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Resumo

Nesta tese é realizado um estudo sobre como utilizar previsões de tempos de
viagem nas tarefas de planeamento de empresas de transportes rodoviários de
passageiros. São identificados dois problemas: a definição dos tempos de viagem
a utilizar (1) nos horários e (2) na definição de serviços quer de viaturas quer de
motoristas. Todos estes estudos assumem a existência de dados sobre as viagens
realizadas, obtidos tipicamente através de sistemas de localização automática
de viaturas.

O primeiro problema não é novo, havendo vários estudos relacionados na
literatura. A nossa abordagem não é anaĺıtica. Em alternativa desenhamos e
desenvolvemos um sistema de apoio à decisão que utiliza dados históricos do
mesmo percurso e representativos do peŕıodo em que os horários estarão em
vigor. Este problema foi o menos estudado.

A abordagem ao segundo problema, previsão de tempos de viagem com três
dias de antecedência, consiste em testar quanto se pode aumentar em precisão
se se utilizarem na definição dos serviços dos véıculos e dos motoristas previsões
feitas tão próximo da data desses serviços quanto posśıvel, em vez dos tempos
definidos nos horários. A motivação para a realização deste estudo é que, caso
o aumento de precisão seja significativo, é posśıvel que se consiga reduzir os
custos operacionais e/ou aumentar o ńıvel de satisfação dos clientes.

Neste segundo problema, utilizamos abordagens de aprendizagem automática.
Não obstante, iniciamos pela definição de um método simples (para permitir
avaliar comparativamente os resultados obtidos com métodos mais complexos)
e de um outro baseado no conhecimento existente no ińıcio desta investigação
quer da nossa parte quer da parte dos especialistas de trânsito da empresa STCP.
De seguida experimentamos três algoritmos com bons resultados em diferentes
problemas. São eles: máquinas com vectores de suporte, florestas aleatórias e
regressão por projecções (projection pursuit regression). Para cada um destes al-
goritmos foram realizados testes exaustivos para afinação de parâmetros. Foram
realizados mais testes sobre: selecção de instâncias, selecção dos domı́nios dos
valores e selecção das variáveis de entrada. A precisão aumentou com as novas
abordagens testadas.

O passo seguinte foi experimentar abordagens com modelos múltiplos de
forma a melhorar ainda mais os resultados por comparação com a utilização de
um só modelo. É feita uma revisão bastante completa sobre a utilização de mo-
delos múltiplos para regressão. São também apresentadas diversas experiências
utilizando a abordagem de selecção dinâmica. A utilização de modelos múltiplos
permite melhorar os resultados comparativamente à utilização de um só modelo.

As últimas experiências sobre o segundo problema comparam a abordagem
simples, a abordagem com base no conhecimento existente, o melhor algoritmo

v



vi

(com respectivos parâmetros e técnicas de selecção de instâncias, domı́nios de
valores e variáveis), a abordagem utilizando modelos múltiplos e os tempos de
viagem definidos nos horários. Os resultados dão uma pequena vantagem à
utilização de modelos múltiplos por comparação com a abordagem baseada no
conhecimento existente. No entanto, esta última abordagem necessita de menos
dados e é bastante mais rápida de afinar. O método actualmente utilizado pela
STCP (a utilização dos tempos dos horários) é competitiva para percursos circu-
lares. No entanto, este resultado pode ser, pelo menos parcialmente, explicado
pela forma como esses percursos são controlados. Nos restantes percursos, esta
abordagem foi claramente ultrapassada em termos de precisão das previsões
(mesmo sabendo que é esta a previsão que os motoristas tentam cumprir).

Tentamos ainda dar respostas práticas sobre a forma de utilizar as previsões
dos tempos de viagem nas tarefas de planeamento de empresas de transportes
colectivos de passageiros, utilizando o caso da STCP como caso de estudo. O
impacto da previsão dos tempos de viagem nos objectivos de negócio, nomeada-
mente, o aumento do grau de satisfação dos clientes e a diminuição dos cus-
tos operacionais, não é alvo deste estudo apesar de ser, naturalmente, o passo
seguinte desta investigação.



Abstract

In this thesis we undertook a study in order to know how travel time prediction
can be used in mass transit companies for planning purposes. Two different
problems were identified: the definition of travel times (1) for timetables and
(2) for bus and driver duties. All these studies assume the existence of data
on the actual trips, typically obtained from Automatic Vehicle Location (AVL)
systems.

The first problem is a well-known problem with several related studies in
the literature. Our approach is not analytical. Instead, we have designed and
developed a decision support system that uses past data from the same line and
representative of the period the timetable will cover. This problem was the least
studied.

With respect to the second problem, travel time prediction three days ahead,
we focused on how much we can increase in accuracy if we predict travel times
for the definition of bus and driver duties as near the date as possible, instead
of using the scheduled travel times (STT). The reason for doing this is that, if
the increment is important, it is expected to reduce operational costs and/or
increase passengers’ satisfaction.

In this second problem we used machine learning approaches. However, we
started by defining a baseline method (in order to evaluate comparatively the
results obtained with more sophisticated methods) and an expert based method
using the knowledge we had at the time together with the traffic experts from
the STCP company. Then, we tried three different algorithms with reported
good results in different problems. They were: support vector machines, ran-
dom forests and projection pursuit regression. For each of these algorithms,
exhaustive tests were done in order to tune parameters. Other tests were done
using the three focusing tasks: example selection, domain values selection and
feature selection. Accuracy was improved using these approaches.

The next step was to experiment heterogeneous ensemble approaches in or-
der to ameliorate further the results by comparison with the use of just one
model. An extensive survey on ensemble methods for regression was undertaken.
Several experiments using the dynamic selection approach were executed. Ap-
proaches using ensembles have improved results consistently when compared to
the use of just one model.

Experiments on the second problem finished by comparing the baseline, the
expert based, the best single algorithm (with the respective tuned parameters
and focusing tasks), and the ensemble approach, against the use of STT, on
various routes. Results gave a small advantage in terms of accuracy to the
ensemble approach when compared to the expert based method. However, the
expert based approach needs less data and is much faster to tune. The actual
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method used by STCP (the use of STT) was competitive for circular routes.
However, this result can be explained, at least partially, by how these routes are
controlled. On the rest of the routes tested, it was clearly beaten.

We also try to give practical answers in using travel time predictions for
the planning of mass transit companies, using the STCP company as study
case. The impact of travel time prediction in the business goals, namely clients’
satisfaction and operational costs, is not addressed despite it is the natural step
forward of this research.



Résumé

Cette thèse porte sur une étude de l’utilisation qui est faite, par les diverses
entreprises de transports, des prévisions du temps des voyages dans les planifi-
cations des transports collectifs de passagers. Deux problèmes ont été identifiés:
(1) la définition des temps de voyages inscrits sur les horaires transmis au public;
et (2) la définition des services.

L’ensemble des recherches est fait sur des voyages ayant déjà été effectués.
Les données ont été obtenues grâce au système de localisation automatique de
véhicule.

Le premier problème n’est pas nouveau, plusieurs ouvrages ont déjà abordé
ce sujet. Dans cette thèse, l’approche de la question n’est pas analytique.
Autrement, nous avons conçu et développé un système d’aide à la décision util-
isant les données historiques représentatives d’une période donnée sur un même
parcours.

Le deuxième problème c’est la prévision du temps de parcours à trois jours
d’intervalle pour la définition des services. L’idée principale s’agit de quanti-
fier l’augmentation de la précision des prévisions horaires si on utilise pour la
définition des services: des voitures et des conducteurs, précis au lieu des temps
de transport des horaires publics.

La motivation de cette étude réside dans le fait que plus la précision est
grande, plus les coûts opérationnels sont réduits et plus la satisfaction des pas-
sagers est garanti.

Pour ce deuxiême volet d’étude, nous avons utilisé une méthode d’apprentis-
sage automatique. Il a fallu, tout d’abord, définir une méthode ”näıve” (afin
d’avoir une référence de base) puis ensuite une autre méthode basée sur la
connaissance (celle des experts du trafic routier de l’entreprise STCP et la nôtre).
Ces deux méthodes constituent le départ de notre travail de recherche.

Ensuite nous avons testé trois algorithmes d’apprentissage automatique à
savoir: machines à vecteur de support, forêt aléatoire et projection pursuit
regression. Nous avons testé intensément les paramètres pour chacune des
méthodes. Nous avons aussi fait des tests sur la sélection des instances, la
sélection des domaines de valeurs et la sélection des variables. La précision
augmentait à chaque nouvelle approche testée.

Nous avons, ensuite, expérimenté l’approche d’ensembles hétérogènes afin
d’améliorer les résultats en les comparant avec la utilization d’un modèle unique.
Nous avons fait une révision de l’état de l’art compréhensif sur les méthodes
d’ensemble par régression. Puis nous avons présenté les différentes expériences
à l’approche de sélection dynamique. L’utilisation d’ensembles a amélioré les
résultats en comparaison du modèle unique.
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Enfin, les dernières expériences sur le deuxième problème sont la compa-
raison de l’approche näıve avec l’approche basée sur la connaissance, le meilleur
méthode d’apprentissage automatique (avec paramètres respectifs, méthode de
choix d’instances et domaines de valeurs et variables), l’approche d’ensembles et
des temps de voyages des horaires. Les résultats révèlent un léger avantage avec
l’utilisation de l’approche d’ensembles plutôt qu’à l’approche basée sur la con-
naissance. Par contre, cette dernière nécessite beaucoup moins de données et est
donc plus vite configurée que celle des ensembles. Le méthode qui est actuelle-
ment utilisée par la STCP (les temps de voyages des horaires) est d’ailleurs
compétitive pour les parcours circulaires. En revanche, pour les autres types de
parcours cette approche est clairement mauvaise. Nous avons aussi fait un essai
sur l’utilisation des prévisions des temps de voyages pour la planification dans
les entreprises de transports collectifs en utilisant l’entreprise STCP comme cas
d’étude.

L’effet de l’utilisation des prévisions des temps de voyages sur la réduction
des coûts opérationnels ainsi que sur l’augmentation du niveau de satisfaction
des passagers ne sont pas encore étudiés mais ils le seront, bien évidemment,
dans la deuxième phase de cette recherche.



Agradecimentos

Começo por agradecer aos meus orientadores, Jorge Freire de Sousa e Aĺıpio
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Chapter 1

Introduction

In the last two/three decades, passenger transport companies have made impor-
tant investments in information systems, such as Automatic Vehicle Location
(AVL), automatic passenger counting, automated ticketing and payment, multi-
modal traveller information systems, operations software and data warehouse
technology, among others. As a consequence of this effort in Advanced Public
Transportation Systems (APTS), passenger transport companies have been able
to collect massive data. As in other areas of activity, all this information was not
proving to be particularly helpful in supporting companies to accomplish their
mission in a significantly better way. The quote “we are drowning in information
and starving for knowledge” from Rutherford D. Rogers, a librarian from Yale
University, summarizes these moments in the company lives. The Sociedade de
Transportes Colectivos do Porto, SA (STCP), the largest urban public transport
operator in greater Oporto, Portugal, has made important investments in APTS
in the last few years. In 2003, the Sistema de Apoio à Exploração e à Informação
(SAEI), a Bus Dispatch System, began to store the first data regularly, although
in an experimental period. The SAEI was able, among other functionalities, to
incorporate AVL data, namely the location given by radio every 30 seconds and
all the relevant data about the bus trips. In 2003, the operations department
of the STCP began the intensive data collection process. Since then, the STCP
has been making an important effort in data consolidation and data exploration.
This thesis attempts to give a contribution, albeit small, towards this effort of
feeding STCP with knowledge, in particular its department of operations.

The goal of this thesis is to study how to better predict travel time for
operational purposes. The final goal is to reduce operational costs and increase
client satisfaction by improving operational planning and service reliability due
to the use of more adequate travel time predictions (TTP).

This chapter begins with the presentation of the problem. Then, in Sect.
1.2, we state the objectives of the thesis followed by the presentation of the
methodology used in Sect. 1.3. Finally, in Sect. 1.4, the structure of the thesis
is presented.

3
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Table 1.1: Extra work from 2004 to 2007 in hours and thousands of e.
2004 2005 2006 2007

All employees 157695 168184 174187 103124 In hours
Crew staff 135723 152586 154515 84557

All employees 1220 1320 1379 890 In thousands of e
Crew staff 998 1158 1185 704

1.1 Description of the problem

The STCP company serves Greater Oporto, an area with 1.3 million inhabitants
using a network of 533 km. In 2007, they offered 83 lines, 51 of which are bus
lines operated using the company’s own resources. In 2007, they fulfilled 30
million km using a working force of 1623 employees (at the end of of the year),
with 65.4% of them being crew staff. In the STCP company, the work force
costs are an important component of the operational costs. In 2007, this ratio
was 46.0%, the work force costs represented 39.6% of the total costs [Gomes et
al., 2008].

Although costs with extra time represent typically from 2% to 4% of the
total costs with the personnel (2.32% in 2007), this value is, in absolute terms,
an important one (table 1.1) mainly because there is the perception that this
value is, at least in part, due to an inefficiency in the construction of the crew
duties because of the use of long horizon TTPs. These predictions are the ones
used to construct the timetables. The timetables are typically used for several
months. It is expected that by using a shorter horizon for the predictions, they
can be more accurate and, consequently the duties can be more adapted to the
reality.

Last, but definitely not least, client satisfaction depends on the reliability of
the service. More accurate travel times for timetable construction are expected
to increase clients’ satisfaction [Strathman et al., 1998].

1.2 Objectives of the thesis

The question we try to answer in this thesis is: is it possible to improve the ac-
curacy of travel time prediction/definition for planning purposes in comparison
with the present approach in use at STCP through the possible reduction in the
horizon of prediction?

This goal assumes that increasing the accuracy of travel time used for plan-
ning purposes will reduce operational costs and will increase clients’ satisfaction.
It is not an objective of this thesis to quantify the reduction in operational costs
or the increase in clients’ satisfaction. The only objective is to prove that we
are able to predict/define travel times for operational purposes more accurately.
This objective will be better defined in Sect. 2.4, after the introduction to main
concepts of operational planning at a mass transit company.

In addition to this, some other objectives were defined but to better un-
derstand them some previous thoughts are needed. This thesis is obviously
on applied research in the sense that the goal is to use tools to solve a given
problem. Generally, these tools already exist. Our objective in this thesis is
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not to develop new tools. Instead, we aim to fully understand the tools which
are more adapted to solve the particular problem and to be able to generalize
results obtained with this particular problem. In other words, it is an impor-
tant issue to contextualize the lessons learned and to explore them in order to
make these lessons available to a broader research community. The effort in
contextualization and generalization of the lessons learned is an effort to which
all researchers must be committed.

The secondary objectives of this thesis are:

1. To contextualize each of the used methodologies in the corresponding state
of the art of the problem to be solved;

2. To contextualize each of the used methodologies in the respective state of
the art of the methods being used;

3. To design and develop the necessary model(s) to accomplish the main
objectives of this thesis;

4. To implement a prototype using the relevant aforementioned model(s);

5. To generalize, when appropriate, the results obtained using the different
methodologies to other problems.

1.3 Methodology

The methodology used in this thesis for approaching the travel time prediction
problem follows the CRISP-DM (CRoss-Industry Standard Process for Data
Mining) model [Shearer, 2000]. This model was proposed in 1996 by four leading
data mining companies at the time. Although CRISP-DM is defined as a data
mining model, it is easily adapted to projects involving forecasting models, in
general. It has six phases (Fig. 1.1, adapted from [Shearer, 2000]):

1. Business understanding: firstly, the objectives of the project are defined
from the business point of view. Then, these objectives must be defined
in a quantitative way, in order that they can be measured.

2. Data understanding: this phase comprises the data assessment; the first
analysis of the data, namely by visual inspection or by the use of descrip-
tive statistics; and the quality assessment of the data.

3. Data preparation: it comprises the necessary tasks to obtain the final
data set, namely the definition of the features and examples to use, the
substitution of NULL values if needed, feature construction, among other
necessary data preparation tasks.

4. Modelling: in this phase the specific techniques (algorithms) are selected,
the experimental setup is defined, the parameter sets are tuned and the
final results are assessed and compared to each other.

5. Evaluation: in this phase, how the results meet the business objectives is
firstly evaluated, secondly the process is reviewed in order to adjust some
tasks, if necessary, and finally it is decided whether the project should
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Figure 1.1: Phases of the CRISP-DM reference model.

be finished and, consequently, whether the project should pass to the
deployment phase or if it is necessary to do further iterations or to set up
new projects.

6. Deployment: it is the final phase, where the project is deployed to be used
by the end user, the tasks for monitoring and maintenance are defined,
the final report is written as well as the evaluations and recommendations
for further improvements.

The CRISP-DM model is fully described in [Chapman et al., 2000], namely
the description and outputs for all the tasks of each phase.

1.4 Structure of the thesis

The remainder of this thesis is organized into four parts as follows:

• Part I: The problem
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– Chap. 2 describes the problem. It comprises a brief overview of the
main planning tasks in a mass transit company, how those tasks are
accomplished in STCP, and how travel time prediction can be used
to improve it, namely, the definition of both timetables and duties.
Then, a brief state of the art review on TTP is described, addressing
these two different problems. In order to better define the problem,
a brief overview on evaluation and deployment issues is carried on.
Then the problem is restated. Finally, the data is described and
analyzed. This chapter comprises the business understanding, data
understanding and data preparation phases of the CRISP-DM model.

• Part II: Travel times for timetabling

– Chap. 3 presents a decision support system for timetable adjustments
that allows the test of different scenarios, namely, different frequen-
cies for the offer of trips, scheduled travel times and slack times. How
to use this tool for different situations is explained, namely short and
large headways, where headway is the inverse of the frequency. It
comprises the modeling phase of the CRISP-DM model. However,
this chapter does not use data mining approaches. Consequently, the
modeling phase does not use the CRISP-DM model but the evolu-
tionary prototype as described in [Nunes et al., 2000].

• Part III: TTP three days ahead (for the definition of duties)

– Chap. 4: after a first discussion about the model that better ad-
dresses the problem, inductive learning methods versus time series
forecasting methods, the main data mining concepts on supervised
learning and particularly in regression are introduced, namely the
description of the main issues on regression, a brief review of the
three focusing tasks (example, feature and domain value selection)
is made and the main inductive learning algorithms for regression
are presented. This review helps to accomplish the second secondary
objective defined in Sect. 1.2, namely to contextualize the different
methodologies used throughout this thesis in the corresponding state
of the art. This is part of the CRISP-DM modeling phase.

– Chap. 5 describes the modeling phase of the CRISP-DM model.
The regression algorithms (support vector regression, random forests
and projection pursuit regression) and the input variables to use are
selected, the experimental setup is defined, a baseline and an expert-
based methods are presented and tested, the parameter sets for the
regression algorithms are tuned and some experiments using different
focusing approaches are carried on. For example selection, two dif-
ferent approaches are tested and compared to the use of all training
examples: the selection of examples from equivalent days and the
selection of examples that fall into the same leaf node of a CART
decision tree as the test example. For domain value selection, two
different domain values (numeric and symbolic) are tested for a par-
ticular input variable, the weekday variable. For feature selection,
the irrelevant features were detected using the RReliefF algorithm



8 CHAPTER 1. INTRODUCTION

[Robnik-S̆ikonja and Kononenko, 2003]. Then, five pre-selected sub-
sets of the original feature set were tested using random forests.

– Chap. 6: like Chap. 4 it is a review work, in this case on ensem-
ble methods for regression. The experiments described in Chap. 5
motivated the study of methodologies that might improve our initial
results. We have decided to use ensemble methods. In this chapter,
we present a review work of ensemble methods for regression. Here,
we make the first comprehensive state of the art review on ensemble
methods for regression. It comprises main definitions and concepts.
Different state of the art methods are described for the three phases
of the ensemble learning model: generation of the pool of models, en-
semble selection by pruning the pool, and integration of the results
from each model in the ensemble in order to obtain the final ensemble
prediction.

– Chap. 7 describes another modeling phase according to the CRISP-
DM model. Different tests on the dynamic selection approach of
ensemble learning are described. Firstly, the methods used for each
one of the three phases of the ensemble learning model described in
Chap. 6 (generation, pruning and integration) are described. In the
generation phase three different pools are described. In the prun-
ing phase, two different search algorithms are presented as well as
two evaluation functions, according to the taxonomy presented in
Sect. 4.3.1. In the integration phase, different approaches for each
task of the dynamic selection approach are described, namely: the
selection of similar data, the selection of models from the ensem-
ble, and the combination of their results to obtain the final ensemble
prediction. Three different experiments are carried out: testing the
different methods to obtain similar data; testing the impact of the
size of the data set used for pool generation on the results of the en-
semble; and testing ensembles selected from the pool using pruning
algorithms with different evaluation functions. Additionally, in all
three experiments: different sizes for the similar data set are tested;
different methods for the selection of models from the ensemble are
tested as well as the combination of their results; the results for the
base learners and the constant weighting function, simple average are
shown.

– Chap. 8 evaluates comparatively in new routes the different ap-
proaches tested in the previous chapters namely, the baseline and
the expert based methods, the use of the best algorithm with respec-
tive parameter set from the pool, an ensemble approach using the
dynamic selection method and the approach in use at STCP. A fi-
nal statistical evaluation of the experiments on travel time prediction
three days ahead is presented. This chapter comprises the evaluation
phase of the CRISP-DM model.

• Part IV: concluding remarks

– Chap. 9 concludes this thesis summarizing the work done and de-
scribing how the initial objectives were accomplished. Finally, ideas
for future research are pointed out.



Chapter 2

Description of the problem

The idea of this thesis, to improve the accuracy of travel time predictions for
operational purposes in order to reduce costs and/or increase client satisfaction,
is appealing and easily understandable. However, the way the predictions can be
useful to a mass transit company is neither simple nor obvious. This happens
because the operational planning processes are complex, especially at larger
companies as in the case of STCP, the case study used throughout this thesis.

This chapter starts with the description of the main operational planning
tasks (Sect. 2.1) followed by a in-depth analysis of travel time prediction - TTP
(Sect. 2.2). Then, a first overview of the evaluation and deployment phases of
the CRISP-DM model is outlined (Sect. 2.3) in order to make decisions on how
to follow up (Sect. 2.4). Finally, the available data is described and analyzed
(Sect. 2.5).

2.1 Operational planning

Operational planning in mass transit companies is, by its own complexity, a well
established research area: all the tasks are well described in the literature. In
this section, we firstly describe them for a medium/large size bus company (Sect.
2.1.1), then we describe how they are accomplished at STCP (Sect. 2.1.2).

2.1.1 Main concepts of operational planning

The main tasks of operational planning are usually done in the following se-
quential way [Ceder, 2002; Lourenço et al., 2001; Dias, 2005]:

1. The network definition: it is, obviously, a planning task for the long/very
long term. It comprises the definition of the lines, routes and bus stops.
We define route as an ordered sequence of directed road stretches and bus
stops. Lines are a set of routes, typically two routes that use roughly the
same road stretches but in opposite directions.

2. The trips definition: it is a medium term task, with an horizon much
shorter than the network definition. There are typically two different
methods for trip definition: (1) headway-based, defining the time between

9
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two successive trips on the same route [Vuchic, 2005]; or (2) schedule-
based, defining timetables by explicitly setting the departure time and
the time of passage at the main bus stops. The supply of trips is defined
by route even if they are articulated between groups of routes/lines [Ceder
et al., 2001].

3. The definition of the duties of the drivers and buses: they are medium
term (several months) tasks. The goal of both tasks is to define duties. A
duty is the work a bus / driver must do. When a duty is defined, in both
cases, we do not know which driver or bus will do it. We are just making
a logic assignment. The case of bus duties is much simpler than driver
duties for obvious reasons: drivers must stop for lunch, cannot drive every
day of the week, etc., i.e., they have many more constraints than buses.
According to [Dias, 2005], “each driver duty is subject to a set of rules
and constraints defined by the government legislation, union agreements
and some internal rules of the company”. Typically, bus duties are defined
before drivers duties.

4. The assignment of duties: it is the task where the driver duties are as-
signed to drivers and bus duties are assigned to buses. We are now making
a physical assignment. Assignment for driver duties is more complex than
for bus duties, for similar reasons to the ones explained above. The assign-
ment of driver duties to drivers is called rostering. It can vary significantly
from one company to another.

The process described is typical for a large mass transit company. Smaller
companies typically use simpler approaches [Dias, 2005].

2.1.2 Operational planning at STCP

In this section we describe how operational planning is accomplished at STCP.

The bus network

The bus network at STCP was completely redesigned in 2007. This event, which
happens very rarely in the life of a public transport company, was a consequence
of the creation and growth of the Metro do Porto network. Metro do Porto is
the light train company from Greater Oporto. At the end of 2002 it commenced
commercial operations on the first line. In September 2005 it finished the so-
called first phase network composed of 4 lines [Porto, unknown]. In order to
adjust its bus network to the new reality of the public transport supply in the
region, STCP redesigned its bus network using a complementary philosophy in
relation to the Metro do Porto network. The new STCP network has fewer
and shorter bus lines, 51 operated using the company’s own resources, with, on
average, shorter headways.

The definition of trips

In all Portuguese bus companies, trips are defined by schedule. At STCP, the
supply is different for Saturdays, Sundays/Holidays and working days. The
supply for working days is also different for summer holidays and for special
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days, namely All Saints’ Day. Although the supply of trips is done by schedule,
the company favors stable headways, i.e., they try to offer trips at constant time
lags in order to facilitate the creation of routines for their clients.

The definition of trips, as well as the definition of duties and the roster-
ing process, is done with a decision support system named GIST [Lourenço et
al., 2001; Dias, 2005; Ferreira, 2005], which is used in the main mass transit
companies in Portugal.

The definition of duties

The bus scheduling is done for a set of lines (typically sharing part of the route
or using the same terminal node). This phase consists of the definition of the bus
duties (named running boards) in order to cover all the trips. The algorithms
used try to minimize both the number of buses needed and the running costs.
Each running board can be seen as a sequence of trips separated by slack times,
where slack time is the scheduled time between trips in order to accommodate
delays (Sect. 2.2.1). It includes not only the trips offered to the public but also
the connection trips. Fig. 2.1 shows an image of the GIST system representing
running boards. Each running board has a different color. It is composed of a set
of trips (with respective slack times) and connection trips, typically beginning
and ending the duties for connection with the depot (the dashed lines). The
main bus stops are at the vertical axis (they are ordered according to their
position on the route) and the hour of the day is at the horizontal axis (at the
top of the image). That is why this kind of chart is called a time-distance one
[Vuchic, 2005].

Then, the driver scheduling is defined. Each driver schedule is a set of driver
duties within the existing constraints and rules. Each driver duty is a sequence
of pieces-of-work where each one is part of a running board between two relief
opportunities. A relief opportunity is a bus stop where drivers can be replaced.
At this phase the duties are not assigned to the drivers. This phase is fully
described in [Dias, 2005], including the approaches used by STCP. Fig. 2.2 shows
an image of the GIST system representing driver duties. Each line represents a
different running board using a horizontal representation (instead of the time-
distance representation used in Fig. 2.1). Driver duties are represented with
different colors and numbers. The pieces-of-work are easily identifiable because
they are the stretches between two consecutive relief opportunities (the vertical
black traces).

The rostering process

After being defined, the duties are assigned to the drivers in the rostering phase.
In this phase, some drivers are organized into groups, named rostering groups.
Each group has a set of drivers and a set of duties defined for a set of lines.
This phase has three different stages according to the planning horizon:

1. In the long term rostering, assignments are defined in order to guarantee
that personal constraints (days off and holidays) and skills of the drivers
(such as skills for driving different types of vehicles) are respected.

2. In the regular rostering phase the assignments are updated according to
the drivers’ availability. These updates are typically done in a daily basis.
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Figure 2.1: Running boards identified by colors (image from the GIST system).
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Figure 2.2: Driver duties identified by colors and duty numbers (image from the
GIST system).
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3. In the post rostering phase last minute changes are settled. The actual
work is registered.

The rostering process is fully described in [Ferreira, 2005], including the
approaches used by STCP.

2.2 Travel time prediction (TTP)

According to [Strathman et al., 2001], in 1978 Abkowitz suggested the classifi-
cation of the methods to improve transit service reliability in three groups:

• Priority: are those methods that give priority to transit vehicles, such as,
bus lanes and traffic signal prioritization, among others;

• Operational: are those methods previously described, namely, route re-
structuring, trip definition, duties definition and rostering processes;

• Control: take place in real time and include vehicle holding, short-turning,
stop-skipping and speed modification.

TTP can be used for operational and control methods. We study just the
operational issues of TTP.

We begin this section by discussing main concepts and definitions of travel
time. Then, we make a brief description of TTP at STCP detailing TTP for
timetabling and for duties definition. We conclude by briefly reviewing the state
of the art in TTP.

2.2.1 Main definitions of travel time

In order to clarify concepts we present the main definitions related to travel
time used throughout this thesis:

• Travel time: is the time of a trip, from terminal to terminal. However, in
the state of the art review on TTP (Sect. 2.2.3), we use the travel time
definition given by Turner et al., “the time necessary to traverse a route
between any two points of interest” [Turner et al., 1998].

• Slack time: is the time that, according to the schedule, the bus is at the
terminal between the end of a trip and the beginning of the next one.

• Cycle time: is the interval between the two consecutive times a bus in
regular service leaves the same terminal (adapted from [Vuchic, 2005]).

These times are represented in Fig. 2.3 using a time-distance chart for the
most common situation, i.e., lines with two routes (go and return). At STCP
just four lines, the circular ones, do not have two routes.
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Figure 2.3: Time-distance chart on different concepts of travel time.

2.2.2 Travel time prediction at STCP

There are four different moments where TTP is or should/could be used at
STCP (as well as in other medium/large mass transit companies):

1. To define timetables;

2. To define duties for both buses and drivers;

3. To be used in the control center to anticipate intra-day corrections;

4. To inform the public of the bus passing time at a specific bus stop for the
short run.

At STCP, the first situation is accomplished as described below, the sec-
ond situation uses the travel times defined in the timetables, the third is not
accomplished, and the last one is already implemented using Kalman filters
[Kalman, 1960] 1. STCP informs the public by request using Short Message
Service (SMS).

As we said previously, we only study the operational issues of TTP, i.e., for
timetabling and for duties definition. These problems are discussed in detail
next.

Travel time prediction for timetabling

Schedules are typically defined for periods of several months and travel times
are always the same while these schedules are in use.

1The algorithm used was not implemented at STCP and, consequently, we do not have
information on the details.
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The way travel times to be used in the timetables are defined at STCP
changed in March 2007. Before this date, travel time was defined by analyzing
two or three days considered empirically representative. Fig. 2.4 shows a com-
parison between the planned travel times and their actual values for the trips
made on working days during school time for the first 7 months of 2004 using
the described approach. The planned travel times are the red ones. The large
dispersion of travel times for the same departure time is apparent (the vertical
width of the data points cloud). The lack of criteria to define the planned travel
times is also apparent. In fact, at the beginning and end of each day, most trips
are ahead of the scheduled travel time, while in the remaining periods most trips
are behind the scheduled times.
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Figure 2.4: Travel time along the day for the trips defined in the schedule of
route 78-1-1 for working days during school time for the first half of 2004.

Approximately in March 2007 a new tool appeared in order to support travel
time definition. This tool, developed at STCP, uses the data of the actual trips
obtained from the SAEI system (Sect. 2.5.1) to calculate the average travel time
for each scheduled trip of a given line. This time is used as a reference when the
scheduled travel times are defined during the process of scheduling definition.
Fig. 2.5 presents an analysis for line 205, for the period of 7 to 11 of April 2008
between 9.00 and 12.00. For each scheduled trip (the dashed lines) the actual
average time (the full lines) is presented.

The department of operations aims to update schedules every three months
at least for the most busy lines. However, in March 2008, i.e., one year after
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the introduction of this new procedure, there was still a meaningful number of
lines that had not been analyzed. Only around 60% of the necessary timetables
for working days during school time have been reformulated. All the remaining
timetables have not been reformulated at the time.

When the trips are defined by schedule, the respective slack times are also
defined. The trips are usually defined so that the cycle time is a multiple of the
scheduled headway.

It is important to notice that the new approach uses an approximate mean
travel time value for each trip, giving equal weighting to advances and delays.
It is expected that, using this approach, global error will fall but the percentage
of trips ahead of schedule will be roughly the same as delays. For lines with
lower frequency, the impact of a bus passing ahead of schedule from the clients’
point of view, is higher than for lines with higher frequency, i.e., if the average
(or the median) from past travel times is used, the largest is the headway (lower
frequency) the lowest is clients’ satisfaction [Zhao et al., 2006]. Furthermore,
this tool does not give any information on travel time dispersion.

In short, the definition of travel times for timetabling is a two-objective
problem where one of the objectives is to minimize the cost for the company
and the other one is to minimize the cost for the clients, usually measured as the
time passengers must wait at the bus stop for the bus. According to [Strathman
et al., 1998], the practice is to consider that the difference between the actual
and the scheduled travel time is acceptable for the passengers when it is inside
the interval [−1, 5] (in minutes). From this point of view, the travel times used
in timetables should not be seen as a prediction but, instead, as a compromise
between these two objectives: costs for both the company and the passengers.

Travel time prediction for duties definition

The definition of travel times for timetabling and for duties definition are differ-
ent problems because not only have prediction horizons typically different, but
also because they have different objective functions to optimize.

The prediction time horizon for duties definition depends on how flexible the
definition of duties is. The flexibility of duties definition depends on:

• The process itself: at STCP, in order to use TTPs for duties definition, it is
necessary to re-define the duties for both buses and drivers since different
travel times have consequences on how the trips are ordered (when defining
running boards) and, consequently, on the length of pieces-of-work (when
defining driver duties).

• The rostering schemas: at STCP, rostering schemas are defined in such
a way that the process only restarts after a certain period. For example,
in order to guarantee that all drivers can have a day off on Sundays, the
rostering process has a rotation schema to assure this and other internal
rules. The process only restarts from the initial period after a certain
number of weeks.

• The company agreements: at STCP there are four unions for the drivers
and there is more than one company agreement, i.e., a set of compromises
between the company and the unions. One of the rules is how many
days in advance the drivers should know their duties. Nowadays, the
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Figure 2.5: A tool to support trip analysis (the source of this image is a software
application owned by STCP).
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agreements define a limit of two days to announce which duty is assigned
to each driver. The drivers in the rostering groups (Sect. 2.1.2) are able to
know their duties several weeks or even months in advance. However, the
rostering schema is only confirmed two weeks (with exceptions) before the
duty day. The remaining drivers, i.e., the ones that are not in rostering
groups, only know their duties (for the first time) two days in advance.

From the resources optimization point of view, namely the definition of du-
ties for vehicles and drivers, the best TTP is the one that minimizes the gener-
alization error, typically the mean squared error (Sect. 4.2.3).

It is important to mention that solving the problem of TTP does not solve
the problem of how to use those predictions. The aim of this study is to predict
travel times as accurately as possible. If the prediction of travel times with a
shorter prediction horizon can increase the accuracy of those predictions, then
the following step is to study how to make the process for duties definition more
flexible. Despite the fact that this second part is not an objective of this thesis,
it is necessary to study how short the prediction horizon can be, a subject to
discuss in Sect. 2.3.

2.2.3 A brief state of the art review

There is extensive literature on TTP. However, TTP can be used to answer
different questions, such as: how long do we need to go to the town center
right now; how long does a truck need to do a long delivery tour departing
tomorrow; or even, how long does a bus need, on average, to make a scheduled
trip? Different approaches are needed to answer each of these questions.

In order to better understand some of the concepts usually found in the
literature on TTP, we firstly discuss some of these concepts roughly following
[Lint, 2004]:

• Prediction horizon: it is a common practice to classify the prediction hori-
zon as short when it does not exceed 60 minutes [Ben-Akiva et al., 1992].
According to [Lint, 2004] accuracy is smaller as the prediction horizon
gets longer. We only study predictions a few days ahead, clearly long-
term ones. The prediction horizon is strongly related to the input data. A
simple example is that current traffic flow is relevant for short term predic-
tion but it is not for predictions three days ahead. The prediction horizon
is also related to the business goal. Advanced Traveller Information Sys-
tems (ATIS) are systems that, among other functions, inform transit users
of TTP. Consequently they use short term predictions. However, TTP to
plan long distance deliveries uses long term (several days) prediction hori-
zons. The vast majority of the studies on travel time prediction that exist
in the literature are for the short term.

• Modeling approach: (1) some methods are data-driven in the sense that
they build the models from the data, (2) some others are model-based
because travel time is seen as part of a traffic-flow simulation model to
predict traffic conditions in the route of interest, and (3) a last group are
instantaneous ones [Lint, 2004] because they measure some input variables
to obtain instant travel time predictions.
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• Data collection methods: the way data is collected has a direct influence
on the available data. There are many different methods of collecting
data [Turner et al., 1998], namely, test vehicles, probe vehicles, license
plate matching, or extrapolation methods (such as the loop detectors),
among others.

In the remainder of this section, we discuss related works on TTP a few days
ahead (TTP horizon for duties definition is discussed in Sect. 2.3) and on the
specific task of travel time definition for timetabling that is necessarily a task
with a horizon of several months. The definition of travel times for timetabling
also has a long duration horizon, i.e., while travel times to be used for driver
duties definition are just for one trip occurring on a specific day, for timetabling
it is for a scheduled trip, i.e., a trip that will occur in a period of several months
(while the timetable is being used).

Related works on TTP for timetabling

An important difference between the existing approaches on timetable creation
concerns the variables used. These variables depend on the purpose. If, for
instance, a timetable for a new line is needed, a variable such as the population
density of the served area is important [Ceder, 1986]. However, if the goal is
to make small adjustments to the timetables, this variable is not relevant. We
describe the variables for the latter case, i.e., for regular planning tasks (line
creation is a sparse event in a mass transit company). Some typical variables
are: scheduled travel time (STT ), slack time (SlT ), scheduled headway (SH),
fleet size (N) and scheduled departure time. Let us assume that SCT is the
scheduled cycle time,

SCT = STTg + SlTg + STTr + SlTr, (2.1)

where the indexes g and r represent the go and return trips (Fig. 2.3 rep-
resents graphically this equation). For urban areas, the departure times are
usually defined by headway instead of irregularly spaced. Irregularly spaced
departure times are typically used for long distance trips or trips in rural areas.
We focus on the definition of the timetables’ departure times by headway as it
is used at STCP.

According to [Zhao et al., 2006],

SCT = N × SH. (2.2)

Fixing N , and assuming that travel times are exponentially distributed, slack
times can be optimized [Zhao et al., 2006]. Using this approach, the shorter the
slack time is, the shorter the scheduled headway is. The objective function used
is the passengers’ expected waiting time function,

E[ω] =
SH

2
×

(
1 +

2V ar[l]
SH2

)
, (2.3)

where l represents the delay of the bus and V ar[l] the variance of l. This
function assumes that passengers arrive uniformly at the bus stops, which is
acceptable for short headways. Headways equal or shorter than 10 minutes are
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usually defined as short headways in the literature [Zhao et al., 2006]. Formally,
the probability density function for the passengers’ arrival at the bus stop is,

fA(t) = SH−1, (2.4)

where t is the time of the passenger arrival at the bus stop.
However, the authors argue that by using the function defined in [Bowman

and Turnquist, 1981] for the passengers’ arrival at the bus stops, it is possible
to adapt the solution to problems with large headways. In this case,

fA(t) =
exp(U(t))∫ SH

0
exp(U(τ))dτ

, (2.5)

where U(t) = aE[ω(t)]b is the utility function, E[ω(t)] is the expected waiting
time of an arrival at time t and a and b are constants that must be defined from
empirical data. In any case, the derivation of the passengers’ expected waiting
time for large headways has not yet been done.

Using an economic perspective, [Carey, 1998] defines as objective function,
the cost expressed in terms of STT , lateness and earliness unit costs. Using
this approach it is possible to define the optimal STT and SlT for given ra-
tios between the STT unit cost and both the lateness and earliness unit costs.
Another contribution of this work is the inclusion in the model of the effect
of relaxation when the SlT is larger, i.e., it is known that when the schedule
is tight, the actual travel time is shorter than when it is large. Carey calls
it the behavioral response. What Carey shows is that the timetable definition
should be neither too tight, to avoid delays in departures, nor too large, to avoid
behavioral inefficiency.

In all the studies on the definition of travel times, it is not explicit how
global cost is defined, i.e., the cost for the passengers and for the company. In
Carey’s approach, these costs are implicit in the unit costs, but the author does
not explore how to estimate them (it is not the goal of the paper). The work by
Zhao et al. uses just the passengers’ cost, i.e., the expected time the passengers
must wait at the bus stop. The operational costs are not considered.

The above mentioned approaches assume that the purpose is to adjust STT
and SlT , i.e., the timetable is already defined (even if roughly) and the goal is
just to tune it. However, there are several studies on methods for the creation
of bus timetables, with different purposes. For instance, [Ceder, 1986] addresses
the definition of the frequency related to the problem of the efficient assign-
ment of trips to running boards (i.e., bus duties). Input variables such as the
population density of the area served by the line, bus capacity and single mean
round-trip time, including slack time, are used. This work was extended in order
to address the synchronization of certain arrivals [Ceder et al., 2001]. In [Palma
and Lindsey, 2001] the goal is to minimize total schedule delay costs for the
users. In [Salzborn, 1972], the goal is to define the bus departure rate as a func-
tion of passengers’ arrival rate. Firstly, the author minimizes the fleet size and,
secondly, he minimizes passenger waiting time. In all these works [Ceder, 1986;
Ceder et al., 2001; Palma and Lindsey, 2001; Salzborn, 1972], it is assumed that
the travel time is deterministic.

The approaches used by Carey and by Zhao et al. benefit from the existence
of abundant archived data from AVL systems, in particular the one by Zhao et
al.. In fact, the calculus of V ar[l] needs it. This work has the appeal of being
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an analytical approach. However, for the schedulers, rather than a method that
solves the (partial) problem in a deterministic way, they need a tool to give them
insights into the best solution, at least while there are no answers to questions
such as “what are the optimal ratios between STT and lateness unit costs and
between STT and earliness unit costs (in Carey’s approach)?”, or, “when should
the scheduler put on an additional bus, i.e., how does passengers’ waiting time
compare with the operational cost of an additional bus?”, or even, “what is the
impact of reducing the SCT on operational costs?”.

Related works on TTP a few days ahead

Surprisingly, TTP a few days ahead is hardly mentioned in the literature. The
only reference we found is a data-driven method used in the internet route
planner ANWB since September 2007 [Klunder et al., 2007]. It uses k-nearest
neighbors (see Sect. 4.4.2) with the input variables departure time, day of the
week and date. Other factors, namely precipitation and school holidays were
being studied to be included in the model but results on these experiments are
not yet known. The authors report a value of 10% for the mean relative error,
i.e., the absolute value of the difference between the reported and the actual
values divided by the actual value. This value was obtained using data from
freeways. According to the authors, the k-nearest neighbor method was selected
from a set of other previously tested methods, however no references were found
about those experiments.

2.3 Outlining the evaluation and the deployment
phases

The definition of travel times for both timetabling and duties definition has
necessarily different evaluation and deployment issues.

For timetabling, the main evaluation problem is the previously mentioned
issue of defining the objective function. A priori, the deployment phase is not
expected to have special difficulties.

For duties definition, the evaluation criterion of the prediction method is
known. However, the comparison between duties using different travel times
(the timetabled ones and the shorter horizon prediction ones) is a difficult issue.
The problem is the impossibility of testing different planned duties in the same
situation. Obviously, it is not possible to execute two different definitions of
duties under the same circumstances. Additionally, it is not reliable to recon-
struct the duties using past trips for two different planning scenarios because
the past data is conditioned by the used planned duties, i.e., it is expected that
the actual duties have a smaller gap to its base plan than to an alternative plan.

Consequently, a plan was outlined, in cooperation with the operations de-
partment, to evaluate driver duties using different travel times. This plan,
defined at the end of 2004/ beginning of 2005, was:

1. to have three different versions of driver schedules (a driver schedule is a
set of driver duties for a day and a rostering group) using different travel
times (assuming different traffic conditions) defined in the long term;

2. to predict travel time three days ahead; and
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3. to choose one of the three schedules according to the predictions.

The prediction horizon of three days was the shortest one possible to allow
the department of operations time to make the necessary adjustments before the
announcement of the duties to the drivers and simultaneously, respect the two
days of anticipation for the announcement of duties to the crew staff, imposed
by the existing company agreements.

This methodology should be tested alternatively to the current one (one day,
one method, next day, another method) during a previously defined time period
of 15 days or 1 month. To do this, it is necessary to have the agreement of the
rostering group to be used in the test because during the test the drivers in the
group will know their duties just two days before the day of the duty instead of
the usual two weeks. Due to the sensitivity of the relationship with the drivers
and their unions, it was decided to do the validation process described above
just once. Firstly, the prediction tool is developed and secondly, the impact of
the new predictions in the costs of the company is evaluated. This method was
defined without the compromise of being implemented in time for this thesis due
to the mentioned opportunity for the company. The business evaluation of the
impact of this research is the obvious step forward for this research, whichever
the approach is used. However, it could not be included in the scope of this
thesis due to the difficulty of coordinating the research and the business interests
of the company.

2.4 Restating the problem

In this thesis we try to define travel times for planning purposes. Two different
subproblems are studied:

• Definition of travel times for timetabling: it is a multi-objective problem
(it intends to reduce both passengers’ expected waiting time and opera-
tional costs) with a long term horizon. The goal of this study is not to
define timetables for new lines but for existing lines and, consequently,
lines with archived data of actual travel times. The reason for this option
is that the adjustment of timetables is a much more frequent problem at
STCP than timetable creation, which is, in practice, a sparse planning
task. This study is discussed in Part II (Chap. 3).

• TTP for duties definition: it is a three-day horizon prediction problem.
From a mass transit company’s point of view, the usefulness of TTP three
days ahead depends on the possibility of showing how these predictions can
be used to reduce costs and/or increase service reliability. This depends
on how the predictions can be used in the different operational planning
tasks in a mass transit company. As mentioned earlier, this is not the
scope of this thesis. The scope of this study on TTP three days ahead is
just the prediction problem, i.e., to predict travel times as accurately as
possible three days ahead. The relevance of this study is that with the
amount of data that mass transit companies have, due to the investments
they made in Advanced Public Transportation Systems, there is increasing
pressure to adopt more flexible planning approaches. Moreover, this study
is relevant for logistics and delivery companies. The lack of studies on
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travel time prediction for the long term is simultaneously a surprise and
a research opportunity. For this purpose, the availability of data is still
a problem (deliveries do not follow predefined routes and, consequently,
there is not the same type of data there is in this study) but it is expected
that in the near future there will be. This problem is the one we study in
more detail in Part III (from Chap. 4 to Chap. 8).

2.5 The data

The next step is to know what data is available to solve the problem (Sect.
2.5.1) and analyze it (Sect. 2.5.2).

2.5.1 Relevant data sources

STCP has made, in the last few years, important investments in information
systems in order to support the decisions of both top and operational managers.
For the department of operations there are two major systems: (1) the GIST
system, to support the planning tasks (partially described in Sect. 2.1.2); and
(2) the SAEI system, a bus dispatching system for real time control purposes.

The main components of the SAEI include:

• Automatic vehicle location based upon dead reckoning sensors supple-
mented by differential GPS technology;

• Voice and data communication system using TETRA (Trans European
Trunked Radio);

• On-board computer and control head displaying schedule adherence in-
formation to drivers, and detection and reporting of schedule and route
adherence to dispatchers;

• Automatic passenger counters on front and rear doors of twenty vehicles;

• Computer-aided dispatch center.

A test version of the SAEI system began to store data on a regular basis in
2003. Sometime later, the control center started to be used regularly. Nowadays,
at rush hour, it has 8 dispatchers to coordinate any problems that might occur.
Each dispatcher is responsible for six or seven lines. Despite the fact that the
SAEI was designed for control purposes, nowadays it is a major source of the
data warehouse owned by STCP. The data warehouse is the main source of
information for management purposes. The most impressive characteristic of
this data warehouse is its very low level of granularity [Inmon, 1996]: in fact,
information is stored at the bus stop level, allowing a very detailed level of
analysis. The data from the SAEI system is that used in this thesis. Since the
goal is to predict travel times of trips, for this study just the information for
beginning and end times of the trips was used. Information about passing times
at bus stops exists in the SAEI system but it was not used. The reason for using
only the data registered at the beginnings and endings of the trips is that trips
are defined by route and route-based prediction (prediction for the full trip) is
reported to have less variance and, consequently, as being more accurate than
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link-based prediction (prediction for each road stretch that composes the route)
[Chien and Kuchpudi, 2003].

2.5.2 Gathering and analyzing data

Firstly, the main issues of the gathering task are described, then the collected
data is analyzed by visual inspection.

Gathering data

The data used throughout this section and Chap. 5 is from line 78, variant 1,
direction 1, i.e., route 78-1-1. The time period under analysis goes from January
the 1st to August the 30th, 2004. This route was chosen because it was a large
one crossing areas of the town with different traffic characteristics. Additionally,
it was the one with most trips stored in the SAEI database when this data was
collected. Line 78 was cancelled at the end of 2006 after network restructuring.

The relevant trip data is stored in two different tables from SAEI: trip be-
ginnings and trip endings. The obtention of trip data is not direct. This is due
to the lack of a trip identifier, typically a primary key, in the SAEI database.
Consequently, it is not possible to relate records of both tables in a direct way.
In order to know which trip ending is related to a given trip beginning, one
needs to sort all trip beginnings and endings and to match pairs of trip begin-
nings and endings. From more than 18000 records of trip beginnings and more
than 17000 records of trip endings, it was possible to obtain around 8000 full
trip records. Fig. 2.6 presents the trips obtained after this first data cleaning
task.
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Figure 2.6: Travel time (after the first data cleaning task).
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At a first glance Fig. 2.6 looks quite bizarre. The trips are organized in
horizontal stretches. The higher the stretches, the shorter they are. The first
stretch has correct trip records, while others have aggregated trip times, i.e.,
each point from the second stretch has the added sum of two trip times, the
third stretch has the added sum of three trip times, and so on. In the said cases,
the trips are aggregated because some trip endings were not recorded. Possible
causes for the existence of these aggregated trips might be:

• Failure in the communication via radio between the bus and the control
center 2;

• Lack of trip ending signalization by the driver. This situation happens
typically in the last trip before the return of the bus to the depot.

The trip data set used along this chapter (Fig. 2.7) was obtained after some
more data cleaning tasks, in order to maintain just the first stretch.
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Figure 2.7: Travel time along the day.

A detailed study on the quality of the data about the trips obtained from
the SAEI system is described in [Castro, 2008]. The main conclusions are that
if the goal is to obtain a representative sample of trips, the data is sufficient
and it is possible to obtain representative samples. The problem is to compare
actual duties with planned duties. The only valid comparisons are between the
complete ones. For all the others it is not possible to guarantee whether the trip
is missing because it was not done or because it was not correctly registered.
Consequently, the sample of duties obtained in this way is necessarily biased.

2In 2004 this problem was reported by STCP to the company responsible for the SAEI
project.
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Analyzing data

In this section we describe the process of input variables identification by visual
inspection of the data and also by suggestions given by STCP traffic experts.

Some previous concepts on time series forecasting are introduced just to help
the reader [Makridakis et al., 1983; Nóvoa, 1994]:

• Seasonality: periodic repetition of a pattern;

• Cycle: irregularly spaced repetition of a pattern;

• Trend: global tendency of the time series;

• Impact factor: irregularly spaced event.

Several seasonal / impact components can be identified by plotting the data:

• The daily seasonality: by analyzing figure 2.7, one can identify this type
of seasonality.

• The weekly seasonality: Fig. 2.8 (left-hand side) shows the differences
between the daily average of travel time for different week days. The days
of the week with the shortest average travel times are Sundays, whilst the
days of the week with the longest average travel times are working days.
Average travel times for Saturdays fall between these two extremes. The
weekly seasonality is obviously due to these differences. Fig. 2.9 shows
the different behavior of travel time on Mondays and Saturdays.

Figure 2.8: Daily average of travel times grouped by week days and months.

• The seasonality of the year: there is not enough data to obtain reliable
conclusions, however the expected variations throughout the year are ap-
parent on the right-hand side of both figures 2.8 and 2.10.

• The holiday impact: this impact is expected to change according to the
day of the week. If the holiday is on a Tuesday or Thursday, it is likely
that workers take respectively Monday or Friday off, potentially increasing
the impact of holidays. From the period of time covered by this study it
is not possible to evaluate the extent of this impact.
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Figure 2.9: Travel time along the day on Mondays and Saturdays.
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Figure 2.10: Daily and weekly average of travel time.

• The school breaks impact: there are four main school vacations per year in
Portugal, namely, Carnival, Easter, summer and Christmas breaks. Fig.
2.11 shows obvious differences in travel time throughout working days for
school vacations and for school periods. In Fig. 2.10 (right-hand side),
shorter travel times during weeks 15 - 16 (Easter holidays) and after week
30 (summer holidays) are evident.

• The pay day impact: on Sundays previous to a typical pay day 3 the
travel times appear to be shorter (Fig. 2.12). This can be explained
because people have less money at this period of the month combined
with the circumstance that on Sundays, the traffic is mainly for leisure
purposes and not for work.

No cycles or trends were observed. They could not be observed because
there is not enough data to isolate them from the apparent seasonality of the
year.

The seasonalities of the day, week and year (as much as can be observed) and
the impact of school breaks are, globally, as described in the literature [Vuchic,
2005; Turner et al., 1998].

3In Portugal, the state pays on the 23rd day of the month, except when the 23rd is not
a working day. When this happens, the pay day is brought forward to the previous working
day. In private companies, pay day is different for each company but is usually at the end of
each month.
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Figure 2.11: Travel time along the day (working days - March and August).

Figure 2.12: Daily average of travel time (Sunday) - the Sundays immediately
before pay day are marked.

STCP traffic experts identified other factors that can explain travel time,
namely: the driver, the type of the vehicle, the service, weather conditions
and special dates that can potentially have an impact on traffic flow and, con-
sequently on travel time, such as, the end of holidays, the beginning of long
weekends, etc. These variables are better explained in Sect. 5.1.
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Part II

Travel times for timetabling
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Chapter 3

A DSS for timetable
adjustments

The planning process at a medium/large size mass transit company has dif-
ferent decision moments needing travel time predictions. These moments were
identified in Sect. 2.2.2 for the STCP case: the definition of timetables and
the definition of duties for both buses and drivers. The studies for the defini-
tion/prediction of travel times to use for each one of these moments are done
separately in this chapter and in part III because they are indeed two different
problems. However they are both part of the same planning process and, con-
sequently, the adequacy of the planning to the reality depends of the quality of
both the definition of travel times for timetabling and the prediction of travel
times for duties definition. That is the reason why we study both problems in
this thesis.

In this chapter we describe our solution to the first problem as stated in Sect.
2.4. We present a decision support system (DSS) for timetable adjustments. The
solution found favors usability rather than scientific novelty. Nevertheless, there
is no known solution in the scientific literature identical to this one, as far as
we know.

Firstly, the reasons for developing a DSS for timetable adjustments are ex-
plained (Sect. 3.1), then the DSS is described (Sect. 3.2), and finally how to
use it in typical situations is described for short and long headways (Sect. 3.3).

3.1 The reason for using a DSS

In Sect. 2.2.3 the limitations of the existing methods for the creation of bus
timetables with regard to the value of travel time were pointed out. One of the
difficulties is the inherent multi-objective nature of the problem of finding the
optimal value, namely the minimization of both the expected passengers’ waiting
time at the bus stop and the operational costs. In this chapter we propose a
decision support system which allows the person in charge of timetable planning
to assess the impact of different scenarios in both objectives. He or she can test
different values for the scheduled travel time, slack time and headway, and obtain
a set of descriptive statistics that allow this person to evaluate the impact of

33
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this scenario using data from a past period similar to the one that the timetable
is going to cover.

The reason for using this approach is that the existing ones can give op-
timized solutions when some of the variables are fixed but do not allow the
planner to easily evaluate the sensitivity of the solution to each decision vari-
able. Furthermore, the objective functions used by these approaches do not
simultaneously cover the two above mentioned objectives. This DSS is compat-
ible with the use of optimized solutions like the one described in [Zhao et al.,
2006]. In fact, such solutions can always be developed and integrated in this
DSS as a default solution for fixed given values. This DSS can be seen as an
integrated environment for analysis.

3.2 Description of the DSS

The data used by the DSS is obtained from the data warehouse, but its original
source is the SAEI system (Sect. 2.5.1). The reason to do so is that when
the DSS was developed (end of 2007) the migration processes from the SAEI
database to the data warehouse have been already implemented by STCP. These
processes include part of the cleaning tasks described in Sect. 2.5.2.

The person in charge of planning (the planner) starts by selecting the data
to be used for the analysis of travel times. It is expected that the planner will
choose past data that might be representative of the period (in the future) that
is going to use the new version of the timetable. The planner is able to choose
the characteristics of the analysis, such as period of time (days), the time of the
day and the line/route. There are three types of analysis that depend on the
characteristics of the line and the objectives of the analysis the planner wants
to perform: single direction, double direction and circular route analysis.

3.2.1 Single direction analysis

In a single direction analysis (Fig. 3.1) the information provided is:

• A time plot of travel times: it provides visual information about travel
times. It allows the user to observe the dispersion of travel times during
the period of analysis. This can show, for instance, the difference in travel
times along the seasons of the year or days of the week. It is also possible
to identify outliers and to obtain information on the trips by clicking the
mouse.

• A plot of the accumulated relative frequency of travel times: it allows the
user to have an idea of the route performance, just by looking at it. The
steeper is the slope of the graph, the less is the variability of travel times.
We can observe that the duration of the majority of the selected past trips
for line 602 is between 50 and 62.5 minutes.

• Information about the sample (‘amostra’ in Portuguese): it characterizes
the sample past data being used in the analysis.

• A table with statistical information on travel times: it provides the user
with statistical information for the 25th, 50th and 75th percentile. For
these three travel times, say travel time t, one presents the percentage
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Figure 3.1: DSS for single direction analysis.
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of travel times in the intervals: ] − ∞, t − 5min[, [t − 5min, t + 5min[,
[t+5min, t+10min[, [t+10min, +∞[. The value of t that maximizes the
percentage of travel times in the interval [t−5min, t+5min[ is also calcu-
lated and presented in the table. This is the initial information provided
in the table. The percentiles and the intervals being used were chosen
by the planners at STCP. This information complements the plot of the
accumulated relative frequency of travel times. However, the user may
add lines to the table by choosing the values of percentile or duration he
wants to analyze. The information provided in this table is very useful
for the transit planners because it helps them to estimate the effects on
delays and early arrivals, when choosing the duration for a trip (or set of
trips).

• A table with the STT used in the selected past period: it provides infor-
mation about the STT in the time interval and dates selected. It is useful
to compare the STT being used with the actual past travel times, which
allows the detection of STT that are not correctly defined.

3.2.2 Double direction analysis

In a double direction analysis (Fig. 3.2), all the information provided for single
direction is also shown separately for each of the two directions, as described
in the previous section. One also provides an additional tab with statistical
information of travel times, possible slack times and the minimum number of
vehicles needed, according to the scheduled headway (a value to be introduced by
the planner). This kind of information couldn’t be shown in a single direction
analysis because the definition of slack times and the scheduling of vehicles
depend on the entire cycle (go and return).

Fig. 3.2 shows the sceen of the application for a double direction analysis.
The information provided is:

• A plot of the accumulated relative frequency of travel times for both routes
(go and return): it is identical to the plot of the accumulated relative
frequency of travel times described in Sect. 3.2.1 but with two data series,
one for each route;

• A table with statistical information on cycle times: the information pro-
vided in this table is applied to the lines with period trips in a defined
period of time, in which vehicle scheduling is done together for both di-
rections. For each travel time presented in the table (go and return), one
presents three possible slack times and the percentile for the sum of travel
time and slack time. The table also presents the minimum number of
vehicles needed to cover the trips with those travel and slack times. The
total slack time is calculated based on the headway of the service. Imag-
ine the case of a headway of 11 minutes, STT of the first trip equal to 57
minutes and STT of the returning trip equal to 55 minutes. The sum of
both durations is 112 minutes. This means that the three lowest values
for the duration of the cycle are 121, 132 and 143 minutes, because the
duration of the cycle has to be a multiple of the headway (Eq. 2.2). In
the first case we have 121 - 112 = 9 minutes of slack time to distribute by
the two trips. The appropriate slack time to add to each trip is calculated
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Figure 3.2: DSS for double direction analysis.
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based on the aim of minimizing the difference between the percentiles of
the total times for each direction (travel time plus slack time). In this
example, the solution is to give 6 minutes of slack time for the first trip
and 3 minutes of slack time for the returning trip. The percentile values
for the sum of STT and slack time are 79.76% and 80.65%, for the go and
return trips respectively. This is the solution that minimizes the differ-
ences between them. The minimum number of vehicles needed to cover
this demand is 11. However, if this solution is applied, we can expect
that around 20% of trips, in each direction, won’t be finished in a time
less or equal to the duration of travel time plus slack time. This may
cause an important number of delays in the departures of sequential trips
and poor line performance. So, the transit planner should analyze all the
possibilities suggested in the table, trying to maximize the percentage of
trips covered by the travel time and slack time, but at the same time,
minimizing the costs for the company. The planner is also able to add
lines to the table in order to analyze different solutions. He just has to
introduce the desired travel times or percentile values, for both directions.

3.2.3 Circular route analysis

In circular routes, there is no slack time added to trips because the bus must
always be in service. Besides, the cycle is composed of just one trip. Because
of this, the information provided is similar to that in single direction analysis
with the addition of the minimum number of vehicles needed for each tested
scenario.

3.2.4 Additional features

The DSS has the following additional features:

• The user can modify the data used for analysis at any time;

• He can also save the analysis that he is performing at the time and reopen
it whenever he wants;

• The plots can be zoomed in and out to better analyze details;

• A help file is provided;

• The application can easily use a different idiom because all sentences on
the interface can be modified in a file used for configuration 1.

3.3 How to use the DSS

The criteria for defining the timetable depend necessarily on the headway [Zhao
et al., 2006]. In this section we describe how to use the DSS for timetable
adjustments for typical situations: short headways, large scheduled headways
and circular routes.

1Despite that, the figures in this chapter are in Portuguese because we have used the
examples from the STCP company.
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3.3.1 For short headways

It is known that for short headways (those shorter to 10 minutes) customers ar-
rive roughly uniformly at the bus stops. They do not care about the timetable
because they know that they will wait no more than the headway time. Addi-
tionally, there is an inherent instability of headways when they are short. This
happens because when a bus is delayed, it has, typically, to pick up more cus-
tomers, increasing the delay after the previous bus even further. At the same
time, the following bus tends to go faster because it will stop less and less time
since the number of passengers tends to decrease. In other words, for short
headways, the actual travel times are very sensitive to the maintenance of the
headways. If the actual headways are irregular, the buses tend to bunch [Newell,
1974; Zhao et al., 2006]. Fig. 3.3 presents a real example of this situation vis-
ible in the middle of the figure for the return trips (the top-down ones). In
this situation, i.e., for short headways, the concern of the planner should be to
guarantee that the time between two buses on the same route is, as much as
possible, equal to the scheduled headway [Zhao et al., 2006]. The controllers
should use the same principle.

The question is: how to address the planning issues using the DSS for
timetable adjustments for short scheduled headways? In order to minimize
the variance of the headways, it is advisable to use the mean travel time (or
the median, which is more robust to outliers). The sum of STT and the slack
time for each direction should be a high percentile value p.max. This value is,
necessarily, strongly conditioned by the satisfaction of Eq. 2.2. The possible
values are represented in the table with statistical information on cycle times
(Fig. 3.2).

3.3.2 For large headways

For large headways (those of over 10 minutes), the behavior of customers is
different. They tend to arrive sometime before the scheduled passing time. In
this case, the planner should guarantee the adherence of the actual trips to
the scheduled ones and the controllers should act accordingly. In this case it
is important to be aware that, from the passengers’ point of view, an offset
between the actual and the scheduled passing times is accepted as in time if in
the interval [−1, 5] (in minutes) [Strathman et al., 1998]. Another important
issue is that a delay is more acceptable than an advance of the same amount of
time.

In this case, a low percentile should be chosen for the STT (represented by
p.min) in order to reduce the number of trips passing ahead of schedule. The
slack time should be the difference between p.max and STT (the p.min). Again,
this value should respect Eq. 2.2 and, consequently, the options are limited.

3.3.3 For circular routes

For circular routes, whatever the scheduled headway, the STT should comprise
both the expected travel time and the slack time. The problem is that on
circular routes it is not possible to have slack times because the buses are always
in service. The time to accommodate delays must be incorporated in the STT.
Consequently, a high percentile value p.max should be chosen, in the same way
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Figure 3.3: An example of a bunch situation (the source of this image is a
software application owned by STCP).
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as previously described. In this case, controllers tend to have more intervention
in order to guarantee that the actual travel time respects the STT.

3.3.4 A discussion on the use of the DSS

It is expected that the values of p.min and p.max can be obtained empirically
by the planners. Their values can be different for different routes but it is
expected that, at least for routes with identical characteristics, they will not be
too different.

An important advantage of this DSS is that it allows the planner to learn the
advantages and disadvantages of the different scenarios. Another good charac-
teristic of this DSS is the possibility of testing different scenarios and evaluating
them by estimating the impact of each one using the different indicators, namely:

• Number of vehicles needed: an important indicator of the operational
costs;

• Estimated percentage of trips passing ahead of schedule: an indicator of
the level of passengers’ satisfaction;

• Estimated percentage of trips starting delayed: another indicator of the
level of passengers’ satisfaction.

Additional information that could be useful is the estimation of the number
of passengers expected for a given scenario. This information was not included
because it is not fully operational. There are many situations where the increase
of the headway by two or three minutes does not meaningfully degrade the
quality of the service but meaningfully reduces its cost (for example, because
the number of vehicles needed can be reduced). When the planner does this
type of experiment, he needs to estimate how many passengers are expected in
order to avoid the buses getting too overcrowded.

Indicators for short headways were not included because of the existence of
many missing and incomplete trips, as discussed in Sect. 2.5.2. In [Strathman
et al., 1998; Wang et al., 2006] indicators for this situation are suggested.

This tool is being used successfully at STCP. It can also be used in the future
as an experimental prototype for the test of different analytical approaches, like
the one suggested by [Zhao et al., 2006]. This is a natural step forward for this
research.
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Part III

TTP three days ahead (for
the definition of duties)
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Chapter 4

Regression: a review

In 1877 Francis Galton observed reversion toward the mean in experiments on
seed size in successive generations of sweet peas. He renamed this phenomenon
regression in the mid 1880s [Bulmer, 2003]. Since then, regression has been
the task of creating a mathematical function that explains a numerical output
variable from a set of input variables. The obtained function can then be used
for prediction of unknown output values for given new input vectors.

This chapter is organized as follows: firstly, the question of whether to use
time series forecasting methods or inductive learning ones is discussed. The
remainder of the chapter is about regression mainly focused on the inductive
learning approach: the main issues on regression are described; then data ma-
nipulation tasks in order to improve accuracy are presented; finally, the main
algorithms for regression are enumerated.

4.1 The approach to use: inductive learning meth-
ods vs time series forecasting methods

This section does not aim to describe in detail either the concept of inductive
learning (this will be discussed in Sect. 4.2), or the concept of time series
forecasting. However, the main characteristics of each one of these families of
methods, even if informally, must be given.

Time series forecasting methods [Makridakis et al., 1983] assume that data
are spaced equally over time. The sequence of the data is crucial for data under-
standing. The model is built by previous knowledge of seasonalities (periodic
repetitions of a pattern), cycles (irregularly spaced repetitions of a pattern),
trend (global tendency of the time series) and impact factors (irregularly spaced
events). This previous knowledge is obtained using appropriate data analysis
techniques. Some of the most commonly used families of forecasting methods
are ARIMA models and smoothing models.

Of the smoothing models, the most adequate one for this particular problem
is the Holt-Winters method because it is able to deal with both trend and sea-
sonality. The seasonality is obvious from Sect. 2.5.2. The apparent seasonality
of the year should be treated as trend, since there is just one year of data, not
allowing this seasonality to be captured. In any case, the original method must
be adapted to deal with several seasonalities and different impact factors. This
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Table 4.1: Regularly spaced time series.
Time lag Expected values Filled values Unfilled values

15 min 14337 6394 7943
30 min 7290 4796 2494
60 min 3645 3310 335

approach has been used to predict daily sales of hypermarkets [Nóvoa, 1994].
The main differences between TTP and Nóvoa’s work are: (1) the travel time
data is irregularly time spaced; and (2) there are more potential causes to ex-
plain travel time, namely the ones identified by the traffic experts. A usual
approach to solving the first issue is to convert the irregularly spaced time se-
ries into a regularly spaced one, by averaging travel times that fall in the same
time interval. However, experiments done in our data set show that when using
small time lags, there is an important percentage of unfilled data (Table 4.1),
and when enlarging the period there is a process of averaging that meaningfully
reduces the detail of the data. The second issue can be, on its own, a good
motivation for the use of inductive learning approaches as suggested in [Petridis
et al., 2001].

ARIMA models comprise three basic models: AR (autoregressive), MA
(moving average) and a combined ARMA in addition to RD (regular differ-
encing). When RD is applied, together with AR and MA, they are referred
to as ARIMA, with the I indicating ‘integrated’. The two reasons pointed out
to not use the Holt-Winters method are also applicable to the ARIMA models.
Additionally, for the particular problem of TTP, the ARIMA models are not the
most adequate because they do not deal well with more than one seasonal com-
ponent [Nóvoa, 1994]. Despite the work by Nóvoa, forecasting time series with
multiple seasonal patterns used to be considered a difficult problem. However,
recently (2008) a promising approach to dealing with this problem appeared
even if just for regularly spaced time series [Gould et al., 2008].

Inductive learning for prediction aims to learn a model from a data sample,
i.e., given a data set with V input variables and one output variable, it returns
a model that is used to predict new data (data for which the output variable is
unknown). These methods do not have the difficulties previously referred. Both
issues (1) and (2) are solved by a proper choice of the input variables, a subject
discussed in Sect. 5.1. Using this approach, the time domain is explicit through
the inclusion of input variables to model time [Kindermann and Trappenberg,
1999] and the TTP problem is solved as a regression problem. The concept of
regression is discussed along this chapter.

4.2 Regression

This section begins with main definitions followed by the description of the
regression process. The concept of generalization error is introduced just before
the description of methods for evaluating supervised learning models. Finally,
statistical tests for model comparison are discussed.
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4.2.1 Definition

Regression is a widespread concept that crosses different areas of knowledge.
The concept of regression used throughout this thesis is restricted to regression
as a subarea of inductive learning.

According to Brandyn Webb,

“Inductive learning is the inference of a generalized conclusion from
particular instances” [Webb, 1995].

Inductive learning techniques are usually classified as supervised or unsu-
pervised learning.

“Supervised learning can be formalized as the problem of inferring a
function y = f(x), based on a training set D = {(x1, y1), · · · , (xn, yn)}.
Usually, the inputs are V-dimensional vectors, xi = [xi,1, · · · , xi,V ]T ∈
<V . When y is continuous (e.g., y ∈ <), we are in the context of
regression, whereas in classification problems, y is of categorical na-
ture (e.g., binary, y ∈ {−1, 1}). The obtained function is evaluated
by how well it generalizes, i.e., how accurately it performs on new
data assumed to follow the same distribution as the training data
[...]” [Figueiredo, 2003].

Given a set of V input variables x1, x2, · · · , xv, also called predictor variables
or attributes, the goal of supervised learning is to predict the values of the
response variable y, also called output variable, concept or target. Since travel
time prediction is a regression problem, only regression is discussed.

4.2.2 Process of regression

For regression, inductive learning consists ideally in the inference of a function

f̂ : X → <, such thatf̂(x) = f(x), ∀x ∈ X, (4.1)

where f represents the unknown true function. The algorithm used to obtain
the f̂ function is called induction algorithm or learner. The particular values
for the input parameters of the induction algorithm are often referred to as the
parameter set. The result of the induction algorithm is the f̂ function, called
model, predictor or regressor.

In practice, the output of the learned function f̂ will not coincide with the
output of the real function f for every input value mathbfx. The typical result
of the learner is an approximate function that minimizes the difference between
f̂ and f .

4.2.3 Generalization error

A main issue of supervised learning is to measure how good the learned models
are. To better understand this problem, let us introduce the concept of error.
The true function f can be decomposed as

f(x) = g(x) + ε (4.2)
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where g(x) is a deterministic function and ε is the noise [Cherkassky and
Mulier, 1998]. If the learned function f̂(x) = f(x), ∀x ∈ X1, where X1 ⊆ X,
i.e., X1 is a sample of the population X, it means that f̂(x) is also learning
the noise ε overfitting the data. Another problem can be that f̂(x) does not
learn g(x) underfitting the data. In both situations f̂ will have lower capacity
to predict new unlabelled data. In order to measure the quality of f̂ , the data
is split into two subsets: (1) the training set, used to train f̂ ; and (2) the test
set for assessment of the generalization error, i.e., it measures the capacity of f̂
to predict unlabelled data.

For regression, the most common generalization error functions, also known
as loss functions, are the mean squared error (mse) or its squared root. Others
exist, namely, the relative mean squared error (rmse). It expresses the relative
predictions’ variance in relation to the variance of the output variable. Its main
advantage is that its interpretation is independent of the unit measure used
to express the target variable. The variation index has the same properties as
rmse. It expresses the root of the predictions’ variance in relation to the average
of the output variable. It is a measure similar to the ratio between the standard
deviation and the average. Another well known loss function for regression is
the mean absolute deviation (mad). The main difference between the squared
root of mse and mad is that mad linearly weighs the values according to their
distance to the average, while the squared root of mse quadratically increases
the weights according to the distance. Many other generalization error functions
exist for numerical prediction [Witten and Frank, 2000].

mse =
1
n

n∑

i=1

(f̂(xi)− f(xi))2, (4.3)

rmse =
mse

1
n

∑n
i=1(ȳ − f(xi))2

, (4.4)

varIndex =
√

mse

ȳ
, (4.5)

mad =
1
n

n∑

i=1

| f̂(xi)− f(xi) |, (4.6)

where ȳ = 1
n

∑n
i f(xi), i.e., it is the average of the output variable.

Another important problem with inductive learning is the curse of dimen-
sionality. It concerns the increase of the generalization error when the dimen-
sionality (number of features) of the problem is increased and the size of the
data set is maintained. This happens because the examples from the training
set are spread by a larger input space, reducing the density of the data in the
input space. For further details see [Hastie et al., 2001].

4.2.4 Experimental Setup

The most applied approach in order to guarantee that the estimation of the
generalization error does not use data already used to induce the model is the
resampling approach. The choice of the experimental setup has a direct influence
on the accuracy of the estimation of the generalization error, i.e., when choosing
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a model, the estimation of the generalization error of each one of the models
depends on the experimental setup used. The main resampling methods are:

• Hold out: randomly split the data into two disjoint sets, one for training
and the other for testing. Typically 1/3 of the data is used as test set.

• υ-fold cross-validation: randomly split the data in υ disjoint subsets with
sizes as similar as possible. Then, each fold is used as test set and the
remaining υ − 1 subsets are used as training set. The process is repeated
υ times (quite often υ = 10) such that each subset is used once as test set
[Stone, 1974].

• Jack-knife (or leave-one-out): is a particular case of υ-fold cross-validation
with υ = data size [Efron and Tibshirani, 1993].

• Monte-Carlo cross-validation: is similar to the hold out method but the
process is repeated several times (typically between 30 and 50) [Picard
and Cook, 1984].

• Bootstrap: random selection with replacement of a sample of the size of
the data set. On average 63.2% of the data are selected (some with rep-
etitions). The selected examples are used as training set. The remainder
out of bag examples (36.8% in average) are used as test set [Efron and
Tibshirani, 1993].

• Sliding window: it is particularly suitable for time-varying data sets. It
aims to guarantee that the most recent data are those used for training,
i.e., it is expected that recent data better explain the near future than old
data. The window can be sequence-based or time stamp-based [Babcock
et al., 2002]. The former uses the last n examples for training, where
n is a pre-defined parameter while the time stamp-based window uses all
examples within a time interval t of the current time, where t must also be
pre-defined. Whenever new data arrives (sequence-based) or a new time
period goes on (time stamp-based), the data used for training changes.
Currently there is on-going research. Other approaches, under the name
of change detection and concept drifting on data streams, try to adapt the
window according to the characteristics of the incoming data [Hulten et
al., 2001; Wang et al., 2003]. This topic is not studied in this thesis even
though it is a promising area of research.

4.2.5 Statistical tests

A common problem in inductive learning processes is to statistically validate
the results. When comparing two algorithms, the reason why the direct com-
parison of their results may not be statistically meaningful is because part of
that difference is of a random nature. Only one component of the difference is
due to the algorithms. In a typical inductive learning algorithm, four different
sources of the random variation can exist [Dietterich, 1998]:

• Selection of the test set;

• Selection of the training set;
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• Randomization introduced by the learning process (deterministic algo-
rithms do not have this source of variation);

• Random component of the target variable.

The choice of the experimental setup, as discussed in the previous section,
must be chosen in order to guarantee that the sample used in the experiments
is representative of all the sources of variation. Representative samples must
have independent examples according to each variation source. However, in
many practical problems, it is not possible to guarantee that all the examples
are independent. This happens mainly to obtain a representative sample for the
training set.

Let us assume that there are 500 examples. If we use, for example, 10-fold
cross validation, at each different training, 400/450 examples of each of the 10
training sets are common to any other of those 10 training sets. Independency
is not, obviously, guaranteed. Another option would be to use just 50 examples
for training. In this case it would be possible to obtain 10 independent sets
for both test and training tasks. The problem with this solution is that the
accuracy performance of the model obtained with just 50 examples could be
seriously reduced.

A well known method in statistics to isolate the variation one intends to
study (in this case the variation due to the algorithms) is the use of pairwise
hypothesis tests [Groebner and Shannon, 1985]. Pairwise hypothesis tests for
the difference between two population means testing under the same conditions
(the same training sets, test sets and models) if that difference is different from
zero. Pairwise tests reduce the effect of dependency in the sample [Pizarro et
al., 2002] and also reduce the variance of the sample mean, increasing the power
of the test when compared to a standard hypothesis test (unpairwise test) for
the difference between two population means.

Let us assume two algorithms (represented by the suffix A and B) tested
under the same training and test sets, with n being the total number of tested
examples. The formulation of a pairwise hypothesis test in order to test whether
the mse population mean of algorithm B is lower than the mse population mean
of algorithm A is (under the normality assumption of ∆):

H0 : µ∆ = 0
H1 : µ∆ > 0

If H0 = TRUE ⇒ ts has a Student’s tn−1 distribution,

where

ts =
∆− 0
s∆/

√
n

,

∆i = f̂A(xi)− f̂B(xi), i ∈ {1, 2, · · · , n},

∆ =
1
n
×

n∑

i=1

∆i and

s∆ =
1

n− 1

n∑

i=1

(∆i −∆)2. (4.7)
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When multiple comparison tests are executed, the possibility of committing
the type I error (to reject wrongly the null hypotheses) increases. The larger
the the number of tests is, the greater the possibility of committing this error
is. This is known in statistics as the ‘multiplicity effect’ [Salzberg, 1997]. The
approach used to compare more than two population means is the analysis of
variance. This name is due to the way the method works. To test whether there
are meaningful differences between the algorithms being tested, it compares
whether there is a meaningful difference between the global variation and the
variation among the means of these algorithms. Formally, let us assume that
each target value (yi,j) is decomposed as yi,j = µ + αi + Ei,j , where µ is the
global average, αi is the effect of each algorithm (i ∈ {1, 2, · · · , I}, I being the
number of algorithms compared) and Ei,j is the random error. The parametric
analysis of variance, known as ANOVA (fully described in any introductory
book on statistics, for example [Groebner and Shannon, 1985]) assumes that
Ei,j :

• has 0 population mean and constant variance σ2. The constant variance
means, when comparing the population statistic for several algorithms,
that the population variance of the results is assumed to be equal for the
different algorithms. This is known in statistics as homoscedasticity.

• is independent.

• has normal distribution for all the populations being tested.

These three conditions are represented saying that Ei,j has IN(0, σ2) dis-
tribution. The comparison of several algorithms is a one factor, fixed effects
ANOVA problem. It is a problem with one factor because the algorithms are
tested under the same conditions, i.e., the differences among them are due to
just one factor: the algorithm. It is a fixed effects problem because the goal is to
compare those specific algorithms. They are not intended to be representative
of a population of algorithms.

The assumption of normality is not too critical because the ANOVA method
is fairly robust to deviations from normality for balanced samples, i.e., equally
sized samples. Anyway it can be tested using the Lilliefors variation of the
Kolmogorov-Smirnov nonparametric test [Lilliefors, 1967]. When the deviations
from normality are strong, the nonparametric analysis of variance known as the
Kruskal-Wallis test is used. Analysis of variance is also robust to the heterogene-
ity of variances [Guimaraes and Cabral, 1997] for balanced samples. Anyway,
homogeneity of the within-group variances (called homoscedasticity, as above
mentioned) can be tested using the Bartlett test, if the normality assumption
is guaranteed. For very different variances, the Kruskal-Wallis test can be used
instead of the ANOVA test [Pizarro et al., 2002]. Although the Kruskal-Wallis
test can always be used, even when the ANOVA assumptions are fulfilled, it
should only be used when the ANOVA cannot, because this method is more
powerful.

Both methods, ANOVA and Kruskal-Wallis, test whether there is one group
(in the present case, one algorithm) with a population mean meaningfully dif-
ferent from the others. If there is statistical significance for the existence of
differences among the means, then a multiple comparison test should be used
to test whether there is a meaningful difference among the population means



52 CHAPTER 4. REGRESSION: A REVIEW

for each combination of two algorithms. These tests should be used as a second
step after the analysis of variance step. Multiple comparison tests are different
when the first step uses the ANOVA or the Kruskal-Wallis methods. In [Pizarro
et al., 2002] several multiple comparison tests for both cases, the parametric
and nonparametric tests, are described.

All these methods assume that instances are independently drawn. However,
in many situations such as time series and others, data can be strongly corre-
lated. For such situations the normality assumption does not hold, not allowing
the use of the ANOVA method and even nonparametric methods like that of
the Kruskal-Wallis test are not applicable. These cases are much less referred to
in the literature. There is some work on multiple comparisons of asymptotically
stationary time series 1 [Nakayama, 1997], however we did not find information
on multiple comparisons for non-stationary irregularly spaced time series. The
only information we found was on the comparison of the predictive accuracy of
two prediction methods [Diebold and Mariano, 1995]. In this work the usual
assumption of independent errors is not necessary. Unfortunately, this work was
not extended to multiple comparisons.

4.3 Focusing

Despite the resampling approach being used (discussed in Sect. 4.2.4) results
can be improved by data manipulation. In fact, each induction algorithm has
a set of parameters. A&ps refers to the set of an algorithm with a vector
of parameters (a parameter set). For the same a&ps it is possible to obtain
different models by data manipulation, i.e., given a training set: to use just a
subset of the instances, to use a subset of the features or to use different domain
of values for each input variable. The first case is called example selection (also
called instance selection), the second one is called feature selection and the last
one is the domain values definition. These three tasks are the focusing tasks
[Reinartz, 2002].

In other words, given a table, the row selection (example selection), the
column selection (feature selection) and the domain values definition are the
three focusing tasks.

4.3.1 Feature selection

Several potential benefits of feature selection can be pointed out [Guyon and
Elisseeff, 2003]:

• facilitation of data visualization and data understanding;

• reduction of measurement and storage requirements;

• reduction of training and utilization times;

• defying the curse of dimensionality to improve prediction performance.

1asymptotically means that it converges to stationarity (in this case) for larger sample
sizes, where stationarity means that a certain statistic, for example the mean, stays constant
along time [Makridakis et al., 1998].
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It is possible to add to this list the use of feature selection as a technique
to generate different models in order to obtain an ensemble of predictors [Ho,
1998], a subject to discuss in section 6.2.1. Some of these benefits/goals are
usually contradictory. For example, the best feature subset in order to obtain
the best prediction can discard important variables for data understanding. The
accuracy of the predictions will always be the main goal of this thesis.

The algorithms for feature selection are typically composed of the following
three components [Aha and Bankert, 1996]:

• The search algorithm: it searches the space of feature subsets.

• The evaluation function: it computes a numerical evaluation. The goal
of the search algorithm is to find the features subset that minimizes (or
maximizes) this function (depending on the chosen function).

• The performance function: the performance task in this thesis is accom-
plished by one of the regression algorithms discussed in Sect. 4.4.

Search algorithms

In [Doak, 1992] three categories of search algorithms are identified: exponential,
randomized and sequential.

The first one consists of a full search of the input space of feature subsets. It
has exponential complexity O(2V ) being, consequently, most often, prohibitively
expensive.

The randomized ones include genetic algorithms [Vafaie and Jong, 1993;
Skalak, 1994; Yang and Honavar, 1997; Oh et al., 2004], simulated annealing
[Loughrey and Cunningham, 2005] and ant colony optimization [Al-Ani, 2005].
The randomized algorithms are claimed to obtain high accuracies [Skalak, 1994;
Oh et al., 2004; Al-Ani, 2005].

The sequential search algorithms have polynomial complexity
[Aha and Bankert, 1994]. The most common sequential algorithms [Aha and
Bankert, 1996] are forward sequential selection (FSS) and backward sequential
selection (BSS). FSS begins with zero features and at each iteration adds the one
from the available set of features that optimizes the evaluation function. BSS
does the same but begins with the full set of features and at each iteration it
takes off the one that optimizes the evaluation function. It stops when the addi-
tion (or removal) of one more feature does not improve the evaluation function.
This type of search is called hill-climbing, greedy search or steepest ascent [Ko-
havi and John, 1997]. The main problem of the sequential approach is that it can
stop at a local optimum instead of the global one. There are other methods that
try to reduce the limitations of the greedy approaches by using more intensive
search strategies. Examples of such algorithms are the adaptive floating search
method (the Plus-l-Minus-r search method) [Stearns, 1976; Pudil et al., 1994;
Somol et al., 1999] and the beam search [Xu and Fern, 2007]. The forward
version of the floating methods as proposed by Pudil et al. is claimed in [Jain
and Zongker, 1997] to be the most effective suboptimal method.

All these methods evaluate subsets of features. Relief algorithm [Kira and
Rendell, 1992] and their improvements ReliefF for classification and RReliefF
for regression [Robnik-S̆ikonja and Kononenko, 2003] evaluate features instead
of subsets of features. They randomly select a pre-defined number of examples
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and measure the relevance of each feature in the target. The result is a list of
weights. Each feature has a weight. The higher the weight, the more relevant the
feature. The features with a weight above a pre-defined threshold are selected
(Hall suggests 0.01 [Hall, 2000]).

In the last few years the research on feature selection has been driven mainly
to problems with hundred or thousand of features [Guyon and Elisseeff, 2003]).

Evaluation functions

The evaluation functions are strongly related with the architecture of the feature
selection algorithm [Blum and Langley, 1997; Al-Ani, 2005]:

• Embedded: the feature selection is embedded within the induction al-
gorithm (an example is the CART induction algorithm [Breiman et al.,
1984]);

• Filter: the evaluation function does not use the results of the induction
algorithm;

• Wrapper: the selection of the features is done testing them at each itera-
tion according to the induction algorithm performance for a given evalu-
ation criterion.

The wrapper approach is expected to give better results than the filter one
[Doak, 1992; John et al., 1994]. This is empirically expectable since the selection
process in the wrapper case takes into account the induction algorithm to use,
i.e., the evaluation and the performance functions have the same bias [John et
al., 1994]. The filter approach selects the features regardless of the induction
algorithm to be used. The drawback of the wrapper approach, when compared
with the filter one, is its computational cost.

4.3.2 Example selection

According to Liu & Motoda:

“The ideal outcome of instance selection is a model independent,
minimum sample of data that can accomplish tasks with little or no
performance deterioration, i.e., for a given data mining algorithm
M , its performance P on a sample s of selected instances and on the
whole data w is roughly P (Ms) .= P (Mw). By model independence,
we mean that for any two data mining algorithms Mi and Mj, let
4P be the performance difference in using data s with respect to
using data w. 4P (Mi) .= 4P (Mj)” [Liu and Motoda, 2002].

This definition of example/instance selection is not consensual. According
to Blum & Langley,

“Researchers have proposed at least three reasons for selecting ex-
amples used during learning. One is if the learning algorithm is
computationally intensive; in this case, if sufficient training data is
available, it makes sense to learn only from some examples for pur-
poses of computational efficiency. [...] Yet a third reason for example
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selection is to increase the rate of learning by focusing attention on
informative examples, thus adding search through the space of hy-
potheses [...]” [Blum and Langley, 1997].

While the definition by Liu & Motoda assumes a filter approach, the ap-
proach by Blum & Langley opens space for wrapper approaches (Sect. 4.3.1).

Throughout this thesis, example selection is understood in the same way of
Blum & Langley.

In the literature, example/instance selection is much less referred to than
feature selection (the book [Liu and Motoda, 2001] and the survey [Jankowski
and Grochowski, 2004] are two good starting references on example selection).
A possible explanation is that many of the induction algorithms embed meth-
ods for example selection. For several methods the search of the most promising
examples is part of the learning process. Local regression, instance based, de-
cision trees, regression rules and support vector machines are examples of such
methods. These and other methods are discussed in Sect. 4.4.

4.3.3 Domain value selection

The domain values selection can include the choice of the data type for each
variable, the discretization of continuous variables, or the choice of appropriate
values for a symbolic variable. The best domain values for each variable depends
on the model to train [Witten and Frank, 2000].

4.4 Regression algorithms

This section presents the main regression algorithms. It does not aim to describe
in detail the state of the art of each method from a researcher point of view,
but simply to obtain insights from an end user point of view.

4.4.1 Parametric regression models

The basic idea under parametric regression models is, given a real function of
a given form, to adjust the parameters of the function so that it fits the input
data. Assuming the simplest case with just one input variable and the linear
regression model, the problem consists of finding the β in the formula

f̂(x) = β0 + β1 × x, (4.8)

in order to minimize an error function, typically the mse,
∑

x

(f(x)− f̂(x))2. (4.9)

This is the simplest case known as simple linear regression. When using V
input variables, instead of one, the equation is,

f̂(x1, x2, ..., xV ) = β0 +
V∑

i=1

(βi × xi), (4.10)

and the approach is known as multiple linear regression.
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Parametric regression approaches can also use nonlinear regression, such as
the polynomial or the exponential regression, among others. Any introductory
book on statistics explains linear regression and how to calculate the necessary
parameters. For more advanced topics on parametric regression [Kleinbaum
et al., 1998] is a good reference. Parametric regression approaches are charac-
terized by having a known model. The goal is to learn the parameters of the
given model, not the model itself. The following sections on regression algo-
rithms describe methods whose goal is to learn the unknown model, not just
the parameters.

4.4.2 Local regression and instance based methods

The term nonparametric is usually used by the statistical community in the
context of local modelling. These methods are, typically, locally parametric but
not globally parametric. They have many connections with the instance based
methods, as they are known by the machine learning community.

The main idea of both local regression and instance based methods is to use
regression in one point looking just for a neighborhood of this point. These
methods can be classified according to the definition of this local region (the
neighborhood) and, also, according to the locally used model. K-nearest neigh-
bor is well known as a method to define the local region. Weighted average and
locally weighted regression are typical local models. The former uses weighted
average, whose weights are inversely proportional to the distance to the regres-
sion point. The latter applies parametric regression (usually linear regression)
to the nearby instances [Atkeson et al., 1997]. The local choice of the weights
when parametric regression is used is known as kernel regression [Watson, 1964;
Nadaraya, 1964]. Kernel regression is a particular case of local polynomial re-
gression since kernel regression fits a polynomial of degree zero to the local
instances [Torgo, 1999].

The well known instance based learner, k-nearest neighbor method defines
the local region as the nearest k neighbors, according to a given distance func-
tion. One of the main issues of k-nearest neighbor is the choice of the distance
function. The Euclidean distance is a standard but others exist [Wilson and
Martinez, 1997]. The prediction is typically obtained by simply averaging its
values. Weighted averaging is also used in the k-nearest neighbor context [Cost
and Salzberg, 1993]. The K-nearest neighbors approach may degrade its per-
formances on high dimensional data sets due to their sparsity. Some improved
k-nearest neighbor methods reduce this problem. In particular, appropriate fea-
ture selection and feature weighting. Principal components [Jolliffe, 2002] can
also be used in this context.

These methods can be classified as lazy learning methods in opposition to
eager learning since “it is a memory-based technique that postpones all the
computation until an explicit request for a prediction is received” [Aha, 1997].
One of the main drawbacks of local regression and instance based learning is
their limited interpretability. References [Cleveland and Loader, 1996; Atkeson
et al., 1997; Mitchell, 1997] give good insights into this kind of methods.

4.4.3 Generalized additive model

The generalized additive model for regression can be expressed as,
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f̂(x1, x2, ..., xV ) = α +
V∑

i=1

(fi(xi)), (4.11)

where α is a constant and fi, i ∈ {1, 2, ..., V } are univariate basis functions
[Hastie et al., 2001].

The additive model, like local regression, uses the divide and conquer ap-
proach. Instead of splitting the instances (as in local regression / instance based
methods), splitting is done by features, i.e., instead of solving a problem with V
attributes, V simpler subproblems, each one with just one attribute, are solved.

One of the most appealing characteristics of additive models is the inter-
pretability. In fact, it is possible to estimate the contribution of each attribute
to the final prediction.

The main drawback of additive models is their computational complexity due
to the large amount of possible basis functions and the respective parameter
setting that is different for different basis functions [Torgo, 1999]. A second
problem is the possibility of overfitting that must be solved by each particular
additive model. Some interesting additive models are MART - Multiple Additive
Regression Trees [Friedman, 2001], groves of trees [Sorokina et al., 2007] or
BART - Bayesian Additive Regression Trees [Chipman et al., 2007].

Some of the models presented in the following sections can be formulated,
with some adaptations, as additive models namely, decision trees, MARS - Mul-
tivariate Adaptive Regression Splines, PPR - Projection Pursuit Regression and
ANN - Artificial Neural Networks.

4.4.4 Decision trees

Decision trees is an appealing family of methods, which are conceptually very
simple yet very useful, mainly due to their interpretability and accuracy. In
addition, their predictive performance has been recently enhanced by the use
of ensemble methods (a subject to be discussed in Chap. 6). The main idea of
decision trees is the use of the divide-and-conquer approach to split the data into
more homogeneous subsets. The principle is to find one property that splits the
data set into two distinct parts according to the output variable. One common
way to proceed is to minimize the sum of the variances of the two resulting
subsets. By iterating this process for the resulting subsets, the model grows as
a tree-like structure, known as a binary tree because it always splits the current
data set into two subsets [Breiman et al., 1984]. The described algorithm is
the recursive partitioning algorithm. Following the branches of the tree until
a leaf node is achieved allows us to follow the criteria used by the algorithm,
which can be very useful for the user. The described method, known as CART
- Classification And Regression Trees, uses the simple average in the output
values of the leaf nodes to obtain the prediction for regression problems.

Another approach, known as model trees, uses different models in the leaves,
instead of simple average, in order to increase prediction accuracy [Quinlan,
1992; Torgo, 1999; Malerba et al., 2004].
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4.4.5 Regression rules

Regression rules models have two components: a set of IF-THEN rules and a
consequent model to use when the rules are satisfied.

The rules are typically ordered to avoid the possibility of different results
for the same input values. Ordering the rules guarantees that the model is
deterministic. The set of regression rules is usually more compact than the
implicit rules of a decision tree [Witten and Frank, 2000]. Like decision trees,
regression rules are interpretable models. This is why this method is used to
obtain explanatory insights from black box models, such as artificial neural
networks (Sect. 4.4.8) [Saito and Nakano, 2002].

The consequent model can be the simple average, k-nearest neighbors [Weiss
and Indurkhya, 1995] or any other regression method [Torgo, 1995].

4.4.6 MARS - Multivariate Adaptive Regression Splines

MARS is a tree based method. It uses a modified version of the recursive parti-
tioning algorithm (Sect. 4.4.4) in order to improve the accuracy of predictions.
The main focus is to surpass the lack of continuity of the resultant f̂ function
of the decision tree methods at the subregion boundaries [Friedman, 1991]. The
use of adaptive regression splines surpasses this problem. Splines are a series of
locally defined low order polynomials used to approximate data. Each one of the
polynomial of the series is defined in order to guarantee continuity in both the
function and its higher derivatives at the borders of the local regions [Cherkassky
and Mulier, 1998]. The ANOVA expansion 2 of the final f̂(x) function can be
expressed as,

f̂(x) = α +
∑

i

fi(xi) +
∑

i,j

fi,j(xi, xj) +
∑

i,j,k

fi,j,k(xi, xj , xk) + · · · . (4.12)

4.4.7 PPR - Projection Pursuit Regression

Projection Pursuit Regression (PPR) is also an additive model. However, in-
stead of the original features, it uses a linear combination of these. The V
dimensional original space is linearly projected and the image of this projection
in the univariate fi basis functions is added, this is,

f̂(x1, x2, · · · , xV ) =
t∑

i=1

fi




V∑

j=1

(βi,j × xj)


 , (4.13)

where t is the number of iterations. The value of t is obtained on the fly,
when the criterion of fit is smaller than a pre-specified threshold.

PPR was presented in 1981 [Friedman and Stuetzle, 1981] and maybe this
can explain the relative lack of use of this promising method. One of the main
drawbacks of PPR is its computational cost. For modern-day computers, the
effort is reasonable, in contrast to the past. Another disadvantage of PPR is
its difficult interpretability. However, the prediction accuracy and the ability to

2The ANOVA expansion is obtained by decomposing orthogonally a given function [Karlin
and Rinott, 1982].



4.4. REGRESSION ALGORITHMS 59

bypass the curse of dimensionality are two of the most important characteristics
of PPR [Huber, 1985]. An important result of PPR is that it is a universal
approximator, i.e., for t arbitrarily large and for an appropriate choice of the fi

basis functions, PPR can approximate any continuous function in <V [Hastie et
al., 2001].

4.4.8 ANN - Artificial Neural Networks

Although they have been developed in different research communities, PPR and
Artificial Neural Networks - ANN have much in common. Both are additive
models in the derived features as well as universal approximators [Hastie et
al., 2001]. ANN was developed with the intention of artificially reproducing
the mechanisms of biological nervous systems. In Fig. 4.1 a typical ANN
architecture for regression is presented:

• A set of V input variables;

• One hidden layer with P derived features;

• One output variable, as usual for regression (for classification, one output
variable can be used per each different value of the target variable).

Y

Z1 Z2 ZP
...

X1 XV
...

Figure 4.1: A typical ANN architecture for regression using one hidden layer.

The derived features (Z) are calculated as,

Zp = σ

(
α0p +

V∑
v=1

αpvxv

)
, (4.14)

and y is

y = f(x) = g

(
β0 +

P∑
p=1

βpZp

)
, (4.15)

where x = (x1, x2, · · · , xV ). The two most common activation functions σ
are the sigmoid function and the Gaussian radial basis function. The output
function (g) for regression is typically the identity function. A good introduction
to ANN can be found in [Basheer and Hajmeer, 2000], for example. In [Hastie
et al., 2001] there is an interesting comparison between PPR and ANN.
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4.4.9 SVM - Support Vector Machines

Support vector machines (SVM) is a novel family of successful algorithms for
both regression and classification. Based on the statistical learning theory (VC
theory) developed during the sixties/seventies, it was mainly in the nineties,
when Vladimir Vapnik began to work at AT&T Bell Laboratories, that SVM
were largely developed. Nowadays SVM are an area of research in there own
right with a large number of successful applications. This section follows closely
[Smola and Scholkopf, 2004].

The basic idea of ε−SVM, the most used SVM algorithm, is to learn f̂
such that the error for the training data is the minimum possible higher than a
predefined ε and, simultaneously, keeping f̂ as flat as possible. This is achieved
using the ε−insensitive loss function:

|y − f̂(x)|ε =
{

0 , if |y − f̂(x)| ≤ ε

|y − f̂(x)| − ε , otherwise
. (4.16)

The examples that minimize the second part of the loss function, thus im-
plicitly defining the margin, are called support vectors.

For the case of linear functions (see Eq. 4.10), the problem can be written
as a linear programming one:

minimize
1
2
‖ w ‖2 +C

M∑

i=1

(ξi + ξ∗i ) (4.17)

subject to:





((w · xi) + β0)− yi ≤ ε + ξi

yi − ((w · xi) + β0) ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

,

where w = (β1, β2, · · · , βV ) (according to Eq. 4.10), ξi and ξ∗i are slack
variables, and ε and C are input parameters. ε is the limit for non-penalized
errors and C determines the trade-off between the flatness of f̂ and the tolerance
to errors larger than ε. The flatness of f̂ is guaranteed by the first term of the
objective function.

After some reformulation, using the dual problem and generalization for the
nonlinear case, the problem takes the form:

minimize
1
2

M∑

i=1

M∑

j=1

(αi − α∗i )(αj − α∗j )Kn(xi,xj)

+ε

M∑

i=1

(αi − α∗i )−
M∑

i=1

yi(αi − α∗i ) (4.18)

subject to:
{ ∑M

i=1(αi − α∗i ) = 0
αi, α

∗
i ∈ [0, C]

,

where Kn is a kernel function. This function is of major importance in the
SVM algorithm since it guarantees the generalization for the nonlinear space.
Research exists to define appropriate kernels for specific types of problems.

A more complete overview on support vector regression can be obtained in
[Smola and Scholkopf, 2004; Vapnik, 1995].
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4.4.10 Ensemble methods

Another successful approach is the use of an ensemble of models, instead of
just one, for the prediction task. The main idea is to generate different models
in such a way that the combination of their results reduces the generalization
error, when compared to the use of just one model. Bagging [Breiman, 1996a]
and Random Forest [Breiman, 2001a] are two successful ensemble regression
methods using decision trees as base learners. Negative correlation learning [Liu
et al., 2000] is an example of neural networks ensembles. Ensemble methods for
regression are discussed in detail in Chap. 6.
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Chapter 5

Experiments using different
algorithms

The purpose of this chapter is to evaluate different prediction methods in order
to maximize accuracy (as stated in Sect. 2.4). The objective is to use the
predictions for duties’ definition. For this reason, the problem has a three-day
prediction horizon, as explained in Sect. 2.3. Due to both the complexity of
the problem and limitations in the evaluation of the predictions impact on the
business objectives (Sect. 2.3), this chapter, as well as all the third part of this
thesis, addresses only the accuracy issue. The impact of the predictions on the
business objectives is not evaluated in this thesis.

Firstly, the choice of input variables (Sect. 5.1) and tested algorithms (Sect.
5.2) is discussed, next the experimental setup used along this chapter is pre-
sented (Sect. 5.3), followed by the presentation of a baseline method to use as
reference for comparison (Sect. 5.4) and an expert-based method (Sect. 5.5).
Then, four different sets of experiments are described. The first one tests each
one of the algorithms with different parameter sets. The other tests consist of
experiments for each one of the focusing tasks described in Sect. 4.3: example
selection, domain value selection and feature selection (Sect. 5.7). Finally, we
discuss possible areas of research with the aim of reducing the generalization
error even further.

5.1 Choosing the input variables

Some of the input variables chosen are a direct consequence of the data analysis
task discussed in Sect. 2.5.2. The variables were obtained as follows:

• Seasonality: for each seasonality a variable is used that identifies the rel-
evant seasonality indexes, in other words, variables that can identify the
position in the seasonality cycle;

• Impact factor: a variable is used for each impact factor.

In Table 5.1 the input variables for each one of the seasonalities/impact
factors are presented. For the seasonality of the year, we use two variables,
because, initially, it was not clear which of them would be more valuable.

63
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Table 5.1: Variables detected by visual inspection.
Seasonality /
Impact factor Input variable Data type
Daily seasonality Departure time Numeric (in seconds)
Weekly seasonality Week day Symbolic

Seasonality of the year Day of the year Numeric
Week of the year Numeric

Holiday impact Day type {holiday, bridge day,
tolerance day, normal }

School breaks impact School break {break, normal}
Pay day impact Sundays until Numeric

next pay day

Since the SAEI database only stores data during one year, it is not possible
to identify the seasonality of the year. In any case, the variables day of the year
and week of the year are used in the expectation of identifying variations along
the year.

The remaining input variables were suggested by experts (Table 5.2):

• Bus type: it is the name of the bus type. It implicitly identifies the bus
size and the type of energy used.

• Driver: it is an identifier of the driver. If there are reliefs, i.e., the trip
has more than one driver, it is assigned the 0 value.

• Service: the service is a concept used in the SAEI. Whenever changes
occur in the schedule or in the route, the service changes. However, it is
not possible to quantify how relevant the changes are.

• Entrance flow: this variable tries to identify potential situations of incre-
ment of traffic flow in the direction of the town entrances. ‘we3’, ‘we4’
and ‘holidays’ identify, respectively, the end of a long weekend of 3 days,
a long weekend of 4 days, and holidays.

• Exit flow: it is similar to the entrance flow but for traffic flow in the
direction of the town exits.

• Weather variables: the variables temperature, precipitation and wind
speed try to identify weather conditions with influence on travel time 1.

The data types presented in Tables 5.1 and 5.2 were used as default. Other
data types could have been used. This is a subject to be discussed in Sect. 5.7.2.

5.2 Choosing the regression methods

A first step prior to the choice of the induction algorithms to be used is to
know what characteristics they should have. Often, the learners are classified

1These variables were suggested by the expert on meteorology, Alfredo Rocha (PhD) from
Aveiro University.
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Table 5.2: Variables suggested by experts.
Input variable Data type
Bus type Symbolic
Driver Symbolic
Service Symbolic
Entrance flow {we3, we4, holidays, normal}
Exit flow {we3, we4, holidays, normal}
Wind speed Numeric (in m/s)
Temperature Numeric (in ◦ Celsius)
Precipitation Numeric (in mm, 1mm = 1lt/m2)

according to their interpretability and predictive powers. Other characteristics
exist to classify them, as pointed out in [Hastie et al., 2001]. Anyway, for TTP,
the predictive capability is the one that shall be optimized. In fact, from the
point of view of the goal of this research, the usefulness of interpretability is
to get insights into the contribution of each input variable to the prediction
performance. The interpretability from the end users point of view is not im-
portant because the variables that could be useful for them are not the ones that
are important for the improvement of the prediction’s accuracy. An example
is the existence of bus lanes. The impact of bus lanes is relevant for business
negotiations between the STCP company and the Oporto authorities, namely
the town hall, but this variable is not interesting from the point of view of the
prediction’s accuracy because it is implicit in the choice of the route. Several
other variables exist in the same situation.

In [Hastie et al., 2001], ANN (Sect. 4.4.8), SVM (Sect. 4.4.9) and instance
local regression / instance based methods (Sect. 4.4.2) are the ones reported to
be the most accurate when compared against decision trees (Sect. 4.4.4) and
MARS (Sect. 4.4.6).

In any case, the main reference for the choice of the induction algorithms to
use for TTP was the work by Meyer et al. done on nine real and three artificial
benchmark data sets. They test SVM, linear regression (Sect. 4.4.1), decision
trees (the recursive partitioning algorithm), ANN, MARS, BRUTO (similar to
MARS but cannot handle categorical input variables), MART (Sect. 4.4.3),
PPR (Sect. 4.4.7) and two decision tree-based ensemble algorithms, Random
Forests and bagging (to be discussed in Sect. 6.2). Globally ANN, SVM, PPR
and Random Forest are the best [Meyer et al., 2003].

These kinds of benchmark tests are never fully convincing because there are
several choices that must be made that can influence the results. An example is
the set of features used in the training process. The set of features can be op-
timal for a particular induction algorithm but suboptimal for others. Although
many other examples exist, choices must be made. Furthermore, when the re-
sults obtained agree with the overall perception of the literature on regression
methods, the confidence over the decisions is stronger, as is the present case
[Smola and Scholkopf, 2004].

From the four induction algorithms previously referred, ANN was not used.
The reason is the strong time consuming requirements needed to train and
test the different algorithms. After the first experiments with the other three
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methods, experiments with ANN were postponed. Its stochastic nature helped
in this decision. From the benchmark test by Meyer et al. there is no evidence
of the advantage of any of the four methods mentioned over the other three.

5.3 Experimental setup

As previously mentioned in Sect. 2.5.2, the experiments described in this chapter
use data from route 78-1-1. In this chapter, all the experiments use data just
from January 1st to March 31st of 2004. As planned, we are using data from
just one route. A similar approach is used by Petridis et al., for sugar beet yield
prediction. In their case, data from each different geographical region is treated
as a different data set [Petridis et al., 2001].

The set of variables used were {departure time, week day, day of the year
and day type}, i.e., one variable for each of the first four seasonalities / impact
factors presented in Table 5.1. In Sect. 5.7.3, we present a study on the variables
to use.

The generalization error is assessed using the variation index function (Eq.
4.5). The reason for using this function is three-fold, the quadratic measure
of the distance (which penalizes the distance more than a linear measure), its
interpretability and the fact that it is a known measure in the context of opera-
tions planning at mass transit companies [Strathman et al., 1998; Turner et al.,
1998]. The variation index gives the ratio between a dispersion measure and
the average.

The resampling method (Sect. 4.2.4) is a sliding window with a 30-day time
stamp (Fig. 5.1). This sliding window is used because it is expected that the
last days are the ones that can give more information on what will happen
three days ahead. The use of a time stamp-based window against a sequence-
based one, as well as the use of 30 days of data for training, has no scientific
support. Since the SAEI database keeps just one year of data, it is not possible
to capture the seasonality of the year. The maximum window size that could
be used is one year. But as we have data just from January 1 2004, and the
following experiments were done at the end of 2004, we have decided to use
just 30 days of data for each window. For this particular data set, the average
number of trips for each 30-day window is around 9 hundred. Nevertheless, the
most adequate window size can and should be studied also because fixing the
number of days is oriented towards constraining the computational complexity
instead of improving the accuracy. This problem is discussed in [Wang et al.,
2003]. However, it is not the focus of this thesis.

All the experiments use the R-project [Team, 2006].

5.4 A baseline method

In the spirit of a common recommendation on prediction methods [Makridakis
et al., 1998], we start the experiments using a naive approach to be used as a
baseline method. The goal is, obviously, to obtain the first results for comparison
with more sophisticated approaches.

Baseline methods are often used to measure the gains in accuracy using
more advanced methods. Makridakis et al. propose two methods, named Naive
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Figure 5.1: Experimental setup using a time stamp sliding window.

Forecast 1 (NF1) and Naive Forecast 2 (NF2) [Makridakis et al., 1998]. NF1 uses
as prediction the target value of the most recent example. When the data set
is not stationary (Sect. 4.2.5), NF1 typically gives very inaccurate predictions.
NF2 previously removes the seasonality of the data and then it applies the NF1
[Makridakis et al., 1998]. NF2 is a more accurate method when compared to
NF1. NF2 cannot be used for TTP because the data set is irregularly time
spaced.

The baseline method we use has two steps: (1) the first step filters data
regarded as equivalent to the day we want to predict; and (2) the second one
uses the filtered data set from which to select the nearest past example.

The first component filters the data according to the equivalent day’s group
on which the data to predict falls. If the equivalent day’s group is empty then
all data is used at the second step. These groups are:

• Day Type = Normal and working days (from Monday to Friday)

• Day Type = Normal and Saturdays

• Sundays

• Day Type = bank holiday and weekday on Monday, Friday

• Day Type = bank holiday and weekday on Tuesday, Thursday

• Day Type = bank holiday and Wednesday

• Day Type = bank holiday and Saturdays

• Day Type = bridge day

• Day Type = tolerance day

The equivalent day’s groups were defined by visual inspection and using
experts knowledge.

The second component uses a distance measure to obtain the nearest neigh-
bor. The selected distance measure is the Heterogeneous Euclidean-Overlap
Metric (HEOM) because it is one of the mentioned measures that handle nu-
meric and nominal attributes simultaneously [Wilson and Martinez, 1997]:
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heom(x, t) =

√√√√
v∑

a=1

da(xa, ta)2, (5.1)

where

da(x, t) =





1 , if x or t is unknown, else
overlap(x, t) , if a is nominal, else
rn diff a(x, t) ,

, (5.2)

overlap(x1, x2) =
{

0 , if x1 = x2

1 , otherwise , (5.3)

and

rn diff a(x1, x2) =
|x1 − x2|

maxa −mina
. (5.4)

v is the number of input variables (also named attributes), mina and maxa

are, respectively, the minimum and the maximum values of attribute a.
The baseline method calculates the HEOM distance between the test in-

stance (the t variable in Eq. 5.1) and each element x of the training set that
belongs to the same equivalent day. The target value of the instance with the
shortest heom distance is the prediction of the baseline method.

Using the experimental setup described in Sect. 5.3, the variation index
obtained with the baseline method was 12.32%. This value will be the reference
for comparison from now on. However, it is important to notice that this value
depends on the set of features used for training.

5.5 An expert-based method

We also developed an algorithm after the data analysis and before the use of any
inductive learning algorithm. We name it the expert-based algorithm. While
the baseline method is a simple one, the expert-based method aims (with all
the obvious limitations) to test inductive learning algorithms against experts.

Our expert-based algorithm tries to represent the existing expert knowledge
on TTP three days ahead. To call it ‘the expert-based algorithm’ is necessarily
arguable because each expert would write a different algorithm. This one was
the result of some months of experience working at the operational department
of the STCP company and it was developed before the experiments with machine
learning approaches. It is also necessarily the result of our previous background
of nearly 10 years working on planning projects for the operations of public
transport companies. The algorithm uses the four input variables referred to in
Sect. 5.3.

The expert-based algorithm (Fig. 5.2) has three parameters:

• min.ex : is the minimum number of examples to retrieve;

• margin: is the maximum allowed difference (in seconds) between the travel
times of the test example and of the similar examples;

• max.incr : maximum allowed increments of the margin.
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Require: data, the training data set
Require: test.ex, the test example
Require: min.ex, the minimum number of examples to search for
Require: margin, the maximum allowed difference between the departure times

of test.ex and of the similar examples
Require: max.incr, maximum allowed increments of margin
1: sel.ex := first.search(data, test.ex, min.ex, margin, max.incr) {the function

first.search is defined in Fig. 5.3}
2: if size(sel.ex)>0 then
3: result := mean( travel time from sel.ex)
4: else
5: sel.ex := second.search(data, test.ex, min.ex, margin, max.incr) {the

function second.search is defined in Fig. 5.4}
6: if size(sel.ex)>0 then
7: result := mean(travel time from sel.ex )
8: else
9: result := mean(travel time from data)

10: end if
11: end if
12: return result

Figure 5.2: The expert-based algorithm.

The main idea of the algorithm is to select data similar to the test example
test.ex and to use this data to obtain the prediction by averaging their travel
time. The retrieval of similar data is done in three steps using, at each successive
step, a softer criterion to find similar data if the previous one was not able to
find any similar example. The first step uses the examples from the group where
test.ex falls, as defined in Sect. 5.4 (Fig. 5.3); the second one uses the examples
from Saturdays if the test example is from a Saturday, from Sundays if the test
example is from a Sunday and from day types 6= ‘normal’ if the test example is
from one of these days (Fig. 5.4); and the last one uses all the examples from
the training set.

Require: data, the training data set
Require: test.ex, the test example
Require: min.ex, the minimum number of examples to search for
Require: margin, the maximum allowed difference between the departure times

of test.ex and of the similar examples
Require: max.incr, maximum allowed increments of margin
1: data := equivalent.day.data(data, test.ex) {the function equivalent.day.data

returns the examples from the group where the test.ex falls, as defined in
Sect. 5.4}

2: sel.ex := nearby.examples(data, test.ex, min.ex, margin, max.incr) {the
function nearby.examples is defined in Fig. 5.5}

3: return sel.ex

Figure 5.3: The function first.search.

In the first two steps, there is an additional selection of the examples by
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Require: data, the training data set
Require: test.ex, the test example
Require: min.ex, the minimum number of examples to search for
Require: margin, the maximum allowed difference between the departure times

of test.ex and of the similar examples
Require: max.incr, maximum allowed increments of margin
1: if weekday of test.ex ∈ {Saturday, Sunday} then
2: data := select from data the examples with the same weekday
3: sel.ex := nearby.examples(data, test.ex, min.ex, margin, max.incr) {the

function nearby.examples is defined in Fig. 5.5}
4: else if day type of test.ex 6= ‘normal’ then
5: data := select from data the examples with day type 6= ‘normal’
6: sel.ex := nearby.examples(data, test.ex, min.ex, margin, max.incr)
7: end if
8: return sel.ex

Figure 5.4: The function second.search.

selecting just the ones whose departures times are inside an interval centered
in the departure time of test.ex ± margin. The value of margin is initially the
input parameter margin, and is increased by the quantity margin until there
is at least min.ex in the interval or the number of times margin was increased
is larger than max.incr. Then the selected examples are ordered according to
the data proximity to test.ex. The final selected examples are the first min.ex
examples, if the number of selected examples is > min.ex, or the current selected
examples, otherwise. The pseudo-code of this last phase described in the current
paragraph is presented in Fig. 5.5.

Require: data, the training data set
Require: test.ex, the test example
Require: min.ex, the minimum number of examples to search for
Require: margin, the maximum allowed difference between the departure times

of test.ex and of the similar examples
Require: max.incr, maximum allowed increments of margin
1: i := 0
2: new.margin := margin
3: repeat
4: sel.ex := examples from data with departure time in the interval: depar-

ture time of test.ex ± new.margin
5: new.margin := new.margin + margin
6: i := i + 1
7: until size(sel.ex) ≥ min.ex AND i ≥ max.incr
8: order sel.ex by nearest days to the test.ex
9: sel.ex := select the first min(size(sel.ex),min.ex) from sel.ex

10: return sel.ex

Figure 5.5: The function nearby.examples.

The results for the expert-based method are expected to vary according to
the used input parameters. This is true for all the methods that have input
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Table 5.3: Input parameters for the expert-based method.
min.ex margin max.incr
6 + 2idx1 100 + 200idx1 idx2

idx1 = 1, 2, · · · , 7; idx2 = 1, 2, · · · , 10

parameters. For this reason, in the following section experiments are presented
to tune the parameter set for each one of the algorithms being tested, including
the expert-based one. Only then will it be possible to compare them.

5.6 Tuning parameter sets

This section describes experiments for tuning the parameter set for each of the
selected algorithms that have input parameters. Only the baseline method does
not have parameters to tune. Consequently, experiments are described using
the expert-based method, Support Vector Machines (SVM), Random Forests
(RF) and Projection Pursuit Regression (PPR).

5.6.1 Tuning parameter sets for the expert-based method

The experiments use the parameters presented in Table 5.3. Each a&ps (as de-
fined in Sect. 4.3) is represented by m[min.ex index]g[margin index]i[max.incr
index]. In the results (Fig. 5.6), the straight line represents the baseline pre-
diction (Sect. 5.4). It is represented just for comparison. Despite the existence
of three input parameters, the algorithm does not seem to be very sensitive to
any of them, at least for the used range.

Figure 5.6: The variation index for the expert-based method using different
parameter sets.
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5.6.2 Tuning parameter sets for SVM

[Scholkopf et al., 2000] propose an alternative formulation to the one given by
Eq. 4.18. The motivation for this new formulation, called ν−SVM, is that
ε−SVM needs to give the desired accuracy of the approximation as an input
parameter (the ε parameter) while in most cases the goal is to obtain a f̂
function as accurate as possible. ν−SVM automatically minimizes ε. However,
it is not expected that one of the formulations will give better results than the
other. The ν parameter is an upper bound on the fraction of errors and a lower
bound on the fraction of support vectors. An important difference for tuning
the parameter set is that ν ∈ [0, 1] while ε ∈ [0,+∞[. Consequently, it is easier
to tune ν than ε. The ν−SVM formulation for regression is

minimize
1
2

M∑

i=1

M∑

j=1

(αi − α∗i )(αj − α∗j )Kn(xi,xj)−
M∑

i=1

yi(αi − α∗i ) (5.5)

subject to:





∑M
i=1(αi − α∗i ) = 0

αi, α
∗
i ∈

[
0, C

M

]
∑M

i=1(αi + α∗i ) ≤ C · ν
.

The kernels used were [Dimitriadou et al., 2006]:

• linear: Kr(xi,xj) = xi · xj ;

• Gaussian radial basis function: Kr(xi,xj) = exp(−γ ‖ xi − xj ‖2);
• sigmoid: Kr(xi,xj) = tanh(γxi · xj + coef0).

It is not our goal to define what is an algorithm in the context of SVM, but
we assume that different kernels induce different algorithms.

SVM are sensitive to the scale used by the numeric variables. In order to
avoid this problem, a common approach is to standardize those variables to
have zero mean and standard deviation one [Hastie et al., 2001]. This is done
by default in the SVM implementation used in the R language.

While ν and C are needed whatever the kernel is, other parameters exist
that are kernel dependent, namely, γ (radial and sigmoid kernels) and coef0
(sigmoid kernel).

The experiments use the parameters presented in Table 5.4. The used values
were obtained firstly from [Meyer et al., 2003] and secondly by preliminary tests
in order to get some insights into the range of values to use. For SVM, each
a&ps is represented by c[C index]n[µ index]g[γ index]f[coef0 index] (Table 5.4).

The results for each kernel are presented in Figs. 5.7, A.1 and A.2. The
straight line represents the baseline prediction (Sect. 5.4).

Since the goal is to find the best parameter set for each algorithm, there
is no interest in a deep analysis of the sensitivity of each algorithm to the
parameters. Additionally, the range of values tested in those experiments was
selected from previous experiments using a larger and wider grid (in particular
for unbounded parameters). Consequently, the results are already conditioned
by these previous selections. However, some general conclusions are drawn:

• Results are clearly worse than the baseline method whatever the kernel or
the parameter set used;
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Table 5.4: Input parameters for SVM.

algorithm cost (C) nu (ν) gamma (γ) coef0

SVM - linear 22idx1 idx2
10

SVM - radial 22idx3 × 1000 idx4
5 6idx5/100000

SVM - sigmoid 22idx3 × 1000 idx4
5 (2 + 12idx6)/1000000 −0.5idx7

idx1 = −2,−1, · · · , 6; idx2 = 1, 2, · · · , 10; idx3 = 1, 2, · · · , 5; idx4 =
1, 2, · · · , 4; idx5 = 1, 2, 3; idx6 = 0, 1, · · · , 4; idx7 = −1, 0, · · · , 4

Figure 5.7: The variation index for SVM - linear using different parameter sets.

• Since C determines the trade-off between the flatness of f̂ and the toler-
ance to errors, it is expected that the larger C is, the larger the number
of support vectors will be. Also, the larger ν is, the larger the number
of support vectors is. As the SVM computational complexity is given by
O(N3

SV + N2
SV ×M + NSV × V ×M) [Tao and Tang, 2004], (NSV is the

number of support vectors and M and V are, respectively, the training
set size and the number of input variables, as usual) the larger C and ν
are the larger the computational time for training is.

5.6.3 Tuning parameter sets for RF

Random Forest (RF) is an ensemble model (Sect. 4.4.10). It constructs a pre-
defined number of trees (it is one of the input parameters of the method, called
ntree) and averages the result obtained by the set of trees. The CART algorithm
described in Sect. 4.4.4, is manipulated by selecting randomly, at each split, the
set of variables from where the split variable is selected [Breiman, 2001a]. The
number of such variables is another input parameter, named mtry. Several other
input parameters exist but are not relevant for the prediction accuracy [Breiman,
2003; Liaw and Wiener, 2002]. They are important for the interpretability and
consequently they are not discussed here. A property of RF is that its result
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Figure 5.8: The variation index for SVM - radial using different parameter sets.

converges with the increasing of ntree. In all the experiments with RF, ntree is
set to 1000 as suggested in [Breiman, 2003]. The values for mtry are, obviously,
mtry ∈ {1, 2, · · · , V }. In the present case, mtry ∈ {1, 2, 3, 4}.

The results are presented in Fig. 5.10. Some lessons can be drawn from
their analysis:

• Random Forest is a very appealing ‘off-the-shelf’ method because param-
eter tuning is easy (there is only one relevant parameter that is two side
bounded) and performs well. Additionally it is interpretable (in this case
some more parameters are needed).

• RF is not very sensitive to the value of mtry. This is apparent from Fig.
5.10 and is confirmed in [Breiman, 2001a].

• Despite the fact that RF is not a deterministic model, due to its random
nature, just one result of each experience is shown and the variance of the
result is ignored. This happens because the variation index for different
runs of the same experience, using 1000 trees, never differed more than
four units in the fourth decimal number.

5.6.4 Tuning parameter sets for PPR

Using the description given by the R project about the ppr function,

“The algorithm first adds up to max.terms ridge terms one at a
time; it will use less if it is unable to find a term to add that makes
sufficient difference. It then removes the least ‘important’ term at
each step until nterms terms are left.

The levels of optimization (argument optlevel) differ in how thor-
oughly the models are refitted during this process. At level 0 the
existing ridge terms are not refitted. At level 1 the projection di-
rections are not refitted, but the ridge functions and the regression
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Figure 5.9: The variation index for SVM - sigmoid using different parameter
sets.

Figure 5.10: The variation index for RF using different parameter sets.

coefficients are. Levels 2 and 3 refit all the terms and are equivalent
for one response; level 3 is more careful to re-balance the contribu-
tions from each regressor at each step and so is a little less likely to
converge to a saddle point of the sum of squares criterion” [Team,
2006].

In all the experiments done with PPR we use max.terms as the number of
input variables (in this case, max.terms= 4). For experiments on parameter
tuning, nterms ∈ {1, 2, 3, 4} and optlevel ∈ {0, 1, 2, 3}.

Furthermore, PPR has a method for smoothing the ridge functions, called
smoothers. As for SVM with the kernels, we assume that different smoothers
induce different algorithms. The ppr function from the R-project [Team, 2006]
has three different options for smoothers:

• The super smoother (supsmu), proposed by Friedman, runs a moving
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Table 5.5: Input parameters for PPR.
algorithm bass span df gcvpen

PPR - supsmu idx1 0
0 idx2/10

PPR - spline 2idx1

PPR - gcvspline 22∗idx3

idx1 = 0, 1, · · · , 10; idx2 = 1, 2, · · · , 10; idx3 = −2,−1, · · · , 6

average on a pre-defined span, where the input parameter span ∈ [0, 1]. If
span is 0, then span is set by local cross validation. In this case, there is
another parameter called bass tone control, where bass in an integer from
0 to 10. The higher is bass the smoother is the function.

• The splines (spline) are, as already mentioned in Sect. 4.4.6, a series of lo-
cally defined low order polynomials used to approximate data. They have
an input parameter, the degrees of freedom number (df ), which controls
the smoothness of the ridge functions.

• The Generalized Cross-Validation (GCV) spline (gcvspline) is identical
to spline but the degrees of freedom are obtained using GCV. GCV is an
approximation for Jack-nife (Sect. 4.2.4), for linear fitting under a squared
loss function [Hastie et al., 2001]. It has an input parameter (gcvpen) to
set “the penalty used in the GCV selection for each degree of freedom
used” [Team, 2006].

The set of values tested for those input parameters that depend on the
smoother is presented in Table 5.5.

The results for each one of the smoothers are presented in Figs. 5.11, A.3
and A.4.

Figure 5.11: The variation index for PPR - supsmu using different parameter
sets.
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Figure 5.12: The variation index for PPR - spline using different parameter
sets.

Some comments on the results with PPR are necessary:

• Results for PPR - supsmu have two distinct parts. The first one is easily
identifiable because the determination of the parameter set finishes with
s0 (i.e., span= 0). It corresponds to set span by local cross validation.
When the identification of the parameter set finishes with an index for s
larger than 0, the span is directly set. Results using local cross validation
to set span are better.

• The super smoother is the one that gives the best result among the three
available smoothers in R.

5.7 Data manipulation

As explained in Sect. 4.3, the data can be manipulated in order to increase
accuracy and reduce the computational cost, among other benefits. All the
three focusing tasks can be used to increase accuracy, while example and feature
selection can also be used to address the computational cost issue. In fact, the
computational complexity for each of the learners is a function of M , the number
of examples in the training set, and V , the number of features/variables:

• SVM: O(N3
SV + N2

SV ×M + NSV × V ×M) [Tao and Tang, 2004], where
NSV is the number of support vectors;

• RF: O(
√

V ×M × log M) [Rudnicki et al., 2006];

• PPR: O(t × V ×M × log(M)) [Friedman and Stuetzle, 1981] where t is
the number of iterations (Sect. 4.4.7).

This section follows the structure of Sect. 4.3 by this order: (1) example
selection; (2) domain values selection; and (3) feature selection.
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Figure 5.13: The variation index for PPR - gcvspline using different parameter
sets.

5.7.1 Example selection

As stated in Sect. 4.3.2, the main idea of example selection is to increase
accuracy by selecting from the training set just a subset of the examples for the
training task.

Two approaches were tested:

• Equivalent days (ed): uses the examples from identical past days according
to the groups defined in Sect. 5.4. If there is not a minimum of examples
from equivalent days, according to the input parameter min members, all
the examples from the training set are used. The value of min members
was always set to 10 in all the experiments using the equivalent days
approach.

• Leaf node (ln): use the examples from the same leaf node of a CART
(Sect. 4.4.4) according to the pseudo-code presented in Fig. 5.14.

Require: trainingSet, the training set
Require: testExample, the test example
1: tree := rpart(trainingSet)
2: leafNode := findleafnode(tree, testExample)
3: members := getmembers(tree, leafNode)
4: return members

Figure 5.14: The leaf node approach: using CART to select similar data

The ‘naive’ idea behind these experiments can be stated in this way: as
happens with autoregressive methods [Makridakis et al., 1998] that use data
from equivalent past periods to predict the unknown future (using typically a
weighted average of the past equivalent data), it is expected that by using only
similar past data for training, the methods can predict better because there
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will be less ‘noise’. Both approaches use this principle: to select only the most
promising past data. In the first case, the approach could be easily improved
by using just past trips from nearby departure times. The advantage of the leaf
node approach is that it is completely independent of the existing expertise on
the problem and, consequently, it can easily be adapted to other problems, as
discussed later in this section.

Results for SVM linear, RF and PPR supsmu are presented in Figs. 5.15,
5.16 and 5.17. Results for the remaining algorithms are in Appendix A. In all
these figures, the series ‘All’ presents the results using all the examples from the
training set, i.e., without example selection. These series are the same as the
ones presented in Sect. 5.6 under the name of the respective algorithm.

Figure 5.15: The variation index for SVM - linear using different methods for
example selection.

Figure 5.16: The variation index for RF using different methods for example
selection.

The two approaches behave differently for each of the three methods. Results
for RF are not surprising. In fact, the leaf node approach uses a filter identical
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Figure 5.17: The variation index for PPR - supsmu using different methods for
example selection.

to the one embedded in CART, and the equivalent day approach applies a
kind of filter that can be, potentially, applied in CART when it is statistically
relevant. In fact, the sequence of splits, implemented by CART, splits the data
according to a set of rules in order to minimize, with some constraints (such as
the minimum number of examples per leaf node), the sum of the variances of
the resulting subsets. The equivalent day approach uses a pre-specified set of
such rules as a previous step to the use of the CART approach.

For PPR, both approaches perform better than the all approach, even if
for some parameter sets they perform worse. Anyway, it is clear that both
approaches for example selection can ameliorate the accuracy.

For SVM, the leaf node approach is the best one. This result is particularly
impressive. As previously mentioned, the leaf node approach is not problem de-
pendent and, consequently, there is an open question: is the leaf node approach
promising in other domains? The answer to this question is given in [Moreira
et al., 2006a]. The leaf node approach is tested in eleven regression data sets
[Torgo, unknown] just for SVM - linear. The regression data sets are not time
varying and, consequently, the experimental setup is necessarily different. We
use 10-fold cross validation. The leaf node approach increases accuracy in seven
data sets, draws in two and loses in the remaining two data sets. These results
were obtained with 5% statistical significance. This approach has obvious con-
nections to model trees (Sect. 4.4.4). In fact, we apply SVM - linear in the
leaf nodes. This method can be improved by the use of functional trees [Gama,
2004] in order to reduce the computational complexity. The research commu-
nity working on SVM has a known problem called working set selection. The
goal is to select a subset of examples from the training set in order to reduce the
computational complexity of the resolution of a quadratic optimization problem
[Fan et al., 2005]. This problem is different from the example selection task,
as previously discussed, because the goal is to solve that particular quadratic
problem faster but not a different problem. The leaf node approach changes the
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Table 5.6: The best Variation index for each example selection method × algo-
rithm.

algorithm all ln ed
Baseline 12.32%

Expert-based 9.23%
SVM - linear 14.50% 10.18% 14.59%
SVM - radial 13.03% 10.68% 13.95%

SVM - sigmoid 14.15% 10.20% 14.28%
RF 9.92% 10.29% 9.80%

PPR - supsmu 10.60% 10.09% 10.27%
PPR - spline 11.15% 10.30% 10.40%

PPR - gcvspline 11.80% 10.39% 10.00%

initial problem.
In Table 5.6 the best results for each algorithm and for each different method

to select the training set are presented. It is interesting to observe that after the
introduction of a method to select examples, the best results for each different
algorithm are much closer to each other, and are apparently better than the
baseline method (these results are not statistically validated).

5.7.2 Domain values selection

As mentioned in Sect. 4.3.3, domain values selection can include: (1) the choice
of the data type for each variable; (2) the discretization of continuous variables;
or (3) the choice of appropriate values for a symbolic variable. Any of these
tasks could be tested for this particular data set. Analyzing Table 5.7, we have
identified the following possible experiments:

• Some variables, namely, day of the year, week day and week of the year,
can be defined as numeric or as symbolic;

• Some continuous variables can be discretized by the use of the integer part
when expressed in different scales, namely:

– departure time: seconds or minutes;

– travel time: seconds or minutes.

• Other variables can cluster their values. Then, the cluster identifier is
used instead of the original value [Benjamini and Igbaria, 1991]. This is
particularly relevant for variables with higher cardinality. Possible vari-
ables to be clustered are: driver, service, day of the year and week of the
year.

Of all these tests, we have only done the one on the data type for the variable
week day. Results for SVM using different kernels present the same behavior.
Results for the linear kernel are shown in Fig. 5.18. For the remaining kernels,
see Appendix A. The use of the numeric data type for the variable week day
when using SVM is not promising.

For RF the results are similar (Fig. 5.19) for any value of mtry.
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Table 5.7: Variables: data type and cardinality.
Variable Data type Cardinality †
Departure time Numeric (in seconds) 6466
Week day Symbolic 7
Day of the year Numeric 237 ‡
Week of the year Numeric 36
Day type {holiday, bridge day, tolerance day} 4
School break {break, normal} 2
Sundays unpd § Numeric 5
Bus type Symbolic 5
Driver Symbolic 206
Service Symbolic 79
Entrance flow {we3, we4, holidays, normal} 4
Exit flow {we3, we4, holidays, normal} 4
Wind speed Numeric (in m/s) 13
Temperature Numeric (in ◦ Celsius) 203
Precipitation Numeric (in mm, 1mm = 1lt/m2) 55
Travel time Numeric (in seconds) 2410

† The cardinality refers to the period from January 1st to August 30th of 2004.
‡ For the said period there are 244 days, but due to some errors in the backup
files of the SAEI from where the data was collected, some days are missing.
§ Unpd means until next pay day.

For PPR (Fig. 5.20 and Appendix A) the behavior between the two ap-
proaches is clearly more erratic than for SVM and RF. For this reason, the
same tests were done using the leaf node and the equivalent day approaches for
example selection. Results for the super smoother are presented in Fig. 5.21.
Results for the other smoothers are in Appendix A.

In all these figures on domain values selection, the series ‘Symbolic’ are
the same as the ones presented in Sect. 5.6 under the name of the respective
algorithm. The reason is that in all the experiments on parameter tuning, we
used the symbolic data type for the variable week day.

After example selection and the choice of the data type for the week day
variable, the best results for PPR improved for all the smoothers (Table 5.8).

5.7.3 Feature selection

Some authors classify the features as relevant or irrelevant according to how the
inclusion of these features in the training set improves the prediction task (con-
sidering just supervised learning) [John et al., 1994; Molina et al., 2002]. Even
knowing that the best feature subset in order to optimize accuracy depends on
the induction algorithm to be used [Kohavi and John, 1997], in this section
the goal is just to remove the irrelevant features. The goal is not to obtain
the best feature subset for each one of the induction algorithms being tested.
Using the definition given by Molina et al. for irrelevant features, they are the
ones “not having any influence on the output, and whose values are generated
at random for each example” [Molina et al., 2002]. Molina et al. compare
some of the most well known algorithms for feature subset selection in order
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Figure 5.18: The variation index for SVM - linear using different data types for
the variable week day.

Figure 5.19: The variation index for RF using different data types for the
variable week day.

to evaluate some particularities, one of which is irrelevance. The method with
best results for detecting irrelevance is the Relief algorithm. According to Diet-
terich, “[ReliefF] is one of the most successful preprocessing algorithms to date”
[Dietterich, 1997]. One decade has passed but the Relief family of algorithms
continue to be frequently used for data mining applications [Cukjati et al., 2001;
Huang et al., 2004; Liu et al., 2004; Jin et al., 2005; 2007].

The Relief family of algorithms [Kira and Rendell, 1992] weighs the features
according to “how well their values distinguish between instances that are near
to each other” [Robnik-S̆ikonja and Kononenko, 2003]. Originally the Relief
algorithm only addressed the classification problem. The regression version,
called RReliefF, was introduced later.

Our implementation of RReliefF follows Ref. [Robnik-S̆ikonja and Kononenko,
2003] (Fig. 5.22). The variable V in the algorithm is the number of input vari-
ables of the data set. The parameter t is the number of iterations. Its choice is
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Figure 5.20: The variation index for PPR - supsmu using different data types
for the variable week day.

problem dependent. The larger the t value is, the more stable the weights esti-
mations are. Additionally, the computational cost also increases. The authors
state that the stability of the results is obtained, typically, for values between
20 and 50 iterations. We use t = 50. The value used for k (the number of near-
est examples) was 10, as suggested by the authors. From the several distance
functions proposed by the authors, we use one that quadratically increases the
cost of the distance:

d(i, j) =
d1(i, j)∑k

l=1(d1(i, l))
, (5.6)

d1(i, j) =
1

(
∑V

l=1 diff(Al, Ri, Ij))2
, and (5.7)

diff (A, I1, I2) =





0 : d ≤ teq

1 : d > tdiff
d−teq

tdiff−teq
: teq ≤ tdiff

, (5.8)

where the values of teq and tdiff are, respectively, 5% and 10% of the length
of the input variable’s value interval, as suggested by the authors; and the value
d represents the absolute difference of the input variable A for the two examples,
I1 and I2.

RReliefF is a filter algorithm (Sect. 4.3.1), i.e., the feature selection is in-
dependent of the induction algorithm, implying a step prior to the use of the
learner.

The first experiment on feature selection uses RReliefF in order to select,
from the complete set of features identified in Sect. 5.1, a subset of them. The
selected subset will be the complete working feature subset for future experi-
ments. The other features will be discarded. A feature is selected if its RReliefF
weight is larger than 0.01, as suggested in [Hall, 2000]. However, remembering
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Figure 5.21: The variation index for PPR - supsmu (with example selection)
using different data types for the variable week day.

Table 5.8: The variation index using example selection (ES) and different data
types for the variable week day (CDT).

algorithm all CDT ES ES & CDT
Baseline 12.32%
Expert-based 9.23%
SVM - linear 14.50% 15.14% 10.18%
SVM - radial 13.03% 13.37% 10.68%
SVM - sigmoid 14.15% 14.43% 10.20%
RF 9.92% 9.88% 9.80%
PPR - supsmu 10.60% 10.15% 10.09% 9.73%
PPR - spline 11.15% 10.24% 10.30% 9.79%
PPR - gcvspline 11.80% 10.21% 10.00% 9.55%

The best result using ES & CDT is, for the three PPR smoothers, obtained
under the equivalent days approach.

the experimental setup (Sect. 5.3), for 60 days of data, for instance, there
are 60 − 30 (the number of days in the time stamp) + 1 different training sets.
Results (Table 5.9) present five statistics: the percentage of days where the
RReliefF weight is larger than 0.01 and the minimum, maximum, mean and
standard deviation of the RReliefF weight values.

Some comments can be drawn:

• The low values for day type, entrance flow and exit flow can be explained
by the use of 30 days in the training set and the previous knowledge that
these values are rarely different to the standard ones.

• The low value for Sundays until next pay day can be due to the use of
just one seasonal-cycle of this event. This variable could be useful if using
a larger training set.

• Of the two variables used to capture the seasonality of the year: day of
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Require: {Ri : i = 1, 2, ..., M}, the M input vectors from the training set
Require: τ , the correspondent M target values
Require: t, the number of iterations
Require: k, the number of nearest examples
1: set all NdC , NdA[A], NdC&dA[A],W [A] to 0, where A = 1, 2, · · · , a
2: for i := 1 to t do
3: randomly select example Ri

4: select k examples Ij nearest to Ri

5: for j := 1 to k do
6: NdC := NdC + diff(τ(.), Ri, Ij)× d(i, j)
7: for A := 1 to V do
8: NdA[A] := NdA[A] + diff(A,Ri, Ij)× d(i, j)
9: NdC&dA[A] := NdC&dA[A] + diff(τ(.), Ri, Ij) × diff(A, Ri, Ij) ×

d(i, j)
10: end for
11: end for
12: end for
13: for A = 1 to V do
14: W [A] := NdC&dA[A]/NdC − (NdA[A]−NdC&dA[A])× (t−NdC)
15: end for
16: return W

Figure 5.22: The RReliefF algorithm

the year and week of the year, the first one is the most relevant. Due
to the dependence between these two variables, the respective weights are
expected to be lower than they should be [Robnik-S̆ikonja and Kononenko,
2003].

• A natural doubt is if a feature with a low percentage of days with a weight
larger than 0.01 has, in those days, a weight much larger than 0.01. ‘Day
type’ is one of those cases (even if not too evident), i.e., when a test day
is of a day type not ‘normal’, the most common is that in the training set
there are no examples from the same day type. However, if there are, the
feature day type can be relevant, specially when the test day is a working
day.

For the above reasons, the variables week of the year, school break, Sundays
until next pay day, entrance flow and exit flow are classified as irrelevant.

The following step was to select the feature subset that maximizes accuracy.
The used approach takes advantage of the embedded feature selection used in
random forests. Taking advantage of RF capacity to ignore irrelevant features,
the approach we use runs RF using pre-specified subsets of input variables.
Using this approach it is expected that the best result is obtained using all the
variables. It is also expected that removing irrelevant variables, performance
keeps stable. The tested subsets are:

• RedSet: the reduced set, i.e., the set of four variables used along this
paper;

• RedSet+Meteo: the reduced set with the meteorologic variables;
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Table 5.9: Statistics on RReliefF weights using 207 training windows.

% of days
variable where RW † > 0.01 min max mean sd
Departure time 96.62% 0.08% 30.36% 11.56% 5.90%
Week day 58.45% 0.01% 5.78% 1.57% 1.26%
Day of the year 14.98% 0.00% 2.87% 0.54% 0.48%
Week of the year 0.97% 0.00% 1.44% 0.11% 0.21%
Day type 1.45% 0.00% 2.48% 0.09% 0.25%
School break 0.00% 0.00% 0.35% 0.01% 0.04%
Sundays unpd 0.97% 0.00% 1.30% 0.15% 0.23%
Bus type 64.25% 0.01% 6.05% 1.80% 1.42%
Driver 88.89% 0.01% 17.74% 5.14% 3.84%
Service 89.86% 0.04% 15.60% 5.04% 3.59%
Entrance flow 0.00% 0.00% 0.78% 0.03% 0.12%
Exit flow 0.00% 0.00% 0.82% 0.02% 0.09%
Wind speed 66.18% 0.01% 10.66% 2.45% 2.18%
Temperature 63.29% 0.01% 7.64% 1.80% 1.57%
Precipitation 16.91% 0.00% 5.92% 0.60% 0.98%
† RW means RReliefF weight.

• AllRRF-Meteo: all variables excluding the irrelevant and the meteorolog-
ical ones;

• AllRRF: all variables excluding the irrelevant ones;

• All15: all the 15 variables.

For each of these subsets, all possible values of the mtry parameter are
tested.

The best subset is, as expected, All15. However, AllRRF-Meteo uses just
7 variables and obtains a nearby result. Since the meteorological variables are
the only ones that are obtained from outside the company, it is relevant to get
insights into how valuable these variables are for prediction. Comparing results
for AllRRF and AllRRF-Meteo, the difference among the best results for each of
these two subsets is around 0.3%. It is important to note that the meteorological
variables used as input variables have the actual values, instead of the predic-
tions. This happens for all the variables used in the experiments. However, if
inspecting the promising subset RedSet+Meteo, three variables (weekday, day
type and day of the year) are certain, departure time is uncertain but it is the
one that we hope to keep unchanged when predicting travel time three days
ahead. The meteorological variables are the ones whose predictions three days
ahead are expected to be more erratic. If we use predicted values for the input
variables instead of the actual ones, the difference among the results for AllRRF
and AllRRF-Meteo is expected to be lower than 0.3%. If we use meteorological
variables, RedSet+Meteo seems to be a good departure subset for wrapper fea-
ture selection. If we do not use meteorological variables, the RedSet is a good
start. Anyway, we did not study wrapper approaches for feature selection in
this thesis. The use of RF for feature selection can be further explored using
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Table 5.10: The variation index for RF using different subsets (the best value
per subset is in bold face).

mtry All15 AllRRF AllRRF-Meteo RedSet+Meteo RedSet

1 14.03% 12.93% 12.31% 12.68% 11.85%
2 12.34% 10.96% 10.21% 10.67% 10.06%
3 11.24% 10.11% 9.93% 9.93% 9.96%
4 10.51% 9.74% 9.99% 9.66% 10.11%
5 10.11% 9.64% 10.09% 9.62%
6 9.84% 9.64% 10.11% 9.70%
7 9.69% 9.73% 10.11% 9.78%
8 9.63% 9.79%
9 9.59% 9.78%
10 9.63% 9.79%
11 9.64%
12 9.65%
13 9.66%
14 9.65%
15 9.64%

the interpretation capabilities of the algorithm. Some work already exists in
this area [Rudnicki et al., 2006]. It is surely a subject to explore in the future.

5.8 Final comments and lessons learned

A possible doubt for someone who reads this chapter is whether it was necessary
to test all the parameter sets at each experiment. Wouldn’t it be enough to
pick the best one for each algorithm and pursue the following experiments with
just that parameter set? We try to answer this question by presenting a table
similar to table 5.8 but using the best parameter set for the initial configuration
as described in Sect. 5.6, in all the experiments (CDT, ES and ES & CDT).
This is done for each algorithm (table 5.11). To better understand these results,
they must be compared with table 5.8, where each value is obtained by testing
the same parameter sets in all the experiments. The presented result is the one
with the lower variation index. The results are a little bit erratic. For example,
results for CDT are different for different smoothers. Also for SVM-radial, the
used parameter set gives a worse result when using example selection. If we used
the results of the last table, it would not be possible to understand the influence
of the parameters at each new experiment. This is obvious, for example, for
SVM-radial when comparing the result for ES in table 5.11 with the figure for
SVM-radial presented in Sect. A.1.

All the results are presented without any kind of statistical comparison be-
tween the different methods. The reason is simple: if a method presents a better
result than another one, even if statistically the difference is not meaningful, it
will be the one to be chosen. The statistical validation is done at the end of the
machine learning process in Chap. 8.

During the experiments carried out along this chapter, we asked ourselves
several times whether the error is homogeneous along the input space or whether
it is different for different regions of the input space. To answer this question,
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Table 5.11: Variation index for the best parameter set for ‘all’, using example
selection (ES) and different data types for the variable week day (CDT).

Algorithm Cod all CDT ES ES & CDT
Baseline 12.32%

Expert-based m2g2i9 9.23%
SVM - linear c0n4 14.50% 15.36% 10.34%
SVM - radial c4n3g1 13.03% 13.48% 13.95%

SVM - sigmoid c5n3g2f1 14.15% 14.84% 11.23%
RF m3 9.92% 9.92% 10.09%

PPR - supsmu n2o3b1s0 10.60% 10.77% 12.31% 10.25%
PPR - spline n1o3d6 11.15% 13.28% 10.57% 9.87%

PPR - gcvspline n1o3g-1 11.80% 13.23% 10.57% 9.74%
Each algorithm uses the best parameter set for ‘all’ (identified by cod as
explained in Sect. 5.6.2).
The algorithms that obtain the best result using example selection (ES and ES
& CDT) use the leaf node approach (SVM-linear and SVM-sigmoid) and the
equivalent day approach (PPR).

we trained a regression tree using CART [Breiman et al., 1984] and calculated
the variation index for the examples from each leaf node of the tree (table 5.12).
The variation index was calculated for the best parameter set from each of the
algorithms when using the ‘all’ approach, i.e., using the initial configuration
without focusing tasks (these parameter sets are the ones identified in column
‘Cod’ in table 5.11). The global variation index uses a weighted mean squared
error (weighted by the size of each leaf node). Comparing this result to the ‘all’
column of table 5.11, there is an improvement with respect to the one obtained
when we use just one algorithm. However, it is necessary to be able to choose
the most appropriate algorithm to be used in each leaf node. The idea of using
an ensemble of models, instead of just one in order to reduce the error, appeared
as a natural step after the analysis of table 5.12. The idea was still to reduce
the generalization error as much as possible. As explained in Sect. 2.3, the
business evaluation of the usefulness of the predictions three days ahead would
be a second step that is not studied in this thesis. We only study the prediction
problem.

The obtained results justify a certain flavor of unfinished work in this chap-
ter, i.e., some tasks, namely the selection of the domain values (Sect. 5.7.2), the
wrapper approaches for feature selection (Sect. 5.7.3) and the use of concept
drift or active learning approaches in order to select from larger training sets
(instead of 30 days time stamp, as discussed in Sect. 5.3), the most interesting
examples, were not explored as they could have been. The study of ensemble ap-
proaches to solve the travel time prediction problem was the direction we took,
i.e., how the use of an ensemble of models, instead of just one, could reduce
the error. This is the subject of the following two chapters. Chap. 6 surveys
ensemble approaches for regression and Chap. 7 describes different experiments
on the use of ensemble approaches to solve TTP three days ahead.
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Table 5.12: Variation index obtained by the algorithms on the leaf nodes of the
regression tree. Column ‘n’ represents the number of examples in each node.

RF PPR PPR PPR SVM SVM SVM
supsmu spline gcvspline linear radial sigmoid n

21.84% 7.01% 5.83% 7.49% 7.46% 6.97% 6.85% 11
9.52% 9.46% 9.47% 9.62% 9.39% 9.49% 9.13% 649
16.76% 9.46% 6.93% 6.76% 8.52% 7.43% 6.47% 15
10.30% 7.09% 9.92% 11.01% 8.93% 8.69% 8.48% 28
7.44% 9.64% 8.03% 7.71% 7.80% 8.54% 7.08% 217
6.15% 8.09% 10.18% 10.66% 25.73% 13.96% 22.39% 104
11.10% 8.24% 11.98% 12.10% 13.01% 11.17% 12.48% 45
13.45% 11.02% 12.88% 14.69% 16.54% 15.96% 15.45% 265
6.66% 12.73% 7.48% 6.81% 7.66% 7.83% 7.64% 335
5.69% 7.28% 11.19% 12.67% 21.69% 10.89% 18.94% 82
7.10% 9.05% 6.47% 8.05% 10.59% 8.48% 8.15% 37

global variation index: 8.38% 1 788



Chapter 6

An ensemble regression
survey

Ensemble learning typically refers to methods that generate several models
which are combined to make a prediction, either in classification or regression
problems. This approach has been the object of a significant amount of re-
search in recent years and good results have been reported (e.g., [Liu et al., 2000;
Breiman, 2001a]). The advantage of ensembles with respect to single models has
been reported in terms of increased robustness and accuracy [Garćıa-Pedrajas
et al., 2005; Tan et al., 2008]. Taking these advantages of ensemble methods
into consideration, the study of ensemble approaches was a natural step forward
in the sequence of the experiments described in Chap. 5.

Most work on ensemble learning focuses on classification problems. However,
techniques that are successful for classification are often not directly applica-
ble to regression. Therefore, although both are related, ensemble learning ap-
proaches have been developed somewhat independently. Consequently, existing
surveys on ensemble methods for classification [Kuncheva, 2004; Ranawana and
Palade, 2006] are not suitable for providing an overview of existing approaches
for regression.

This chapter surveys existing approaches to ensemble learning for regres-
sion. Its relevance is strengthened by the fact that ensemble learning is an
object of research in different communities, including pattern recognition, ma-
chine learning, statistics and neural networks. These communities have differ-
ent conferences and journals and often use different terminology and notation,
which makes it quite hard for a researcher to be aware of all contributions that
are relevant to his/her own work. Therefore, besides attempting to provide a
thorough account of the work in the area, we also organize these approaches
independently of the research area they were originally proposed in.

In the next section, we provide a general discussion of the process of ensemble
learning. This discussion will lay out the basis according to which the remaining
sections of the chapter will be presented: ensemble generation (Sect. 6.2),
ensemble pruning (Sect. 6.3) and ensemble integration (Sect. 6.4). Sect. 6.5
concludes the chapter with a summary.

91
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6.1 Ensemble Learning for Regression

In this section we provide a more accurate definition of ensemble learning and
provide terminology. Additionally, we present a general description of the pro-
cess of ensemble learning and describe a taxonomy of different approaches, both
of which define the structure of the rest of the chapter. Finally, we analyze the
error decomposition of ensemble learning methods for regression.

6.1.1 Definition

First of all we need to define clearly what ensemble learning is, and to define a
taxonomy of methods. As far as we know, there is no widely accepted definition
of ensemble learning. Some of the existing definitions are partial in the sense
that they focus just on the classification problem or on part of the ensemble
learning process [Dietterich, 1997]. For these reasons we propose the following
definition:

Ensemble learning is a process that uses a set of models, each of
them obtained by applying a learning process to a given problem.
This set of models (ensemble) is integrated in some way to obtain
the final prediction.

This definition has important characteristics. In the first place, it covers
ensembles in supervised learning (both classification and regression problems).
However, it does not cover, for example, the emerging research area of ensem-
bles of clusters [Strehl and Ghosh, 2003] because clustering is not a predictive
method.

Additionally, it clearly separates ensemble and divide-and-conquer approa-
ches. This last family of approaches splits the input space into several sub-
regions and separately trains each model in each one of the sub-regions. With
this approach the initial problem is converted into the resolution of several
simpler subproblems.

Finally, it does not separate the combination and selection approaches as
usually happens. According to this definition, selection is a special case of
combination where the weights are all zero except for one (to be discussed in
Sect. 6.4).

More formally, an ensemble F is composed of a set of predictors of a function
f denoted as f̂i.

F = {f̂i, i = 1, ..., k}. (6.1)

The resulting ensemble predictor is denoted as f̂f .

6.1.2 The Ensemble Learning Process

The ensemble process can be divided into three steps [Roli et al., 2001] (Fig.
6.1), usually referred to as the overproduce-and-choose approach. The first
step is ensemble generation, which consists of generating a set of models. It
often happens that, during the first step, a number of redundant models are
generated. In the ensemble pruning step, the ensemble is pruned by eliminating
some of the models generated earlier. Finally, in the ensemble integration step,
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a strategy to combine the base models is defined. This strategy is then used to
obtain the prediction of the ensemble for new cases, based on the predictions of
the base models.

Figure 6.1: Ensemble learning model.

Our characterization of the ensemble learning process is slightly more de-
tailed than the one presented by Rooney et al. [Rooney et al., 2004]. For those
authors, ensemble learning consists of the solution of two problems: (1) how
to generate the ensemble of models (ensemble generation); and (2) how to in-
tegrate the predictions of the models from the ensemble in order to obtain the
final ensemble prediction (ensemble integration). This last approach (without
the pruning step) is named direct, and can be seen as a particular case of the
model presented in Fig. 6.1, named overproduce-and-choose.

Ensemble pruning has been reported, at least in some cases, to reduce the
size of the ensembles obtained without degrading the accuracy. Pruning has
also been added to direct methods successfully increasing the accuracy [Zhou et
al., 2002; Mart́ınez-Muñoz and Suárez, 2006]. A subject to be discussed further
in Sect. 6.3.

6.1.3 Taxonomy and Terminology

Concerning the categorization of the different approaches to ensemble learning,
we will follow mainly the taxonomy presented by the same authors [Rooney et
al., 2004]. They divide ensemble generation approaches into homogeneous, if all
the models were generated using the same induction algorithm, and heteroge-
neous, otherwise.

Ensemble integration methods are classified by some authors [Rooney et al.,
2004; Kuncheva, 2002] as combination (also called fusion) or as selection. The
former approach combines the predictions of the models from the ensemble in
order to obtain the final ensemble prediction. The latter one selects from the
ensemble the most promising model(s) and the prediction of the ensemble is
based on the selected model(s) only. Here, we use, instead, the classification of
constant vs. non-constant weighting functions given by Merz [Merz, 1998]. In
the first case, the predictions of the base models are always combined in the
same way. In the second case, the way the predictions are combined can be
different for different input values.

As mentioned earlier, research on ensemble learning is carried out in differ-
ent communities. Therefore, different terms are sometimes used for the same
concept. In Table 6.1 we list several groups of synonyms, extended from a pre-
vious list by Kuncheva [Kuncheva, 2004]. The first column contains the most
frequently used terms in this thesis.
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Table 6.1: Synonyms.
ensemble committee, multiple models, multiple classifiers (regressors)
predictor model, regressor (classifier), learner, hypothesis, expert
example instance, case, data point, object
combination fusion, competitive classifiers (regressors), ensemble approach,

multiple topology
selection cooperative classifiers (regressors), modular approach,

hybrid topology

6.1.4 Understanding the generalization error of ensembles

To accomplish the task of ensemble generation, it is necessary to know the char-
acteristics that the ensemble should have. Empirically, it is stated by several
authors that a good ensemble is the one with accurate predictors and making
errors in different parts of the domains of the input variables. For the regression
problem it is possible to decompose the generalization error in different compo-
nents, which can guide the process to optimize the ensemble generation. In this
section, as well as in the remaining parts of this chapter, we assume a typical
regression problem as defined in Sect. 4.2.2.

Here, the functions are represented, when appropriate, without the input
variables, just for the sake of simplicity. For example, instead of f(x) we use f .
We closely follow Brown [Brown, 2004].

Understanding the ensemble generalization error enables us to know which
characteristics the ensemble members should have in order to reduce the overall
generalization error. The generalization error decomposition for regression is
straightforward. What follows is about the decomposition of the mse (Eq.
4.3). Despite the fact that most works were presented in the context of neural
network ensembles, the results presented in this section are not dependent on
the induction algorithm used.

Geman et al. present the bias/variance decomposition for a single neural
network [Geman et al., 1992]:

E{[f̂ − E(f)]2} = [E(f̂)− E(f)]2 + E{[f̂ − E(f̂)]2}. (6.2)

The first term on the right hand side is called the bias and represents the
distance between the expected value of the estimator f̂ and the unknown pop-
ulation average. The second term, the variance component, measures how the
predictions vary with respect to the average prediction. This can be rewritten
as:

mse(f) = bias(f)2 + var(f). (6.3)

Krogh & Vedelsby describe the ambiguity decomposition, for an ensemble
of k neural networks [Krogh and Vedelsby, 1995]. Assuming that f̂f (x) =∑k

i=1[αi × f̂i(x)] (see Sect. 6.4.1) where
∑k

i=1(αi) = 1 and αi ≥ 0, i = 1, ..., k,
they show that the error for a single example is:

(f̂f − f)2 =
k∑

i=1

[αi × (f̂i − f)2]−
k∑

i=1

[αi × (f̂i − f̂f )2]. (6.4)
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This expression shows explicitly that the ensemble generalization error is less
than or equal to the generalization error of a randomly selected single predictor.
This is true because the ambiguity component (the second term on the right) is
always non negative. Another important result of this decomposition is that it is
possible to reduce the ensemble generalization error by increasing the ambiguity
without increasing the bias. The ambiguity term measures the disagreement
among the base predictors on a given input x (omitted in the formulae just
for the sake of simplicity, as previously mentioned). Two full proofs of the
ambiguity decomposition [Krogh and Vedelsby, 1995] are presented in [Brown,
2004].

Later, Ueda & Nakano presented the bias/variance/covariance decomposi-
tion of the generalization error of ensemble estimators [Ueda and Nakano, 1996].
In this decomposition it is assumed that f̂f (x) = 1

k ×
∑k

i=1[f̂i(x)]:

E[(f̂f − f)2] = bias
2

+
1
k
× var + (1− 1

k
)× covar, (6.5)

where

bias =
1
k
×

k∑

i=1

[Ei(fi)− f ], (6.6)

var =
1
k
×

k∑

i=1

{Ei{[f̂i − Ei(f̂i)]2}}, (6.7)

covar =
1

k × (k − 1)
×

k∑

i=1

k∑

j=1,j 6=i

Ei,j{[f̂i − Ei(f̂i)][f̂j − Ej(f̂j)]} . (6.8)

The indexes i, j of the expectation mean that the expression is true for
particular training sets, respectively, Li and Lj .

Brown provides a good discussion on the relation between ambiguity and
covariance [Brown, 2004]. An important result obtained from the study of this
relation is the confirmation that it is not possible to maximize the ensemble
ambiguity without affecting the ensemble bias component as well, i.e., it is not
possible to maximize the ambiguity component and minimize the bias compo-
nent simultaneously.

The discussion of the present section is usually referred to in the context of
ensemble diversity, i.e., the study on the degree of disagreement between the
base predictors. Many of the above statements are related to the well known
statistical problem of point estimation. This discussion is also related to the
multicollinearity problem that will be discussed in Sect. 6.4.

6.2 Ensemble generation

The goal of ensemble generation is to generate a set of models, F = {f̂i, i =
1, ..., k}. If the models are generated using the same induction algorithm, the
ensemble is called homogeneous, otherwise it is called heterogeneous.

Homogeneous ensemble generation is the best covered area of ensemble learn-
ing in the literature. See, for example, the state of the art surveys from Diet-
terich [Dietterich, 1997; 2002], or Brown et al. [Brown et al., 2005]. In this
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section we followed mainly [Dietterich, 1997]. In homogeneous ensembles, the
models are generated using the same algorithm. Thus, as explained in the fol-
lowing sections, diversity can be achieved by manipulating the data (Section
6.2.1) or by the model generation process (Section 6.2.2).

Heterogeneous ensembles are obtained when more than one learning algo-
rithm is used. This approach is expected to obtain models with higher di-
versity [Webb and Zheng, 2004; Wichard et al., 2003]. The problem is the
lack of control over the diversity of the ensemble during the generation phase.
In homogeneous ensembles, diversity can be systematically controlled during
their generation, as will be discussed in the following sections. Conversely,
when using several algorithms, it may not be so easy to control the differ-
ences between the generated models. This difficulty can be solved by the use
of the overproduce-and-choose approach. Using this approach the diversity is
guaranteed in the pruning phase [Caruana et al., 2004]. Another approach,
commonly followed, combines the two approaches, by using different induc-
tion algorithms mixed with the use of different parameter sets [Merz, 1996;
Rooney et al., 2004] (Sect. 6.2.2).

In the context of this thesis, the existence of an extensive pool of results using
different induction algorithms (from the experiments done in Chap. 5) and the
possibility to reduce the generalization error from the base predictors (one of
them, random forest, is a state of the art homogeneous ensemble regression
method, see Sect. 6.5) lead us to the study of heterogeneous approaches (a
subject to discuss in Sect. 7.1).

6.2.1 Data manipulation

Data can be manipulated in three different ways: subsampling from the training
set, manipulating the input features and manipulating the output targets.

Subsampling from the training set

These methods have in common that the models are obtained using different
subsamples from the training set, where subsampling means resampling with
replacement [Minaei-Bigdoli et al., 2004]. This approach generally assumes that
the algorithm is unstable, i.e., small changes in the training set imply important
changes in the result. Decision trees, neural networks, rule learning algorithms
and MARS are well known unstable algorithms [Breiman, 1996b; Dietterich,
1997]. However, some of the methods based on subsampling (e.g., bagging
and boosting) have been successfully applied to algorithms usually regarded as
stable, such as Support Vector Machines (SVM) [Kim et al., 2003].

One of the most popular of such methods is bagging [Breiman, 1996a]. It
uses randomly generated training sets to obtain an ensemble of predictors. If
the original training set L has m examples, bagging (bootstrap aggregating)
generates a model by sampling uniformly m examples with replacement (some
examples appear several times while others do not appear at all). Both Breiman
[Breiman, 1996a] and Domingos [Domingos, 1997] give insights on why bagging
works.

Based on [Schapire, 1990], Freund & Schapire present the AdaBoost (ADAp-
tive BOOSTing) algorithm, the most popular boosting algorithm [Freund and
Schapire, 1996]. The main idea is that it is possible to convert a weak learning
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algorithm into one that achieves arbitrarily high accuracy. A weak learning
algorithm is one that performs slightly better than random prediction. This
conversion is done by combining the estimations of several predictors. Like in
bagging [Breiman, 1996a], the examples are randomly selected with replacement
but, in AdaBoost, each example has a different probability of being selected.
Initially, this probability is equal for all the examples but, in the following iter-
ations, examples with more inaccurate predictions have a higher probability of
being selected. In each new iteration there are more ‘difficult examples’ in the
training set. Although boosting has been originally developed for classification,
several algorithms have been proposed for regression but none has emerged as
being the appropriate one [Granitto et al., 2005].

Parmanto et al. describe the cross-validated committees technique for neural
networks ensemble generation using υ-fold cross validation [Parmanto et al.,
1996]. The main idea is to use the models obtained by the use of the υ training
sets as ensemble on the cross validation process.

Manipulating the input features

In this approach, different training sets are obtained by changing the representa-
tion of the examples. A new training set j is generated by replacing the original
representation {(xi, f (xi)) into a new one {(x′i, f (xi)) . There are two types
of approaches. The first one is feature selection, i.e., x′i ⊂ xi. In the second
approach, the representation is obtained by applying some transformation to
the original attributes, i.e., x′i = g (xi).

A simple feature selection approach is the random subspace method, con-
sisting of a random selection [Ho, 1998]. The models in the ensemble are in-
dependently constructed using a randomly selected feature subset. Originally,
decision trees were used as base learners and the ensemble was called decision
forests [Ho, 1998]. The final prediction is the combination of the predictions of
all the trees in the forest.

Alternatively, iterative search methods can be used to select the different
feature subsets. Opitz uses a genetic algorithm approach that continuously
generates new subsets starting from a random feature selection [Opitz, 1999].
The author uses neural networks for the classification problem. He reports
better results using this approach than using the popular bagging and AdaBoost
methods. In [Zenobi and Cunningham, 2001] the search method is a wrapper-
like hill-climbing strategy. The criteria used to select the feature subsets are the
minimization of the individual error and the maximization of ambiguity (Sect.
6.1.4).

A feature selection approach can also be used to generate ensembles for algo-
rithms that are stable with respect to the training set but unstable with respect
to the set of features, namely the nearest neighbors induction algorithm. In
[Domeniconi and Yan, 2004] the feature subset selection is done using adaptive
sampling in order to reduce the risk of discarding discriminating information.
The authors use the ADAMENN algorithm [Domeniconi et al., 2002] to esti-
mate feature relevance. Compared to random feature selection, this approach
reduces diversity between base predictors but increases their accuracy.

A simple transformation approach is input smearing [Frank and Pfahringer,
2006]. It aims to increase the diversity of the ensemble by adding Gaussian
noise to the inputs. The goal is to improve the results of bagging. Each input
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value x is changed into a smeared value x′ using:

x′ = x + p ∗N(0, σ̂x) (6.9)

where p is an input parameter of the input smearing algorithm and σ̂x is the
sample standard deviation of x, using the training set data. In this case, the
examples are changed, but the training set keeps the same number of examples.
In this work just the numeric input variables are smeared even if the nominal
ones could also be smeared using a different strategy. Results compare favorably
to bagging. A similar approach called BEN - Bootstrap Ensemble with Noise,
was previously presented by Raviv & Intrator [Raviv and Intrator, 1996].

Manipulating the output targets

The manipulation of the output targets can also be used to generate different
training sets. However, not much research follows this approach and most of it
focuses on classification.

An exception is the work of Breiman, called output smearing [Breiman,
2000]. The basic idea is to add Gaussian noise to the target variable of the
training set, in the same way as is done for input features in the input smearing
method (Sect. 6.2.1). Using this approach it is possible to generate as many
models as desired. Although it was originally proposed to use with CART trees
as base models, it can be used with other base algorithms. The comparison
between output smearing and bagging shows a consistent generalization error
reduction, even if not outstanding.

An alternative approach consists of the following steps. First it generates
a model using the original data. Second, it generates a model that estimates
the error of the predictions of the first model and generates an ensemble that
combines the prediction of the previous model with the correction of the current
one. Finally, it iteratively generates models that predict the error of the current
ensemble and then updates the ensemble with the new model. The training
set used to generate the new model in each iteration is obtained by replacing
the output targets with the errors of the current ensemble. This approach
was proposed by Breiman, using bagging as the base algorithm and was called
iterated bagging [Breiman, 2001b]. Iterated bagging reduces generalization error
when compared with bagging, mainly due to the bias reduction during the
iteration process.

6.2.2 Model generation manipulation

As an alternative to manipulating the training set, it is possible to change the
model generation process. This can be done by using different parameter sets, by
manipulating the induction algorithm or by manipulating the resulting model.

Manipulating the parameter sets

Each induction algorithm is sensitive to the values of the input parameters. The
degree of sensitivity of the induction algorithm is different for different input
parameters. To maximize the diversity of the models generated, one should
focus on the parameters to which the algorithm is most sensitive.
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Neural network ensemble approaches quite often use different initial weights
to obtain different models. This is done because the resulting models vary
significantly with different initial weights [Kolen and Pollack, 1990]. Several
authors, like Rosen, for example, use randomly generated seeds (initial weights)
to obtain different models [Rosen, 1996], while other authors mix this strategy
with the use of different number of layers and hidden units [Perrone and Cooper,
1993; Hashem, 1993].

The k-nearest neighbors ensemble proposed in [Yankov et al., 2006] has just
two members. They differ on the number of nearest neighbors used. They are
both sub-optimal. One of them because the number of nearest neighbors is too
small, and the other because it is too large. The purpose is to increase diversity
(see Sect. 6.4.2).

Manipulating the induction algorithm

Diversity can also be attained by changing the way induction is done. Therefore,
the same learning algorithm may have different results on the same data. Two
main categories of approaches for this can be identified: sequential and parallel.
In sequential approaches, the induction of a model is influenced only by the
previous ones. In parallel approaches it is possible to have more extensive
collaboration: (1) each process takes into account the overall quality of the
ensemble and (2) information about the models is exchanged between processes.

Rosen generates ensembles of neural networks by sequentially training net-
works, adding a decorrelation penalty to the error function, to increase diver-
sity [Rosen, 1996]. Using this approach, the training of each network tries to
minimize a function that has a covariance component, thus decreasing the gen-
eralization error of the ensemble, as stated in [Ueda and Nakano, 1996]. This
was the first approach using the decomposition of the generalization error made
by Ueda & Nakano [Ueda and Nakano, 1996] (Sect. 6.1.4) to guide the ensem-
ble generation process. Another sequential method for generating ensembles of
neural networks is called SECA (Stepwise Ensemble Construction Algorithm)
[Granitto et al., 2005]. It uses bagging to obtain the training set for each neural
network. The neural networks are trained sequentially. The process stops when
adding another neural network to the current ensemble increases the general-
ization error.

The Cooperative Neural Network Ensembles (CNNE) method [Islam et al.,
2003] also uses a sequential approach. In this work, the ensemble begins with
two neural networks and then, iteratively, CNNE tries to minimize the ensemble
error firstly by training the existing networks, then by adding a hidden node to
an existing neural network, and finally by adding a new neural network. As in
Rosen’s approach, the error function includes a term representing the correlation
between the models in the ensemble. Therefore, to maximize the diversity, all
the models already generated are trained again at each iteration of the process.
The authors test their method not only on classification data sets, but also on
one regression data set, with promising results.

Tsang et al. [Tsang et al., 2006] propose an adaptation of the CVM (Core
Vector Machines) algorithm [Tsang et al., 2005] that maximizes the diversity
of the models in the ensemble by guaranteeing that they are orthogonal. This
is achieved by adding constraints to the quadratic programming problem that
is solved by the CVM algorithm. This approach can be related to AdaBoost



100 CHAPTER 6. AN ENSEMBLE REGRESSION SURVEY

because higher weights are given to instances which are incorrectly classified in
previous iterations.

Note that the sequential approaches mentioned above add a penalty term to
the error function of the learning algorithm. This sort of added penalty has also
been used in the parallel method Ensemble Learning via Negative Correlation
(ELNC) to generate neural networks that are learned simultaneously so that
the overall quality of the ensemble is taken into account [Liu and Yao, 1999].

Parallel approaches that exchange information during the process typically
integrate the learning algorithm with an evolutionary framework. Opitz & Shav-
lik [Opitz and Shavlik, 1996] present the ADDEMUP (Accurate anD Diverse
Ensemble-Maker giving United Predictions) method to generate ensembles of
neural networks. In this approach, the fitness metric for each network weighs
the accuracy of the network and the diversity of this network within the ensem-
ble. The bias/variance decomposition presented by Krogh & Vedelsby [Krogh
and Vedelsby, 1995] is used. Genetic operators of mutation and crossover are
used to generate new models from previous ones. The new networks are trained
emphasizing misclassified examples. The best networks are selected and the
process is repeated until a stopping criterion is met. This approach can be
used on other induction algorithms. A similar approach is the Evolutionary
Ensembles with Negative Correlation Learning (EENCL) method [Liu et al.,
2000], which combines the ELNC method with an evolutionary programming
framework. In this case, the only genetic operator used is mutation, which
randomly changes the weights of an existing neural network. The EENCL has
two advantages in common with other parallel approaches. First, the models
are trained simultaneously, emphasizing specialization and cooperation among
individuals. Second, the neural network ensemble generation is done according
to the integration method used, i.e., the learning models and the ensemble in-
tegration are part of the same process, allowing possible interactions between
them. Additionally, the ensemble size is obtained automatically in the EENCL
method.

A parallel approach in which each learning process does not take into account
the quality of the others, but in which there is exchange of information about
the models is given by the cooperative coevolution of artificial neural network
ensembles method [Garćıa-Pedrajas et al., 2005]. It also uses an evolutionary
approach to generate ensembles of neural networks. It combines a mutation
operator that affects the weights of the networks, as in EENCL, with another
which affects their structure, as in ADDEMUP. As in EENCL, the generation
and integration of models are also part of the same process. The diversity of the
models in the ensemble is encouraged in two ways: (1) by using a coevolution
approach, in which sub-populations of models evolve independently; and (2)
by the use of a multiobjective evaluation fitness measure, combining network
and ensemble fitness. Multiobjective is a quite well known research area in the
operational research community. The authors use a multiobjective algorithm
based on the concept of Pareto optimality [Deb, 1999]. Other groups of objec-
tives (measures) besides the cooperation ones are: objectives of performance,
regularization, diversity and ensemble objectives. The authors do a study on
the sensitivity of the algorithm to changes in the set of objectives. The results
are interesting but they cannot be generalized to the regression problem, since
the authors just studied the classification one. This approach can be used for
regression, but with a different set of objectives.
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Finally we mention two other parallel techniques. In the first one the learn-
ing algorithm generates the ensemble directly. Lin & Li formulate an infinite
ensemble based on the SVM (Support Vector Machines) algorithm [Lin and Li,
2005]. The main idea is to create a kernel that embodies all the possible models
in the hypothesis space. The SVM algorithm is then used to generate a linear
combination of all those models, which is, in fact, an ensemble of an infinite set
of models. They propose the stump kernel that represents the space of decision
stumps.

Breiman’s random forests method [Breiman, 2001a] uses an algorithm for in-
duction of decision trees which is also modified to incorporate some randomness:
the split used at each node takes into account a randomly selected feature sub-
set. The subset considered in one node is independent of the subset considered
in the previous one. This strategy based on the manipulation of the learning
algorithm is combined with subsampling, since the ensemble is generated using
the bagging approach (Sect. 6.2.1). The strength of the method is the combined
use of boostrap sampling and random feature selection.

Manipulating the model

Given a learning process that produces one single model M , it can potentially
be transformed into an ensemble approach by producing a set of models Mi from
the original model M . Jorge & Azevedo have proposed a post-bagging approach
for classification [Jorge and Azevedo, 2005] that takes a set of classification
association rules (CAR’s), produced by a single learning process, and obtains
n models by repeatedly sampling the set of rules. Predictions are obtained by
a large committee of classifiers constructed as described above. Experimental
results on 12 data sets show a consistent, although slight, advantage over the
singleton learning process. The same authors also propose an approach with
some similarities to boosting [Azevedo and Jorge, 2007]. Here, the rules in the
original model M are iteratively reassessed, filtered and reordered according
to their performance on the training set. Again, experimental results show
minor but consistent improvement over using the original model, and also show
a reduction in the bias component of the error. Both approaches replicate
the original model without relearning and obtain very homogeneous ensembles
with a kind of jittering effect around the original model. Model manipulation
has only been applied in the realm of classification association rules, a highly
modular representation. Applying it to other kinds of models, such as decision
trees or neural networks, does not seem trivial because the way these models are
represented is not suitable for being post-bagged. It could, however, be easily
tried with regression rules.

6.2.3 A discussion on ensemble generation

Two relevant issues arise from the discussion above. The first is how can the
user decide which method to use for a given problem.? The second, which is
more interesting from a researcher’s point of view, is what are the promising
lines for future work?

In general, existing results indicate that ensemble methods are competitive
when compared to individual models. For instance, random forests are consis-
tently among the best three models in the benchmark study by Meyer et al.
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[Meyer et al., 2003], which included many different algorithms.
However, there is little knowledge about the strengths and weaknesses of

each ensemble method, given that the results reported in different papers are
not comparable because of the use of different experimental setups [Islam et al.,
2003; Garćıa-Pedrajas et al., 2005].

It is possible to distinguish the most interesting/promising methods for some
of the most commonly used induction algorithms. For decision trees, bagging
[Breiman, 1996a] because of its consistency and simplicity, and random for-
est [Breiman, 2001a] because of its accuracy, are the most appealing ensemble
methods for regression.

For neural networks, methods based on negative correlation are particularly
appealing, due to their theoretical foundations [Brown, 2004] and good empirical
results. EENCL is certainly an influential and well studied method on neural
network ensembles [Liu et al., 2000]. Islam et al. [Islam et al., 2003] and Garcia-
Pedrajas et al. [Garćıa-Pedrajas et al., 2005] also present interesting methods.

One important line of work is the adaptation of the methods described here
to other algorithms, namely support vector regression and k-nearest neighbors.
Although some attempts have been made, there is still much work to be done.

Additionally, we note that most research focuses on one specific approach
building the ensemble (e.g., subsampling from the training set or manipulating
the induction algorithm). Further investigation is necessary into the gains that
can be achieved by combining several approaches.

In this thesis, due to the experiments on parameters’ tuning (Sect. 5.6) and
on data manipulation, namely example (Sect. 5.7.1) and domain value selection
(Sect. 5.7.2), there are available models obtained through subsampling from the
training set (even if deterministic since the methods we use to select examples do
not use randomization) and through manipulation of the input features (through
the use of different representations for the variable week day).

6.3 Ensemble pruning

Ensemble pruning consists of eliminating models from the ensemble (also named
pool in this circumstance), with the aim of improving its predictive ability or
reducing costs. In the overproduce and choose approach it is the chosen step. In
the direct approach, ensemble pruning is also used to reduce computational costs
and, if possible, to increase prediction accuracy [Zhou et al., 2002; Bakker and
Heskes, 2003]. Bakker & Heskes claim that clustering models (later described
in Sect. 6.3.5) summarize the information on the ensembles, thus giving new
insights into the data [Bakker and Heskes, 2003]. Ensemble pruning can also
be used to avoid the multi-collinearity problem [Perrone and Cooper, 1993;
Hashem, 1993] (to be discussed in Sect. 6.4).

The ensemble pruning process has many common aspects with feature se-
lection (Sect. 4.3.1) namely the search algorithms that can be used. In this
section, the ensemble pruning methods are classified and presented according
to the used search algorithm: exponential, randomized and sequential; plus the
ranked pruning and the clustering algorithms. It finishes with a discussion on
ensemble pruning, where experiments comparing some of the algorithms de-
scribed along this chapter are presented.
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6.3.1 Exponential pruning algorithms

When we have to select a subset of models from a pool of K models, the search-
ing space has 2K − 1 non-empty subsets. The search of the optimal subset is a
NP-complete problem [Tamon and Xiang, 2000]. According to Mart́ınez-Muñoz
& Suárez it becomes intractable for values of K > 30 [Mart́ınez-Muñoz and
Suárez, 2006]. Perrone & Cooper suggest this approach for small values of K
[Perrone and Cooper, 1993].

Aksela presents seven pruning algorithms for classification [Aksela, 2003].
One of them can also be used for regression. It calculates the correlation of the
errors for each pair of predictors in the pool and then it selects the subset with
minimal mean pairwise correlation. This method implies the calculation of the
said metric for each possible subset.

6.3.2 Randomized pruning algorithms

Partridge & Yates describe the use of a genetic algorithm for ensemble pruning
but with poor results [Partridge and Yates, 1996].

GASEN (Genetic Algorithm based Selective ENsemble), a work on neural
network ensembles [Zhou et al., 2002], starts with the assignment of a random
weight to each one of the base models. Then it employs a genetic algorithm to
evolve those weights in order to characterize the contribution of the correspond-
ing model to the ensemble. Finally it selects the networks whose weights are
bigger than a predefined threshold. Empirical results on ten regression problems
show that GASEN outperforms bagging and boosting both in terms of bias and
variance. Following this work, Zhou & Tang successfully applied GASEN to
building ensembles of decision trees [Zhou and Tang, 2003].

Ruta & Gabrys use three randomized algorithms to search for the best subset
of models [Ruta and Gabrys, 2001]: genetic algorithms [Davis (ed.), 1991], tabu
search [Glover and Laguna, 1997] and population-based incremental learning
[Baluja, 1994]. The main result of the experiments on three classification data
sets, using a pool of K = 15, was that the three algorithms obtained most of
the best selectors when compared against exhaustive search. These results may
have been conditioned by the small size of the pool.

6.3.3 Sequential pruning algorithms

The sequential pruning algorithms iteratively change one solution by adding or
removing models. Three types of search algorithms are used:

• Forward: if the search begins with an empty ensemble and adds models
to the ensemble in each iteration;

• Backward: if the search begins with all the models in the ensemble and
eliminates models from the ensemble in each iteration;

• Forward-backward: if the selection can have both forward and backward
steps.
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Forward selection

Forward selection starts with an empty ensemble and iteratively adds models
with the aim of decreasing the expected prediction error.

Coelho & Von Zuben describe two forward selection algorithms called Cw/oE
- constructive without exploration, and CwE - constructive with exploration
[Coelho and Von Zuben, 2006]. However, to use a more conventional categoriza-
tion (Sect. 4.3.1), the algorithms will be renamed Forward Sequential Selection
with Ranking (FSSwR) and Forward Sequential Selection (FSS), respectively.
The FSSwR ranks all the candidates with respect to its performance on a vali-
dation set. Then, it selects the candidate at the top until the performance of the
ensemble decreases. In the FSS algorithm, each time a new candidate is added
to the ensemble, all candidates are tested and the one that leads to the maximal
improvement of the ensemble performance is selected. When no model in the
pool improves the ensemble performance, the selection stops. This approach
is also used in [Roli et al., 2001]. These algorithms were firstly described for
ensemble pruning by Perrone & Cooper [Perrone and Cooper, 1993].

Partridge & Yates present another forward selection algorithm similar to the
FSS [Partridge and Yates, 1996]. The main difference is that the criterion for
the inclusion of a new model is a diversity measure. The model with higher
diversity than the ones already selected is also included in the ensemble. The
ensemble size is an input parameter of the algorithm. Prodromidis et al. present
a similar algorithm with a different diversity measure [Prodromidis et al., 1999].

Another similar approach is presented in [Hernández-Lobato et al., 2006]. At
each iteration it tests all the models not yet selected, and selects the one that
reduces most the ensemble generalization error on the training set. Experiments
to reduce ensembles generated using bagging are promising even if overfitting
could be expected since the minimization of the generalization error is done on
the training set.

Backward selection

Backward selection starts with all the models in the ensemble and iteratively
removes models with the aim of decreasing the expected prediction error.

Coelho & Von Zuben describe two backward selection algorithms called
Pw/oE - pruning without exploration, and PwE - pruning with exploration
[Coelho and Von Zuben, 2006]. Like in the forward selection methods, they will
be renamed Backward Sequential Selection with Ranking (BSSwR) and Back-
ward Sequential Selection (BSS), respectively. In the first one, the candidates
are previously ranked according to their performance in a validation set (like
in FSSwR). The worst is removed. If the ensemble performance improves, the
selection process continues. Otherwise, it stops. BSS is related to FSS in the
same way BSSwR is related to FSSwR, i.e., it works like FSS but using backward
selection instead of forward selection.

Mixed forward-backward selection

In the forward and backward algorithms described by Coelho & Von Zuben,
namely the FSSwR, FSS, BSSwR and BSS, the stopping criterion assumes that
the evaluation function is monotonic [Coelho and Von Zuben, 2006]. However,
in practice, this cannot be guaranteed. The use of mixed forward and backward
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steps aims to avoid the situations where the fast improvement at the initial
iterations does not allow solutions with slower initial improvements but with
better final results to be explored.

Moreira et al. describe an algorithm that begins by randomly selecting a
pre-defined number of k models [Moreira et al., 2006b]. At each iteration, one
forward step and one backward step are given. The forward step is equivalent
to the process used by FSS, i.e., it selects the model from the pool that most
improves the accuracy of the ensemble. At this step, the ensemble has k + 1
models. The second step selects the k models with higher ensemble accuracy,
i.e, in practice, one of the k + 1 models is removed from the ensemble. The
process stops when the same model is selected in both steps.

Margineantu & Dietterich present an algorithm called reduce-error pruning
with back fitting [Margineantu and Dietterich, 1997]. This algorithm is similar
to the FSS in the two first iterations. After the second iteration, i.e., when the
third candidate and the following ones are added, a back fitting step is given.
Consider C1, C2 and C3 as the included candidates. Firstly, it removes C1

from the ensemble and tests the addition of each of the remaining candidates
Ci(i > 3) to the ensemble. It repeats this step for C2 and C3. It chooses the
best of the tested sets. Then it executes further iterations until a pre-defined
number of iterations is reached.

6.3.4 Ranked pruning algorithms

The ranked pruning algorithms sort the models according to a certain criterion
and generate an ensemble containing the top k models in the ranking. The value
of k is either given or determined on the basis of a given criterion, namely, a
threshold, a minimum, a maximum, etc.

Partridge & Yates rank the models according to accuracy [Partridge and
Yates, 1996]. Then, the k most accurate models are selected. As expected,
results are not good because there is no guarantee of diversity. Kotsiantis &
Pintelas use a similar approach [Kotsiantis and Pintelas, 2005]. For each model
a t-test is done with the aim of comparing its accuracy with the most accurate
model. Tests are carried out using randomly selected 20% of the training set.
If the p-value of the t-test is lower than 5%, the model is rejected. The use of
heterogeneous ensembles is the only guarantee of diversity. Rooney et al. use a
metric that tries to balance accuracy and diversity [Rooney et al., 2004].

Perrone & Cooper describe an algorithm that removes similar models from
the pool [Perrone and Cooper, 1993]. It uses the correlation matrix of the
predictions and a pre-defined threshold to identify them.

6.3.5 Clustering algorithms

The main idea of clustering is to group the models into several clusters and
choose representative models (one or more) from each cluster.

Lazarevic uses the prediction vectors made by all the models in the pool
[Lazarevic, 2001]. The k-means clustering algorithm [Kaufman and Rousseeuw,
1990] is used over these vectors to obtain clusters of similar models. Then, for
each cluster, the algorithms are ranked according to their accuracy and, begin-
ning with the least accurate, the models are removed (unless their disagreement
with the remaining ones overcomes a pre-specified threshold) until the ensemble
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accuracy on the validation set starts decreasing. The number of clusters (k) is
an input parameter of this approach, i.e., in practice this value must be tested
by running the algorithm for different k values or, as in Lazarevic’s case, an
algorithm is used to obtain a default k [Lazarevic, 2001]. The experimental
results reported are not conclusive.

Coelho & Von Zuben [Coelho and Von Zuben, 2006] use the ARIA - Adaptive
Radius Immune Algorithm [Bezerra et al., 2005], for clustering. This algorithm
does not require a pre-specified k parameter. Only the most accurate model
from each cluster is selected.

6.3.6 A discussion on ensemble pruning

Partridge & Yates compare three of the approaches previously described [Par-
tridge and Yates, 1996]: (1) Ranked according to accuracy; (2) FSS using a
diversity measure; and (3) a genetic algorithm. The results are not conclusive
because just one data set is used. The FSS using a diversity measure gives
the best result. However, as pointed out by the authors, the genetic algorithm
result, even if not very promising, can not be interpreted as being less adapted
to ensemble pruning. The result can be explained by the particular choices used
for this experiment. Ranked according to the accuracy gives the worst result as
expected since this method does not evaluate the contribution of each model to
the overall diversity.

Roli et al. compare several pruning algorithms using one data set with
three different pools of models [Roli et al., 2001]. In one case, the ensemble
is homogeneous (they use 15 neural networks trained using different parameter
sets), in the other two cases they use heterogeneous ensembles. The algorithms
tested are: FSS selecting the best model in the first iteration and randomly
selecting a model for the first iteration, BSS, tabu search, Giacinto & Roli’s
clustering algorithm [Giacinto and Roli, 2001], and some others. The tabu
search and the FSS selecting the best model in the first iteration give good
results for the three different pools of models.

Coelho & Von Zuben also use just one data set to compare FSSwR, FSS,
BSSwR, BSS and the clustering algorithm using ARIA [Coelho and Von Zuben,
2006]. Each of these algorithms is tested with different integration approaches.
Results for each of the tested ensemble pruning algorithms give similar results,
but for different integration methods. Ensembles obtained using the clustering
algorithm and BSS have higher diversity.

The ordered bagging algorithm by Mart́ınez-Muñoz & Suárez is compared
with FSS using, also, just one data set [Mart́ınez-Muñoz and Suárez, 2006]. The
main advantage of ordered bagging is the meaningfully lower computational cost.
The differences in accuracy are not meaningful.

Ruta & Gabrys compare a genetic algorithm, a population-based incremental
learning algorithm [Baluja, 1994] and tabu search [Glover and Laguna, 1997] on
three classification data sets [Ruta and Gabrys, 2001]. Globally, differences are
not meaningful between the three approaches. The authors used a pool of just
fifteen models, not enough to explore the differences between the three methods.

All of these benchmark studies discussed are for ensemble classification. It
seems that more sophisticated algorithms like the tabu search, genetic algo-
rithms, population based incremental learning, FSS, BSS or clustering algo-
rithms are able to give better results, as expected. However, all studies use a
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very small number of data sets, limiting the generalization of the results.
The evaluation function used for ensemble pruning has not yet been discussed

in this thesis. This will be discussed in Sect. 6.4.

6.4 Ensemble integration

Now that we have described the process of ensemble generation, we move to
the next step: how to combine the strengths of the models in one ensemble to
obtain one single answer, i.e., ensemble integration.

For regression problems, ensemble integration is done using a linear combi-
nation of the predictions. This can be stated as

f̂f (x) =
k∑

i=1

[hi(x) ∗ f̂i(x)], (6.10)

where hi(x) are the weighting functions.
Merz divides the integration approaches into constant and non-constant

weighting functions [Merz, 1998]. In the first case, the hi(x) are constants
(in this case αi will be used instead of hi(x) in Eq. 6.10) while, in the second
one, the weights vary according to the input values x.

When combining predictions, a possible problem is the existence of multi-
collinearity between the predictions of the ensemble models. As a consequence
of the multi-collinearity problem, the confidence intervals for the αi coefficients
will be larger, i.e., the estimators of the coefficients will have higher variance
[Merz, 1998]. This happens because we must determine the inverse of a linearly
dependent matrix to obtain the αi’s.

A common approach is to handle multicollinearity in the ensemble generation
(Sect. 6.2) or in the ensemble pruning (Sect. 6.3) phases. If the principles
referred to in Sect. 6.1.4, namely those of accuracy and diversity, are assured,
then it is possible, if not to completely avoid, at least to ameliorate this problem.

This section follows the Merz classification. It finishes with a discussion on
ensemble integration methods.

6.4.1 Constant weighting functions

Constant weighting integration functions always use the same set of coefficients,
regardless of the input for prediction. They are summarized in Fig. 6.2. Some
methods use the test data (td) to obtain the αi weights of the integration func-
tion (Eq. 6.10).
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Figure 6.2: Constant weighting functions model.
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Next, we describe the main constant weighting functions closely following
Merz [Merz, 1998].

The BEM - Basic Ensemble Method [Perrone and Cooper, 1993] uses as
estimator for the target function

f̂BEM (x) =
k∑

i=1

[
1
k
∗ f̂i(x)

]
. (6.11)

This formula can be written as

f̂BEM (x) = f(x)− 1
k

k∑

i=1

mi(x), (6.12)

where

mi(x) = f(x)− f̂i(x). (6.13)

BEM assumes that the mi(x) are mutually independent with zero mean.
To address this issue, Perrone & Cooper propose the GEM - Generalized

Ensemble Method [Perrone and Cooper, 1993]. For GEM, the estimator is

f̂GEM (x) =
k∑

i=1

[αi ∗ f̂i(x)] = f(x) +
k∑

i=1

[αi ∗mi(x)], (6.14)

where

k∑

j=1

αi = 1,

αi =

∑k
j=1 C−1

ij∑k
l=1

∑k
j=1 C−1

lj

,

Cij = E[mi(x) ∗mj(x)].

The drawback of this method is the multicollinearity problem, since it is
necessary to calculate the inverse matrix C−1. The multicollinearity problem
can be avoided by pruning the ensemble [Perrone and Cooper, 1993] (Sect. 6.3).
A similar approach to the GEM method, which ignores some of the constraints
was proposed by Hashem & Schmeiser [Hashem and Schmeiser, 1995]. It also
suffers from the multicollinearity problem.

The well-known linear regression (LR) model is another possible combina-
tion method. The predictor is the same as in the GEM case but without the
constraint

∑k
j=1 αi = 1. The use of a constant in the LR formula is not rel-

evant in practice (the standard linear regression formulation uses it) because
E[f̂i(x)] ' E[f(x)] [LeBlanc and Tibshirani, 1996]. It would only be necessary
if predictors were meaningfully biased.

All the methods discussed so far suffer from the multicollinearity problem
with the exception of BEM. Next, we discuss methods that avoid this problem.

Caruana et al. embed the ensemble integration phase in the ensemble selec-
tion one [Caruana et al., 2004]. By selecting with replacement, from the pool,
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the models to include in the ensemble, and using the simple average as the
weighting function, the αi coefficients are implicitly calculated as the number
of times that each model is selected over the total number of models in the
ensemble (including repeated models).

Breiman presents the stacked regression [Breiman, 1996c] method based on
the well-known stacked generalization framework [Wolpert, 1992] firstly pre-
sented for the classification problem. Given a L learning set with M examples,
the goal is to obtain the αi coefficients that minimize

M∑

j=1

[f(xj)−
k∑

i=1

αi ∗ f̂i(xj)]2. (6.15)

To do so, the learning set used to obtain the αi coefficients will be the same
one used to train the f̂i estimators, over-fitting the data. This problem is solved
by using υ-fold cross-validation,

M∑

j=1

[f(xj)−
k∑

i=1

αi ∗ f̂i
(−υ)

(xj)]2. (6.16)

The second problem is the possible existence of multicollinearity between
the f̂i predictors. Breiman presents several approaches to obtain the αi coeffi-
cients but concludes that a method that gives consistently good results is the
minimization of the above equation under the constraints αi ≥ 0, i = 1, ..., k
[Breiman, 1996c]. One of the methods tried by Breiman to obtain the αi coef-
ficients is ridge regression, a regression technique for solving badly conditioned
problems, but results were not promising [Breiman, 1996c]. An important re-
sult of Breiman is the empirical observation that, in most cases, many of the αi

weights are zero. This result supports the use of ensemble pruning as a second
step after the ensemble generation (Sect. 6.3).

Merz & Pazzani use principal component regression to avoid the multi-
collinearity problem [Merz and Pazzani, 1999]. The PCR* method obtains the
principal components (PC) and then it selects the number of PCs to use. Once
the PCs are ordered as a function of the variation they can explain, the search
for the number of PCs to use is much simplified. The choice of the correct
number of PCs is important to avoid under-fitting or over-fitting.

Evolutionary algorithms have also been used to obtain the αi coefficients
[Ortiz-Boyer et al., 2005]. The used approach is globally better than BEM and
GEM on twenty-five classification data sets. Compared to BEM,it wins nineteen,
draws one and loses five. Compared to GEM, it wins seventeen, draws one and
loses seven. These results were obtained by direct comparison, i.e., without
statistical validation.

The main study comparing constant weighting functions is presented by
Merz [Merz, 1998]. The functions used are: GEM, BEM, LR, LRC (the LR for-
mula with a constant term), gradient descent, EG, EG+

− (the last three methods
are gradient descent procedures discussed in [Kivinen and Warmuth, 1997]),
ridge regression, constrained regression (Merz [Merz, 1998] uses the bounded
variable least squares method from [Stark and Parker, 1995]), stacked con-
strained regression (with ten partitions) and PCR*. Two of the three exper-
iments reported by Merz are summarized next. The first experiment used an
ensemble of twelve models on eight regression data sets: six of the models were
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generated using MARS [Friedman, 1991] and the other six using the neural
network back-propagation algorithm. The three globally best functions were
constrained regression, EG and PCR*. The second experiment tests how the
functions perform with many correlated models. The author uses neural net-
work ensembles of size ten and fifty. Just three data sets were used. The PCR*
function presents more robust results. See [Merz, 1998] to get details on the
experiments and their results.

6.4.2 Non-constant weighting functions

The non-constant weighting functions use different coefficients according to the
input for prediction. They can be static (defined at learning time) or dynamic
(defined at prediction time). The static ones can use two different approaches:
(1) to assign models to predefined regions, this is the divide-and-conquer ap-
proach already discussed in Sect. 6.2.1; or (2) to define the areas of expertise for
each model, also called static selection [Kuncheva, 2002], i. e., for each predictor
from the ensemble, the input subspace where the predictor is expert is defined.
In the dynamic approach, the hi(x) weights from Eq. 6.10 are obtained on the
fly based on the performances of the base predictors on data, from the training
set, which is similar to x.

The approach by areas of expertise

The work on meta decision trees [Todorovski and Dzeroski, 2003] for classifi-
cation induces meta decision trees using as variables meta-attributes that are
previously calculated for each example. The target variable of the meta tree
is the classifier to recommend. In practice, the meta decision tree, instead of
predicting, recommends a predictor. Although this work has been developed for
classification, it could be easily adapted for regression by an appropriate choice
of the meta attributes.

Yankov et al. use support vector machines with the Gaussian kernel to select
the predictor to use from an ensemble with two models [Yankov et al., 2006].

The dynamic approach

In the dynamic approach, the predictor(s) selection is done on the fly, i.e., given
the input vector for the prediction task, it chooses the expected best predictor(s)
to accomplish this task. While in the approach by areas of expertise these areas
are previously defined, in the dynamic approach the areas are defined on the
fly. Selection can be seen as a kind of pruning on the fly.

Figure 6.3 summarizes the dynamic approach. Given an input vector x, it
first selects similar data. Then, according to the performance of the models on
this similar data, a number k1 of models are selected from the ensemble F (Eq.
6.1). Merz describes in detail this approach, namely the use of a performance
matrix to evaluate the models locally [Merz, 1996]. It consists of a m×k matrix,
where m is the number of past examples and k is the number of models in F .
Each cell has a performance measure of each model for each example obtained
from the models’ past predictions and the respective actual target values for
these examples. In regression, this measure can be, for instance, the squared
error, the absolute error, or other performance measure. If k1 = 1 then f̂f is the
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identity function. If k1 > 1 then the integration method uses the performances
of similar data (sd) obtained from the test data (td) to estimate the hi(x)
weights.

F ),),(ˆ),...,(ˆ),(ˆ(ˆ
121 sdtdffff kf xxx

)(ˆ),...,(ˆ),(ˆ
121 xxx kfff

x

Local choice of
the model(s)

Similar dataTest
data

Figure 6.3: Dynamic approach model.

This approach consists of the following tasks (assuming that the ensemble
models are already available):

1. given an input value x, find similar data from the validation set;

2. select the model(s) from the ensemble according to their performance for
the selected similar data;

3. obtain the prediction f̂i(x) for the given input value, for each selected i
model;

4. obtain the ensemble prediction f̂f . This is straightforward if just one
model is selected, otherwise, it is necessary to combine results.

While task (3) is straightforward, the others are not. In this section related
works concerning the remaining three tasks are reviewed.

The standard method for obtaining similar data (task 1) in the context of
ensemble learning is the well-known k-nearest neighbors with the Euclidean dis-
tance [Woods, 1997]. One limitation of this method is that it weights equally
all the input variables even if there are input variables with different levels of
relevance in the explanation of the target variable. If the data set has many
variables with a small impact on the target variable and a small subset of dom-
inant input variables, this potential problem can become a real one. Known
solutions already exist in the context of random forests - RF.

RF, a decision tree based method, builds several trees independently and
obtains the final prediction by averaging the results of these trees, for regres-
sion, and by simple majority voting, for classification (see [Breiman, 2001a] for
details). RF uses bootstrap samples and random feature selection at each split
(during the process of tree construction) in order to obtain diversity in the pro-
duced trees. When a bootstrap sample is generated 36.8% of the examples, on
average, are left out. These are called the out-of-bag examples, i.e., examples
that were not used to train a particular tree. This particular characteristic of
RF allows the use of a natural validation set for each tree: the set of out-of-bag
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examples. These examples can be used to obtain the weights for the dynamic
voting approach, by measuring the distance of similar examples in the out-of-
bag set [Robnik-S̆ikonja, 2004; Tsymbal et al., 2006]. Tsymbal et al. test two
different distance metrics, RFIS and HEOM, to obtain the similar example set
[Tsymbal et al., 2006]. RFIS gives, for each example, the proportion of trees
from the forest where the example appears together with the test example in
the same leaf node. HEOM - Heterogeneous Euclidean/Overlap Metric [Wilson
and Martinez, 1997] is a successful distance function for mixed numeric and
nominal attributes. The authors use, as integration method, dynamic voting
with selection, adopting equally weighted and locally weighted voting schemes
instead of the majority voting used in RF. They obtained poor results with
dynamic selection, possibly due to the increased variance introduced by this
technique. The tests using dynamic voting with selection improve accuracy in
12 out of 27 data sets when compared with majority voting. These results can
be explained, at least partially, by the circumstance that, in RFIS, the similar-
ity between two examples is measured by the comparison of the target values
similarity, rather than by the proximity of the input variables. This procedure
implicitly measures in a different way the distances for each input variable.

Didaci & Giacinto also test a kind of similarity measure according to the
outputs [Didaci and Giacinto, 2004] embedded in DANN - Discriminant Adap-
tive Nearest Neighbor [Hastie and Tibshirani, 1996]. DANN locally reshapes
the nearest neighborhood. In practice, some of the explanatory variables are
discarded, reducing the dimensionality of the problem. This method can be used
for both classification and regression. Experiments done by Didaci & Giacinto
show that this approach as well as a dynamic choice of the number k of neigh-
bors can meaningfully improve the results when compared with the standard
Euclidean distance [Didaci and Giacinto, 2004].

The simplest method of selecting models (task 2) is to pick the one with the
best performance for a given metric [Woods, 1997; Giacinto and Roli, 1997].
However, the dynamic selection approach can use more than one model [Merz,
1996]. The dynamic voting with selection [Tsymbal and Puuronen, 2000] and
its regression version, called dynamic weighting with selection [Rooney et al.,
2004], use the 50% locally more accurate models from the ensemble.

When more than one model is selected, their results are combined (task 4).
Each one of the methods discussed in Sect. 6.4.1 can be used to accomplish
this task. Anyway, the approaches used in the context of dynamic selection are
described.

Wang et al. use weights hi(x) (see Eq. 6.10) inversely proportional to f̂i(x)
expected error [Wang et al., 2003]. This approach is similar to the variance
based weighting presented in [Tresp and Taniguchi, 1995].

The dynamic integration methods originally presented by Puuronen et al.
[Puuronen et al., 1999] for classification are adapted for regression in [Rooney
et al., 2004]. Dynamic selection (DS) selects the predictor with less cumulative
error on the k-nearest neighbors set. Dynamic weighting (DW) assigns a weight
to each base model according to its localized performance on the k-nearest
neighbors set [Rooney et al., 2004] and the final prediction is based on the
weighted average of the predictions of the related models. Dynamic weighting
with selection (DWS) is similar to DW but the predictors with cumulative error
in the upper half of the error interval are discarded. From the three methods
tested, the DWS using just the subset of the most accurate predictors for the
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final prediction gets the best results.

6.4.3 A discussion on ensemble integration

The studies on how to handle the multicollinearity problem, quite common in
the nineties, have become less frequent in the last few years, apparently because
most of the effort shifted to the generation phase. The approach seems to have
changed from “what integration function to use for a given ensemble” to “how
to generate the ensemble for a given integration function”. In all the studies
highlighted in Sect. 6.2.3, constant weighting functions were used. It is already
known from the decomposition of the generalization error (Sect. 6.1.4) what
characteristics of the ensemble are the expected when using constant weighting
functions. The question now is: “how to generate ensembles for non-constant
weighting functions”. We try to give a contribution on this topic (Sect. 7.2)
by testing evaluation functions for the pruning algorithms potentially better
adapted to non-constant weighting functions. It is, in practice, an indirect way
of ensemble generation for non-constant weighting functions.

The experiments described by Merz (Sect. 6.2) were published in 1998 [Merz,
1998]. However, since 1995, maybe due to the advances in the studies on the
generalization ensemble error (Sect. 6.1.4), the ensemble generation research has
been driven towards the quality of the ensembles [Rosen, 1996; Liu et al., 2000;
Zhou et al., 2002]. These examples show that an important part of the problems
at the integration phase can be solved by a joint design of the generation,
pruning (when appropriate) and the integration phases.

The main disadvantage of constant weighting functions is that the αi weights,
being equal for all the input space, can, at least theoretically, be less adequate for
some parts of the input space. This is the main argument for using non-constant
weighting functions [Verikas et al., 1999]. This argument can be particularly
true for time changing phenomena [Wang et al., 2003]. Both approaches are
compared in Chap. 7.

Ensemble integration approaches can also be classified as selection or com-
bination ones [Kuncheva, 2002]. In the selection approach the final prediction is
obtained by using just one predictor, while in the combination one the final pre-
diction is obtained by combining predictions of two or more models. Kuncheva
presents a hybrid approach between the selection and the combination ones
[Kuncheva, 2002]. It uses paired t-hypothesis test [Groebner and Shannon,
1985] to verify whether one predictor is meaningfully better than the others. If
positive, it uses the best predictor, if not it uses a combination approach.

An approach that can be explored and seems to be promising is to combine
different ensemble integration methods. The method wMetaComb [Rooney and
Patterson, 2007] uses a weighted average to combine stacked regression (de-
scribed in Sect. 6.4.1) and the DWS dynamic method (Sect. 6.4.2). The
cocktail ensemble for regression [Yu et al., 2007] combines different ensemble
approaches, whichever they are, using a combination derived from the ambigu-
ity decomposition. The authors leave for a future paper the full description of
that derivation. They combine different ensembles using a forward approach
by selecting the one that reduces the combined estimated error the most. The
same ensemble can be selected more than once.
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Table 6.2: Main homogeneous ensemble generation methods.
Method Reference Algorithm Class/Regr

Bagging [Breiman, 1996a] Unst. learners yes / yes
AdaBoost [Freund and Schapire, 1996] Unst. learners yes / ?

Random forests [Breiman, 2001a] Decis. trees yes / yes
EENCL [Liu et al., 2000] ANN yes / yes
CNNE [Islam et al., 2003] ANN yes / yes

Coop. Coev. [Garćıa-Pedrajas et al., 2005] ANN yes / ?

6.5 Conclusions

The use of ensemble methods has as its main advantage the increase in accuracy
and robustness, when compared to the use of a single model. This makes ensem-
ble methods particularly suitable for applications where small improvements in
the predictions have an important impact.

For ensemble learning, as for other research areas, methods for regression
and for classification have different solutions, at least partially. The methods
for ensemble learning have, typically, three phases: generation, pruning (not
always) and integration.

The generation phase aims to obtain an ensemble of models. It can be
classified as homogeneous or as heterogeneous. This classification depends on
the number of induction algorithms used. If just one is used, the ensemble is
classified as homogeneous, otherwise it is classified as heterogeneous. The most
successful methods for ensemble generation are developed for unstable learners,
i.e., learners that are sensitive to changes in the training set, namely decision
trees or neural networks. Table 6.2 summarizes some of the most important
methods on homogeneous ensemble generation. The mark ? means that there
are currently no promising versions of this algorithm for regression (the case of
AdaBoost), or that these methods are not even tested for regression (the case of
cooperative co-evolution), and consequently it is not known how these methods
could work for regression.

Ensemble pruning aims to select a subset from a pool of models in order
to reduce computational complexity and, if possible, to increase accuracy. It
has many similarities with the well-known feature subset selection task. This
happens because in both cases the goal is to select, from a set, a subset in order
to optimize a given objective function. As in the feature subset selection case,
randomized heuristics, such as evolutionary algorithms or tabu search, seem to
be very effective.

Ensemble integration functions use the predictions made by the models in
the ensemble to obtain the final ensemble prediction. They can be classified as
constant or non-constant weighting functions. As previously underlined, con-
stant weighting functions are the most used, possibly because it is easier to
generate ensembles in order to minimize known generalization error functions.
Since non-constant weighting functions seem to be attractive in order to in-
crease accuracy, further research is needed to obtain ensemble methods that
take advantage of such integration functions.

This chapter described the complete process for ensemble based regression.
As shown, at each step there are many challenging problems to be solved, and
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many ideas still need theoretical and experimental development. We believe
that this survey provides a thorough road map that can serve as a stepping
stone to new ideas for research.
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Chapter 7

Experiments on
heterogeneous ensembles

In the sequence of the analysis of the results using regression models in order
to address the problem of travel time prediction (TTP) three days ahead (Sect.
5.8), we decided to study the use of an ensemble of models in order to increase
accuracy comparing to the use of only one model. With this purpose, we did
a comprehensive state of the art review on ensemble methods for regression
(Chap. 6). Using the lessons from the survey, we explore in this chapter the
ensemble approach:

1. Taking advantage of the multiplicity of results from the experiments done
in Chap. 5 complemented with the good indications on heterogeneous
ensembles [Wichard et al., 2003] and the fact that one of the methods
tested in Chap. 5 is a state of the art homogeneous ensemble method for
regression (it is the case of Random Forests), we decided to explore the use
of heterogeneous ensembles using the overproduce-and-choose approach.
The pools used along this chapter, i.e., the initial ensembles from which
the final ensembles are selected using a pruning method, are presented in
Sect. 7.1.

2. For ensemble pruning, we study the selection of ensembles more skilled for
different types of integration functions (constant and nonconstant). Some
experiments are done in Sect. 7.2 exploring two different search schemas
and two different evaluation functions. The evaluation functions are the
simple average (avg) and the sum of minimum squared errors (smse). The
avg is certainly more skilled for the constant weighting function simple av-
erage while the smse is potentially more skilled for nonconstant weighting
functions.

3. For ensemble integration we aim to evaluate both constant (Sect. 6.4.1)
and nonconstant weighting functions. From the existing nonconstant
weighting functions, we study the dynamic approach discussed in Sect.
6.4.2. This option seems well adapted for data streams problems [Tsymbal
et al., 2008] and has been reported as giving better results than constant
weighting functions [Verikas et al., 1999]. TTP can also be seen as a data
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stream problem despite this was not the approach used along this thesis.
In order to study the best setup for the dynamic approach we discuss dif-
ferent methods to obtain similar data, to select the models and to combine
their predictions (Sect. 7.3).

4. In order to test the different possibilities discussed so far they must be
tested in an ensemble learning framework. We use a framework based in
stacked generalization [Wolpert, 1992] (Sect. 7.4).

5. This framework is used to do three different experiments. Despite we
address different issues in all the experiments (see Sect. 7.5), the main
motivation for each one of the experiments is:

• The first experiment aims to evaluate the different methods to obtain
similar data (as discussed in the third item and Sect. 7.3.1). The one
with best results selects the examples that fall in the same leaf node
of a CART tree together with the test example and then, it chooses
from these examples the k nearest according to the HEOM distance
(Sect. 7.5.1). How this new method performs in other domains is an
open issue for research.

• The second experiment aims to evaluate how sensitive the ensemble
is to the data set used in the ensemble generation phase (Sect. 7.5.2.
With this purpose we test how ensembles learned on a 3 month data
set (January to March 2004) performs on a 8 month data set (January
to August 2006) by comparison against the performance on a 3 month
data set (January to March 2006). Results show that some a&ps in
the ensemble degrade performance on the larger data set. This result
is important because it shows that the data set used in the ensemble
generation should be representative of all the input space.

• The third experiment tests ensembles selected from the pool using
the two different evaluation functions discussed in the second item
and Sect. 7.2, avg and smse. Results show that avg performs globally
better than smse for all the integration functions tested.

The main result from all the experiments done using the ensemble approach
is the reduction of the generalization error when compared against the error of
the base learners. Anyway, the main goal of this chapter is to study the best
setup for the ensemble learning approach. The comparison of this approach
with the other ones discussed in Chap. 5 is the subject of Chap. 8.

7.1 A&ps used

The generated pool is not a pool of models but, instead, a pool of algorithms
& parameter sets (a&ps). The reason is that, once we use a time stamp-based
sliding window for resampling (Sect. 4.2.4) and we do not keep the models
obtained with past windows, what we have in the ensembles are not models but
the information on the algorithms and respective parameter sets. Indeed, using
three month of data, the experiment with a particular a&ps generates several
models, one for each training set in the sliding window process. The predictions
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obtained for that a&ps were obtained using different models (one model for each
different test day).

The best pool is the one that allows the highest possible accuracy. However,
pool generation is strongly computer intensive. When we increase the number
of a&ps in the pool, the accuracy potentially increases, but the time needed
to generate it also increases. In practice, the pool should have as many a&ps
as possible, giving priority to a&ps able to learn accurate and diverse models.
The diversity can be obtained using different algorithms and using some of the
methods discussed in the previous chapter.

Three different pools of a&ps were obtained using the results from Chap.
5. Given the circumstances, the pools were not generated but, instead, selected
in a previous pruning step. The reason for the use of several pools was to
measure the sensitivity of the accuracy of the ensemble prediction to the pool.
This method to obtain the pools was already used by other authors, namely
[Caruana et al., 2004]. The used pools are:

• The pool 1538. It is the largest one with 1538 a&ps, as the name suggests.
It uses a selection of the a&ps tested in Chap. 5 (Table 7.1). In the table,
ES identifies the method used for example selection: ‘all’ uses all the
examples for training, ‘ln’ uses the leaf node approach and ‘ed’ uses the
equivalent days approach, as explained in Sect. 5.7.1.

• The pool 1234 (Table 7.2) does not use example selection, i.e., it uses
always the ‘all’ approach.

• The pool 130 (Table 7.3) has less a&ps from each one of the algorithms
comparing to the other pools. The only algorithm that is not used in
this pool is SVM sigmoid. The expanded description of this pool is in
Appendix B.

In all the pools, SVM uses the numeric data type for the variable week day
while PPR uses the symbolic data type. RF uses the numeric data type in all
but pool 1234.

7.2 Choosing the ensemble pruning techniques

The goal of ensemble pruning is to select a set of models (in this case, of a&ps)
from a pool. Two main choices must be made (using the categorization for
feature selection presented in Sect. 4.3.1): the search algorithm; and the eval-
uation function. As already discussed in the previous chapter, ensembles are
constructed, typically, for the use of constant weighting functions. However,
the study on how the ensemble of models/a&ps should be in order to take the
most of nonconstant weighting functions, is almost not discussed in the litera-
ture. The only known work on this subject presents a study on the best set of
pruning algorithm and integration function in order to optimize the ensemble
accuracy [Coelho and Von Zuben, 2006]. The results presented are not very
impressive. The best pair (pruning and integration algorithms) is problem de-
pendent (they use four classification data sets). The authors test several pruning
algorithms differing only in the searching schema. This fact can explain the re-
sults, at least partially. In fact, it is not expected that a searching method is
more skilled for a particular integration method than another one. Conversely,
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Table 7.1: A&ps in the pool 1538.
Algorithm ES Par 1 Par 2 Par 3 Par 4

SVM - linear ln 22idx1 idx2
10

SVM - radial all 22idx3 × 1000 idx4
5

6idx5
100000

SVM - radial ln 22idx3 × 1000 idx4
5

6idx5
100000

SVM - sigmoid ln 22idx3 × 1000 idx4
5

12idx3−10
1000000 −0.5idx6

RF ln idx4

RF ed idx4

PPR - supsmu ed idx4 idx5 idx7 0
PPR - supsmu ed idx4 idx5 0 idx1+3

10

PPR - spline all idx4 idx5 2idx7

PPR - spline ed idx4 idx5 2idx7

PPR - gcvspline all idx4 idx5 22idx1

PPR - gcvspline ed idx4 idx5 22idx1

idx1 = −2,−1, · · · , 6; idx2 = 1, 2, · · · , 10; idx3 = 1, 2, · · · , 5; idx4 =
1, 2, · · · , 4; idx5 = 1, 2, 3; idx6 = −1, 0, · · · , 4; idx7 = 0, 1, · · · , 10.
For SVM: Par 1 = C, Par 2 = ν, Par 3 = γ and Par 4 = coef0.

For RF: Par 1 = mtry.
For PPR: Par 1 = nterms and Par 2 = optlevel.

For PPR-supsmu: Par 3 = bass and Par 4 = span.
For PPR-spline: Par 3 = df.

For PPR-gcvspline: Par 3 = gcvpen.

Table 7.2: A&ps in the pool 1234.
Algorithm Par 1 Par 2 Par 3 Par 4

SVM - linear 22idx1 idx2
10

SVM - radial 22idx3 × 1000 idx4
5

6idx5
100000

SVM - sigmoid 22idx3 × 1000 idx4
5

12idx3−10
1000000 −0.5idx6

RF idx4

PPR - supsmu idx4 idx5 idx7 0
PPR - supsmu idx4 idx5 0 idx1+3

10

PPR - spline idx4 idx5 2idx7

PPR - gcvspline idx4 idx5 22idx1

idx1 = −2,−1, · · · , 6; idx2 = 1, 2, · · · , 10; idx3 = 1, 2, · · · , 5; idx4 =
1, 2, · · · , 4; idx5 = 1, 2, 3; idx6 = −1, 0, · · · , 4; idx7 = 0, 1, · · · , 10.
For SVM: Par 1 = C, Par 2 = ν, Par 3 = γ and Par 4 = coef0.

For RF: Par 1 = mtry.
For PPR: Par 1 = nterms and Par 2 = optlevel.

For PPR-supsmu: Par 3 = bass and Par 4 = span.
For PPR-spline: Par 3 = df.

For PPR-gcvspline: Par 3 = gcvpen.
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Table 7.3: A&ps in the pool 130.
Algorithm ES Par 1 Par 2 Par 3 Par 4

SVM - linear all 2−14+10idx1 2idx2−1
10

SVM - linear ln 2−14+10idx1 2idx2−1
10

SVM - radial all 24idx3−2 × 1000 4idx2−2
10

12idx2−6
100000

SVM - radial ln 24idx3−2 × 1000 4idx2−2
10

12idx2−6
100000

RF ln 2idx2 − 1
PPR - supsmu all 3 idx2 − 2 idx3 5idx3 − 5 0
PPR - supsmu ed 3 idx2 − 2 idx3 5idx3 − 5 0
PPR - spline all idx2 2idx2 − 1 25idx3−5

PPR - spline ed idx2 2idx2 − 1 25idx3−5

PPR - gcvspline all idx2 2idx2 − 1 28idx3−12

PPR - gcvspline ed idx2 2idx2 − 1 28idx3−12

idx1 = 1, 2, · · · , 5; idx2 = 1, 2; idx3 = 1, 2, 3.
For SVM: Par 1 = C, Par 2 = ν, Par 3 = γ and Par 4 = coef0.

For RF: Par 1 = mtry.
For PPR: Par 1 = nterms and Par 2 = optlevel.

For PPR-supsmu: Par 3 = bass and Par 4 = span.
For PPR-spline: Par 3 = df.

For PPR-gcvspline: Par 3 = gcvpen.

each evaluation measure is expected to be more adapted to certain integration
functions. For that reason we made experiments in order to test two evaluation
functions. Additionally we also test two search algorithms.

The search algorithms tested are:

• the well known Forward Sequential Selection (FSS) algorithm (Sect. 6.3.3);
and

• the algorithm by Moreira et al. already discussed in Sect. 6.3.3. This
algorithm is referred as Mor06 from now on. Despite the name of the
algorithm, we believe that this search method was already known, even if
we were not able to find a reference for it.

Both search algorithms are expected to stop at a local minima. While FSS
is deterministic, Mor06 is not, due to its random seed, i.e., different runs of the
algorithm return, typically, different results.

The evaluation functions tested are:

• the variation index (Eq. 4.5) for the predictor simple average. When this
metric is used, the algorithm gains the suffix ‘-avg’. For example, FSS-avg
is the FSS search algorithm using this evaluation function (Fig. 7.1).

• the same variation index but for the predictor with minimum squared
error at each data point. This metric is identified by the suffix ‘-smse’
meaning sum of minimum squared errors. Fig. 7.2 presents the pseudo-
code for Mor06-smse.



122 CHAPTER 7. EXPERIMENTS ON HETEROGENEOUS ENSEMBLES

FSS-smse is obtained from FSS-avg by substituting the avg evaluation func-
tion by the smse one (line 5 from Fig. 7.1 with line 6 from Fig. 7.2). Similarly
Mor06-avg is obtained from Mor06-smse by substituting the smse evaluation
function by the avg one (lines 6 and 12 from Fig. 7.2 with line 5 from Fig. 7.1).

Require: M((t + 1) ×m), a matrix with t predictions (from t a&ps) and the
actual value (the t + 1 row) for the m trips

Require: n, the number of a&ps to be selected from M
Require: in.array, an array with the identification of the lines of M to be in-

cluded in the final set. This parameter is useful to reduce the computational
cost when some of the a&ps are already known

1: in.set := Min.array,·
2: out.set := M1..t,· \ in.set
3: while size(in.set) < n do
4: for all the rows of out.set (cur.row) do
5: eval.value(cur.row) :=

∑m
j=1((avg(Mi∈in.set∪cur.row,j)−Mt+1,j)2)

6: end for
7: best.in := out.set row with min(eval.value)
8: in.set := in.set ∪ best.in
9: out.set := out.set \ best.in

10: end while
11: return varIndex using as predictor avg on the in.set ensemble

Figure 7.1: The pseudo-code for FSS-avg.

The first evaluation function was expected, a priori, to be more adequate to
constant weighting functions (in this particular case, the simple average). There
is no special reason to choose the simple average for the evaluation, as there
would not be any special reason to choose another constant weighting function,
because it is not expected that the pool is more skilled for a particular constant
weighting function. The simple average was chosen because of its simplicity.

On the other hand, the smse evaluation function was expected to be more
appropriate for the dynamic selection approach (Sect. 6.4.2). The set of a&ps
selected, are the ones that are accurate for a subset of the input space. The
main assumption of this evaluation function is that the ensemble prediction is
able to select the most accurate base predictor for each unlabelled example.
The question is to know if these examples form a region of the input space or,
instead, are sparse examples. In the last case, this metric will not be useful
because it will not be possible to detect the expertise of the base learners for
those particular examples when running the task ‘local choice of the model(s)’
(Fig. 6.3).

While the results of the algorithms using the avg evaluation measure are
an estimate of the error for the integration function simple average (even if
optimistic), the results of the algorithms using the smse evaluation measure is an
estimate of the oracle when selecting dynamically one predictor. This happens
because this evaluation measure uses the best prediction for each example, as
previously referred. Consequently, the results of both algorithms cannot be
compared.

Each combination of search algorithm and evaluation function was used for
each one of the pools described in Sect. 7.1 for the selection of 5, 10, 15, 20 and
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Require: M((t + 1) ×m), a matrix with t predictions (from t a&ps) and the
actual value (the t + 1 row) for the m trips

Require: n, the number of a&ps to be selected from M
1: sn := n different random values between 1 and t
2: in.set := Msn,·
3: out.set := M1..t,· \ in.set
4: repeat
5: for all the rows of out.set (cur.row) do
6: eval.value(cur.row) :=

∑m
j=1(min((Mi∈in.set∪cur.row,j −Mt+1,j)2))

7: end for
8: best.in := out.set row with min(eval.value)
9: in.set := in.set ∪ best.in

10: out.set := out.set \ best.in
11: for all the rows of in.set, now with n + 1 rows (cur.row) do
12: eval.value(cur.row) :=

∑m
j=1(min((Mi∈in.set\cur.row,j −Mt+1,j)2))

13: end for
14: best.out := in.set row with min(eval.value)
15: in.set := in.set \ best.out
16: out.set := out.set ∪ best.out
17: until best.in = best.out
18: return varIndex using as predictor smse on the in.set ensemble

Figure 7.2: The pseudo-code Mor06-smse.

25 a&ps. When using the Mor06 search algorithm, 10 runs were executed due
to its random seed, and the run with the lowest error is chosen one (table 7.4).

The comparison between the two different evaluation functions is not useful,
as previously referred. Comparing the results of the two different search methods
we observe that FSS is worse in every situation except when selecting ensembles
of sizes 20 and 25 in pool 1234. These results are better understood by analyzing
the ten runs of Mor06-avg (instead of comparing the minimum of the ten runs)
for each one of the pools using ensembles of sizes 5 and 25 (table 7.5). Results
are surprising because the dispersion is quite small for all the pools except pool
1234. When we select an ensemble of size 5, the dispersion is high even if the
minimum of the variation index on 10 runs is lower than the value obtained using
FSS-avg. For the ensemble of size 25, the dispersion is lower but the minimum
increases, being larger than the variation index obtained with FSS-avg. Despite
the results for ensembles of size 10, 15 and 20 are not displayed, this is a tendency
for the results with pool 1234: the larger the ensemble is the lower the dispersion
of the results is. On the contrary, the minimum increases. Why does this
happens? Why FFS is not affected by this problem? Table 7.6 shows some
common statistics to describe the pools. Pool 130 has no outliers, i.e., all the
a&ps are reasonably accurate. However, the other two pools have some outliers.
The percentage of outliers in pool 1234 is larger than in pool 1538. Using the
searching algorithm Mor06-avg, an initial subset is randomly selected. Then,
the a&ps that most improves the evaluation measure (in this case, the simple
average) is added to this subset. Next, the a&ps from the subset is removed
in order to obtain the highest evaluation measure for the remaining a&ps in
the subset. If the initial subset has one or more outliers, the a&ps that most
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Table 7.4: The variation index for each one of the pruning algorithms on each
one of the three used pools.

smse
FSS Mor06

Size P 1538 P 1234 P 130 P 1538 P 1234 P 130
5 5.05% 5.01% 5.34% 4.86% 4.95% 5.16%
10 3.50% 3.47% 4.13% 3.20% 3.39% 4.05%
15 2.78% 2.78% 3.66% 2.61% 2.71% 3.63%
20 2.43% 2.40% 3.47% 2.27% 2.36% 3.45%
25 2.19% 2.17% 3.36% 2.06% 2.13% 3.34%

avg
FSS Mor06

Size P 1538 P 1234 P 130 P 1538 P 1234 P 130
5 8.81% 9.07% 8.90% 8.80% 9.03% 8.90%
10 8.75% 9.10% 8.86% 8.72% 9.10% 8.85%
15 8.72% 9.18% 8.86% 8.71% 9.17% 8.86%
20 8.73% 9.23% 8.88% 8.72% 11.89% 8.88%
25 8.74% 9.27% 8.90% 8.73% 11.09% 8.90%

improves the ensemble’s evaluation measure, when added to the initial subset,
is the one that attenuates the most the effect of those outliers, probably another
outlier negatively correlated to the first one(s). This process can stop in a local
minima when the a&ps to remove is the last added a&ps. The smaller is the
size of the ensemble to select the lower is the probability of randomly select an
outlier. However, if one of them is selected, its effect on the ensemble evaluation
is stronger (this explain the existence of large values of variation indexes for pool
1234 in table 7.5). When selecting larger ensembles, the probability of selecting
an outlier is larger, but its effect in the variation index is smaller due to size of
the ensemble. This explains the larger values for the minimum variation index
in table 7.5 when we use pool 1234 and ensembles of size 20 and 25. FSS does
not have this effect because the ensemble is constructed incrementally using
forward search. This process is deterministic, there is no possibility of selecting
an outlier a&ps.

7.3 Ensemble integration techniques used

As it was previously discussed in Sect. 6.4.2, dynamic selection (Fig. 6.3)
has the following tasks: (1) find similar data; (2) select the model(s) to use in
the prediction; (3) obtain the prediction(s) from the selected model(s); and (4)
obtain the final ensemble prediction.

This section presents the methods used to accomplish tasks 1, 2 and 4 (task
3 is straightforward) in the experiments described in Sect. 7.5.

7.3.1 Obtaining similar data

Three methods were used to obtain similar data. Two of them use the well
known k-nearest neighbor (knn) algorithm but with different distance functions:
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Table 7.5: The variation index for the ten runs of Mor06-avg using ensembles
of size 5 and 25 on each one of the three used pools.

Ensembles of size 5 Ensembles of size 25
P 1538 P 1234 P 130 P 1538 P 1234 P 130
8.81% 31.11% 8.90% 8.74% 13.64% 8.90%
8.92% 31.24% 8.90% 8.74% 11.24% 8.90%
8.82% 9.03% 8.92% 8.73% 12.32% 8.90%
8.80% 38.58% 8.90% 8.74% 16.21% 8.90%
8.86% 48.83% 8.93% 8.73% 15.47% 8.90%
8.85% 9.06% 8.90% 8.74% 13.17% 8.90%
8.86% 74.01% 8.94% 8.73% 13.56% 8.90%
8.88% 9.04% 8.92% 8.73% 14.02% 8.90%
8.84% 9.06% 8.93% 8.73% 12.39% 8.90%
8.84% 9.03% 8.94% 8.74% 11.09% 8.90%

Table 7.6: Descriptive statistics for the variation index on each one of the three
used pools.

P 1538 P 1234 P 130
Percentil 0% 9.49% 9.82% 9.69%

25% 10.50% 13.27% 10.68%
50% 11.30% 14.53% 11.98%
75% 13.49% 15.59% 14.18%
80% 14.06% 15.99% 14.53%
85% 14.94% 95.54% 14.78%
90% 25.03% 736.25% 15.02%
95% 359.25% 7365.49% 16.01%

100% 21743.80% 220981.30% 24.76%
average 195.32% 2415.95% 12.60%

std. deviation 1266.22% 14885.58% 2.33%
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the Heterogeneous Euclidean-Overlap Metric (HEOM) distance [Wilson and
Martinez, 1997] and the feature weighted distance using the RReliefF algorithm
to obtain the weights. The third one selects similar data using the CART
algorithm [Breiman et al., 1984] as described in Sect. 5.7.1 (Fig. 5.14).

The HEOM distance was already used in the literature on ensemble learning
[Tsymbal et al., 2006]. We use it for comparison against the other two methods,
conceptually more complex. HEOM was already described in Sect. 5.4. Its
main advantage over other standard distance measures, namely the Euclidean
distance, is to handle simultaneously numeric and nominal attributes.

The RReliefF algorithm [Robnik-S̆ikonja and Kononenko, 2003] (already dis-
cussed in Sect. 5.7.3, Fig. 5.22) weighs each one of the input variables. These
weights are used to obtain a feature weighted distance. The array of weights
W returned by the RReliefF algorithm (one weight for each input variable) is
used to calculate the distance between the test example and each one of the
examples in the training set using a weighted average. This method guarantees
that the similarity is measured weighting differently the attributes according to
their relevance to the output variable.

The number of similar examples k is an input parameter when we use the
knn method. When the CART approach is used, the number of similar examples
has no upper limit. To overcome this limitation, we use the knn with the HEOM
distance on the members of the leaf node where the test example falls. Doing
this, the number of similar examples that are selected is the minimum between
the number of similar examples in the leaf node where the test example falls
and the input parameter k. When k = ∞ all the elements of the selected leaf
node are used. Since the CART tree is built selecting the split that minimizes
the sum of the output variable’s variances of the new two groups formed, the
examples that fall in the same leaf node have reduced variance in the output,
i.e., the examples in the same leaf node are similar according to the outputs.

The use of CART in the context of obtaining similar data for ensemble
learning is firstly described in [Moreira et al., 2007]. In this work some ex-
periments are done comparing the CART approach to select similar data to
three other methods, namely, a version of the kd-tree named approximate near-
est neighbor algorithm [Arya et al., 1998], and knn with two different distance
measures namely the Euclidean distance and the feature weighted distance us-
ing the RReliefF algorithm to obtain the weights. The kd-tree [Bentley, 1975]
is a generalization of the binary search tree. It is particularly suited for high-
dimensional data sets. The approximate nearest neighbor algorithm differs from
the original kd-tree because instead of returning the k nearest neighbors, it re-
turns an approximate number of k, more precisely k1 nearest neighbors where
k1 ≤ k. This approach reduces meaningfully the computational cost with a low
loss in accuracy. Experiments were done on five regression data sets using a
four sized ensemble. The approach using CART for similar data searching uses
all the examples from the selected leaf node as the similar data set. This can
explain, at least partially, the not very exciting results of this approach. The
data sets where the CART approach obtained better results were the ones in
which the best value of k for the knn approach was higher. The use of the CART
approach can have a smoother effect when the best similar data size is lower.
This was the motivation to use the HEOM distance on the examples from the
selected leaf node.
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7.3.2 Selecting the models and combining their predic-
tions

To accomplish both tasks 2 and 4 we use four different methods:

• selection of the best model on similar data (Best): the best model is the
one with minimum sum of the squared errors on the similar data set.

• forward selection with replacement (FSwR): at each iteration one selects
the model that, when included in the set of models already selected, max-
imizes the error reduction for the selected similar data, using the simple
average as combination method (task 4). It stops when the simple aver-
age of the predictions using the selected models does not improve further
on the validation set. The same model can be selected more than once.
This approach has been suggested by Caruana et al. in a different context
[Caruana et al., 2004]. It is important to note that, even if the combina-
tion method seems to be the simple average, in practice it is not, because
when the same model is selected more than once, the weight of each model
depends on the number of times this model is selected.

• Dynamic weighting (DW), already mentioned in Sect. 6.4.2: it uses the
vector w of weights and the matrix sqe with the squared error of the
models for each similar data point, in order to obtain the wm weight for
each model [Puuronen et al., 1999; Rooney et al., 2004] according to,

wi =
1

disti∑I
i1=1

(
1

disti1

) , (7.1)

wmk =

1√∑I

i=1
(wi∗sqei,k)

∑K
k1=1


 1√∑I

i=1
(wi∗sqei,k1)




, (7.2)

where i and i1 are the example’s indexes, k and k1 are the model’s indexes,
K is the ensemble size, dist is the vector of distances of the similar data
examples to the input example and I is the number of examples, i.e., the
size of the similar data set. In order to better understand the weights
equation, lets read 1/dist as a measure of similarity. In this case, wi is
the percentage of similarity due to example i.

• Dynamic weighting with selection (DWS) has a previous step with respect
to DW. It selects just the models with a mean squared error not higher
than a percentage threshold related to the best model. A similar approach
is already known [Tsymbal and Puuronen, 2000; Rooney et al., 2004] but
setting the threshold to 50%. We tested 5 different values for the threshold:
10%, 30%, 50%, 70% and 90%.
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Figure 7.3: Stacked generalization meta-model.

7.4 The experimental setup

The experimental setup is presented at this stage of the chapter because only in
Sect. 7.5 we use an ensemble learning framework. The experiments described
until now in this chapter, namely the ones on ensemble pruning (Sect. 7.2), do
not use this framework.

To better understand the particular experimental setup we have used, we
firstly describe the stacked generalization framework, also called stacking
[Wolpert, 1992]. Unfortunately, stacking is used with two different meanings:
(1) to name the general framework described next; and (2) to refer a particular
method for ensemble integration, as discussed in Sect. 6.4.1.

The stacked generalization framework [Wolpert, 1992], defines a meta-model
for ensemble learning. This quite general framework establishes two levels of
data. The level 0,

L0 = {(xi, yi), i = 1, ..., m}, (7.3)

is the data used to train one or more a&ps. In our experimental setup this is
done using sliding window as explained in Sect. 5.3. The result is an ensemble
(F) of k learned models. The level 1 data is obtained by applying these models
on the validation data,

L1 = {(f̂1(xi), ..., f̂k(xi), yi), i = 1, ..., m}. (7.4)

The level 1 of induction uses the level 1 data to generate the final predictor.
Using this framework for ensemble learning, the level 1 of induction corresponds
to the ensemble integration method. Figure 7.3 (adapted from [Merz, 1998])
presents the described framework.

This framework can be seen as a summary of ensemble methods that use the
generation and integration methods sequentially with some limitations as it is
discussed next.

Dynamic selection typically splits the data into three different data subsets:
the training set to build the k base predictors of the ensemble F ; the validation
set for assessment of the base predictors’ generalization error; and the test set
for assessment of the ensemble prediction’s generalization error.

We also split the data into three subsets: the training set, the validation
set for level 0 and the validation set for level 1. The validation set for level 1
is needed because we are testing different integration functions. However, in
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this chapter, we do not use a test set. The final evaluation of the framework
designed in this chapter is described in the next chapter. The generalization
error obtained with the validation set for level 1 is potentially underestimated.

The experimental setup we use is represented in Fig. 7.4. As it can be
observed, predictions are made only at the 65th day. This happens because
the training sets for both levels 0 and 1 use the same window size of 30 days,
i.e., 2 × (30 + 2) = 64. The two additional days for each level are due to the
prediction lookahead gap. It is not necessary though both training sets use the
same window size. As mentioned before (Sect. 5.3), this subject was not studied
in this thesis.

Figure 7.4: Experimental setup for ensemble learning using 70 days of data.

Comparing our approach to Wolpert’s framework, level 0 data is given by
Eq. 7.3 in both approaches but the level 1 data we use is given by

L1 = {(xi, f̂1(xi), ..., f̂k(xi), yi), i = 1, ...,m}. (7.5)

The level 1 data is different because we use a nonconstant weighting function
while Wolpert uses a constant one. The definition we use for L1 is more generic
than the one used by Wolpert. The additional xi element is necessary for both
tasks 1 and 4 of the dynamic approach model.
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7.5 The three experiments performed

Three different sets of experiments have been done, each one with a specific
goal. These goals are:

• First experiment: to test the three different methods to obtain similar
data (Sect. 7.3.1);

• Second experiment: to test how an ensemble selected from a pool learned
on a 3 month data set (January to March 2004) performs on a 8 month
data set (January to August 2006) by comparison against the performance
on a 3 month data set (January to March 2006);

• Third experiment: to test ensembles selected from the pool using two
different evaluation functions namely avg and smse (Sect. 7.2).

Tests on the choice of the similar data size (k) and on methods to select the
models and combine their predictions (Sect. 7.3.2) have been done in all the
experiments. Additionally, the results for the base learners alone and combined
with the constant weighting function simple average (avg), are shown. In the
first and third experiments we also test ensembles of different sizes.

We notice the use of avg in two different situations: (1) as evaluation function
of pruning algorithms; and (2) as integration method. Despite this notational
repetition, avg represents in both situations the simple average and, for that
reason, we believe that this repetition do not disturb the lecture of the present
section.

7.5.1 First experiment

The first experiment on methods to obtain similar data has the following set-
tings:

• Data set: trips from route 78-1-1, from January the 1st to March the 31st
2006 using the set of input variables {departure time, week day, day of
the year and day type};

• Ensemble: selected from pool 130 using the ensemble pruning algorithm
Mor06-smse for sizes 5, 10, 15, 20 and 25, where Mor06 and smse rep-
resents respectively, the search schema and the evaluation function (see
Sect. 7.2);

• Methods for finding similar data: k-nearest neighbor using distance func-
tions based on CART, HEOM and RReliefF approaches for k ∈ {2, 4, 6,
8, 10, 12, 14, 16, 18, 20, 25, 30};

• Methods for selecting the models to use in prediction: Best, FSwR, DW,
DWS-10%, DWS-30%, DWS-50%, DWS-70% and DWS-90%, where FSwR,
DW and DWS represent respectively forward selection with replacement,
dynamic weighting and dynamic weighting with selection (Sect. 7.3.2).

Analyzing the results (tables from 7.7 to 7.10) for the ensemble with 5 a&ps,
we can observe that:
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Table 7.7: First experiment: the variation index for the base learners and simple
average using the ensemble of size 5.

a&ps 14 a&ps 30 a&ps 36 a&ps 49 a&ps 74 Avg
12.47% 11.61% 11.55% 11.41% 11.03% 10.05%

Table 7.8: First experiment: the variation index for the knn-CART using the
ensemble of size 5.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 11.54% 11.36% 9.69% 9.85% 9.64% 9.67% 9.65% 9.66%
25 11.47% 11.44% 9.70% 9.77% 9.66% 9.70% 9.68% 9.66%
20 11.59% 11.46% 9.71% 9.87% 9.68% 9.74% 9.72% 9.69%
18 11.61% 11.44% 9.72% 9.82% 9.70% 9.75% 9.72% 9.69%
16 11.50% 11.46% 9.72% 9.90% 9.73% 9.77% 9.73% 9.71%
14 11.62% 11.54% 9.72% 9.93% 9.73% 9.79% 9.73% 9.71%
12 11.66% 11.56% 9.73% 9.88% 9.80% 9.78% 9.74% 9.72%
10 11.61% 11.55% 9.73% 9.94% 9.83% 9.80% 9.75% 9.75%
8 11.66% 11.59% 9.73% 9.93% 9.84% 9.79% 9.76% 9.75%
6 11.78% 11.68% 9.74% 10.08% 9.94% 9.91% 9.82% 9.80%
4 10.20% 10.14% 9.73% 10.18% 10.04% 9.92% 9.87% 9.88%
2 10.36% 10.23% 9.80% 10.30% 10.20% 10.11% 10.02% 9.97%

Table 7.9: First experiment: the variation index for the knn-HEOM using the
ensemble of size 5.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 11.55% 10.83% 10.10% 10.80% 10.69% 10.35% 10.24% 10.17%
25 10.92% 10.67% 10.09% 10.77% 10.58% 10.36% 10.23% 10.17%
20 10.90% 10.45% 10.08% 10.52% 10.50% 10.31% 10.19% 10.18%
18 11.02% 10.49% 10.07% 10.51% 10.51% 10.31% 10.21% 10.16%
16 10.63% 10.44% 10.07% 10.47% 10.49% 10.32% 10.20% 10.16%
14 10.45% 10.43% 10.06% 10.48% 10.43% 10.35% 10.19% 10.16%
12 10.37% 10.30% 10.06% 10.33% 10.46% 10.32% 10.20% 10.16%
10 10.51% 10.28% 10.04% 10.26% 10.38% 10.33% 10.23% 10.19%
8 10.47% 10.29% 10.03% 10.28% 10.42% 10.36% 10.25% 10.15%
6 10.70% 10.60% 10.03% 10.57% 10.48% 10.42% 10.29% 10.19%
4 10.94% 10.88% 10.02% 10.57% 10.46% 10.40% 10.36% 10.28%
2 11.25% 11.00% 10.10% 10.94% 10.87% 10.73% 10.62% 10.49%
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Table 7.10: First experiment: the variation index for the knn-RReliefF using
the ensemble of size 5.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 11.46% 10.54% 10.26% 10.89% 10.52% 10.39% 10.35% 10.29%
25 11.07% 10.62% 10.17% 10.95% 10.52% 10.40% 10.37% 10.32%
20 11.31% 10.69% 10.10% 10.86% 10.35% 10.16% 10.13% 10.12%
18 11.31% 10.62% 10.11% 10.96% 10.57% 10.34% 10.29% 10.27%
16 11.35% 10.73% 10.08% 11.14% 10.53% 10.37% 10.28% 10.24%
14 11.29% 10.69% 10.05% 11.09% 10.51% 10.35% 10.27% 10.26%
12 11.09% 10.66% 10.05% 10.93% 10.50% 10.33% 10.24% 10.20%
10 11.25% 10.76% 10.05% 10.98% 10.41% 10.30% 10.21% 10.10%
8 11.26% 10.75% 10.02% 10.81% 10.46% 10.22% 10.16% 10.07%
6 11.24% 10.87% 10.03% 10.94% 10.54% 10.41% 10.24% 10.13%
4 11.35% 11.13% 10.07% 11.06% 10.83% 10.52% 10.36% 10.25%
2 11.52% 11.47% 10.13% 11.32% 11.02% 10.80% 10.63% 10.57%

• Globally, knn-CART is the best of the three tested methods for obtaining
similar data.

• Knn-CART performs better than the other two methods for task 1, when
DWS or DW are used, whatever is the value of k.

• When DWS or DW are used, the best value of k depends on the method
used to obtain similar data. For knn-CART, the accuracy increases as
the value of k augments. For knn-HEOM, it is around 10, while for knn-
RReliefF is a little bit erratic.

• FSwR performs better than Best in all the situations.

• Just knn-CART beats the constant weighting function avg.

These results are not very different when larger ensembles are used (Ap-
pendix C.1). However, the main result is that knn-CART is always the best
method for obtaining similar data whatever is the size of the ensemble. For
knn-CART it is also apparent that the accuracy improves for larger similar
data sets, i.e., for larger k values. DS and DWS also compare favorably to Best,
FSwR and the simple average. However, it is not very clear what is the best
setting for dynamic weighting with or without selection (DWS and DW). It is
also important to understand the influence of the ensemble size. The analysis of
Fig. 7.5 gives some insights on these issues. Two groups of methods are appar-
ent: the one for lower values of the threshold for DWS and the other ones with
larger thresholds (including DW, since DW = DWS-100%). The first group is
more unstable than the second one despite the fact that the first group gets the
best overall result. Anyway, it is not obvious which is the best ensemble size.
Moreover, it is not guaranteed that the best ensemble for a three month period
is also the best one for a larger period. It seems more cautious to use at least
one complete seasonal-cycle of the seasonality with the widest amplitude, in this
case, one year. Since the pool 130 (Sect. 7.1) was trained and tested using just
3 month of data, from January the 1st to March the 31st of 2004, and the first
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experiment uses data from an equivalent period, i.e., from January the 1st to
March the 31st of 2006, the question is to know how the ensembles selected from
this pool behave on different months. The second experiment aims to clarify
this issue.

Figure 7.5: DW and DWS for 30-nn CART for different ensembles.

7.5.2 Second experiment

The second experiment has the following settings:

• Data set: trips from route 78-1-1, from January the 1st to August the 31st
of 2006 using the set of input variables {departure time, week day, day of
the year and day type};

• Ensemble: selected from pool 130 using Mor06-smse for size 5;

• Methods for finding similar data: knn for k ∈ {2, 4, 6, 8, 10, 12, 14, 16,
18, 20, 25, 30} using the distance function based on CART;

• Methods for selecting the models to use in prediction: Best, FSwR, DW,
DWS-10%, DWS-30%, DWS-50%, DWS-70% and DWS-90%.

The main differences for the settings used in the first experiment are: a
larger data set; the use of just one method, the knn-CART which obtained the
best results in the previous experiments, to obtain similar data; and the use of
just one ensemble, the one of size 5.

The analysis of the results (tables 7.11 and 7.12) is done by comparing them
to the results obtained using the same setting but on a data set with the same
3 months used in the data set where the pool was trained and tested, but from
a different year. These results were already presented in tables 7.7 and 7.8.
The difference among those tables are not due to different performance of the
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Table 7.11: Second experiment: the variation index for the base learners and
simple average using the 8 month data set.

a&ps 14 a&ps 30 a&ps 36 a&ps 49 a&ps 74 Avg
12.84% 13.05% 11.72% 12.14% 16.73% 11.08%

Table 7.12: Second experiment: the variation index for the knn-CART using
the 8 month data set.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 12.43% 11.99% 10.86% 11.40% 10.97% 10.82% 10.80% 10.83%
25 12.45% 12.15% 10.87% 11.47% 10.98% 10.86% 10.83% 10.84%
20 12.44% 12.07% 10.88% 11.48% 11.06% 10.91% 10.88% 10.86%
18 12.37% 12.12% 10.89% 11.56% 11.15% 10.95% 10.92% 10.91%
16 12.37% 12.13% 10.89% 11.64% 11.18% 10.93% 10.96% 10.95%
14 12.52% 12.27% 10.90% 11.70% 11.24% 10.99% 10.99% 10.96%
12 12.46% 12.06% 10.91% 11.71% 11.21% 11.01% 10.98% 10.96%
10 12.47% 12.09% 10.91% 11.78% 11.26% 11.04% 11.01% 10.96%
8 12.40% 12.02% 10.91% 11.79% 11.26% 11.06% 10.99% 10.98%
6 12.49% 12.14% 10.91% 11.76% 11.27% 11.15% 11.00% 10.96%
4 12.23% 11.95% 10.91% 11.91% 11.40% 11.26% 11.07% 11.00%
2 12.52% 12.27% 10.99% 12.34% 11.81% 11.64% 11.49% 11.36%

ensemble methods but to the increase of the error of the base learners when
using the 8 month data set. It seems wiser to train and test the ensemble
in a data set representative of the population, as understood by the statistical
community, i.e., in a time varying problem, using data that cover all the seasons
of the largest seasonality. For TTP, the use of one year of data to train the pool
of predictors could, potentially, avoid the use of a&ps that degrade strongly the
performance when used in different seasons (as it happens, for instance, with
the a&ps 74 from tables 7.7 and 7.11).

7.5.3 Third experiment

The third experiment on evaluation functions for ensemble pruning has the
following settings:

• Data set: trips from route 78-1-1, from January the 1st to March the 31st
of 2006 using the set of input variables {departure time, week day, day of
the year and day type};

• Ensemble: selected from pool 130 using Mor06-smse and Mor06-avg for
sizes 5, 10, 15, 20 and 25;

• Methods for finding similar data: knn for k ∈ {10, 20, 30, 40, 50, 60,
70, 80, 90, 100, 200, ∞} using the distance function based on CART
(knn-CART);
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Table 7.13: Third experiment: the variation index for the knn-CART on the 5
size ensemble obtained using Mor06-smse.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

∞ 11.63% 11.40% 9.70% 9.67% 9.58% 9.66% 9.67% 9.63%
200 11.50% 11.38% 9.70% 9.69% 9.61% 9.67% 9.67% 9.63%
100 11.60% 11.43% 9.70% 9.71% 9.61% 9.66% 9.67% 9.65%
90 11.63% 11.43% 9.70% 9.65% 9.62% 9.66% 9.66% 9.65%
80 11.62% 11.42% 9.70% 9.71% 9.64% 9.66% 9.66% 9.65%
70 11.66% 11.51% 9.70% 9.66% 9.64% 9.65% 9.66% 9.65%
60 11.66% 11.47% 9.70% 9.68% 9.61% 9.66% 9.66% 9.65%
50 11.66% 11.43% 9.70% 9.72% 9.61% 9.68% 9.66% 9.65%
40 11.52% 11.36% 9.70% 9.70% 9.63% 9.67% 9.66% 9.65%
30 11.54% 11.36% 9.69% 9.85% 9.64% 9.67% 9.65% 9.66%
20 11.59% 11.46% 9.71% 9.87% 9.68% 9.74% 9.72% 9.69%
10 11.61% 11.55% 9.73% 9.94% 9.83% 9.80% 9.75% 9.75%

Table 7.14: Third experiment: the variation index for the base learners and
simple average on the 5 size ensemble obtained using Mor06-avg.

a&ps 36 a&ps 72 a&ps 75 a&ps 96 a&ps 120 Avg
11.56% 12.70% 11.02% 10.91% 10.87% 9.92%

• Methods for selecting the models to use in prediction: Best, FSwR, DW,
DWS-10%, DWS-30%, DWS-50%, DWS-70% and DWS-90%.

The main differences for the settings used in the second experiment are: the
use of a 3 month data set again; the use of a different set of larger values of k
(in the previous experiments the best result of knn-CART was obtained for the
larger k value); and the use of two different ensembles (each one obtained using
a different evaluation measure in the pruning algorithm).

The evaluation functions used in the pruning algorithms (Sect. 7.2) were
chosen expecting that they could get the most of the Best and simple average
(avg) integration methods. The third experiment evaluates how the ensembles
obtained using each one of these evaluation functions perform for the different
integration functions being used. Results are shown in tables 7.7 and from 7.13
to 7.15 for ensembles of size 5. The results for larger ensembles are in Appendix
C.2. However, in tables 7.16 and 7.17 the results for k = ∞ for the different
ensemble sizes are presented.

From the analysis of the results we observe that:

• The integration functions Best and FSwR perform better when using the
Mor06-avg ensemble.

• The performance of Best and FSwR improve when using larger k in the
selection of similar data for the Mor06-avg ensemble.

• The behavior of the integration functions when using ensembles of different
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Table 7.15: Third experiment: the variation index for the knn-CART on the 5
size ensemble obtained using Mor06-avg.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

∞ 10.12% 9.91% 9.90% 9.61% 9.80% 9.92% 9.94% 9.95%
200 10.13% 9.92% 9.90% 9.60% 9.81% 9.92% 9.94% 9.95%
100 10.12% 9.95% 9.91% 9.68% 9.85% 9.91% 9.95% 9.95%
90 10.16% 9.97% 9.91% 9.68% 9.86% 9.91% 9.95% 9.95%
80 10.36% 10.03% 9.91% 9.66% 9.86% 9.92% 9.95% 9.94%
70 10.36% 10.05% 9.91% 9.74% 9.82% 9.93% 9.94% 9.94%
60 10.36% 10.14% 9.92% 9.89% 9.82% 9.94% 9.95% 9.94%
50 10.49% 10.22% 9.92% 9.92% 9.83% 9.94% 9.96% 9.95%
40 10.76% 10.51% 9.92% 9.90% 9.84% 9.95% 9.93% 9.93%
30 10.98% 10.87% 9.93% 9.98% 9.81% 9.95% 9.94% 9.92%
20 11.03% 10.79% 9.93% 10.14% 9.85% 9.92% 9.96% 9.95%
10 11.06% 10.92% 9.95% 10.37% 9.99% 9.98% 10.02% 10.00%

Table 7.16: Third experiment: the variation index for the knn-CART with
k = ∞ on ensembles obtained using Mor06-smse.

Size Avg Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

5 10.05% 11.63% 11.40% 9.70% 9.67% 9.58% 9.66% 9.67% 9.63%
10 10.09% 11.74% 11.50% 9.78% 9.78% 9.61% 9.68% 9.72% 9.71%
15 9.98% 11.74% 11.73% 9.68% 9.85% 9.55% 9.59% 9.63% 9.63%
20 10.03% 11.67% 11.70% 9.75% 9.95% 9.61% 9.66% 9.70% 9.70%
25 9.95% 11.41% 11.20% 9.76% 9.54% 9.58% 9.65% 9.67% 9.68%

Table 7.17: Third experiment: the variation index for the knn-CART with
k = ∞ on ensembles obtained using Mor06-avg.

Size Avg Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

5 9.92% 10.12% 9.91% 9.90% 9.61% 9.80% 9.92% 9.94% 9.95%
10 9.68% 9.78% 9.55% 9.62% 9.48% 9.54% 9.62% 9.63% 9.63%
15 9.59% 9.69% 9.50% 9.55% 9.41% 9.46% 9.52% 9.56% 9.55%
20 9.62% 9.76% 9.54% 9.60% 9.44% 9.50% 9.59% 9.61% 9.61%
25 9.56% 9.67% 9.50% 9.55% 9.41% 9.46% 9.53% 9.55% 9.55%
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sizes is different for Mor06-avg and Mor06-smse ensembles. It seems that
Mor06-avg ensembles take more advantage from the existence of more
models (tables 7.16 and 7.17).

• Globally, the best result is obtained using the Mor06-avg ensemble.

• Mor06-smse ensembles do not seem to be valuable whatever is the ensem-
ble integration function.

• Excepting Best, nonconstant weighting functions improve slightly but
consistently constant weighting functions when Mor06-avg ensembles are
used.

7.6 Final comments

The final phase of Part III of this thesis is to evaluate what is the best method
for TTP three days ahead. This is the subject of the next chapter. To do
this, it is necessary to test the ensemble learning framework, as well as other
approaches, using a set of different routes. To better accomplish this task, we
describe the lessons from the experiments carried on along this chapter.

The pool generation described in Sect 7.1 benefits from the many experi-
ments done using the same data set. In fact, the pool generation was done in
Chap. 5 when experiments with different algorithms were carried on. The pool
generation described in Sect. 7.1 is no more than a previous pruning step using
a set of empirical criterion. All the experiments described until now use data
from route 78-1-1. It is not guaranteed that a good pool for this route is good
for a different one. The pool 130 can be a first starting set but it is important
to inspect the pool and add new a&ps if necessary.

It would also be important to assure that the data used for the pool gener-
ation guarantees one year of data for validation. This remark results directly
from the second experiment (Sect. 7.5.2) on ensemble learning.

Ensemble pruning should use the avg evaluation measure (Sect. 7.5.3). The
forward searching method seems to be a good option because it is much faster
than Mor06 with a small loss in accuracy. Furthermore it is not sure that this
difference is statistically meaningful, but even if it is, the difference is really
minimum. Concerning the optimal size of the ensemble, the results are a little
bit erratic (Fig. 7.5). Furthermore, it is not expected that using a data set
for the pool generation with more months, the behavior of Fig. 7.5 would be
similar. It seems wise to test different ensemble sizes when using different routes,
especially if the data set used for the pool generation covers different seasons of
the seasonality with the widest amplitude.

On ensemble integration, the use of knn-CART (Sect. 7.5.1) with k = ∞
(Sect. 7.5.3) is a natural choice to obtain the similar data set. Moreover, the
results using knn-CART are theoretically founded by the variance reduction at
each split in the CART recursive partitioning algorithm [Breiman et al., 1984].
However, the method to accomplish tasks 2 and 4, i.e., selection and combination
of the base learners, is expected to have an erratic behavior for different sizes of
the ensemble (Fig. 7.5), even if the differences are not too large. Furthermore,
it seems wiser, when using data sets covering different months, to test at least
DW and DWS with different settings (Sect. 7.5.2).
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The large number of experiments done on the same data (both in Chap. 5
and in the present one) reduce the confidence on good results since they may
have been a consequence of oversearching. This problem is well described in
[Salzberg, 1997]. Even if this happens, it will be detected in the following chapter
because the chosen ensemble approach will be tested using new data sets from
six different routes. Furthermore, each experiment uses different training and
test sets according to the sliding window method, reducing this possibility. It
is also important to note that Salzberg assumes that experiments are randomly
chosen. This is true in the process of parameter tuning described in Sect. 5.6,
but in the remaining experiments there is a sense of causality for the choice of
each particular experiment, i.e. they were not chosen randomly.

The analysis of the results does not use statistical methods in order to obtain
statistically meaningful conclusions. This option was already taken in Chap. 5.
The goal of these experiments is to choose one method for future deployment
on different routes. Even if a method is not statistically different from another
one, one of the methods must be chosen, unless it is expected that this method
will have a different behavior on different data sets. In this case, the possible
methods for this particular task should be tested for each different data set.



Chapter 8

Evaluating different
approaches

The purpose of this chapter is to evaluate the different methods for travel time
prediction three days ahead. We start by describing the routes/lines (a line
is a set of routes, as described in Sect. 2.1.1) used in the tests (Sect. 8.1).
Afterwards, we present the methods to be compared (Sect. 8.2) followed by the
description of the experimental setups and first results for each of these methods
(Sect. 8.3). The results obtained are presented and statistically evaluated. A
discussion on the advantages and disadvantages of the most promising methods
for travel time prediction three days ahead is carried out (Sect. 8.4). Finally,
we discuss, in a prospective way, how TTP three days ahead could be used in
practice (Sect. 8.5).

8.1 Tested routes/lines

We have selected the F3 rostering group, according to the concept of rostering
group as defined in Sect. 2.1.2, for the experiments (plan defined in Sect. 2.3).
This group was chosen because it is small and its lines are very different from
each other. It has four lines: two circular ones (lines 300 and 301) with just
one route each, and two lines (205 and 505) with two routes (go and return),
totalizing 6 routes. The circular lines are typical urban lines. All four lines go
past Hospital de São João, an important bus and metro interface, where there
is a relief point for the crew.

Line 205 runs along almost the whole of a peripheral road that roughly
defines, together with Douro river and the sea, the limits of Oporto municipality.
Crossing some of the main entrances of the city, it serves two important mass
transport interfaces, the referred Hospital de São João and the main railway
station at Oporto, the Campanhã station, where there is also a metro station.
This line is the first to be presented in order to facilitate the reading of the
maps.

Lines 300 and 301 are roughly equal but in opposite directions. That is
why just one of them is presented (Fig 8.2). Both are arterial urban circular
lines that connect the city center, where there is the second railway station (São
Bento) and the metro, to Hospital São João.

139
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Figure 8.1: Line 205.

Line 505 connects Oporto to the neighboring town of Matosinhos, where
there is a sea port. The area served by the line is typically suburban. This line
does not go to Oporto city center. It stops at the above mentioned peripheral
road at Hospital São João. Despite the fact that this line serves an area quite
close to Oporto, it is neither an urban nor a commuter line.

8.2 Tested methods

From the experiments done in chapters 5 and 7, the following methods were
chosen for comparison with the method currently in use at STCP:

• The baseline method uses as prediction the travel time of the nearest past
example (Sect. 5.4);

• The expert-based method selects past data similar to the test example
using a more complete similarity measure than the one used in the baseline
method, and uses this data to obtain the prediction by averaging their
travel time (Sect. 5.5);

• The single best a&ps from the pool used in the ensemble generation task
(we used pool 128, Appendix D.1);
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Figure 8.2: Line 300.

• An ensemble approach using nonconstant weighting functions following the
lessons learned (Sect. 7.6) from the experiments on ensemble learning.

8.3 Experimental setups and preliminary results

In order to compare the different methods, it is necessary to guarantee, as far
as possible, comparable experimental setups. In fact, they cannot be fully guar-
anteed due to the different nature of the methods. The main concern regarding
the experiments described in the present chapter was to guarantee both ade-
quate model tuning and the same test set for all the methods. Considering that
the ensemble approach is the most demanding method (of the four tested) in
terms of data, we begin the description of the experimental setup for this case,
followed by the single best a&ps, the expert-based and the baseline methods.
Before the experimental setups, we briefly describe the data available for the
tests.

8.3.1 Available data

Regardless of the routes used to collect the data (see Sect. 8.1), the period
covered by the data is important to design the experimental setup. These ex-
periments were executed at the beginning of April 2008. Due to the complete
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Figure 8.3: Line 505.

redesign of the STCP bus network (the new network began to be used on Jan-
uary the 1st 2007), there were, for each route, 15 months of data.

8.3.2 Experimental setup for the ensemble method

We describe again the necessary data for the experimental setup of the ensemble
approaches, according to the stacked generalization framework [Wolpert, 1992]
described in Sect. 7.4:

• A training set for level 0 of induction;

• A validation set to assess the generalization error of the base learners.

• A second validation set to tune parameters of the ensemble framework
(this set is not mentioned in the Wolpert’s paper because the level 1 of
induction used there does not have parameters to tune).

• The test set to assess the final generalization error.

Without restrictions on the amount of available data, the ideal size for the
two validation sets and the test set would be one year of data each in order
to guarantee that the sample is representative of the population, since the sea-
sonality of the year is the one with the widest seasonal-cycle. Using sliding
window (Fig. 7.4), the following would be: (1) 30 days for the initial training
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set; (2) at least 2 days plus to keep 3 days of distance for the prediction data;
(3) 365 days for the first validation set; (4) 365 days for the second validation
set; and (5) 365 days for the test set. This would give around 37 months of data.
This estimate is obviously very conservative. With just 15 months of data, and
knowing that the first 32 days are necessary for the initial iteration of the sliding
window process (the aforementioned sets 1 and 2), the remaining data (around
14 months) should be split into three parts: two validation sets and one test
set. We have decided to use approximately 8 months for the first validation
set, 3 for the second validation set and the remaining 3 for the test set. The
reason to do so was three-fold: (1) the sensitivity of the base learners to level
0 data (Sect. 7.5.2), (2) the lower sensitivity of the ensemble approach to its
tuning task, namely to the choice of both the ensemble size and the integration
method, and (3) the option to give priority to the primary steps in the ensemble
framework because the test set will grow over time and new data can be tested
without it being necessary to repeat these primary steps. Following closely the
considerations made in Sect. 7.6, the experiments using the ensemble approach
have the following settings:

• Pool generation:

– Data set: trips from January the 1st to September the 29th 2007
using the set of input variables {departure time, week day, day of the
year and day type};

– Pool generated: pool 128 (Appendix D.1);

– Experimental setup: as described in Sect. 5.3.

• Ensemble pruning:

– Pruning algorithm: FSS-avg, i.e., the forward search algorithm using
the simple average for evaluation (Fig. 7.1);

– Sizes of the selected ensembles: Size ∈ {5, 10, 15, 20, 25}.
• Ensemble integration:

– Data set: trips from July the 28th to December the 31th 2007 using
the set of input variables {departure time, week day, day of the year
and day type};

– Ensemble: selected from pool 128 using FSS-avg for Size ∈
{5, 10, 15, 20, 25};

– Experimental setup: as described in Sect. 7.4;

– Tasks of the dynamic approach (Sect. 6.4.2):

∗ Obtaining similar data: knn-CART with k = ∞ (see Sect. 7.3.1
and 7.6);

∗ Selecting the models and combining their predictions: Best,
FSwR, DW, DWS-10%, DWS-30%, DWS-50%, DWS-70% and
DWS-90%, where FSwR means forward selection with replace-
ment, DW means dynamic weighting and DWS means dynamic
weighting with selection (Sect. 7.3.2 and 7.6).

• The final test:
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Table 8.1: The best setting and respective variation index for each route using
the ensemble approach on the second validation set.

route size integration function var. index
205-1-1 5 DWS-70% 8.87%
205-1-2 5 DWS-50% 9.28%
300-1-1 5 DWS-90% 7.00%
301-1-1 5 DWS-90% 10.30%
505-1-1 5 DWS-50% 12.19%
505-1-2 5 DWS-30% 10.07%

– Data set: trips from October the 31st 2007 to March the 31th 2008
using the set of input variables {departure time, week day, day of the
year and day type};

– Ensemble: selected from pool 128 using FSS-avg and using the setting
with best results in the experiment on ensemble integration;

– Experimental setup: as described in Sect. 7.4;
– Tasks of the dynamic approach (Sect. 6.4.2):

∗ Task 1: knn-CART with k = ∞ (see Sect. 7.6);
∗ Tasks 2 and 4: using the integration function with best results

in the experiment on ensemble integration.

In table 8.1 the best settings of ensemble integration in the second validation
set are presented. The complete preliminary results of the ensemble approach
are in Appendix D.

8.3.3 Experimental setup for the single best a&ps

The necessary data for the selection of the best a&ps does not require a second
validation set as in the previous case. It requires:

• A training set to generate the pool of models;

• A validation set to assess the generalization error of the base learners;

• The test set to assess the final generalization error.

For this case, the necessary data would be: (1) 30 days for the initial training
set size; (2) at least 2 days plus to keep 3 days of distance for the prediction
data; (3) 365 days for the validation set; and (4) 91 days for the test set (to
guarantee the use of the same test set for all the four tested methods, since it
was the test set used in the ensemble approach). This would require around
16 months of data where there is just 15. In order to use the same test set
as for the ensemble method, the only option would be to reduce the validation
set to around 11 months. However, in order to computationally benefit from
the experiments made for the ensemble method, we have decided to use only
9 months of data for validation. This guarantees that the ensemble generation
process described in the previous section could be used for the selection of the
single best a&ps.

The settings for the experiments are:
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Table 8.2: Best a&ps and respective variation index (VI) for each route on the
validation set.

Route Algorithm ES WDDT P1 P2 P3 P4 VI

205-1-1 svm linear ln Sym. 0.0625 0.9 8.89%
205-1-2 ppr spline all Num. 1 3 32 10.19%
300-1-1 RF ed Sym. 3 7.89%
301-1-1 svm linear ln Sym. 0.0625 0.3 12.28%
505-1-1 svm linear ln Sym. 0.0625 0.3 12.66%
505-1-2 svm sigmoid ln Sym. 16000 0.6 0.000002 -2 10.96%

• Pool generation:

– Data set: trips from January the 1st to September the 29th 2007
using the set of input variables {departure time, week day, day of the
year and day type};

– Pool generated: pool 128 (Appendix D.1);

– Experimental setup: as described in Sect. 5.3.

• The final test:

– Data set: trips from November the 30th 2007 to March the 31st 2008
using the set of input variables {departure time, week day, day of the
year and day type};

– a&ps: the one with minimum generalization error (mse) from pool
128;

– Experimental setup: as described in Sect. 5.3.

Table 8.2 presents the best a&ps for each route. ES identifies the used
example selection method, as described in Sect. 5.7.1. WDDT identifies the
data type used for the variable weekday, as discussed in Sect. 5.7.2. The
parameters P1, P2, P3 and P4 should be read as follows:

• For SVM: P1 = C, P2 = ν, P3 = γ and P4 = coef0;

• For RF: P1 = mtry;

• For PPR-supsmu: P1 = nterms, P2 = optlevel, P3 = bass and P4 = span;

• For PPR-spline: P1 = nterms, P2 = optlevel and P3 = df;

• For PPR-gcvspline: P1 = nterms, P2 = optlevel and P3 = gcvpen.

8.3.4 Experimental setup for the expert-based method

The expert-based method requires the same sets as the single best predictor.
The options on the size of each one of the sets are identical. However, in the case
of the expert-based method, we used an 11-month validation set. Consequently,
the experiments using the expert-based method have the following settings:



146 CHAPTER 8. EVALUATING DIFFERENT APPROACHES

Table 8.3: Best parameter sets for the expert-based method and respective
variation index for each route on the validation set.

route min.ex margin max.incr var. index
205-1-1 24 600 7 8.79%
205-1-2 24 600 7 9.24%
300-1-1 21 600 7 6.91%
301-1-1 21 1200 3 8.81%
505-1-1 27 300 1 12.10%
505-1-2 15 600 7 9.99%

• Tuning parameter set:

– Data set: trips from January the 1st to December the 31th 2007;

– The 125 tested parameter sets were the combination of:

∗ min.ex ∈ {15, 18, 21, 24, 27};
∗ margin ∈ {300, 600, 900, 1200, 1500};
∗ max.incr ∈ {1, 3, 5, 7, 9}.

– Experimental setup: as described in Sect. 5.3.

• The final test:

– Data set: trips from November the 30th 2007 to March the 31th 2008;

– Parameter set: the one with minimum generalization error (mse)
from the 125 tested;

– Experimental setup: as described in Sect. 5.3.

The best parameter set in the validation set for each route is presented in
table 8.3.

8.3.5 Experimental setup for the baseline method

The baseline method does not have parameters to tune. Consequently, the only
experiment is the final test. It has the following settings:

• Test set: trips from November the 30th 2007 to March the 31th 2008;

• Experimental setup: as described in Sect. 5.3.

8.4 Results and Analysis

The results obtained for the five methods using the same test set (from January
the 1st 2008 to March the 31th 2008), are presented in table 8.4 and Fig. 8.4.
The method in use at STCP, identified by STT (Scheduled Travel Time), uses
the timetabled values for the days covered by the test set. The STTs used in
these experiments were obtained using the two different approaches as described
in Sect. 2.2.2: the old one for Saturdays and Sundays (for all four lines) and
for working days (lines 300 and 301); the new one for working days on lines 505
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Table 8.4: The variation index for different methods on the test set. The
methods with statistically meaningful lower error than all the others for α∗ =
0.005 are in bold-face.

Route STT BL EXP BST ENS n
205-1-1 11.87% 12.14% 9.08% 9.49% 9.00% 5210
205-1-2 12.13% 12.42% 9.33% 10.03% 9.21% 5372
300-1-1 13.53% 19.78% 14.06% 16.38% 14.08% 3668
301-1-1 14.06% 18.79% 14.15% 15.18% 14.08% 3671
505-1-1 12.82% 15.83% 11.52% 11.62% 10.92% 2161
505-1-2 14.04% 12.95% 9.18% 9.26% 8.78% 1547

STT: Scheduled Travel Time; BL: BaseLine predictor; EXP: EXPert-based
predictor; BST: single BeST predictor; ENS: ENSemble predictor.

(from January 21st) and 205 (however, the method used to define the STT for
line 205 was still under study and, consequently, it still had margin to improve
using that approach). Column n identifies the number of trips in the test set.

Figure 8.4: The variation index for different methods in the test set.

Given the fact that the goal is to compare every pair of methods (this
task is named all-pairwise comparisons in the statistical literature [Hsu, 1996;
Nakayama, 1997]), a multiple comparison test must be done. In Sect. 4.2.5 we
have already discussed the main issues on multiple comparison tests and the
difficulties in comparing methods when the instances are not independent. The
lack of specific methods for this type of problem has led us to adopt an exist-
ing method knowing a priori that the obtained results must be analyzed with
caution because the assumption of independence of the examples does not hold.

The method we use is an approximate procedure described in [Hochberg
and Tamhane, 1987]. Its use is justified by the fact that its only assumption
is that the examples are independent (that assumption also exists in all known
alternative methods) and also because any error measure can be used [Feelders
and Verkooijen, 1995]. The error measure we use is that used in [Feelders and

Verkooijen, 1995], i.e., the square error calculated as f̂ ei(x) =
(
f̂i(x)− f(x)

)2

.
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We denote the sample average of f̂ ei as f̂ ei, the sample variance of f̂ ei as Se2
i ,

the sample covariance of f̂ ei and f̂ ej as Sei,j , the number of test examples as
n, and the number of predictors being compared as k. The method consists of
the following definition of (1− α)× 100 simultaneous confidence intervals:

µei − µej ∈

f̂ ei − f̂ ej ± T

α∗/2
n−1 ×

√
Se2

i + Se2
j − 2× Sei,j

n


 , (1 ≤ i < j ≤ k),

(8.1)
where α∗ = α/k∗, k∗ = k × (k − 1)/2, and T a

df is the upper a point of
Student’s t-distribution with df degrees of freedom [Hochberg and Tamhane,
1987]. The use of α∗ instead of α is due to the use of the Bonferroni method
in order to correct the multiplicity effect described in Sect. 4.2.5. For α = 0.05
and k = 5, k∗ = 5×(5−1)

2 = 10, α∗ = 0.05/10 = 0.005 and T 0.005
∞ = 3.17 1.

The multiple intervals of confidence are presented in table 8.5 for each of the
six routes. Intermediary results can be seen in Appendix E.

The analysis of the intervals of confidence must be made knowing that when
both limits of the interval are positive it means that the predictor in the line
has a larger error, for α = 0.05, than the one in the column. If both limits are
negative then it means that the predictor in the column has a larger error, for
α = 0.05, than the one in the line. If one of the limits is positive and the other
is negative then the test is inconclusive for α = 0.05.

The results obtained deserve an analysis:

• Results are clearly different for the circular routes (300-1-1 and 301-1-1)
and for all the others (205-1-1, 205-1-2, 505-1-1 and 505-1-2). On circular
routes the lack of slack times urges the accomplishment of the schedule.
Consequently it is expected that for this type of route, the STTs are
more accurate than any other method because the control is performed in
order to guarantee its accomplishment. For these routes, the use of speed
modification and short turning is common (see Sect. 2.2). These orders
are communicated from the control center to the drivers by radio. An
open question is to know what price is payed by the passengers when the
STT are not the most appropriate. For circular routes, the usual measure
for passengers’ satisfaction, the time they must wait for the bus at the
bus stop, does not seem enough. The type of complaints made by the
passengers on circular routes has some particularities when compared to
other routes, namely complaints about the low speed of the trips. The
use of mse alone does not capture this problem, i.e., the inefficiency of the
planning. How to evaluate the quality of the planning is an open question
for future research.

• Comparing these results with the preliminary ones (Sect. 8.3), i.e., the
ones obtained using the validation sets, routes 300-1-1 and 301-1-1 present
surprisingly larger variation indexes in the test sets. To better understand
how the error behaves along time in the test sets, weekly moving variation
indexes for each one of the routes are presented in figures from 8.5 to 8.10.
It is interesting to observe that the relative accuracy between the different

1∞ is acceptable due to the large sizes of the test sets.
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Table 8.5: Multiple intervals of confidence for the pairwise difference of mse.
The statistically meaningful differences for α∗ = 0.005 are in bold-face.

route 205-1-1

BL EXP BST ENS

STT [-20962, 6505] [58633, 74198] [50228, 65288] [60183, 76320]
BL [62065, 85222] [52988, 76985] [64043, 86917]

EXP [-13359, -3955] [-2015, 5688]
BST [5990, 14997]

route 205-1-2

BL EXP BST ENS

STT [57662, 83345] [48369, 63970] [47117, 65222] [48623, 63716]
BL [59652, 81355] [44541, 67797] [62502, 83123]

EXP [-19351, -9318] [-722, 5340]
BST [12622, 20664]

route 300-1-1

BL EXP BST ENS

STT[-435850, -237883] [-33746, -13203] [-177985, -97873] [-40873, -8082]
BL [214463, 412322][105514, 292361][214113, 410665]

EXP [-150348, -78562] [-16010, 14003]
BST [81597, 145306]

route 301-1-1

BL EXP BST ENS

STT[-354709, -175278] [-23043, 14135] [-88588, -23340] [-136242, 134140]
BL [192565, 328513][140598, 277461][144308, 383577]

EXP [-74330, -28690] [-95499, 102305]
BST [-46526, 156352]

route 505-1-1

BL EXP BST ENS

STT [-116994, -48231] [13974, 46921] [12327, 44166] [29639, 57202]
BL [81103, 145016] [77591, 144125] [94479, 157486]

EXP [-15317, 10915] [2749, 23198]
BST [8695, 21654]

route 505-1-2

BL EXP BST ENS

STT [-76287, -8998] [117913,156319] [113049, 157429][125739, 166029]
BL [152589, 206928][148811, 206952][160367, 216686]

EXP [-14076, 10322] [104, 17432]
BST [2241, 19049]

STT: Scheduled Travel Time; BL: BaseLine predictor; EXP: EXPert-based predictor;
BST: single BeST predictor; ENS: ENSemble predictor.
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methods does not change meaningfully with time. Although a deeper
analysis would be needed to get more insights into the variation of the
generalization error, this study is not made in this thesis. It is a possible
subject for future research.

• From figures 8.5 to 8.10 it is apparent that BST performs well in most
situations but in some situations performs worse. On all the routes it is
very clear that there are periods when BST has quite different behavior
from EXP and ENS.

• From the four tested predictors, the expert-based method and the ensem-
ble approach are the most accurate and robust ones. The advantages and
disadvantages of each of these methods are outlined:

– From the accuracy point of view, the ensemble approach has a small
advantage. Furthermore, it can be argued that the expert-based
method can be included in the ensemble and, in that way, it is ex-
pected that the ensemble approach will improve the expert-based
results. In fact, the experiments done in Chap. 7 show (even if
without statistical validation) that the ensemble approach is able to
improve the results of all the individual models in the ensemble.

– Despite the fact that we have used just four input variables in the
experiments done in this chapter, in Sect. 5.7.3 it was apparent
that the inclusion of meteorologic variables could improve results.
The inclusion of these variables in the expert-based method is not
straight because it must be explicitly defined how they are used. In
the ensemble approach this is not a problem since the base models
are data driven.

– Much more time and data is necessary to configure the ensemble
model when comparing with the expert-based method. In the exper-
iments presented in this chapter, two validation sets and one test set
have been used for the ensemble approach. The expert-based method
used one validation set and one test set but, if necessary, the valida-
tion set can be discarded with a slight loss in accuracy because the
algorithm is very stable regarding the input parameters, as shown in
Sect. 5.5. This advantage of the expert-based method can be par-
ticularly important for the use in practical situations where time is
often an important constraint.

– Without knowing what the business value of the increase in accuracy
is, it is not possible to know what price we are able to pay for it.

8.5 Prospecting the use of TTP 3 days ahead

Let us assume that a mass transit company has the right conditions to rede-
fine the planning, namely the duties for the buses and drivers and respective
assignment tasks, just three days before the date of the duties. How could the
company use TTP results 3 days ahead?

The first thing to do would be to make a new timetable just for internal
planning purposes, i.e., not known to the public. Let us denote the values of
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Figure 8.5: Weekly moving variation index for route 205-1-1.

Figure 8.6: Weekly moving variation index for route 205-1-2.

this new timetable with the suffix * and let us give to the new scheduled travel
time (STT*) the predicted travel time. It is important to note that for planning
purposes the only information that is used from this new timetable is the sum of
each STT* with the respective SlT*, where SlT* represents the new slack time.
A possible approach to estimate a lower limit for STT* + SlT* is to use the
decision support system for timetable adjustments (as described in Sect. 3.3.1,
using STT* + SlT* = p.max) or to define an algorithm to choose one of the
possible values for this sum. The process of defining SlT* would be facilitated
due to the constraint imposed by Eq. 2.2, which strongly limits the number of
acceptable solutions, as discussed in Sect. 3.2.2. These new values for the sum
of STT* + SlT* are those needed to define new schedules for both buses and
drivers. For control purposes, the timetable known by the public is the one that
should be used, together with the new duties for the buses and drivers. The
controllers should act according to the headway, as discussed in Sect. 3.3.
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Figure 8.7: Weekly moving variation index for route 300-1-1.

Figure 8.8: Weekly moving variation index for route 301-1-1.

Is it possible to do all this just three days before? Technically, we think that
it is possible. Even if it is not possible in three days, it could probably be in
four or five days. The number of days of anticipation is not the most important
although it may be important for the quality of the prediction. What is impor-
tant is that there is the opportunity to use different schedules for the public and
for the planning tasks, giving us the opportunity to reduce the gap between the
planned and the actual duties. The best way to do this is still an open issue
for research, just as the question of knowing how much we lose in accuracy by
increasing the prediction horizon is also open. Another open issue is the impact
of these changes in terms of possible operational costs reduction, passengers’
satisfaction increase, or even on internal management issues for the companies.
These last questions are critical in evaluating the viability of implementing this
approach.
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Figure 8.9: Weekly moving variation index for route 505-1-1.

Figure 8.10: Weekly moving variation index for route 505-1-2.
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Part IV

Concluding remarks
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Chapter 9

Conclusions

In this thesis we undertook a study in order to determine how travel time
prediction can be used in mass transit companies for planning purposes. Two
different problems were identified: the definition of travel times for timetables
and the definition of travel times for bus and driver duties. This study assumes,
for both problems, the existence of data from actual trips, typically obtained
from Automatic Vehicle Location (AVL) systems.

The first problem of timetable definition is a well-known problem with several
related studies in the literature. Our approach is not analytical. Instead, we
have designed and developed a decision support system that uses past data from
the same line and representative of the period the timetable will cover. This
problem was the least studied.

With respect to the second problem, the main objective was to find out how
much we can increase accuracy if we predict travel times for the definition of bus
and driver duties as near the date as possible, instead of using the timetabled
travel times. The reason for doing this is that, if the improvement in accuracy
is important, it is expected that operational costs reduce and/or passengers’
satisfaction increases.

In this second problem we have used machine learning approaches. In order
to evaluate such approaches, we started by defining a baseline method to serve
as a reference. An expert based method using the knowledge we had at the
time together with the traffic experts from the STCP company has also been
developed and used for comparison. Then, we tried three different algorithms
with reported good results in different problems [Meyer et al., 2003]. They were:
support vector machines [Smola and Scholkopf, 2004], random forests [Breiman,
2001a] and projection pursuit regression [Friedman and Stuetzle, 1981]. For each
of these algorithms, exhaustive tests were done in order to tune parameters.
Other tests were done using the three focusing tasks [Reinartz, 2002]: example
selection, domain values selection and feature selection. Accuracy was improved
using these approaches.

The next step was to experiment different variants of the dynamic approach
using heterogeneous ensembles in order to further improve results with respect
to the use of just one model. An extensive survey on ensemble methods for
regression was undertaken. Several experiments using the dynamic selection
approach were executed. Approaches using ensembles were able to improve
results consistently when compared to the use of just one model.
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Experiments on the second problem finished by comparing the baseline, the
expert based, the best single algorithm (with the respective tuned parameters
and focusing tasks), and the ensemble approach, against the use of scheduled
travel times (STT), on various routes. Results gave a small advantage in terms of
accuracy to the ensemble approach when compared to the expert based method
implemented by us. However, the expert based approach needs less data and
is much faster to tune. The actual method used by STCP (the use of STT)
was competitive for circular routes only. This result can be explained, at least
partially, by the way these routes are designed and controlled. On the rest of
the routes tested, the method used currently by STCP was clearly beaten by
the ensemble approaches.

9.1 Evaluating the initial objectives

We now try to assess to what extent this work has been able to accomplish the
main objectives fully described in Sect. 2.4 and the secondary ones described
in Sect. 1.2.

9.1.1 Main objectives

Travel time prediction in order to make small adjustments to timeta-
bles

It was achieved through the design and implementation of a decision support
system that is mainly focused on its utility as a decision support. The solution
found is not very relevant in terms of scientific novelty. It is, instead, an easy and
effective tool for planners. It is also a framework that can integrate analytical
solutions such as the one presented in [Zhao et al., 2006].

Travel time prediction for duties definition

It was extensively studied. It was proved that, at least for the most frequent
situations, lines with two routes, the new tested approaches can reduce the
mean squared error compared to the use of the scheduled travel times. The
average reduction in the variation index for the four routes of lines 205 and
505, was around 25% using the ensemble approach and around 23% using the
expert-based approach.

9.1.2 Secondary objectives

To contextualize each of the used methodologies in the respective
state of art of the problem being solved

A state of the art review on the two addressed problems was undertaken (Sect.
2.2.3).
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To contextualize each of the used methodologies in the respective
state of art of the methods being used

This was extensively addressed in chapters 4 and 6. In particular, the latter on
ensemble methods for regression is, as far as we know, the first comprehensive
survey on the subject.

To design and develop the necessary model(s) to accomplish the main
objectives of this thesis

Several approaches were tested, some more successfully than others. However,
even the failures can be a step forward in the research process. The most
successful approaches tested were:

• Selection of examples using those that fall in the same leaf node of a
CART tree together with the test example (Sect. 5.7.1). This method
gave promising results when used as a filter for support vector regression.

• Selection of similar data for the dynamic approach on ensemble learning
using the same CART approach as before (for example selection) but fixing
the maximum number of similar examples using the HEOM distance (Sect.
7.3.1). This approach was the most successful for travel time prediction
three days ahead among state of the art approaches used in the dynamic
selection framework.

• An expert based algorithm (Sect. 5.5) for travel time prediction three days
ahead that proved to be competitive due to its simplicity in terms of tun-
ing, lower data requirement and a small loss in accuracy when compared
to the ensemble approach, the most accurate of the tested methods.

Testing for the best evaluation function for the pruning algorithms in order
to get the most from the dynamic selection approach (Sect. 7.2) is theoretically
interesting and is not discussed in the literature. The results obtained using the
smse method were not promising (Sect. 7.5.3). However, this was a first step
in an open issue for research.

To implement a prototype using the relevant aforementioned model(s)

The DSS for timetabling adjustments was implemented in order to address the
first main objective and is being used successfully at STCP.

Two more applications were implemented to address the second main objec-
tive: the first one implementing the expert based method [Duarte and Moreira,
2008] and the second one using the ensemble approach used in Chap. 8 [Duarte
and Moreira, 2007].

To generalize, when appropriate, the results obtained using the dif-
ferent methodologies to other problems

The good results in example selection for support vector regression using the
CART approach (Sect. 5.7.1) were tested in 11 benchmark regression data sets,
just for the linear kernel [Moreira et al., 2006a]. Results were promising: with
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the exception of two data sets, all the others gave equal or lower mean squared
error when using the example selection technique.

Some preliminary experiments on the dynamic selection approach were tested
using 5 regression data sets with numeric input variables [Moreira et al., 2007].
These experiments gave important insights into this approach, some of which
are described in Sect. 7.3.1.

9.2 Future work

Several research ideas have already been pointed out along this thesis. Here, we
summarize the most important ones and some others that seem promising:

• Integrating analytical solutions into the DSS for timetable adjustments: a
natural start should be to integrate the solution proposed by [Zhao et al.,
2006] extending it to the case of large headways.

• Evaluating the impact of travel time prediction three days ahead on the
level of passengers’ satisfaction and reduction of operational costs: the way
to do this was already pointed out in Sect. 2.3. However, the possibility
of conducting this research depends on the STCP’s availability to do so,
as discussed in the said section.

• Studying the operational implications of using travel time predictions sev-
eral days ahead in the planning process: this subject was briefly mentioned
along this thesis, however, its implications are not fully studied. For ex-
ample:

– It is not known the prediction horizon that should be used in order
to use this approach on a daily base;

– It is necessary to study the possible implications of using the pre-
dictions in the rostering process (Sect. 2.1.1 and Sect. 2.1.2 for the
STCP case);

– it is still lacking the study on the necessary changes in the control
process (Sect. 2.2) due to the use of the predictions in the definition
of duties.

• Developing a model to classify the quality of the planning per line: this
idea came from the interest of STCP and the interest of a member of
our research unit in that problem. She is an expert in Data Envelopment
Analysis (DEA), a successful benchmark technique. The use of DEA is
not new in mass transit companies [Wang et al., 2006; Barnum et al.,
2008]. However, we believe that this is an approach that can contribute
to the fulfillment of the business objectives of this research.

• Developing a model that can give insights to the planners into the causes
of bus delays: this idea is already being implemented by an MSc. stu-
dent. She is comparing the use of several methods that can explain the
variable offsets. The methods tested are: (1) an algorithm for discovering
class association rules [Liu et al., 1998]; (2) an algorithm for associative
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classification that is similar to the previous one but with classification ca-
pabilities [Liu et al., 1998]; (3) and the C4.5 algorithm [Quinlan, 1993],
an algorithm for tree induction.

• Generalizing results on the dynamic selection approach (Sect. 7.5) to
other data sets for both regression and classification problems, placing
particular emphasis on the similar data search using the CART approach.

• Studying the best training set using concept-drift approaches [Wang et
al., 2003].
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Appendix A

Additional results on
focusing tasks

This appendix complements Sect. 5.7 presenting results on example selection
(Sect. A.1) and on domain values selection (Sect. A.2). While in Sect. 5.7 we
present the results for SVM linear, RF and PPR supsmu, in this appendix we
do the same for the remaining algorithms, namely, SVM radial, SVM sigmoid,
PPR spline and PPR gcvspline.

A.1 Example selection

In all the figures of the present section, the red line represents the results without
example selection, the green line the leaf node approach, and the blue line the
equivalent day approach. The straight line represents the baseline method.

A.2 Domain values selection

All figures of this section present results of the tests on the choice of the data
type for the variable week day. The red line represents the symbolic (factor)
data type and the gray line represents the numeric data type.
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Figure A.1: The variation index for SVM - radial using different methods for
example selection.

Figure A.2: The variation index for SVM - sigmoid using different methods for
example selection.
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Figure A.3: The variation index for PPR - spline using different methods for
example selection.

Figure A.4: The variation index for PPR - gcvspline using different methods
for example selection.
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Figure A.5: The variation index for SVM - radial using different data types for
the variable week day.

Figure A.6: The variation index for SVM - sigmoid using different data types
for the variable week day.
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Figure A.7: The variation index for PPR - spline using different data types for
the variable week day.

Figure A.8: The variation index for PPR - gcvspline using different data types
for the variable week day.



170 APPENDIX A. ADDITIONAL RESULTS ON FOCUSING TASKS

Figure A.9: The variation index for PPR - spline (with example selection) using
different data types for the variable week day.

Figure A.10: The variation index for PPR - gcvspline (with example selection)
using different data types for the variable week day.



Appendix B

Pool 130

This appendix has all the a&ps from pool 130. It may help to better understand
the results from the experiments on ensemble learning described in Sect. 7.5
and Appendix C. The a&ps are presented in table B.1. ES identifies the used
example selection method, as described in Sect. 5.7.1. WDDT identifies the data
type used for the variable weekday as discussed in Sect. 5.7.2. The parameters
Par 1, Par 2, Par 3 and Par 4 should be read as follows:

• For SVM: Par 1 = C, Par 2 = ν and Par 3 = γ;

• For RF: Par 1 = mtry;

• For PPR-supsmu: Par 1 = nterms, Par 2 = optlevel, Par 3 = bass and
Par 4 = span;

• For PPR-spline: Par 1 = nterms, Par 2 = optlevel and Par 3 = df;

• For PPR-gcvspline: Par 1 = nterms, Par 2 = optlevel and Par 3 = gcvpen.

Table B.1: The pool 130.

a&ps Algorithm ES WDDT Par 1 Par 2 Par 3 Par 4
1 SVM linear ln Symbolic 0.0625 0.1
2 SVM linear ln Symbolic 64 0.1
3 SVM linear ln Symbolic 0.0625 0.3
4 SVM linear ln Symbolic 64 0.3
5 SVM linear ln Symbolic 0.0625 0.5
6 SVM linear ln Symbolic 64 0.5
7 SVM linear ln Symbolic 0.0625 0.7
8 SVM linear ln Symbolic 64 0.7
9 SVM linear ln Symbolic 0.0625 0.9
10 SVM linear ln Symbolic 64 0.9
11 SVM radial all Symbolic 4000 0.2 0.00006
12 SVM radial all Symbolic 64000 0.2 0.00006
13 SVM radial all Symbolic 1024000 0.2 0.00006
14 SVM radial all Symbolic 4000 0.2 0.00018
15 SVM radial all Symbolic 64000 0.2 0.00018
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a&ps Algorithm ES WDDT Par 1 Par 2 Par 3 Par 4
16 SVM radial all Symbolic 1024000 0.2 0.00018
17 SVM radial all Symbolic 4000 0.6 0.00006
18 SVM radial all Symbolic 64000 0.6 0.00006
19 SVM radial all Symbolic 1024000 0.6 0.00006
20 SVM radial all Symbolic 4000 0.6 0.00018
21 SVM radial all Symbolic 64000 0.6 0.00018
22 SVM radial all Symbolic 1024000 0.6 0.00018
23 SVM radial ln Symbolic 4000 0.2 0.00006
24 SVM radial ln Symbolic 64000 0.2 0.00006
25 SVM radial ln Symbolic 1024000 0.2 0.00006
26 SVM radial ln Symbolic 4000 0.6 0.00006
27 SVM radial ln Symbolic 64000 0.6 0.00006
28 SVM radial ln Symbolic 1024000 0.6 0.00006
29 SVM radial ln Symbolic 4000 0.2 0.00018
30 SVM radial ln Symbolic 64000 0.2 0.00018
31 SVM radial ln Symbolic 1024000 0.2 0.00018
32 SVM radial ln Symbolic 4000 0.6 0.00018
33 SVM radial ln Symbolic 64000 0.6 0.00018
34 SVM radial ln Symbolic 1024000 0.6 0.00018
35 RF ln Symbolic 1
36 RF ln Symbolic 3
37 PPR supsmu ed Numeric 1 1 0 0
38 PPR supsmu ed Numeric 4 1 0 0
39 PPR supsmu ed Numeric 1 2 0 0
40 PPR supsmu ed Numeric 4 2 0 0
41 PPR supsmu ed Numeric 1 3 0 0
42 PPR supsmu ed Numeric 4 3 0 0
43 PPR supsmu ed Numeric 1 1 5 0
44 PPR supsmu ed Numeric 4 1 5 0
45 PPR supsmu ed Numeric 1 2 5 0
46 PPR supsmu ed Numeric 4 2 5 0
47 PPR supsmu ed Numeric 1 3 5 0
48 PPR supsmu ed Numeric 4 3 5 0
49 PPR supsmu ed Numeric 1 1 10 0
50 PPR supsmu ed Numeric 4 1 10 0
51 PPR supsmu ed Numeric 1 2 10 0
52 PPR supsmu ed Numeric 4 2 10 0
53 PPR supsmu ed Numeric 1 3 10 0
54 PPR supsmu ed Numeric 4 3 10 0
55 PPR spline all Numeric 1 1 1
56 PPR spline all Numeric 1 1 32
57 PPR spline all Numeric 1 1 1024
58 PPR spline all Numeric 1 3 1
59 PPR spline all Numeric 1 3 32
60 PPR spline all Numeric 1 3 1024
61 PPR spline all Numeric 2 1 1
62 PPR spline all Numeric 2 1 32
63 PPR spline all Numeric 2 1 1024
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a&ps Algorithm ES WDDT Par 1 Par 2 Par 3 Par 4
64 PPR spline all Numeric 2 3 1
65 PPR spline all Numeric 2 3 32
66 PPR spline all Numeric 2 3 1024
67 PPR spline ed Numeric 1 1 1
68 PPR spline ed Numeric 2 1 1
69 PPR spline ed Numeric 1 3 1
70 PPR spline ed Numeric 2 3 1
71 PPR spline ed Numeric 1 1 32
72 PPR spline ed Numeric 2 1 32
73 PPR spline ed Numeric 1 3 32
74 PPR spline ed Numeric 2 3 32
75 PPR spline ed Numeric 1 1 1024
76 PPR spline ed Numeric 2 1 1024
77 PPR spline ed Numeric 1 3 1024
78 PPR spline ed Numeric 2 3 1024
79 PPR gcvspline all Numeric 1 1 0.0625
80 PPR gcvspline all Numeric 2 1 0.0625
81 PPR gcvspline all Numeric 1 3 0.0625
82 PPR gcvspline all Numeric 2 3 0.0625
83 PPR gcvspline all Numeric 1 1 16
84 PPR gcvspline all Numeric 2 1 16
85 PPR gcvspline all Numeric 1 3 16
86 PPR gcvspline all Numeric 2 3 16
87 PPR gcvspline all Numeric 1 1 4096
88 PPR gcvspline all Numeric 2 1 4096
89 PPR gcvspline all Numeric 1 3 4096
90 PPR gcvspline all Numeric 2 3 4096
91 PPR gcvspline ed Numeric 1 1 0.0625
92 PPR gcvspline ed Numeric 2 1 0.0625
93 PPR gcvspline ed Numeric 1 3 0.0625
94 PPR gcvspline ed Numeric 2 3 0.0625
95 PPR gcvspline ed Numeric 1 1 16
96 PPR gcvspline ed Numeric 2 1 16
97 PPR gcvspline ed Numeric 1 3 16
98 PPR gcvspline ed Numeric 2 3 16
99 PPR gcvspline ed Numeric 1 1 4096
100 PPR gcvspline ed Numeric 2 1 4096
101 PPR gcvspline ed Numeric 1 3 4096
102 PPR gcvspline ed Numeric 2 3 4096
103 SVM linear all Symbolic 0.0625 0.1
104 SVM linear all Symbolic 64 0.1
105 SVM linear all Symbolic 0.0625 0.3
106 SVM linear all Symbolic 64 0.3
107 SVM linear all Symbolic 0.0625 0.5
108 SVM linear all Symbolic 64 0.5
109 SVM linear all Symbolic 0.0625 0.7
110 SVM linear all Symbolic 64 0.7
111 SVM linear all Symbolic 0.0625 0.9
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a&ps Algorithm ES WDDT Par 1 Par 2 Par 3 Par 4
112 SVM linear all Symbolic 64 0.9
113 PPR supsmu all Numeric 1 1 0 0
114 PPR supsmu all Numeric 4 1 0 0
115 PPR supsmu all Numeric 1 2 0 0
116 PPR supsmu all Numeric 4 2 0 0
117 PPR supsmu all Numeric 1 3 0 0
118 PPR supsmu all Numeric 4 3 0 0
119 PPR supsmu all Numeric 1 1 5 0
120 PPR supsmu all Numeric 4 1 5 0
121 PPR supsmu all Numeric 1 2 5 0
122 PPR supsmu all Numeric 4 2 5 0
123 PPR supsmu all Numeric 1 3 5 0
124 PPR supsmu all Numeric 4 3 5 0
125 PPR supsmu all Numeric 1 1 10 0
126 PPR supsmu all Numeric 4 1 10 0
127 PPR supsmu all Numeric 1 2 10 0
128 PPR supsmu all Numeric 4 2 10 0
129 PPR supsmu all Numeric 1 3 10 0
130 PPR supsmu all Numeric 4 3 10 0



Appendix C

Additional results on
ensemble learning

This appendix complements Sect. 7.5 by presenting additional results to the
first and the third experiments on ensemble learning. In those experiments we
show results for ensembles of size 5. In this appendix we present results for
ensembles of size 10, 15, 20 and 25.

C.1 First experiment

The goal of the first experiment is to select a method for obtaining similar data.
We present four groups of tables, each one with four tables (tables from C.1 to
C.16). For each group we use a different ensemble, all of them obtained using
the pruning algorithm Mor06-smse (Sect. 7.2) but for different sizes: 10, 15,
20 and 25. For each of of the ensembles, we present four tables: one with the
results using the base learners and also, for the constant weighting function,
simple average. Each of the other three tables are for a different method to
obtain similar data, namely knn-CART, knn-HEOM and knn-RReliefF (Sect.
7.3.1).

Table C.1: First experiment: the variation index for the base learners and
simple average using the ensemble of size 10.

a&ps 1 a&ps 12 a&ps 16 a&ps 30 a&ps 34 Avg
11.59% 12.22% 12.10% 11.61% 11.92% 10.09%

a&ps 36 a&ps 51 a&ps 58 a&ps 74 a&ps 81
11.55% 11.23% 13.50% 11.03% 12.903%
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Table C.2: First experiment: the variation index for the knn-CART using the
ensemble of size 10.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 11.65% 11.48% 9.78% 9.81% 9.76% 9.72% 9.72% 9.72%
25 11.52% 11.48% 9.78% 9.79% 9.77% 9.77% 9.75% 9.73%
20 11.68% 11.51% 9.79% 9.86% 9.81% 9.82% 9.77% 9.77%
18 11.76% 11.58% 9.80% 9.91% 9.84% 9.84% 9.78% 9.77%
16 11.68% 11.56% 9.80% 9.92% 9.89% 9.84% 9.79% 9.78%
14 11.94% 11.68% 9.80% 9.99% 9.90% 9.86% 9.81% 9.79%
12 11.95% 11.68% 9.81% 10.02% 9.94% 9.85% 9.83% 9.81%
10 11.87% 11.67% 9.81% 9.99% 9.93% 9.89% 9.84% 9.83%
8 11.79% 11.67% 9.81% 9.98% 9.93% 9.85% 9.83% 9.83%
6 11.83% 11.74% 9.82% 10.04% 9.94% 9.93% 9.87% 9.85%
4 10.33% 10.17% 9.81% 10.15% 10.09% 9.95% 9.88% 9.87%
2 10.45% 10.30% 9.82% 10.35% 10.21% 10.11% 10.03% 9.96%

Table C.3: First experiment: the variation index for the knn-HEOM using the
ensemble of size 10.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 11.35% 10.67% 10.10% 10.82% 10.72% 10.34% 10.18% 10.15%
25 11.06% 10.51% 10.10% 10.82% 10.67% 10.30% 10.17% 10.14%
20 10.89% 10.47% 10.09% 10.55% 10.56% 10.28% 10.16% 10.14%
18 11.09% 10.40% 10.08% 10.53% 10.58% 10.28% 10.16% 10.14%
16 11.12% 10.32% 10.08% 10.33% 10.54% 10.30% 10.15% 10.14%
14 10.81% 10.42% 10.08% 10.32% 10.48% 10.36% 10.18% 10.14%
12 10.92% 10.44% 10.07% 10.32% 10.49% 10.35% 10.21% 10.14%
10 10.83% 10.51% 10.06% 10.29% 10.45% 10.35% 10.22% 10.14%
8 10.79% 10.50% 10.05% 10.42% 10.43% 10.33% 10.23% 10.14%
6 10.69% 10.58% 10.05% 10.58% 10.46% 10.36% 10.25% 10.15%
4 11.02% 10.79% 10.03% 10.64% 10.54% 10.38% 10.27% 10.18%
2 11.06% 10.72% 10.04% 10.69% 10.54% 10.52% 10.38% 10.32%
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Table C.4: First experiment: the variation index for the knn-RReliefF using
the ensemble of size 10.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 11.11% 10.58% 10.09% 11.21% 10.80% 10.56% 10.41% 10.35%
25 11.06% 10.60% 10.10% 10.92% 10.48% 10.35% 10.27% 10.20%
20 11.81% 10.80% 10.06% 10.87% 10.33% 10.11% 10.11% 10.10%
18 11.68% 10.69% 10.08% 10.94% 10.38% 10.20% 10.21% 10.19%
16 11.70% 10.83% 10.01% 11.00% 10.57% 10.32% 10.28% 10.27%
14 11.53% 11.05% 10.09% 11.14% 10.55% 10.29% 10.24% 10.16%
12 11.52% 10.90% 10.10% 11.02% 10.51% 10.28% 10.23% 10.15%
10 11.61% 10.96% 10.11% 11.15% 10.62% 10.38% 10.24% 10.18%
8 11.44% 10.92% 10.08% 11.09% 10.63% 10.34% 10.19% 10.11%
6 11.49% 11.02% 10.10% 11.12% 10.77% 10.48% 10.32% 10.20%
4 11.77% 11.22% 10.12% 11.39% 11.01% 10.61% 10.54% 10.35%
2 11.74% 11.40% 10.13% 11.34% 10.93% 10.76% 10.69% 10.62%

Table C.5: First experiment: the variation index for the base learners and
simple average using the ensemble of size 15.

a&ps 1 a&ps 4 a&ps 12 a&ps 16 a&ps 30 Avg
11.59% 11.31% 12.22% 12.10% 11.61% 10.00%

a&ps 31 a&ps 34 a&ps 36 a&ps 51 a&ps 58
12.46% 11.92% 11.53% 11.23% 13.50%

a&ps 68 a&ps 74 a&ps 77 a&ps 79 a&ps 114
12.34% 11.03% 10.03% 11.99% 11.66%

Table C.6: First experiment: the variation index for the knn-CART using the
ensemble of size 15.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 11.66% 11.45% 9.72% 9.76% 9.73% 9.69% 9.68% 9.67%
25 11.61% 11.44% 9.72% 9.78% 9.71% 9.71% 9.69% 9.67%
20 11.62% 11.42% 9.73% 9.89% 9.72% 9.75% 9.71% 9.70%
18 11.63% 11.49% 9.73% 9.92% 9.77% 9.76% 9.71% 9.71%
16 11.72% 11.49% 9.73% 9.96% 9.79% 9.77% 9.72% 9.72%
14 11.74% 11.52% 9.74% 10.03% 9.84% 9.78% 9.73% 9.73%
12 11.80% 11.51% 9.74% 10.10% 9.85% 9.78% 9.75% 9.74%
10 11.68% 11.49% 9.74% 10.08% 9.88% 9.79% 9.74% 9.73%
8 11.79% 11.57% 9.74% 10.13% 9.84% 9.77% 9.73% 9.73%
6 11.65% 11.51% 9.74% 10.20% 9.89% 9.83% 9.77% 9.75%
4 10.31% 10.15% 9.73% 10.31% 10.07% 9.90% 9.80% 9.79%
2 10.51% 10.12% 9.71% 10.47% 10.07% 9.96% 9.89% 9.81%
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Table C.7: First experiment: the variation index for the knn-HEOM using the
ensemble of size 15.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 11.48% 10.65% 10.00% 10.25% 10.25% 10.20% 10.09% 10.06%
25 11.32% 10.41% 10.00% 10.27% 10.20% 10.15% 10.06% 10.05%
20 10.62% 10.26% 9.99% 10.26% 10.22% 10.13% 10.05% 10.04%
18 10.90% 10.47% 9.99% 10.19% 10.20% 10.12% 10.05% 10.04%
16 10.82% 10.46% 9.98% 10.18% 10.22% 10.13% 10.04% 10.04%
14 10.69% 10.41% 9.98% 10.42% 10.22% 10.14% 10.04% 10.05%
12 10.97% 10.67% 9.98% 10.48% 10.23% 10.18% 10.08% 10.04%
10 10.89% 10.60% 9.97% 10.35% 10.22% 10.17% 10.06% 10.02%
8 10.94% 10.50% 9.96% 10.39% 10.26% 10.16% 10.08% 10.03%
6 10.83% 10.49% 9.96% 10.65% 10.35% 10.25% 10.13% 10.07%
4 11.00% 10.69% 9.93% 10.68% 10.34% 10.29% 10.16% 10.10%
2 11.26% 10.62% 9.91% 10.81% 10.39% 10.26% 10.19% 10.18%

Table C.8: First experiment: the variation index for the knn-RReliefF using
the ensemble of size 15.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 10.97% 10.37% 9.98% 10.42% 10.20% 10.07% 10.03% 10.01%
25 11.22% 10.55% 10.01% 10.46% 10.12% 10.05% 9.99% 9.98%
20 11.72% 10.84% 9.98% 10.75% 10.19% 10.08% 10.06% 10.01%
18 11.41% 10.58% 9.97% 10.61% 10.12% 10.08% 10.03% 10.00%
16 11.61% 10.87% 9.97% 10.85% 10.23% 10.05% 10.02% 10.01%
14 11.48% 10.90% 9.97% 10.89% 10.26% 10.12% 10.03% 10.01%
12 11.31% 10.80% 9.95% 10.71% 10.21% 10.06% 10.01% 9.99%
10 11.30% 10.83% 9.95% 10.74% 10.21% 10.08% 10.01% 9.97%
8 11.47% 11.06% 9.95% 10.97% 10.42% 10.18% 10.04% 9.96%
6 11.60% 11.06% 9.97% 11.06% 10.72% 10.38% 10.34% 10.20%
4 11.71% 11.32% 9.98% 11.23% 10.69% 10.42% 10.30% 10.24%
2 11.63% 11.24% 10.01% 11.21% 10.95% 10.69% 10.48% 10.42%

Table C.9: First experiment: the variation index for the base learners and
simple average using the ensemble of size 20.

a&ps 1 a&ps 2 a&ps 4 a&ps 12 a&ps 15 Avg
11.59% 11.97% 11.31% 12.22% 11.66% 10.04%

a&ps 16 a&ps 22 a&ps 27 a&ps 30 a&ps 31
12.10% 11.90% 10.98% 11.61% 12.46%

a&ps 34 a&ps 36 a&ps 38 a&ps 51 a&ps 57
11.92% 11.59% 13.46% 11.23% 12.49%

a&ps 58 a&ps 68 a&ps 74 a&ps 91 a&ps 114
13.50% 12.34% 11.03% 10.64% 11.66%
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Table C.10: First experiment: the variation index for the knn-CART using the
ensemble of size 20.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 11.82% 11.57% 9.76% 9.78% 9.72% 9.71% 9.70% 9.70%
25 11.81% 11.64% 9.76% 9.80% 9.73% 9.73% 9.71% 9.71%
20 11.91% 11.63% 9.77% 9.84% 9.76% 9.77% 9.73% 9.74%
18 11.91% 11.69% 9.78% 9.89% 9.79% 9.80% 9.74% 9.75%
16 12.03% 11.75% 9.78% 9.91% 9.79% 9.79% 9.74% 9.75%
14 12.02% 11.82% 9.78% 10.02% 9.82% 9.80% 9.76% 9.75%
12 12.05% 11.78% 9.78% 10.00% 9.87% 9.81% 9.77% 9.77%
10 12.14% 11.97% 9.79% 10.09% 9.90% 9.84% 9.79% 9.78%
8 12.08% 11.95% 9.79% 10.08% 9.86% 9.84% 9.81% 9.79%
6 11.86% 11.83% 9.79% 10.10% 9.84% 9.89% 9.84% 9.84%
4 10.33% 10.30% 9.78% 10.22% 10.00% 9.97% 9.89% 9.87%
2 10.32% 10.30% 9.80% 10.41% 10.26% 10.12% 10.05% 9.96%

Table C.11: First experiment: the variation index for the knn-HEOM using the
ensemble of size 20.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 12.44% 11.23% 10.03% 10.49% 10.16% 10.20% 10.12% 10.07%
25 11.17% 10.65% 10.02% 10.61% 10.11% 10.12% 10.08% 10.06%
20 10.97% 10.51% 10.01% 10.42% 10.13% 10.08% 10.04% 10.04%
18 11.12% 10.64% 10.01% 10.49% 10.16% 10.06% 10.04% 10.04%
16 10.94% 10.68% 10.01% 10.44% 10.14% 10.05% 10.05% 10.05%
14 11.00% 10.67% 10.00% 10.46% 10.15% 10.07% 10.03% 10.05%
12 11.18% 10.85% 10.00% 10.43% 10.17% 10.10% 10.04% 10.03%
10 11.20% 10.95% 9.99% 10.40% 10.19% 10.12% 10.05% 10.04%
8 11.17% 10.90% 9.98% 10.49% 10.20% 10.15% 10.04% 10.00%
6 11.19% 10.81% 9.99% 10.59% 10.36% 10.28% 10.18% 10.07%
4 10.98% 10.80% 9.97% 10.57% 10.39% 10.31% 10.21% 10.13%
2 10.77% 10.77% 9.97% 10.69% 10.58% 10.47% 10.42% 10.34%
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Table C.12: First experiment: the variation index for the knn-RReliefF using
the ensemble of size 20.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 11.28% 10.50% 9.88% 10.75% 10.49% 10.38% 10.30% 10.27%
25 11.38% 10.62% 9.98% 10.62% 10.28% 10.18% 10.14% 10.11%
20 11.75% 10.71% 9.97% 10.73% 10.27% 10.15% 10.11% 10.12%
18 11.59% 10.58% 10.02% 10.70% 10.20% 10.05% 10.06% 10.05%
16 11.62% 10.78% 10.07% 10.84% 10.27% 10.15% 10.10% 10.07%
14 11.47% 10.84% 10.05% 10.93% 10.37% 10.22% 10.08% 10.04%
12 11.39% 10.90% 10.03% 10.94% 10.38% 10.20% 10.09% 10.03%
10 11.49% 10.99% 10.03% 11.01% 10.43% 10.21% 10.10% 10.03%
8 11.30% 11.08% 10.02% 10.84% 10.51% 10.26% 10.15% 10.08%
6 11.70% 11.32% 10.03% 11.10% 10.65% 10.36% 10.20% 10.12%
4 11.67% 11.33% 10.04% 11.33% 10.81% 10.52% 10.35% 10.25%
2 11.91% 11.47% 10.05% 11.39% 11.02% 10.80% 10.61% 10.47%

Table C.13: First experiment: the variation index for the base learners and
simple average using the ensemble of size 25.

a&ps 1 a&ps 2 a&ps 4 a&ps 12 a&ps 15 Avg
11.59% 11.97% 11.31% 12.22% 11.66% 9.95%

a&ps 16 a&ps 22 a&ps 27 a&ps 30 a&ps 31
12.10% 11.90% 10.98% 11.61% 12.46%

a&ps 34 a&ps 36 a&ps 38 a&ps 40 a&ps 46
11.92% 11.57% 13.46% 13.57% 10.50%

a&ps 53 a&ps 58 a&ps 68 a&ps 71 a&ps 74
11.32% 13.50% 12.34% 11.18% 11.03%

a&ps 79 a&ps 95 a&ps 103 a&ps 114 a&ps 116
11.99% 11.06% 13.74% 11.66% 11.76%
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Table C.14: First experiment: the variation index for the knn-CART using the
ensemble of size 25.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 11.45% 11.31% 9.76% 9.68% 9.65% 9.68% 9.69% 9.69%
25 11.49% 11.29% 9.76% 9.67% 9.65% 9.69% 9.70% 9.69%
20 11.52% 11.29% 9.77% 9.75% 9.66% 9.71% 9.71% 9.71%
18 11.62% 11.38% 9.77% 9.72% 9.68% 9.72% 9.71% 9.71%
16 11.57% 11.40% 9.77% 9.75% 9.69% 9.70% 9.71% 9.72%
14 11.61% 11.48% 9.77% 9.87% 9.68% 9.71% 9.71% 9.72%
12 11.60% 11.50% 9.78% 9.93% 9.69% 9.71% 9.71% 9.72%
10 11.69% 11.63% 9.77% 9.93% 9.72% 9.73% 9.71% 9.72%
8 11.64% 11.58% 9.77% 9.95% 9.73% 9.72% 9.69% 9.70%
6 11.72% 11.60% 9.77% 9.97% 9.76% 9.77% 9.71% 9.74%
4 11.91% 11.89% 9.75% 10.07% 9.88% 9.83% 9.74% 9.75%
2 11.98% 11.87% 9.78% 10.53% 10.30% 10.10% 9.99% 9.89%

Table C.15: First experiment: the variation index for the knn-HEOM using the
ensemble of size 25.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 10.75% 10.23% 9.89% 10.06% 9.82% 9.92% 9.91% 9.91%
25 10.52% 10.25% 9.89% 10.10% 9.83% 9.86% 9.88% 9.90%
20 10.25% 10.24% 9.88% 9.98% 9.83% 9.82% 9.84% 9.88%
18 10.41% 10.19% 9.88% 10.13% 9.90% 9.80% 9.84% 9.87%
16 10.54% 10.20% 9.87% 10.14% 9.90% 9.80% 9.84% 9.87%
14 10.49% 10.34% 9.87% 10.14% 9.90% 9.80% 9.82% 9.86%
12 10.59% 10.37% 9.86% 10.22% 9.94% 9.84% 9.82% 9.85%
10 10.83% 10.48% 9.86% 10.25% 10.01% 9.84% 9.82% 9.82%
8 10.71% 10.34% 9.84% 10.25% 9.93% 9.85% 9.80% 9.80%
6 11.08% 10.69% 9.84% 10.39% 10.10% 9.98% 9.91% 9.87%
4 11.08% 10.68% 9.83% 10.49% 10.26% 10.09% 10.00% 9.94%
2 11.18% 10.87% 9.82% 10.78% 10.44% 10.29% 10.22% 10.12%
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Table C.16: First experiment: the variation index for the knn-RReliefF using
the ensemble of size 25.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

30 10.94% 10.34% 9.97% 10.16% 10.11% 10.00% 9.99% 9.99%
25 10.92% 10.43% 9.93% 10.30% 10.16% 10.02% 10.03% 10.02%
20 11.20% 10.48% 9.90% 10.06% 10.06% 10.01% 9.95% 9.96%
18 11.21% 10.30% 9.90% 10.22% 10.09% 10.03% 9.98% 9.97%
16 11.43% 10.53% 9.90% 10.29% 10.10% 10.00% 9.94% 9.93%
14 11.38% 10.64% 9.92% 10.42% 10.08% 9.97% 9.93% 9.92%
12 11.36% 10.81% 9.91% 10.47% 10.05% 9.97% 9.93% 9.92%
10 11.58% 11.08% 9.89% 10.42% 10.13% 9.95% 9.90% 9.88%
8 11.42% 11.24% 9.89% 10.58% 10.18% 10.00% 9.90% 9.86%
6 11.87% 11.35% 9.89% 11.04% 10.47% 10.20% 10.04% 9.97%
4 11.94% 11.30% 9.90% 11.17% 10.38% 10.23% 10.08% 10.03%
2 11.69% 11.45% 9.92% 11.14% 10.85% 10.63% 10.47% 10.35%

C.2 Third experiment

The goal of the third experiment is to compare the two evaluation functions
used in the pruning algorithms, namely smse and avg (Sect. 7.2). We present
four groups of tables (tables from C.17 to C.28). Each group refers to the size
of the ensemble: 10, 15, 20 and 25. For each group we show three tables: one of
them using the ensemble obtained with the evaluation function smse, and the
other two for the evaluation function avg. The first table shows the results for
knn-CART. The last two tables contain: the results using the base learners and
the constant weighting function, the simple average, in the first table; and the
results using knn-CART in the second one. The results of the base learners and
the simple average for the smse evaluation function are shown in tables C.1,
C.5, C.9 and C.13.
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Table C.17: Third experiment: the variation index for the knn-CART on the
10 size ensemble obtained using Mor06-smse.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

∞ 11.74% 11.50% 9.78% 9.78% 9.61% 9.68% 9.72% 9.71%
200 11.71% 11.49% 9.78% 9.78% 9.63% 9.69% 9.72% 9.71%
100 11.76% 11.50% 9.78% 9.85% 9.65% 9.71% 9.72% 9.72%
90 11.75% 11.53% 9.78% 9.85% 9.65% 9.71% 9.71% 9.72%
80 11.80% 11.58% 9.78% 9.83% 9.65% 9.71% 9.71% 9.72%
70 11.71% 11.55% 9.77% 9.83% 9.64% 9.70% 9.71% 9.72%
60 11.69% 11.50% 9.77% 9.86% 9.65% 9.70% 9.72% 9.72%
50 11.58% 11.48% 9.77% 9.86% 9.68% 9.71% 9.72% 9.72%
40 11.80% 11.59% 9.77% 9.81% 9.72% 9.71% 9.72% 9.73%
30 11.64% 11.47% 9.77% 9.80% 9.75% 9.72% 9.72% 9.72%
20 11.67% 11.47% 9.79% 9.86% 9.81% 9.82% 9.78% 9.77%
10 11.86% 11.66% 9.81% 9.99% 9.93% 9.89% 9.84% 9.83%

Table C.18: Third experiment: the variation index for the base learners and
simple average on the 10 size ensemble obtained using Mor06-avg.

a&ps 4 a&ps 35 a&ps 36 a&ps 41 a&ps 48 Avg
11.31% 11.40% 11.55% 12.73% 10.45% 9.68%

a&ps 71 a&ps 72 a&ps 75 a&ps 96 a&ps 120
11.18% 12.70% 11.02% 10.91% 10.87%

Table C.19: Third experiment: the variation index for the knn-CART on the
10 size ensemble obtained using Mor06-avg.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

∞ 9.78% 9.55% 9.62% 9.48% 9.54% 9.62% 9.63% 9.63%
200 9.78% 9.55% 9.62% 9.41% 9.55% 9.63% 9.63% 9.63%
100 9.74% 9.50% 9.63% 9.61% 9.58% 9.63% 9.63% 9.64%
90 9.89% 9.59% 9.63% 9.62% 9.58% 9.62% 9.64% 9.64%
80 9.95% 9.66% 9.63% 9.66% 9.58% 9.63% 9.64% 9.64%
70 10.13% 9.76% 9.63% 9.74% 9.57% 9.63% 9.63% 9.64%
60 10.14% 9.82% 9.63% 9.74% 9.56% 9.64% 9.63% 9.64%
50 10.13% 10.01% 9.63% 9.76% 9.57% 9.64% 9.63% 9.64%
40 10.35% 10.05% 9.63% 9.80% 9.56% 9.63% 9.62% 9.63%
30 10.41% 10.29% 9.63% 9.91% 9.57% 9.62% 9.63% 9.64%
20 10.49% 10.36% 9.64% 10.03% 9.57% 9.64% 9.63% 9.64%
10 10.65% 10.44% 9.65% 10.20% 9.69% 9.64% 9.67% 9.67%
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Table C.20: Third experiment: the variation index for the knn-CART on the
15 size ensemble obtained using Mor06-smse.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

∞ 11.74% 11.73% 9.68% 9.85% 9.55% 9.59% 9.63% 9.63%
200 11.84% 11.70% 9.68% 9.77% 9.57% 9.59% 9.64% 9.63%
100 11.81% 11.67% 9.68% 9.77% 9.56% 9.61% 9.63% 9.63%
90 11.88% 11.69% 9.68% 9.80% 9.57% 9.61% 9.63% 9.63%
80 11.85% 11.62% 9.68% 9.80% 9.58% 9.60% 9.63% 9.64%
70 11.90% 11.53% 9.68% 9.77% 9.57% 9.60% 9.64% 9.64%
60 11.93% 11.59% 9.68% 9.74% 9.57% 9.60% 9.63% 9.64%
50 11.99% 11.47% 9.68% 9.74% 9.60% 9.60% 9.63% 9.64%
40 12.09% 11.69% 9.68% 9.76% 9.62% 9.61% 9.63% 9.64%
30 12.00% 11.59% 9.68% 9.74% 9.68% 9.63% 9.63% 9.63%
20 11.58% 11.42% 9.69% 9.86% 9.70% 9.69% 9.67% 9.66%
10 11.74% 11.52% 9.71% 10.05% 9.90% 9.78% 9.72% 9.70%

Table C.21: Third experiment: the variation index for the base learners and
simple average on the 15 size ensemble obtained using Mor06-avg.

a&ps 4 a&ps 5 a&ps 35 a&ps 36 a&ps 39 Avg
11.31% 10.90% 11.39% 11.56% 12.06% 9.59%

a&ps 41 a&ps 48 a&ps 71 a&ps 72 a&ps 75
12.73% 10.45% 11.18% 12.70% 11.02%

a&ps 77 a&ps 90 a&ps 96 a&ps 98 a&ps 120
10.03% 10.14% 10.91% 10.74% 10.87%

Table C.22: Third experiment: the variation index for the knn-CART on the
15 size ensemble obtained using Mor06-avg.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

∞ 9.69% 9.50% 9.55% 9.41% 9.46% 9.52% 9.56% 9.55%
200 9.70% 9.51% 9.55% 9.41% 9.47% 9.53% 9.56% 9.55%
100 9.76% 9.48% 9.55% 9.57% 9.51% 9.53% 9.56% 9.56%
90 9.77% 9.56% 9.55% 9.58% 9.51% 9.53% 9.56% 9.56%
80 9.82% 9.62% 9.55% 9.59% 9.50% 9.53% 9.56% 9.56%
70 10.03% 9.71% 9.55% 9.63% 9.49% 9.54% 9.56% 9.56%
60 9.90% 9.70% 9.55% 9.62% 9.47% 9.54% 9.55% 9.56%
50 9.78% 9.80% 9.55% 9.64% 9.48% 9.53% 9.55% 9.56%
40 10.19% 10.01% 9.55% 9.70% 9.48% 9.54% 9.54% 9.55%
30 10.32% 10.19% 9.56% 9.78% 9.49% 9.53% 9.56% 9.55%
20 10.44% 10.34% 9.56% 9.90% 9.50% 9.55% 9.55% 9.56%
10 10.67% 10.44% 9.57% 10.11% 9.58% 9.56% 9.58% 9.59%
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Table C.23: Third experiment: the variation index for the knn-CART on the
20 size ensemble obtained using Mor06-smse.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

∞ 11.67% 11.70% 9.75% 9.95% 9.61% 9.66% 9.70% 9.70%
200 11.78% 11.65% 9.76% 9.86% 9.62% 9.66% 9.70% 9.70%
100 11.79% 11.61% 9.76% 9.85% 9.63% 9.68% 9.70% 9.71%
90 11.84% 11.65% 9.76% 9.84% 9.63% 9.68% 9.70% 9.71%
80 11.86% 11.71% 9.76% 9.83% 9.64% 9.68% 9.70% 9.71%
70 11.86% 11.62% 9.75% 9.79% 9.63% 9.67% 9.69% 9.71%
60 11.84% 11.54% 9.75% 9.73% 9.63% 9.66% 9.69% 9.71%
50 11.94% 11.54% 9.75% 9.73% 9.67% 9.66% 9.69% 9.70%
40 12.11% 11.70% 9.75% 9.73% 9.69% 9.67% 9.69% 9.70%
30 11.82% 11.57% 9.76% 9.79% 9.72% 9.70% 9.70% 9.70%
20 11.88% 11.62% 9.77% 9.85% 9.75% 9.77% 9.73% 9.74%
10 12.15% 11.98% 9.79% 10.10% 9.91% 9.84% 9.79% 9.78%

Table C.24: Third experiment: the variation index for the base learners and
simple average on the 20 size ensemble obtained using Mor06-avg.

a&ps 3 a&ps 4 a&ps 5 a&ps 35 a&ps 36 Avg
11.22% 11.31% 10.90% 11.40% 11.56% 9.62%

a&ps 39 a&ps 41 a&ps 44 a&ps 48 a&ps 65
12.06% 12.73% 11.08% 10.45% 10.20%

a&ps 71 a&ps 72 a&ps 75 a&ps 76 a&ps 77
11.18% 12.70% 11.02% 12.92% 10.03%

a&ps 90 a&ps 95 a&ps 96 a&ps 98 a&ps 120
10.14% 11.06% 10.91% 10.74% 10.87%

Table C.25: Third experiment: the variation index for the knn-CART on the
20 size ensemble obtained using Mor06-avg.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

∞ 9.76% 9.54% 9.60% 9.44% 9.50% 9.59% 9.61% 9.61%
200 9.74% 9.57% 9.60% 9.43% 9.51% 9.59% 9.61% 9.61%
100 9.77% 9.53% 9.61% 9.62% 9.56% 9.60% 9.62% 9.62%
90 9.80% 9.61% 9.61% 9.63% 9.55% 9.59% 9.62% 9.62%
80 9.86% 9.70% 9.61% 9.64% 9.56% 9.59% 9.62% 9.62%
70 9.96% 9.73% 9.61% 9.67% 9.54% 9.60% 9.62% 9.61%
60 9.89% 9.76% 9.61% 9.68% 9.53% 9.59% 9.61% 9.62%
50 9.77% 9.85% 9.61% 9.71% 9.53% 9.59% 9.61% 9.62%
40 10.16% 10.04% 9.61% 9.79% 9.54% 9.59% 9.60% 9.61%
30 10.40% 10.39% 9.62% 9.92% 9.55% 9.60% 9.62% 9.61%
20 10.99% 10.77% 9.62% 9.97% 9.58% 9.61% 9.62% 9.63%
10 11.16% 10.90% 9.63% 10.02% 9.67% 9.63% 9.65% 9.65%
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Table C.26: Third experiment: the variation index for the knn-CART on the
25 size ensemble obtained using Mor06-smse.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

∞ 11.41% 11.20% 9.76% 9.54% 9.58% 9.65% 9.67% 9.68%
200 11.41% 11.19% 9.76% 9.57% 9.59% 9.65% 9.68% 9.68%
100 11.42% 11.28% 9.76% 9.62% 9.59% 9.66% 9.68% 9.69%
90 11.43% 11.28% 9.76% 9.62% 9.58% 9.66% 9.68% 9.69%
80 11.43% 11.27% 9.76% 9.62% 9.59% 9.66% 9.68% 9.69%
70 11.38% 11.24% 9.76% 9.62% 9.58% 9.65% 9.68% 9.69%
60 11.46% 11.27% 9.76% 9.61% 9.57% 9.64% 9.67% 9.69%
50 11.43% 11.23% 9.76% 9.63% 9.60% 9.64% 9.68% 9.68%
40 11.55% 11.25% 9.76% 9.60% 9.61% 9.65% 9.68% 9.69%
30 11.45% 11.29% 9.76% 9.67% 9.65% 9.68% 9.69% 9.69%
20 11.50% 11.27% 9.77% 9.74% 9.65% 9.71% 9.71% 9.71%
10 11.70% 11.63% 9.77% 9.93% 9.72% 9.72% 9.70% 9.71%

Table C.27: Third experiment: the variation index for the base learners and
simple average on the 25 size ensemble obtained using Mor06-avg.

a&ps 3 a&ps 4 a&ps 5 a&ps 6 a&ps 35 Avg
11.22% 11.31% 10.90% 11.03% 11.41% 9.56%

a&ps 36 a&ps 37 a&ps 39 a&ps 41 a&ps 44
11.54% 12.82% 12.06% 12.73% 11.08%

a&ps 48 a&ps 65 a&ps 71 a&ps 72 a&ps 73
10.45% 10.20% 11.18% 12.70% 9.82%

a&ps 75 a&ps 76 a&ps 77 a&ps 90 a&ps 95
11.02% 12.92% 10.03% 10.14% 11.06%

a&ps 96 a&ps 98 a&ps 101 a&ps 120 a&ps 124
10.91% 10.74% 9.86% 10.87% 10.57%
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Table C.28: Third experiment: the variation index for the knn-CART on the
25 size ensemble obtained using Mor06-avg.

k Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

∞ 9.67% 9.50% 9.55% 9.41% 9.46% 9.53% 9.55% 9.55%
200 9.65% 9.53% 9.55% 9.41% 9.46% 9.53% 9.55% 9.55%
100 9.69% 9.50% 9.55% 9.57% 9.49% 9.54% 9.56% 9.56%
90 9.71% 9.57% 9.55% 9.58% 9.49% 9.54% 9.56% 9.56%
80 9.79% 9.67% 9.55% 9.60% 9.50% 9.54% 9.56% 9.56%
70 9.84% 9.70% 9.55% 9.62% 9.49% 9.55% 9.56% 9.55%
60 9.86% 9.73% 9.55% 9.62% 9.48% 9.54% 9.56% 9.56%
50 9.84% 9.82% 9.56% 9.66% 9.50% 9.54% 9.56% 9.56%
40 10.11% 10.00% 9.56% 9.74% 9.51% 9.55% 9.54% 9.55%
30 10.41% 10.42% 9.56% 9.85% 9.51% 9.56% 9.57% 9.56%
20 11.00% 10.76% 9.57% 9.93% 9.55% 9.57% 9.57% 9.57%
10 11.08% 10.90% 9.58% 10.00% 9.64% 9.59% 9.60% 9.61%
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Appendix D

Additional results on
ensembling for evaluation

This appendix has the complete preliminary results for the ensemble approach
described in Chap. 8. It comprises the three phases of the ensemble process:
ensemble generation, ensemble pruning and ensemble integration.

D.1 Ensemble generation

The generated pool (pool 128, table D.1) is quite similar to pool 130 presented
in Appendix B. The only differences are: (1) the substitution of the 18 a&ps
using PPR-supsmu without example selection (the a&ps from 113 to 130 having
ES=‘all’) for 16 a&ps using SVM-sigmoid with the CART approach for example
selection (the a&ps from 93 to 108 having ES=‘ln’); and (2) the use of the test
values 0.00006, 0.000018 and 0.00003 instead of 4000, 64000 and 1024000 for
Par 1 using SVM-radial for ES=‘ln’. ES identifies the used example selection
method, as described in Sect. 5.7.1. WDDT identifies the data type used for
the variable weekday, as discussed in Sect. 5.7.2. The parameters Par 1, Par 2,
Par 3 and Par 4 should be read as follows:

• For SVM: Par 1 = C, Par 2 = ν, Par 3 = γ and Par 4 = coef0;

• For RF: Par 1 = mtry;

• For PPR-supsmu: Par 1 = nterms, Par 2 = optlevel, Par 3 = bass and
Par 4 = span;

• For PPR-spline: Par 1 = nterms, Par 2 = optlevel and Par 3 = df;

• For PPR-gcvspline: Par 1 = nterms, Par 2 = optlevel and Par 3 = gcvpen.

Table D.1: The pool 128.

A&ps Algorithm ES WDDT Par 1 Par 2 Par 3 Par 4
1 svm radial all Symbolic 4000 0.2 0.00006
2 svm radial all Symbolic 64000 0.2 0.00006
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continued from previous page

a&ps Algorithm ES WDDT Par 1 Par 2 Par 3 Par 4
3 svm radial all Symbolic 1024000 0.2 0.00006
4 svm radial all Symbolic 4000 0.6 0.00006
5 svm radial all Symbolic 64000 0.6 0.00006
6 svm radial all Symbolic 1024000 0.6 0.00006
7 svm radial all Symbolic 4000 0.2 0.00018
8 svm radial all Symbolic 64000 0.2 0.00018
9 svm radial all Symbolic 1024000 0.2 0.00018
10 svm radial all Symbolic 4000 0.6 0.00018
11 svm radial all Symbolic 64000 0.6 0.00018
12 svm radial all Symbolic 1024000 0.6 0.00018
13 RF ed Symbolic 1
14 RF ed Symbolic 3
15 svm radial ln Symbolic 0.00006 0.2 0.00006
16 svm radial ln Symbolic 0.00018 0.2 0.00006
17 svm radial ln Symbolic 0.00030 0.2 0.00006
18 svm radial ln Symbolic 0.00006 0.6 0.00006
19 svm radial ln Symbolic 0.00018 0.6 0.00006
20 svm radial ln Symbolic 0.00030 0.6 0.00006
21 svm radial ln Symbolic 0.00006 0.2 0.00018
22 svm radial ln Symbolic 0.00018 0.2 0.00018
23 svm radial ln Symbolic 0.00030 0.2 0.00018
24 svm radial ln Symbolic 0.00006 0.6 0.00018
25 svm radial ln Symbolic 0.00018 0.6 0.00018
26 svm radial ln Symbolic 0.00030 0.6 0.00018
27 ppr supsmu all Numeric 1 1 0 0
28 ppr supsmu all Numeric 4 1 0 0
29 ppr supsmu all Numeric 1 2 0 0
30 ppr supsmu all Numeric 4 2 0 0
31 ppr supsmu all Numeric 1 3 0 0
32 ppr supsmu all Numeric 4 3 0 0
33 ppr supsmu all Numeric 1 1 5 0
34 ppr supsmu all Numeric 4 1 5 0
35 ppr supsmu all Numeric 1 2 5 0
36 ppr supsmu all Numeric 4 2 5 0
37 ppr supsmu all Numeric 1 3 5 0
38 ppr supsmu all Numeric 4 3 5 0
39 ppr supsmu all Numeric 1 1 10 0
40 ppr supsmu all Numeric 4 1 10 0
41 ppr supsmu all Numeric 1 2 10 0
42 ppr supsmu all Numeric 4 2 10 0
43 ppr supsmu all Numeric 1 3 10 0
44 ppr supsmu all Numeric 4 3 10 0
45 ppr spline all Numeric 1 1 1
46 ppr spline all Numeric 2 1 1
47 ppr spline all Numeric 1 3 1
48 ppr spline all Numeric 2 3 1
49 ppr spline all Numeric 1 1 32
50 ppr spline all Numeric 2 1 32
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continued from previous page

a&ps Algorithm ES WDDT Par 1 Par 2 Par 3 Par 4
51 ppr spline all Numeric 1 3 32
52 ppr spline all Numeric 2 3 32
53 ppr spline all Numeric 1 1 1024
54 ppr spline all Numeric 2 1 1024
55 ppr spline all Numeric 1 3 1024
56 ppr spline all Numeric 2 3 1024
57 ppr spline ed Numeric 1 1 1
58 ppr spline ed Numeric 2 1 1
59 ppr spline ed Numeric 1 3 1
60 ppr spline ed Numeric 2 3 1
61 ppr spline ed Numeric 1 1 32
62 ppr spline ed Numeric 2 1 32
63 ppr spline ed Numeric 1 3 32
64 ppr spline ed Numeric 2 3 32
65 ppr spline ed Numeric 1 1 1024
66 ppr spline ed Numeric 2 1 1024
67 ppr spline ed Numeric 1 3 1024
68 ppr spline ed Numeric 2 3 1024
69 ppr gcvspline all Numeric 1 1 0.0625
70 ppr gcvspline all Numeric 2 1 0.0625
71 ppr gcvspline all Numeric 1 3 0.0625
72 ppr gcvspline all Numeric 2 3 0.0625
73 ppr gcvspline all Numeric 1 1 16
74 ppr gcvspline all Numeric 2 1 16
75 ppr gcvspline all Numeric 1 3 16
76 ppr gcvspline all Numeric 2 3 16
77 ppr gcvspline all Numeric 1 1 4096
78 ppr gcvspline all Numeric 2 1 4096
79 ppr gcvspline all Numeric 1 3 4096
80 ppr gcvspline all Numeric 2 3 4096
81 ppr gcvspline ed Numeric 1 1 0.0625
82 ppr gcvspline ed Numeric 2 1 0.0625
83 ppr gcvspline ed Numeric 1 3 0.0625
84 ppr gcvspline ed Numeric 2 3 0.0625
85 ppr gcvspline ed Numeric 1 1 16
86 ppr gcvspline ed Numeric 2 1 16
87 ppr gcvspline ed Numeric 1 3 16
88 ppr gcvspline ed Numeric 2 3 16
89 ppr gcvspline ed Numeric 1 1 4096
90 ppr gcvspline ed Numeric 2 1 4096
91 ppr gcvspline ed Numeric 1 3 4096
92 ppr gcvspline ed Numeric 2 3 4096
93 svm sigmoid ln Symbolic 16000 0.2 0.000002 -1
94 svm sigmoid ln Symbolic 256000 0.2 0.000002 -1
95 svm sigmoid ln Symbolic 16000 0.6 0.000002 -1
96 svm sigmoid ln Symbolic 256000 0.6 0.000002 -1
97 svm sigmoid ln Symbolic 16000 0.2 0.000026 -1
98 svm sigmoid ln Symbolic 256000 0.2 0.000026 -1
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a&ps Algorithm ES WDDT Par 1 Par 2 Par 3 Par 4
99 svm sigmoid ln Symbolic 16000 0.6 0.000026 -1
100 svm sigmoid ln Symbolic 256000 0.6 0.000026 -1
101 svm sigmoid ln Symbolic 16000 0.2 0.000002 -2
102 svm sigmoid ln Symbolic 256000 0.2 0.000002 -2
103 svm sigmoid ln Symbolic 16000 0.6 0.000002 -2
104 svm sigmoid ln Symbolic 256000 0.6 0.000002 -2
105 svm sigmoid ln Symbolic 16000 0.2 0.000026 -2
106 svm sigmoid ln Symbolic 256000 0.2 0.000026 -2
107 svm sigmoid ln Symbolic 16000 0.6 0.000026 -2
108 svm sigmoid ln Symbolic 256000 0.6 0.000026 -2
109 svm linear all Symbolic 0.0625 0.1
110 svm linear all Symbolic 64 0.1
111 svm linear all Symbolic 0.0625 0.3
112 svm linear all Symbolic 64 0.3
113 svm linear all Symbolic 0.0625 0.5
114 svm linear all Symbolic 64 0.5
115 svm linear all Symbolic 0.0625 0.7
116 svm linear all Symbolic 64 0.7
117 svm linear all Symbolic 0.0625 0.9
118 svm linear all Symbolic 64 0.9
119 svm linear ln Symbolic 0.0625 0.1
120 svm linear ln Symbolic 64 0.1
121 svm linear ln Symbolic 0.0625 0.3
122 svm linear ln Symbolic 64 0.3
123 svm linear ln Symbolic 0.0625 0.5
124 svm linear ln Symbolic 64 0.5
125 svm linear ln Symbolic 0.0625 0.7
126 svm linear ln Symbolic 64 0.7
127 svm linear ln Symbolic 0.0625 0.9
128 svm linear ln Symbolic 64 0.9

D.2 Ensemble pruning

The ensembles selected from pool 128 are presented in Table D.2. They have
sizes k ∈ {5, 10, 15, 20, 25}. Since the pruning phase uses the Forward Sequential
Selection (FSS) algorithm (Sect. 6.3.3), the results are presented by blocks of 5
a&ps. The first five compose the ensembles of size 5, the first ten, the ensembles
of size 10, and so on.

D.3 Ensemble integration

The results on the integration phase for the different tested routes have com-
parable results to the ones obtained in Sect. 7.5. The settings using 5 sized
ensembles with the DWS function for integration were the best for all the 6
routes (table D.3).
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Table D.2: Ensembles selected from pool 128 using FSS-avg.
205-1-1 205-1-2 300-1-1 301-1-1 505-1-1 505-1-2

13 13 13 13 13 14
14 14 14 14 14 29
29 37 36 38 71 37
71 51 104 121 119 95
127 127 128 125 121 103
31 31 80 54 15 13
36 32 95 85 18 31
51 55 122 101 31 34
96 71 123 103 83 67
125 94 127 123 123 104
18 29 18 15 16 28
30 35 55 36 79 35
38 72 67 93 85 55
75 93 101 96 125 96
104 96 125 104 127 125
19 38 19 34 21 27
24 56 38 87 24 33
76 79 72 93 36 63
79 84 87 96 72 121
123 95 96 104 93 127
6 15 24 18 6 18
27 27 52 50 25 32
32 69 93 86 29 36
64 86 103 94 37 79
121 101 121 119 91 123
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Table D.3: The variation index for tuning ensemble integration using knn-
CART.

Size Best FSwR DWS DWS DWS DWS DWS DW
10% 30% 50% 70% 90%

route 205-1-1
5 9.65% 9.35% 8.91% 8.99% 8.89% 8.87% 8.90% 8.91%
10 9.67% 9.18% 9.12% 9.13% 9.09% 9.08% 9.11% 9.12%
15 9.68% 9.03% 9.14% 9.00% 9.06% 9.08% 9.11% 9.12%
20 9.61% 9.02% 9.00% 8.94% 8.95% 8.96% 8.98% 8.99%
25 9.61% 9.02% 9.10% 8.94% 9.00% 9.01% 9.05% 9.06%

route 205-1-2
5 10.32% 9.75% 9.30% 9.53% 9.28% 9.28% 9.29% 9.29%
10 10.32% 9.81% 9.34% 9.53% 9.31% 9.33% 9.33% 9.33%
15 10.28% 9.79% 9.35% 9.53% 9.34% 9.34% 9.35% 9.35%
20 10.25% 9.78% 9.40% 9.56% 9.41% 9.41% 9.41% 9.41%
25 10.18% 9.79% 9.37% 9.53% 9.37% 9.37% 9.37% 9.37%

route 300-1-1
5 7.72% 7.38% 7.02% 7.05% 7.03% 7.03% 7.00% 7.06%
10 9.15% 8.45% 7.13% 7.06% 7.09% 7.08% 7.07% 7.18%
15 9.19% 8.49% 7.16% 7.10% 7.11% 7.11% 7.13% 7.23%
20 9.18% 8.52% 7.16% 7.11% 7.09% 7.09% 7.15% 7.27%
25 8.95% 8.83% 7.17% 7.11% 7.09% 7.10% 7.25% 7.28%

route 301-1-1
5 10.69% 10.50% 10.33% 10.53% 10.39% 10.38% 10.30% 10.35%
10 11.16% 11.12% 10.36% 10.35% 10.36% 10.31% 10.33% 10.35%
15 11.19% 11.16% 10.52% 10.37% 10.62% 10.45% 10.48% 10.50%
20 11.20% 11.14% 10.54% 10.47% 10.49% 10.45% 10.48% 10.52%
25 11.26% 11.15% 10.61% 10.51% 10.58% 10.55% 10.56% 10.60%

route 505-1-1
5 13.30% 13.19% 12.19% 12.29% 12.19% 12.19% 12.19% 12.19%
10 13.21% 13.12% 12.24% 12.30% 12.23% 12.25% 12.23% 12.24%
15 12.85% 12.70% 12.24% 12.31% 12.22% 12.24% 12.23% 12.23%
20 14.11% 13.16% 12.27% 13.27% 13.17% 12.32% 12.27% 12.26%
25 14.14% 13.68% 12.30% 13.26% 13.17% 12.31% 12.28% 12.27%

route 505-1-2
5 10.29% 10.07% 10.07% 10.07% 10.11% 10.12% 10.09% 10.08%
10 10.66% 10.37% 10.22% 10.26% 10.21% 10.25% 10.21% 10.22%
15 10.42% 10.56% 10.38% 10.41% 10.41% 10.42% 10.35% 10.35%
20 10.53% 10.57% 10.33% 10.39% 10.34% 10.35% 10.32% 10.30%
25 10.54% 10.55% 10.38% 10.41% 10.41% 10.42% 10.36% 10.35%



Appendix E

Additional results on
statistical tests

In Sect. 8.4 multiple confidence intervals are presented according to a method
described in [Hochberg and Tamhane, 1987; Feelders and Verkooijen, 1995].
This appendix complements the information given in the said section by pre-
senting intermediate results for each of the studied six routes, namely, the sam-
ple average, the sample variance and the sample covariance of the quadratic
error of the predictions. With respect to notation, as presented before, the er-

ror measure is the square error calculated as f̂ ei(x) =
(
f̂i(x)− f(x)

)2

. We

denote the sample average of f̂ ei as f̂ ei, the sample variance of f̂ ei as Se2
i , the

sample covariance of f̂ ei and f̂ ej as Sei,j , and the number of test examples as
n. Formally:

f̂ ei(X) =
1
n

n∑

l=1

(f̂ ei(xl)), (E.1)

Se2
i (X) =

1
n− 1

n∑

l=1

(f̂ ei(xl)− f̂ ei(X))2, (E.2)

Sei,j(X) =
1

n− 1

n∑

l=1

((f̂ ei(xl)− f̂ ei(X))× (f̂ ej(xl)− f̂ ej(X))). (E.3)

Using the schema presented in table E.2, the sample statistics used to calcu-
late the multiple intervals of confidence for each of the six routes are presented
in table E.1.

195
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Table E.1: Sample statistics used to calculate the multiple intervals of confi-
dence.

route 205-1-1
5510 STT BL EXP BST ENS
STT 318090 264435 256591 269183 253553

BL 376376 257062 262562 258194
EXP 252400 251409 243582
BST 273550 251794
ENS 251181

160182 167411 93767 102424 91930
route 205-1-2

5372 STT BL EXP BST ENS
STT 336229 281187 269194 265661 272829

BL 364387 259387 257662 266934
EXP 253791 247857 250762
BST 268158 254492
ENS 257422

153996 161578 91075 105409 88766
route 300-1-1

3668 STT BL EXP BST ENS
STT 1990331 2008647 1956359 1916022 1978994

BL 3057072 1986239 2114563 2027883
EXP 1936328 1910399 1955007
BST 2058783 1963578
ENS 2003779

296225 633091 319699 434154 320702
route 301-1-1

3671 STT BL EXP BST ENS
STT 1904515 1832394 1826320 1836910 372943

BL 2453022 1768294 1810290 359269
EXP 1780432 1781596 362993
BST 1873530 374031
ENS 1824199

336540 601533 340994 392503 337591
route 505-1-1

2160 STT BL EXP BST ENS
STT 400880 366719 362173 346161 349026

BL 601174 389044 359069 368764
EXP 399993 358085 361449
BST 365309 352278
ENS 351819

157756 240368 127309 129510 114336
route 505-1-2

1505 STT BL EXP BST ENS
STT 369495 229356 233289 220763 220963

BL 458716 228397 219864 211412
EXP 227045 207741 204612
BST 258337 223466
ENS 219795

239597 282239 102481 104358 93713
STT: Scheduled Travel Time; BL: BaseLine predictor; EXP: EXPert based

predictor; BST: single BeST predictor; ENS: ENSemble predictor.
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Table E.2: Schema used to present results on statistical validation.

n STT BL EXP BST ENS
STT SeSTT

√
SeSTT,BL

√
SeSTT,EXP

√
SeSTT,BST

√
SeSTT,ENS

BL - SeBL

√
SeBL,EXP

√
SeBL,BST

√
SeBL,ENS

EXP - - SeEXP

√
SeEXP,BST

√
SeEXP,ENS

BST - - - SeBST

√
SeBST,ENS

ENS - - - - SeENS

f̂ eSTT f̂ eBL f̂ eEXP f̂ eBST f̂ eENS

STT: Scheduled Travel Time; BL: BaseLine predictor; EXP: EXPert based
predictor; BST: single BeST predictor; ENS: ENSemble predictor.
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Rui Guimarães Freire de Sousa, João Rui de Sousa Simões Fernandes Mar-
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