Maria Helena Braga, Luis Filipe Malheiros, Fernando Castro*, and Delfim Soares*
GMM/IMAT, DEMET, FEUP, Porto, Portugal; *Universidade do Minho, Guimarães, Portugal

Experimental Liquidus Points and Invariant Reactions in the Cu–Zr System

In the Cu–Zr system, especially between 0.25 < x(Zr) < 1, experimental liquidus points are missing and many doubts arise concerning the invariant points. In 1986, Kneller et al. [1] pointed out the existence of three phases and two eutectoid reactions which had not yet been reported. This work has been questioned by other authors [2, 3]. Differential Thermal Analysis (DTA) experiments have been done in almost the whole range of compositions of the Cu–Zr system, especially where the work of Kneller et al. [1] is ambiguous; results are compared with the previous ones.

1 Introduction

The phase diagram of the Cu–Zr system was firstly and essentially based on the work of Lundin et al. [4]. In their work thermal analysis was used to determine eutectic and peritectic isotherms as well as compound melting points. Metallographic examination was used to reveal the phases present at the equilibrium. Lundin et al. [4] reported the existence of five eutectics at the concentrations/temperatures x(Zr) = 0.065 / 1283 K, x(Zr) = 0.382 / 1160 K, x(Zr) = 0.440 / 1163 K, x(Zr) = 0.540 / 1200 K, x(Zr) = 0.724 / 1268 K, four congruently melting intermetallic phases with stoichiometrics/melting temperatures Cu₃Zr / 1373 K, Cu₃Zr₂ / 1168 K, CuZr / 1208 K, CuZr₂ / 1273 K and one phase that is formed peritectically at 1343 K.

In subsequent works, two more phases were reported, Cu_9Zr_2 [5] and Cu_5Zr [6 to 9]. Further, it was pointed out that the compositions of some of the phases are different from those originally proposed and should be corrected, $Cu_3Zr \rightarrow Cu_{51}Zr_{14}$ [10], $Cu_5Zr_2 \rightarrow Cu_8Zr_3$ [11], $Cu_3Zr_2 \rightarrow Cu_{10}Zr_7$ [12],

Structures were reported for the phases Cu₅Zr [13], Cu₅₁Zr₁₄ [10], Cu₈Zr₃ [11, 14], Cu₁₀Zr₇ [12] (the authors made intensity calculations with the positional parameters for Ni₁₀Zr₇ from [15]), CuZr [16] and CuZr₂ [17].

Moreover, it has been shown by Carvalho and Harris [16] that the B2-type phase, CuZr, is stable only above 985 ± 5 K; below this temperature, it decomposes by an eutectoid reaction into the neighbouring phases, presumably Cu₁₀Zr₂ and CuZr₂. These authors also concluded from magnetic susceptibility measurements, metallography and X-ray diffraction evidence that, at rapid cooling from the stability range, CuZr transforms martensitically into a metastable phase with unknown structure; the transforma-

tion temperature is 440 \pm 5 K. They stated that a clear X-ray diffraction pattern of the equilibrium phase CuZr was not obtained by annealing stoichiometric alloy samples just below the melting point and subsequent quenching, but only in a sample quenched from the liquid state.

Kneller et al. [1] studied the system in the range $0.20 \le x(Zr) \le 0.70$, reported the existence of three new phases and gave their X-ray data, Cu24Zr13, $CuZr_{1+z}(z \approx 3)$, Cu_5Zr_8 , and a superstructure of $CuZr_2$. Phase stabilities were established for temperatures above 800 K. They reported that all new intermetallic phases in this system have equal sphere packing densities and their lattice parameters are commensurable, i.e. connected by simple geometrical ratios. As a consequence of such universal geometrical compatibility, structural coherency may play an important role in phase reactions. Further, they concluded that the DTA measurements indicate at least two high-temperature phases, one at $x(Zr) \cong 0.33$, tentatively termed Cu_2Zr , and one at $x(Zr) \cong 0.35$, tentatively termed Cu24Zr13. None of these phases could be retained at room temperature by annealing and subsequent quenching. Nevertheless, alloys with $0.36 \le x(Zr) \le 0.38$ quenched from the melt, yielded the clear X-ray pattern of a new phase which was ascribed to Cu24Zr13. They found the work of Carvalho and Harris [16] for the structure and stability range of the phase CuZr compatible with their results. However, they measured the lattice stability to be slightly higher and concluded that CuZr appears to be formed by a peritectic reaction rather than having a congruent melting temperature, according to their DTA curves, and that its composition seemed to be not exactly x(Zr) = 0.50 but somewhat higher, $x(Zr) \approx 0.515$. Kneller et al. [1] also proposed the existence of two more eutectoid reactions $Cu_8Zr_3 \leftrightarrow Cu_{31}Zr_{14} + Cu_{10}Zr_7$ (at 885 K) and $Cu_5Zr_3 \leftrightarrow Cu_{10}Zr_7 + CuZr_2$ (below ~ 970 K) and for CuZr2 a low-temperature phase modification, CuZr2-L, and a high temperature modification, CuZr2-H, stable above 1200 K.

The Cu–Zr system has already been assessed by several authors [2, 3] and [18]. Zeng et al. [3] considered the existence of the phases Cu₅Zr, Cu₅₁Zr₁₄, Cu₈Zr₃, Cu₁₀Zr₇, CuZr and CuZr₂ but omitted, as Arias and Abriata [2], the new phases and eutectoid reactions observed by Kneller et al. [1]. In their opinion, the existence of these new phases should be confirmed independently by other authors. On the other hand, they questioned the experimental procedures used by Kneller et al. [1].

Braga et al. [18] assessed the Cu-Zr system taking into account the work of Kneller et al. [1]. The present work aims to clear some doubts still remaining.

Table 1. DTA experimental points.

Concentration $x(Zr)$	Temperature (K)	Heating Rate (K/min)
0.800	1124	5
0.800 0.800	1240 1300	5 5 5
0.785	1240	10
0.785	1286	2
0.663 0.663	1198 1204	2 2 2 *
0.663	1234	2
0.663	1299	*
0.652	1192	10
0.652 0.652	1194 1221	10 10
0.652	1279	5
0.640	1191	2
0.640 0.640	1195 1224	2 2 2 2
0.640	1282	2
0.608	1005	10
0.608	1186	5
0.608 0.608	1188 1219	5
0.608	1265	5 5 5 2 2 2 *
0.600	1186	2
0.600 0.600	1188	2
0.600	1218 1257	*
0.581	1006	10
0.581	1189	5
0.581 0.581	1219 1243	5 5 5
0.573	1005	10
0.573	1185	5
0.573	1186	5
0.573 0.573	1209 1234	5 5 5 5 2 2 2
0.550	1184	2
0.550	1215	2
0.550	1229	
0.543 0.543	1177 1181	2.5 2.5
0.543	1202	2.5
0.543	1220	2.5
0.537 0.537	999 1193	10
0.537	1196	2 2
0.537	1228	2
0.537 0.515	1242	1
0.515	1006 1187	2
0.515	1190	2
0.515 0.515	1224 1239	10 2 2 2 2 2
0.500	1171	10
0.500	1183	10
0.500 0.500	1195 1233	10
0.300	1169	2 5
0.485	1182	5 5 5
0.485	1218	I .
0.470	1174	10
0.470 0.470	1186 1206	10 10
0.439	999	10
0.439	1172	2 2
0.439	1204	

0.406 1194 2 0.406 1197 2 0.406 1202 ** 0.395 1195 2 0.376 1201 2 0.376 1201 2 0.376 1233 ** 0.360 1191 2 0.360 1229 2 0.360 1229 2 0.360 1229 2 0.330 1238 2 0.339 1196 2 0.339 1222 2 0.339 1232 2 0.339 1232 2 0.339 1273 2 0.339 1273 2 0.339 1310 * 0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1277 10 0.335 1	Concentration x(Zr)	Temperature (K)	Heating Rate (K/m:
0.395 1195 2 0.395 1200 * 0.376 1196 2 0.376 1201 2 0.376 1233 * 0.360 1191 2 0.360 1229 2 0.360 1238 2 0.360 1232 2 0.339 1196 2 0.339 1232 2 0.339 1273 2 0.339 1273 2 0.339 1273 2 0.339 1273 2 0.339 1271 10 0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1277 10 0.335 1218 5 0.303 1218 5 0.303 1228 5 0.303 12			2
0.395 1195 2 0.395 1200 ** 0.376 1196 2 0.376 1201 2 0.376 1233 ** 0.360 1191 2 0.360 1229 2 0.360 1228 2 0.360 1272 2 0.339 1196 2 0.339 1241 2 0.339 1273 2 0.339 1273 2 0.339 1273 2 0.339 1271 10 0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1277 10 0.3303 1218 5 0.303 1218 5 0.303 1228 5 0.303 1249 5 0.300 <td< td=""><td></td><td></td><td>2</td></td<>			2
0.395 1195 2 0.395 1200 ** 0.376 1201 2 0.376 1201 2 0.376 1233 ** 0.360 1195 2 0.360 1229 2 0.360 1228 2 0.360 1272 2 0.339 1196 2 0.339 1241 2 0.339 1241 2 0.339 1273 2 0.339 1273 2 0.339 1271 10 0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1277 10 0.3303 1218 5 0.303 1218 5 0.303 1228 5 0.300 1218 5 0.300 <td< td=""><td></td><td></td><td>. 2</td></td<>			. 2
0.395 1200 ** 0.376 1196 2 0.376 1233 ** 0.360 1191 2 0.360 1195 2 0.360 1229 2 0.360 1228 2 0.339 1196 2 0.339 1232 2 0.339 1241 2 0.339 1273 2 0.339 1273 2 0.339 1273 2 0.339 1271 10 0.335 1203 10 0.335 1221 10 0.335 1221 10 0.335 1277 10 0.335 1277 10 0.303 1218 5 0.303 1218 5 0.303 1218 5 0.303 1228 5 0.300 1218 5 0.300	1)
0.376 1196 2 0.376 1201 2 0.376 1233 ** 0.360 1191 2 0.360 1229 2 0.360 1228 2 0.360 1238 2 0.360 1272 2 0.339 1196 2 0.339 1232 2 0.339 1273 2 0.339 1273 2 0.339 1273 2 0.339 1273 2 0.335 1203 10 0.335 12241 10 0.335 12241 10 0.335 1227 10 0.335 1277 10 0.335 1277 10 0.335 1218 5 0.303 1187 5 0.303 1218 5 0.303 1228 5 0.300 <td< td=""><td></td><td></td><td>. 2</td></td<>			. 2
0.376 1201 2 0.376 1233 ** 0.360 1191 2 0.360 1229 2 0.360 1238 2 0.360 1229 2 0.360 1238 2 0.339 1322 2 0.339 1241 2 0.339 1241 2 0.339 1241 2 0.339 1310 ** 0.339 1310 ** 0.335 1241 10 0.335 1241 10 0.335 1241 10 0.335 1277 10 0.335 1277 10 0.335 1277 10 0.303 1218 5 0.303 1218 5 0.303 1218 5 0.303 1241 5 0.300 1262 5 0.300 <td< td=""><td></td><td></td><td>i</td></td<>			i
0.360 1191 2 0.360 1195 2 0.360 1229 2 0.360 1238 2 0.360 1272 2 0.339 1196 2 0.339 1232 2 0.339 1273 2 0.339 1273 2 0.339 1310 ** 0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1277 10 0.303 1187 5 0.303 1218 5 0.303 1218 5 0.303 1241 5 0.303 1218 5 0.303 1218 5 0.303 1218 5 0.303 1249 5 0.300 1218 5 0.300 12			2
0.360 1191 2 0.360 1229 2 0.360 1228 2 0.360 1228 2 0.360 1272 2 0.339 1232 2 0.339 1231 2 0.339 1273 2 0.339 1273 2 0.339 1273 2 0.339 1203 10 0.335 1203 10 0.335 1203 10 0.335 1251 10 0.335 1251 10 0.335 1277 10 0.335 1277 10 0.303 1187 5 0.303 1218 5 0.303 1218 5 0.303 1229 5 0.303 1218 5 0.300 1218 5 0.300 12262 5 0.300			*
0.360 1195 2 0.360 1229 2 0.360 1272 2 0.360 1272 2 0.339 1196 2 0.339 1232 2 0.339 1273 2 0.339 1273 2 0.339 1310 ** 0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1277 10 0.335 1218 5 0.303 1218 5 0.303 1218 5 0.303 1218 5 0.303 1241 5 0.303 1242 5 0.303 1248 5 0.303 1248 5 0.300 1218 5 0.300 1229 5 0.300 12			
0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1313 10 0.303 1187 5 0.303 1218 5 0.303 1262 5 0.303 1299 5 0.300 1187 5 0.300 1218 5 0.300 1218 5 0.300 1262 5 0.300 1262 5 0.300 1262 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.286 1219 2 0.286 1269 2 0.286 1269 2 0.286 127			2 2
0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1313 10 0.303 1187 5 0.303 1218 5 0.303 1262 5 0.303 1299 5 0.300 1187 5 0.300 1218 5 0.300 1218 5 0.300 1262 5 0.300 1262 5 0.300 1262 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.286 1219 2 0.286 1269 2 0.286 1269 2 0.286 127			1 2
0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1313 10 0.303 1187 5 0.303 1218 5 0.303 1262 5 0.303 1299 5 0.300 1187 5 0.300 1218 5 0.300 1218 5 0.300 1262 5 0.300 1262 5 0.300 1262 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.286 1219 2 0.286 1269 2 0.286 1269 2 0.286 127		1238	2
0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1313 10 0.303 1187 5 0.303 1218 5 0.303 1262 5 0.303 1299 5 0.300 1187 5 0.300 1218 5 0.300 1218 5 0.300 1262 5 0.300 1262 5 0.300 1262 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.286 1219 2 0.286 1269 2 0.286 1269 2 0.286 127	0.360	1272	2
0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1313 10 0.303 1187 5 0.303 1218 5 0.303 1262 5 0.303 1299 5 0.300 1187 5 0.300 1218 5 0.300 1218 5 0.300 1262 5 0.300 1262 5 0.300 1262 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.286 1219 2 0.286 1269 2 0.286 1269 2 0.286 127			2
0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1313 10 0.303 1187 5 0.303 1218 5 0.303 1262 5 0.303 1299 5 0.300 1187 5 0.300 1218 5 0.300 1218 5 0.300 1262 5 0.300 1262 5 0.300 1262 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.286 1219 2 0.286 1269 2 0.286 1269 2 0.286 127			2
0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1313 10 0.303 1187 5 0.303 1218 5 0.303 1262 5 0.303 1299 5 0.300 1187 5 0.300 1218 5 0.300 1218 5 0.300 1262 5 0.300 1262 5 0.300 1262 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.286 1219 2 0.286 1269 2 0.286 1269 2 0.286 127			. 2
0.335 1203 10 0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1313 10 0.303 1187 5 0.303 1218 5 0.303 1262 5 0.303 1299 5 0.300 1187 5 0.300 1218 5 0.300 1218 5 0.300 1262 5 0.300 1262 5 0.300 1262 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.286 1219 2 0.286 1269 2 0.286 1269 2 0.286 127			2 *
0.335 1241 10 0.335 1251 10 0.335 1277 10 0.335 1313 10 0.303 1218 5 0.303 1218 5 0.303 12299 5 0.303 1341 5 0.300 1187 5 0.300 1218 5 0.300 12218 5 0.300 1262 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.286 1219 2 0.286 1269 2 0.286 1296 2 0.259 1385 5 0.246 13			l
0.335 1251 10 0.335 1277 10 0.303 1313 10 0.303 1218 5 0.303 12262 5 0.303 1262 5 0.303 1299 5 0.303 1299 5 0.300 1187 5 0.300 1218 5 0.300 1262 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.286 1219 2 0.286 1219 2 0.286 1299			
0.335 1277 10 0.335 1313 10 0.303 1187 5 0.303 1218 5 0.303 1262 5 0.303 1299 5 0.303 1341 5 0.300 1187 5 0.300 1218 5 0.300 1262 5 0.300 1262 5 0.300 1299 5 0.300 1262 5 0.300 1262 5 0.300 1299 5 0.300 1262 5 0.300 1262 5 0.300 1262 5 0.300 1262 5 0.300 1264 2 0.286 1219 2 0.286 1269 2 0.286 1269 2 0.259 1385 5 0.246 1304 </td <td></td> <td></td> <td></td>			
0.335 1313 10 0.303 1218 5 0.303 1262 5 0.303 1299 5 0.303 1341 5 0.300 1187 5 0.300 1218 5 0.300 1262 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1262 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1299 5 0.300 1219 2 0.286 1219 2 0.286 1269 2 0.286 1269 2 0.259 1385 5 0.246 1304 <td></td> <td>1277</td> <td></td>		1277	
0.303 1218 5 0.303 1262 5 0.303 1299 5 0.303 1341 5 0.300 1187 5 0.300 1218 5 0.300 1262 5 0.300 1299 5 0.300 1351 5 0.286 1299 5 0.300 1351 5 0.286 1219 2 0.286 1219 2 0.286 1269 2 0.286 1269 2 0.286 1269 2 0.286 1269 2 0.286 1269 2 0.286 1269 2 0.286 1269 2 0.259 1304 5 0.259 1304 5 0.246 1306 5 0.246 1382 5 0.231 1306 <td></td> <td></td> <td></td>			
0.300 1187 5 0.300 1218 5 0.300 1262 5 0.300 1299 5 0.300 1351 5 0.286 1184 2 0.286 1219 2 0.286 1269 2 0.286 1296 2 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.259 1304 5 0.259 1385 5 0.246 1306 5 0.246 1306 5 0.231 1306 10 0.231 1376 10 0.153 1309 10 0.153 1359 10 0.153 1359 10 0.139 1313 10 0.128 </td <td>0.303</td> <td>1187</td> <td>5</td>	0.303	1187	5
0.300 1187 5 0.300 1218 5 0.300 1262 5 0.300 1299 5 0.300 1351 5 0.286 1184 2 0.286 1219 2 0.286 1269 2 0.286 1296 2 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.259 1304 5 0.259 1385 5 0.246 1306 5 0.246 1306 5 0.231 1306 10 0.231 1376 10 0.153 1309 10 0.153 1359 10 0.153 1359 10 0.139 1313 10 0.128 </td <td></td> <td></td> <td>5</td>			5
0.300 1187 5 0.300 1218 5 0.300 1262 5 0.300 1299 5 0.300 1351 5 0.286 1184 2 0.286 1219 2 0.286 1269 2 0.286 1296 2 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.259 1304 5 0.259 1385 5 0.246 1306 5 0.246 1306 5 0.231 1306 10 0.231 1376 10 0.153 1309 10 0.153 1359 10 0.139 1313 10 0.139 1313 10 0.128 </td <td></td> <td></td> <td>5</td>			5
0.300 1187 5 0.300 1218 5 0.300 1262 5 0.300 1299 5 0.300 1351 5 0.286 1184 2 0.286 1219 2 0.286 1269 2 0.286 1296 2 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.259 1304 5 0.259 1385 5 0.246 1306 5 0.246 1306 5 0.231 1306 10 0.231 1376 10 0.153 1309 10 0.153 1359 10 0.139 1313 10 0.139 1313 10 0.128 </td <td></td> <td></td> <td>5</td>			5
0.286 1184 2 0.286 1219 2 0.286 1269 2 0.286 1296 2 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.259 1275 5 0.259 1304 5 0.259 1385 5 0.246 1306 5 0.246 1306 5 0.246 1382 5 0.231 1306 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1309 10 0.139 1313 10 0.139 1313 10 0.128 1311 10 0.128 1311 10 0.128 1320 10 0.106 <			l .
0.286 1184 2 0.286 1219 2 0.286 1269 2 0.286 1296 2 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.259 1275 5 0.259 1304 5 0.259 1385 5 0.246 1270 5 0.246 1306 5 0.246 1382 5 0.231 1306 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1359 10 0.139 1313 10 0.139 1313 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 <			5
0.286 1184 2 0.286 1219 2 0.286 1269 2 0.286 1296 2 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.259 1275 5 0.259 1304 5 0.259 1385 5 0.246 1270 5 0.246 1306 5 0.246 1382 5 0.231 1306 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1359 10 0.139 1313 10 0.139 1313 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 <			2
0.286 1184 2 0.286 1219 2 0.286 1269 2 0.286 1296 2 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.259 1275 5 0.259 1304 5 0.259 1385 5 0.246 1270 5 0.246 1306 5 0.246 1382 5 0.231 1306 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1359 10 0.139 1313 10 0.139 1313 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 <			5
0.286 1184 2 0.286 1219 2 0.286 1269 2 0.286 1296 2 0.286 1367 * 0.286 1367 * 0.286 1367 * 0.259 1275 5 0.259 1304 5 0.259 1385 5 0.246 1306 5 0.246 1306 5 0.246 1382 5 0.231 1306 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1309 10 0.139 1313 10 0.139 1313 10 0.128 1311 10 0.128 1311 10 0.128 1320 10 0.106 <			5
0.259 1275 5 0.259 1304 5 0.259 1385 5 0.246 1270 5 0.246 1306 5 0.246 1382 5 0.231 1270 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1309 10 0.153 1359 10 0.139 1313 10 0.139 1313 10 0.139 1313 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1287 10 0.100 1287 10 0.060 1271 10	0.286	1184	2
0.259 1275 5 0.259 1304 5 0.259 1385 5 0.246 1270 5 0.246 1306 5 0.246 1382 5 0.231 1270 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1309 10 0.153 1359 10 0.139 1313 10 0.139 1313 10 0.139 1313 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1287 10 0.060 1271 10	0.286		2
0.259 1275 5 0.259 1304 5 0.259 1385 5 0.246 1270 5 0.246 1306 5 0.246 1382 5 0.231 1270 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1309 10 0.153 1359 10 0.139 1313 10 0.139 1313 10 0.139 1313 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1287 10 0.100 1287 10 0.060 1271 10			2
0.259 1275 5 0.259 1304 5 0.259 1385 5 0.246 1270 5 0.246 1306 5 0.246 1382 5 0.231 1270 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1309 10 0.153 1359 10 0.139 1313 10 0.139 1313 10 0.139 1313 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1287 10 0.100 1287 10 0.060 1271 10			2
0.259 1304 5 0.259 1385 5 0.246 1270 5 0.246 1306 5 0.246 1382 5 0.231 1270 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1359 10 0.139 1313 10 0.139 1313 10 0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1287 10 0.100 1287 10 0.060 1271 10			
0.246 1270 5 0.246 1306 5 0.246 1382 5 0.231 1270 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1359 10 0.139 1266 10 0.139 1313 10 0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1287 10 0.100 1287 10 0.060 1271 10			5
0.246 1270 5 0.246 1306 5 0.246 1382 5 0.231 1270 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1359 10 0.139 1266 10 0.139 1313 10 0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1287 10 0.100 1287 10 0.060 1271 10	0.259		5
0.246 1306 5 0.246 1382 5 0.231 1270 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1359 10 0.139 1266 10 0.139 1313 10 0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10			
0.246 1382 5 0.231 1270 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1359 10 0.139 1266 10 0.139 1313 10 0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10			5
0.231 1270 10 0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1359 10 0.139 1266 10 0.139 1313 10 0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10			5
0.231 1306 10 0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1359 10 0.139 1266 10 0.139 1313 10 0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10	0.231	1270	
0.231 1376 10 0.153 1270 10 0.153 1309 10 0.153 1359 10 0.139 1266 10 0.139 1313 10 0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10	0.231	1306	
0.153 1309 10 0.153 1359 10 0.139 1266 10 0.139 1313 10 0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10	0.231	1376	
0.153 1359 10 0.139 1266 10 0.139 1313 10 0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10		1270	10
0.139 1266 10 0.139 1313 10 0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10			
0.139 1313 10 0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10			10
0.139 1331 10 0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10			
0.128 1275 10 0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10			
0.128 1311 10 0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10			
0.128 1320 10 0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10			
0.106 1272 10 0.100 1273 10 0.100 1287 10 0.060 1271 10			~ *
0.100 1273 10 0.100 1287 10 0.060 1271 10			
0.100 1287 10 0.060 1271 10		I	
0.060 1271 10			
0.000 1510 10			
	0.000	1310	10
	1		

^{*} These points were extrapolated for a heating rate equal to "zero".

T(K) 1300

Fig. 1. Assessed phase diagram [18]; DTA experimental points. DTA curve (first heating) for a composition corresponding to the dotted arrow. The open circles are the experimental points, obtained for the samples annealed for 96 h at 1103 K.

Fig. 2. Assessed phase diagram [18]; DTA experimental points. DTA curve for a composition corresponding to the dotted arrow.

2 Experimental

For each composition to be investigated, a master alloy of 1 g or 2 g was prepared from pure elements, 99.99 wt.% Cu and 99.9 wt.% Zr, by melting in an arc furnace under a purified argon atmosphere; prior to the introduction of the argon, primary vacuum was made in the chamber of the furnace. Each alloy was homogenised by remelting.

Some of the samples were annealed at 1103 K for 24 h under vacuum and the samples with compositions 0.215 < x(Zr) < 0.273 were annealed at the same temperature for 24 h and 96 h under a purified argon atmosphere.

Some focus was put on the compositions that might solve some questions, so, the most scanned range of concentrations was 0.22 < x(Zr) < 0.67.

The chemical composition of the master alloys was determined in an X-ray fluorescence spectrometer X-UNIC II, with an average accuracy of 5.6 %. Some samples were analysed by energy-dispersive spectroscopy (EDS).

DTA (differential thermal analysis) measurements took place in three different apparatus, DTA Shimadzu, DTA/TGA Setaram, DTA/TGA TA Instruments SDT 2960 (all three from room temperature to 1773 K) under a purified argon atmosphere.

The DTA measurements were carried out in Al_2O_3 crucibles. SEM (scanning electron microscopy) – EDS (energy-dispersive spectroscopy) measurements were made to ensure that the samples did not react with the crucibles.

For each concentration, the heating was performed at least four times with four different samples with heating rates of 2 K/min, 5 K/min, 10 K/min and 20 K/min. For some compositions two cycles of heating/cooling were done. The reactivity of copper and zirconium with oxygen, at high temperatures, did not allow us to consider, mainly for samples rich in Cu, the DTA curve for a heating rate of 2 K/min.

Liquidus points were extrapolated to a heating rate of "0 K/min", when possible, with the values for at least

Fig. 3. Assessed phase diagram [18]; DTA experimental points. DTA curve for a composition corresponding to the dotted arrow.

Fig. 4. Comparison between Zeng et al. [3] assessed phase diagram (taken from COST 507 database [19] for Thermo Calc [20]) and the experimental points of this work.

Fig. 5. Comparison between Kneller et al. [1] assessed phase diagram and the experimental points of this work (superimposed to the phase diagram scanned from Kneller et al. [1]).

the heating rates of 2 K/min, 5 K/min, 10 K/min and 20 K/min. The invariant temperatures were taken from the 2 K/min curve (when it was possible).

The accuracy is \pm 5 K and sometimes higher for lower temperatures.

3 Phase Diagram

DTA results are presented in Table 1.

Comparisons were made between the DTA values obtained in this work, the published assessed phase diagrams [1, 3, 18] (Figs 1 to 5) and the published experimental points (Fig. 6).

Figures 1, 2 and 3 show the DTA heating curves for compositions where there are doubts concerning the phase diagram.

4 Conclusions

- None of the phase diagrams already published is totally coherent with the experimental DTA points obtained in this work.
- 2. For compositions 0 < x(Zr) < 0.2, the assessed phase diagram which is closer to the experimental points, here presented, is the one from Kneller et al. [1]. The reactions L → fcc-Al + Cu₅Zr and L + Cu₅₁Zr₁₄ ↔ Cu₅Zr have in [1] (Fig. 5) more accurate temperature and composition values. Nevertheless, the liquidus curve L / L + Cu₅₁Zr₁₄ is in agreement with experimental points in the three works [1, 3, 18]. It should be emphasised that, to prevent the oxidation of the Cu, these points were taken from experimental curves obtained with a heating rate of 10 K/min.

Fig. 6. Comparison between Braga et al. [18] assessed phase diagram and all the experimental points already available.

- 3. For compositions 0.2 < x(Zr) < 0.45 the assessment of Kneller et al. [1] is still the closest one, although in our experiments the temperature of the peritectic decomposition of Cu₈Zr₃ seems to be lower than in [1], when considering the experimental points for samples with compositions x(Zr) = 0.231, x(Zr) = 0.246 and x(Zr) = 0.259. The DTA measurements were performed with these samples, after being annealed for 24 h and 96 h at 1103 K (samples with ~ 150mg weight) under a purified argon atmosphere. The experiments made with the samples annealed during 96 h still reveal the existence of the points represented by open circles in the phase diagram of Fig. 1. These points can only be confirmed by X-ray diffraction at high temperatures.
- 4. From the analysis of DTA experiments, for compositions of $0.273 \le x(\text{Zr}) \le 0.335$, it can be inferred that at least another phase is stable between $\sim 1190 \text{ K}$ and $\sim 1300 \text{ K}$. This phase could be $\text{Cu}_{24}\text{Zr}_{13}$ or/and Cu_2Zr as suggested by Kneller et al. [1].
- 5. In the range $0.47 \le x(Zr) \le 0.55$ the liquidus curve is very different from other works [1, 3, 18]. The shape of the curve seems to indicate the presence of a phase, with congruent melting, for $x(Zr) \cong 0.50$.
- For compositions 0.55 < x(Zr) ≤ 0.67 the experimental liquidus curve is too different from the one from Kneller et al. [1] but very similar to those in [3] and [18].
- Taking into account the peaks for samples with compositions 0.439 ≤ x(Zr) ≤ 0.667, x(Zr) = 0.785 and x(Zr) = 0.800, it can be inferred that the transformation CuZr₂-L ↔ CuZr₂-H occurs at ~ 1230 K and not at 1200 K.
- 8. The peak corresponding to the eutectoid reaction Cu₈Zr₃ ↔ Cu₅₁Zr₁₄ + Cu₁₀Zr₇ at 885 K could not be observed. However, SEM/EDS measurements, after DTA measurements, in samples with compositions 0.231 ≤ x(Zr) ≤ 0.335, showed the existence of the phases Cu₅₁Zr₁₄ and Cu₁₀Zr₇ indicating that the reaction occurred.
- A peak at ~ 523 K was observed for samples with compositions 0.439 ≤ x(Zr) ≤ 0.667 that could correspond, as it was proposed by Carvalho and Harris [16], to the CuZr martensitic transformation into a metastable phase of unknown structure.
- 10. At ~ 1000 K a peak occurs in the DTA curves of the samples with compositions $0.55 < x(Zr) \le 0.67$, that could be interpreted as the reaction $CuZr \leftrightarrow Cu_{10}Zr_7 + CuZr_2 L$. No evidences of a second peak were detected. Thus, the existence of the reaction $Cu_5Zr_8 \leftrightarrow Cu_{10}Zr_7 + CuZr_2$ -L is not confirmed.

To clear away some doubts left concerning the phases present in the phase diagram the authors are currently studying the system using SEM/EDS and X-ray diffraction.

The authors would like to thank the Portuguese Science Program PRAXIS XXI for the PhD bourse (BD / 3349 / 94). The authors would like to thank Prof. José Domingos Santos for his contributions to this work. The contribution of Mr. José Soares from CINFU in the metallographic preparation of the samples is also acknowledged.

Literature

- 1. Kneller, E.; Khan, Y.; Gorres, U.: Z. Metallkd. 77 (1986) 43-48.
- Arias, D.; Abriata, J.P.: Bull. Alloy Phase Diagrams 11 (1990) 452-459.
- Zeng, K.-J.; Hämäläinen, M.; Lukas, H.L.: J. Phase Equilibria 15 (1994) 577-586.
- Lundin, C.E.; McPherson, D.J.; Hansen, M.: Trans. AIME 197 (1953) 273–278.
- Vitek, J.M.: Z. Metallkd. 67 (1976) 559-563.
- 6. von Hillmann, G.; Hofmann, W.: Z. Metallkd. 56 (1956) 279-286.
- Petrescu, M.: Bull. Inst. Polytechnic "Georghe GheorghiuDej", Bucaresti, Seria Chimie-Metalurgie 39 (1977) 79.
- 8. Perry, A.J.; Hugi, W.: J. Inst. Met. 100 (1972) 378-380.
- 9. Karlson, N.: J. Inst. Met. 79 (1951) 391.
- Gabathuler, J.P.; White, P.; Parthé, E.: Acta Cryst. B 31 (1975) 608-610.
- Bsenko, L.: J. Less-Common Met. 40 (1975) 365-366.
- Glimois, J.L.; Forey, P.; Feron, J.L.: J. Less-Common Met. 113 (1985) 213-224.
- Forey, P.; Glimois, J.L.; Feron, J.L.: J. Less-Common Met. 124 (1986) 21–27.
- 14. Bsenko, L.: Acta Cryst. B 32 (1976) 2220-2224.
- Kirkpatrick, M.E.; Smith, J.F.; Larsen, W.L.: Acta Cryst. 15 (1962) 894-903.
- 16. Carvalho, E.M.; Harris, I.R.: J. Mater. Sci. 15 (1980) 1224-1230.
- Augustson, R.N.: U. S. Atomic Energy Commission Publ., AECD-3456 (1950) 3-46.
- Braga, M.H.; Ansara, I.; Malheiros, L.F.: Proceedings of CAL-PHAD XXV, Erice-Italy, 26 to 31 May, 1996.
- COST-507, Thermochemical Database for Light Metal Alloys Concerted Action on Materials Sciences, in: I. Ansara (ed.), European Commission DGXII Publ., (1994) 132-134.
- Sundman, B.; Jasson, B.; Andersson, J.O.: CALPHAD 9 (1985) 153-190.
- 21. Allibone, T.E.; Sykes, C.: J. Inst. Met. 39 (1928) 173-189.
- Pogodin, S.A.; Shumova, I.S.; Kugucheva, F.A.: Dokl. Akad. Nauk SSSR 27 (1940) 670-672.
- 23. Raub, E.; Engel, M.: Z. Metallkd. 39 (1948) 172-177.
- Douglass, D.L.; Morgan R.E.: Trans. Metall. Soc. AIME 215 (1959) 869–870.
- 25. Saarivirta, M.J.: Trans. Metall. Soc. AIME 218 (1960) 431-437.
- Showak, W.: Trans. Metall. Soc. AIME 224 (1962) 1297–1298.
- 27. Zwicker, U.: Metal. 16 (1962) 409-412.
- 28. Donachie Jr., M.J.: J. Inst. Met. 92 (1964) 180.
- Kawakatsu, I.; Suzuki, H.; Kitano, H.: J. Japan. Inst. Met. 31 (1967) 1253-1257.
- Korol'kov, A.M.; Lysova, E.L.: Struktura i Svoistva Legk. Splavov, Nauka, Moscow (1971) 17–20.
- Kuznetsov, G.M.; Fedorov, V.N.; Rodnyanskaya, A.L.; Nikonova, A.V.: Sov. Non-Ferrous Met. Res. 6 (1978) 267-268.

(Received February 19th, 1998)

Correspondence Addresses

M.H. Braga, L.F. Malheiros GMM/IMAT, DEMET, FEUP Rua dos Bragas 4099 Porto Codex, Portugal

F. Castro, D. Soares
 Dep. Eng. Mecânica da Universidade do Minho
 Campus de Azurém
 4800 Guimarães, Portugal