) 

(2) 
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Capítulo 5 

Experimental Testing 

We will describe all the process from getting the users draws data from the database until 

the creation of the classifiers. 

5.1 Symbol Classification 

Before comparing the online recognition results with the offline ones, we need to see that 

the parameters of input collected are not the same as one to one another, implying a different 

way to process each one. In the next section we will describe the difference between them. 

 Dataset Creation 5.1.1

5.1.1.1 Online 

Having the edited version of the database, now it is time to structure the data in order to 

create the dataset for the neural network. 

We made a code in Matlab to read every txt file from the database.  

Reading every txt files from the database, we analysed the symbol and extracted the 49 

features from the HBF49 functions, and we connect with the specific class of the symbol (as 

described in ―Creation of Database‖ section). For every user we have 252 symbols, and for 

every symbol we have a matrix of 1x50 (49 features and the number of the class). Then doing 

the same for all 50 users, we get a matrix of 12600x50 elements. We can see an example 

scheme in figure 13 that illustrates this matter. 

Having the final matrix of all the symbols, it is time make the recognition. 
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We also need to create a matrix for every class, with more than 1 symbol, in order to 

recognize the symbols within. This is a simple process except for the ―Beamed Symbols‖, the 

symbols 26, 27 and 28. Every one of this symbol has 4 different symbols within. The user 

needed to draw 4 lines of the beamed note, but in order to avoid repetition on drawing (saving 

some time to the user), we decide to only give the user 1 draw of 4 beamed notes, and we would 

get all the information from the symbol in order to remove what we want from that one single 

draw, as seen in the figure 14. 

 

 

 

 

 

 

 

 

 

 

Figure 13- Creation of the matrix 

Figure 14 - Beamed notes separation 
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Analyzing the file, when we have a set of 4 strokes in the beamed note draw, the 

separations it is pretty intuitive, because we just need to get each one of them and combine them 

in order to create the 4 floors of beamed notes. But we face a problem when we have more than 

4 strokes, implying that we need to see how the draw was drawing, and define which stroke 

belong to each level, and define the level to the specific stroke or strokes. For the class 7, we 

have 3 symbols, repeating 3 times, and every one of them extract 4 symbols, giving a total of 

1800 symbols (3 symbols x 3 repetitions x 4 extractions x 50 users).  

   

5.1.1.2 Offline 

 

In the offline mode, we are making the recognition from the drawing images. 

For that, we needed to re-draw all the symbols and save them into a standard lossless data 

image compressed file (JPEG
1
/PNG

2
), because what we have is just information of how to draw 

them. We make a code in Android developer language, to do that process. It would be possible 

to also redraw any symbol in other software, like Matlab; but since the drawing data was 

collected from an android system, the drawing from android would reproduce a more reliably 

image than other software, because it uses a specific drawing functions, curvatures and image 

approaches. 

The algorithm started to open the txt file from the database, and save all the information 

needed. After that it sees the maximum and minimum position values of the symbol and adjusts 

the symbol to the top left corner. Creates a clean bitmap and draw in it with the information 

saved before, using the size of the pen saved in the database. The file is closed and saved into a 

specific folder. We compressed the symbol into a PNG file, because it would occupied less 

space and we did see no significant different between one and another. This process was 

repeated for every symbol in the database. 

 

 

 

 

 

                                                      
1 JPEG – Joint Photographic Experts Group 
2 PNG – Portable Network Graphichs,  
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(a) 

(b) 

 Neural network creation 5.1.2

5.1.2.1 Online 

In order to see if the methods described would increase the rate of recognition, we 

implement 3 different ways the neural network. We concatenate the HBF49 and the AvgRF 

before creating the neural network, which we call ‗cNN‘; naming ‗mixNN‘ we use the HBF49‘s 

49 features to create the neural network and the AvgRF only entered in the last layer of the 

network; and in last we create a simple neural network, using only the HBF49. We can see in 

figure 15 an example of the previous described methods. 

 

 
Figure 15  - Example of the NN methods: a – cNN, b – mixNN [Jaime2005] 

(

(
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We used a Multi-Layer Perceptron (MLP
3
) classifier with one hidden layer and a sigmoid 

function as activation function. To obtain all the NNs the available dataset was randomly split 

into training and test sets, with 60% and 40% of the data, respectively. No special constraint 

was imposed on the distribution of the categories of symbols over the training and test sets, 

ensuring only that at least one example of each category was present in the training set. The best 

parameterization of each model was found using the training and validation sets being the 

expected error estimated on the best set by a 4-cross validation scheme. The 49 features of the 

matrix have a specific class that goes from 1 to 20 (has explained in ―Creation of the Database‖ 

section), this 20 classes are going to be the output layer of the network. 

We create a neural network using all of the specific methods and some will be describe 

next. Besides the final neural network created, with all the important information for 

classification, we also set the estimate rates of performance; data that we will describe in the 

next section. 

5.1.2.2 Offline 

In the offline process, we do not have a set of features, but a set of images. We use the 

Otsu‘s method [Sezgin2004] of global threshold to convert the image to binary. The image is 

resized to 60X60 in order that all the symbols have the same size and be possible to compare 

them. 

Then, we create a simple neural network with the same parameters as the one used by the 

online mode (using the images as input) to classify the symbols, extracting also the estimate 

performance rates, as we will describe in the next section. In an offline mode, it is not possible 

to use the same methods, because we do not have dynamic features as in online mode. Taking 

into account that our focus is on the online recognition, we did not feel the need to implement 

other type of offline classifiers. 

 

5.2 Results 

In this section we will show and analyze the results from the all the operations done in the 

previous section. We also will make a comparative study between the online and the offline 

mode. 

                                                      
3 MLP – a MLP is a layered structure consisting of nodes or units (called neurons) and one-way connections or links 

between the nodes of successive layers. 
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 Online – All classes 5.2.1

We set these parameters for all the classifiers: 

 Train size = 0.25; 

 Number of runs = 50; 

 Number of neurons = 40:5:70 

 

We can see in table 4, the results from all the estimative rates for all the 20 classes. 

 

Table 4 - Estimative rates results 

 Online Offline 

 cNN mixNN Neural 

Network 

Neural 

Network 

Performance expected in 

real life (%) 

85 64 79 26 

IC at 99% for the 

performance 

85 85 64 65 79 80 
26 

27 

IC at 99% for standard 

deviation 

0,95 1,61 1,65 2,79 0,92 1,56 1,50 2,53 

Number of neurons in the 

hidden layer 

90 58 90 58 

 Online – Sub classes 5.2.2

We previous saw the results from the classification of all the classes, but now we need to 

see the classification for every sub class, in order to see the rate of performance for each one, as 

we can see in table 5. 

 

Table 5 - Results of the performance from the sub-classes 

 cNN mixNN Neural Network 

sub-Class Performance Performance Performance 

2 98 94 97 

4 99 99 97 

5 77 60 66 

6 81 63 74 

7 98 89 98 

9 100 99 99 
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5.3 Comparative Study 

As we can see in the previous section of results, the best result was from the cNN method, 

where it got a ―performance expected in real life‖ of 85%, an interval of confidence for the 

performance between 84,56% and 85,48%, and also an interval for standard deviation between 

0,94 and 1,6.  

We can also see that Neural Network got better results than MixNN, giving us information 

that in the process of the creation of the neural network it is not a good idea to implement the 

AvgRF in the last layer of the network, since HBF49 alone worked better. Also we can see that 

the neural network works better when we concatenate the HBF49 with the AvgRF before 

creating the neural network.  

The idea of implemented the 2 features from AvgRF into the classification turned out to be 

good idea, increasing the rate of performance in 6 %. 

In the subclass table of recognition rates we can get clearly high rate of recognition results, 

as expected. Since there are many symbols to classify it is normal that the rates go higher. As 

we can see in the table 5, cNN is also the best choice for all the symbols in the subclass. With 

classes with fewer symbols, the rates cross the 90% and some even reach up to 100%. 

In the subclass, the worst rate of recognition is in class 5 where we got 77%. This class 

contains all of the notes, from the ‗Breve‘ to the ‗Hemidemisemiquaver‘. This rate can be 

explain by the fact that most of these symbols are very similar to one another, and also because, 

every symbol have at least 2 variations (for example, with the leg up and down), worsening the 

classification. 

The rates of recognition in class 17 are also not very good, where we got 80%. This class is 

where it sets the dynamical words of music, like ‗piano‘ and ‗forte‘. We can explain the low rate 

here by the fact that the handwriting of words be less standardized than the musical notation 

10 98 93 95 

11 87 86 90 

12 99 49 99 

14 100 49 100 

17 80 73 79 

19 92 87 90 

20 92 87 89 
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dictionary, which can lead to a more complex variation between users handwriting. The class 11 

follows the same logic as the class 17, with an average performance of 87% 

In comparison between offline and online, we can see that the online mode works better 

than the offline, having a difference of 60%. Even not using the average and the standard 

deviation from AvgRF, we still got a difference of 53%. 

The low rate of the offline method could be improved if we tried other classifiers, some of 

them are described in the Chapter 2, but has said before our focus is on dynamical recognition 

of the online mode. We could try to improve the rate of recognition if we define the matrix for 

the draws in another way. We resize all images to 60x60, this implies stretching for most of the 

images, therefore a changing the real shape of the symbol, and not in a global way. Every draw 

is changing differently, not following a width or a height, making symbols alike becoming 

completely different and symbols completely difference becoming alike. 
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Chapter 6 

Conclusion 

In this chapter we will make some considerations of this thesis, taking some conclusions 

and also present a possible future work in this area. 

6.1 Conclusion 

The work developed in this thesis had the target to overcome the several issues that affect 

handwritten musical symbol recognition. Based on the off-line state-of-art, we believed that we 

could focus our efforts in the online recognition and trying to overcome some of the off-lines 

problems, like elimination of segmentation issues caused by overlapped symbols. This also 

brings some advantage such as, extra knowledge about spatial-temporal information of symbols. 

We created an application based on android for capturing gesture-free of musical symbols. 

This application had a system to record the drawing path made by the user and save vital 

information of each draw. This draws were saved into a database of user draws. With the 

information collected we were, besides be able rewrite the symbol, we got a lot of information 

from each draw, which could be used in very different areas of study.  

For the classification, we did not use neither the time variation nor the pressure (despite 

being record in the database for future use), but both could be useful to improve the recognition 

system. With the time, we could segment the symbol by his average velocity or acceleration in 

certain parts of the symbol. This could be also used to identify a person through a specific draw, 

by the acceleration imposed on the draw, and also the draw itself. Both with pressure, we could 

also use it as an addition to the segmentation. Other interesting matter with pressure is that we 
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could use it for statistical analysis, to evaluate types of emotions from the way of drawing, 

creating a logical profile of a person based on the draw data information. 

We saved 252 musical handwriting draws from 50 different users, and also some important 

personal information from the user.  

We made a statistical study from the user‘s information, were we could associate that 

information with the kind of draws made, and analyze data like: sex, country, music knowledge 

in sheet music, handwriting preference and age. 

We did not get much information about the difference in culture, because the majority of 

the users were Portuguese, and we did not have a solid number of users with different cultures 

to make a solid argument. Overall the percentage of users with musical experience were 

superior to the rest of the users, increasing the diversity of handwriting draws, because users 

with experience in music try not copy the symbol, instead they write like they used to. This 

situation can decrease the rate of recognition, but enrich the quality of the database. 

We saw a clear difference from users with music experience and users with no experience 

in the way of drawing, the time dispending, the number of strokes, the proximity to that 

standard music symbol and even the number of errors done. 

We did a description of the symbols, based on the user draws, showing some information 

with highest, lowest and average values, creating an interesting way to see how the users usually 

write the symbols and how we should expect a symbol to be drawn in the future.  

Editing the database is a process indispensable when dealing with touch screen methods. 

Almost all the users made at least 1 mistake when writing in the application, especially when 

they faced a long period of drawing. We saw that when we fix the ―errors‖ the rates increased 

substantially. 

Being this a project with focus on pattern recognition, it is advisable the use of Neural 

Networks, and in the case of Online classification, it is almost mandatory. NN are extremely 

powerful computational devices which they can learn and generalize from training data. 

We use the methods from HBF49 [HBF49] to classify the draws into a set of features and 

the AvgRF [AvgRF] to help in the process of segmentation. 

HBF49 has a set of features very useful when dealing with unconstrained pen-based input. 

It provides an accurate and robust description of the symbol in a greater variety of context, 

covering the complete set of patterns properties. Unfortunately, they exclude features based on 

pressure (pressure variations, and off-strokes measure) or temporal information (speed, 

acceleration). We are also using AvgRF interval-valued symbolic features for classification, 

where we use the Mean and the Standard Deviation. We set up 3 types of data to enter the 

neural network: one where the HBF49 enters in the first layer with AvgRF, which we call cNN; 

other when the AvgRF instead enters in the last layer of the network; and other when the 
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network is dataset from the HBF49 features. The network using a 4-cross validation scheme and 

a Multi-Layer Perceptron classifier with one hidden layer, has an output of 20 classes. 

With the offline dataset, we retrieve the images from the database and create a simple 

neural network with the same parameters as the online. Since our focus in the beginning was in 

online recognition, we did not try to implement classifiers on the offline dataset in order to 

improve the recognition. And we believe that the online recognition have more potential to 

recognize a symbol with the highest rate than the offline mode. 

We achieve the best rate in online mode of 85% by cNN and the worst in mixNN with 

64%. In comparison with the offline mode, the results were very superior, where we see rates in 

the 26% for an offline neural network. 

In the subclasses rates, we were expected some classes to have the rates a little higher than 

77% and 81%, but we reached several in rates between 98% and 100 %  

The results of the rate of performance were globally satisfactory. We were expecting 

higher rates for some of the sub classes, but still a very good rate of recognition. 

This work is the agglomerate of all the process envolved, and can be used in the future as a 

framework for future development. 

6.2 Future Work 

Following the conclusions of this work we will describe the improvements that we would 

like to implement in the future and our vision for this project. 

Our immediate purpose is to implement the result classifiers into android, in order to create 

a software for recognition. This process is not very far from now, since that the classifiers are 

already created, we just need to create a neural network in Android, implement the HBF49 

features in android, and make the selection by means of the weights. 

Other also important point is to try to improve the rates of recognition with other methods 

and correcting some of the flaws in this project. 

Other focus is to create a second database using different tools to save the information, 

where the user has to write a whole score into a mobile device, using options of slide, zoom, 

easy composing, using pressure or time to vary the kind of ways of drawing in some different 

way. 

Also based on the previous idea, we would like to create a new intuitive software for 

composition using new accessible tools and new different ways of drawing. 

Other important vision in the future, is to implement other types of media recognition, like 

external sound composition, OMR offline, or some dispositive of automatic motion capture 
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(like Kinect or Leap Motion), to create a new way of composing using gestures into portable 

devices. 
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Apendix A 

Papers 

Here we will show the functions from HBF49 used to define the dataset and also the accepted paper envolving 

this work. 

8.1 HBF49 Features 

This set of images will describe the functions used to collect the 49 characteristics from the user draw. 

 Starting andendingpointsposition 8.1.1

 

 

 First pointtolastpointvector 8.1.2

 

 Closure 8.1.3

 

 Angle ofinitialvector 8.1.4

 



 

 

 

 Inflexions 8.1.5

 

 

 Proportion ofdownstrokestrajectory 8.1.6

 

 

 Number ofstrokes 8.1.7

 

 Bounding boxdiagonalangle: 8.1.8

 

 Trajectory length 8.1.9

 

 Deviation 8.1.10

 

 

 Average direction 8.1.11

 

 

 k-Perpendicularity, k-angle 8.1.12

 



 

 

 

 Absolute anglehistogram 8.1.13

 

 2D histograma 8.1.14

 

 

 Hu moments 8.1.15

 

 

 

 

 

 

 

 

 Convex hullfeatures 8.1.16

 

 

 

8.2 Online Database of Hand-draw Musical Symbols  

We will now show the accepted paper envolving this work. 
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Abstract— Programs analogous to optical character 

recognition systems, called optical music recognition (OMR) 

systems, have been under intensive development from many 

years. Nowadays, an interesting application of OMR concerns 

the online recognition, which allows an automatic conversion 

of text as it is written on a special digital device. This work 

intends to create an online database of hand-draw musical 

symbols in order to study and develop classifiers to recognize 

musical characters in real time. 

Keywords-optical music recognition, online omr, sheet 

music draw recognition, hand-draw musical symbols 

I. INTRODUCTION 

In terms of human past knowledge, music may be one of 

the few things which we are certain that follow us since 

pre-historic times.  As a way of representation, musical 

score notation has always been the main source of musical 

expression for non-hearing systems. 

A musical score notation is a worldwide standard 

representation of music writing, grouped with a lot of a 

different symbols and ways to represent a very diversity of 

sound representations. For purposes of safeguard, 

digitization has been the most common tool being used to 

preserve a musical score, offering easy duplications, 

distribution and digital processing. However, a machine-

readable symbolic format from the music scores is needed 

to facilitate operations such as search, retrieval and 

analysis. 

OMR – Optical Music Recognition has gain a lot of 

contributions along the years that come since the 80’s [1], 

this research, mostly on offline mode, make us aware that 

OMR is still an important and complex field where 

knowledge from several field intersects. 

Technology has grown exponentially along the years, 

and write score pieces in paper, start to be a secondary 

option when you have a large fan of possibilities in a 

computer, such as: editable scores, perfectly formatted and 

archived, as immediate sound response and all the other 

possibilities with a segmented standard music files, like 

MIDI (Instrument Digital Interface) or MusicXML (Music 

Extensible Markup Language). This led to some composers 

to start use computer as their main way to compose music. 

However, the reality is that, in an age of global technology, 

most of the composers still use the traditional ―pen and 

paper‖ to write his pieces, saying that it still is the most 

intuitive, easier and faster way to do so [1]. 

This work proposes to conjugate the universal ―pen-

paper‖ metaphor with the news forms of mobile 

technology, as we see with the growing popularity of 

portable small devices, such smartphones and tablets, and 

their power of computing. As pen-based interfaces are in 

wide expansion, there is a lack of applications taking 

advantage of this intuitive and ergonomic way to draw 

musical scores, where the user composes musical scores in 

a traditional way by drawing the symbols on the screen. 

This work propose to create an online database of hand-

draw musical symbols, in order to save the data getting in a 

structural and temporal context, which is not possible in the 

offline mode. 

II. STATE-OF-ART 

A method for date input in a digital system through a 

digital pen applied to musical software appeared at the end 

of the 1990’s with the Palm Pilot device [2] produced by 

Palm Inc. The Pilot was a small handle PDA (Personal 

Digital Assistant) where musical characters were inserted 

through a pen using a technique called Graffiti [2]. The 

first approach to online musical characters recognition was 

to create a digital pen as an interface of localization and 

selection, in place of the mouse, and exemplified by the 

work developed by [3]. Thereafter, the input data process 

relied on the concept of standard movements: the user 

needs to learn a new way to write music, not doing the 

same way as is used to do on paper [4, 5, 6]. Macè in [7] 

says that it is not possible to use a unique recognizer for all 

music symbols and suggest that is necessary to exploit 

dedicated recognizers, trying to use a mix of gestural and 

non-gestural symbols. Taubman in 2005 developed a 

system called MusicHand [8], aiming to help in the process 

of  pitch and symbol segmentation, where the system upon 

entry of an unknown stroke, make the decision by 

comparison with a set of trained gestures, without 

hesitation or coaxing of the system. In 2010, Kian Chin Lee 

proposed a recognition process using a set of different 

HMMs (Hidden Markov Models) in a non-gestural 

approach where the users do not need to learn any special 

gestures for input [9]. 

Most of the documentation uses a unistroke (gestural 

approach, just one stroke) system, forcing the user to learn 

a new language, being an influence on the process of 

composition. On the existing multistroke (non-gestural 

approach, more than one stroke) systems, there is a lack of 

high level technics of image and pattern recognition, as 

also a set of features that were not exploited from the 

dynamic user handwriting. 



 

 

The focus in this work will be on exploit most of the 

described flaws in a non-gestural approach and introduce 

other methods in order to improve the Online recognition 

process in OMR. 

III. WORK 

The project begun with a creation of a graphical user 

interface in android developer language, where were 

collected a several information of the user draws in order to 

create a user hand-draw database of music symbols. 

The user begins to fill a set of parameters with his 

personal information in order to be recognized by the 

system. After that, with his own handwriting, he had to 

draw symbols, according with the images that the system 

was showing. 

For every drawn symbol, it was saved: the action done 

by the user (touch, drag and lift), the position X and Y, the 

Time and the Pressure, for every amount of milliseconds 

(depending on the Android machine in use). For a complete 

set of 84 musical symbols, drawn 3 times, with a different 

thickness, for every user, we can obtain a set of different 

handwriting. 

 The choice done in the number of symbols, were based 

on the most common and globally ones in music notation. 

The different thickness was driven by the fact that 

everybody draws their symbols in a different way when the 

size of the pen is different, and we save that information in 

the database for further analysis. When a draw is finished, 

the system knows exactly where and when the path was 

made.   

Fig. 1.  Example of a hand-draw symbol and part of the 

data saved from it 

 

We collected data from 50 users with ages between 21 

and 70, from different origins and different music 

educations. From those users we saved the user name, date 

of registration, his institution or place of work and the hand 

writing preference. We describe the level of knowledge in 

sheet music handwriting of each user, from 1 to 5, 

receiving handwritings from different music experiences. 

For purposes of segmentation and symbol analysis we 

included also in the database the hardware model of the 

machine and the resolution being used. 

 

IV. FUTURE WORK 

With the data collected we will investigate and develop 

algorithms to recognize musical characters in real time to 

obtain a digital, easy-to-manage version of the original 

scores. More precisely, the methodologies for online OMR 

which will be explored in this work will encompass 

Support Vector Machines (SVMs), Neural Networks 

(NNS), Nearest Neighbour (kNN) and Hidden Markov 

Models (HMM). 

These techniques will be used for a comparative and 

validation analysis with offline OMR procedures. 

Moreover, the set of features used in HBF49[10] will be 

implemented in our database. These characteristics will 

enhance the advantages of using music symbols 

dynamically extracted. 

The final purpose is to create a software with the 

possibility of instant recognition of the hand-drawn symbol 

and immediate transformation into a universal editable 

digital version. The aim is to eagerly know what symbol is 

been drawn before the user even finish it.  

The process which is based on this technology, should 

be capable of recognize an unlimited number of different 

calligraphies, and obviously be an important step on the 

history of musical notation. This tool would be 

indispensable for composers, conductors, musicians and 

teachers. 
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