Thymulin Inhibits Monocrotaline-Induced Pulmonary Hypertension Modulating Interleukin-6 Expression and Suppressing p38 Pathway

Tiago Henriques-Coelho, Silvia Marta Oliveira, Rute S. Moura, Roberto Roncon-Albuquerque, Jr., Ana Luísa Neves, Mário Santos, Cristina Nogueira-Silva, Filipe La Fuente Carvalho, Ana Brandão-Nogueira, Jorge Correia-Pinto, and Adelino F. Leite-Moreira

Department of Physiology (T.H.-C., S.M.O., R.R.-A., A.L.N., M.S., F.L.F.C., A.B.-N., A.F.L.-M.), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; and Life and Health Sciences Research Institute (ICVS) (R.S.M., C.N.-S., J.C.-P.), School of Health Sciences, University of Minho, 4704-553 Braga, Portugal

The pathogenesis of pulmonary hypertension (PH) includes an inflammatory response. Thymulin, a zinc-dependent thymic hormone, has important immunobiological effects by inhibiting various proinflammatory cytokines and chemokines. We investigated morphological and hemodynamic effects of thymulin administration in a rat model of monocrotaline (MCT)-induced PH, as well as the pattern of proinflammatory cytokine gene expression and the intracellular pathways involved. Adult Wistar rats received an injection of MCT (60 mg/kg, sc) or an equal volume of saline. One day after, the animals randomly received during 3 wk an injection of saline, vehicle (zinc plus carboxymethyl cellulose), or thymulin (100 ng/kg, sc, daily). At d 23–25, the animals were anesthetized for hemodynamic recordings, whereas heart and lungs were collected for morphometric and molecular analysis. Thymulin prevented morphological, hemodynamic, and inflammatory cardiopulmonary profile characteristic of MCT-induced PH, whereas part of these effects were also observed in MCT-treated animals injected with the thymulin’s vehicle containing zinc. The pulmonary thymulin effect was likely mediated through suppression of p38 pathway. (Endocrinology 149: 4367–4373, 2008)
modulation of MAPK family members (29, 30). Thymulin action is strictly dependent on the presence of the metal zinc because it induces the conformational changes within the molecule that are necessary for the full expression of its biological activity (24). Besides being an integral part of this thymic hormone, zinc is essential for many enzymes (31), and plays a role as an antiinflammatory and antioxidant agent (32). The potential role of thymulin in PH has not been studied before. Knowing that MCT induces an early and potent inflammatory response that culminates in severe PH, and that thymulin is an immunoregulatory peptide, the rationale of the present study was to evaluate cardiac and pulmonary effects of thymulin in this experimental model, and exploit the intracellular signaling pathways involved.

Materials and Methods

Study design

Animal experiments were performed according to the Portuguese law for animal welfare and conform to the Guide for the Care and Use of Laboratory Animals published by the U.S. National Institutes of Health (National Institutes of Health Publication No. 85-23, revised 1996). Adult male Wistar rats (Charles River, Barcelona, Spain) weighing 180–200 g were housed in groups of five per cage in a controlled environment under a 12-h light, 12-h dark cycle at a room temperature of 22 °C, with a free supply of food and water. Rats randomly received a sc injection of MCT (60 mg/kg body weight; Sigma, Barcelona, Spain) weighing 180–200 g were housed in groups of five per cage in a controlled environment under a 12-h light, 12-h dark cycle at a room temperature of 22 °C, with a free supply of food and water. Rats randomly received a sc injection of MCT (60 mg/kg body weight; Sigma, Barcelona, Spain) or an equal volume of vehicle [control (Ctrl) groups]. One day after, animals from both groups were randomly assigned to receive saline, vehicle, or Thymulin (100 ng/kg; Sigma) was prepared using carboxymethyl cellulose and zinc without thymulin, which was injected sc once a day during 3 wk. Vehicle control (Ctrl plus V) (n = 6), MCT rats injected with saline (Ctrl plus S) (n = 6), Ctrl rats injected with vehicle (Ctrl plus V) (n = 6). Ctrl rats injected with thymulin (Ctrl plus T) (n = 6), MCT rats injected with saline (MCT plus S) (n = 8), MCT rats injected with vehicle (MCT plus V) (n = 8), and MCT rats injected with thymulin (MCT plus T) (n = 8).

The protocol resulted in six groups: Ctrl rats injected with saline (Ctrl plus S) (n = 6), Ctrl rats injected with vehicle (Ctrl plus V) (n = 6), Ctrl rats injected with thymulin (Ctrl plus T) (n = 6), MCT rats injected with saline (MCT plus S) (n = 8), MCT rats injected with vehicle (MCT plus V) (n = 8), and MCT rats injected with thymulin (MCT plus T) (n = 8). During d 23–25 after MCT or saline injection, the animals were anesthetized and submitted to hemodynamic instrumentation.

Hemodynamic studies

Animals were anesthetized with pentobarbital (60 mg/kg, ip; CEVA), placed over a heating pad, and tracheostomized for mechanical ventilation with room air (Harvard Small Animal Ventilator, Model 683; Harvard Apparatus, Holliston, MA). Anesthesia was maintained with additional bolus of pentobarbital (2 mg/100 g) as needed. Under binocular surgical microscopy (Wild M651-MS-D; Leica, Heerbrugg, Switzerland), the right jugular vein was cannulated for fluid administration (prewarmed 0.9% NaCl solution) to compensate for perioperative fluid losses. The heart was opened. Right and left ventricular (RV and LV, respectively) pressures were measured with a 2F high-fidelity micromanometer (SPR-324; Millar Instruments, Holliston, MA). Anesthesia was maintained with additional bolus of pentobarbital (2 mg/100 g) as needed. Under binocular surgical microscopy (Wild M651-MS-D; Leica, Heerbrugg, Switzerland), the right jugular vein was cannulated for fluid administration (prewarmed 0.9% NaCl solution) to compensate for perioperative fluid losses. The heart was opened. Right and left ventricular (RV and LV, respectively) pressures were measured with a 2F high-fidelity micromanometer (SPR-324; Millar Instruments, Holliston, MA). The primary antibody, a polyclonal goat anti IL-6 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), was used in a 1:50 dilution. After dewaxing in xylene and rehydration in ethanol, antigen retrieval was achieved by boiling in 10 mm citrate buffer followed by cool down at room temperature. Incubation with the goat Immunocruz Staining System (Santa Cruz Biotechnology) was performed according to the manufacturer’s instructions. Incubation of the primary antibody occurred at 4 °C overnight.

Hemodynamic studies

Animals were anesthetized with pentobarbital (60 mg/kg, ip; CEVA), placed over a heating pad, and tracheostomized for mechanical ventilation with room air (Harvard Small Animal Ventilator, Model 683; Harvard Apparatus, Holliston, MA). Anesthesia was maintained with additional bolus of pentobarbital (2 mg/100 g) as needed. Under binocular surgical microscopy (Wild M651-MS-D; Leica, Heerbrugg, Switzerland), the right jugular vein was cannulated for fluid administration (prewarmed 0.9% NaCl solution) to compensate for perioperative fluid losses. The heart was opened. Right and left ventricular (RV and LV, respectively) pressures were measured with a 2F high-fidelity micromanometer (SPR-324; Millar Instruments, Holliston, MA). The primary antibody, a polyclonal goat anti IL-6 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), was used in a 1:50 dilution. After dewaxing in xylene and rehydration in ethanol, antigen retrieval was achieved by boiling in 10 mm citrate buffer followed by cool down at room temperature. Incubation with the goat Immunocruz Staining System (Santa Cruz Biotechnology) was performed according to the manufacturer’s instructions. Incubation of the primary antibody occurred at 4 °C overnight. Negative Ctrl reactions included omission of the primary antibody. To visualize the peroxidase activities in sections, diaminobenzidine tetrahydrochloride was used. Sections were counterstained with hematoxylin and visualized under a Zeiss microscope. The slides were observed and photographed with the Olympus BX61 microscope (Olympus, Hamburg, Germany).

Western blot analysis

Lung tissue samples were processed for Western blot analysis. Proteins were obtained according to Kling et al. (35). Ten micrograms of protein were loaded onto 10% acrylamide minigels, electrophoresed at 100V at room temperature, and then transferred to Hybond-C Extra (GE Healthcare Life Sciences, Uppsala, Sweden). Blots were probed with polyclonal p38, c-Jun N-terminal kinase (JNK1/2) and p44/42 (ERK1/2), and phospho-p38 (dp-p38), phospho-JNK (dp-JNK1/2), and phospho-
TABLE 1. Morphometric parameters

<table>
<thead>
<tr>
<th></th>
<th>Ctrl groups</th>
<th>MCT groups</th>
<th>Thymulin</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saline</td>
<td>Vehicle</td>
<td>Thymulin</td>
<td></td>
</tr>
<tr>
<td>Body wt (g)</td>
<td>287 ± 9</td>
<td>292 ± 4</td>
<td>288 ± 7</td>
<td>269 ± 6</td>
</tr>
<tr>
<td>Heart wt/body wt (g/kg)</td>
<td>3.01 ± 0.11</td>
<td>2.70 ± 0.06</td>
<td>2.95 ± 0.06</td>
<td>3.83 ± 0.17<sup>a</sup></td>
</tr>
<tr>
<td>RV wt/body wt (g/kg)</td>
<td>0.55 ± 0.02</td>
<td>0.62 ± 0.03</td>
<td>0.63 ± 0.03</td>
<td>1.15 ± 0.06<sup>b</sup></td>
</tr>
<tr>
<td>RV/LVS</td>
<td>0.25 ± 0.03</td>
<td>0.33 ± 0.01</td>
<td>0.30 ± 0.03</td>
<td>0.501 ± 0.02<sup>c</sup></td>
</tr>
<tr>
<td>Lung wt/body wt (g/kg)</td>
<td>4.66 ± 0.16</td>
<td>4.42 ± 0.15</td>
<td>4.45 ± 0.16</td>
<td>12.44 ± 1.01<sup>d</sup></td>
</tr>
</tbody>
</table>

Data are presented as mean ± SEM. RV, Right ventricle; wt, weight.

^a P < 0.05 vs. Ctrl plus S.

^b P < 0.05 vs. MCT plus S.

^c Interaction.

^d P < 0.05 vs. Ctrl plus V.

^e P < 0.05 vs. MCT plus V.

p44/42 (dp-ERK1/2), antibodies (Cell Signaling Technology, Inc., Danvers, MA) according to the manufacturer’s instructions. For loading Ctrl, blots were probed with β-tubulin rabbit polyclonal antibody (1:100,000) (Abcam plc, Cambridge, UK). Afterwards, blots were incubated with a secondary horseradish peroxidase conjugate (1:2000) (Cell Signaling Technology). Membranes probed simultaneously with p38 and JNK, as well as dp-p38 and dp-JNK, were stripped [62.5 mM Tris-HCl (pH 6.7), 2% sodium dodecyl sulfate, and 100 mM 2-mercaptoethanol] for 30 min at 50 C and then incubated with β-tubulin. Membranes were developed with Super Signal West Femto Substrate (Pierce, Rockford, IL) and ChemiDoc XRS System (Bio-Rad Laboratories, Inc., Hercules, CA).

Quantitative analysis was performed with Quantity One 4.6.5.1-D Analysis Software (Bio-Rad Laboratories).

Statistical analysis

The results were presented as mean ± SEM and were compared using two-way ANOVA. When treatments were significantly different, the Holm-Sidak test was selected to perform pairwise multiple comparisons. Statistical significance was set at P < 0.05.

Results

Morphometric data

Cardiac and lung morphometric data are summarized in Table 1. Administration of vehicle or thymulin to Ctrl animals did not affect any of the studied morphometric parameters. MCT induced a statistically significant increase in heart and lung weights, when compared with the Ctrl plus S group. PH induced by MCT resulted in RV hypertrophy without affecting LV weight. Administration of both vehicle and thymulin significantly decreased morphometric changes induced by MCT, although the beneficial effects were more pronounced in thymulin-treated animals.

Biventricular hemodynamics

Hamodynamic data are summarized in Table 2. In Ctrl groups, neither vehicle nor thymulin modified the studied hemodynamic parameters. MCT induced a significant increase in peak systolic RV pressure (RVP_{max}), a parameter used to estimate PH, as well as in RV dP/dt_{max}, an index of RV contractility. Regarding RV diastolic function, relaxation rate as estimated by the τ was prolonged in MCT-treated animals. MCT-treated animals that received vehicle presented less PH when compared with the MCT plus S group, whereas MCT-treated animals that received thymulin did not demonstrate any hemodynamic evidence of PH. Indeed, there was no increase in RVP_{max} or changes in dP/dt_{max}. Concerning RV diastolic function, τ was not different from Ctrl animals.

With regard to LV function, the MCT plus S group presented, when compared with the Ctrl plus S group, lower systolic and end-diastolic pressures, and smaller peak rates group.

TABLE 2. Biventricular hemodynamic parameters

<table>
<thead>
<tr>
<th></th>
<th>Ctrl groups</th>
<th>MCT groups</th>
<th>Thymulin</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saline</td>
<td>Vehicle</td>
<td>Thymulin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right ventricle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVP<sub>max</sub> (mm Hg)</td>
<td>25.5 ± 2.1</td>
<td>25.7 ± 0.7</td>
<td>24.9 ± 1.1</td>
<td>46.6 ± 1.9<sup>e</sup></td>
</tr>
<tr>
<td>RV-EVP (mm Hg)</td>
<td>1.9 ± 0.5</td>
<td>1.9 ± 0.6</td>
<td>1.6 ± 0.6</td>
<td>1.4 ± 0.4</td>
</tr>
<tr>
<td>dP/dt<sub>max</sub> (mm Hg/sec)</td>
<td>1192 ± 80</td>
<td>1012 ± 116</td>
<td>1148 ± 51</td>
<td>1679 ± 149<sup>c</sup></td>
</tr>
<tr>
<td>τ (msec)</td>
<td>12 ± 1</td>
<td>12 ± 2</td>
<td>14 ± 1</td>
<td>27 ± 1<sup>c</sup></td>
</tr>
<tr>
<td>Left ventricle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVP<sub>max</sub> (mm Hg)</td>
<td>104.9 ± 6.8</td>
<td>104.3 ± 13.2</td>
<td>107.6 ± 5.2</td>
<td>68.1 ± 8.5<sup>c</sup></td>
</tr>
<tr>
<td>LV-EVP (mm Hg)</td>
<td>3.7 ± 0.3</td>
<td>3.5 ± 0.4</td>
<td>3.6 ± 0.6</td>
<td>1.7 ± 0.4<sup>c</sup></td>
</tr>
<tr>
<td>dP/dt<sub>max</sub> (mm Hg/sec)</td>
<td>5711 ± 589</td>
<td>5654 ± 987</td>
<td>6162 ± 418</td>
<td>3519 ± 338<sup>c</sup></td>
</tr>
<tr>
<td>τ (msec)</td>
<td>21 ± 1</td>
<td>18 ± 1</td>
<td>20 ± 1</td>
<td>22 ± 1</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SEM. LVP_{max}, LV peak systolic pressure; RV-EVP and LV-EVP, RV and LV end-diastolic pressures, respectively.

^a P < 0.05 vs. Ctrl plus S.

^b P < 0.05 vs. Ctrl plus V.

^c P < 0.05 vs. Ctrl plus S.

^d P < 0.05 vs. MCT plus V.

^e Interaction.
of pressure increase and decrease. The MCT plus V group kept a significant decrease in peak systolic LV pressure. In MCT-treated animals that received thymulin, no hemodynamic disturbances were observed in the left ventricle. There were no statistically significant differences between this group and Ctrl plus T animals. The \(\tau \) did not differ among the groups.

Pro-inflammatory cytokines

Pro-inflammatory cytokines IL-1\(\beta \), IL-6, and fractalkine mRNA levels were measured in lung and RV myocardial samples by real-time PCR (Fig. 1).

In lung, MCT treatment induced a significant increase in IL-6 mRNA, without changing the other analyzed cytokines (Fig. 1, left panel). In MCT-treated animals, both vehicle and thymulin induced a statistically significant decrease in IL-6 mRNA expression.

IHC studies were performed to identify the pattern of cellular expression of IL-6 in the lung. In Ctrl animals (Fig. 2, A–C), IL-6 is mainly expressed in smooth muscle cells both in arterial and bronchial walls, and weakly in bronchial epithelial cells and vascular endothelium. In MCT-treated animals (Fig. 2, D–F), a similar pattern was observed. However, the intensity of this staining seems to be increased in the MCT plus S group. In contrast to the Ctrl group, the MCT groups presented an infiltration of mononuclear inflammatory cells expressing IL-6 protein.

In the right ventricle, MCT administration induced a strong up-regulated IL-6 expression, and a slight increase in IL-1\(\beta \) and fractalkine mRNA levels (Fig. 1, right panel). In MCT-treated animals, both vehicle and thymulin normalized IL-6 mRNA expression.

MAPK signaling pathway

Pulmonary protein levels of p38, JNK1/2, and ERK1/2 (both unphosphorylated and phosphorylated forms) were analyzed by Western blot and quantified by densitometric analysis (Fig. 3).

In Ctrl animals both vehicle and thymulin groups exhibited an increase of phosphorylated p38 protein levels. In comparison with Ctrl animals treated with saline, MCT animals injected with saline revealed an enhancement of p38 and JNK1/2 phosphorylation, whereas no significant effect was observed in ERK pathway. In MCT-treated animals, both vehicle and thymulin reduced JNK phosphorylation. Thymulin induced a specific and strong inhibition of p38 pathway, whereas vehicle did not modify this MAPK pathway.

Discussion

In the present study, we demonstrated that thymulin prevented morphological, hemodynamic, and inflammatory cardiopulmonary profile characteristics of MCT-induced PH, whereas part of these effects were also observed in MCT-treated animals injected with the thymulin’s vehicle containing zinc. The pulmonary thymulin effect was likely mediated through suppression of p38 pathway.

The pathogenesis of PH involves vasoconstriction, pulmonary vascular remodeling, \textit{in situ} thrombosis, and inflammation. The inflammatory hypothesis of PH is supported by both experimental and human studies (3–8). PH induced by MCT is an experimental model with some similarities with human PAH, such as hemodynamic repercussions, histological changes, and high mortality (36). On the other hand, it diverges from human PAH in the precocious loss of endothelial barrier and in the inflammatory adventitial proliferation (15).

Inflammation is a main feature of the MCT model, as demonstrated by early inflammatory cells recruitment (37) and cytokine activation (9). To clarify the underlying mechanisms of MCT-induced PH, inflammatory cytokine expression and MAPK activation were examined. We observed an

Fig. 1. Lung and right ventricle IL-1\(\beta \), IL-6, and fractalkine mRNA levels, normalized for GAPDH (housekeeping gene) and expressed as AUs, in the six studied groups: Ctrl plus S, Ctrl plus V, Ctrl plus T, MCT plus S, MCT plus V, and MCT plus T. \(P < 0.05: ^{\ast} \) vs. Ctrl plus S; \(^{\ast \ast} \) vs. Ctrl plus T; \(^{\ast \ast \ast} \) vs. MCT plus S.
increase in IL-6 gene expression not only in the lungs but also in the right ventricle in the fourth week after MCT injection. These findings confirm previous results from Bhargava et al. (9) that demonstrated elevated levels of IL-6 at 48 h, 1 and 2 wk after MCT injection. We also evaluated IL-1β and fraktalkine, other cytokines typically involved in human PH pathophysiology, but in our study MCT did not increase these cytokines in the lung tissue and had a very mild effect in the myocardium.

MAPKs are important mediators of signal transduction processes, and are activated in a variety of physiological and pathological conditions. Lu et al. (38) found an increase in p38 MAPK activity in lungs from rats treated with MCT and prevented the progression to PH through the administration of a selective p38 inhibitor. On other hand, Morty et al. (39) only observed a slight reduction in ERK1/2 phosphorylation, and no change in p38 MAPK phosphorylation. In our study we demonstrated an increase in both p38 and JNK phosphorylation in the MCT-treated animals, confirming the involvement MAPK pathways in PH pathophysiology. On the other hand, zinc exposure has activated several MAPKs in airway epithelial cells (40, 41). Levels of MAPK phosphorylation are regulated in opposite directions by MAPK kinases and phosphatases (42), and zinc seems to act through inhibition MAPK phosphatase activity (40). In fact, our data also suggest that in Ctrl animals, zinc has an important role in modulating MAPK, namely p38 phosphorylation. However, in MCT-treated animals, zinc exposure did not change the pattern of p38 activation, whereas thymulin treatment resulted in a significant decrease in p38 phosphorylation.

![MAPK activities at pulmonary level in Ctrl plus S animals (1), Ctrl plus V animals (2), Ctrl plus T animals (3), MCT plus S animals (4), MCT plus V animals (5), and MCT plus T animals (6). Western blot analysis of MAPK with antibodies to p38, ERK1/2, and JNK1/2 (A), and to diphosphorylated forms of p38 (dp-p38), ERK1/2 (dp-ERK1/2), and SAPK/JNK (dp-JNK1/2) (B). Ctrl loading was performed using β-tubulin (55 kDa). ERK1 and 2 correspond to 44 and 42 kDa, respectively. JNK1 and 2 correspond to 46 and 54 kDa, respectively. p38 corresponds to 38 kDa. Quantitative analysis for dp-p38, dp-ERK1/2, and dp-JNK1/2 are presented as AUs in the six studied groups (C).](image)
Thymulin has a potent immunomodulator effect, in addition to its action as a thymic hormone. Previous reports have shown that thymulin prevents bleomycin-induced pulmonary fibrosis (28), allooxan- and streptozotocin-induced diabetes (43), myocarditis caused by the encephalomyocarditis virus (44), and cisplatin- (29) and cephaproleine-induced nephrotoxicity (30). In the setting of PH, our data revealed that thymulin administration prevented biventricular hemodynamic changes typically found in the MCT model. Part of these effects had been also observed in animals treated with vehicle containing zinc. These beneficial effects could be partially explained by IL-6 suppression at pulmonary and myocardium levels, reinforcing the pivotal role of IL-6 in PH pathogenesis. In fact, delivery of recombinant IL-6 protein reproduced the main hemodynamic and histological features of PH in a rat model (17), and inhibition of IL-6 with dexmethasone (9) or serotonin antagonist (18) prevented the development of PH. IL-6 exerts its effects by activation of the janus kinase/signal transducers and activators of transcription-signaling pathway and induction of the MAPK cascade (45). In vitro, IL-6 stimulated lung branching through activation of p38-MAPK intracellular pathway (46). Recently, Hagen et al. (47) demonstrated the presence of a negative feedback loop between IL-6 and the bone morphogenetic protein pathway mediated through p38 MAPK activity, and proposed that IL-6 activation can be the inflammatory “second hit” in patients with familial PAH with bone morphogenetic protein receptor 2 mutations.

In conclusion, we demonstrated that thymulin inhibited the development of PH in the MCT model. This effect could be related to the inhibition of proinflammatory IL-6 expression and suppression of p38 phosphorylation.

Acknowledgments

We thank Antónia Teles for her invaluable technical assistance in this study.

References

Henriques-Coelho et al. • Thymulin Effects in PH