Livro de Resumos IJEP'13

6ª Encontro
de Investigação
Jovem da U.Porto

@ Universidade do Porto
AA ID-1
t.22 040 81 46
secidi@reit.up.pt

Design
Ana Fernandes & Daniel Martins
Rui Mendonça

Impressão e acabamentos
Invulgar - artes gráficas

Tiragem
1000 exemplares

Depósito Legal
340336/12

ISBN
978-989-746-006-7
Neuregulin-1 decreases the passive force of cardiomyocytes from the right ventricle in pulmonary arterial hypertension

R. Ada1, A. Meireles1, P. Mendes-Ferreira1, C. Maia-Rocha1, I. Falcio-Pires1, G. de Keulenaer1, A. Lettre-Moreira1 and C. Brits-Silva2,3

1 Department of Physiology, Faculty of Medicine, University of Porto, Portugal.
2 Laboratory of Physiology, University of Antwerp, Belgium.
3 Faculty of Nutrition and Food Science, University of Porto, Portugal.

Neuregulin (NRG-1) is implicated in the maintenance and structural integrity of the cardiovascular system. Recent studies showed the involvement of NRG-1 in the preservation of left ventricular performance in pathological cardiac conditions [1]. Nevertheless, the role of NRG-1 in pulmonary arterial hypertension (PAH) and right ventricular (RV) failure is still unknown. Therefore, the goal of this study was to evaluate the effects of a NRG-1 chronic treatment on intrinsic myocardial properties, namely on the modulation of active and passive force of cardiomyocytes isolated from the right ventricle of animals with PAH.

Male Wistar rats (180-200g) randomly received monocrotaline (MCT,60mg/Kg,sc) or vehicle. After 14 days, animals from these groups were randomly assigned to receive treatment with either NRG-1 (4ng/Kg/day,ip) or vehicle. The study resulted in 4 experimental groups: Control (CTRL,n=9); CTRL+NRG (n=12); MCT (n=12); MCT+NRG (n=18). Between 21 and 24 days after MCT administration, samples were collected for functional studies. Right ventricular samples were mechanically disrupted and incubated in relaxing solution supplemented with Triton (0.2%). Single cardiomyocytes were subsequently attached with silicone adhesive between a force transducer and a piezoelectric motor and active and passive forces were measured. Only significant results (p<0.05) are given.

MCT-group isolated cardiomyocytes developed higher passive force when compared to CTRL-group cells at the sarcomere lengths of 2.0 (MCT vs. CTRL: 1.76±0.26 vs. 1.43±0.29/μm), 2.2 (MCT vs. CTRL: 3.76±0.71 vs. 2.68±0.24/μm), and 2.3 μm (MCT vs. CTRL: 5.73±1.22 vs. 3.86±0.87/μm). Treatment with NRG-1 was able to restore passive force development to levels similar to the CTRL-group cardiomyocytes, at 2.2, 2.6, and 2.3 μm (MCT+NRG: 1.28±0.25, 3.04±0.55, and 3.63±0.89/μm, respectively). CTRL+NRG-group cardiomyocytes developed significantly less passive force when compared to CTRL-group cells (CTRL+NRG: 1.19±0.25, 2.32±0.55, and 3.16±0.54/μm, at 2.0, 2.2, and 2.3 μm respectively). The analysis of the active force showed that in the MCT+NRG-group cardiomyocytes active force development was decreased when compared to MCT-group cells (MCT+NRG: 9.67±2.82/μm).

NRG-1 chronic treatment is able to reverse the changes in both active and passive myocardial forces that occur in the presence of PAH. Interestingly, NRG-1 chronic treatment also decreases the passive force of cardiomyocytes isolated from the right ventricle of healthy animals. These findings suggest that the NRG-1 pathway has a relevant role in the regulation of diastolic function and in pathophysiology of PAH by decreasing passive force and thus myocardial stiffness, pointing to its potential role as a therapeutic target.