New insights into adenosine’s chronoselective atrial depressant effect

The interplay of adenosine A$_1$ receptor with ion channels and signaling enzymes

Bruno Bragança
Mestrado em Bioquímica
Departamento de Química e Bioquímica
2012

Orientador
Doutora Ana Patrícia Fontes de Sousa, Professora Auxiliar, ICBAS/UP

Coorientador
Doutor Paulo Correia de Sá, Professor Catedrático, ICBAS/UP
Todas as correções determinadas pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, _____/_____/_______
The work presented here has contributed to the following publications:

1. Publications in Peer-Reviewed Journals
 1.1. Manuscripts under review:

 2012 – Oliveira-Monteiro N, Bragança B, Ferreirinha F, Faria M, Fontes-Sousa AP, Correia-de-Sá P. Rationale for understanding chronoselectivity of adenosine A₁ receptor in the rat spontaneously beating atria: enrolment of K_{Ca}2 (SK) and Ca_v1 (L-type) ion channels. *American Journal of Physiology-Heart and Circulation*.

 1.2. Abstracts published in international journals:

 2012 – Oliveira-Monteiro N, Fontes-Sousa AP, Bragança B, Marques S, Faria M, Correia-de-Sá P. Ca_v1 (L) channel blockade uncovers adenosine negative inotropism leading to a loss of A₁ “chronoselectivity” in the spontaneously beating rat atria. *Purinergic Signalling*; 8: 171.

2. Conference Presentations
 2.1. Oral communications:

 2011 – Oliveira-Monteiro N, Fontes-Sousa AP, Bragança B, Marques S, Faria M, Correia-de-Sá P. Rationale for chronoselectivity of adenosine A₁ receptor in the rat spontaneously beating atria: on the role of Ca_v1 (L) and K_{Ca}2 (SK) ion channels. XLI Reunião Anual da Sociedade Portuguesa de Farmacologia, XXIX Reunião de Farmacologia Clínica and X Reunião de Toxicologia 2011, Coimbra – Portugal, 2-4th February.

2012 – Bragança B, Oliveira-Monteiro N, Nogueira-Marques S, Ferreirinha F, Faria M, Fontes-Sousa AP, Correia-de-Sá P. Rescuing positive inotropic $\mathrm{K_{Ca}}/\mathrm{SK}$ and $\mathrm{Ca}_{\mathrm{v}}1$ (L) currents may account for adenosine A$_1$ receptors chronoselectivity in the spontaneously beating rat atria. 20th International Symposium of Scientific Initiation of University of São Paulo – Brazil, 22-26th October.

2.2. Poster presentations:

2010 – Oliveira-Monteiro N, Bragança B, Faria M, Fontes-Sousa AP, Correia-de-Sá P. Atrial “chrono-selectivity” of adenosine via A$_1$ receptors is compromised by blocking cardiac $\mathrm{Ca}_{\mathrm{v}}1$ (L-type) channels. IJUP’10.- Third Meeting of Young Researchers of U.Porto – Porto – Portugal, 17-19th February.

2011 – Oliveira-Monteiro N, Fontes-Sousa AP, Bragança B, Marques S, Faria M, Correia-de-Sá P. The $\mathrm{Ca}_{\mathrm{v}}1$ inhibitor, verapamil, predisposes atria to the negative inotropic action of adenosine by uncoupling A$_1$ receptor-mediated $\mathrm{K_{Ca}}/\mathrm{SK}$ channel closure from its effector. 2nd Iberic Meeting on Medicinal Chemistry (IMMC), Porto – Portugal, 12-15th June.

2011 – Oliveira-Monteiro N, Fontes-Sousa AP, Bragança B, Marques S, Faria M, Correia-de-Sá P. Ca$_{\mathrm{v}}1$ (L) channel blockade uncovers adenosine negative inotropism leading to a loss of A$_1$ “chronoselectivity” in the spontaneously beating rat atria. International Conference on Purinergic Drugs and Targets-4th Joint German-Italian Purine Club Meeting, Bona – Germany, 22-25th July.

2012 – Bragança B, Oliveira-Monteiro N, Nogueira-Marques S, Ferreirinha F, Faria M, Fontes-Sousa AP, Correia-de-Sá P. Inhibition of $\mathrm{K_{Ca}}/\mathrm{SK}$ leading to calcium influx via Ca$_{\mathrm{v}}1$ (L) channels affords a rationale for adenosine A$_1$ receptor “chronoselectivity” in the rat spontaneously beating atria. European Society of Cardiology Congress, Munich – Germany, 25-29th August.
Acknowledgments

This work was partially funded by the Foundation for Science and Technology of Portugal (FCT) within the framework of the project PEst-OE/SAU/UI0215/2011.

It has been a long time since I entered the Laboratory of Pharmacology and Neurobiology of ICBAS/UP. There, I have learned so many things that go beyond the work that I am presenting in this thesis.

It is a pleasure to thank those who made this thesis possible. Without their continued efforts and support, I would have not been able to bring my work to successful completion.

First of all, I would like to thank Professor Paulo Correia de Sá for the opportunity to work with him and his wonderful research team as an MSc student. He has been a true supervisor and mentor! Thank you for sharing your wealth of knowledge and experience with me.

I am heartily thankful to my supervisor, Professor Ana Patrícia Fontes de Sousa, whose encouragement, guidance and support was fundamental to finish my master’s thesis. Since I arrived at this lab you have treated me like I was your son and, coincidence or not, soon I will get two little sisters (I hope!). Despite being really happy with your pregnancy glow, now I’m feeling like I was a full year mother’s training program. I’m just kidding, as always! God bless and protect you and your little angels.

I thank Mrs. Fernanda Malhão Pereira and Mrs. Célia Carreiras Lopes (Laboratory of Histology and Embryology, Department of Microscopy, ICBAS/UP), for their precious help with the Masson’s trichrome staining.

I extend my appreciation to Fátima Ferreirinha, PhD, for her endless expertise and time spent on confocal microscopy imaging and analysis, the results of which are an important part of my thesis. Her contribution to this work was a major benefit.

I am also thankful to all the other professors, research team members and administrative staff for their timely help: Professor Graça Lobo, Professor Laura Oliveira, Professor Margarida Araújo, Alexandrina Timóteo, BSc, Miguel Cordeiro, PhD., and Milaydis Napolskij, BA.

Apart from constant immersion in an environment of knowledge, this year was full of funny moments. I will never ever forget the friends that I made in this lab: Marina Mendes,
Patrícia Marques, Diogo Paramos, Bernardo Matos, Catarina Baldaia, Catarina Pereira and Nádia Monteiro.

I would also like to thank Isabel Silva, Belmira Silva, Cátia Vieira, Aurora and all the remaining colleagues for their support throughout the year.

I wish to express my deepest appreciation to the number one love of my life, Patrícia Araújo, for her constant care and support.

Lastly, I offer my regards and blessing to my parents who always supported me during the completion of the project.
Abbreviations

AC - adenylyl cyclase
ADO - adenosine
ADP - adenosine 5'-diphosphate
AMP - adenosine 5'-monophosphate
AngII - angiotensin II
AT\(_1\) - angiotensin II receptor type 1
4-AP - 4-aminopyridine
AP - action potential
ATP - adenosine 5'-triphosphate
A\(_{\text{1}}\)R - adenosine receptors (A\(_{\text{1}}\)R, A\(_{\text{2A}}\)R, A\(_{\text{2B}}\)R and A\(_{\text{3}}\)R)
\(\beta\)-AR - \(\beta\)-adrenoceptor
Ca\(^{++}\) - calcium ion
[Ca\(^{++}\)]\(_i\) - cytosolic calcium concentration
CaM - calmodulin
CaMKII - calmodulin kinase II
cAMP - cyclic adenosine 3',5'-monophosphate
Ca\(_{\text{L}}\) (L-type) channels - L-type calcium channel
CICR - calcium-induced calcium release
Cx43 - connexin 43
DAG - diacylglycerol
DPCPX - 1,3-diisopropyl-8-cyclopentylxanthine
E-C coupling - excitation-contraction coupling
GIRK (K\(_{\text{IR3.1/IR3.4}}\)) - G protein-coupled inwardly-rectifying potassium channel
GPCR(s) - G protein coupled receptor(s)
I\(_{\text{Ca,L}}\) - L-type Ca\(^{++}\) current
I\(_{\text{f}}\) - Hyperpolarization-activated cyclic nucleotide-gated (HCN) current (or "funny" current)
I\(_{\text{K}}\) - potassium current
I\(_{\text{KADo,A}}\) - ADO- and ACh-activated outward potassium current
I\(_{\text{KATP}}\) - ATP-dependent outward potassium current
I\(_{\text{Na}}\) - sodium current
IP\(_3\) - inositol 1,4,5-trisphosphate
K\(^+\) - potassium ion
LCRs - local Ca\(^{++}\) releases
M\(_2\)R - M\(_2\) muscarinic ACh receptor
Na\(^+\) - sodium ion
NCX - sodium/calcium exchanger
NE - norepinephrine
NF160 - neurofilament 160
PIP\(_2\) - phosphatidylinositol-4,5-bisphosphate
PLC - phospholipase C
PMA - phorbol 12-myristate 13-acetate
PKA - protein kinase A
PKC - protein kinase C
RyR - ryanodine channel
SA node - sinoatrial node
SK/K\(_{\text{Ca2}}\) - small conductance calcium-activated potassium channel
SR - sarcoplasmic reticulum
Troponin C - TnC
Troponin I - Tnl
UTP - uridine 5'-triphosphate
Abstract

In supraventricular tissues adenosine decreases spontaneous pacemaker activity (negative chronotropy), atrioventricular nodal conduction (negative dromotropy) and myocardium contraction force (negative inotropy) through the activation of adenosine A₁ receptor (A₁R) (Headrick <i>et al.</i>, 2011). A₁R is a Gα_{i/o}-protein coupled receptor. Once activated, A₁R may inhibits catecholamine-stimulated adenylyl cyclase (anti-β-adrenergic effect), increases hyperpolarizing K⁺ currents carried through GIRK/K_{ir}3 channels (Belardinelli <i>et al.</i>, 1995) and stimulates phospholipase Cβ activity and PKC translocation (Parsons <i>et al.</i>, 2000; Yang <i>et al.</i>, 2009b). Preliminary data from our lab showed that adenosine is a “chronoselective” atrial depressant via the activation of A₁R, yet this property is not shared by other cardiodepressant agents, like acetylcholine acting through muscarinic M₂ receptor (M₂R) activation (Oliveira-Monteiro <i>et al.</i>., unpublished observations). The mechanism(s) underlying adenosine “chronoselectivity” remains to be identified. Given their involvement in atrial physiology, we sought it would be interesting to investigate the expression and function of subtype-selective K⁺ and Ca²⁺ channels in the spontaneously beating rat atria. The putative enrolment of PLC/PKC signaling pathway on A₁R chronoselectivity was also investigated.

Both the A₁R agonist, R-PIA (0.001–1 µM), and the muscarinic M₂ receptor agonist, oxotremorine (0.01–3 µM), decreased in a concentration-dependent manner the rate (negative chronotropic effect) and the strength of contractions (negative inotropic effect) in the spontaneously beating rat atria. Unlike muscarinic M₂ receptor activation with oxotremorine, the A₁ receptor-mediated negative chronotropic effect of R-PIA was evidenced at much lower concentrations than its negative inotropic action (chronoselective effect). The effects of oxotremorine and of R-PIA were prevented upon blocking M₂Rs with AF-DX 116 (10 µM) and A₁Rs with DPCPX (100 nM), respectively. Blockade of GIRK/K_{ir}3 channels with tertiapin Q (300 nM) prevented negative chronotropism and inotropism of both A₁ and M₂ receptor agonists, respectively R-PIA and oxotremorine. Inhibition of K_v and K_{ATP}/K_{ir}6 currents, respectively with 4-aminopyridine and glibenclamide, were devoid of effect. Blockade of K_{Ca}2/SK channels with apamin and Ca_v1 (L-type) channels with verapamil, sensitized atria to the negative inotropic action of R-PIA, without affecting the nucleoside chronotropic effect and the oxotremorine effect. The same occurred when rat atria were pre-treated with PLC and PKC inhibitors, such as U73122 (3 µM) and chelerythrine (3 µM), respectively. Immunolocalization studies showed that differences in the distribution of A₁ receptors between the sinoatrial node and surrounding cardiomyocytes might not afford a rationale for adenosine chronoselectivity.
Immunolabeling of $K_{IR}^{3.1}$, $K_{Ca}^{2.2}$, $K_{Ca}^{2.3}$ and Ca_{v}^{1} was also observed throughout the right atria.

Functional data support Gβγ/PLC/PKC signaling axis as an important pathway to counteract the negative inotropic effects of GIRK/KIR3 opening following A_{1}R stimulation. After GIRK/KIR3 activation, Gβγ subunits released from the vicinity of A_{1}R may negatively regulate these channels through PIP$_2$ hydrolysis. Decrease of K^+ current carried by GIRK/KIR3 channel along with lower K_{Ca}^{2}/SK channel conductance embrace a compensatory mechanism for A_{1}R, which is not present with M_{2}R activation. As Ca_{v}^{1} (L-type) channel blockade sensitized atria to contractile depression promoted via Ca$^{2+}$ influx, these channels connect inhibition of hyperpolarizing K^+ currents to greater time available for Ca$^{2+}$ influx. This study strengthens the differences between A_{1}R and M_{2}R signaling in the heart, particularly with respect to PLC/PKC modulation, providing new insights into adenosine’s chronoselectivity.
Resumo

Em tecidos supraventriculares a adenosina diminui a atividade marcapasso das células do nó sinusal (cronotropismo negativo), a condução auriculoventricular (dromotropismo negativo) e também a força contrátil do miocárdio (inotropismo negativo), sendo estes efeitos mediados pela ativação do recetor da adenosina do subtipo A₁ (Headrick et al., 2011). O recetor A₁ é um recetor acoplado a proteínas Go/α cuja estimulação despoleta a ativação de várias vias de sinalização, incluindo: inibição da ciclase do adenilato estimulada por catecolaminas (efeito anti-β-adrenérgico); hiperpolarização da membrana dos cardiomiócitos, em consequência da abertura de canais GIRK/KIR3 (Belardinelli et al., 1995); estimulação da fosfolipase Cβ e, consequente, translocação da PKC (Parsons et al., 2000; Yang et al., 2009b). Em estudos anteriores realizados no nosso laboratório verificou-se que a adenosina, atuando em recetores A₁, apresenta-se como agente depressor auricular com propriedades “crono-seletivas” singulares, não compartilhadas por outros agentes cardiodepressores, tal como a estimulação de recetores muscarínicos sensíveis à ACh do subtipo M₂ (Oliveira-Monteiro et al., observações não publicadas). Até ao momento os mecanismos responsáveis pelas propriedades crono-seletivas deste nucleósido não são perfeitamente conhecidos. Dada a importância da função auricular na fisiologia cardíaca, propusemos estudar a função e a expressão de determinados subtipos de canais de K⁺ e Ca²⁺ em aurículas isoladas de ratazana a contrair espontaneamente, sendo também avaliado o hipotético envolvimento da via da PLC/PKC na crono-seletividade mediada pela ativação dos recetores A₁.

Tanto a R-PIA (0.001-1 µM), um agonista seletivo A₁, como a oxotremorina (0.01-3 µM), um agonista do recetores muscarínicos M₂, diminuíram de uma forma dependente da concentração a frequência (efeito cronotrópico negativo) e força de contração (efeito inotrópico negativo) em aurículas de ratazana a contrair espontaneamente. Contrariamente ao observado na ativação de recetores M₂ sensíveis à oxotremorina, os efeitos cronotrópicos negativos resultantes da ativação A₁ foram observados a concentrações de agonista muito inferiores às necessárias para produzir uma redução significativa da força contrátil (efeito “crono-seletivo”). Os efeitos da oxotremorina e da R-PIA foram prevenidos após o bloqueio dos recetores M₂ (AF-DX 116; 10 µM) e A₁ (DPCPX; 100 nM), respectivamente. O bloqueio dos canais GIRK/KIR3 com tertiapina Q (300 nM) preveniu os efeitos cronotrópico e inotrópico negativos mediados pelos agonistas dos recetores A₁ (R-PIA) e M₂ (oxotremorina). A inibição dos canais Kᵥ e K_ATP/KIR6 com 4-AP e glibenclamida, respectivamente, não produziu qualquer efeito nas respostas resultantes da estimulação A₁ e M₂. Por outro lado, o bloqueio dos canais
K\textsubscript{Ca}2/SK com apamina, assim como o bloqueio dos canais Ca\textsubscript{V}1 do tipo L com verapamil, sensibilizaram o tecido auricular para as respostas inotrópicas negativas da R-PIA, não afetando a resposta cronotrópica produzida por este agonista, nem as respostas produzidas pela oxotremorina. Resposta similar foi observada após a inibição da PLC (U73122; 3 µM) e da PKC (cheleritrina; 3 µM). Estudos de imunolocalização por microscopia confocal demonstraram uma distribuição homogênea dos recetores A\textsubscript{1} da adenosa entre o nó sinusal e o músculo auricular circundante e, como tal, a cronoseletividade observada não ter como base a expressão diferencial deste recetor no tecido supraventricular. Observou-se ainda que os canais K\textsubscript{IR}3.1, K\textsubscript{Ca}2.2, K\textsubscript{Ca}2.3 e Ca\textsubscript{v}1 se encontravam presentes em todo o tecido auricular.

Em suma, os dados funcionais deste trabalho demonstram que o eixo formado pelas subunidades G\textsubscript{βγ}, PLC e PKC representam uma importante via de sinalização dos recetores A\textsubscript{1}, que contrapõe os efeitos inotrópicos negativos decorrentes da abertura de canais GIRK/K\textsubscript{IR}3. Após a abertura de canais GIRK/K\textsubscript{IR}3, as subunidades G\textsubscript{βγ} libertadas após a ativação A\textsubscript{1} poderão também regular negativamente a condutância deste mesmo canal, através da promoção da hidrólise de PIP\textsubscript{2} por via da estimulação da PLC. A diminuição das correntes hiperpolarizantes GIRK/K\textsubscript{IR}3, conjuntamente com uma menor condutância iônica por parte dos canais K\textsubscript{IR}2/SK, poderão representar um mecanismo compensatório intrínseco dos recetores A\textsubscript{1} que, aparentemente, não se encontra presente na sinalização dos recetores M\textsubscript{2}. Como o bloqueio de canais de Ca\textsubscript{v}1 (tipo-L) sensibilizou as aurículas para a depressão contrátil, é possível que a inibição das correntes hiperpolarizantes de K+ possa aumentar o tempo disponível para o influxo de Ca2+. Este estudo reforça ainda as diferenças funcionais existentes entre os recetores A\textsubscript{1} e M\textsubscript{2}, particularmente no que diz respeito à modulação da PLC/PKC, fornecendo novas pistas para a cronoseletividade da adenosa.
Table of contents

Abstract ... viii
Resumo ... x

I. Introduction ... 1
 1. The heart's first pacemaker – the sinoatrial node ... 2
 2. Spontaneous generation of pacemaker action potentials .. 6
 3. Regulation of chronotropy .. 9
 4. Excitation-contraction coupling .. 11
 5. Regulation of Inotropy ... 16
 6. Adenosinergic triad: metabolism, receptors and function ... 19
 6.1. Adenosine metabolism ... 19
 6.2. Adenosine receptors and heart function ... 22
 6.3. Adenosine and cardiac electrophysiology ... 24

II. Aims of research .. 27

III. Materials and methods ... 28
 1. Animals ... 28
 2. Isolated perfused spontaneously beating rat atria .. 28
 3. Experimental design ... 28
 4. Immunofluorescence staining and confocal microscopy studies 29
 5. Masson's trichrome staining .. 31
 6. Solutions and chemicals ... 32
 7. Presentation of data and statistical analysis ... 33

IV. Results .. 34
 1. Adenosine acting via \(A_1 \) receptors is a chronoselective atrial depressant as compared to the muscarinic \(M_2 \) receptor agonist, oxotremorine .. 34
 2. Activation of \(A_{2A} \)Rs are not involved in adenosine chronoselectivity 36
 3. G protein-coupled inwardly rectifying \(K^+ \) (GIRK/\(K_{IR3.1/3.4} \)) channels operate atrial depression caused by \(A_1 \)R and \(M_2 \)R activation ... 37
 4. \(A_1 \)R-mediated chronoselectivity is prevented by blocking \(Ca_{v1} \) (L-type) channels and \(Ca_{v2}/SK \) currents with verapamil and apamin, respectively .. 39
 5. \(Ca_{v2}/SK \) and \(Ca_{v1} \) (L-type) channels are expressed both in SA node and atrial cardiomyocytes ... 43
 6. Chronoselectivity of \(A_1 \)R is dependent on PLC/PKC coupling 45

IV. Discussion ... 51

V. Conclusion .. 61

VI. References ... 64
List of figures

Figure 1. The mammalian heart and the electrophysiologic heterogeneity of the right atrium. .. 5
Figure 2. The coupled-clock pacemaker system. ... 8
Figure 3. The excitation-contraction (E-C) coupling .. 16
Figure 4. Metabolism and signaling properties of adenosine (ADO) and its nucleotides .. 21
Figure 5. Anatomical and molecular identification of the rat SA node. 32
Figure 6. Adenosine is a chronoselective atrial depressant 34
Figure 7. Inhibitory effects of R-PIA and oxotremorine on contractile and chronotropic responses are mediated through A1R and M2R activation .. 35
Figure 8. A1R and M2R are expressed in rat atria .. 36
Figure 9. A2AR activation does not play a significant role on atrial inotropy and chronotropy ... 37
Figure 10. Atrial GIRK/KIR3 channels mediate cholinergic and adenosinergic cardiodepression ... 38
Figure 11. A1R-mediated negative inotropy was potentiated by the L-type calcium channels blockade .. 40
Figure 12. M2R-mediated negative inotropy is insensitive to voltage-sensitive calcium channels blockade ... 41
Figure 13. A1R is modulated by small conductance calcium-activated potassium channels operation .. 42
Figure 14. M2R-mediated negative inotropy is insensitive to small conductance calcium-activated potassium channels blockade .. 43
Figure 15. The molecular players of A1R-mediated chronoselectivity, K_{Ca}2/SK and Ca_{v}1 (L-type) channels, are expressed throughout the rat atria .. 44
Figure 16. Inhibition of PLC with U73122 (3 μM) sensitized atria to A1R contractile depression .. 46
Figure 17. 2-APB abolishes spontaneous atrial activity and induces severe mechanical instability .. 47
Figure 18. protein kinase c is modulated by A1R ... 48
Figure 19. PKC activation failed to modify the effects of A1R and M2R 49
Figure 20. Ga_{q} protein-coupled receptors (AT_{1} and P2Y_{2,4} receptors) did not interfere with signaling properties of both A1R and M2R .. 50
Figure 21. General mechanistic scheme for the chronoselectivity of ADO 63
I. Introduction

Every day the heart muscle rhythmically contracts and relaxes thousand times in order to ensure the correct perfusion of all body organs and tissues. The cardiac cycle produces pressure changes within the cardiovascular system allowing blood movement from higher pressure regions to lower ones. Low pressure blood flowing through vena cava (systemic circulation) and pulmonary veins (pulmonary circulation) firstly fills atrial chambers (right and left, respectively) and then the corresponding ventricles. Inside right and left ventricles blood is pressurized by heart muscle contraction (systole) providing enough energy to overcome the vascular resistance to blood flow through arterial blood vessels of pulmonary and systemic circulation, respectively. Following contraction, the heart muscle undergoes a relaxation period (diastole) that ends cardiac cycle. Cardiac cycle is a sequence of mechanical events timely ordered by heart’s first pacemaker – the sinoatrial node (SA node). Here, spontaneous and rhythmical impulses are generated and conducted over the whole heart through its electrical wiring system (SA node, atrioventricular node, His bundle). The myogenic nature of cardiac action potentials (APs) explains why a denervated heart still maintains spontaneous contractions (Kurachi et al., 2000).

The heart is endowed with a “little brain” that integrates signals and coordinates cardiovascular responses, reacting to instantaneous body needs by means of cardiac output and arterial pressure adjustment. Heart function is under the control of the autonomic nervous system that innervates several key structures of the heart, such as the SA node and the myocardium. The “flight-or-fight response” activates sympathetic efferent fibers and stimulates norepinephrine (NE) release from sympathetic varicosities that mostly binds to β1-adrenoceptors (β1-AR) thus increasing heart rate (positive chronotropy), contractility (positive inotropy) and impulse conduction speed (positive dromotropy). On the other side, acetylcholine (ACh) released from parasympathetic (vagal) efferents binds to M2 muscarinic ACh receptors (M2-R) and refrains catecholamine-stimulated cardiac output (negative chronotropy, inotropy and dromotropy). ACh effects are almost exclusively orchestrated through inhibitory M2-R, which is by far the most expressed muscarinic receptor in the mammalian heart (Krejci and Tucek, 2002). The other non-M2 muscarinic receptors are expressed at low abundance, despite no conclusive data about the relative expression of each receptor in atria and ventricles (Krejci and Tucek, 2002; Myslivecek et al., 2008).

M2-R and β1-AR comprise two important families of G-protein coupled receptors (GPCRs) in what heart regulation concerns. GPCRs are single polypeptide chains that
span the cellular membrane seven times and bind to GTP binding proteins (also known as G-protein). G-proteins are guanine-nucleotide regulatory heterotrimeric protein complexes of G\textsubscript{a}, G\textsubscript{b}, and G\textsubscript{c} subunits with a remarkable variety of physiological actions on numerous effectors, such as protein kinases, phosphodiesterases, phospholipases, transcription factors, intracellular receptors and ion channels (Milligan and Kostenis, 2006). Although chaotic at first glance, GPCRs signaling partners are organized and compartmentalized in membrane microdomains providing fidelity, speed and graded responses to GPCR agonists (Patel et al., 2008).

In resting conditions, the heart is predominantly under the tonic influence of the parasympathetic system. Autonomic nerves and other neurohormonal mechanisms control the cardiac output by changing either the stroke volume or the heart rate. Heart rate is set by SA node activity whereas ventricular stroke volume is regulated by multiple mechanisms, including preload, afterload and muscle inotropy. Even though stroke volume is much more dependent on the mechanical properties of ventricular myocardium, atria have also an important role on stroke volume regulation, particularly during cardiac sympathetic drive (e.g. physical activity) or myocardial dysfunction (Kurachi et al., 2000). Supporting the functional relevance of atria, some supraventricular arrhythmias (e.g. supraventricular tachycardia, atrial fibrillation) withdraw the contribution of atrial contraction to ventricular filling. This compromise of ventricular filling together with the rapid ventricular rate associated to these arrhythmias could lead to hemodynamic perturbations (Samet, 1973). Abnormalities in impulse initiation and conduction are the main arrhythmogenic mechanisms. Fortunately, there are some clinical approaches available to reverse these cardiac rhythm abnormalities, such as carotid sinus massage, catheter ablation and anti-arrhythmic drug therapy (e.g. adenosine [ADO]) (Blomstrom-Lundqvist et al., 2003). Heart function impairment compromises the correct perfusion of all tissues and organs; consequently, the fundamental physiological processes that ensure the correct body homeostasis are compromised.

1. The heart’s first pacemaker – the sinoatrial node

Heart contraction is primarily triggered at the SA node. This outstanding structure remained unknown for many years, until the seminal work of Arthur Keith and Martin Flack (Keith and Flack, 1907). The SA node has a complex and heterogeneous structure of noncontractile cardiac myocytes located within the right atria boundary with the superior vena cava (intercaval region) and extending to the inferior vena cava in most mammals (Boyett et al., 2000) (Figure 1). Within this interface, the SA node is surrounded by epicardic and
endocardic layers, and it is just a thin layer that nearly occupies the entire atrial wall thickness (Anderson and Ho, 1998; Boyett et al., 2000; Monfredi et al., 2010). While in some mammals the SA node is too small to be seen without at least magnifying lens, as it happens with small mammals (e.g. rat, guinea pig), the human’s SA node can be seen with the naked eye. Therefore, the precise location of the SA node of experimental animal models (e.g. rat) often requires identification of either anatomical or molecular markers. Histological sections allow us to identify some of the anatomical markers of the SA node. The Masson’s trichrome staining is usually used for the histological identification of the SA node because SA nodal cells are inserted in a collagen matrix, rich in elastic fibers randomly orientated, and surrounded by atrial muscle, exhibiting bluish and reddish tones, respectively. The abundance of connective tissue serves as an important insulating matrix from the neighborhood hyperpolarizing currents of surrounding atrial muscle (Boyett et al., 2000; Monfredi et al., 2010).

The adult human’s SA node is located under the epicardic surface of the *crista terminalis* where a subepicardic large artery - the sinus node artery – is usually visible (Anderson and Ho, 1998). The architecture of the SA node and its surrounding area is species dependent (Boyett et al., 2000). In some animals it is possible to identify particular areas of the right atrial appendage such as: SA node center, paranodal area and *crista terminalis*. The terminal crest is a thick atrial muscle that comprises high density of large cardiomyocytes disposed in a longitudinal rearrangement (Dobrzynski et al., 2005). Cardiomyocytes from *crista terminalis* (atrial muscle) are densely packed, whereas SA node center is a meshwork of SA nodal cells, randomly distributed throughout an extracellular matrix of connective tissue. The paranodal area lies between the atrial muscle and SA node and it has a poor organized mixture of nodal and atrial-like cells, located near the SA node (Chandler et al., 2009; Monfredi et al., 2010). As we move towards the periphery of the SA node, the structural and electrophysiological properties of the atrial tissue modify itself (Figure 1). For example, cells from the SA node center have roughly a smaller diameter than cells from its periphery, and even smaller compared with atrial muscle cells (Dobrzynski et al., 2005; Allah et al., 2011).

In some mammals, SA nodal cells can be classified as “pale” cells, according to its morphological characteristics. “Pale” cells are round-shaped cells with an evident nucleus and long cytoplasmatic extensions along with poorly developed sarcomeres and sarcoplasmic reticulum (SRs) that give them an empty look (James et al., 1966). They are generally found in clusters with few intercellular junctions, whose function is primarily to generate APs and, therefore, they are considered the true pacemaker cells (James et al., 1966; Monfredi et al., 2010). Notwithstanding, the morphological identification of SA node cells is not so straightforward, since it has been found within the SA node cells with
various sizes, morphologies (e.g. elongated spindle, spindle and spider cells) and electrical properties (Boyett et al., 2000) (Figure 1). Toward the periphery are found “transitional cells” that are elongated and exhibit a transition phenotype, or a mixture of different cells, or even both, between the “pale” cells and the myocytes from working myocardium (James et al., 1966; Boyett et al., 2000; Balbi et al., 2011). In fact, as we get closer to the atrial muscle, the density, organization and size of myocyte-like cells raise up and the atrial tissue becomes more specialized for contraction and electric impulse conduction than for spontaneous impulse generation (Boyett et al., 2000; Dobrzynski et al., 2005; Allah et al., 2011) (Figure 1). Other cells have also been described in the SA node, such as adipocytes, present in the periphery of the SA node from adult mammals (Melo et al., 2001), and “fibroblast-like cells” that are immersed in the loose collagen matrix of the SA node (Dobrzynski et al., 2005; Balbi et al., 2011).

Apart from anatomical markers, this specialized heart structure can be identified by several molecular markers. The discovery of molecular markers of the SA node is highly related to its unique cellular features. Molecular markers are based on the differential expression pattern of some ion channels throughout the atria, which include calcium (Ca^{2+}), potassium (K⁺), sodium (Na⁺) channels and other proteins (Chandler et al., 2009). However, it should be noted that, in some experimental models, the molecular markers of the SA node could not be the same between animals from different species and they could even change during animal’s development (Boyett et al., 2000; Allah et al., 2011).

The SA node exhibits low abundance of atrial natriuretic peptide and gap junction connexin 43 (Cx43), while the opposite is true for the atrial muscle (Chandler et al., 2009). The paranodal area exhibits a mixed phenotype, with cells expressing either proteins or none of them (Chandler et al., 2009; Monfredi et al., 2010). Low Cx43 expression among other connexins reinforce the poor electrical coupling provided by higher amounts of connective tissue within the SA node (Dobrzynski et al., 2005). The middle (160/165-kDa) neurofilament (NF160) is a positive marker of the SA nodal area that is nearly absent in the atrial muscle (Dobrzynski et al., 2005). Since SA node possesses pacemaker cells, the expression of ion channels responsible for the pacemaker or “funny” current (I_f) (see above) may also be used as marker of the SA nodal area (Chandler et al., 2009). L-type calcium channel (Ca_{V1}) subtypes expression can also be regarded as molecular markers of atrial areas. The number of putative markers for each atrial area is huge and these are listed in numerous articles (Tellez et al., 2006; Chandler et al., 2009; Allah et al., 2011; Yanni et al., 2011), strengthening the concept of an incredible heterogeneous and complex tri-dimensional structure of the right atrium (Boyett et al., 2000; Dobrzynski et al., 2005).
Introduction

Figure 1. The mammalian heart and the electrophysiologic heterogeneity of the right atrium. In the center of figure is a schematic representation of mammalian heart (aorta (Ao); pulmonary artery and vein (PA and PV, respectively); coronary sinus (CS); superior and inferior vena cava (SVC and IVC, respectively); right atrium (RA) and right ventricle (RV)). The central (leading pacemaker site) and peripheral area of the SA node are red and blue labeled, respectively. Inside the three boxes are depicted the most important outward and inward currents that shape action potentials from central (red box) and peripheral (blue box) SA node cells, and from atrial myocytes (black box). Resting (4*); diastolic depolarization (4); upstroke (0); early repolarization (1); plateau (2) and final repolarization (3) are the phases of the action potentials. The ionic currents depicted show the time course and direction (e.g. inward if below the line) of the ionic currents. Currents: sodium current (I\textsubscript{Na}); slow and fast delayed rectifier (I\textsubscript{K}); T-type calcium current (I\textsubscript{Ca,T}); L-type calcium current (I\textsubscript{Ca,L}); slow inward rectifier current (I\textsubscript{K1}); funny current (I\textsubscript{f}); Na+/Ca2+ exchanger; transient outward current (I\textsubscript{to}). Adapted from (Dobrzynski et al., 2005) and (Park and Fishman, 2011).

The generated pacemaker AP has enough power to excite neighboring cells around the SA node center, driving the electrical impulse through the heart conduction system. The SA node center is not entirely electrically-insulated and, from the SA node center toward periphery, bundles of heterogeneous cellular population (a mixture of atrial and SA node cells) arise and break *crista terminalis* toward the remaining atrial muscle. These cellular bundles ensure a physical connection between SA node center and its periphery, while it also shields the SA node from the interfering currents generated peripherally (Oosthoek et al., 1993; Dobrzynski et al., 2005). Thus, atrial muscle driving is achieved by a highly specialized conduction pathway that stem from the tiny SA node.
center (Boyett et al., 2000). *Crista terminalis* is devoid of large amounts of connective tissue and it is particularly enriched in connexins, like the high-conductance Cx43, in clear contrast with the SA node center (van Kempen et al., 1991), which make it suitable for a high-speed electrical impulse conduction.

2. Spontaneous generation of pacemaker action potentials

Since Keith and Flack’s discovery lot of efforts have been taken to figure out what is behind the spontaneous electrophysiological activity of the heart’s primary pacemaker. The ionic currents behind the typically pacemaker AP (Figure 1) have been resolved with the aid of advanced methodological approaches, such as the patch-clamp technique. SA nodal cells have an unstable resting potential, lower maximum diastolic potentials and the highest depolarization rates (phase 4) among other cardiac cell types (Figure 1), so they set the pace for heart beat (Amin et al., 2010). The remarkable electrophysiological properties of these cells accounts for the singular expression profile of ionic channels. For example, these cells lack fast sodium currents which results in lower upstroke velocity (phase 0) and slower impulse conduction (Boyett et al., 2000) (Figure 1). However, different AP profiles have been recorded from cells within the SA node area (figure 1), which goes in line with the proposed heterogeneous cellular population for this area (Boyett et al., 2000). The distinctive ion channel expression pattern underlies this electrophysiological diversity. The cells around the SA node center have a phase 0 with higher slope and amplitude as compared to the centrally located cells, which have a fast sodium current (I_{Na}) (Amin et al., 2010) (Figure 1). Such current supports the higher impulse conduction velocity at the SA node periphery (Boyett et al., 2000).

The periodical and synchronous APs’ generation is the electrical hallmark of the SA node and it looks like it has its own clock. The mammalian heart has, forsooth, two coupled-clocks that drive heart spontaneous activity. The cutting edge coupled-clock system concept holds a “membrane voltage clock” and the “Ca$^{2+}$ clock” (Figure 2). The time-keeping elements in the “membrane voltage clock” are a wide variety of ionic current from channels and transporters that span the sarcolemma, such as: voltage-dependent Ca$^{2+}$ currents (L- and T-type Ca$^{2+}$ currents); voltage-dependent K$^{+}$ current (transient outward current (I_{to}) and delayed rectifier K$^{+}$ current that includes ultra-rapid ($I_{K,ur}$), rapid ($I_{K,r}$) and slow ($I_{K,s}$); “funny” or pacemaker current (I_{f}); sustained inward current (I_{st}), background sodium-sensitive current ($I_{b,Na}$); voltage-independent K$^{+}$ currents (e.g. ACh- and ADO-activated K$^{+}$ current, $I_{K,ACH,ADO}$; ATP-sensitive K$^{+}$ current ($I_{K,ATP}$)); Na$^{+}$/Ca$^{2+}$ exchanger (I_{NCX}) and Na$^{+}$/K$^{+}$ATPase (I_{NaK}) currents (Boyett et al., 2000; Lakatta et al.,
This large ensemble of ionic currents shapes the membrane potential of each AP on a beat-to-beat basis. The \(\text{Ca}^{2+} \) clock is based on intracellular \(\text{Ca}^{2+} \) dynamics across the internal (e.g. SR, mitochondria) and external compartments. These two clocks represent a broad array of synchronized events and, as a result, it is not possible to detach the membrane clock from the \(\text{Ca}^{2+} \) clock, since both interact and mutually influence each other's activity (Lakatta et al., 2010).

The lack of a stable resting membrane potential (phase 4) is the holy grail of spontaneous activity of SA node cells (Figure 1). During the mid-diastolic depolarization (phase 4), \(\text{Ca}^{2+} \) from the SR is continuously leaking out through ryanodine-sensitive channels (RyR2), i.e. local \(\text{Ca}^{2+} \) releases (LCRs), increasing cytosolic \(\text{Ca}^{2+} \) concentration ([\(\text{Ca}^{2+} \)]) that, in turns, drives the depolarizing \(\text{Na}^+ / \text{Ca}^{2+} \) (NCX) current (three sodium ions are exchanged for each \(\text{Ca}^{2+} \)). The rate of LCRs generation gradually increases during the late diastolic depolarization that precedes the next AP upstroke (Huser et al., 2000). The \(\text{Ca}^{2+} \) cycling beneath the spontaneously generation of LCRs is closely linked to spontaneous cycle length and it is regulated by mechanisms that affect both sarcoplasmic and cytosolic \(\text{Ca}^{2+} \) concentrations (Figure 2) (Vinogradova et al., 2004; Sanders et al., 2006). Regarding the \(\text{Ca}^{2+} \) cycling regulation concept, in a recent report, the modulation of mitochondrial \(\text{Ca}^{2+} \) buffer capacity, with blockers of \(\text{Ca}^{2+} \) pumps and release channels highlighted the mitochondria as an organelle with an incredible impact on the coupled SR \(\text{Ca}^{2+} \) loading and pacemaker activity of SA node cells (Figure 2) (Yaniv et al., 2012).

Meanwhile, as the membrane potential becomes less negative due to LCR, the conductance of T-type calcium channels (\(\text{Ca}_v3 \)) increases in such way that promotes a further elevation of ([\(\text{Ca}^{2+} \)])) (Catterall, 2011) and, consequently, inward conductance of \(\text{I}_{\text{NCX}} \) increases (Huser et al., 2000; Bogdanov et al., 2001; Sanders et al., 2006). Toward the end of the phase 4 (late diastolic depolarization), high \(\text{I}_{\text{NCX}} \) conductance brings the membrane potential to the \(\text{Ca}_v1 \) (L-type) channels threshold activation (about -40 mV). As \(\text{Ca}^{2+} \) enters mainly through activated \(\text{Ca}_v1 \) (L-type) channels, and a little bit through reverse-mode of NCX current at very positive membrane potentials (\(E_{\text{m}} > E_{\text{NCX}} \)) or high \([\text{Na}^+] \) (Sipido et al., 1997), the \(\text{Ca}^{2+} \) conductance through RyR suddenly increases and a sharply elevation of ([\(\text{Ca}^{2+} \)]) occurs, i.e. \(\text{Ca}^{2+} \)-induced \(\text{Ca}^{2+} \) release (CICR) (Fabiato, 1983; Bogdanov et al., 2001; Bers, 2002). Following this massive SR \(\text{Ca}^{2+} \) release, the membrane potential quickly reverses from negative to positive, and a depolarization occurs. Rather than being a simple electric impulse yielded from the coupled-clock system, the AP is itself a synchronizing event of the two “clocks”. The occurrence of an AP empties SR \(\text{Ca}^{2+} \) stores and timely inactivates the RyRs, resetting the SR function. If the AP does not readily take place, the \(\text{Ca}^{2+} \) cycling homeostasis is compromised, and the
spontaneous SR Ca2+ release begins to vanish until it disappears. Therefore, the AP sets up the timing and magnitude of the diastolic Ca2+ release (Vinogradova et al., 2004).

Figure 2. The coupled-clock pacemaker system. Cells within the SA node generate spontaneous actions potentials. The spontaneous activity derives from the dynamical interaction of subcellular (Ca2+ clock) and sarcolemmal (M-clock) proteins. The net Inward current during early diastolic depolarization phase (I\textsubscript{f} and I\textsubscript{K} decay) raise the membrane potential. As the membrane potential become less negative, other electrogenic currents increase their own conductance (I\textsubscript{Ca,T} and I\textsubscript{NCX}) and spontaneous SR Ca2+ leakage (local Ca2+ release) gradually increases, which causes the membrane potential to go even less negative. Suddenly, an inward Ca2+ current carried by L-type voltage-gated calcium channel triggers a massive SR Ca2+ release through ryanodine receptors (RyR) that generate the action potential upstroke (phase 0) and membrane potential reaches a maximum. Meanwhile, outward K+ current increase (hyperpolarizing) and after few milliseconds the maximum diastolic depolarization potential is reached again. The “clock ticking” is under autonomic control, it speeds up when β\textsubscript{1}-adrenoceptors are stimulated by catecholamines and slows down when G\textsubscript{i} protein-coupled receptors (e.g. A\textsubscript{1}R and M\textsubscript{2}R) are activated. Adenylyl cyclase (AC) integrates autonomic signals by changing cAMP formation rate and, subsequently, PKA activity. This modified representation of the coupled-clock pacemaker system from (Lakatta et al., 2010) include the recent advances in this research field, where mitochondrial calcium buffering capacity modulates cardiac pacemaker cell automaticity (Yaniv et al., 2012).

After reaching the maximum depolarization potential, [Ca2+], decreases as the K+ outward currents increase (I\textsubscript{K}) and the membrane potential fades out to negative potentials (phase 3). The [Ca2+] transient decay is partially attributable to the calmodulin (CaM) that serves as an important feedback mechanism for restoring [Ca2+] to basal levels (Lakatta et al., 2010; Catterall, 2011). The binding of Ca2+ to CaM deactivates the I\textsubscript{Ca,L} (Pitt et al., 2001). Even though the negative modulation of I\textsubscript{Ca,L} by CaM leads to [Ca2+], reduction, SR pumping by SERCA2, which refuels the Ca2+ clock, and Ca2+ extrusion via I\textsubscript{NCX}, accounts for the large reduction of [Ca2+] at the end of AP (Vinogradova et al., 2004; Lakatta et al., 2010). Additionally, higher K+ conductance during the third phase (Figure 1)
of the AP strengthens these Ca\(^{2+}\) release recovery mechanisms by enchaining the forward mode of NCX and by reducing the Ca\(^{2+}\) channel voltage-dependent activation. As soon as the membrane potential gets closer to \(-40\) mV, the slow, mixed Na\(^{+}\)-K\(^{+}\), inward current pacemaker current (\(I_{f}\)) gradually increases (DiFrancesco and Tortora, 1991), along with a time-dependent decay of potassium conductance that push the membrane potential out of the maximum diastolic potential and a new cycle begins (Figure 1) (Lakatta et al., 2010).

3. Regulation of chronotropy

Despite pacemaker cells have been regarded as a clock, the spontaneous AP firing at the SA node is not a monotonous process and can speed up or slow down its ticking. The SA node is an integrated structure that reacts against the instantaneous body needs. Sympathetic drive increases heart rate while the parasympathetic system does the opposite. Autonomic control of heart rate is mostly achieved through ACh- and NE-sensitive receptors placed on the surface of SA nodal cells. In the heart, including the SA node, the main subtype of receptors sensitive to ACh is the M\(_2\)R whereas \(\beta_1\)-AR is the most expressed NE-sensitive receptor. While \(\beta_1\)-AR is a G\(_{\alpha}\)-coupled receptor (vide infra) and stimulates adenylyl cyclase (AC), the G\(_{\alpha_i}\)-coupled M\(_2\) muscarinic receptor (M\(_2\)R) inhibits AC decreasing cAMP levels (Figure 2) (Vinogradova et al., 2006; Lyashkov et al., 2009). Therefore, one can afford a key role for intracellular cAMP levels on chronotropy regulation. The positive effect of cAMP is attributable to its stimulating effect on protein kinase A (PKA) activity, an important kinase that winds both M and Ca\(^{2+}\) clocks (Figure 2) (Lakatta et al., 2010). In fact, the role of the cAMP/PKA pathway for cardiac pacemaking is more important than anyone could have ever imagined until Vinogradova’s experiments, which demonstrated that SA nodal cells have surprisingly higher PKA activity and cAMP levels as compared to other cardiac cell type. Pharmacological modulation of cAMP/PKA pathway showed that higher PKA activity, rather than cAMP itself, is obligatory for the basal spontaneous and rhythmic occurrence of LCRs in these cells (Vinogradova et al., 2006). The steady-state of cAMP levels yields from the balance between the production and metabolization rates of cAMP by AC and phosphodiesterases, respectively. Besides manipulation of cAMP from its steady-state, the phosphatase activity of some proteins, like protein phosphotases, also affects phosphorylated proteins by PKA and Ca\(^{2+}\)/CaM-dependent protein kinases II (CaMKII), which may bring forth changes in pacemaker AP firing (Figure 2) (Lyashkov et al., 2009; Lakatta et al., 2010).

In the early diastolic depolarization phase, perturbation of cAMP equilibrium may also affect gating properties of HCN (hyperpolarization-activated cyclic nucleotide-gated) channels and increase their carried current (\(I_{f}\)) during stimulation of AC or inhibition of
phosphodiesterases (DiFrancesco and Tortora, 1991). However, in some experiments, direct pharmacological suppression of \(I_f \) did not produce extensive changes in the automaticity of SA nodal cells (Sanders et al., 2006; Lyashkov et al., 2009).

Besides AC inhibition, vagal stimulation also decreases spontaneous firing by increasing \(K^+ \) conductance \((I_{K,AC}) \) through G protein-coupled inwardly-rectifying potassium channels (GIRK/KIR3) accompanied by a detectable hyperpolarization of the maximum diastolic potential (Han and Bolter, 2011). Activation of GIRK/KIR3 channels were the first effectors to be described for \(G\beta\gamma \) dimer (Logothetis et al., 1987). GIRK/KIR3 channel belongs to the inward rectifier channels family and it is a heterotetrameric complex of KIR3.4 and KIR3.1 subunits (Krapivinsky et al., 1995). This ionic current is shared by other \(G\alpha_i/o \)-coupled receptors such as the \(A_1R \) that also reduces heart beating (Kurachi et al., 1986; Belardinelli et al., 1988).

Ca\(^{2+}\) ion is more than a simple power source of pacemaker APs; it also acts as a gear in the “clocking machine”. It accelerates its own dynamics by a feedforward mechanism based on Ca\(^{2+}\) stimulation of several enzymes, including some AC isozymes, PKA and CaMKII, and, in its absence (i.e. in the presence of Ca\(^{2+}\) chelators) spontaneous AP firing are no longer observable (Sanders et al., 2006). These kinases phosphorylate sarcolemma (e.g. Ca\(_V\)1 (L-type) channels) and SR (e.g. phospholamban and RyR) proteins, increasing the cell Ca\(^{2+}\) load and Ca\(^{2+}\) cycling that mirror higher spontaneous AP firing (Lakatta et al., 2010). The relation between overall Ca\(^{2+}\) dynamics and spontaneous firing come together to define the LCR period, i.e. the time-course that separates the spontaneous emergence of two LCR events. The LCR period is inversely related to pacemaker AP length and decreases when some of the AP phases are shortened. The diastolic depolarization phase (phase 4) underlies the spontaneous SR Ca\(^{2+}\) release, or LCR, and it is increased by phosphorylation. The frequency and size of LCRs are enhanced by ryanodine channel (RyR) phosphorylation. When RyR is phosphorylated, the RyR channel is more sensitive to [Ca\(^{2+}\)], thereby increasing fractional SR Ca\(^{2+}\) release for a given \(I_{\text{Ca}} \) trigger (Bers, 2002; Vinogradova et al., 2006). RyR channel is not the only protein phosphorylated from the SR PKA and other kinases also modify the function of other protein of the SR Ca\(^{2+}\) refueling machinery, namely SERCA2a. SERCA2a is a Ca\(^{2+}\) ATPase responsible for pumping cytosolic Ca\(^{2+}\) into SR and it is naturally inhibited by -phospholamban. Phosphorylation of phospholamban relieves SERCA2a inhibition, increasing SR Ca\(^{2+}\) load (Vinogradova et al., 2006). Noteworthy, in absence of this compensatory mechanism, higher SR Ca\(^{2+}\) release or low SR Ca\(^{2+}\) uptake would gradually deplete the SR Ca\(^{2+}\) stores and, concomitantly, slow down, or even stop, the spontaneously firing in SA nodal cells (Bogdanov et al., 2001; Sanders et al., 2006; Yaniv et al., 2012).
Given the Ca\(^{2+}\)-dependence of spontaneous AP firing, it might be expected an interplay of the well-recognized inositol triphosphate (IP\(_3\))-mediated Ca\(^{2+}\) store release (Berridge, 1993). In fact, a recent study conducted in mouse SA nodal cells addressed this relevant assumption by studying the expression levels and location of all IP\(_3\)R subtypes. More than any other IP\(_3\)R subtype, IP\(_3\)R subtype II (IP\(_3\)R2) was found to be highly expressed in SA nodal cells as well as in cells from atrioventricular node and atrial tissue. Furthermore, IP\(_3\)R2s lie beneath the sarcolemma in close proximity with SR proteins, and after application of either membrane-permeable IP\(_3\), the spontaneous Ca\(^{2+}\) release and pacemaker firing rate increased in the SA nodal cells (Ju et al., 2011). This study agrees with previous ones about IP\(_3\)R expression in cardiomyocytes (Lipp et al., 2000) (see below) and supports chronotropy modulation by receptors coupled to IP\(_3\) production.

To sum up, higher [Ca\(^{2+}\)], increases spontaneous AP firing rate in SA node cells directly related to higher SR Ca\(^{2+}\) cycling (higher load and release) and shorter LCR periods (Yaniv et al., 2012). As a consequence, the late phase of diastolic depolarization slope increases and I\(_{Ca,L}\) threshold is easily overcome. Inward Ca\(_V1\) (L-type) current is also a phosphorylation target of PKA and other kinases that increase I\(_{Ca,L}\) amplitude and bring it to earlier phase of diastolic depolarization due to shifting of channel gating to more negative potentials (Vinogradova et al., 2006; Catterall, 2011).

4. Excitation-contraction coupling

The spontaneous AP firing at the SA node has the heart muscle contraction as the final goal. The heart muscle has, in turn, to generate enough mechanical energy to impel the blood through vessels and tiny capillaries. But when a heart impulse is no longer able to induce an efficient contraction (e.g. during arrhythmic phenomena), the heart works in an unsustainable way in a medium to long term. Therefore, every AP generated at the SA node must produce a contraction, which means a coupling between the electrical excitation and the heart muscle contraction: the excitation-contraction coupling (E-C coupling) (Figure 3) (Bers, 2002). The E-C coupling underlies a complex cascade of events that happen in a well-ordered way in just a few milliseconds. The E-C coupling arises from the overlapping mechanisms behind contraction and electrical activity of the heart. The sarcolemma is the place where these two phenomena meet. Here, some of the mechanisms for pacemaker potential generation are as well involved on the E-C coupling mechanism to generate a contraction. Fundamentally, heart muscle contractions arise from the synchronous contraction of a large number of cells, and feeling the pulse just gives us an idea about how powerful and stronger they can be. The heart muscle is...
nothing more than a well-organized and repetitive tridimensional structure composed by millions of rod-shaped cells running parallel to heart’s surface. These cells are gifted in terms of contractile machinery and they are usually called myocytes. The sarcomere is the functional contractile unit of myocytes, and the assembly of repeating sarcomeres, packed side-by-side, defines a myofibril. Bundles of myofibrils enclosed by the sarcolemma membrane draw the myocyte. Myofibrils are a large ensemble of thick (myosin filaments) and thin filaments (actin, tropomyosin and troponin) longitudinally disposed in a symmetric and parallel way. Running transversely or even longitudinally to myocytes, intercalated discs have desmosomes that firmly tight adjacent myocytes making them twitch simultaneously, i.e. a syncytium. Intercalated discs are filled with connexins (gap junctions) that provide low-resistance pathways for electrical and chemical transmission between myocytes.

Contrary to pacemaker cells, the atrial and ventricular myocytes have stable resting potentials (around -85 mV) (phase 4) generated by an outward K⁺ flux (I_{K1}) through Kᵥ2 channels (Figure 1) (Boyett et al., 2000; Chandler et al., 2009; Amin et al., 2010). Spreading of depolarizing waves generated from the leading pacemaker through gap junctions excite adjacent myocytes by dramatically increasing their Na⁺ conductance through voltage-dependent Na⁺ channels (phase 0). Inward sodium current produces a sharp upstroke in the membrane potential and then produces a long-lasting increase of Ca^{2+} ion conductance through voltage-dependent Caᵥ1 (L-type) channels (Figure 1). Caᵥ1 (L-type) channels change their own Ca^{2+} conductance in response to membrane potential and, therefore, they are called voltage-gated channels (Catterall, 2011). Once membrane potential reaches the maximum depolarization potential, Iₖ, deactivation and increase of transient outward K⁺ current (I_{to}) take place to produce an early repolarization (phase 1). The $I_{Ca,L}$ and the gradually K⁺ conductance increase of voltage-dependent K⁺ channels (delayed outward rectifying currents: I_{Kur}, I_{Kr} and I_{Ks}) contribute to the plateau phase of the AP (phase 2). The successive activation of outward rectifying currents (I_{Kc}, I_{ks} and I_{K1}) deactivates Caᵥ1 (L-type) channels leading to a net outward ionic current that drives membrane potential toward K⁺ equilibrium (phase 3 and 4) (Figure 1) (Amin et al., 2010). Along with the electrophysiological changes produced by an AP from a neighborhood myocyte, Ca^{2+} ions passing through Caᵥ1 (L-type) channels increase subsarcolemmal Ca^{2+} concentration from 100 nM to 10 µM (Ca^{2+} spike). Caᵥ1 (L-type) channels are remarkably located in the well-known transverse tubules of a sarcomere’s Z-disk. The acclivitous surface of cardiomyocytes is replenished of these specialized structures, where the Caᵥ1 (L-type) channels are closely connected with clusters of RyR2 from the SR, forming the cytosolic cleft (or dyadic junction), which is the functional unity of the cardiac E-C coupling – the couplon (also known as Ca^{2+} release units) (Figure 3) (Sun et
al., 1995; Catterall, 2011). In general, the fundamental processes beneath EC-coupling of ventricular myocytes are very similar to those present in atrial myocyte contraction (Bers, 2002). However, there are some differences between atrial and ventricular myocytes that lastly influence the contraction properties of these two cell types. While in ventricular myocytes t-tubules are deeper invaginations of sarcolemma that occupy a large surface of these cells (around 50%), atrial myocytes have few and less-developed t-tubules. Offsetting the lack of t-tubules, atrial myocytes have an extensive tubular network formed from internal SR membranes, also known as Z-tubules at the Z-line level. The distinctive rearrangement of this tubular system within atrial myocytes mirrors a differential location pattern of several key pieces involved in EC-coupling driving such as RyR and CaV1 (L-type) channels. Two populations of RyR channels are usually found in atrial myocytes, namely junctional and non-junctional RyR populations. Junctional RyR population are clusters of RyRs just localized beneath the sarcolemma, whereas non-junctional RyR channels represent the bulk population of RyR channels placed deeply inside of atrial myocytes (Bootman et al., 2011). CaV1 (L-type) channels from ventricular myocytes are mostly located in the t-tubules whereas functional CaV1 (L-type) channels of atrial myocytes are mainly restricted to their periphery (Mackenzie et al., 2004).

When an AP arrives at the sarcolemma of a certain myocyte, almost instantaneously (<1 ms), Ca^{2+} ions passing through CaV1 (L-type) channels “pull the trigger” and large amounts of SR Ca^{2+} are then released through RyRs, i.e. the CICR (“Ca^{2+}-induced Ca^{2+} release”). The close proximity of RyR to CaV1 (L-type) channels from sarcolemma means that junctional RyRs are much more sensitive to Ca^{2+} concentration changes within the dyadic junction and therefore much important for CICR than RyRs not junctionally located (Bootman et al., 2011). CICR creates a Ca^{2+} wave that sweeps over the entire myoplasm (Fabiato, 1983; Sipido et al., 1997; Bers, 2002; Cheng and Lederer, 2008). The recent laser scanning confocal microscopy techniques, together with the new generation of Ca^{2+} sensitive fluorescent probes is currently helping to get a deep insight into CICR phenomenon and how it is regulated. Rather than an isolated event, this massive [Ca^{2+}] transient is a spatio-temporal summation of many Ca^{2+} sparks produced by numerous CICR events across the entire t-tubular system (Cheng and Lederer, 2008). Notwithstanding, under basal conditions, spontaneous Ca^{2+} sparks occur just by fluctuations of sarcoplasmic and cytosolic free Ca^{2+} concentrations and appear to be identical to I_{Ca,L}-evoked ones in terms of amplitude, kinetics, and spatial properties. However, AP-evoked Ca^{2+} sparks have higher frequencies (≈ 100 fold) when compared to spontaneous ones and, consequently, the latter have an overall Ca^{2+} transient usually too small to induce an E-C coupling (Cheng and Lederer, 2008). Thus, rather than a simple
local Ca2+ diffusion, CICR implies a precise engagement of numerous RyR/Ca\textsubscript{v}1 (L-type) channels complexes.

Elicited Ca2+ sparks from ventricular myocytes are globally homogenous than those elicited in atrial myocytes, probably due to the above described ultrastructural differences between these two cell types. Atrial Ca2+ sparks are generated at the cellular periphery where junctional RyRs are located; they spread laterally till eventually they reach the centre of these cells (Mackenzie et al., 2004). As demonstrated by Mackenzie et al., under basal conditions Ca2+ movement toward internal Ca2+ stores (SR) is hindered by Ca2+ buffering properties of mitochondria and SERCA pumps. Therefore, atrial myocytes have a contractile reserve formed by internal SR Ca2+ store gated by non-junctional RyRs that are promptly recruited to enhance myocytes contractility during positive inotropic stimuli (e.g. adrenergic stimulus) (Mackenzie et al., 2004).

Other channels and transporters may also induce CICR [e.g. Ca\textsubscript{v}3 (T-type) calcium channels, reverse-mode NCX] even though their role is not as important as the Ca\textsubscript{v}1 (L-type) channels for E-C coupling (Sipido et al., 1997; Bers, 2002). During CICR, Ca\textsubscript{v}1 (L-type) channels are mainly deactivated by a Ca2+-dependent mechanism mediated by CaM (Pitt et al., 2001; Catterall, 2011; Best and Kamp, 2012) while RyR channel undergoes an inactivation period and only becomes ready to fire when SR Ca2+ backs to diastolic levels (Bers, 2002).

Although CICR is an all-or-nothing phenomenon, E-C coupling paradoxically exhibits a graded response that is dependent on amplitude and duration of I\textsubscript{Ca,L} (Bers, 2002). Several theories have emerged to explain this mysterious response but none, so far, has been completely conclusive (Cheng and Lederer, 2008). Essentially, E-C coupling is a function of amplitude and duration of global [Ca2+], transients that accounts for the number and properties of discrete Ca2+ releasing units timely recruited by an AP (Bers, 2002; Cheng and Lederer, 2008). The number of evoked [Ca2+], transients is voltage dependent whereas the single properties of each “couplon” is voltage-independent (Cheng and Lederer, 2008). For example, RyR channel gating properties, a key point for “couploons” regulation, is modulated by different ways (vide infra) such as: SR Ca2+ levels; post-transdutional modifications (e.g. (de)phosphorylation) and other protein-protein interactions (Bers, 2002).

The amount of Ca2+ released to cytosol during CICR largely exceeds the bulk intracellular Ca2+ concentration (from ≈ 100 nM to ≈ 1 µM) needed for contraction. In the resting state, or diastole, thin and thick filaments are partially superimposed, troponin I (TnI) is connected to actin hiding myosin binding sites on the actin molecule, and myosin “heads” have bound ATP molecules. This remains stable until the increase of cytosolic Ca2+ during an AP. As the Ca2+ signal penetrates deeper into the cell, large amounts of
Ca2+ bind to low affinity troponin C (TnC) sites inducing a structural change in the troponin complex that switches-on the contractile machinery. By pulling TnI off, **Ca**2+ binding to TnC exposes myosin-binding sites throughout actin filament (de Tombe, 2003). As soon as the myosin heads bind to actin filaments, the force-generating actin–myosin reaction hydrolyses ATP for the elastic bending and active tilting of myosin heads. The movement of myosin heads push the actin filaments and induce a decrease in sarcomere length, i.e. contraction (systole) (de Tombe, 2003). During sarcomere shortening, the **Ca**2+-affinity of TnC gradually increases thereby more cross-bridges react with thin filaments, which explains cooperative activation of cardiac myofilaments (Bers, 2002; Solaro, 2008).

At the end of systole, the cytosolic **Ca**2+ concentration goes down, and then the contractile process is resumed getting it ready to fire to a new AP. When [**Ca**2+]\textsubscript{i} drops to diastolic levels, the labile connection between **Ca**2+ and TnC is broken switching off the contractile machinery, and relaxation occurs. The relaxation process also needs synthesis of new ATP molecules to displace the ADP bound to myosin heads. Noteworthy, if cytosolic **Ca**2+ is not quickly removed the thin and thick filaments will continue to slide past each other decreasing even more the sarcomere length. Thus, the cardiac cycle depends on the kinetics and amount of cytosolic **Ca**2+ released in early systole and its withdrawal during diastole. The mechanism underlying this [**Ca**2+]\textsubscript{i} drop is highly effective and similar to what happens in SA nodal cell SERCA and NCX (driven by Na+-K+ pump) removes the cytosolic **Ca**2+ into SR and to extracellular milieu, respectively. The plasma membrane **Ca**2+ ATPase (PMCA) and mitochondrial **Ca**2+ uniport also have an important role, although less important than the other ones, in driving **Ca**2+ out of the cytosol (Bers, 2002). These cytosolic **Ca**2+ removal mechanisms, aided by **Ca**2+ buffering molecules, are critical not only for relaxation but also to prevent the deleterious cellular effects produced by high cytosolic **Ca**2+ concentrations. However, the relative impact of each **Ca**2+ extrusion mechanism to decrease [**Ca**2+]\textsubscript{i} may change between species as well as in pathological conditions (Bers, 2002). In non-pathological conditions, the active **Ca**2+ concentration that induces a contraction is short-lived due to the highly efficient **Ca**2+ extrusion mechanisms present in myocytes. Reasonably, any perturbation on **Ca**2+ extrusion mechanisms yields an alteration of intracellular **Ca**2+ dynamics.
Figure 3. The excitation-contraction (E-C) coupling. Once an action potential (AP) reaches the t-tubular system of cardiomyocytes, Ca$^{2+}$ entry through L-type voltage-gated calcium channels (I_{Ca}) ignites Ca$^{2+}$-induced SR Ca$^{2+}$ release via ryanodine receptors (RyR), thus raising cytosolic Ca$^{2+}$ concentration [Ca$^{2+}$]. Then, higher [Ca$^{2+}$] switches on the contractile machinery that allows myocyte contraction. Just before reaching maximum active tension, the [Ca$^{2+}$] drops to diastolic levels and muscle undergoes relaxation. Ion pumps (SERCA2a, PMCA and Na$^+$/K$^+$-ATPase pump), exchanger (Na$^+$/Ca$^{2+}$ exchanger) and mitochondrial Ca$^{2+}$ uniport drive Ca$^{2+}$ removal from cytosol. Catecholamine (NE) binds to β-adrenoceptors (β-AR) and enhances adenylyl cyclase activity that further enhances the activity of cAMP-dependent protein kinase (PKA), whereas the opposite is true for Gαi/o-coupled receptor (e.g. M$_2$R and A$_1$R). PKA phosphorylates several key proteins related to E-C coupling (e.g. phospholamban, L-type Ca$^{2+}$ channels (Ca$_{v}$1 (L-type) channels), RyR, inhibitory troponin (TnI)). During repolarization phase, outward potassium currents (I_K) bring sarcolemmal potential to diastolic potentials. GIRK/KIR3 channel opening following A$_1$R and M$_2$R activation also accelerates the repolarization phase of APs. At the bottom of the figure, a typical action potentials, [Ca$^{2+}$] transient and active tension generated during myocyte contraction are plotted as function of time (Adapted from (Bers, 2002)).

5. Regulation of Inotropy

The contraction strength of atrial and ventricular myocardium, also called as inotropy, has a large impact on stroke volume. Regulation of inotropy can be broadly achieved by interfering with either intracellular Ca$^{2+}$ handling, myofilament Ca$^{2+}$ sensitivity or cross-bridge kinetics (Bers, 2002; Solaro, 2008). Once again protein kinases and their downstream targets (often other kinases) have a central role on receptor-transmitted signal integration for inotropy regulation (Figure 3). Their activities control dynamics and intensity of cytoplasmic Ca$^{2+}$-transients triggered by APs that lastly control the
chemomechanical coupling between Ca\(^{2+}\) and myofilaments. Ca\(^{2+}\)-handling comprise uptake and extrusion mechanism of cytosolic Ca\(^{2+}\) ions, which are quite similar with those implicated in chronotropy regulation (Figure 2). As mentioned above, E-C coupling shows a graded response dependent of Ca\(^{2+}\) transients characteristics during a CICR (Bers, 2002; Cheng and Lederer, 2008), which in turns directly modulates the cross-bridge cycling rate, the number and the force of productive actin-myosin interactions (de Tombe, 2003). The amount of Ca\(^{2+}\) released from each CICR event is strictly related to SR Ca\(^{2+}\) concentration and it is tunable by [Ca\(^{2+}\)]. Essentially, when [Ca\(^{2+}\)] increases, the SR Ca\(^{2+}\) content increases too (increase SR Ca\(^{2+}\) load) and, as a result, the likelihood of RyR opening is higher. When SR Ca\(^{2+}\) load and RyR activity are both elevated, the magnitude and frequency of spontaneous local Ca\(^{2+}\) release (Ca\(^{2+}\) sparks) is greater, even though Ca\(^{2+}\) sparks length remains unchanged (Lukyanenko et al., 1996). Thus, CICR phenomenon is enhanced by increasing Ca\(^{2+}\) influx, decreasing Ca\(^{2+}\) efflux, or enhancing Ca\(^{2+}\) uptake into SR (e.g. catecholamines or an increase in stimulation frequency, AP duration, I\(_{\text{Ca}}\) or [Na\(^{+}\)]\(_i\)) (Bers, 2002). Some of these effects are shared by adrenoceptors (e.g. β₁-AR) and other G\(_{\alpha}\)-coupled receptors. For example, PKA (and CaMKII) relieves the tonic SERCA2a inhibition by phospholamban phosphorylation, which increases SR Ca\(^{2+}\) load and muscle relaxation, phoshorylates RyR channels increasing their Ca\(^{2+}\)-sensitivity and SR Ca\(^{2+}\)-leakage, and phosphorylates Ca\(_V\)1 (L-type) channels augmenting their own Ca\(^{2+}\)-conductance (Figure 3) (Kamp and Hell, 2000; Bers, 2002; Vinogradova et al., 2006; Catterall, 2011).

In addition, G\(_{\alpha_q}\)-coupled receptors have been allocated to CICR mechanism. G\(_{\alpha_q}\)-protein stimulates inositol phospholipids hydrolysis that, in turn, enhances IP\(_3\)R-induced Ca\(^{2+}\) store release (Berridge, 1993) and activates protein kinase C (PKC) (Nishizuka, 1992). PKC family is a group of serine/threonine kinases isoforms generally divided into 3 groups based on their structure and co-factors required for activation, namely: conventional PKCs (cPKCs: α, βI, βII and γ) require Ca\(^{2+}\), phospholipids, DAG (or phorbol ester) for activation; novel PKCs (nPKCs: δ, ε, θ and η) are quite related to the conventional family but they are Ca\(^{2+}\)-independent; atypical PKCs (aPKCs: ζ and λ) are totally different from other family because they are not activated by DAG or phorbol esters neither by Ca\(^{2+}\) ions (Puceat and Vassort, 1996). PKC δ and ε were the major isozymes found in cardiomyocytes, at least in rats (Yang et al., 2009b). PKC activation implies a translocation by receptor for activated protein kinase C (RACKs) and anchoring to specific cellular structures (Fenton et al., 2009). Regarding the IP\(_3\) role on inotropy, IP\(_3\)R2 is by far the highest IP\(_3\) receptor subtype expressed in cardiomyocytes, with a 6-fold relative abundance in atrial myocytes when compared to ventricular ones. Moreover, IP\(_3\)R activation increases the rate and magnitude of spontaneous Ca\(^{2+}\) sparks (Lipp et al.,
2000). Interestingly, Lippin and colleagues found that this IP$_3$ receptor subtype is strategically placed near the Ca$^{2+}$-release units at the subsarcolemmal region and, curiously, located in the vicinity of IP$_3$ generation sites where enzymes (e.g. PLCβ) and Gα_q protein-coupled receptors are placed. Interestingly, IP$_3$ seems to recruit a contractile reserve embraced from non-junctional regions of atrial myocytes (Mackenzie et al., 2004). Rather than truly effectors of CICR, it is thought that IP$_3$Rs act as positive modulators of E-C coupling (Lipp et al., 2000; Bers, 2002).

Besides length and amplitude of intracellular Ca$^{2+}$ transients, the contraction force development depends on the myofilament Ca$^{2+}$ sensitivity. Myofilament Ca$^{2+}$ sensitivity can be changed by several factors such as: post-translational modifications (e.g. phosphorylation), stretch, pH, Pi and Mg$^{2+}$ levels (Bers, 2002).

PKA and PKC are by far the most studied kinases related to phosphorylative regulation of myofilament mechanics. Other kinases, such as protein kinase G and CaMKII as well as myosin-light chain kinase also have an active role in myofilament regulation (Solaro, 2008). In general, myofilament phosphorylation decreases the sarcomere sensitivity for Ca$^{2+}$, which means that higher [Ca$^{2+}$], is needed for a given contractile response as compared with lower levels of phosphorylated contractile proteins (de Tombe, 2003). Numerous GPCRs are targeted for myofilament modulation by phosphorylation, such as the well-know β_1-AR. Sympathetic activation increases force of contraction, chronotropy and lusitropy. In this situation, as the maximum rates of both tension development and relaxation increase, the time-course of each contraction decreases. Myofilament proteins are also phosphorylation targets by other kinases (e.g. PKC) showing sometimes similar and overlapping responses (Puceat and Vassort, 1996; Solaro, 2008). In general, TnI phosphorylation by PKA or PKC, induces conformational changes in troponin complex decreasing TnC-affinity for Ca$^{2+}$ along with an increase in kinetics of actin-cross bridge reaction (Solaro, 2008). Thus, phosphorylation of thin filament proteins increases the turnover of myosin-actin cross-bridges, explaining the positive inotropy and lusitropy during adrenergic stimulation. Noteworthy, phosphorylative regulation is not so obvious and site-specific phosphorylation of myofilament proteins through isoform-specific kinases must not be overlooked. In fact, TnI (and other sarcomeric proteins) have multiple phosphorylation sites that exhibit isoform-specific phosphorylations by different kinases, sometimes classified as PKC sites or PKA sites, which may contribute somewhat to the existence of opposing and ambiguous effects described in literature (Solaro, 2008). For example, Wang et al. reported an increase in myofilament Ca$^{2+}$ sensitivity by the PKC-βII phosphorylation of a specific site (Thr 144) on cardiac TnI in ventricular myocytes from mice (Wang et al., 2006). In the same line, but without identifying the isoform, PKC activity was connected to myofilament Ca$^{2+}$.
sensitization and phosphorylation of TnI and cardiac myosin binding protein-C promoted by a positive inotropic effector (Cazorla et al., 2009). On the other hand, other PKC isozymes have been allocated to a negative cardiac inotropy, namely PKCa. (Liu et al., 2009). This PKC has been connected to Ca²⁺-handling changes and negative inotropy, and its inhibition have demonstrated better outcomes in a mice model of heart failure (Liu et al., 2009).

Interestingly, specific regulation of myofilaments either by kinases or phosphatases may be relevant in some cardiovascular diseases if we take into account that some pathological conditions hold distinct protein expression/activity backgrounds. However, the functional effect of this site specific regulation on myofilament proteins is still ill-defined and additional work has to be done (Puceat and Vassort, 1996; Solaro, 2008).

Other important mechanism for myofilament Ca²⁺ sensitivity arise from the physiological relation between diastolic filling (preload) and cardiac output (heart rate x stroke volume), i.e. the Frank-Starling mechanism (Allen and Kentish, 1985; de Tombe et al., 2010). Thus, heart has itself an intrinsic mechanism that dynamically adjusts the active tension generated for a given diastolic blood volume. As the end-diastolic volume increases, the passive tension also increases (preload tension) and more tension is developed in ventricular myocytes. There is a clear relation between sarcomere length and muscle contractility that has, as its basis, the increase of myofilament Ca²⁺ sensitivity together with an increase of the number of successful cross-bridges number and also contractile force (Allen and Kentish, 1985). Despite the mechanism beneath this “myofilament length dependent activation” has been extensively studied, a clear theory that fits all experimental data is still lacking (de Tombe et al., 2010).

6. Adenosinergic triad: metabolism, receptors and function
6.1. Adenosine metabolism

ADO is an endogenous purine nucleoside implicated in many cellular key functions like nucleotide biosynthesis, amino acid metabolism and several energetically costly processes (Shryock and Belardinelli, 1997). Therefore, ADO is ubiquitously present in all cell types and, upon stressful stimuli (e.g. hypoxia, ischemia and adrenergic stimulation) its extracellular concentration quickly rises up (Sparks and Bardenheuer, 1986). In such situations, where oxygen supply is decreased and/or oxygen consumption is high, ADO released from metabolically compromised cells acts as a retaliatory metabolite decreasing energetic demand / supply ratio (Berne, 1963; Sparks and Bardenheuer, 1986). Metabolic impairment is not the only way to promote ADO release from cells other physiological and
pathological stimulus (e.g. inflammation, stretching) could also enhance ADO release levels (Headrick et al., 2011). Regardless, adenosinergic system is not restricted to retaliation, it also exhibits regulatory and more sustained adaptive responses, which are of great importance for the acute fine-tuning of many cellular processes under physiological conditions, but also for orchestrating structural and functional changes in the diseased cardiovascular system (Headrick et al., 2011).

In cardiac territory, cardiomyocytes, endothelial cells, and smooth muscle are the main sources of purines, but under oxygen deprivation purines derived from myocardial cells assumes particular importance (Shryock and Belardinelli, 1997). ADO metabolism is compartmentalized and it can be generated from both extracellular and intracellular compartments, the latter being responsible over 90% of the total ADO production in normoxia (Deussen, 2000). The extracellular ADO generation pathway comprises the enzymatic catabolism of adenine nucleotides (ATP, ADP and AMP) by nucleotide-converting ectoenzymes located on the surface membrane of many cells (Figure 4) (Yegutkin, 2008). Adenine nucleotides significantly rise in the extracellular milieu during low oxygen tension and high cardiac sympathetic drive (Vassort, 2001). Leakage of adenine nucleotides to the extracellular medium exposes them to the action ectonucleotidases action, which quickly metabolizes ATP and ADP into AMP. AMP is then irreversibly desphosphorylated to ADO by 5'-ectonucleotidase (CD73) (Deussen, 2000). Interestingly, before complete dephosphorylation takes place, extracellular nucleotides can exert a wide variety of signaling effects in cardiovascular regulation by acting on P2 receptors family that are further divided into ionotropic P2X1-7 and metabotropic P2Y1,2,4,6,11,12,13,14 Receptors (Figure 4) (Erlinge and Burnstock, 2008).

The main source of ADO is the intracellular pool of 5’-AMP, which undergoes dephosphorilation by cytosolic 5’-ectonucleotidase (Deussen, 2000; Headrick et al., 2011). Hydrolysis of s-adenosylhomocysteine is another intracellular source of ADO (Schrader et al., 1981). Stressful insults increase both extracellular and intracellular ADO generation pathways (Shryock and Belardinelli, 1997). In truth, energy status impairment dramatically increases about 61- to 73-fold ADO production rate as compared to basal conditions in the rat heart (Deussen, 2000). In such conditions, the amount of intracellular ADO is so high that ADO kinase, mainly responsible for its rephosphorylation, and ADO deaminase, which deaminates ADO to inosine, are saturated and are no longer able to stop the massive release of ADO and other nucleotides (Deussen, 2000). ADO and other nucleotides come to extracellular medium by facilitated transport through nucleotide transporters that span the cellular membrane. ADO and its nucleotides can also appear in the interstitial fluid by other mechanisms such as: cell damage; exocytosis; hemichannels and other ionic channels (Fredholm et al., 2011). Once in the extracellular medium, ADO
binds and stimulates its sensitive receptors (see below, Figure 4). After exerting its signaling effects, ADO is promptly removed from ADO receptors vicinity, thus localizing their effects to ADO releasing sites. This is accomplished by different mechanisms, in rough order of importance: cellular uptake through nucleoside transporters driven by ADO kinase and through enzymatic deamination by either intra- or extracellular ADO deaminase. If ADO removal does not take place (e.g. with dipyridamole), its extracellular concentration rises and, consequently, adenosinergic signaling increases (Shryock and Belardinelli, 1997; Deussen, 2000).

Figure 4. Metabolism and signaling properties of adenosine (ADO) and its nucleotides. Nucleotide-hydrolysing pathway comprises at least three ectoenzymes namely: ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP), (E-NTPDase) and ecto-5'-nucleotidase (CD73). CD73 can be found in both extracellular and intracellular compartments. As extracellular nucleotides are sequentially inter-converted to ADO they act as ligands for P2 receptors. While ATP activate either ionotropic P2X or metabotropic P2Y receptors, ADP mainly activate P2Y receptors. Once ADP or ATP are dephosphorylated to AMP, it is hydrolyzed to adenosine by CD73. In turns, ADO activates four ADO-sensitive receptors with different binding affinities for this nucleoside. A₁R and A₃R are classical described as inhibitors of adenylyl cyclase (AC) whilst the remaining receptors (A₂AR and A₂BR) stimulate its activity. Signaling pathways downstream of ADO receptors are not restricted to modulation of AC or other enzymes, they can also directly change the gating properties of some ionic channels. AC converts ATP to cAMP as long as the Gₛ subunit is activated. Stimulatory effects of cAMP cease by phosphodiesterase (PDE)-mediated hydrolysis of its phosphodiester bonds leading to AMP formation. Inside cell, ADO is generated through of either S-adenosylhomocysteine (SAH) or AMP. Termination of adenosinergic signaling involves deamination ADO to inosine (INO) by ADO deaminase (ADA). Flux direction of adenine nucleosides and nucleotides are dependent of several factor, including cellular oxygen tension. Modified from (Yegutkin, 2008) and (Deussen, 2000).
6.2. Adenosine receptors and heart function

Intravenous administration of this nucleoside rapidly slows the sinus rhythm (negative chronotropism), decreases atrioventricular conduction (negative dromotropism), and contractile force (negative inotropism), dilates the coronary vessels and also has anti-arrhythmic effects (Drury and Szent-Gyorgyi, 1929). In the extracellular medium, ADO exerts protective effects through its binding to ADO-sensitive receptors, also known as P1 receptors. Up to date there are four different ADO receptor subtypes characterized, namely: A_1R, A_2AR, A_2BR, and A_3R (Figure 4) (Fredholm et al., 2011). ADO receptors are seven transmembrane-spanning proteins that belong to the large family of GPCR. Based on their preferential coupling to a trimeric G-protein subtype, ADO receptors are classical divided into stimulators (A_{2A}R and A_{2B}R) and inhibitors (A_1R and A_3R) of adenylate cyclase activity (Figure 4). ADO receptors can be further divided into high affinity receptor, where A_{1}R and A_{2A}R are included, whereas A_{2B}R and A_{3}R receptors have low affinity for their endogenous ligand at least in rodents (Shryock and Belardinelli, 1997; Fredholm et al., 2011).

In the whole body, ADO produces a great diversity of effects, in agreement with the widely expression of ADO-sensitive receptors (Shryock and Belardinelli, 1997; Fredholm et al., 2011; Headrick et al., 2011). Coronary dilatation is definitively attributed to stimulatory ADO receptors (Berne, 1963), even though some controversy exists around the A_2 receptor(s) (A_{2A}R and/or A_{2B}R) that mediate(s) coronary vessels dilatation (Shryock and Belardinelli, 1997; Headrick et al., 2011). The remaining effects above described by Drury and Szent-Gyorgyi were mostly mediated through A_{1}R activation. Thus endogenous ADO under stressful conditions, increases heart muscle feeding by increasing coronary flow while it reduces the overall energy demand by decreasing heart work (Berne, 1963; Shryock and Belardinelli, 1997; Headrick et al., 2011).

ADO’s net signaling relies on its extracellular concentration, and also on the relative distribution, compartmentalization and expression pattern of ARs on the surface of individual cell types that constitutes a specific tissue in which they exist. Impairment of these signaling checkpoints may underlie the dysfunction observed in some pathological conditions (Headrick et al., 2011). The connection between ADO receptor and its signaling effectors is far from easy as so many proteins have been described as important regulators of adenosinergic signaling. These proteins include different G-proteins types, arrestins and other scaffold proteins (Verzijl and Ijzerman, 2011), which are organized and well-compartmentalized in membrane domains (Lasley, 2011). These signaling hotspots (membrane domains) have attracted much attention of the scientific community, not only in respect to ADO receptor signaling but to all GPCRs (Patel et al., 2008). Astonishingly, a
wide variety of experimental data has put forward the hypothesis that several pieces that gear the adenosinergic system (e.g. ADO receptors, nucleotidases, nucleoside transporters, signaling effectors) are confined within caveolae domains (Yang et al., 2009b; Lasley, 2011).

A₁R couples to Gαᵢₒ proteins and when activated mediates K⁺ efflux through the release of Gβγ (Kurachi et al., 1986) (see below) and decreases PKA activity via inhibition of AC (LaMonica et al., 1985), counteracting the responses yield from catecholamine binding to β₁-AR, also known as the anti-β-adrenergic effect (Dobson, 1983). Acting on presynaptic A₁R heteroreceptors from sympathetic cardiac nerve endings, ADO derived from sympathetic transmission refrain exocytotic catecholamine release, further contributing to anti-β-adrenergic effect (Lorbar et al., 2004). The anti-β-adrenergic effect seems to be more complex than a simple inhibitory action on AC activity. Recent reports have demonstrated a PKC-ε activation dependence on the anti-β-adrenergic effect upon A₁R stimulation (Fenton et al., 2009; Fenton et al., 2010). Therefore, A₁R may functionally couple to signaling pathways other than Gαᵢₒ protein-mediated AC inhibition. Recent evidences clearly suggest that A₁R activation rapidly and selectively induces the translocation of epsilon and sigma PKC isoforms from cytosol to the caveolin-rich sarcolelemma microdomains (Yang et al., 2009b). Previous findings demonstrated a functional coupling of A₁R to PKC-dependent process involving Gβγ subunits and PLC activation, accompanied by an increase of phospholipid turnover and, sometimes, Ca²⁺ mobilization (Gerwins and Fredholm, 1992; Dickenson and Hill, 1998; Cordeaux et al., 2000). However, this secondary pathway should only play a relevant role in tissues with higher A₁R density (Boyer et al., 1992; Biber et al., 1997). Thus, one should take care when interpreting these data since these atypical effects proposed for A₁R depends on the level of receptor expression and also on the type of agonist present (Ashkenazi et al., 1987; Biber et al., 1997; Cordeaux et al., 2000; Verzijl and Ijzerman, 2011).

A₂A signaling, as referred above, is primarily mediated via its coupling to Gαₛ-protein (Shryock and Belardinelli, 1997), which is sensitive to cholera toxin treatment (Milligan and Kostenis, 2006). In the working myocardium there are some evidences that stimulation of this receptor elicit positive inotropic responses (Dobson and Fenton, 1997; Monahan et al., 2000; Tikh et al., 2006), although this has been challenged by others (Willems and Headrick, 2007; Chandrasekera et al., 2010). Given the stimulatory nature of this receptor on AC, which opposes A₁R action, A₂A may also control the anti-β-adrenergic action of A₁R (Tikh et al., 2006). The long cytoplasmic tail is also a characteristic of A₂A, which makes it suitable for interaction with many other proteins that are summarized elsewhere (Verzijl and Ijzerman, 2011). The recent crystallographic data
of A2aR will certainly enlarge the number of proteins along with the number of ligands that interact with this receptor (Lebon et al., 2011).

A2bR is coupled to Gαs-protein and stimulation of PLCβ activity has also been proposed for A2bR, but its mechanism is still ill-defined, despite some evidence that points to be mediated via Gαq/11 proteins (Linden et al., 1999). Furthermore, A2bR have direct positive inotropic properties in the working myocardium since its stimulation increases cardiac contractility (Chandrasekera et al., 2010).

Finally, the A3R, apart from its conventional coupling to Gαi/o-protein, couples to Gαq/11 protein (Shryock and Belardinelli, 1997).

6.3. Adenosine and cardiac electrophysiology

For a long time, the scientific community has wondered about what it is behind ADO effects on cardiac territory. After numerous experiments, it is now recognized that cardiodepressor effects of ADO are mainly mediated through A1R activation (Belardinelli et al., 1995). A1R has both direct and indirect effects on supraventricular tissues and only indirect effects on ventricles of most mammals (Dobson, 1983; Belardinelli et al., 1995). Cardiac response to ADO exhibits a regional heterogeneity and species dependence, which possibly takes into account the differential expression pattern of this receptor or its effectors (e.g. GIRK/KIR3 channels) throughout the heart of different species (Belardinelli et al., 1995). In fact, when compared with atrium, GIRK/KIR3 channels are weakly expressed in the ventricular tissue from mammalian hearts (Krapivinsky et al., 1995; Dobrzynski et al., 2001). In general, the magnitude of cardiac electrophysiological response to ADO gradually vanishes from the SA node toward ventricles. In ventricles from several species (e.g. guinea pig, rabbit, bovine, human) it is thought that ADO exhibits only indirect effects, with exceptions for ferret and rat hearts (Belardinelli et al., 1995).

Activation of A1R leads to K+ efflux (I_KAdo) across the cell membrane (direct effects) thus reducing cellular electrical excitability (Belardinelli et al., 1988). This hyperpolarizing current resembles the one elicited by vagally released ACh. In fact, either ADO or ACh activate the same population of cardiac potassium channels (Kurachi et al., 1986), currently known as GIRK/KIR3 channels (Krapivinsky et al., 1995). However, A1R-mediated effects are not restricted to GIRK/KIR3 channels opening, since in GIRK4/KIR3.4-deficient mice (without I_KACH,Ado) a selective A1R agonist was still able to elicit bradycardia (Wickman et al., 1998), in agreement with recent reports (Lyashkov et al., 2009). This insensitive bradycardic response to I_KACH,Ado suppression (around 50% of the A1R
response (Wickman et al., 1998)) is probably due to the inhibitory action of ADO on catecholamine-elicited effects, i.e. the anti-β-adrenergic effect (indirect effects) (Dobson, 1983). The anti-β-adrenergic effect of ADO is explained by the inhibitory nature of A1R on AC (LaMonica et al., 1985). This enzyme is pivotal for the integration of signals that arise from Gαs protein-coupled receptors (e.g. β1-AR) (Bers, 2002; Vinogradova et al., 2006; Lakatta et al., 2010). Interestingly, a recent study demonstrates that SA nodal cells have high basal levels of cAMP and PKA activity in resting conditions (Vinogradova et al., 2006). Therefore, in SA nodal cells, A1R stimulation antagonizes catecholamine-stimulated ionic current (e.g. ICa,L and Ii) even under basal conditions, and mediates K+ efflux through GIRK/KIR3 channels (Belardinelli et al., 1988).

The dual action of A1R is still present in atrial myocardium (Belardinelli et al., 1995). ADO mediates negative inotropic responses in supraventricular tissues through its anti-β-adrenergic effect and activation of IKACh,Ado (LaMonica et al., 1985; Kurachi et al., 1986). When Gαs protein-coupled receptors of atrial cells are not being stimulated, the average cAMP content is very low (Vinogradova et al., 2006), hence inhibition of AC on atrial contraction is not meaningful (Belardinelli et al., 1995). In such conditions, ADO effects are almost mediated through engagement of direct mechanisms rather than its anti-β-adrenergic effect (Belardinelli et al., 1988). In addition, some authors have demonstrated direct and negative effects of ADO (via A1R) and ACh (via M2R) on non-stimulated ICa,L in atrial cells (about 30% ICa,L reduction) (Cerbai et al., 1988; Visentin et al., 1990). Conversely, other authors failed to observe any direct effect on these ionic currents after application of either ADO or ACh under basal conditions (Iijima et al., 1985; Wang and Belardinelli, 1994). Thus, the inhibition of basal ICa,L is small and seems to require higher concentrations of agonist than those required to activate IKADO,ACh (Visentin et al., 1990; Wang and Belardinelli, 1994; Belardinelli et al., 1995). Since ADO accelerates membrane repolarisation (via IKAdo), the reported reductions of the recorded ICa,L after ADO/ACh exposure may result from a reduced time available for Ca²⁺ influx due to shorter APs (Iijima et al., 1985; Wang and Belardinelli, 1994; Ford and Broadley, 1999). Furthermore, hyperpolarizing K+ current through GIRK/KIR3 channels opening may also refrain electrogenic currents present in the rising phase of the AP, namely ICa,L (Amin et al., 2010), and limit Ca²⁺ influx into cardiomyocytes, explaining the negative inotropy for ADO in non-catecholamine stimulated atrium. In an attempt to characterize the biphasic inotropic effect of ATP observed in diseased human atrium, Gergs and co-workers unexpectedly observed positive inotropic effects for higher ADO concentrations (above 5 μM) that were sensitive to A1R blockade, even though A1R agonist R-PIA produced only negative inotropic effects (Gergs et al., 2009). Likewise, selective A1R stimulation elicited positive inotropy in atria from mice overexpressing A1R, without affecting negative
chronotropy (Neumann et al., 1999). Therefore, impairment of A1R function may underlie some of the paradoxical effects observed in the previous studies and emphasize its relevance in the development of cardiovascular diseases (Headrick et al., 2011). These inconsistencies certainly deserve further investigations.

The negative dromotropy of ADO is mostly derived by its action in the atrioventricular node, where it activates hyperpolarizing I_{Kado}, thereby shortening the duration, rate and amplitude of APs (Belardinelli et al., 1995). The ADO effect in the atrioventricular node is particularly important to limit reentrant circuits responsible for arrhythmogenic episodes (DiMarco et al., 1983). Therefore, ADO and its derivatives have cardiac properties that make it suitable for treatment of some type of supraventricular tachyarrhythmias (Blomstrom-Lundqvist et al., 2003; Ellenbogen et al., 2005).

Intravenous administration of ADO bolus (Adenocard®), together with the Ca_{v1} (L-type) channels blocker verapamil, has been extensively used for many years in the clinical setting for acute conversion of paroxysmal supraventricular tachycardia (PSVT) into sinus rhythm (DiMarco et al., 1983; Riccardi et al., 2008). ADO, due to its short half-life, electrophysiological and atrial-selective properties, has also been used as a diagnostic of certain wide QRS complex tachyarrhythmias (O'Rourke et al., 1999) and assessment of accessory atroioventricular pathway ablation (Keim et al., 1992). Due to its anti-β-adrenergic effect, ADO can abrogate ventricular arrhythmias elicited by catecholamines (Lerman et al., 1986). However, administration of large ADO amounts into bloodstream has some side effects such as flushing, dyspnea, chest discomfort, and hypotension, but fortunately they are short-lived and generally not severe (Riccardi et al., 2008). In order to overcome these side effects, new stable and ADO receptor selective agonists have been developed and tested in clinical trials. For example, tecadenoson® (CVT-510) is a stable A1R-selective agonist that already entered clinical trials to circumvent paroxysmal supraventricular tachycardia and atrial fibrillation, without any significant side effects reported (Ellenbogen et al., 2005). The powerful electrophysiological effects of ADO may sensitize supraventricular tissues for rhythmic disorders. Indeed, proarrhythmic episodes have been reported and connected to shorter atrial AP and refractoriness after ADO administration (Kabell et al., 1994) and, more recently, to A1R/PLC/PKC pathway, followed by downstream sarcolemmal Ca^{2+} entry through transient receptor potential canonical (TRPC) channel 3 (Sabourin et al., 2012). Therefore, one should consider the likelihood of arrhythmias development promoted by higher ADO levels in the interstitial fluid of the myocardium, as observed during hypoxia or ischemia (Berne, 1963; Sparks and Bardenheuer, 1986)
II. Aims of research

Heart function matches body needs through numerous neurohormonal agents released from the myocardium itself, neurons, as well as other molecules secreted into bloodstream from distant cells. While catecholamines bind to \(\beta_1 \)-AR to increase cardiac output, ACh released from vagal fibers activates \(M_2 \)R to break cardiac activity. Nonetheless, cardiovascular homeostasis cannot be achieved solely through these two neurohormonal systems; other molecules provide the fine-tuning needed for a synchronous heart activity with instantaneous body demands. ADO is one of the best-known molecules involved in regulation and retaliation of the cardiovascular system (Headrick et al., 2011). Despite decades of research there is still much which remains unknown about the role of ADO on several physiological and pathophysiological processes. The physiological and clinical relevance of ADO led us to investigate signaling events initiated by purinergic receptors in supraventricular tissues. Previous findings from our lab conducted in spontaneously beating rat atria demonstrated that ADO, via \(A_1 \)R activation, is an atrial-selective depressant that exhibits a higher sensitivity for chronotropy than for inotropy regulation (Oliveira-Monteiro et al., unpublished observations). In this context, the present study was undertaken to investigate the rationale for the \(A_1 \)R-mediated chronoselectivity in the spontaneously beating rat atria. Since, \(A_1 \)R is extensively linked to electrophysiological changes through modulation of sarcolemmal \(\text{Ca}^{2+} \) and \(\text{K}^+ \) oscillations, we aimed at evaluating whether \(A_1 \)R chronoselectivity was somehow connected to the activity of subtype-selective cardiac ion channels and whether it was also coupled to intracellular enzymatic pathways. To this end, we took advantage of several techniques that are routinely used by our group, namely \textit{in vitro} myographic recordings and laser scanning confocal microscopy to evaluate the function and distribution of \(A_1 \)R, ionic channels and other downstream effectors. For comparison purposes, we also evaluated the activity and distribution of \(M_2 \) receptors in rat atria.
III. Materials and methods

1. Animals

The experiments were carried out on isolated spontaneously beating atria of Wistar rats (*Rattus norvegicus*; 250-300 g) of either sex (Charles River - CRIFFA, Barcelona, Spain; Vivarium ICBAS, Porto, Portugal). Rats were kept at a constant temperature (21° C) and a regular light (06.30-19.30h)-dark (19.30-06.30h) cycle, with food and water *ad libitum*. The animals were killed by decapitation followed by exsanguination (Rodent guillotine, Stoelting 51330). Animal handling and experiments followed the guidelines defined by the European Communities Council Directive (86/609/EEC).

2. Isolated perfused spontaneously beating rat atria

Isolated perfused beating atria were prepared using a previously described method (Ford and Broadley, 1999), with minor modifications. In brief, hearts were rapidly excised and placed in a physiological solution (Tyrode’s solution) composed of (mM): NaCl 137; KCl 2.7; CaCl$_2$ 1.8; MgCl$_2$ 1; NaH$_2$PO$_4$ 0.4; NaHCO$_3$ 11.9; glucose 11.2 and gassed with 95% O$_2$ + 5% CO$_2$ (at pH 7.4). Hearts were allowed to beat freely for a few seconds at room temperature, to empty its blood content. The paired rat atria were dissected out, cleaned of fatty tissues, and suspended in a 14-mL organ bath containing gassed Tyrode’s solution at 37°C. Each end of the preparation was tied and connected with thread to the organ bath wall and to an isometric force transducer (MLT050/D; AD Instruments, Colorado Springs, CO, USA). Changes in isometric tension were recorded continuously by use of a PowerLab data acquisition system (Chart 5, version 4.2; AD Instruments, Colorado Springs, CO, USA). The preparations were allowed to equilibrate for 30-40 min (in perfusion). During this time, tension was adjusted to a final tension of 9.8 mN. This procedure allows atria (with intact SA node) to progressively recover rhythmic spontaneous beatings.

3. Experimental design

After reaching a steady-state, the perfusion with Tyrode´s solution was stopped and the preparations were incubated with increasing concentrations of R-(−)-N6-(2-phenylisopropyl)adenosine (R-PIA, 0.001-1 µM), a stable ADO A$_1$R agonist, or oxotremorine (0.01-3 µM), a muscarinic M$_2$ receptor agonist, either in the absence and in
the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 100 nM) or AF-DX 116 (10 µM), which respectively block A₁ and M₂ receptors. The A₂A receptor agonist, 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine (CGS21680, 0.3 nM-1 µM) was also tested in some of the experiments. Agonists were added cumulatively to the bathing solution every 2 minutes.

To examine the role of K⁺ and Ca²⁺ channel currents in the effects of ADO A₁ and muscarinic M₂ receptors activation, concentration-response curves to R-PIA (0.001-1 µM) and oxotremorine (0.01-3 µM) were established in the presence of the following inhibitors: 4-aminopyridine (4-AP, 10 µM), a nonspecific voltage-dependent K⁺ channel blocker, glibenclamide (10 µM), a selective blocker of ATP-sensitive K_{ATP}/K_{IR}6 channels, tertiapin Q (300 nM), a blocker of GIRK/K_{IR}3 channels with high affinity for K_{IR} 3.1/3.4 channels, apamin (30 nM), an inhibitor of small-conductance Ca²⁺-activated K⁺ (K_{Ca}2/SK) channels, verapamil (1 µM), a selective blocker of high voltage-activated Ca_{v}1 (L-type) channels, and mibebradil (3 µM), a low voltage-activated Ca_{v}3 (T-type) channel blocker. The influence of the PLCβ-PKC pathway on the effects of A₁R and M₂R stimulation was also evaluated in this study by using several modulators of this signal transduction pathway: U73122 (3 µM), a phospholipase C inhibitor, chelerythrine chloride (3 µM), a potent and cell-permeable inhibitor of several PKC isoforms, phorbol 12-myristate 13-acetate (PMA, 10 µM), a potent and broadly-activator of PKCs, AngII, an endogenous peptide agonist of angiotensin receptor, and UTP, as an P2Y receptor agonist (particularly P2Y_{2,4}). All the inhibitors were pre-incubated with the preparations for at least 15 min before R-PIA or oxotremorine application. The concentrations of the inhibitors in this study were within the range of channel selectivity described in the literature. To evaluate intrinsic effects of each drug on spontaneously beating rat atria under basal conditions, concentration-response curves were constructed for all drugs by adding them in a cumulative stepwise manner every 2 minutes.

4. Immunofluorescence staining and confocal microscopy studies

Rat hearts were excised (see above) and placed in oxygenated Tyrode’s solution at 33–34°C. Following heart excision the right atrium containing the SA node region and surrounding atrial muscle was accurately isolated. Tissue fragments were stretched to all directions, pinned flat onto cork slices and embedded in Shandon cryomatrix (Thermo Scientific) before frozen in a liquid nitrogen-isopentane bath. Frozen sections with 8 µm of thickness were cut perpendicular to the crista terminalis of the right atrium (see Figure 5A). Once defrosted, tissue sections were fixed in phosphate buffered saline (PBS) containing 50% acetone and 2% paraformaldehyde. Following fixation, the preparations
were washed three times for 10 min each using 0.1 M PBS and incubated with a blocking buffer, consisting in fetal bovine serum 10%, bovine serum albumin 1%, Triton X-100 0.3% in PBS, for 2 h. After blocking and permeabilization, samples were incubated with selected primary antibodies (Table 1) diluted in incubation buffer (fetal bovine serum 5%, serum albumin 1%, Triton X-100 0.3% in PBS), overnight at 4°C. For double immunostaining, antibodies were combined before application to tissue samples. Following the washout of primary antibodies with PBS (3 cycles of 10 min), tissue samples were incubated with species-specific secondary antibodies (Table 1) in the dark for two hours, at room temperature. Finally, VectaShield mounting medium, with 4´-6-diamidino-2-phenylindole (DAPI) to stain the nuclei, (H-1200; Vector Labs) was used to cover-slip the glass slides. Observations were performed and analyzed with a laser-scanning confocal microscope (Olympus Fluo View, FV1000, Tokyo, Japan).

Table 1. Antibodies used in immunohistochemistry studies and their technical specifications.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Host</th>
<th>Code</th>
<th>Dilution</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Antibodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A<sub>1</sub>R</td>
<td>Rabbit</td>
<td>AB 1587P</td>
<td>1:100</td>
<td>Chemicon</td>
</tr>
<tr>
<td>A<sub>2a</sub>R</td>
<td>Rabbit</td>
<td>A2aR21-A</td>
<td>1:75</td>
<td>Alpha Diagnostic</td>
</tr>
<tr>
<td>M<sub>r</sub>R</td>
<td>Rabbit</td>
<td>AMR-002</td>
<td>1:200</td>
<td>Alomone</td>
</tr>
<tr>
<td>NF160</td>
<td>Mouse</td>
<td>ab7794</td>
<td>1:1000</td>
<td>Abcam</td>
</tr>
<tr>
<td>Cx43</td>
<td>Rabbit</td>
<td>ab11370</td>
<td>1:700</td>
<td></td>
</tr>
<tr>
<td>GIRK1/K<sub>3</sub>.1</td>
<td>Rabbit</td>
<td>ab61191</td>
<td>1:500</td>
<td></td>
</tr>
<tr>
<td>Ca<sub>µ</sub>δ<sub>-1</sub></td>
<td>Mouse</td>
<td>ab2864</td>
<td>1:50</td>
<td></td>
</tr>
<tr>
<td>K<sub>Ca</sub>2.2/SK2</td>
<td>Goat</td>
<td>AP10032PU-N</td>
<td>1:200</td>
<td></td>
</tr>
<tr>
<td>K<sub>Ca</sub>2.3/SK3</td>
<td>Rabbit</td>
<td>ab83737</td>
<td>1:300</td>
<td></td>
</tr>
<tr>
<td>Secondary Antibodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexa Fluor 488 anti-rabbit</td>
<td>Donkey</td>
<td>A-21206</td>
<td>1/1500</td>
<td>Molecular Probes</td>
</tr>
<tr>
<td>Alexa Fluor 568 anti-mouse</td>
<td>Donkey</td>
<td>A-10037</td>
<td>1/1500</td>
<td></td>
</tr>
<tr>
<td>Alexa Fluor 568 anti-goat</td>
<td>Donkey</td>
<td>A-21082</td>
<td>1/1500</td>
<td></td>
</tr>
</tbody>
</table>

The SA node region is found in close proximity to subepicardial sinus node artery (arrow in Figure 5B). SA node is characterized by a large number of neurofilament 160 (NF-160) positive neuronal fibres (Dobrzynski et al., 2005; Tellez et al., 2006; Allah et al., 2011), and small-size cardiomyocytes that are negative against connexin-43 (Cx43) staining, a gap junction protein ubiquitously expressed in the heart apart from in nodal tissue (van Kempen et al., 1991) (Figure 5C). Cells within SA node are surrounded by dense connective tissue; collagen fibres (light blue staining) can be differentiated from cardiomyocytes (red staining) with the Masson’s trichrome staining (Figure 5B).
5. Masson’s trichrome staining

Masson’s trichrome staining was carried out in right atrial sections from rat heart. Briefly, right atrial appendage was dissected, excised and immersed in 4% formalin buffered solution, followed by routine tissue processing for paraffin embedding. Paraffin blocks were sectioned (≈ 10 µM sections) perpendicular to the *crista terminalis* of right atria wall, in a similar manner to that performed for immunofluorescence staining. Paraffin-embedded sections were dewaxed and rehydrated with xylene followed by a graded alcohol series [100%, 95% and 70% (v/v) mixtures of ethanol and water] to distilled water. Atrial sections were subsequently fixed in Bouin’s solution for 1 hour at 60°C and rinsed in tap water. Sections were first stained with Celestine blue (5 min) and Gill Hematoxylin 2 afterwards (4 min). Each staining step was followed by a 15-minute washout period in distilled water. Secondly, a mixture of 1% (v/v) acid fuchsin solution in 1% (v/v) ponceau de xylidine solution, both in 1% (v/v) acetic acid, was added to sections for 5 min to stain atrial muscle red. Sections were then washed in distilled water and placed in phosphomolybdic acid solution (1% [w/v] phosphomolybdic acid) for 15 minutes and later stained with 2.5 % (v/v) aniline blue solution (in 2.5 % [v/v] acetic acid) during 5 minutes till new wash with distilled water. After staining procedure, sections were dehydrated (stepwise increases of ethanol in water from 70-100% [v/v]), cleared (xylene for 2 minutes) and mounted in coverslip slides using D.P.X. mounting medium (Sigma). Masson’s trichrome technique stains nuclei dark blue whilst muscle and connective tissue are stained red and blue, respectively. Stained sections were viewed and photographed using light microscopy (Olympus Fluo View, FV1000, Tokyo, Japan) and Cell F software (Olympus, Japan) was used to collect the images.
Figure 5. Anatomical and molecular identification of the rat SA node (A, B and C). A, Endocardial view of a typical rat atrial muscle-SA node preparation. Dashed lines indicate the orientation of cuts performed on the right atrial appendage for Masson’s trichrome staining and immunofluorescence analysis. B, High-magnification (400x) images of Masson’s trichrome staining of SA node (dashed box) and surrounding regions; AM, atrial muscle; CT, crista terminalis; ICR, intercaval region. Red staining, myocytes; blue staining, connective tissue. Black arrow indicates the SA node artery. C, Montage of confocal optical sections showing immunolabelling for connexin 43 protein (Cx43, green signal) and neurofilament 160 (NF160, red signal) throughout the right atrial appendage from the rat. Boxes depict representative areas of the right atrium muscle and SA node used for immunolocalization of receptors and ionic channels.

6. Solutions and chemicals

4-aminopyridine (4-AP), apamin, 2-p-(2-carboxyethyl)phenethylamino-5’-N-ethylcarboxamidoadenosine (CGS21680C), 1,3-dipropyl-8-cyclopentyl-xanthine (DPCPX), R-(−)-N′-(2-phenylisopropyl)adenosine (R-PIA), uridine 5′-triphosphate trisodium salt hydrate (UTP); Angiotensin II human (AngII) were from Sigma-Aldrich (St. Louis, MO, USA). AF-DX 116, oxotremorine sesquifumarate, 2-Aminoethoxydiphenylborane (2-APB), phorbol 12-myristate 13-acetate (PMA), chelerythrine chloride, U73122, mibebradil dihydrochloride and verapamil hydrochloride were from Tocris Cookson Inc. (Bristol, UK); glibenclamide and tertiapin Q were from Ascent Scientific (Bristol, UK);
Dimethylsulphoxide (DMSO), serum albumin and Triton X-100 were from Merck (Darmstadt, Germany).

AF-DX 116, glibenclamide, PMA and 2-APB were made up in DMSO stock solution. DPCPX was made up in 99% DMSO / 1% NaOH 1 mmol L⁻¹ (v/v). R-PIA, U73122, verapamil were made up in ethanol; these solutions were kept protected from the light to prevent photodecomposition. Other drugs were prepared in distilled water. All stock solutions were stored as frozen aliquots at -20°C. Dilutions of these stock solutions were made daily and appropriate solvent controls were used. No statistically significant differences between control experiments, made in the absence or in the presence of the solvents at the maximal concentrations used (0.5% v/v), were observed. The pH of the superfusion solution did not change by the addition of the drugs in the maximum concentrations applied to the preparations.

7. Presentation of data and statistical analysis

The isometric contractions were recorded and analyzed before and after the addition of each drug at the desired concentration. Results were presented as percentages of variation compared to baseline, obtained before the administration of the evaluated drug. The data are expressed as mean ± SEM, with n indicating the number of animals used for a particular group of experiments. Spontaneous mechanical tension (inotropic effect) and contraction rate (chronotropic effect) were evaluated by analysis of variance, having been selected the most appropriate ANOVA test for each experimental protocol. IC⁵₀ (concentrations of drug producing 50% of the maximal inhibition) values were obtained by computer-assisted curve fitting of Hill function with variable slopes by use of the computer program GraphPad Prism (version 4.0, USA). Statistical analysis of data was carried out by using Student-Newman-Keuls test for paired data. A value of \(P<0.05 \) was considered to represent a significant difference.
IV. Results

1. Adenosine acting via A₁ receptors is a chronoselective atrial depressant as compared to the muscarinic M₂ receptor agonist, oxotremorine

Figure 6 shows that activation of ADO A₁ and muscarinic M₂ receptors, respectively with R-PIA (0.001-1 µM) and oxotremorine (0.01-3 µM), decreased in a concentration-dependent manner the rate (negative chronotropic effect) and the force (negative inotropic effect) of spontaneous contractions of the rat atria. However, the negative chronotropic effect of R-PIA (IC₅₀~0.03 µM, Figure 6B) was evidenced at much lower (~30 times) concentrations than the negative inotropic action (IC₅₀~1 µM, Figure 6B), whereas oxotremorine-induced depression of both the rate and the tension was observed in the same concentration range (IC₅₀~0.1-0.3 µM) (Figures 6D). Thus, R-PIA is a chronoselective depressant as compared to oxotremorine in spontaneously beating rat atria. In fact, low concentration of R-PIA produced a mild positive inotropic effect (100 nM, +32±10%, *P<0.05 vs basal, n=48, Figure 6B), contrary to oxotremorine. Both agonistic effects were reversibly reverted during the washout period to basal chronotropic and inotropic states before drug application.

Figure 6. Adenosine is a chronoselective atrial depressant. In right panels (A and C) are depicted representative original recordings of isometric contractions of rat atrial muscle in response to increasing concentrations of R-PIA (0.001-1 µM) and oxotremorine (0.01-3 µM), respectively. R-PIA and oxotremorine were applied once every 2 min at increasing concentrations. In left panels are depicted concentration-response curves of R-PIA (B) and oxotremorine (D) on the spontaneously beating rat atria. The ordinates are percentage of variation of spontaneous contraction rate (chronotropic effect) and mechanical tension (inotropic effect) as compared to baseline values obtained before application of the corresponding agonist. The data are expressed as mean ± SEM from an n number of individual experiments. *P<0.05 compared with the concentration-response curve for the chronotropic effect of the corresponding agonist.
Figures 7A and B show that selective blockade of ADO A$_1$ receptors with DPCPX (100 nM), significantly shifted to the right the concentration-response curves for R-PIA (0.001-1 µM) in the spontaneously beating rat atria. The blocking effect of DPCPX was dependent on the concentration (2.5, 10 and 100 nM, n=4-6, data not shown), thus indicating that the A$_1$R must be the dominant receptor involved in the negative chronotropic and inotropic actions of R-PIA. Increasing concentrations of DPCPX (2.5-100 nM) per se were devoid of effect (P>0.05 vs basal values, data not shown).

Likewise, data from Figures 7C and D show that depression of the rate and the tension of spontaneous atrial contractions caused by oxotremorine (0.01-3 µM) were both completely prevented by pre-incubation with the muscarinic M$_2$ receptor antagonist, AF-DX 116 (10 µM). AF-DX 116 at 10 µM did not produce any significant alterations on
evaluated parameters \((P>0.05 \text{ vs basal values}). \) Therefore, the effects of oxotremorine and R-PIA in the spontaneously beating rat atria are due to activation of \(M_2 \)R and \(A_1 \)R, respectively.

The chronoselective effect operated by R-PIA in the spontaneously beating rat atria could be simply explained by a differential expression of \(A_1 \)R between the SA node and atrial muscle. Immunofluorescence confocal microscopy studies showed that \(A_1 \) and \(M_2 \) receptors are evenly expressed in SA node and atrial cardiomyocytes (Figure 8), thus indicating that differences in the regional distribution of receptors do not account for ADO chronoselectivity in the spontaneously beating rat atria. Of note that \(M_2 \)R labeling pattern was quite different from that observed for \(A_1 \)R. \(A_1 \)R demonstrated both outer cell membrane and internal labeling, whereas \(M_2 \)R labeling (Figure 8) was strongly present in the outer cell membrane. The differential labeling pattern between \(A_1 \) and \(M_2 \) receptor might mirror different cellular locations for these receptors.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure8.png}
\caption{\(A_1 \)R and \(M_2 \)R are expressed in rat atria. Representative confocal micrographs of the rat SA node and neighboring atrial muscle showing immunofluorescence labeling of \(A_1 \) (upper panels) and \(M_2 \) (lower panels) receptors; the corresponding differential interference contrast (DIC) images are also shown for comparison. Similar results were obtained in 6 additional experiments. Horizontal bar=30 \(\mu \)m. The white arrow indicates the SA node artery.}
\end{figure}

\section*{2. Activation of \(A_{2A} \)Rs are not involved in adenosine chronoselectivity}

Even though most cardiac effects of R-PIA had been extensively antagonized with DPCPX, we cannot dismiss the involvement of \(A_{2A} \)R. Therefore, to exclude a possible interplay of \(A_{2A} \)R on the ADO’s chronoselective effect, we evaluated the functional effects of \(A_{2A} \)R stimulation by using its agonist CGS 21680 (0.003-1 \(\mu \)M) on force and rate of...
contraction of spontaneously beating rat atria. The selective ADO A_{2A} receptor agonist, CGS21680, when applied in a similar concentration range (0.003-1 µM) as R-PIA (0.001-1 µM), tended to increase basal inotropy (maximal stimulation, ~5% at 300 nM) (Figure 9) but the effect did not reach statistical significance ($P>0.05$ vs basal values, $n=59$). These findings suggest that the A_{2A} receptor has limited importance in the response to ADO in the denervated rat atria.

![Figure 9](image)

Figure 9. A_{2A}R activation does not play a significant role on atrial inotropy and chronotropy. In the left side is shown the concentration-response curves of CGS 21680 (0.003-1 µM) in spontaneously beating rat atria. CGS 21680 was applied once every 2 min at increasing concentrations. The ordinates are percentage of variation of spontaneous contraction rate (chronotropic effect) and mechanical tension (inotropic effect) as compared to baseline values obtained before application of CGS 21680. The data are expressed as mean ± SEM from an n number of individual experiments. In the right panels are representative confocal micrographs of the rat SA node (upper panels) and neighboring atrial muscle (lower panels) showing immunofluorescence labeling of A_{2A}R; the corresponding differential interference contrast (DIC) images are also shown for comparison. Similar results were obtained in 2 additional experiments. Horizontal bar=30 µm. The white arrow indicates the SA node artery.

To support functional results about the meaningless effects of A_{2A}R activation in rat atria, we used immunofluorescence confocal microscopy to examine the location and relative expression of this receptor. Images taken from SA node area and atrial muscle sections immunolabeled for A_{2A}R showed that this receptor is expressed in supraventricular tissues of rat, but its overall immunoreactivity was very weak, which suggest a low expression of A_{2A}R in the rat atria (Figure 9).

3. **G protein-coupled inwardly rectifying K⁺ (GIRK/Kir3.1/3.4) channels operate atrial depression caused by A_1R and M_2R activation**

It is well known from the literature that ADO and ACh share a common signal transduction pathway that reduces chronotropy and inotropy through direct opening of
GIRK/K_{ir}3.1/3.4 channels (Kurachi et al., 1986; Krapivinsky et al., 1995; Han and Bolter, 2011). Consistent with a direct action on GIRK/K_{ir}3 channels, the inhibitory effect of R-PIA and oxotremorine on spontaneous atrial contractions were totally prevented by tertiapin-Q (300 nM), a selective GIRK/K_{ir}3 channel blocker peptide, seen as a rightward displacement of the concentration-response curve and reduction of the maximum response for R-PIA and oxotremorine (Figure 10). Tertiapin Q did not affect spontaneous atrial contractions when applied once every 2 min at increasing concentrations from 30 nM to 1 µM (data not shown).

Figure 10. Atrial GIRK/K_{ir}3 channels mediate cholinergic and adenosinergic cardiodepression. Concentration-response curves of R-PIA (A, B) and oxotremorine (C, D) in the absence (Control) or in the presence of tertiapin-Q (300 nM). R-PIA (0.001-1 µM) and oxotremorine (0.01-3 µM) were applied once every 2 min at increasing concentrations; Tertiapin Q (300 nM), a potassium GIRK/K_{ir}3 channel blocker, was added to the incubation fluid 15 minutes before application of R-PIA or oxotremorine. The ordinates are percentage of variation of spontaneous contraction rate (chronotropic effect, A and C) and mechanical tension (inotropic effect, B and D) as compared to baseline values obtained before application of the corresponding agonist. Vertical lines indicate ± SEM for the indicated number (n) of individual experiments. *P<0.05 compared with the effect of both agonists in the absence of potassium GIRK/K_{ir}3 channel blocker. In the right side of this figure is present representative confocal micrographs of the rat SA node (upper panels) and neighboring atrial muscle (lower panels) showing immunofluorescence labeling of GIRK1/K_{ir}3.1 channel subunit; the corresponding differential interference contrast (DIC) images are also shown for comparison. Similar results were obtained in 6 additional experiments. Horizontal bar=30 µm. The white arrow indicates the SA node artery.

In addition, GIRK/K_{ir}3 channels expression was examined because of its relevance as an effector of the atrial depression elicited by A_{1}R and M_{2}R. According to the functional studies, immunolabeling of GIRK1/K_{ir}3.1 subunits confirmed GIRK/K_{ir}3 channel expression throughout the right atria including the SA node. It can be seen from confocal micrographs that GIRK1/K_{ir}3.1 subunits were highly and equally expressed in both SA node and right atrial muscle cells (Figure 10). Similarly to that observed for A_{1}R
Results

39

immunolocalization (Figure 8), K\textsubscript{IR}3.1 labeling was present in the outer cell membrane and it was also present inside myocytes.

4. A\textsubscript{1}R-mediated chronoselectivity is prevented by blocking Ca\textsubscript{v}1 (L-type) channels and K\textsubscript{Ca}2/SK currents with verapamil and apamin, respectively

Immunolocalization studies showed that differences in the distribution of A\textsubscript{1}R between SA node and atrial cardiomyocytes do not afford a rationale for ADO chronoselectivity. In view of this, the underlying mechanism(s) responsible for ADO chronoselectivity is possibly downstream the receptor level.

Giving the pivotal role of Ca\textsubscript{1} (L-type) channels on E-C coupling and spontaneous generation of pacemaker AP (Bers, 2002; Lakatta et al., 2010), we aimed at exploring the rationale for ADO chronoselectivity testing the effect of the nucleoside in the presence of Ca\textsubscript{v}1 (L-type) channels blockers in the rat spontaneously beating atria. On its own, blockade of Ca\textsubscript{v}1 (L-type) channels with the phenylalkylamine, verapamil (0.01-10 µM) (Catterall, 2011), decreased the rate and the strength of contractions of the rat spontaneously beating atria in a concentration dependent manner (data not shown). Verapamil, applied in a concentration (1 µM) that reduced atrial chronotropy roughly by 25%, sensitized atria to the negative inotropic action of R-PIA (0.001-1 µM) without much affecting the action of the A\textsubscript{1} receptor agonist on the rate of atrial contractions. The negative inotropic effect of R-PIA changed from an IC\textsubscript{50} value of about 1 µM in control conditions to 0.1 µM in the presence of Ca\textsubscript{v}1 (L-type) channels blocker. The negative chronotropic and inotropic actions of R-PIA were both evident in the same range of concentrations (IC\textsubscript{50}~0.03-0.1 µM) in the presence of verapamil, thus leading to a loss of the atrial chronoselectivity of ADO A\textsubscript{1} receptors (Figure 11). Conversely, blockade of Ca\textsubscript{v}1 (L-type) channels with 1 µM verapamil failed to modify oxotremorine (0.01-3 µM)-induced depression in the rat spontaneously beating atria (Figure 12). These findings contrast with those obtained with the ADO A\textsubscript{1} receptor agonist (Figure 11), suggesting that the negative chronotropic and inotropic actions of oxotremorine are independent on Ca2+ influx through Ca\textsubscript{v}1 (L-type) channels, relying most probably on the control of K+ currents via GIRK/K\textsubscript{IR}3 sensitive to tertiapin Q.
Figure 11. A:R-mediated negative inotropy was potentiated by the L-type calcium channels blockade. Concentration-response curves of R-PIA on the spontaneously beating rat atria in the absence (Control) and in the presence of voltage-sensitive calcium channels inhibitors: verapamil (1 µM, A and C) and mibefradil (3 µM, B and D). R-PIA (0.001-1 µM) was applied once every 2 min at increasing concentrations; voltage-sensitive calcium channels blockers, verapamil (1 µM) and mibefradil (3 µM), were added to the incubation fluid 15 minutes before application of R-PIA. The ordinates are percentage of variation of spontaneous contraction rate (chronotropic effect, A and B) and mechanical tension (inotropic effect, C and D) as compared to baseline values obtained before application of R-PIA. The data are expressed as mean ± SEM from an n number of individual experiments. *P<0.05 compared with the effect of R-PIA in the absence of voltage-sensitive calcium channels inhibitors.

Blockade of low voltage-activated CaV3 (T-type) channels with mibefradil (0.1-10 µM) concentration-dependently reduced atrial chronotropy to a maximum of 30% (n=7), without affecting the force of spontaneous atrial contractions (data not shown). Mibefradil (3 µM) failed to modify the effects of both R-PIA (0.001-1 µM) and oxotremorine (0.01-3 µM) in the rat spontaneously beating atria (Figures 11 and 12).
Figure 12. M₂R-mediated negative inotropy is insensitive to voltage-sensitive calcium channels blockade. Concentration-response curves of oxotremorine on the spontaneously beating rat atria in the absence (Control) and in the presence of voltage-sensitive calcium channels inhibitors: verapamil (1 µM, A and C) and mibefradil (3 µM, B and D). Oxotremorine (0.01-1 µM) was applied once every 2 min at increasing concentrations; voltage-sensitive calcium channels blockers, verapamil (1 µM) and mibefradil (3 µM), were added to the incubation fluid 15 minutes before application of R-PIA. The ordinates are percentage of variation of spontaneous contraction rate (chronotropic effect, A and B) and mechanical tension (inotropic effect, C and D) as compared to baseline values obtained before application of oxotremorine. The data are expressed as mean ± SEM from an n number of individual experiments. *P<0.05 compared with the effect of oxotremorine in the absence of voltage-sensitive calcium channels inhibitors.

Next, it was evaluated whether K⁺ channels other than GIRQ/KIR3 channels were involved in A₁R- and M₂R-mediated atrial depression. Like that observed in the guinea-pig atria (De Biasi et al., 1989), blockade of voltage-gated Kᵥ and ATP-sensitive Kᵥ/ATP/KIR6 channels respectively with 4-aminopyridine (4-AP, 10 µM) and glibenclamide (10 µM) had no significant (P>0.05) effects on the negative chronotropic and inotropic actions of R-PIA and oxotremorine (Figure 13). Similar results were obtained when the concentration of 4-AP was increased from 10 to 100 µM (n=6, data not shown).
Figure 13. A$_1$R is modulated by small conductance calcium-activated potassium channels operation. Concentration-response curves of R-PIA on the spontaneously beating rat atria in the absence (Control) and in the presence of potassium channels blockers: 4-AP (10 µM, A and D), glibenclamide (10 µM, B and E), and apamin (30 nM, C and F). R-PIA (0.001-1 µM) was applied once every 2 min at increasing concentrations; potassium channel blockers 4-AP (10 µM), glibenclamide (10 µM) and apamin (30 nM), were added to the incubation fluid 15 minutes before application of R-PIA. The ordinates are percentage of variation of spontaneous contraction rate (chronotropic effect, A, B and C) and mechanical tension (inotropic effect, D, E and F) as compared to baseline values obtained before application of R-PIA. The data are expressed as mean ± SEM from an n number of individual experiments. *$P<0.05$ compared with the effect of R-PIA in the absence of potassium channel blockers.

Contrariwise, blockade of Ca$^{2+}$-activated K$_{Ca2}$/SK channels with apamin (30 nM) shifted to the left ($P<0.05$) the concentration-response of R-PIA (0.001-1 µM) regarding the negative inotropic component of the A$_1$R action (Figure 13F), without much affecting the action of the nucleoside on the rate of atrial contractions (Figure 13C). That is, pretreatment with apamin (30 nM) sensitized atria to the negative inotropic effect of R-PIA in a way that the negative chronotropic and inotropic actions of the A$_1$ receptor agonist became evident in the same range of concentrations (IC$_{50}$~0.03-0.1 µM) (see above). These findings suggest that the bradicardic and the negative inotropic actions of ADO may be dissociated in terms of the intracellular mechanisms being involved. Apamin (30 nM) failed to affect the depressant effects of oxotremorine (0.01-3 µM) in the rat spontaneously beating atria under similar experimental conditions (Figure 14).
Figure 14. M2R-mediated negative inotropy is insensitive to small conductance calcium-activated potassium channels blockade. Concentration-response curves of oxotremorine on the spontaneously beating rat atria in the absence (Control) and in the presence of potassium channels blockers: 4-AP (10 µM, A and D), glibenclamide (10 µM, B and E), and apamin (30 nM, C and F). Oxotremorine (0.01-1 µM) was applied once every 2 min at increasing concentrations; potassium channel blockers 4-AP (10 µM), glibenclamide (10 µM) and apamin (30 nM), were added to the incubation fluid 15 minutes before application of oxotremorine. The ordinates are percentage of variation of spontaneous contraction rate (chronotropic effect, A, B and C) and mechanical tension (inotropic effect, D, E and F) as compared to baseline values obtained before application of oxotremorine. The data are expressed as mean ± SEM from an n number of individual experiments. *P<0.05 compared with the effect of oxotremorine in the absence of potassium channel blockers.

5. K_{Ca}2/SK and Ca_V1 (L-type) channels are expressed both in SA node and atrial cardiomyocytes

Considering that blockade of K_{Ca}2/SK and Ca_V1 (L-type) channels, respectively with apamin and verapamil, predisposes atria to the negative inotropic action of ADO, we tested whether these channels were expressed in the rat atria by immunofluorescence confocal microscopy.

Ca_V1 (L-type) channels, like other high-voltage operated Ca²⁺ channels, are heteromeric proteins formed by the pore-forming α-subunit together with β, α2δ and γ accessory subunits (Catterall, 2011). In the heart the phenylalkylamine-sensitive ionic current (I_{Ca,L}) is mainly attributable to ionic channels containing α_{1C} (Ca_V1.2) and α_{1D} (Ca_V1.3) subunits (Best and Kamp, 2012). In this study we used a commercial available antibody against the extracellular α_{2δ}-1 subunit to localize Ca_V1 (L-type) channels in the rat atria. Although α_{2δ} subunits are present in all high-voltage-gated Ca²⁺ channels including L-, P/Q-, N- and R-types, cardiac expression of high-voltage operated calcium channels other than the Ca_V1 (L-type) channels subtype is negligible (Catterall, 2011).
Figure 15 shows that both SA node and atrial cardiomyocytes evenly exhibit immunoreactivity against the extracellular αδ-1 subunit of CaV1 (L-type) channels.

Atrial muscle
SA node

![Confocal micrographs showing immunofluorescence labeling for KCa2.2 (SK2), KCa2.3 (SK3) and Cavαδ-1 channel subunits](image)

Figure 15. The molecular players of A1R-mediated chronoselectivity, KCa2/SK and Cav1 (L-type) channels, are expressed throughout the rat atria. Representative confocal micrographs of rat right atria and SA node sections showing immunofluorescence labeling for KCa2.2 (SK2), KCa2.3 (SK3) and Cavαδ-1 channel subunits (first and third columns); the corresponding differential interference contrast (DIC) images are also shown for comparison (second and fourth columns). Similar results were obtained in 5 additional experiments. Horizontal bar=30 µm. White arrows indicate SA node artery.

The concentration of apamin used in this study (30 nM) effectively blocks KCa2.2/SK2 and KCa2.3/SK3 channels (Ishii et al., 1997), which are probably the subtypes most expressed in mammalian atria (Chandler et al., 2009; Yanni et al., 2011). Figure 15 shows that both SA node and atrial cardiomyocytes exhibit immunoreactivity against KCa2.2 and KCa2.3. Differences might exist in the distribution of apamin-sensitive KCa2.2 and KCa2.3 channels, being the latter more abundant in the SA node as compared with atrial cardiomyocytes, while the opposite seems to occur regarding KCa2.2.
6. Chronoselectivity of A₁R is dependent on PLC/PKC coupling

Several pieces of evidence showed that A₁R activation may stimulate PIP₂ hydrolysis linking this receptor to the PLCβ/PKC second messenger system (Kohl et al., 1990; Gerwins and Fredholm, 1992; Dickenson and Hill, 1998; Cordeaux et al., 2000; Lester and Hofmann, 2000; Parsons et al., 2000; Fenton et al., 2010). As outlined in the introduction, modulation of the PKC activity might change contractile parameters, which led us to investigate PKC and upstream targets of this kinase on ADO-induced atrial depression. For comparison purposes, we also tested the involvement of the PLCβ/PKC pathway on muscarinic M₂R responses.

Inhibition of PLC with U73122 (3 μM) sensitized atria to A₁R contractile depression. The magnitude of the leftward shift of the concentration-response curve of R-PIA (0.001-1 µM) was more obvious regarding the negative inotropic effect (Figure 16B) as compared to the negative chronotropic action of the nucleoside (Figure 16A). The negative inotropic effect of R-PIA changed from an IC₅₀ value of ~1 µM in control conditions to 0.1 µM (n=7) in the presence of the PLC inhibitor, U73122 (3 µM). Under these circumstances, the negative chronotropic and inotropic actions of R-PIA were both evident in the same range of concentrations (IC₅₀~0.03-0.1 µM) indicating that inhibition of PLC leads to a loss of the atrial chronoselectivity of A₁R. Contrariwise, blockade PLC with U73122 (3 µM) failed to modify oxotremorine (0.01-3 µM)-induced depression in the rat spontaneously beating atria (Figures 16C and D). On its own, U73122 (3 µM) was devoid of chronotropic (-4±4%, P>0.05, n=13) and inotropic (-3±4%, P>0.05, n=13) effects of the spontaneously beating rat atria (data not shown).
Figure 16. Inhibition of PLC with U73122 (3 µM) sensitized atria to A₁R contractile depression. Concentration-response curves of R-PIA (A and B) and oxotremorine (C and D) in the absence (Control) or in the presence of the PLC inhibitor, U73122 (3 µM). R-PIA (0.001-1 µM) (A and B) and oxotremorine (0.01-3 µM) (C and D) were applied once every 2 min at increasing concentrations. U73122 was added to the incubation fluid 15 minutes before application of agonists. The ordinates are percentage of variation of spontaneous contraction rate (chronotropic effect, A and C) and mechanical tension (inotropic effect, B and D) as compared to baseline values obtained before application of R-PIA or oxotremorine. The data are expressed as mean ± SEM from an n number of individual experiments. *P<0.05 compared with the effect of agonists in the absence of phospholipase C inhibitor.

Diffusible IP₃ and DAG are generated from PIP₂ hydrolysis catalyzed by PLC. IP₃ is responsible for cytosolic Ca²⁺ recruitment from SR (Berridge, 1993), thus enhancing E-C coupling and spontaneous AP firing in the heart (Lipp et al., 2000; Bers, 2002). Taking this into account, we aimed at investigating whether A₁R coupling to PLC (see above) would generate enough IP₃ to levels required to counteract adenosine negative inotropic action. To test this hypothesis, we sought it would be helpful to block the IP₃R with 2-aminoethoxydiphenylborane (2-APB) prior to R-PIA (0.001-1 µM) application. Unfortunately 2-APB, used in a concentration (30 µM) within the range of that needed to inhibit IP₃-induced SR Ca²⁺ recruitment (Maruyama et al., 1997), abolished atrial spontaneous activity (n=5) (Figure 17). Under these circumstances, the strong inhibitory effect of 2-APB (30 µM) on atrial activity persisted for a long period of time, even after washing the drug from the bath. Before atrial arrest, 2-APB (30 µM) caused significant
mechanical instability characterized by aberrant contractions (Figure 17), as observed by other authors (Wolkowicz et al., 2007). Given the strong inhibitory effect of 2-APB (30 μM) on atrial spontaneous activity, no further studies were performed with this compound.

![2-APB abolishes spontaneous atrial activity and induces severe mechanical instability. Representative original recordings of isometric contraction force of rat atrial muscle. 2-APB at 30 μM was applied to organ bath after an equilibrium period. Similar results were obtained for 5 experiments.](image)

Figure 17. 2-APB abolishes spontaneous atrial activity and induces severe mechanical instability. Representative original recordings of isometric contraction force of rat atrial muscle. 2-APB at 30 μM was applied to organ bath after an equilibrium period. Similar results were obtained for 5 experiments.

As mentioned above, beside IP₃ formation, PIP₂ hydrolysis also generates DAG which in turn activates several DAG-sensitive PKC isozymes. The concentration-response curve of the negative inotropic response to R-PIA (0.001-1 μM) was significantly (P<0.05) shifted to the left by chelerythrine (3 μM), a potent cell-permeable and broad-spectrum PKC inhibitor (Figure 18B). Like that observed with the PLC inhibitor, U73122 (3 μM), negative chronotropic and inotropic actions of R-PIA were both seen in the same concentration range (IC₅₀~0.03-0.1 μM), thus indicating that inhibition of the PLC/PKC pathway leads to a loss of A₁R-mediated atrial chronoselectivity by sensitizing atria to the negative inotropic action of the nucleoside (Figure 16B and 18B). PKC blockade with chelerythrine (3 μM) did not modify oxotremorine (0.01-3 μM)-induced depression in the rat spontaneously beating atria (Figures 18C and D). Cumulative application of chelerythrine (0.03-3 μM) per se did not have a major impact (P>0.05 vs basal values) on atrial chronotropy and inotropy (data not shown).
Figure 18. Protein kinase C (PKC) is modulated by A₁R. Concentration-response curves of R-PIA (A and B) and oxotremorine (C and D) in the absence (Control) or in the presence of the PKC inhibitor, chelerythrine (3 µM). R-PIA (0.001-1 µM) (A and B) and oxotremorine (0.01-3 µM) (C and D) were applied once every 2 min at increasing concentrations. Chelerythrine was added to the incubation fluid 15 minutes before application of agonists. The ordinates are percentage of variation of spontaneous contraction rate (chronotropic effect, A and C) and mechanical tension (inotropic effect, B and D) as compared to baseline values obtained before application of R-PIA or oxotremorine. The data are expressed as mean ± SEM from an n number of individual experiments. *P<0.05 compared with the effect of agonists in the absence of PKC inhibitor.

PKC activity has been associated to myofilament Ca²⁺ sensitization and phosphorylation of TnI and cardiac myosin binding protein-C promote a positive inotropic effect (Cazorla et al., 2009). This mechanism may add another possible explanation for the preferential chronoselective action of ADO in the rat spontaneously beating atria. Enrolment of the PLCβ/PKC signaling cascade pathway triggered by A₁R activation partially counteracts the negative inotropic effect of the nucleoside that one would expect by simply hyperpolarizing atrial cardiomyocytes and, thereby, decreasing intracellular Ca²⁺ accumulation. Unraveling these complexities requires further experimental work. Unexpectedly, non-specific activation of PKC with the phorbol 12-myristate 13-acetate, PMA (0.03-10 µM) (Puceat and Vassort, 1996), concentration-dependently increased sinus rate reaching a maximum at 10 µM (+11±3%, P<0.05; n=11), yet no effect was observed in the strength of contractions of the spontaneously beating rat atria (P>0.05;
$n=11$, data not shown). Pre-incubation of the preparations with PMA ($10 \, \mu M$, for 15 minutes) did not significantly ($P>0.05$) change R-PIA (0.001-1 μM) and oxotremorine (0.01-3 μM) atrial depression (Figure 19).

Figure 19. PKC activation failed to modify the effects of A$_1$R and M$_2$R. Concentration-response curves of R-PIA (A and B) and oxotremorine (C and D) in the absence (Control) or in the presence of the PKC activator, PMA (10 μM). R-PIA (0.001-1 μM) (A and B) and oxotremorine (0.01-3 μM) (C and D) were applied once every 2 min at increasing concentrations. PMA was added to the incubation fluid 15 minutes before application of agonists. The ordinates are percentage of variation of spontaneous contraction rate (chronotropic effect, A and C) and mechanical tension (inotropic effect, B and D) as compared to baseline values obtained before application of R-PIA or oxotremorine. The data are expressed as mean ± SEM from an n number of individual experiments. *$P<0.05$ compared with the effect of agonists in the absence of PKC activator.

In spite of these unexpected results, we cannot rule out the participation of PKC in A$_1$R-mediated atrial depression, since PMA acts as a non-selective activator of PKC leading to enzyme desensitization. Furthermore, growing evidence points towards specific activation and translocation of some PKC isozymes secondary to A$_1$R activation (Lester and Hofmann, 2000; Yang et al., 2009b). In order to avoid non-selective activation of PKC by PMA, we performed experiments with two G-protein-coupled neurohormonal agents known to couple positively to the PLC/PKC pathway via the G_{q} subunit (Puceat and Vassort, 1996). This was carried out by using angiotensin II (AngII), as an AT$_1$ receptor agonist considering its ability to engage specifically the activation of novel PKCs isoforms
(PKC-ε and PKC-δ) (Kilts et al., 2005), and UTP, as an activator of cardiac P2Y₂ and P2Y₄ receptors coupled to Gα₃ subunits.

![Figure 20. Gα₃ protein-coupled receptors (AT₁ and P2Y₂,4 receptors) did not interfere with signaling properties of both A₁R and M₂R. Left panels (A, B, E and F) are plotted concentration-related chronotropic for R-PIA (A and B) and for oxotremorine (E and F) in the absence (Control) or in the presence of AngII (A and E) or UTP (B and F). Right panels (C, D, G and H) are plotted concentration-related inotropic for R-PIA (C and D) and for oxotremorine (G and H) in the absence (Control) or in the presence of AngII (C and G) or UTP (D and H). R-PIA (0.001-1 µM) and oxotremorine (0.01-3 µM) were applied once every 2 min at increasing concentrations; AT₁ and P2Y₂,4 agonists, Ang II (125 nM) and UTP (100 µM), respectively, were added to the incubation fluid 15 minutes before application of R-PIA or oxotremorine. The ordinates are percentage of variation of spontaneous contraction rate (chronotropic effect, left panels) and mechanical tension (inotropic effect, right panels) as compared to baseline values obtained before application of R-PIA or oxotremorine. The data are expressed as mean ± SEM from an n number of individual experiments.*P<0.05 is considered statistically different compared with the corresponding control curve for each agonist.

As expected, AngII (125 nM) developed statistically significant positive inotropic (+8±3%, P<0.05; n=8) and chronotropic (+10±3%, P<0.05; n=8) responses (data not shown) (Li et al., 1996). On the other hand, UTP (100 µM) did not significantly change the sinoatrial rate (P>0.05), although it mildly increase the atrial inotropy (+17±4%, P<0.001; n=14) (data not shown). Pre-incubation with AngII (125 nM) or UTP (100 µM) did not significantly modify the effects of R-PIA (0.001-1 µM) and oxotremorine (0.01-3 µM) in the rat spontaneously beating atria (Figure 20).
IV. Discussion

In the present work we evaluated the effects of two well-known neurohormonal agents ADO and ACh on the spontaneously beating rat atria. ADO and ACh analogues exerted pronounced negative chronotropic and inotropic effects (Figure 6) respectively through A₁AR and M₂R (De Biasi et al., 1989; Kohl et al., 1990; Ford and Broadley, 1999). Interestingly, the negative chronotropic effect of A₁R activation was evidenced at much lower concentrations (~30 fold) than the negative inotropic effect. The ADO chronoselective effect was a singular hallmark of A₁R, since the M₂R agonist oxotremorine was equipotent upon reducing chronotropy and inotropy (Figure 6). So, we first investigated whether A₁R chronoselectivity could be an outcome of a higher expression of this receptor in the SA node than in the atrial muscle. We observed that A₁R and M₂R are abundantly expressed in rat atria, as previously described (Krejci and Tucek, 2002; Myslivecek et al., 2008; Chandler et al., 2009) (Figure 8). Immunolocalization experiments did not reveal any noticeable difference regarding the A₁R staining across the entire right atria, as it was observed for the M₂R (Chandler et al., 2009; Yanni et al., 2011). These observations suggest that the chronoselectivity induced by A₁R stimulation is not supported by a differential expression of this receptor within the atrial tissue in particular the SA node, strengthening the hypothesis that other mechanisms must be involved.

Additionally, we further speculated on whether ADO chronoselectivity could hold an A₂AR-mediated component. The selective A₂AR agonist, CGS 21680, revealed a negligible positive inotropy at higher concentrations (Chandrasekera et al., 2010). Although, A₂AR was found to be expressed in mammalian atria (Hove-Madsen et al., 2006), we found low levels of immunofluorescence representation of this receptor at the rat atria as compared to the A₁R (Figure 9). While the role of A₂AR in cardiac inotropism is still a matter of debate, some authors argue that A₂AR activation can increase the sensitivity of the contractile apparatus (Hove-Madsen et al., 2006), thereby enhancing myocardial contraction (Dobson and Fenton, 1997; Monahan et al., 2000; Tikh et al., 2006). Conversely, other authors failed to detect positive inotropic effects after A₂AR stimulation (Willems and Headrick, 2007; Gergs et al., 2009; Chandrasekera et al., 2010). These contradictory data support the hypothesis that A₂AR only plays a role in the modulation of the β-adrenergic action rather than a direct effect on cardiac inotropism (Tikh et al., 2006; Fenton et al., 2009; Chandrasekera et al., 2010).

It is well-known that A₁R and M₂R stimulate outward K⁺ currents (I_{KAdo,ACh}) through Gβγ subunits activation of G protein-coupled inwardly rectifying (tertiapin Q-sensitive) GIRK/KᵢR3.1/3.4 channels (Kurachi et al., 1986; Logothetis et al., 1987; Krapivinsky et al., 1995; Han and Bolter, 2011). This action reduces the electrogenic current carried by ion
channel/exchangers involved in the diastolic depolarization (phase 4) and speeds up the AP repolarization phase. The overall effect of this GIRK/Kir3 current is a decreased excitability of the SA nodal cells, i.e. negative chronotropy. Faster AP repolarization (phase 3) also reduces the time available for Ca2+ influx during phase 2 of the AP, thereby putatively reducing atrial inotropism (Kurachi et al., 1986; Wang and Belardinelli, 1994; Belardinelli et al., 1995; Lyashkov et al., 2009). Taking into account that all experiments described herein were carried out in the absence of electrical pacing or adrenergic stimulation, the effects operated by A\(_1\)R and M\(_2\)R activation are likely to be mediated directly by GIRK/Kir3 opening, as proven by the attenuation of the cardiodepressant effects of A\(_1\)R and M\(_2\)R agonist upon inhibition of these channels with tertiapin-Q. It is worth noting that GIRK1/Kir3.1 channel subunits are expressed throughout the rat atria, in both the SA node and the atrial cardiomyocytes, as detected by immunofluorescence confocal laser microscopy in this study (Figure 10), which confirmed other authors’ findings (Dobrzynski et al., 2001; Chandler et al., 2009; Yanni et al., 2011).

We further investigated the role of other ionic channels on A\(_1\)R- and M\(_2\)R-elicited responses, in order to explore if they were functionally coupled to A\(_1\)R, but not to M\(_2\)R, which could justify the preferential A\(_1\)R-mediated chronoselective atrial depressant effect. Among the channel blockers tested in this study, namely verapamil (a Ca\textsubscript{V}1 (L-type) channel blocker), mibebradil (a low voltage-activated Ca\textsubscript{V}3 (T-type) channel blocker), 4-aminopyridine (a non-specific voltage-dependent K\textsubscript{v} channel blocker), glibenclamide (a selective ATP-sensitive K\textsubscript{ATP}/KIR6 channel blocker) and apamin (a K\textsubscript{Ca}\textsubscript{2}/SK channel blocker), only verapamil and apamin selectively affected the contractile responses elicited by A\(_1\)R activation, which put forward the putative enrollment of Ca\textsubscript{V}1 (L-type) and SK/K\textsubscript{Ca}2 channels on ADO chronoselectivity. Our results are in general agreement with previous isometric contraction studies performed in the guinea-pig atria, where 4-AP (0.3-3 mM) failed to modify chronotropic and inotropic effects elicited by increasing concentrations of R-PIA (De Biasi et al., 1989). Conversely, other authors reported the ability of 4-AP to counteract the negative chronotropic and inotropic effects of M\(_2\) and A\(_1\) receptor agonists in atrial preparations (Urquhart and Broadley, 1991; Ford and Broadley, 1999). Due to the high concentrations of 4-AP used in the latter studies, which were 1000 times higher than that used in this report (10 \(\mu\)M), a question remains unanswered about the K\textsubscript{v} channel selectivity of the 4-AP blocking effect under those circumstances. Regarding glibenclamide-sensitive K+ channels, some authors connected its opening to protective effects of ADO under conditions of low oxygen tension (e.g. ischemia, hypoxia) (Kirsch et al., 1990). However, under well-oxygenated conditions, high levels of ATP tonically inhibits ATP-sensitive K\textsubscript{ATP}/KIR6 channel opening, explaining the lack of effect of glibenclamide in antagonizing the responses to M\(_2\) and A\(_1\) receptor agonists in the rat
atria, in good agreement with previous studies (Keith and Flack, 1907; Urquhart et al., 1993; Ford and Broadley, 1999). Beyond these K⁺ currents, Ca⁺⁺ current carried by Caᵥ3 (T-type) channel is excluded from adenosinergic as well as cholinergic regulation of atrial function (Cerbai et al., 1988).

The leftward displacement of the concentration-response curve regarding the inotropic effect of R-PIA upon blocking Caᵥ1 (L-type) channels (with verapamil) has two reasonable interpretations: 1) AᵢR stimulation inhibits Caᵥ1 (L-type) channels that is further potentiated by Caᵥ1 (L-type) channels blockade, or 2) under basal conditions, AᵢR stimulation decreases to a lesser extent the net Ca⁺⁺ entry into atrial myocytes when compared to Mᵥ2R, attenuating the cardiodepressor effect promoted by opening of GIRK/KᵢR3 channels.

The first explanation is somehow controversial; there are no clear evidences that Gq₁-coupled receptors, such as AᵢR and Mᵥ2R, decrease directly the Caᵥ1 (L-type) channels, although some authors detected a small inhibitory actions of adenosinergic and cholinergic agonists on this currents (Cerbai et al., 1988; De Biasi et al., 1989; Visentin et al., 1990). Recent experimental data also proposed an inhibition of IᵥCa,L currents in the course of releasing Gβγ subunits from activated Gq/o-coupled receptors (O-Uchi et al., 2008). Conversely, in guinea pig atrial myocytes, ADO did not show any significant changes on IᵥCa,L, in the presence of its activator BAY K 8644 (Wang and Belardinelli, 1994).Caᵥ1 (L-type) channels inhibition operated by AᵢR and Mᵥ2R activation may, most probably, be an indirect effect, considering that GIRK/KᵢR3 opening shortens AP duration and reduces the time available for the influx of Ca⁺⁺ (Iijima et al., 1985; Wang and Belardinelli, 1994; Belardinelli et al., 1995; Ford and Broadley, 1999).

The second hypothesis fits our data if we take into consideration a presumable interaction between AᵢR and apamin-sensitive SK/KᵥCa,2 channels (Figure 13). SK/KᵥCa,2 channels behave like truly intracellular Ca⁺⁺ sensors by changing their K⁺ conductance and membrane resting potential. At least three types of ion channels may participate in this mechanism, namely SK1/KᵥCa,2.1, SK2/KᵥCa,2.2 and SK3/KᵥCa,2.3. These channels exhibit weak-voltage dependence, differences in Ca⁺⁺-dependent activation and variable sensitivity to apamin (Ishii et al., 1997; Xu et al., 2003; Tuteja et al., 2005). Interestingly, the concentration-response curve for the negative inotropic effect of R-PIA was significantly modified upon blockade of SK/KᵥCa,2 channels with apamin, without affecting the effect of oxotremorine. This renders a functional crosstalk between AᵢR and SK/KᵥCa,2 channels on inotropy, highly probable. This experimental result therefore challenges previous assumption that AᵢR function is insensitive to SK/KᵥCa,2 channels blockade in the guinea-pig atria (De Biasi et al., 1989). Sensitization of rat atria to the negative inotropic effect of the AᵢR agonist in the presence of the SK/KᵥCa,2 channel blocker affords a
functional role for these channels on E-C coupling mechanisms. Blockade of SK/K_{Ca}2 channels may cause a delay in the repolarization phase of atrial APs (Xu et al., 2003; Tuteja et al., 2005), despite of Nagy and co-workers have failed to detect any electrophysiological change upon apamin exposure (Nagy et al., 2009). In our hands, blockade of SK/K_{Ca}2 channels caused per se a slight increase in the strength of contraction, which might be related to an increase in the available time for Ca²⁺ influx via Ca_L (L-type) channels due to AP prolongation. Interestingly, Ca_L (L-type) channels are sought to be functionally coupled to SK2/K_{Ca}2.2 channels, sharing the same cytoskeletal protein α-actinin2 (Lu et al., 2007). Even more interestingly, these authors showed that this multiprotein complex formed by SK2/K_{Ca}2.2, Ca_L (L-type) channel and α-actinin2 is located in cardiac t-tubules, where the functional units of the cardiac E-C coupling are located, reinforcing the importance of a hypothetical regulation of Ca_L (L-type) channels gating by SK/K_{Ca}2 channels operation, with important outcomes on inotropy regulation (Bers, 2002; Catterall, 2011). Thus, a possible explanation for ADO chronoselectivity is that A₁R partially inhibits SK/K_{Ca}2 channel, decreasing the voltage- and time-dependent inactivation of Ca_L (L-type) channels during AP repolarization phase, leading to a lesser net decrease of Ca²⁺ influx into atrial myocytes during A₁R (vs M₂R) stimulation (Xu et al., 2003; Tuteja et al., 2005).

Despite being an attractive hypothesis, at this moment there is no clear evidence that supports inhibition SK/K_{Ca}2 channels by A₁R activation. Keeping in mind this hypothetical scenario, it would be expected a higher activity of inward currents, like I_{Ca,L}, during pharmacological inhibition of SK/K_{Ca}2 channels and, thus, a rightward displacement of the inotropic concentration-response curve for R-PIA. Of note is that our experimental procedure to evaluate inotropy is based on variations of the contractile tension that might reflect Ca²⁺ influx from Ca_L (L-type) channels (Bers, 2002). Therefore, the leftward displacement of the inotropic concentration-curve for R-PIA with either SK/K_{Ca}2 or Ca_L (L-type) channels blockade might be interpreted as a relative increase of GIRK/K_{IR}3-mediated K⁺ efflux and cell hyperpolarization per GPCR activated, thus affecting the relative potency of the A₁R agonist. As mentioned above, a greater contribution of GIRK/K_{IR}3-mediated K⁺ efflux will shorten much more the atrial APs, thereby reducing even more the Ca²⁺ influx through Ca_L (L-type) channels (Iijima et al., 1985; Wang and Belardinelli, 1994; Belardinelli et al., 1995). We believe that SK/K_{Ca}2 channels should only have a modulator role on A₁R-mediated responses, since apamin per se did not have a meaningful effect on inotropy. Interestingly, a recent report has demonstrated an interaction between A₁R and SK/K_{Ca}2 channels in retinal ganglion cells, which was dependent on IP₃-induced Ca²⁺ release from internal stores, even though it has been concluded that SK/K_{Ca}2 channel opens in response to A₁R activation (Clark et al.,
Despite SK/KCa2 channels expression in the SA node (Figure 15), their blockade did neither affected spontaneous AP firing rate under basal conditions nor the chronotropic concentration-response curves for R-PIA and oxotremorine (Figures 13 and 14), which might suggest a non-functional role on chronotropy regulation, at least in healthy and adult heart mammals. As presented in Figure 15, both SK2/KCa2.2 and SK3/KCa2.3 are both present throughout the right atria, despite their dissimilar labeling pattern. The SK2/KCa2.2 channels are mainly present around the myocytes, even though some authors have showed a t-tubule location (Lu et al., 2007). SK3/KCa2.3 showed an internal labeling pattern and lower immunoreactivity in atrial myocytes as observed by others (Tuteja et al., 2005). However, myocytes of the SA nodal showed a high level of staining using anti-SK3/KCa2.3 antibody when compared to surrounding tissue, compatible with the differential abundance of SK3/KCa2.3 transcripts within the rat atria (Yanni et al., 2011). It is worth of notice that the abundance of SK1/KCa2.1 and SK3/KCa2.3 channels, but not SK2/KCa2.2 channel, was greatly increased in the SA node during heart failure (Yanni et al., 2011). The physiological importance of these regional differences for SK/KCa2 channels has yet to be determined.

Immunofluorescence micrographs (Figure 15) confirmed the presence of verapamil and apamin-sensitive channels and support the pharmacological data elicited by these two blockers. Immunofluorescence analysis exhibited weaker immunoreactivity intensity for the extracellular α2δ-1 subunit of the CaV1 (L-type) channels. In studies performed in the right atrium of either human or rat heart, the accessory α2δ-1 subunit was found equally expressed between SA node and atrial muscle (Chandler et al., 2009; Yanni et al., 2011). From the analysis of these two studies we can argue that accessory subunit of CaV1 (L-type) channel is relatively high expressed in mammal’s right atrium and there is no clear relation with the expression of each CaV1 (L-type) channels pore-forming α subunit (α1C and α1D). CaV1 (L-type) α1C subunit (CaV1.2) is much more expressed in atrial muscle than in SA node of adult mammals, while the CaV1 (L-type) channels α1D (CaV1.3) subunit has an opposite expression pattern (Tellez et al., 2006; Chandler et al., 2009; Allah et al., 2011). Here, despite the unexpected low immunoreactivity for CaV1 (L-type) channels α2δ subunits, the absence of its differential expression between SA node and atrial muscle matches with reported experimental data regarding α2δ-1 subunit expression. At the best of our knowledge, this is the first study designed to analyze the CaV1 (L-type) α2δ-1 subunit expression in the mammalian heart by confocal microscopy.

Other putative explanation for ADO chronoselectivity was brought to light from recent studies on the molecular signaling dynamics and compartmentalization of the receptors and channels in sarcolemma microdomains, like caveolae. Here, we showed that A1R-mediated responses are somehow linked to the PLCβ-PKC pathway, in opposition to
M$_2$R responses (Figure 16 and 18). A$_1$R and M$_2$R are both Gα-coupled receptors and their activation leads to dissociation of the Gβy dimer. Since free Gβy subunits may stimulate PLCβ (Boyer et al., 1992), one might predict that the M$_2$R-mediated effects would be also sensitive to inhibition of PLCβ by U73122, as it happened with the negative inotropic response elicited by A$_1$R activation (Figure 16). Therefore, following A$_1$R activation we should expect increases in PLCβ end products, such as IP$_3$ and diacylglycerol (Nishizuka, 1992). Overwhelming experimental data demonstrated that A$_1$R agonists increase the levels of both IP$_3$ and DAG in a large variety of cell types (Kohl et al., 1990; Gerwins and Fredholm, 1992; Dickenson and Hill, 1998; Cordeaux et al., 2000; Lester and Hofmann, 2000; Parsons et al., 2000; Fenton et al., 2010). Although we did not measure IP$_3$ and DAG levels, data obtained with the PLC inhibitor applied prior to stepwise addition of R-PIA significantly sensitized atria to the negative inotropic effect of A$_1$R and removed ADO chronoselectivity. But how does PLCβ attenuate the inotropic depressor effect of A$_1$R? To answer this question we need to go back and look carefully to the concentration-responses curves of R-PIA in the absence and presence of tertiapin-Q (Figure 10). When GIRK/K$_{ir3}$ channels were blocked, spontaneous atrial beatings did not stop neither atrial contractile tension was reduced during stimulation of both cholinergic and ADO receptors. Thus, regarding GIRK/K$_{ir3}$ channels one may argue that they might play an important role on E-C coupling from supraventricular tissues during cholinergic and adenosinergic stimuli, and their opening mediates a negative inotropic response (Iijima et al., 1985; Wang and Belardinelli, 1994; Belardinelli et al., 1995; Ford and Broadley, 1999). The relation between GIRK/K$_{ir3}$ channels and PLCβ activity come up from the well-accepted PIP$_2$ role on GIRK/K$_{ir3}$ channel gating (Whorton and MacKinnon, 2011).

ADO and ACh stimulate GIRK/K$_{ir3}$ channels opening but with different magnitudes and kinetics (Kurachi et al., 1986; Cho, 2010; Littwitz et al., 2011). In atrial myocytes both the onset kinetics and the total GIRK/K$_{ir3}$ current activated by supramaximal concentrations of ADO (> 10 µM) ($I_{K,ADO}$) are slower and of a lesser magnitude than those obtained with ACh (> 10 µM) ($I_{K,ACh}$) (Cho, 2010). Besides that, $I_{K,ADO}$ is more sensitive to Gα_q-coupled receptor modulation (e.g. α_1-adrenoceptors) than $I_{K,ACh}$ (Cho, 2010; Cui et al., 2010). As claimed in these authors’ studies, PIP$_2$ signaling microdomain and caveolar receptor compartmentalization might be the basis for the differential receptor-mediated activation and regulation of GIRK/K$_{ir3}$ channels. PIP$_2$ is needed for GIRK/K$_{ir3}$ channels opening and its catabolism inhibits the hyperpolarizing K$^+$ current (Kobrinsky et al., 2000). Interestingly, using neomycin as a measure of PIP$_2$ affinity, M$_2$R-activated GIRK/K$_{ir3}$ current showed higher affinity for PIP$_2$ than the ones elicited by A$_1$R activation (Cho, 2010). Comparatively $I_{K,ACh}$ is a stronger current with a lesser sensitivity to PIP$_2$ perturbation than $I_{K,ADO}$, at least in mouse atrial myocytes (Cho, 2010; Cui et al., 2010). If
we take into consideration that the A1R-activated GIRK/KIR3 current is weaker, along with the putative A1R-mediated PIP2 hydrolysis, it may be reasonable to assume that the lesser A1R-mediated contractile depression compared to M2R activation might be a consequence of the limited negative inotropy when GIRK/KIR3 couples do A1R activation. Consistent with this theory, inhibition of PLCβ with U73122 protected PIP2 from A1R-mediated hydrolysis and enhanced GIRK/KIR3 channels activity, which in turns potentiates the negative inotropy (Figure 16). In this context there seems to be a spatiotemporal regulation of PIP2 signaling within caveolae that connects receptor function to ionic channel currents. A1R stimulation might, therefore, have a less impact on negative inotropy probably because this receptor recruits signaling machinery to caveolae where GIRK/KIR3 channels are located, stimulating GIRK/KIR3 channel activation followed by its inactivation, whereas M2R lack this effect. Lesser K+ conductance carried by GIRK/KIR3 channel conductance mirrors smaller voltage- and time-dependent inactivation of CaV1 (L-type) channels located in the t-tubules that, in a final step, yields a lesser reduction of net Ca2+ influx into atrial myocytes as compared to M2R. It is worth mentioning the lower chronotropic sensitivity to PLC inhibition (Figure 16A and C), demonstrating that the control of spontaneous generation of pacemaker AP is not so sensitive to GIRK/KIR3 channel modulation as atrial myocytes, and might involve other key mechanisms in adenosinergic and cholinergic depression (Wickman et al., 1998; Vinogradova et al., 2006; Lyashkov et al., 2009).

Nevertheless, the previous theory proposed for ADO chronoselectivity may not rely solely on the reorganization of signaling proteins and lipids within caveolae. We need to go beyond sarcolemma microdomains and look to downstream targets of PLCβ. There is growing evidence for an increase of DAG and IP3 from PIP2 hydrolysis following A1R stimulation (Kohl et al., 1990; Gerwins and Fredholm, 1992; Dickenson and Hill, 1998; Cordeaux et al., 2000; Lester and Hofmann, 2000; Parsons et al., 2000; Fenton et al., 2010). For example, after specific A1R activation, a meaningful increase of inositol phosphates and DAG levels has been observed in cultured chick embryo ventricular myocytes, which was attenuated by the PLC inhibitor U73122 (10 µM) (Parsons et al., 2000). Other studies also detected a Gβγ-dependent increase of IP3 levels following A1R stimulation in mouse heart myocytes (Fenton et al., 2010). Even though it was not expected an outstanding modulation of PLCβ by A1R, as observed with stimulation of other Gαq-coupled receptors (e.g. odd-numbered muscarinic receptors, AT1 receptors), because Gβγ subunits are less potent activators of PLC compared with G protein αq subunits (Boyer et al., 1992; Biber et al., 1997). Positive chronotropic and inotropic effects are connected to Gαq proteins-coupled receptor stimulation (He et al., 2000; Lipp et al., 2000; Bers, 2002; O-Uchi et al., 2008; Ju et al., 2011).
Multiple analysis of IP₃ receptors revealed higher expression and function of subtype II in atrial myocytes than in ventricular ones (about 6-fold) together with a subsarcolemmal location near junctional RyRs (Lipp et al., 2000). IP₃ formation induces Ca²⁺ release from internal stores (Berridge, 1993). Thus, in supraventricular tissues IP₃ enables stimulating effects on atrial E-C coupling (Lipp et al., 2000; Bers, 2002). With respect to our results, the contractile depression observed with PLC inhibition during A₁R stimulation (Figure 16) might also be interpreted as a blunted PLC-mediated positive stimulus. Positive inotropic responses following A₁R stimulation were also observed in other reports (Neumann et al., 1999; Gergs et al., 2009). The present results implies a direct cross-talk between A₁R and PLCβ (Fenton et al., 2010), which may increase IP₃-induced Ca²⁺ release from intracellular stores (Berridge, 1993) attenuating the negative inotropy mediated through GIRK/KᵢR₃-mediated K⁺ efflux.

The supposed connection between ADO chronoselectivity and the A₁R-induced IP₃ increase could not be addressed in our experimental model because 2-APB (30 µM), an IP₃ receptor blocker (Maruyama et al., 1997), blocked the spontaneous atrial contractions (Figure 17). This result means that there is a basal and critical activity for IP₃ receptors on the spontaneous generation of AP at the SA node. In fact, several reports argue in favor of a relevant function of IP₃R on cardiac pacemaker activity (Ju et al., 2011). However, we cannot exclude the lack of pharmacological selectivity by 2-APB on other critical pacemaker components. The proposed mechanism for 2-APB was the inhibition of SERCA pump, leading to a progressive depletion of Ca²⁺ stores followed by an E-C coupling impairment (Peppiatt et al., 2003).

Moving towards downstream targets of the PLCβ generated products, we explored the role of PKC on both A₁R- and M₂R-mediated responses. Inhibition of PKC with chelerythrine significantly potentiated the negative inotropy mediated by A₁R activation with no appreciable effects on the negative chronotropy (Figures 18A and B). Surprisingly, PKC inhibition did not affect both chronotropy and inotropy effects of M₂R stimulation (Figures 18C and D), unveiling another signal transduction disparity between the A₁R and M₂R signaling. The role of PKC in A₁R-mediated responses is not surprisingly since PLCβ is an effector of the ADO signaling pathway, providing stimuli input for PKC activation through DAG formation and IP₃-dependent Ca²⁺ release (Parsons et al., 2000; Fenton et al., 2010). Indeed, there are numerous reports supporting the existence of PKC and A₁R crosstalk in a wide variety of responses like in adrenoprotection (Lester and Hofmann, 2000; Fenton et al., 2009; Fenton et al., 2010). According to our results, there is a clear tendency for PKC counteracting the A₁R-mediated contractile depression. Therefore, it would be expected a positive inotropic effect upon atria exposure to increasing concentration of the PKC activator, PMA. Unexpectedly, the concentration-response curve
of PMA, as well as the direct application of PMA (10 µM) for 15 min, did not show any considerable effect on atrial contraction force and only a minor positive chronotropy was observed (data not shown). Moreover, PMA was not able to modify both inotropic and chronotropic curves for A1R as well as for M2R stimulation (Figure 19).

PKC has a broad-spectrum of substrates that comprises ionic channels, myofilaments, and even kinases (Puceat and Vassort, 1996; Kamp and Hell, 2000; Solaro, 2008; Yang et al., 2009a), but there is no consensus in the scientific community about the functional effects of PKC on heart function. While some authors ascribe positive inotropic effects for PKC others allocate negative or no effects (Capogrossi et al., 1990; MacLeod and Harding, 1991; Karmazyn and Haist, 1993). Even more intriguing about PKC is the fact that a wide variety of positive inotropic mechanisms are usually dependent on PKC function (He et al., 2000; Kilts et al., 2005; O-Uchi et al., 2008; Cazorla et al., 2009; Oestreich et al., 2009). An explanation for these controversies around PKC could rely on broadly activation of several PKC isozymes due to lack of selective drugs, in contrast to neurohormonal agonists; animal species and their development stage; time, type, concentration and even in the mode of PKC-targeted drugs administration (Karmazyn and Haist, 1993; Puceat and Vassort, 1996; He et al., 2000).

Rather than a non-selective activation of PKC isozymes, A1R signaling has been connected to selective activation of PKC-ε and PKC-δ isozymes, which are the major Ca²⁺-independent and the most abundant PKC isoforms found in adult rat cardiomyocytes (Yang et al., 2009b). However, while the selective activation, translocation and anchoring of PKC isoforms to specific subcellular locations is undoubtedly important for ADO signaling, it remains to be elucidated how this is accomplished and what are the functional effects on heart’s function. Concerning cardiac contractile function, some reports describe PKC-ε as a negative effector of A1R-mediated cardiodepression (Lester and Hofmann, 2000; Fenton et al., 2009; Fenton et al., 2010). Conversely, other studies regarding functional effects of PKC-ε have challenged the above mentioned PKC-ε-mediated negative effect (Kang and Walker, 2005; Kilts et al., 2005; O-Uchi et al., 2008). Myocytes overexpressing either PKC-ε or PKC-δ react to PKC activator phorbol 12,13-dibutyrate (PDBu) developing a short negative followed by a sustained positive inotropic response, i.e. biphasic response, while control myocytes only developed negative responses. Interestingly, pharmacological maneuvers selectively targeted to Ca²⁺-dependent PKC isoforms inhibition (Gö 6976, 1 µM) only removed negative inotropic responses elicited by phorbol esters, which suggests an involvement of conventional (e.g. α, β) and novel PKCs (e.g. ε, δ) on the negative and positive inotropic responses, respectively (Kang and Walker, 2005), in good agreement with recent reports (Kilts et al., 2005; O-Uchi et al., 2008; Liu et al., 2009). Thus, PKC isoforms are likely to have different or even opposing
effects on heart muscle contractility; hence, the non-selective PKC activation (Yang et al., 2009b) may explain the absence of effect observed with PMA (Figure 19). It is worth noting that PMA is a broad spectrum activator of PKC and that property could mask the involvement of some PKC isoforms on A1R-mediated effects. To overcome the lack of specificity by PMA in PKC activation, we employ UTP and AngII as neurohormonal agents known for their action on Gαq-coupled receptors (Puceat and Vassort, 1996; Kilts et al., 2005). Unfortunately, previous activation of the downstream Gαq-coupled receptors pathways either with AngII or UTP failed to change the typical atrial effects produced by A1 and M2 agonists (Figure 20). However, we should not rule the hypothetical connection between A1R and PKC, since the experimental approach used in this work might not be suitable to unveil this crosstalk. Our results point to an interplay of PKC with the A1R (Figure 18), but further investigations are needed to clearly understand what is behind the chronoselective effect.

At this moment, limited conclusions are available regarding the effects of PKC isozyme(s) in the regulation of contractile force (Puceat and Vassort, 1996). For those who support a negative contractile response, a decrease in myofilament Ca\(^{2+}\) sensitivity and cross-bridge cycling, is a likely explanation (Lester and Hofmann, 2000; Solaro, 2008; Fenton et al., 2009), while for the others modulation of Ca\(^{2+}\)-handling proteins (e.g. phospholamban, Ca\(_v1\) (L-type) channels, RyR) and myofilament Ca\(^{2+}\) sensitization are on the basis of positive inotropic responses (He et al., 2000; Kang and Walker, 2005; Wang et al., 2006; Cazorla et al., 2009; Oestreich et al., 2009).
V. Conclusion

In conclusion, we demonstrated that atrial chronoselectivity observed for A1R-mediated responses is not supported by a higher expression of A1R in the SA node as compared to the atrial muscle. The matchless chronoselectivity for A1R, observed in the spontaneously beating rat atria, may yield from the molecular enrolment of A1R with SK/KCa2 and CaV1 (L-type) channels, a PLC and downstream effectors as well.

At the mechanistic level, we showed that contractile depression triggered by A1R and M2R activation are mostly restricted to K+ efflux through GIRK/Kir3 channels opening, especially when atria are not under sympathetic influence. Given the pivotal role of PIP2 on GIRK/Kir3 channel gating (Kobrinsky et al., 2000; Whorton and MacKinnon, 2011), any perturbation in the steady-state PIP2 levels may lastly interfere with GIRK/Kir3-regulated atrial contraction. In fact, our study provides strong evidences that the membrane-restricted PIP2 signaling could be modulated by A1R. Both A1R and M2R activate GIRK/Kir3 channel, in a Gβγ-dependent manner. However, since K+ current carried by GIRK/Kir3 channels upon A1R stimulation is much more sensitive to PIP2 perturbation, the proposed A1R-mediated stimulation of PLCβ activity may decrease PIP2 levels within sarcolemmal microdomains where GIRK/Kir3 channels are located, then promoting GIRK/Kir3 channel deactivation along with a less GIRK/Kir3-mediated contractile depression, at least in comparison to M2R (Figure 21). The interplay of A1R with PLCβ may also trigger SR Ca2+ release through generation of IP3 (Berridge, 1993) that should attenuate negative inotropy, but this remains a speculative assumption since our experimental approach does not prove it.

Beside GIRK/Kir3 channels, our functional experiments go in line with a restrained SK/KCa2 channel operation during A1R stimulation that greatly affects the atrial inotropic status. Inhibition of repolarizing K+ currents during AP repolarization phase, like K+ currents carried by GIRK/Kir3 and SK/KCa2 channels should in a final step interfere with Ca2+ dynamics that drive E-C coupling in atrial myocytes. These channels can be regarded as gatekeepers of cellular excitability readily to be recruited during stressful conditions. If these repolarizing K+ currents shorten AP, thereby obviating time course for Ca2+ influx (Iijima et al., 1985; Capogrossi et al., 1990; Wang and Belardinelli, 1994; Belardinelli et al., 1995), it is reasonable to assume that the contrary is true for the proposed inhibition of these currents upon A1R activation. Thus, negative inotropism of A1R holds a compensatory contractile mechanism comprised by K+ channels inhibition and, consequently, longer times for Ca2+ entry into atrial myocytes. Unlike atrial muscle cells, SA nodal cells seem to be tougher to modulation of SK/KCa2 gating and PLCβ/PKC axis. Hence, in SA nodal cells the depressor balance supplied by these signaling proteins
might not be relevant for A1R chronotropic regulation, explaining why A1R act as chronoselective atrial depressant effector (Figure 16 and 18). Of note, our research also demonstrated that PKC function impairment sensitizes atria for contractile depression during graded increase of adenosinergic stimuli. It is hard to establish a solid and coherent connection among A1R, PKC and chronoselectivity because, at the best of our knowledge, no one has provided evidences strong enough to rule out the doubtfulness around the role of PKC isozymes on regulation of myofilament properties and other components of the EC-coupling mechanism, like CaV1 (L-type) channels.

Finally, these data also reinforces the dissimilarity between the signaling of A1R and M2R on heart function regulation, also supported by the fact that ACh did not modify atrial cardiodepression, as observed with A1R agonists (data not shown). Looking at atrial regulation as an integrative process of several neural and non-neural mechanisms, activation of cardiac M2R is under hierarchical control of ACh releasing mechanisms from the vagus nerve terminals while ADO releasing mechanisms are naturally less controlled. In other words, the subordinate neurotransmitter of the parasympathetic nervous system offer a strong control of cardiac output by changing with similar potency heart rate and inotropy (stroke volume depends on atrial inotropy). Conversely, retaliatory ADO is brought to the extracellular medium by neural and non-neural mechanisms during stressful conditions and therefore, not so tightly regulated as ACh release. If ADO shared the same pattern of cardiodepression as ACh, large amounts of this nucleoside released during low oxygen tension (Sparks and Bardenheuer, 1986; Deussen, 2000) would be much more life-threatening than it really is. Thus, and according to the results of the current study, it could be suggested that the safety margin of these two cardiodepressor agents is provided by meticulous neural mechanisms (for ACh) and by the chronoselective property of the A1R itself (for ADO).

From a clinical point of view, the selective heart rate-reducing induced by ADO may be advantageous to protect hearts from deleterious effects of tachycardias and metabolic compromised states (e.g. hypoxia, ischemia, higher sympathetic tonus), in particular in those hearts with ventricular myocardial dysfunction (e.g. heart failure) where excessive atrial cardiodepression could be life-threatening. The overall effect of ADO outflow to the extracellular medium during metabolic challenge, or intravenous bolus administration of these nucleoside/derivatives, is reoxygenation of the myocardium since energy expenditure is reduced by a decrease of heart rate and oxygen consumption (via A1R) and rise of myocardial oxygen-supply by coronary dilation (via A2R) (Shryock and Belardinelli, 1997; Headrick et al., 2011). The cytoprotector and antidysrhythmic profile of this endogenous nucleoside and its derivates (e.g. tecadenoson) are not accomplished at the expense of a greater negative inotropic action as compared to other cardiodepressant
molecules (e.g. ACh), which reinforces their therapeutic value and safety in arrhythmias reversion, in particular those originated in supraventricular tissues.

Figure 21. General mechanistic scheme for the chronoselectivity of ADO. In upper panel (A) is depicted a tubular system of an atrial myocyte and some of the molecular elements involved in its E-C coupling under basal conditions. Voltage-dependent activation of Ca\textsubscript{1.1}(L) allows Ca2+ entry (\textit{I}_{\text{Ca,L}}) into myoplasm that triggers RyR and leads to massive Ca2+ release from SR. [Ca2+]\textsubscript{i} transient initiates a rapid contraction of atrial myocytes. Control of Ca2+ current carried by Ca\textsubscript{1.1}(L) can occur through a variety of mechanism, including SK/K2 channels activation that reacts against calcium influx. In lower panels are represented two situations: atrial myocytes exposed to ACh (B) and ADO (C). The potent negative inotropic effect of ACh is based on activation of M\textsubscript{2}R and subsequent K+ efflux through GIRK/KIR3 channel opening. Since this hyperpolarizing K+ current shortens the repolarization phase of the AP, M\textsubscript{2}R decrease the time available for calcium influx (\textit{I}_{\text{Ca,L}}) leading to a reduction in atrial muscle contraction (B). Similar to M\textsubscript{2}R, A\textsubscript{1}R also elicits a negative inotropy through G\betaγ-mediated GIRK/KIR3 channel opening. However, A\textsubscript{1}R stimulates the activity of phospholipase C (PLC) that, in turn, stimulate breakdown of GIRK/KIR3 channel activator PIP\textsubscript{2}. Therefore, following stimulation of GIRK/KIR3 channel by depleting PIP\textsubscript{2} in the sarcolemma. Impairment of GIRK/KIR3 channel function by A\textsubscript{1}R activation yields a lesser reduction of Ca2+ influx during E-C coupling, which is further potentiated by SK/K2 channel inhibition. Positive inotropic mechanisms may also occur during A\textsubscript{1}R stimulation such as IP\textsubscript{3}-induced SR Ca2+ release (via PIP\textsubscript{2} breakdown) and further balance of the negative inotropic effect of GIRK/KIR3 channel. Besides IP\textsubscript{3}, PIP\textsubscript{2} hydrolysis also generate PKC-activator messenger, diacylglycerol (DAG). In summary, when compared to M\textsubscript{2}R, A\textsubscript{1}R exhibits an attenuated GIRK/KIR3-mediated contractile suppression that involves inhibition of SK/K2 channel and activation of PLC, explaining why A\textsubscript{1}R acts as chronoselective atrial depressant effector. Solid lines represent AP, [Ca2+] and contraction profile under basal conditions, whereas dashed lines represent the same parameters when either cholinergic or adenosinergic agonist are present.
VI. References

Fabiato A. 1983. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1-14.

