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Abstract

According to the World Health Organization (WHO), arteriosclerosis is the third lead-

ing cause of worldwide deaths. Anatomically, this pathology is characterized by arteries'

hardening or the increasing of the thickness between the intima and media arterial layers.

Arteriosclerosis is commonly diagnosed using carotid ultrasonography. The ultrasound

images are very challenging because they have a signi�cant amount of speckle and gener-

ally poor quality. The above-mentioned intima-media thickness (IMT) is often measured

manually by medical experts or using some commercial software. However, the manual

segmentation is very time consuming and subjective and the commercial software lack the

detection of large IMT.

The main purpose of this work was the development of an automatic classi�cation

approach to improve a previous work developed within the Bioimaging Group of INEB.

This method uses the instantaneous coe�cient of variation as primary edge detector, a

fuzzy classi�cation stage, that returns a score map for each interface, and a dynamic

programming function to construct the �nal contours. It is suitable to real-time processing

and does not required any user interaction. The herein presented method intents to improve

the fuzzy classi�cation method (of the previous work) by replacing the heuristic approach

by a classi�cation based scheme.

We followed a pattern recognition approach that can be described by the following

sequence. Firstly, the important features are computed. Then, a feature selection method

is applied to reduce the dataset dimensionality, the computational cost and feature redun-

dancy. In this method, the classi�cation error is used as evaluation measure. The next

step is the classi�ers training and evaluation. Four classi�ers were trained and evaluated:

a quadratic, a k-nearest neighbor, a parzen and a support vector classi�er. To evaluate

their performance, a cross validation method was used. Two image databases were used

to train and test the proposed method.

The classi�cation result is a fuzzy score map where each pixel is labeled with its likeli-

hood of belonging to the searched interface. These maps (one for each searched interface)

are then applied to the already developed dynamic programming function and the �nal

interfaces are obtained.





Resumo

Segundo a Organização Mundial de Saúde, a arteriosclerose é a terceira causa de morte nos

países desenvolvidos. Anatomicamente, esta doença é caracterizada pelo endurecimento

das paredes ou pelo aumento do espessamento entre a camada intima e media das artérias.

Esta doença é usualmente diagnosticada recorrendo a exames de ultra-sonogra�a da

carótida. As imagens provenientes do ultra-som são muito complicadas de classi�car devido

à presença de grandes quantidades de ruido associado, normalmente, com baixa qualidade

da imagem. O parâmetro de avaliação desta doença é a espessura entre a camada intima e

a camada media (IMT). Esta IMT pode ser medida manualmente, por médicos, ou usando

algumas aplicações comerciais. Apesar disto, a segmentação manual é muito morosa e

subjective e as aplicações comerciais anda não conseguem segmentar grandes espessamentos

da IMT.

O principal objectivo deste trabalho é o desenvolvimento de uma abordagem de classi�-

cação completamente automática para ser usada como alternativa a uma outra desenvolvida

no grupo de bio imagem do INEB. Este método usa o coe�ciente de variação instantâneo

como detector principal de bordos, uma etapa de classi�cação difusa, que retorna mapas

de pontuação para cada interface, e uma função de programação dinâmica que constrói o

contorno �nal. Esta metodologia é executada em tempo-real e não necessita de nenhuma in-

teracção com o utilizador. O método aqui proposto pretende desenvolver uma metodologia

alternativa à classi�cação difusa (o trabalho anterior) substituindo a abordagem heurística

por uma baseada em classi�cação.

Seguimos uma abordagem baseada em reconhecimento de padrões que pode ser descrita

pela seguinte sequência. Inicialmente, as características mais importantes são calculadas.

Depois é aplicado um método de selecção de características para reduzir o tamanho dos

conjuntos de dados, os tempos de computação e a redundância entre características. O

erro de classi�cação é usado nesta altura como medida de avaliação. O passo seguinte é

o treino e avaliação do classi�cador. Foram treinados e avaliados quatro classi�cadores.

Estes são um classi�cador quadrático, um classi�cador de k-vizinhos mais próximos, um

classi�cador parzen e um classi�cador de vectores de suporte. Para avaliar as performances

destes classi�cadores foi utilizado um método de validação cruzada. Este procedimento foi

aplicado em duas bases de imagens.

O resultado da classi�cação é um mapa de probabilidades onde cada pixel é etique-
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tado com a sua probabilidade de pertencer à interface procurada. Estes mapas são então

aplicados a uma função de programação dinâmica e as interfaces �nais são obtidas.
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Chapter 1
Introduction

1.1 Motivation

According to the World Health Organization [WHO, 2012], the cardiovascular diseases

(CVDs) were the leading cause of deaths in the so called western countries, in 2010. In the

case of the Portuguese population, Fig. 1.1 shows that the CVDs are responsible for 37%

of all deaths caused by noncommunicable diseases (NCD). A NCD is a medical condition

or disease which is non-infectious and non-transmissible between persons. WHO estimates

that 86% of all deaths in Portuguese population are caused by NCDs.

CVDs are disorders of the heart and blood vessels and include the cerebrovascular

diseases. Arteriosclerosis is the third leading cause of death, among the CVDs.

This large incidence increased the interest of the scienti�c community in the develop-

Fig. 1.1: Portuguese population mortality of NCDs in 2010, according to WHO [2012].
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ment of better diagnosis techniques, for improving this disease detection at early stages,

reducing the diagnosis subjectivity and making the analysis of large images databases

easier.

1.2 What is Arteriosclerosis?

Arteries are muscular and elastic tubes that transport blood and its components. These

are composed by three layers (tunicas): the intima, the media and the adventitia. The

lumen is the artery interior through which the blood �ows. Figure 1.2 (a) presents an

anatomical view and Fig. 1.2 (b) presents an ultrasound view of the artery structures.

(a) (b)

Fig. 1.2: Artery structure. An anatomical and ultrasound view: (a) artery anatomy [Art.
Encyclopædia Britannica Online, 2012]; the LI is the lumen-intima interface, MA
is the media-adventitia interface, MI is the media-intima interface, IMT is the
intima-media thickness; (b) an ultrasound view of artery structures; the near
wall is the wall nearest to the ultrasound probe and the far wall is the farthest
one.

Fig. 1.3: Johann Czermak.

[Library, 2012].

The most relevant arteries interfaces mentioned in

this report are the lumen-intima (LI), the intima-media

(IM) and the media-adventitia (MA). The LI is the in-

terface between the lumen and the intima, the IM is the

interface between the intima and the media and the MA

is the interface between the media and the adventitia

(Fig. 1.2). The distance between the LI and the MA is

called the intima-media thickness (IMT).

Arteriosclerosis was not diagnosed until 1852, when

Johann Czermak (Fig. 1.3) autopsied an ancient Egy-

tian. Later, Sir Marc Armand Ru�er also identi�ed evidences of this disease in 3000-year-

old Egyptian mummies [Allam et al., 2011].
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Fig. 1.4: Carotid artery: A- location of the right carotid artery in the head and neck;
B- detailed image of a normal vessel; C- vessel with atheroma. Adapted from
Vascular and Endovascular Surgery [July].

Marchand was the �rst to introduce the term �atherosclerosis� and described it as an

association of fatty degeneration and vessel sti�ening [Anitschkow et al., 1933].

The degenerative changes responsible for the loss of arteries elasticity are called arte-

riosclerosis. Its incidence is greater with increasing age. This should not be confused with

atheroscleroses, which is a speci�c form of arteriosclerosis and is caused by the deposition

of fats, cholesterol, calcium and other substances in the intima layer. It is characterized

by a thickening of the intima layer and by chemical changes of the media layer. The fat

is progressively accumulated and produces a protrusion towards the lumen [Seeley et al.,

2012]. Depending on the size of this protrusion, di�erent stages of the disease can be

achieved. When the IMT is lower than 1mm, the artery is at a normal state, when this

thickness is between 1 and 1.3mm, it is considered as artery thickening and when the

IMT is higher than 1.3mm, it means that there is an atheroma. The latest state is the

artery asymptomatic severe stenosis (>50% of the lumen diameter) or occlusion. This last

stage normally requires a carotid endarterectomy to prevent stroke or aneurism formation

[Kumar et al., 2010].

1.3 Arteriosclerosis Diagnosis

There are several medical imaging modalities commonly used to diagnose arteriosclero-

sis: angiography (using X-ray or magnetic resonance (MR)), computed tomography (CT),

echocardiography and ultrasonography [Schmidt, 2007].

Angiography is an X-ray imaging technique used to visualize the interior of blood

vessels or organs by injecting a dye. It has some disadvantages like the use of radiation,

the probability of allergic reaction to the dye and the possibility of damaging the blood
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vessels with the catheter insertion [Schmidt, 2007]. The MR can also be used to perform

angiography exams. This technique is expensive and it can cause allergic reaction to dye

or vessel rupture. Figure 1.5 (a) shows an X-ray angiography and Fig. 1.5 (b) shows MR

angiography (the arrows point to the carotid arteries).

(a) (b) (c)

(d)

Fig. 1.5: Arteriosclerosis diagnosis exams: (a) conventional angiography; (b) MR angiog-
raphy; (c) CT; (d) ultrasonography [Schaller, 2007].

In addition, arteriosclerosis diagnosis can also be done using CT imaging (presented in

Fig. 1.5 (c)). This technique uses X-Ray energy and the �nal result is a set of slices of

body sections or a 3D reconstruction of these slices [Schmidt, 2007]. Although this is not

associated with the risk of vessel rupture or allergic reaction, the use of radiation can still

be harmful.

At last, ultrasonography is one of the most common techniques used for arteriosclerosis

detection because it is less expensive and faster than the other techniques. It is precise,

comfortable and does not bring any risks related to radiation, the catheter insertion or al-

lergic reaction. Historically, the �rst practical realization of ultrasound imaging appeared

during World War I for submarine detection. These attempts were then applied to indus-

trial applications for metals testing. The Austrian K. T. Dussik (Fig. 1.6), the so-called

�father of diagnostic ultrasound�, was the �rst to apply ultrasound for medical diagnosis,

in 1941. He tried to detect the brain ventricles using echotransmission [Roelandt, 2008].
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(a) (b)

Fig. 1.7: Example of ultrasound principle and acquisition of carotid ultrasound image:
(a) ultrasound imaging technique; (b) acquisition of carotid ultrasound image.
Adapted from Vascular and Endovascular Surgery [2012].

Fig. 1.6: K. T. Dussik.

[Woo, 2012].

A major step forward was the introduction in 1968 of elec-

tronic beam steering using phased-array technology. Since the

mid-1970s, electronic scanners have been available from many

companies and many ultrasound features have been improved

[Suetens, 2002].

This technique represents an image of the biological tissue

by transmitting sound waves focused beams into the body

and then receiving the re�ected echo (Fig. 1.7). In theory,

a wave motion results from the periodic medium-dependent

propagation of the particles vibration around their resting

positions. Sound waves are pressure waves that spread by

alternately compressing and decompressing the medium they are traveling in. The speed

of the sound wave propagation is a function of compression and density of the medium. As

a result, the frequencies used in vascular ultrasonography usually have a range from 2−10
MHz. With this technique, it is possible to capture tissue structures in images like the one

shown in Fig. 1.5 (d) [Schäberle, 2004].

An ultrasound image system is typically composed by a workstation and a probe (Fig.

1.7 (a)). The probes have an array of transducers coupled to the probe body. The trans-

ducer elements are responsible for the emission and reception of the acoustic waves, that

propagate into the body, where it encounters re�ecting surfaces and small scatterers (Fig.

1.7 (a)). The way that these objects re�ect or scatter the wave depends on the layer acous-

tic impedance and a proportional sound level is returned to the transducer. The time lapse

between the sound wave transmission and its reception is de�ned as the pulse-echo cycle.
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Fig. 1.8: Example of A-mode and B-mode scans: (a) A-mode; (b) B-mode display: echo
amplitudes are converted to spots of varying brightness. E and E' are hy-
perechogenic structures, M1 and M2 are structures hypoechogenic and F is a
structure with no echo [Schmidt, 2007].

This enables the measurement of the distance from the echo source to the receptor. The

transducer then converts the acoustic wave to an electrical signal that can be ampli�ed,

processed, stored and displayed [Iniewski, 2009, Prince and Links, 2006].

The carotid ultrasound image acquisition is done with the patient in the supine position

with the head turned slightly to the opposite side, as shown in Fig. 1.7 (b).

There are three di�erent ultrasound imaging modes: the A-mode, the B-mode and the

M-mode. The A-mode returns a signal of the amplitude of tissue echo (Fig. 1.8 (a)).

Structures with high density and that are hyperechogenic are characterized by high echo

peaks. The principle of B-mode imaging is the conversion of the re�ected ultrasound peaks

on spots of brightness proportional to their intensity, as shown in Fig. 1.8 (b). A large echo

peak of A-mode represents a large quantity of bright spots in B-mode. This means that

structures with high density and echogenicity are brighter than hypoechogenic structures.

At last, the M-mode scanning generates a time-motion trace that records the motion of

acoustic re�ectors such as heart valves and myocardial walls over time.

Ultrasonography can also be performed using Doppler techniques. These can be divided

in continuous-wave (CW) Doppler, pulsed Doppler, duplex sonography, power Doppler and

spectral Doppler. The essential di�erence between basic ultrasonography and sonography

using Doppler is that the last technique analyzes frequency changes that result from the

relative distance between the transmitter and the receiver. Besides these, ultrasound im-

ages can also result from color-coded duplex ultrasound, which combines the presentation

of two-dimensional morphologic information with superimposed �ow data of a de�ned area

displayed in color. An important modality of the color-coded duplex ultrasound technique

is the intravascular ultrasound (IVUS), represented in Fig. 1.9. This is commonly used

in arteriosclerosis diagnosis and it is a catheter-based imaging modality. The 360◦ IVUS

view shows the three layers of the arterial wall architecture [Schäberle, 2004].

From all the techniques mentioned above, B-mode ultrasonography is one of the most
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Fig. 1.9: Intravascular ultrasound [Schaller, 2007].

commonly used to diagnose arteriosclerosis because it is one of the most basic ultrasound

method, is easy to use, it does not require a high computational e�ort and it is not invasive.

However, it entails a poor image quality, caused by the speckle noise, the low contrast level

and the presence of �shadows�. A shadow occurs when either a strong re�ector such as

a gas/tissue boundary or a highly attenuating structure hides a deeper lying organ. The

shadow e�ect is very common in the presence of calci�ed atheromas.

Currently, the arteriosclerosis diagnosis can be done by manual measurement of the

IMT in B-mode ultrasound images which produces subjective results and is time consum-

ing. Due to this, several methods for semi-automatic and automatic measurement of the

IMT have been published. The main objective of these studies is to perform an automatic

segmentation of the artery walls in order of determine the IMT. Eliminating the user de-

pendence, these diagnosis would be less subjective and the results would be more accurate

and reliable. There are already commercial systems that perform IMT measurements au-

tomatically or semi-automatically but they fail on the large plaques detection and are very

sensitive to image noise. More information about these can be found in appendix A.

1.4 System Overview

This herein proposed work is based in a previous work developed by the INEB Bioimaging

group [Rocha et al., 2011]. The �owchart presented in Fig. 1.10 presents an overview of

this method.

The �rst step of the presented work is the image reading, followed by the ROI and

lumen axis detection. The ROI detection is a three classes approach and the Otsu algorithm

[Otsu, 1979] is used to distinguish each class. The lumen axis estimation is obtained by

applying a triangle thresholding algorithm, developed by Zack et al. [1977], measuring the

distance map between the black pixels and the white ones, computing the local maxima

and constructing the �nal lumen axis using a dynamic programming function. The next

block is the fuzzy edge map estimation. This is computed using the ICOV (instantaneous

coe�cient of variation). A variation of this map, the fuzzy intima score map, is then

computed for the LI interface. To obtain the MA interface, the fuzzy adventitia score map
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Fig. 1.10: Basic �owchart of previously work, developed by Rocha et al. [2012].

is computed using the fuzzy valley edge map and the fuzzy step edge map. A score map is

obtained for each interface and the �nal contours are constructed by passing these maps

to the dynamic programming function. This work is explained in detail in section 2.1.8.

Figure 1.11 presents the proposed approach with the replaced blocks highlighted.

The proposed method introduces an alternative way to produce the score maps which

substitutes the heuristic approach of Rocha et al. [2012] by an automatic classi�cation

based scheme. This classi�cation method intents to automatically de�ne the discriminant

features for each one of the interfaces and give to each one a classi�cation weight. This

information is embedded in a classi�cation function that returns the score map for each

interface.

The main di�erence in comparison with the previous method is the new pattern recog-

nition approach, the automatic de�nition of the classi�er and the reduction of the previous

method subjectivity (related with the features).

1.5 Objectives and Principal Contributions

The main advantages of the proposed method is the capability to evaluate images with and

without atheroma in horizontal and diagonal lumen vessel images achieving good results

even in low quality images. This is important because the mentioned commercial software

packages fail in the analysis of images with large atheroma and low quality. It can also

be applied to di�erent datasets only requiring an initial training using a representative

population of the total dataset. Another advantage is the use of less heuristic variables,

like in Rocha et al. [2012], the selection of the best features and the automatic de�nition

of the classi�ers parameters.

A poster related with this work was already presented during the I3S - Third Scienti�c
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Fig. 1.11: Basic �owchart of the work previously developed by Rocha et al. [2012] with
the new approach adjustments. The main contribution of the herein proposed
work is the replacement of the interfaces fuzzy score maps by a classi�cation
approach. The new approach is composed of two main stages, the features
computation and the interfaces classi�cation.

Retreat, at Póvoa de Varzim in 2012 [Carvalho et al., 2012].

1.6 Outline

This dissertation is structured by chapters and according to the following sequence. The

presented chapter introduces the anatomical and medical contexts and the diagnosis tech-

niques used nowadays to diagnose the arteriosclerosis disease. Chapter 2 reports the
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state-of-the-art for the IMT measurement using ultrasound carotid image segmentation.

It also presents the performance methods commonly used in the evaluation of these ap-

proaches. The chapter 3 describes the computed set of features, the dataset dimensionality

reduction problem and the classi�cation stage. A brief description of the dynamic program-

ming algorithm is given [Rocha et al., 2012]. Chapter 4 introduces the obtained results

and chapter 5 presents the conclusion, the problems associated with the new methodology

and the future work.



Chapter 2
Carotid Image Segmentation: An

Overview

The vessel diameter and the intima-media thickness are the two most used indicators for

the diagnosis of arteriosclerosis. The segmentation and classi�cation techniques herein

presented in this chapter are focused on estimating the artery wall interfaces in order to

measure the IMT.

The reference values for the IMT and for carotid diameter (in men and women) are the

following [Ligouri et al., 2001]:

Carotid diameter in men: 6.52±0.98 mm;
Carotid diameter in women: 5.11±0.87 mm;
IMT - Normal: IMT ≤ 1.0 mm;
IMT - Thickening: 1.0 mm < IMT < 1.3 mm;
IMT - Plaque: IMT ≥ 1.3 mm.

Figure 2.1 (a) presents a typical ultrasound image of a non pathologic carotid with a

normal IMT. Figure 2.1 (b) shows an ultrasound image of a pathologic carotid with plaque.

This section is organized according to the methodologies, by describing the basic prin-

ciples, performance, advantages and limitations of the di�erent methods together with a

brief discussion of the performance evaluation approaches. At the end, a summary table

is presented.

2.1 State-of-the-art

This section addresses the most important studies developed for the computerized IMT

assessment. Several methods are described and some conclusions are drawn. The pre-

sented methods are based in: intensity and gradient pro�les, dynamic programming, ac-

tive contours, Nakagami modeling, Hough transform, watershed transform, cubic spline

and RANSAC, classi�cation and integrated approaches. Each of these is described below.
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(a) (b)

Fig. 2.1: Artery structure on a B-mode ultrasound image: (a) normal carotid; (b) patho-
logical carotid. LI - lumen-intima interface, MA - media-adventitia interface
and IMT - Intima-Media Thickness.

2.1.1 Edge Detection using Intensity and Gradient Pro�les

The �rst approaches to perform carotid wall segmentation are based in edge detection

[Pignoli and Longo, 1988, Touboul et al., 1992]. In this technique, the authors proposed

the measurement of the echo peaks and they related them with the respective carotid layer

(Fig. 2.2).

Pignoli and Longo [1988] were the �rst researchers to introduce computer methods

in clinics for IMT measurement. Their approach is based on the image appearance and

intensity pro�le. As Fig. 2.2 reports, the intensity pro�le has higher responses in MA

interfaces (of near and far wall), medium response in the transition between the LI and

the MA interfaces and a very low response in the lumen. Using these di�erent responses,

they estimated the IMT [Molinari et al., 2010d].

Touboul et al. [1992] adopted the same research structure and principles but their tech-

nique was implemented at a multi-centric clinical and on epidemiological studies [Molinari

et al., 2010d].

A few years later, in 2001, Ligouri et al. [2001] proposed a segmentation technique

also based in edge detection, but using image gradients instead of the intensity pro�le.

This procedure was composed by two phases. The �rst phase corresponded to the selec-

tion of the Region of Interest (ROI), made by a human operator, and the second phase

consisted in a pattern recognition edge detection (PRED) algorithm used to �nd the pixels

belonging to the two required interfaces (LI and MA) of each wall. The �nal results were

compared with a commercial software, the "PROSOUND" [Prosound, 2012], and the IMT
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(a) (b)

Fig. 2.2: Intensity pro�le of a carotid B-mode ultrasound image: (a) column selection
(dashed line); (b) intensity pro�le of the dashed line. Each peak of the intensity
pro�le corresponds to an interface of the artery wall. The two peaks at the left
correspond to the MA and LI interfaces of the near wall (NW) and the right
ones correspond to the far wall (FW) [Pignoli and Longo, 1988].

maximum di�erence obtained between these two systems was 0.2 mm. The strengths of

this approach are the algorithm capability to work with images acquired from di�erent

hardware equipments and a low standard deviation for IMT (0.05 mm) in straight carotid

images. Two disadvantages are the user-dependency and the failure on vessel curves.

In 2005, Stein et al. [2005] proposed a semi−automatic IMT border detection program

and evaluated the results by analyzing the results' reproducibility and accuracy and the de-

creasing of the detection time. This approach segments the CCA, the carotid bulb and the

ICA. A semi-automatic and a manual measurement were performed. The semi-automatic

procedure determines the ROI based on the image intensity and vessel morphology. After

that, the LI and MA interfaces are automatically detected based on image intensity and

gradient information. The mean IMT measurement of the CCA was about 12.0±6.0 µm
and the coe�cient of variation (CV) between the medical expert and the semi-automatic

method was of 3.2%. This approach has a time reduction of 46% in comparison with man-

ual segmentation but has a low accuracy for the maximum IMT measurement of carotid

bulb and is user-dependent.

Faita et al. [2008] described a real-time automatic technique based on a pattern recog-

nition approach and a �First-Order Absolute Moment Edge Operator� (FOAM), that is

particularly robust against the speckle. This �lter enhances the image variations as it

can be seen in Fig. 2.3. The image processing scheme is divided into 4 steps: �ltering

process using FOAM; heuristic search, which corresponds to the detection of the interfaces

LI, IM and MA; outlier removal; and IMT evaluation. The IMT measurement error was

10.0±38.0 µm [Molinari et al., 2010d]. The strong points of this approach are the better
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Fig. 2.3: Typical intensity pro�le after and before using FOAM operator: (a) typical
intensity pro�le of a ROI column; (b) intensity pro�le of the same column after
the �ltering process with the FOAM operator [Faita et al., 2008].

signal-to-noise ratio obtained with FOAM, the less inter-observer and intra-observer vari-

ability and the real-time implementation (despite of the absence of time quanti�cation).

However, this approach has also weaknesses like the user-dependency and the impossibility

to process images with plaques.

Molinari et al. [2009] presented an algorithm for the automatic computer-based tracings

(ACT) of the CCA, characterized by four main features: user-independence, suitability to

normal and pathological images, robustness to noise and independence of ultrasound scan-

ners. This methodology was implemented in three steps. The �rst is the image cropping

and ROI selection followed by the lumen estimation, using local statistics, after �ltering

the original image with a �rst order local statistic �lter used to attenuate the speckle (Fig.

2.4 (a) and (b)). The last step is the adventitia layers estimation. This process is based

on pixel intensity distribution along each column and the location of maxima and minima

along the corresponding intensity pro�le (Fig. 2.4 (c)). The �nal detected boundaries are

presented in Fig. 2.4 (d).

In order to demonstrate the independence of ultrasound equipments, this methodology

was tested on 300 images, from three di�erent ultrasound equipments. The adventitia

boundaries were erroneously located in 2,7% of the cases. This con�rms the robustness of

the signal processing approach. The algorithm also has a good behavior on the detection

of adventitia layers, even in the presence of atheroma. The total processing time was 35

seconds. The IMT measurements were not presented.

Some more recent works, proposed by Molinari et al. [2011b, 2012d], are applying

new methods for edge detection. In 2011, Molinari et al. [2011b] developed a method

for double line extraction using edge �ow (CAUDLES-EF). This method is divided in two

stages. The �rst one is the far adventitia estimation and the second stage is the double

line border extraction. The edge �ow magnitude and edge �ow direction are obtained

computing the intensity edge �ow and the texture edge �ow. At last, these two features

were integrated with the �ow propagation, in eight directions, and the boundaries were

detected. The �nal stage is the removal of outliers. The IMT measurement bias error is



2.1. State-of-the-art 15

Fig. 2.4: ACT method of Molinari et al. [2009]: (a) original image; (b) image after
speckle noise reduction with Gaussian �lter (the white dashed line marks a col-
umn of the image); (c) intensity pro�le of image (b); (d) automatically detected
boundaries of the ROI and lumen points plotted on the original image (ADN =
near adventitia; ADF = far adventitia; L = lumen of the CCA).

−43±9.3 µm. This algorithm has some functional errors like the overlap of LI and MA

interfaces and the inaccurate MA detection. It is also sensitive to the de�ned parameters

like the ROI height (which discards the possibility of detection of large plaques).

Finally, in 2012, the same authors developed a completely automated multi-resolution

edge snapper (CAMES) [Molinari et al., 2012d] that uses a multi-institutional database

and performs a clinical validation. This method is divided in two stages: the �rst is the

automated detection of the carotid artery based on a combination of Gaussian kernels

with several known scales; the second stage consists of the automated segmentation of LI

and MA interfaces using the FOAM edge detector, a gradient-of-gaussian �lter followed by

heuristic based peak detection and location. The IMT measurement error is 78±112µm.

This method is accurate, has a low computational demand and it is very fast. It is robust

to noise and suitable for several databases (with images acquired with di�erent US probes

and equipments).

2.1.2 Dynamic Programming

Dynamic programming is a method for solving optimization problems without performing

an exhaustive evaluation of all the combinations between the system variables [Ballard

and Brown, 1982].

It was �rstly applied to the segmentation of carotid ultrasound images in 1994 by
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Gustavsson et al. [1994]. Gustavsson et al. [1994] proposed an automatic technique that

extracts the vessel echo intensity, edge strengths and boundary continuity from each pixel

of an image previously normalized and smoothed. These features are embedded, as weight

terms, into a cost function. The result of the cost function indicates the probability of the

pixel being located at an artery interface. The �rst step is to detect MA boundaries, for

the near and far walls. These boundaries will be used as starting point for the dynamic

programming to detect the LI interfaces. The result of automatic IMT measurement

obtained with this procedure was an inter-method mean IMT of 87.0±23.0 µm with a CV

of 3.2%. One of the best aspects of this procedure is the low computational complexity

and an accuracy equal to manual tracings. The main disadvantage is the impossibility of

manual correction in case of wrong segmentation.

Three years later, the same research group headed by Wendelhag et al. [1997] presented

another algorithm based on dynamic programming but, in this case, it includes optional

interactive modi�cations by the human operator. This study used 500 images from CCA,

carotid artery bulb and common femoral artery. The image features measured were the

same used in the previous study [Gustavsson et al., 1994] and were embedded into a cost

function. The weight of each feature is adjusted by training procedures. The estimated

values of the three boundary features (echo intensity, intensity gradient and boundary

continuity) are included as weighed terms in the cost function so that each image point

is associated with a speci�c cost that in turn correlates with the likelihood of that point

being located at the echo interface [Wendelhag et al., 1997]. The maximum IMT measured

was 40.0±36.0 µm. Manual correction of LI and MA were performed in 17% of all CCA

images. The whole manual procedure of IMT measurement takes 45 minutes while the

presented technique takes 15 to 18 minutes. This approach has some advantages like the

reduction of computational time, although it is still too long, and the lesser dependency

on the readers experience. One disadvantage is the frequent detection errors of the carotid

artery bulb caused by the presence of plaque.

Another study based on dynamic programming was reported by Liang et al. [2000] in

2000. This is a sequel of the two previous studies [Gustavsson et al., 1994, Wendelhag

et al., 1997]. The �rst step is to built a cost function for each boundary and de�ne the

cost terms. The de�nition of these cost terms are made by a training procedure which uses

medical expert data. The next step is a multiscale dynamic programming, which is the im-

plementation of the dynamic programming in di�erent scale spaces, produced by Gaussian

�lters with di�erent standard deviations. This operation allows the analysis of di�erent

boundaries because they have di�erent responses depending on the scale. The �nal step is

the measurement of the far wall IMT. This procedure allows human intervention to correct

the detected interfaces. This correction is embedded into the cost function and monitored

by a fuzzy expression to decrease the subjectiveness. The IMT measurement error was

42.0±20.0 µm. As strong points the authors pointed out the reduction of subjectiveness,

the robustness, the reliability due to the training process and the reduction of the overall
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analysis time. The manual reading time was about 3.5 minutes while the automatic de-

tection was 0.7 minutes. The main weakness of this technique is the inability to segment

and measure images with plaques.

One of the last performed studies based in dynamic programming was presented by

Holdfeldt et al. [2008] in 2008 and is an adaptation of the method proposed by Liang

et al. [2000] to perform IMT assessment in images sequences. The image sequences are

divided by frame and for each frame a candidate boundary pixel is de�ned. After this

a movement model is considered using the candidates movement between frames. The

method was tested using real and synthetic data. The results for the synthetic data were

better than for the real data. Besides, this method has a lower error for single frames

than for multiple frames which indicates that the model is not optimized to follow the

boundary's movement.

Lee et al. [2010] developed a dynamic programming method using a directional Haar-

like �lter. This method used dynamic programming to achieve a global minimum search of

image features extracted using the referred �lter. The dynamic programming uses a cost

function de�ned by an image feature term, obtained by the horizontal Haar-�lter rotated

between [−45o, 45o] and a geometrical force term (boundary smoothness). The obtained

boundary is the polyline that minimizes the de�ned cost function. The IMT detection error

is between [43-44µm]. This method's advantages is the capability to perform IMT detection

in sloppy carotids, the low sensibility to noise and the suitability to images with weak edges.

Some disadvantages are the lack on plaques segmentation and the user-dependency.

2.1.3 Active Contours

An active contour or snake is a controlled contour that elastically adapts to the closest

target [Dougherty, 2009]. The snake is controlled by an energy function and it continuously

evolves in order to reduce its energy. The snake's energy function (Esnake) depends on the

internal and external energy and is de�ned as:

Esnake = Einternal + Eexternal (2.1)

The internal energy (Einternal) depends on the intrinsic properties of the snake, such as

its length or curvature. The external energy (Eexternal) depends on factors such as image

structure and constraints imposed by the user Dougherty [2009].

Gutierrez et al. [2002] was one of the �rst to use active contours for IMT measurement.

Their approach was based on active contour and multi-resolution analysis. The operator

selects a ROI that is convolved with the corresponding partial derivatives of a Gaussian

�lter. Based on the extracted features, a scaled artery image is used to identify the ap-

proximated positions of the near and far wall. Two complementary images are obtained

based on gradient value in y-direction. One enhances pixel values transitions from high to

low echoes and the other enhances pixel values transitions from low to high echoes. The
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next phase is the contour modeling by the geometric deformed model. In this model, a

set of vertices connected by straight line segments or edges forms are the basic contour

structure. The contour deformation is caused by a combination of forces which acts on the

vertexes. This model is de�ned by three forces. The internal force, the external force and

the damping force. It has a good accuracy and low coe�cient of variation but it may need

manual corrections. The mean IMT measurement error was 30.0±60.0 µm.

Cheng et al. [1999, 2002] started the work on arteriosclerosis diagnosis back on 1999.

These two methods were based on an adaptation of Cohen's snake. The �rst step is

the image normalization to prevent the snake to diverge and oscillate. It requires a user

selection of two lumen points used to initialize the active contour that will estimate the

intima boundary. Then, the Macleod operator is used to enhance the interfaces. The edge

intensity, the gradient, the thickness and the continuity are considered in order to avoid

the noise e�ect. The processing time is reduced by adding a vertical external force which

attracts the snake downward. This method is robust to noise and the results, according

to the authors, are acceptable. The Mean-square-error (MSE) was used to evaluate this

method. The results for the far wall segmentation were 62.3±60.5µm and 38.4±68.3µm for

the LI interface and the MA interface, respectively [Molinari et al., 2010d]. The processing

time is 30 seconds to 1 minute per image and the hardware used to run this algorithm was

not speci�ed.

Loizou et al. [2007] used snake to performance in carotid segmentation. The image

is �rst normalized using the method introduced by Elatrozy et al. [1998]. In order to

reduce the speckle, a linear scalar �lter (Ismv) based on the mean and variance of the

pixel neighborhood was used. After this, the initial contour location is de�ned. This step

is very important because a bad initialization can make the snake converge to a wrong

location. So, it is essential to place the initial snake contour as close as possible to the

boundary of interest. This approach is organized into the following steps (Fig. 2.5): image

loading, ROI selection and cropping (Fig. 2.5 (a) and (b)); despeckling of the selected area

applying the Ismv �lter (Fig. 2.5 (c)); binarization of the cropped area and dilation (Fig.

2.5 (d) and (e)); elimination of erroneous small edges that may trap the snake and labeling

of connected components (Fig. 2.5 (f)); extraction of the segmented contour matrix by

locating points and their coordinates on the adventitia and constructing an interpolation

B-spline (Fig. 2.5 (g)); mapping the detected contour from the contour matrix in order to

form the initial snake contour for the adventitia layer (Fig. 2.5 (h)); Application of snake

segmentation based on the energy function proposed by Williams and Shah (Fig. 2.5 (i)).

The strengths of this methodology are the image quality and snake initialization im-

provement, the insigni�cant di�erence between manual and automatic IMT measurements

and the small rate (5%) of bad initialization of the snake. The evaluation of the method

was based on the IMT maximum, mean and minimum and their CV. The evaluation was

made using two sets of manual contours traced in di�erent periods of time. This set of

meausurements was compared with the one obtained by the automatic method.
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Fig. 2.5: Method developed by Loizou et al. [2007]: (a) original ultrasound image with
selected area; (b) cropped area; (c) despeckled area; (d) binary cropped area;
(f) dilated area after removal of small edges; (g) interpolation with B-spline; (h)
detected initial contours; (i) �nal contour after the snake deformation.

In 2009, Loizou et al. [2009] presented another method that uses snakes for the IMT as-

sessment. The signi�cant di�erence between this method and the one presented in [Loizou

et al., 2007] is that the latter performs the assessment of the IMT, the media layer thickness

and the intima-media-complex in several age groups. The Williams and Shah snake was

used and the �rst detected interfaces was the LI. Then, this interface is displaced 6 pixels

downward and the upper side of the media layer interface is used to initialize the snake in

order to detect the MA interface. The mean IMT error is 14±37µm.

A few years later, the same group led by Petroudi et al. [2011] developed another snake

based method. This methodology uses the Chan-Vese snake after the image normalization

and the speckle removal. The snake model tries to separate the image into regions based on

pixel intensity and introduces a speci�c energy function that takes under consideration the

curve length and the area inside the curve. The obtained regions are then used to initialize

the snake that will detect the LI and MA interfaces. The IMT error is 0.01±0.01mm.

Other work that exploited the snakes potential in the carotid artery wall detection

was presented by Delsanto et al. Delsanto et al. [2007]. This work is based on a concept
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Fig. 2.6: CULEXsa method developed by Delsanto et al. [2007] : (a) distribution of nor-
malized intensity mean and standard deviation of a 10x10 square neighborhood
for each pixel belonging to a B-Mode ultrasound image of a normal CCA; (b)
Intensity pro�le relative to a column of a B-Mode CCA image.

of completely user-independent layer extraction signal analysis (CULEXsa). CULEXsa is

characterized by three phases. The �rst phase is the ROI identi�cation, which is composed

by image smoothing, determination of the adventitia wall using the intensity pro�le, and

an individualization of the carotid lumen. The lumen pixels are the minimum intensity

points of the neighborhood pro�le whose mean intensity and variance belongs to the lowest

intensity pixels class (Fig. 2.6 (a)). The second phase corresponds to a gradient-based

segmentation composed by image �ltering with a Gaussian �lter and edges enhancement

using the image intensity gradients (Fig. 2.6 (b)). The last phase is the segmentation

re�nement through an active contour.

This algorithm does not require the ROI selection. The results are statistically com-

parable to the ones obtained by the human trained operator, presenting an average error

of the LI and the MA interfaces segmentation lower than 1 pixel, which corresponds to

an average error equal to 7%. The processing time is about 20 seconds, using Matlab

and a dual core processor of 2.5 GHz. This method is a�ected by noise sensibility, blood

scattering and image quality, which can preclude the proper ROI selection and the correct

CCA segmentation.

Bastida-Jumilla et al. [2010] developed another method for the IMT assessment using

snakes. This method uses anisotropic di�usion to create homogeneous and clearly separated

regions inside the image followed by a geodesic active contour to detect the interfaces. This

algorithm is based on thresholding of a geodesic curve at each iteration and mathematical

morphological operations. The detected curves are smoothed by �tting a polynomial of

low order. This method was tested only in 5 non-asymptomatic images and requires a ROI

selection by the user. The mean IMT measurement error is 12.86 pixels.

Already in 2012, Molinari et al. [2012b] presented another study describing the per-

formance of CMUDS (Carotid Measurement Using Dual Snakes). CMUDS is divided in

three stages: the �rst is the automated carotid recognition and tracing of far adventitia

wall, the second is the ROI determination followed by initialization of two snakes model

(one for LI and another for MA interfaces) and the third stage is the convergence of the
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Fig. 2.7: Geometry of Nakagami modeling Molinari et al. [2010d].

�nal LI and MA tracings. The novelty of this method is that the snake's initialization are

performed by shifting the detected adventitia far wall 3 mm upwards for LI interface and

0.1 mm for the MA interface. After the snakes' initialization, three parameters (for each

interface) are computed to de�ne the snakes energy. These are the traces continuity, the

stopping force strength and the attraction term. This snake's term uses as main feature the

FOAM map. Besides these, a mutual constraint force between the two snakes is de�ned.

The CMUDS IMT error is 199±205µm. This method is very dependent on the �rst stage

and the distance between the detected adventitia wall and the snakes' initialization point

is very subjective.

2.1.4 Nakagami Modeling

The Nakagami method models the intensity of a small ROI to perform the segmentation

(Fig. 2.7). This technique states that if a ROI contains the carotid wall, its intensity is

characterized by a speci�c pattern and the presence of speckle noise [Molinari et al., 2010d].

Destrempes et al. [2009] proposed a segmentation strategy based on Nakagami mixture

modeling and stochastic optimization. They considered small vertical ROIs containing

the IMT complex and analyzed the radio frequency (RF) signal. The authors modeled

the vertical RF signals as a mixture of three Nakagami distributions. These distributions

follow the next assumptions: the lumen corresponds to the distribution with lower mean;

the IMT corresponds to the mixture; the adventitia corresponds to the distribution with

higher mean. The authors reported a MSE of 21±13µm for the LI FW interface and of

0.12±7µm for the MA FW interface [Molinari et al., 2010d].

2.1.5 Hough Transform

The Hough transform (HT) is a popular tool in applications on image segmentation because

of its robustness. The original HT was designed to detect straight and curved lines and

this method can be applied to images with edges already detected. An advantage of this

approach is the robustness of the segmentation results because segmentation is not too

sensitive to imperfect data or noise [Sonka et al., 2008].

Golemati et al. [2007] applied this image segmentation technique to the problem of

carotid artery wall detection. The HT was used to identify the arterial wall in longitudinal
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Fig. 2.8: Method developed by Golemati et al. [2007]: (a) original (cropped) image;
(b) image after �ltering and morphological closing; (c) image (binary) after
thresholding; (d) result of edge detection in binary image; (e) result of HT on
edge image; (f) result of HT on original image.

sections and lumen boundaries in transverse sections of B-mode ultrasound images. For

each subject, two images were recorded, one corresponding to a longitudinal section and

the other to a transverse section. The main steps of this method are: the reduction of the

image area (Fig. 2.8 (a)) made by a morphological closing, followed by a thresholding to

remove low intensity areas and the de�nition of the �rst and last non zero line and columns

(Fig. 2.8 (b) and (c)); preprocessing, where the image was smoothed using a Gaussian �lter

with kernel size of 7x7 and subjected to a morphological closing; edge detection, using the

Sobel gradient operator (Fig. 2.8 (d)); HT application, which is di�erent for transverse or

longitudinal images; and selection of dominant circle and lines (Fig. 2.8 (e)). To de�ne

IMT boundaries, two lines should be detected. The �nal result is presented in Fig. 2.8 (f).

The validation of this methodology was made by comparison of automatic traces against

human traces. In healthy subjects the systolic IMT values were 55.0±6.0 µm and the

diastolic ones were 61.0±5.0 µm. This means that the IMT values change between cardiac

phases. The main advantages of this method include the simplicity, the low computational

cost and, according to the authors, the validity of the results. It also allows the analysis

of di�erent image projections and video records. The time required to identify two lines

in both projections did not exceed 5 seconds in a sequence of 30 images. This algorithm

was executed using a computer with 2.2 GHz. In longitudinal images, the accuracy was

particularly high (>0.96) indicating a considerable reliability in lumen detection. As weak

points there is the high dependency on image preprocessing, the low system sensitivity

(<0.83) and the incapability of processing vessels with atheromas.

One year later, Stoitsis et al. Stoitsis et al. [2008], one of the authors of the previous
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(a) (b)

Fig. 2.9: Molinari et al. [2010c] method based in watershed transform: (a) original image;
(b) image segmentation based in watershed transform.

referred work, presented an automatic methodology that allows the extraction of circles

from transverse sections. In this methodology, the HT was used to initialize an active

contour. The procedure is composed by a preprocessing stage, computation of a gradient

vector �ow �eld, HT application and contour estimation. This methodology has the fol-

lowing advantages: it is very simple and has a low computational cost; the results obtained

for healthy patients were better using the HT's initialization of the active contour. The

weak points were the low statistical sampling (14 images), worse results using combined

methodology for plaque images in comparison with the results obtained only with the ac-

tive contour. This methodology is very dependent on external variables as the parameters

of the threshold, the kernel size of the smoothing �lter and the morphological closing.

2.1.6 Watershed Transform

In 2010, Molinari et al. [2010c] proposed an approach for IMT assessment based on mor-

phological operations using watershed transform to segment the image. The image was

eroded, reconstructed and binarized using the Otsu's criterion in order to obtain the wa-

tershed's initialization markers.

After the region segmentation, a Canny edge operator was applied to each of the

segmented regions and the lumen is detected, allowing the ROI de�nition. Figure 2.9(a)

represents the input image and Fig. 2.9(b) represents the segmented image. The following

step is the classi�cation of the ROI pixels using a K-means clustering method, where K

is the number of used clusters. This classi�es the pixels in three classes: artery lumen,

intima and media layers and adventitia layer. The point of transition between the lumen's

cluster and intima and media cluster corresponds to the LI interface whereas the transition

between the intima and media cluster and the adventitia cluster corresponds to the MA

interface. The IMT error is 15±170µm. The main advantage of this method is the good

lumen detection (for images with low noise) even in images with the jugular vein present.

The average computational time is 18±3 seconds on a dual 2.5 GHz PowerPc with 8 GB of



24 Chapter 2. Carotid Image Segmentation: An Overview

RAM in a Matlab framework. As it was said, the artery detection is not robust in images

with high noise ratio. Besides, the method is very sensitive to the size of the erosion

structural element.

2.1.7 Cubic Spline and RANSAC Methods

In 2010 and 2011, Rocha et al. [2010, 2011] reported a method for semi-automatic seg-

mentation of carotid wall that looks for the best smooth curves according to a new gain

function. This approach starts with the selection of two or three points of the lumen re-

gion, which allows the estimation of the lumen axis and the ROI selection (Fig. 2.10 (a)

and (b)). Then, the edge estimation is performed by: estimating the dominant gradient

direction at the edges, selecting the edges of interest that de�ne the �nal edge map and,

at last, determining the valley edge map. The edge detection was performed by using a

new smoothing �lter, developed by the author, inspired in Tauber's anisotropic di�usion

model, which takes advantage of the instantaneous coe�cient of variation (ICOV) edge

detector. The edge selection only keeps the edges that are compatible with the adventitia

boundaries and this selection is based on their gradient orientation, their distance to the

lumen axis and their signed distance to the lumen boundaries. The valley edge map (Fig.

2.10 (e)) is viewed as a subset of the edge map (Fig. 2.10 (d)) and consist on the edges

associated to pro�les with two intensity peaks, being one of these usually lower. This

procedure does not consider pro�les with only one peak or a weak lower peak. The MA

interface is detected using the random sample consensus (RANSAC) algorithm. It uses a

priori knowledge of the distribution of inliers and sets of 5 points are used to de�ne each

spline. The best spline is selected by the algorithm. The consensus of the �tted spline is

measured by a gain function that integrates the response of several discriminant features

of the carotid boundaries. This discriminant features are the distance of the spline to any

edge point, the distance to valley edge points, the angle between the orientation of the

normal to the spline and to the intensity gradient and the signed distance to the lumen

boundary (SDL) (Fig. 2.10 (c)). The estimated adventitia boundaries are presented in

Fig. 2.10 (f). The LI is detected by combining dynamic programming, smooth intensity

thresholding surfaces and geometric snakes.

The validation method was done against three manual tracings and the dataset used

consisted of 50 longitudinal images. The detection error was similar to those observed

in manual segmentation for 95% of far walls (FW) and 73% of near walls (NW). The

strong points of this method are the robustness to highly degrading factors, like heavy

noise, graphical marks, missing data and occlusion of the lumen region by atheroma. Also

the capability of adjusting to �exible tubular shapes, similarity between manual tracings

and automatic tracings, a good performance in the segmentation of far wall boundaries,

which are the most used in clinical practice, and the ability to segment large plaques.

This algorithm median processing time is 28.5 seconds. The segmentation of the NW is

complex. This method was implemented in Matlab on a computer with an Intel Core Duo
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Fig. 2.10: Rocha et al. [2011] method : (a) input image; (b) points entered by the user,
the interpolated lumen medial axis and the ROI; (c) absolute values of SDL;
(d) edge map; (e) valley edge map; (f) Estimated adventitia boundaries.

processor at 2.13 GHz and a 2 GB RAM.

2.1.8 Classi�cation Methods

This section presents the classi�cation approaches that integrate some of the previously

explained theoretical principles.

The �rst work was reported by Molinari et al. [2010a]. This work presents a methodol-

ogy called carotid artery layer extraction using an integrated approach (CALEXia). This

approach consists on the extraction of geometric features, line �tting and classi�cation.

The output of the algorithm is the tracings of the near and far adventitia layers. The �rst

step is the image smoothing with a Gaussian �lter and the computation of the vertical

gradient column-wise. For each column, the algorithm searches for seed points, which are

the high intensity local maxima surrounded by low intensity local minima. These seed

points have a high probability of belonging to high intensity structures (Fig. 2.11 (a) and

(b)). The next step is to connect those seed points (Fig. 2.11 (c)). To overcome the

problem of false positives and over-segmentation, line segments are �rst combined, �tted

and connected (Fig. 2.11 (c), (d) and (e)) and then a linear perceptron that combines

geometric features discards all the line segments that have a high probability of including

a vessel lumen, obtaining the �nal contour (Fig. 2.11 (f)).

The validation of this method is done using the mean of the three human tracings. The

mean absolute error for the NW is 0.07±0.07 mm and the far wall error is 0.17±0.24 mm.

The wrong detections can be originated when the CCA is parallel to the jugular vein and

by deeper plaques protruding into the artery lumen. This method is very noise sensitive,

it can confuse the jugular vein with the carotid artery, the smoothing process can change

the location of the edges, it is unable to process images with large atheromas and it does

not perform IMT measurements. The advantages of this method are the good results for
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Fig. 2.11: Molinari et al. [2010a] CALEXia method: (a) detected local maxima seed
points; (b) selected seed points based on the linear discriminator model; (c)
line segments after �tting; (d) valid line segments; (e) connected line segments.
White arrows A and B indicate a couple of valid but disconnected line segments,
white arrows A' and B' show the connection of the line segments; (f) �nal result
for healthy carotid.

normal and curved vessels and vessels with plaque. The dataset is very large (100 normal

CCAs, 50 CCAs with an increased IMT, 30 with �brous plaque and 20 anechoic plaques).

Rocha et al. [2012] presented a new IMT assessment method which uses fuzzy clas-

si�cation to construct the �nal interfaces. This method uses the ICOV edge detector as

Rocha et al. [2010, 2011], an edge fuzzy classi�cation method and a dynamic programming

procedure. It is suitable for the detection of both near and far wall LI and MA interfaces.

The �rst step is the ROI and lumen axis automatic detection. The ROI detection is per-

formed using two Otsu's threshold [Otsu, 1979]. That separate the three pixels classes

(dark pixels, corresponding to lumen and hypoechogenic tissues, bright pixels, correspond-

ing to letters or graphical marks and medium intensity pixels, corresponding to echogenic

tissue). The lumen axis detection is performed inside the already detected ROI and follows

four steps. In the �rst one, a triangle threshold algorithm is used to set the lumen pixels

to black; in the second step, the distance between dark pixels and the closest white pixel

in the same image column is measured; the next step consists in the detection of the local

maxima of the distances in the gradient direction; in the last step, a dynamic programming

algorithm is used to delineate the lumen axis, which is the contour with the highest score.

At this point, a second ROI is de�ned using the lumen information combined with the

maximum expected carotid vertical diameter.

Then the fuzzy edge map is computed, from the ICOV image, using robust statistics
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based on the Tukey's function. Then, the fuzzy valley edge map is also computed. It

represents the edges associated with a valley shaped intensity pro�le. To detect the LI

interface, the fuzzy edge map is passed to a score function to construct a LI score map.

The �nal LI interface is obtained applying this score map to the dynamic programming

algorithm. This algorithm is based on a gain function that combines the edge information,

from the fuzzy score maps, with a geometric term. The MA interface detection uses both

the fuzzy edge map and the fuzzy valley map to compute a MA score map and the search

is conditioned by the already detected LI interface position. The MA �nal contour is also

obtained using the referred dynamic programming algorithm.

The IMT error was evaluated by comparing the automatic detections with the three

manual tracings performed by two experts. The mean error is 0.207 mm for NW and 0.16

mm for FW. This method was computed using an Intel Core 2 Duo processor at 2.13 GHz

and the mean time required to segment an image was 2.1s. The main advantages of this

methodology are its suitability to segment large plaques, its low sensibility to noise, its

complete automation and the user independence.

Meiburger et al. [2011] developed a method called CAILRS (carotid artery intima

layer regional segmentation). This is based on scale-space multi-resolution analysis and on

the mean shift classi�er (MSC), which is a non-parametric technique for the estimation

of the density gradient. This method's �rst stage is the carotid recognition (equal to

Molinari et al. [2012d, 2011b, 2010a]) and the second is the LI and MA border estimation.

This is divided in the determination of the ROI, regional wall segmentation using the

MSC, reconstruction of the interfaces and the �nal re�nement checks. The MSC proposed

method was �rstly proposed by D and P [1997] and uses a search window of a certain

radius r initialized in a chosen location. Inside this search window, the di�erences between

the local mean and the center of the window is calculated and the resultant vector is the

so called, mean shift vector. A fundamental property of this classi�er is its proportionality

to the gradient of the probability density at a considered point.

This method's IMT error is −35±186µm and its disadvantages are the high dependency

on the �rst detected adventitia wall, the MSC only distinguishes one class (of the three

image classes) in the image and the impossibility to segment large plaques.

2.1.9 Integrated Approach

The methods presented in this section integrate di�erent techniques and methodologies,

some of them already described in the previous sections.

In 2010, Molinari et al. [2010b] presented an approach that integrates two algorithms

already presented, the CULEXsa [Delsanto et al., 2007] and the CALEXia [Molinari et al.,

2010a]. These two automated techniques are complementary and use di�erent foundations

for segmentation. They have completely di�erent architectures and they o�er di�erent

performances on LI and MA interfaces. Therefore, the goal of this research was to cal-

ibrate IMT measurements combining CULEXsa and CALEXia segmentations of LI and



28 Chapter 2. Carotid Image Segmentation: An Overview

MA interfaces, by using a greedy approach.

The general concept of the greedy algorithm is an iterative technique that searches the

global optimum of a problem by a series of local optimizations. This kind of algorithms

are commonly used for error correction and performance optimization.

CULEXsa and CALEXia lack on noise robustness, but the noise e�ect is di�erent in

each one. This method starts with the representation of the automatic tracing of CULEXsa

and CALEXia. Firstly it is assumed that the greedy algorithm boundary is CULEXsa

tracing because this presents a lower global error, for LI boundaries, in comparison with

CALEXia. After this, the �rst vertex of CALEXia is swapped with the closest one of

CULEXsa and the system error is computed. This process is iterated for all CULEXsa

points and the error is computed to all the swaps. If the error to a certain vertex for

CALEXia swap is lower than the error with CULEXsa, then CULEXsa's point is substi-

tuted by the CALEXia's point. This is done to all the computed interfaces. At the end,

the resultant boundaries are interpolated by a bicubic spline, to smooth out any minor

oscillation in the boundary pro�le.

The validation of this method is done using the polyline distance metric (PDM). This

metric was chosen because the authors stated that it is more robust and a reliable indi-

cator of the distance between two given boundaries. They evaluated three features, the

mean system error, the error per vertex and the IMT metrics in the greedy framework.

The advantages of this methodology are the good results in the presence of noise, vessel

pathologies and di�erent carotid appearances, high accuracy and robustness and a total

processing time of 4.5±0.2 seconds. This method was implemented in Matlab and executed

on a dual 2.5GHz PowerPC with 8MB of RAM. The mean IMT error obtained with the

greedy approach was lower than the error obtained with the performance of CULEXsa

and CALEXia and has a value of 83.1±61.8 µm. The main disadvantages are the need to

compute the errors in every system interaction and the high IMT error.

In 2011, Molinari et al. [2011c] developed an edge detection methodology, called

CARES, that combines the CALEX and the FOAM methods. CALEX was used to au-

tomatically trace the pro�le of far adventitia wall. The CARES algorithm modi�ed the

FOAM edge operator to perform a robust heuristic search of the maxima points. The

�nal error is 32±141µm and the computational time is 2.3 seconds (average time on the

300 images database). The disadvantages of CARES are the low reproducibility and the

impossibility of segmenting large plaques.

Molinari et al. [2011a] also presented a work were di�erent segmentation techniques

were fused in order to obtain a high-performance carotid IMT measurement. This method

fuses the CALEXia, CULEXsa and the watershed transform. The best combination of

the three referenced methods �rst combines the CULEXsa with the CALEXia and then

combines the result with the watershed transform. The mean IMT error is 46±47µm. This

combination decreases the sensibility to noise.



2.2. Performance Evaluation 29

(a) (b)

Fig. 2.12: Vertical distance: (a) between two horizontal contours; (b) between two non-
orizontal contours. A and B represent the two points where the true diameter
d′, is overestimated by the vertical distance, d.

2.2 Performance Evaluation

This section describes the performance measures used to evaluate the �nal interfaces of the

presented methods. This evaluation is done using reference contours, which are arteries

interfaces manually traced by medical experts. The evaluation result gives the a�nity

between the two compared contours.

Vertical Distance

The vertical distance (VD) is one of the easiest and commonly used distance to measure

the di�erences between two contours. It is de�ned by the modulus of the di�erence between

the ordinates of two pixels with the same abscissa. This measure is de�ned in eq. 2.2 and

illustrated in Fig. 2.12 (a).

d(A,B) = |yA − yB| (2.2)

Despite its common use, VD is a rough estimation of the true distance, measured by

the Euclidean distance [Deza and Deza, 2009]. This measure can be associated with some

error, like the one presented in Fig 2.12 (b). The measured vertical distance is presented

by d but the real distance between the two contours is d′.

Hausdor� Distance

The Hausdor� distance (HD) measures the distance between two sets o points. It measures

the farthest distance between them.

Given two �nite point sets, A = {a1, ..., ap} and B = {b1, ..., bq}, the Hausdor� distance

is de�ned as:

HD = max (dAB, dBA) (2.3)

where dAB = max
a∈A

min
b∈B
‖a− b‖ is the directed Hausdor� distance from A to B and dBA is
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the inverse. Figure 2.13 (a) illustrates a reference for the computation of dAB and dBA.

The directed Hausdor� distance identi�es the point a ∈ A that is farthest from any

point of B and measures the distance from a to its nearest neighbor in B (using the given

norm ‖.‖).
The major disadvantage of this distance measure is that only distances between vertices

are measured. Therefore, this measure only have signi�cant results when the two compared

set have the same number of vertices [Molinari et al., 2010d].

Polyline Distance Metric

In 2000, Suri et al. [2000] proposed a new measurement method to evaluate automatic

tracings called polyline distance metric (PDM). This method is based on the measurement

of the distance of each boundary vertex to the other boundary segments. The measured

distance becomes very robust because of its high degree of independence from the number

of points of each boundary [Molinari et al., 2010d].

The polyline distance from the vertex v to the boundary B can be de�ned by equation

2.4.

d(v,B) = min
s∈B

d(v, s) (2.4)

Considering two boundaries A and B, presented in Fig. 2.13 (b), it is possible to de�ne

the distance d(v, s) between the vertex v and a segment s.

(a) (b)

Fig. 2.13: (a) Hausdor� distance [Molinari et al., 2010d]. The distance dAB is the shortest
distance between the most distant point of B and the closest point of A. The
distance dBA is the shortest distance between the most distant point of B and
the closest point of A (b) Polyline distance metric between two boundaries A
and B [Molinari et al., 2010d].

The polyline distance between two boundaries (A and B) is de�ned as:

D(A,B) =
d(A,B) + d(B,A)

(number of vertex of A+ number of vertex of B)
(2.5)
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Mean Absolute Distance

The mean absolute distance (MAD) is one of the most commonly used evaluation measures.

It gives the mean absolute di�erences between the proposed traces (PT) and a ground truth

(GT). This is de�ned as:

MAD =
1

N

N∑
y=1

|PT (y)−GT (y)| (2.6)

where N is the number of points of each boundary and y is the ordinates of two contours

with the same abscissa. It is very simple to implement and it returns acceptable results

[Molinari et al., 2010d].

This measure, like the VD, can be misused if the artery is not horizontal because

the distance measured will not correspond to the true artery diameter. In this case, the

measure overestimates the diameter.

Mean Square Error

The mean square error (MSE) goal is to compare two contours by providing a quantitative

score that describes the degree of similarity/�delity or, conversely, the level of error/dis-

tortion between them [Wang and Bovik, 2009].

Suppose that PTi with i = 1, 2, .., N ; and GTi with i = 1, 2, ..., N ; are two �nite-length

contours, where N is the number of contour pixels. The MSE between the contours is:

MSE(PT,GT ) =
1

N
ΣN
i=1(PTi −GTi)2 (2.7)

Coe�cient of Variation

The coe�cient of variation (CV) measures the variability between two estimates of the same

measure, for instance, IMT mean. It can be used to assess the inter and intra variability

between two di�erent methods/operators [Gustavsson et al., 1994]. CV is de�ned as:

CV =
σ

(
√

2µ)
× 100% (2.8)

where µ is the pooled mean and σ is the standard deviation for the di�erences between

the manual and automatic tracings.

Figure-of-Merit

A �gure-of-merit (FOM) is a performance measure that establishes the ratio between the

correct responses and the total ones. The FOM is used by some of the presented methods.

It measures the ratio of the di�erence between the ground-truth and the automatic method.

Equation 2.2 represents the used FOM evaluation criterion, where Method represents the

method under evaluation.
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Fig. 2.14: Example of Bland-Altman method. The �led line represents the mean di�er-
ence of IMT values and the dashed lines represent the ± 2× standard deviation.

FOM =

(
1− |GTIMT−MethodIMT |

GT IMT

)
× 100

Bland-Altman Method

The Bland-Altman method consists in representing the di�erence between two estimates

of the same measure as a function of the corresponding means. The limits of agreement

can be de�ned as µ± 2σ, where σ is standard deviation of theestimates and µ is the mean

[Bland and Altman, 1986]. Figure 2.14 illustrates a typical Bland-Altamn plot. The �led

line represents the mean value (µ) of the di�erence between the estimated IMT and IMT of

reference and the dashed lines represent theµ±2σ for the di�erences between the estimated

IMT and IMT of reference.

Classi�cation Evaluation

There are multiple performance measures that can be used to evaluate the performance of

a classi�cation algorithm.

Detection and classi�cation performance metrics use di�erent parameters, namely: true

positive (TP), which corresponds to the true lesion areas that are detected by the algorithm;

false positive (FP), that corresponds to non-lesion areas that are detected by the algorithms

as being real lesions; true negative (TN), which corresponds to non-lesion areas that were

correctly classi�ed; and false negative (FN), that represents lesions that were classi�ed

incorrectly [Mendonça, 2011].

Based on these parameters, the following evaluation measures are used:
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• Accuracy = (TP+TN)/(TP+TN+FP+FN). Which is a measure of the global per-

formance of the algorithm in what concerns correct decisions.

• Sensitivity = TP/(TP+FN). Refers to how often the algorithm reports that an ab-

normality exists in the instances where it actually exists.

• Speci�city = TN/(TN+FP). Refers to how frequently the algorithm correctly reports

normal when no abnormality exists.

• Precision = TP/(TP+FP). Precision is the fraction of detections that are relevant,

which means that quanti�es the correct classi�cation from all the lesions detected.

A Receive Operator Curve (ROC) summarizes the space of possible trade o�s be-

tween sensitivity and speci�city [Mendonça, 2011]. It is used to make comparisons of

observer performance between two di�erent observation conditions or parameters [Costari-

dou, 2005].

2.3 Summary

Table 2.1 summarizes the presented techniques and evaluation methods. This table presents

the authors and methodologies used, the year of publication, the evaluation method, some

results, the computational cost and the number of images used. It also indicates the images

with plaques and if the method is automatic.

The best method is the Meiburger et al. [2011]. The IMT error of this method is

-16±258 µm. This method uses 300 images, and some of them with plaques. This method

was evaluated using the polyline distance metric and the FOM. It takes 1.87 s to classify

an image.

This table also shows that the most recent methods have been focusing in classi�cation

and integrated approaches. However, images with plaques are not yet commonly processed.
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Tab. 2.1: Methodologies summary

Author Method Evaluation criteria IMT Process. Num. of Plaque Auto?
error (µm) time images presence?

Pignoli and Longo [1988] ED - - - - - no
Touboul et al. [1992] ED MAD - - - yes no
Ligouri et al. [2001] ED MAD - - 133 yes no
Stein et al. [2005] ED MAD+CV - 5.5±0.5 min 300 yes no
Faita et al. [2008] ED MAD - - 150 no no
Molinari et al. [2011b] ED PDM+FOM -43±9.0 - 300 no yes
Molinari et al. [2012d] ED PDM+FOM 78±112 15s 300 no yes
Gustavsson et al. [1994] DP MAD+CV - - 121 no yes
Wendelhag et al. [1997] DP MAD - - 500 no yes
Liang et al. [2000] DP MAD+CV - 42s 458 yes yes
Lee et al. [2010] DP MAD [43 44] - 75 no yes
Gutierrez et al. [2002] AC MAD+CV 30.0±60 - 180 no yes
Cheng et al. [1999, 2002] AC MSE - 30-60s 32 yes no
Loizou et al. [2007] AC MAD+HD+CV - - 100 no no
Delsanto et al. [2007] AC MAD - - 120 yes yes
Loizou et al. [2009] AC MAD+CV - - - no yes
Molinari et al. [2009] AC PDM - - 300 yes yes
Bastida-Jumilla et al. [2010] AC MAD - - 5 no yes
Petroudi et al. [2011] AC MAD 90±100 - 30 no yes
Molinari et al. [2012b] AC PDM+FOM 30±284 - 665 no yes
Molinari et al. [2010c] WT PDM 150±170 18 ± 3s 200 no yes
Destrempes et al. [2009] NM MAD+HD - - 30 - no
Golemati et al. [2007] HT MAD - 5s** 10 sequences yes yes
Stoitsis et al. [2008] HT MAD - - 10 sequences yes yes
Rocha et al. [2011] CS MAD+CV - 28.5s 50 yes no
Molinari et al. [2010a] C MAD - - 200 no yes
Meiburger et al. [2011] C PDM+FOM -16±258 1.87s 300 no yes
Rocha et al. [2012] C MAD+CV NW:190 2.1s 50 yes yes

FW: 150 - - - -
Molinari et al. [2010b] IA PDM - 4.5±0.2s 200 no yes
Molinari et al. [2011c] IA PDM+FOM 32±141 2.3s 300 no yes
Molinari et al. [2011a] IA PDM 46.3±46.9µm 117.2±1.6s 200 no yes

ED - Edge Detection; DP - Dynamic Programming; AC - Active Contour; WT - Watershed; NM -Nakagami Modeling;
HT- Hough Transform; CS - Cubic Spline; C- Classi�cation; IA - Integrated Approach.
MAD - Mean Absolute Distance; PDM - Polyline Distance Metric; HD - Hausdor� Distance; MSE - Mean Square Error.
FOM - Figure of Merit.



Chapter 3
From Features to Classes in US Carotid

Images

Pattern Recognition is the background strategy used to develop the method for layer label-

ing in US carotid images. A basic explanation of the involved concepts from a theoretical

and a practical points of view are given.

To understand Pattern Recognition it is necessary to understand the concept "pattern".

According to Bow [2002], a "pattern" can be de�ned as a quantitative or structural

description of an object or some other entity of interest.

Pattern recognition is a process of categorizing any sample of measured or observed data

as a member of one of several classes. Machine vision intents to discover and reproduce the

human mechanism of object recognition [Duda et al., 2000]. The combination of pattern

recognition with machine vision, when accurate and reliable, is an useful and challenging

instrument in several applications like the IMT measurement.

Figure 3.1 gives an overview of the methodology for labeling the carotid interfaces. As

this �gure shows, this method is composed of three main stages: the feature computation

stage, the interface classi�cation and the interface detection.

The feature measurements and selection stage (for LI and MA interfaces) is composed

of the feature measurements, feature analysis and the dimensionality reduction. Firstly,

the features for each interface are computed, allowing the discrimination of the classes.

Then, the feature analysis is performed and some consideration of the used ground-truths

is done. At last, the dimensionality reduction is performed to reduce the computational

cost and the feature redundancy. The next stage is the interface classi�cation (for LI and

MA interfaces) which uses the previously computed features to create a score map for each

interface. Each pixel of this map is labeled with its likelihood of belonging to the searched

interface. In the third stage, the interfaces are detected by applying the interfaces score

maps to a dynamic programming function [Rocha et al., 2012].

This chapter is organized in six sections: feature measurements, feature analysis, dimen-
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Fig. 3.1: Flowchart of the proposed method. The main stages are the features computa-
tions, the interfaces classi�cation and the interfaces detection.

Fig. 3.2: Pixels' representation for the three types of classes.

sionality reduction, classi�cation methods, dynamic programming function and methodol-

ogy summary.

3.1 Feature Measurements

The �rst stage of the proposed method is the measurement, at each pixel, of a set of

features. Each sample (pixel) will be characterized by a set of features and a class. Each

image has three classes of pixels, the lumen-intima (LI) pixels, the media-adventitia (MA)

pixels and all the other pixels (REST class). These three classes are represented in Fig.

3.2.
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For each pixel, several features are computed. These features allow the di�erentiation

between classes.

The features computed for the LI and the MA interfaces are almost the same but, the

responses of a given feature for the LI is di�erent from the response of the same feature

for the MA. Six more features were computed for the MA interface, in comparison with

the LI interface. They are pixel-based or region-based. This combination intents to relate

the pixel information with the pixel neighboring information.

In order to simplify the features description, they are grouped by intensity, neighbor-

hood, gradient orientation and column pro�le features. Each one is explained and justi�ed.

Some of the used features were �rstly computed by Rocha et al. [2011] and are marked

with *. The most important one is the instantaneous coe�cient of variation (ICOV) edge

detector, developed by Yu and Acton [2004].

This edge detector measures the edge strength in speckled images, like the ultrasound

images. The value of the ICOV edge detector is given by equation 3.1:

ICOV (x, y) =

√√√√∣∣∣(1/2) ‖∇I(x, y)‖2 − (1/16)(∇2I(x, y))2
∣∣∣

(I(x, y) + (1/4)∇2I(x, y))2
(3.1)

where I represents the image intensity, ∇, ∇2, ‖.‖ and |.| are the gradient, Laplacian,

gradient magnitude and absolute value, respectively. As shown in equation 3.1, the ICOV

combines information of the image intensity with the �rst and second derivative. This

measure intents to allow for balanced and well localized edge strength measurements in

bright regions as well as in dark regions. Its good performance was already demonstrated

for edge-preserving speckle-reducing anisotropic di�usion on ultrasound images [Yu and

Acton, 2004].

The list below presents the features computed for the LI interface:

1. Intensity based - features that use intensity values directly or indirectly:

• Intensity magnitude - it has high intensity values at the searched interfaces.

This information is obtained from the normalized input image (Fig. 3.3 (a));

• Mean (Intensity_LIMean of equation 3.2), maximum (Intensity_LIMax of

equation 3.3) and standard deviation (std) (Intensity_LIStd of equation 3.4)

of intensity value between a pixel and the lumen axis - measures the maximum

intensity between the studied pixel and the lumen-axis. It is known that the

LI interface is placed near the �rst high intensity peak between the lumen axis

and the artery tissue (Fig. 3.3 (b));
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(a) (b)

(c)

Fig. 3.3: Intensity based features: (a) intensity magnitude image; (b) intensity pro�le of
intensity magnitude image. The pro�le was measured in the red line presented
in (a); (c) maximum of intensity between pixel and lumen axis.

Intensity_LIMean = mean(I(c, r_LA : r_px)) (3.2)

Intensity_LIMax = max(I(c, r_LA : r_px)) (3.3)

Intensity_LIStd = std(I(c, r_LA : r_px)) (3.4)

where I is the input image, c is the studied column of I, r_LA is the lumen

axis row and r_px is the studied pixel row.

2. Neighborhood based - features that give information about the neighborhood prop-

erties. All of these neighborhood features (IGauss) were obtained by the convolution

of a Gaussian low pass �lter (Gaussfilter) of size h with the input normalized image.

Equation 3.5 presents this convolution operation:

IGauss = Gaussfilter(h) ∗ I (3.5)

• Gaussian image displaced below the pixel under analysis. The displacements are

of 3, 5, 7 and 20 pixels. The used Gaussian �lter has a h equal to the performed

displacement. For instance, the Gaussian �lter used for a displacement of 7
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(a) (b)

Fig. 3.4: Gaussian windows and its displacements: (a) Gaussian image displaced 3 pixels
below; (b) Gaussian image displaced 20 pixels below. The red dot represents
the pixel with coordinate (338,221) on both images.

pixels has also a h size of 7 pixels. Figure 3.4 (a) illustrates the image resultant

from a window displacement of 3 pixels below the studied pixel and Fig. 3.4 (b)

illustrates the image resultant from a window displacement of 20 pixels below

the studied pixel. The red dot represents the pixel with coordinate (338,221)

in both images. As these �gures show, the red dot in the image obtained

with a displacement of 3 pixels is placed near the LI interface and the red

dot in the image obtained with a displacement of 20 pixels is at the lumen.

The displacement allows us to relate the analyzed pixel with the respective

neighbors. The feature that uses a displacement of 20 pixels is very useful to

relate the studied pixel position with the lumen position and is only used for

the below displacement.

• Gaussian image displaced above the pixel under analysis with Gaussian �lter h

of 3, 5 and 7 pixels. These features are similar to the ones described above but

instead of studying the neighbors below, is the neighbors above that pixel that

are studied.

• Gaussian image displaced to the left of the analyzed pixel with a Gaussian �lter

h of 3, 5 and 7 pixels. These features are similar to the one described above

but instead of studying the neighbors above or below, it is the left ones that are

studied.

• Gaussian image displaced to the right of the analyzed pixel with a Gaussian

�lter h of 3, 5 and 7 pixels. These features are similar to the ones described

above but instead of studying the neighbors above, below or left, it is the right

neighbors that are studied.

3. Gradient based - features that use gradient responses in an n× n region:

• Gradient in horizontal direction (Gx) - high responses for high horizontal vari-
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(a) (b)

(c)

Fig. 3.5: Gradient based features: (a) gradient in horizontal direction; (b) gradient in
vertical direction; (c) gradient magnitude.

ations (Fig. 3.5 (a)). The horizontal gradient is de�ned by: Gx = δI
δx , where I

is the input image and x is the horizontal direction;

• Gradient in vertical direction (Gy) - high responses for high vertical variations

(Fig. 3.5 (b)). The vertical gradient is de�ned by: Gy = δI
δy , where I is the input

image and y is the vertical direction

• Gradient orientation* - it combines the gradient on horizontal and vertical di-

rection returning the arctangent of the real parts of Gx and Gy (Fig. 3.5 (c)).

The gradient orientation (atan2) is computed by equation 3.6 [Gdeisat and

Lilley]:

atan2(Gx, Gy) =


arctan(Gx

Gy
), Gx > 0

arctan(Gx
Gy

) + π, Gy ≥ 0, Gx < 0

arctan(Gx
Gy

)S − π, Gy < 0, Gx < 0

(3.6)

• Instantaneous coe�cient of variation (ICOV)* (Fig. 3.6 (a)) [Rocha et al., 2011,

Yu and Acton, 2004];

• Mean (ICOV_LIMean of equation 3.7), maximum (ICOV_LIMax of equa-

tion 3.8) and standard deviation (ICOV_LIStd of equation 3.9) of the ICOV
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(a) (b)

(c) (d)

Fig. 3.6: Gradient and column pro�le based features: (a) ICOV; (b) maximum of ICOV
between pixel and lumen axis; (c) fuzzy step edges; (d) fuzzy valley edges.

between the studied pixel and the lumen axis - analyses the column ICOV vari-

ations (Fig. 3.6 (b)).

ICOV_LIMean = mean(ICOV (c, r_LA : r_px)) (3.7)

ICOV_LIMax = max(ICOV (c, r_LA : r_px)) (3.8)

ICOV_LIStd = std(ICOV (c, r_LA : r_px)) (3.9)

where ICOV is the ICOV image, c is the studied column of the ICOV image,

r_LA is the lumen axis row and r_px is the studied pixel row.

4. Column pro�le - features based in the intensity/ICOV of pro�le of a given column:

• Fuzzy step edge* - it has high responses in regions with a step intensity pro�le

like the LI interface. This happens because the lumen usually has low ICOV

pixels and the LI interface has high ICOV values. This feature combines infor-

mation of the gradient orientation with the ICOV intensity (Fig. 3.6 (c));

• Fuzzy valley edge* - it has high responses in edges associated to a valley shaped

intensity pro�le like the MA interface edges. This happens because the adven-

titia and the intima layers have higher intensity than the media layer. This
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feature combines the intensity information, given by the edges associated to a

valley shaped intensity pro�le, with the gradient orientation information given

by the fuzz step edge (Fig. 3.6 (d)).

The features computed for the MA interface were the same as the ones computed for

the LI, plus the following six features:

1. Intensity based:

• Mean (Intensity_MAMean of equation 3.10), maximum (Intensity_MAMax

of equation 3.11) and standard deviation (Intensity_MAStd of equation 3.12)

of the intensity value between the studied pixel and the LI interface - measures

the column intensity variations (Fig. 3.7 (a)). It's known that the MA is as-

sociated with the �rst high intensity peak below the LI interface, as Fig. 3.3

shows.

Intensity_MAMean = mean(I(c, r_LI : r_px)) (3.10)

Intensity_MAMax = max(I(c, r_LI : r_px)) (3.11)

Intensity_MAStd = std(I(c, r_LI : r_px)) (3.12)

where I is the input image, c is the studied column of I, r_LI is the LI interface

row and r_px is the studied pixel row.

2. Gradient based:

• Mean (ICOV_MAMean of equation 3.13), maximum (ICOV_MAMax of

equation 3.14) and standard deviation (ICOV_MAStd of equation 3.15) of the

ICOV between the LI interface and studied pixel - analyses the column ICOV

variations (Fig. 3.7 (b)).

ICOV_MAMean = mean(ICOV (c, r_LI : r2)) (3.13)

ICOV_MAMax = max(ICOV (c, r_LI : r2)) (3.14)

ICOV_MAStd = std(ICOV (c, r_LI : r2)) (3.15)

where ICOV is the ICOV image, c is the studied column of the ICOV image,

r_LI is the LI interface row and r_px is the studied pixel row.

Table 3.1 summarizes the measured features. A brief description and identi�cation

(ID) are given to each feature.
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(a) (b)

Fig. 3.7: Speci�c MA interface features: (a) maximum ICOV between the studied pixel
and the LI interface previously detected; (b) maximum intensity between the
studied pixel and the LI interface previously detected.

3.2 Feature Analysis

The de�nition of the feature set needs to be grounded by the type of image properties we

want to measure quantitatively. One the other hand, we need to be able to detect and

reduce feature redundancy and even a misclassi�ed ground-truth. The ground-truths used

by the developed method are contours plotted manually by medical experts.

This section addresses four major considerations: the feature redundancy; the selection

of the pixels used as training references; the removing of missclassi�ed pixels; and the

dataset resampling.

3.2.1 Feature Redundancy

The features to be measured should be based in the assumption that they could lead to a

good interfaces detection, which means that it is expected that the computed features have

good information about the interfaces. The computational cost also needs to be considered.

The larger the dataset, the higher the cost.

To reduce the redundancy of features and the computational cost, a feature selection

method was used. It reduces the number of features and the computational cost without

compromising signi�cantly the classi�cation performance. This issue will be addressed in

more detail in section 3.3.

3.2.2 Pixels Selection of LI and MA Classes

The given ground-truth is a manual trace of the LI and MA interfaces of the far and the

near walls. This kind of ground-truths are always subject to human error. It is also known

that the expert's fatigue, the repetition of similar images or the lack of concentration

contributes to a higher human error rate.

Figure 3.8 shows some examples of ground-truths. In Fig. 3.8 (a) and (b) two
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Tab. 3.1: Measured Features

ID Feature name Description

F1 Gradient in x gradient in horizontal direction
F2 Gradient in y gradient in vertical direction
F3 Fuzzy step edge edge intensity pro�les
F4 Fuzzy valley edge valley intensity pro�les
F5 Gradient orientation arctangent of gradient in x and y components
F6 Intensity magnitude normalized image intensity
F7 ICOV magnitude ICOV magnitude
F8 Maximum intensity (px-LA) maximum intensity between pixel and lumen axis
F9 Maximum ICOV (px-LA) maximum ICOV between pixel and lumen axis
F10 Mean intensity (px-LA) mean intensity between pixel and lumen axis
F11 Mean ICOV (px-LA) mean ICOV between pixel and lumen axis
F12 Std intensity (px-LA) Standard deviation of intensity between pixel and lumen axis
F13 Std ICOV (px-LA) Standard deviation of ICOV between pixel and lumen axis
F14 Maximum intensity (px-LI) maximum intensity between pixel and LI
F15 Maximum ICOV (px-LI) maximum ICOV between pixel and LI
F16 Mean intensity (px-LI) maximum intensity between pixel and LI
F17 Mean ICOV (px-LI) maximum ICOV between pixel and LI
F18 Std intensity (px-LI) Standard deviation of intensity between pixel and LI
F19 Std ICOV (px-LI) Standard deviation of ICOV between pixel and LI
F20 Gaussian up 3 Gaussian image with window size of 3 pixels displaced 3 pixels above
F21 Gaussian down 3 Gaussian image with window size of 3 pixels displaced 3 pixels below
F22 Gaussian up 5 Gaussian image with window size of 5 pixels displaced 5 pixels above
F23 Gaussian down 5 Gaussian image with window size of 5 pixels displaced 5 pixels below
F24 Gaussian up 7 Gaussian image with window size of 7 pixels displaced 7 pixels above
F25 Gaussian down 7 Gaussian image with window size of 7 pixels displaced 7 pixels below
F26 Gaussian left 3 Gaussian image with window size of 3 pixels displaced 3 pixels left
F27 Gaussian right 3 Gaussian image with window size of 3 pixels displaced 3 pixels right
F28 Gaussian left 5 Gaussian image with window size of 5 pixels displaced 5 pixels left
F29 Gaussian right 5 Gaussian image with window size of 5 pixels displaced 5 pixels right
F30 Gaussian left 7 Gaussian image with window size of 7 pixels displaced 7 pixels left
F31 Gaussian right 7 Gaussian image with window size of 7 pixels displaced 7 pixels right
F32 Gaussian below 20 Gaussian image with window size of 20 pixels displaced 20 pixels below

ID- features identi�cation; px - studied pixel; LA - lumen-axis; LI - Lumen-Intima; Std - standard deviation

questionable chosen interfaces are visible . Figure 3.8 (c) and (d) present two logical and

coherent traces.

It is clear from these examples that there are situations where the medical experts have

di�culty in detecting the correct interface.

The proposed solution to this problem is a speci�c ground-truth selective method. We

considered that only the pixels that are local maxima of the ICOV at the gradient direction,

speci�c for each wall, are reference candidates. This is justi�ed because the ICOV has high

responses at the interfaces and because we know which gradient direction is expected for

each wall. For instance, at the near wall, the gradient direction points towards the up,

because the intensity decreases toward the lumen. The opposite occurs at the far wall.

After obtaining the reference candidates, only those that are coincident with the ground-

truth are kept and used as reference. Figure 3.9 (a) shows the used references (represented

in red) and the REST pixels (presented in white).
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(a) (b)

(c) (d)

Fig. 3.8: Ground-truth images: (a) and (b) represent incoherent ground-truths; (c) and
(d) represent coherent ground-truths.

Fig. 3.9: Reference selected pixels; The white pixels represent the maximum ICOV at the
gradient direction pixels and the red pixels represent the reference contours for
MA and LI classes.

3.2.3 Removing Misclassi�ed Pixels

The REST class candidates are the pixels that are maxima of the ICOV in the gradient

direction and are not LI or MA pixels. Figure 3.10 (a) shows three situations of possible

pixel incorrect labeling. The numbers presented in the �gure are related with the removal

criteria described below. Situation 1 describes a MA pixel that can be classi�ed as REST.

Situation 2 describes a LI pixel that can also be classi�ed as REST. Situation 3 describes

a case where a muscle bundle can be classi�ed as MA class (sometimes the features of this

structure are similar to the ones of the MA).

To solve these problems, three removal criteria were used. These are presented below
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(a) (b)

Fig. 3.10: Pixels exclusion: (a) problematic pixels; (b) �nal result of pixels selection. The
red pixels represent the LI and MA pixels and the others represent the REST
pixels.

and enumerated according to the numbers in Fig. 3.10 (a).

1. Only pixels belonging to the same image longitudinal range of the ground-truth are

used;

2. Only pixels that have LI and MA reference in the same column are considered;

3. Only pixels that are located not more than 2 lumen diameters above the lumen axis

are used. This criterion was used only for the near wall interface, in order to decrease

the possibility of the muscle bundle detection.

The �nal result of this selection of pixels is shown in Fig. 3.10 (b).

3.2.4 Dataset Resampling

As it is easy to understand by the analysis of Fig. 3.10 (b), the number of the reference

pixels from the three classes is very di�erent. This can cause a biased classi�cation towards

the class with more samples, which is the REST class.

The solution to this problem is the implementation of a resampling method in order to

balance the classes size. This solution will be broadly discussed in section 4.2.

3.3 Dimensionality Reduction

The main goals of feature selection is to select a subset of d features from the given set D,

d<D, without signi�cantly degrading the performance of the recognition system [Pudil

et al., 1994] and to reduce the computational cost.

One of the most commonly used criterion to �nd the optimal number of features is the

inter-intra class distance measure. This measure combines the inter class (SB) with the

intra class (SW ), de�ned by equation 3.17.
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(a)

(b)

Fig. 3.11: Features selection: (a) sequential forward selection without and (b) with wrap-
per based method.

SB = ΣC
i=1

ni
n

(mi −m)(mi −m)T (3.16)

SW = ΣC
i=1

ni
n

Σ̂i (3.17)

where mi and Σ̂i, i=1,...,C are the sample means and covariance matrices of each class

(with ni samples) and m is the sample mean.

The inter-intra class distance (In− In) if obtained by equation 3.18.

InIn = trace

(
SB
SW

)
(3.18)

where, trace is the sum of the elements on the matrix main diagonal.

A wrapper based methodology can also be used (Fig. 3.11 (b)). It uses the classi�er

algorithm itself as part of the features subsets evaluation [Kohavi and H. John, 1997].

This method allows a better selection of features because these are chosen according to the

selected subset adaptability to the classi�cation method. A disadvantage of this method

is that it can induce the classi�er over�tting. Figure 3.11 (a) represents the sequential

forward selection using the Inter-Intra class distance as evaluation criterion and Fig. 3.11

(b) shows the sequential forward selection using a wrapper based evaluation method.

The feature selection can be done using the sequential forward selection (SFS) algorithm

(Fig. 3.11 (a)). This selects iteratively the best feature from the total dataset until a de�ned

performance threshold, T , is achieved. This T should reduce the dataset dimensionality

without signi�cantly compromising the classi�er performance.

Besides the two presented feature selection methods, and in order to verify the results
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with and without feature selection, a dataset without dimensionality reduction was also

used.

3.4 Classi�cation Methods

This section gives a brief description of the four classi�cation models used to obtain the �nal

classi�er. These were the quadratic Bayes classi�er (QDC), the Parzen classi�er (ParzenC),

the k-nearest neighbor classi�er (KNNC) and the support vector classi�er (SVC). To illus-

trate the classi�ers properties, we use a subset of samples from 2 classes of pixels, the LI

and the OTHERS classes. One of the used subset is extracted from the near wall (NW)

and the other is from the far wall (FW). The dimensionality of the used datasets were

reduced to 2 features in order to allow a 2D representation. For the dataset of NW, the

feature 1 corresponds to F12 and the feature 2 corresponds to F23. For the FW dataset,

the feature 1 used was the F11 and the feature 2 was the F23. Figure 3.12 represents the

feature space created by the two datasets.

(a) (b)

Fig. 3.12: Two experimental datasets. (a) dataset set of NW; (b) dataset of FW. The
red markers correspond to the LI class and the blue ones correspond to the
OTHERS class.

3.4.1 Quadratic Bayes Classi�er

One fundamental statistical approach to the problem of pattern classi�cation is the Bayesian

decision theory. It is based on the quanti�cation of the trade-o�s between various classi�-

cation decisions using probability and the costs associated with such decisions. It makes

the assumption that the decision problem is posed in probabilistic terms, and that all of

the relevant probability values are known [Duda et al., 2000].

In the Bayes theory, an a priori probability is converted in a posteriori probability by

the equation:

p(cj |x) =
p(x|cj)× p(cj)

p(x)
(3.19)
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(a) (b)

Fig. 3.13: QDC applied to the NW (a) and FW (b) experimental datasets. The red mark-
ers correspond to the LI class and the blue ones correspond to the OTHERS
class. The black line corresponds to the decision boundary.

where x is the observation and cj is the j
th class. This equation shows that, by observing

the value of x, the p(cj) (prior probability) can be converted to the p(cj |x) (posterior

probability). The P (x|cj) is the class conditional probability. The p(x) is a scale factor

that ensures that the sum of p(x) is equal to one. More information about the Bayesian

theory can be found in Duda et al. [2000].

The QDC is based in the Bayes theorem and has a multivariate density. The general

multivariate normal density was transformed in a density discriminant function and the

result is:

gi(x) = −1

2
(x− µi)tΣ−1i (x− µi)−

d

2
ln 2π − 1

2
ln |Σi|+ lnP (ci) (3.20)

where µ is the observations mean, Σ is the covariance matrix, |Σ| and Σ−1 are its deter-

minant and inverse, respectively, and P(ci) is the prior probability of class i.

In the two-category case, the decision surfaces are hyperquadratics. Figure 3.13 shows

two examples of a QDC applied to the experimental datasets. The classi�cation error for

the NW dataset was 9.68% and to the FW dataset was 3.44%.

3.4.2 Parzen Classi�er

The ParzenC is a non-parametric method that is based in an unknown probability density

function (pdf) estimation associated with a given set of points. According to the Parzen

windows pdf estimation method, if N data points, xi ∈ Rl, i = 1, 2, ..., N , are given

and they follow an unknown distribution, their pdf can be estimated using the function

[Theodoridis and Koutroumbas, 2010]:

p(x) =
1

Nhl
ΣN
i=1φ

(
x− xi
h

)
(3.21)



50 Chapter 3. From Features to Classes in US Carotid Images

(a) (b)

Fig. 3.14: ParzenC applied to the NW (a) and FW (b) experimental datasets. The red
markers correspond to the LI class and the blue ones correspond to the OTH-
ERS class. The black line corresponds to the decision boundary.

for su�ciently large N and su�ciently small values of h, which is the window length

de�ned by the user. φ is an appropriately de�ned kernel function and l is related with the

dimensional features space. A commonly used kernel function is the Gaussian, and in this

case the expression becomes:

p(x) =
1

Nhl
ΣN
i=1

1

(2π)l/2hl
exp

(
− (x− xi)T (x− xi)

2h2

)
(3.22)

Figure 3.14 shows two examples of a ParzenC applied to the the experimental datasets.

The classi�cation error for the NW dataset was 3.22% and to the FW dataset was 0%.

3.4.3 K-Nearest Neighbor Classi�er

The KNNC is a particular case of the Bayes theory. The goal is to estimate the value

of the unknown pdf at a given point x. According to the k-nearest neighbor estimation

technique, the following steps are performed:

1. Choose a value for k.

2. Find the distance between x and all training points xi , i = 1, 2, ..., N . Any distance

measure can be used (e.g., Euclidean, Mahalanobis).

3. Find the k-nearest points to x.

4. Compute the volume V (x) in which the k-nearest neighbors lie.

5. Compute the estimate by:

p(x) =
k

NV (x)
(3.23)
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Fig. 3.15: Voronoi tessellation - This example shows two classes (red and black dots) and
the regions decision boundaries [Duda et al., 2000].

If the Euclidean distance [Deza and Deza, 2009] is employed and the distance be-

tween the k-furthest neighbor and x is ρ, the volume V (x) is equal to [Theodoridis and

Koutroumbas, 2010]:

• V (x) = 2ρ in the 1-dimensional space;

• V (x) = πρ2 in the 2-dimensional space;

• V (x) = 4
3πρ

3 in the 3-dimensional space;

The region volume (V (x)) is de�ned by the Voronoi cells. These partition the features

space. Each cell is de�ned by a training pattern from the belonging class. The decision

regions are the cell boundaries. Figure 3.15 shows a set of training patterns, generated

by two classes, the Voronoi cells of each pattern and the decision regions of the nearest

neighbor classi�er [Duda et al., 2000].

Figures 3.16(a) and (b) show two examples of a k-nn classi�er applied to the exper-

imental datasets. The classi�cation error for the NW dataset was 3.22% and to the FW

dataset was 0%.

3.4.4 Support Vector Classi�er

The Support Vector Machines are learning systems that use a hypothesis space of linear

functions in a high dimensional feature space. In SVC the main goal is to choose the

decision boundary for which the margin is maximized. The maximum margin solution can

be de�ned using computational learning theory [Cristianini and Shawe-Taylor, 2000].

The support vectors are the training samples that de�ne the optimal separating hy-

perplane and are the most di�cult patterns to classify. These are considered as the most

informative patterns for the classi�cation task. Figure 3.17 represents these patterns.

The three support vectors are shown as solid dots and a b margin is used to separate the

support vectors from the optimal hyperplane.
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(a) (b)

Fig. 3.16: KNNC applied to the NW (a) and FW (b) experimental datasets. The red
markers correspond to the LI class and the blue ones correspond to the OTH-
ERS class. The black line corresponds to the decision boundary.

Fig. 3.17: SVM classi�cation with margin b. The support vectors are represented by the
�lled dots [Cristianini and Shawe-Taylor, 2000].

The maximal margin classi�er forms the strategy of the �rst SVC. The function that

represents a geometric margin of 1 is de�ned by:

〈
w · x+

〉
+ b = +1 (3.24)〈

w · x−
〉

+ b = −1 (3.25)

where w is the weight vector of the functional margin. The functional margin presented

in Fig. 3.17 has a margin of b.

Training a SVC consists of �nding the optimal hyperplane that maximizes the distance

from the nearest training patterns. The SVC trained at the proposed approach is based

in a radial kernel and searches for the distance maximization between the support vectors

[Cristianini and Shawe-Taylor, 2000].
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(a) (b)

Fig. 3.18: SVC applied to the NW (b) and FW (c) experimental datasets. The red
markers correspond to the LI class, the blue ones correspond to the OTHERS
class and the green circles correspond to the used support vectors. The black
line corresponds to the decision boundary.

Figure 3.18(a) and (b) show two examples of a SVC applied to the experimental

datasets. The circles show the support vectors. The classi�cation error for the NW dataset

was 11.29% and to the FW dataset was 20.69%.

3.5 Classi�cation Output and Dynamic Programming

The result of the interfaces classi�cation is a score map. In this map, the probability of a

pixel belonging to the searched interface is represented by an intensity. The �nal contour

is obtained by passing the score map to a dynamic programming algorithm used in Rocha

et al. [2012].

The dynamic programming approach used is based on a gain function with two terms:

one is the embedded edge information from the fuzzy score map (of each interface) and the

other is a geometric smoothness information. This algorithm scans the score map, from

the �rst to the last column, and searches for the contour that maximizes the gain function

Gain described below (equation 3.26):

Gain = ψ(x1, y1) +

N∑
j=2

[ψ(xj , yj) + λρ(xj , yj)] (3.26)

where N is the number of columns of the ROI, (xj , yj) are the coordinates of the contour

pixel at column j, ψ(xj , yj) is the score map, ρ(xj , yj) is a geometric term and λ is a weight

parameter.

Figure 3.19 (a) presents the result of the LI classi�cation and Fig. 3.19 (b) presents the

MA classi�cation result. These score maps will then be used by the dynamic programming

function and the �nal interface is presented in Fig. 3.19 (c).
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(a) (b)

(c)

Fig. 3.19: Classi�cation results and �nal contour: (a) presents the score map of the LI
interface for both near and far wall; (b) presents the score map of the MA
interface for both walls; (c) represent the �nal result obtained by the dynamic
programming function.

3.6 Methodology Summary

The global methodology �owchart is presented in Fig. 3.20, where all the steps described

before are included.

This �gure shows that the methodology for the LI (red rectangles) and the MA (blue

rectangles) interfaces is almost the same. The di�erences between these two are that the

MA interface requires a previous classi�cation of the LI interface and six more features are

measured to this interface.
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(a)

Fig. 3.20: Flowchart of the complete methodology. The most important stages are pre-
sented in this �owchart. The red rectangles represent the LI stages and the
blue rectangles represent the MA stages.





Chapter 4
Experimental Results and Discussion

This chapter presents the results of the method proposed in this thesis. The �rst section

describes the input image dataset. The resampling problem for balancing the number of

samples per class is addressed in section 4.2. The feature selection is described in section

4.3. Section 4.4 addresses the training of classi�ers and the �nal results are shown in

section 4.5. At last, section 4.6 shows the statistical analysis of the obtained results.

Here some performance measurements and the Bland-Altman plots are shows as well as

some examples of the �nal segmentation are given.

The �owchart presented in Fig. 4.1 presents all the methodology stages addressed

through this chapter. Each of these blocks are related with a section itemized above.

Fig. 4.1: Complete methodology �owchart
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(a) (b)

(c) (d)

Fig. 4.2: Rocha's and Molinari's image examples: (a) Rocha's image and (b) Molinari's
image. Image (c) represents the e�ect of compression to JPEG format for the red
rectangle of (a); and (d) represents the Molinari's PNG with image compression
for the red rectangle of (b).

4.1 The Image Dataset

This methodology was applied to two image databases: the Rocha's [Rocha et al., 2011]

(Fig. 4.2 (a)) and the Molinari's [Molinari et al., 2011a, 2012c] (Fig. 4.2 (b)) databases.

The Rocha's database is composed of 50 longitudinal images of the common carotid artery,

in JPEG format. This is a lossy compression type ( [Wiggins et al., 2001]) and an example

of information loss is presented in Fig. 4.2 (c).

The Molinari's database is composed of 90 longitudinal images of the common carotid

artery. The original image format is DICOM and they were converted to PNG format.

This is a lossless compression technique [Wiggins et al., 2001] and as Fig. 4.2 (d) shows

the data preservation.
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The image pixel size in the two databases was normalized to 0.09 mm. All images of

both databases were acquired using a Philips ATL HDI 5000 [Rocha et al., 2011, Molinari

et al., 2012a].

The methodology used is the same to both databases but the classi�ers were trained

separately for each database.

Twenty-three images of Rocha's database were used for training. This training set has

one image from each patient. Twenty-�ve images from the Molinari's database were used

for training. Once again, only one image per patient was chosen from this database. This

selection is done to have a representative and unbiased training sample.

The ethical issues were taken under consideration and the patients' personal informa-

tion is not revealed anywhere.

Rocha's database has three ground-truths manually traced by 2 medical experts for

each arterial interface. These are referred to as MA1 and MA2 ground-truths, both from

the same expert but traced in di�erent occasions, and MB1 ground-truth which is from

another expert. The traced interfaces are the LI of the near wall (LINW), the LI of

the far wall (LIFW), the MA of the near wall (MANW) and the MA of the far wall

(MAFW). Molinari's database has only one ground-truth (MM1) and it is just for the far

wall interfaces (LIFW and MAFW).

4.2 Dataset Resampling

The dataset resampling is an auxiliary procedure used at the training stage. This is

performed after de�ning the input image dataset. Figure 4.1 shows this procedure enclosed

to the total methodology.

As it was already mentioned in section 3.2.4, the di�erent classes have very di�erent

number of pixels. To overcome this problem we used a resampling method based in a

subsample architecture. As it can be seen in Fig. 4.3 (a), the LI and MA pixels (red pixels)

are much less than the REST pixels (white pixels).

Figure 4.3 (b) shows the organization of each dataset, by grouping di�erent classes

of pixels. The LI dataset is composed by LI, MA and REST pixels. These three classes

dataset is used to train a 2 classes classi�er. One of the two classes is the LI class (LI

pixels) and the other is the OTHERS class (MA and REST pixels). For the MA dataset

there are only two kinds of pixels, the MA and the REST pixels. So, the MA dataset is

composed by the MA and REST classes.

Before developing the resampling method, some considerations are taken:

• LI dataset: The LI dataset should have 50% of pixels from the LI class and a 50% of

pixels from the OTHERS class (25% of MA pixels and 25% of REST pixels). These

percentages were chosen to the test situation where the main goal is to discriminate

the LI pixels from the MA and REST pixels.
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Tab. 4.1: An example of the resampling method for the LI dataset: original and resampled
classes sizes. For the LI dataset of Fig. 4.3 (a).

Class Number of pixels
Class percentage
in LI dataset(%)

Class size without resampling

LI 125 2.63
MA 180 3.79
REST 4447 93.58

Class size with resampling

LI 125 50.2%
MA 62 24.9%
REST 62 24.9%

• MA dataset: The MA dataset should have 50% of pixels from the MA class and a

50% of pixels from the REST class. These percentages create a balanced dataset of

both classes.

Figure 4.3 (a) is used to illustrate the LI resampling and table 4.1 presents the original

and resampled sizes of each class of this �gure for the LI dataset. The 125 pixels from the

LI class are selected, ful�lling the 50% of pixels from the LI class, and 62 pixels from the

MA and REST class are also selected, full�ling the others 50% (≈ 25% for each class).

The same �gure ( 4.3 (a)) is also used to illustrate the MA resampling and table 4.2

presents the original and resampled sizes of each class of this �gure for the MA dataset.

This method is slightly di�erent from the LI resampling method. This is a two classes

problem only composed by MA and REST pixels. So, all the pixels from the MA class are

selected and the same number of pixels from the other class is randomly selected.

(a) (b)

Fig. 4.3: (a) Reference pixels. The white pixels represent the pixels from the REST class
and the red ones represent the pixels from the LI and MA classes; (b) LI and
MA datasets structure. The LI dataset is composed by LI, MA and REST pixels
and the MA dataset is composed by MA and REST pixels.
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Tab. 4.2: An example of the resampling method for the MA dataset: original and resam-
pled classes sizes. Example for MA dataset of Fig. 4.3 (a).

Class Number of pixels
Class percentage
in MA dataset(%)

Class sizes without resampling

MA 180 3.89
REST 4447 96.10

Class sizes with resampling

MA 180 50%
REST 180 50%

4.3 Feature Selection

Figure 4.1 shows, the feature selection blocks and its relations with the rest of the method-

ology.

Four datasets, one for each interface, were created from Rocha's database training

images. The samples of Molinari's database training images were also grouped in LIFW

dataset and MAFW dataset. These datasets combine the information of the pixel feature

with the class.

The feature selection method was applied to each dataset and only the selected features

were used afterwards.

(a) (b)

Fig. 4.4: Scatter diagram for a discriminant pair of features (a) and a non discriminant
one (b), using the Rocha's LINW dataset. The green points represent the LI
class and the blues represent the REST class.

Figure 4.4 shows the relation between two pairs of features. Fig. 4.4 (a) presents

two features (standard deviation of intensity between lumen axis and pixel and a gaussian

�ltered image, with window size of 5, displaced to the right) that discriminate well the LI

and REST classes. Figure 4.4 (b) presents two features (gradient in x and gradient in y)

that do not discriminate well the same two classes and can be considered disadvantageous
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to the classi�er.

To evaluate the best feature selection method, each interface dataset was divided into

2 sub-sets, a training subset (80% of the total dataset) and a validation subset (20% of the

total dataset).

The �rst approach to select the most important features used the inter-intra (In-In)

method (see 3.3) as evaluation criterion. The stop criterion was de�ned at the point

where the evaluation criterion value is higher than 99.9% of the maximum of the evaluation

criterion. Since this is a very basic feature selection evaluation, a wrapper based approach

was also used.

Table 4.3 presents the selected features for each interface/database and for each feature

selection method (using In-In method or wrapper method). The numbers presented in the

table are the ranking order in the selected subset. So, the most important features are the

ones that will be �rstly chosen, and so on. If a feature has no indication of the ranking

order, that feature and its samples were not used by that dataset. A Not Applicable feature

is a feature that was not used by a speci�c dataset. This situation happens in the case of

features that were only computed for the MA dataset and, therefore, are not used by the

LI datasets.

4.3.1 Feature Selection using Rocha's Database

There are some comments for Rocha's database that can be derived from table 4.3:

• LINW: The three most important features selected by the In-In method were the

F5, F12 and F23. These three were also selected by the wrapper approach. In fact,

these two methods share the same most important feature, which is the F12. The

wrapper approach selects all ones the that use intensity and ICOV variation between

the studied pixel and the lumen axis, the gradient features and some neighborhood

features.

• LIFW: The In-In method selects 7 features (F2, F6, F11, F12, F20, F22 and F24),

being F11 the most important of these. Besides this, it also selects some neighbor-

hood, gradient and intensity features. The wrapper approach selects 9 features (F1,

F2, F3, F8, F23, F24, F25 and F28). The most important selected feature using the

wrapper approach is F8.

• MANW: To discriminate this interface, 10 features were selected using the In-In

method. These were F3, F4, F7, F10, F16, F17, F18, F19, F23 and F32. The wrapper

approach selected 7 features, F3, F12, F14, F15, F16, F23 and F30. Only 3 of them

are coincident. The most important feature selected by the In-In method (F23) is

the second most important one using the wrapper approach. The features selected

by the In-In method are based on the ICOV, intensity variations between pixel and

LI interface, column pro�le features and neighborhood information. The wrapper
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Tab. 4.3: Selected features and its ranking order using the In-In method and the wrapper
approach.

Rocha's Molinari's

ID Feature Name
LINW LIFW MANW MAFW LIFW MAFW
In Wr In Wr In Wr In Wr In Wr In Wr

F1 Gradient in 11 3 10
F2 Gradient in Y 2 3 7
F3 Fuzzy step edge 4 4 5 2 1
F4 Fuzzy valley edge 4 6 8 5
F5 Gradient orientation 3 15 9 4 5 3
F6 Intensity magnitude 5 2 15
F7 ICOV magnitude 10 5
F8 Maximum intensity (px-LA) 13 1 3 6 1 1
F9 Maximum ICOV (px-LA) 9 3
F10 Mean intensity (px-LA) 7 2 8 2
F11 Mean ICOV (px-LA) 8 1
F12 σ intensity (px-LA) 1 1 4 7 7
F13 σ ICOV (px-LA) 5 4
F14 Maximum intensity (px-LI) NA NA 1 NA 1
F15 Maximum ICOV (px-LI) NA NA 4 NA
F16 Mean intensity (px-LI) NA NA 5 6 NA 6
F17 Mean ICOV (px-LI) NA NA 3 7 NA 13
F18 σ intensity (px-LI) NA NA 6 1 NA
F19 σ ICOV (px-LI) NA NA 9 NA 3
F20 Gaussian up 3 5 14 6
F21 Gaussian down 3 2 16
F22 Gaussian up 5 12 7 6 3
F23 Gaussian down 5 2 10 2 1 2 14
F24 Gaussian up 7 3 2 6 1 2 9 2
F25 Gaussian down 7 5 8
F26 Gaussian left 3 11
F27 Gaussian right 3
F28 Gaussian left 5 8
F29 Gaussian right 5 4
F30 Gaussian left 7 4 3 3
F31 Gaussian right 7 4
F32 Gaussian below 20 7 12

ID - Feature identi�cation; In - In-In method; Wr - Wrapper approach; px - studied pixel; LA - lumen-axis;
LI - Lumen-Intima; NA - Not Applicable.

approach also selects some variation features (between pixel and LI interface), a

column pro�le feature and two features of neighborhood information.

• MAFW: The result of the feature selection methods for this dataset was the most

similar. Three of the 8 features selected by the wrapper approach were common to

the In-In method. The In-In method selected 4 features (F5, F8, F21 and F24). This

interface requires less features to be discriminated in comparison with the MANW.

4.3.2 Feature Selection using Molinari's Database

Some comments for the Molinari's database can also be made from table 4.3:

• LIFW: Six features were selected for this interface using the In-In method. These
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were F3, F5, F7, F8, F13 and F22. The most important selected feature is F8. The

second most important feature is F3 and the third is F5. The features selected using

the wrapper approach were F6, F8 and F9. These are features based in intensity and

ICOV.

• MAFW: To discriminate this interface, the In-In method selected 16 features (F1,

F3, F4, F6, F10, F12, F16, F17, F21, F22, F23, F24, F25, F26, F29 and F32). The

most important ones are F3 and F10. Half of these features (F21, F22, F23, F24,

F25, F26, F29 and F32) are based in the neighborhood information and the other half

are based in intensity, ICOV, gradient and column pro�le. The wrapper approach

selected only three features from this dataset. These were F14, F19 and F24. Only

one of these three is common to the In-In selected features.

4.3.3 Feature Selection Summary

Table 4.3 can also be used to compare the feature selection di�erences between the two

databases. For Molinari's database, the wrapper approach used less features than the In-In

method. For Rocha's database, the opposite happened and the number of features selected

using the wrapper approach was always higher than the number of features selected by the

In-In method, except for the MANW dataset.

The few number of features selected by the wrapper approach for the Molinari's database,

could indicate an over-�tting and lack of generalization of the features to the speci�c train-

ing conditions. A reason to test the two feature selection methods (In-In and wrapper)

is to assess if this over-�tting occurs or not. Besides these two methods, the NoFeatSel

method (without feature selection) was also used to obtain the �nal results.

Another di�erence between the two studied databases is that, for Rocha's database,

the samples used at the training stage and the test stage are di�erent. This di�erence is

related to the lossy compression of these images.

The training stages for both databases only consider as interface candidates the pixels

that are local maxima of the ICOV in the gradient direction. The test stage should consider

the same candidates as the training stage, but, for Rocha's database, this would result in

a very noise sensitive method. In order to avoid this problem, the test stage for Rocha's

database consider all the pixels as interface candidates.

4.4 Classi�cation Performance

To avoid an optimistically biased evaluation, a cross-validation method was used to evaluate

the classi�ers performance. In this validation method, a fraction of objects is used in the

training subset and the remaining samples are used for testing. This fraction is rotated

over the available set of objects and the performance results are averaged [Duin et al.,

2007]. These results are used to estimate the classi�ers error.
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Tab. 4.4: Cross-validation mean error for the trained classi�ers using the di�erent feature
selection methods. The best result for each classi�er is written in bold and the
best result for each interface is underlined in red.

Dataset Classi�er
Mean error

In-In (%) wrapper (%) total data (%)

Rocha's

LINW

KNNC 8.64 7.73 7.38
SVC 10.23 9.13 9.84

ParzenC 9.09 7.70 6.70

QDC 10.45 9.16 9.39

LIFW

KNNC 7.06 6.77 6.77
SVC 9.12 7.43 7.95

ParzenC 7.58 7.21 6.84
QDC 10.01 5.89 6.55

MANW

KNNC 9.33 9.77 7.38
SVC 9.50 9.93 9.84
Parzen 9.12 8.90 6.70

QDC 9.28 9.33 9.39

MAFW

KNNC 8.37 8.37 6.77
SVC 10.34 10.02 7.95
Parzen 7.55 10.34 6.84
QDC 10.84 11.49 6.55

Molinari's

LIFW

KNNC 5.01 4.53 4.02
SVC 6.26 4.94 4.32

ParzenC 4.46 4.85 3.80

QDC 6.26 6.70 7.14

MAFW

KNNC 4.71 5.93 4.44
SVC 4.18 9.93 4.45

ParzenC 4.07 5.35 3.72

QDC 5.73 4.20 5.00

The cross-validation method uses 5-folds, where one of the 5 partitions is used as test

set and the other 4 are used as training set. The �nal classi�er is the one with the lowest

mean error obtained by the cross-validation. This evaluation performance is done for all

the classi�ers and feature selection methods. Since the cross-validation method has a high

processing time, this method was performed using only half size of the datasets.

Table 4.4 presents the mean classi�cation error (obtained from the 5 cross-validation

training sets rotations) of cross-validation for each database/dataset, classi�er and feature

selection method. The best classi�er of each feature selection method is highlighted in

table 4.4. This table also presents the best classi�er for each dataset underlined in red.

For the Rocha's LINW and MANW datasets, the ParzenC was the best classi�er using

the NoFeatSel method. For the LIFW and MAFW datasets, the best cross-validation mean

error was obtained using the QDC. The best feature selection method for the LIFW was

the wrapper and for the MAFW was the NoFeatSel method. For the Molinari's LIFW and

MAFW datasets, the best cross-validation mean classi�cation error was obtained using the

combination of ParzenC with the NoFeatSel method.
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For Rocha's database, the best cross-validation mean error for each feature selection

method is as follows:

• In-In method: using the KNNC for the LINW and LIFW datasets and the ParzenC

for the MANW and MAFW datasets.

• Wrapper approach: using the ParzenC for the LINW dataset, the QDC for the

LIFW and MANW datasets and the KNNC for the MAFW dataset.

• NoFeatSel method: using the ParzenC for the LINW and MANW datasets and

using the QDC for the LIFW and MAFW datasets.

For the Molinari's database, the best cross-validation mean error for each feature se-

lection method is as follows:

• In-In method: using the ParzenC for the LIFW and MAFW datasets.

• Wrapper approach: using the ParzenC for the LIFW dataset and the QDC for

the MAFW.

• NoFeatSel method: using the ParzenC for the LIFW and MAFW datasets.

From all the tested classi�ers, the SVC was the only one that was not selected for any

interface or method.

4.4.1 Classi�ers Parameters

Each trained classi�er is characterized by its type and some intrinsic parameters. This is

presented in table 4.5.

Tab. 4.5: Chosen classi�ers speci�cations

Database Method
Classi�er Parameters

LINW LIFW MANW MAFW

Rocha's

In-In
KNNC KNNC ParzenC ParzenC
k=1 k=1 pw=0.106 pw=0.082

Wrapper
ParzenC QDC QDC KNNC
pw=0.059 m=9 m=7 k=7

NoFeatSel method
ParzenC QDC ParzenC QDC
pw=0.088 m=25 pw=0.157 m=32

Molinari's

In-In
NA ParzenC NA ParzenC
NA pw=0.087 NA pw=0.222

Wrapper
NA ParzenC NA ParzenC
NA pw=0.147 NA pw=0.247

NoFeatSel method
NA KNNC NA QDC
NA k=9 NA m=3

NA - Not Applicable

All the classi�ers parameters were automatically optimized by the own classi�cation

functions. More information can be found in Duin et al. [2007].
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4.4.2 Receive Operator Curve

The classi�ers receive operator curve (ROC) for Rocha's database are presented in Fig. 4.5

(a)-(d). The classi�ers ROC for the Molinari's database are presented in Fig. 4.5 (e) and

(f).

For Rocha's database, the classi�ers for the LINW interface detection (Fig. 4.5 (a))

that present a better ratio between the false negatives and false positives are the ones

using the NoFeatSel method and the wrapper approach. For the LIFW (Fig. 4.5 (b)), this

relation is not so signi�cant and no accurate conclusion follows from these curves, except

that both methods have similar classi�cation errors. The best classi�er for the MANW

(Fig. 4.5 (c)) used the NoFeatSel method and for the MAFW (Fig. 4.5 (d)) used a wrapper

approach.

For Molinari's database, the classi�ers for the LIFW interface detection (Fig. 4.5 (e))

and for the MAFW interface detection (Fig. 4.5 (f)) presented very similar ROCs. For the

LIFW dataset, the best classi�er used the wrapper approach. The worst classi�er for this

interface is the NoFeatSel method. The best classi�er for the MAFW is the one using the

wrapper approach.

4.4.3 Classi�er Validation

The last step of the trained classi�er evaluation is it validation. This is performed using

the 20% of samples selected from the total dataset. This sub-set was not involved in any

of the previous stages. By applying this sub-set, we obtain the classi�er behaviour with

new data.

Table 4.4.3 presents these results. Each of them are studied according to the initial

feature selection method.

Tab. 4.6: Classi�ers validation error. The bold values represent the best validation error
for each dataset and database.

Database
Feature Validation Error (%)

Selection LINW LIFW MANW MAFW

Rocha's
In-In 9.26 8.85 8.68 10.53

Wrapper 8.10 5.90 8.19 11.68
NoFeatSel method 8.42 7.37 8.19 12.17

Molinari's
In-In NA 8.3 NA 8.82

Wrapper NA 5.93 NA 11.76
NoFeatSel method NA 6.32 NA 8.82

For Rocha's database, the best validation error was obtained for the LIFW using the

wrapper approach. This feature selection method resulted in 3 of the best validation errors.

The best validation error for Molinari's database was obtained using the wrapper ap-

proach for the LIFW dataset. The best training error was obtained using the NoFeatSel
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.5: Classi�er's ROC for Rocha's and Molinari's database: (a) classi�er of LINW,
(b) LIFW, (c) MANW and (d) MAFW of Rocha's database; (e) and (f) are the
classi�ers ROC of LIFW and MAFW, respectively, for Molinari's database. The
ROCs obtained with the In-In method are presented in red, the ROCs obtained
with the wrapper approach are presented in blue and the ROCs obtained without
the feature selection method are presented in green.

method. For the MAFW dataset, the validation using the In-In approach and the NoFeat-

Sel method were equal and better than the one obtained with the wrapper approach.
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4.5 Classi�cation Output

After the feature measurement and the classi�cation performance evaluation, the classi�ca-

tion output is obtained. Figure 4.1 shows the classi�cation block enclosed to the complete

methodology.

This section is divided into the score maps presentation and the dynamic contours

de�nition, which includes the assessment of the geometric coe�cient and the �nal contour

construction. An example of these steps is given for Rocha's and Molinari's databases

using the three evaluated feature selection methods.

4.5.1 Score Maps

The classi�cation output is a probabilistic score map which translates the pixel likelihood

of belonging to the searched interface. Four score maps are obtained for Rocha's database

and two for Molinari's database.

Figure 4.6 shows the score maps for one image of Rocha's database, using the In-

In method (Fig. 4.6 (a) and (b)), the wrapper approach (Fig. 4.6 (c) and (d)) and the

NoFeatSel method (Fig. 4.6 (e) and (f)). The di�erences between these three score maps

are signi�cant. The LINW score map obtained using the wrapper approach is similar to the

one obtained by the NoFeatSel method. The LINW and LIFW score maps obtained using

the In-In method presented much noise in the surrounding tissue and the three MANW

and MAFW score maps are quite di�erent.

Figure 4.7 shows the score maps for one image of Molinari's database, using the In-

In method (Fig. 4.7 (a) and (b)), the wrapper approach (Fig. 4.7 (c) and (d)) and the

NoFeatSel method (Fig. 4.7 (e) and (f)) to perform the feature selection. As is shown

in Fig. 4.7, the score map for the LIFW interface obtained with the In-In method has

low detection of tissue below the interface and its interface detection is similar to the

one obtained with the NoFeatSel method. The wrapper approach results in a medium

response to the tissue below the interface and it is the score map with the worst result.

For the MAFW interface, the In-In method gives the best MA detection, in comparison

with the others two. The wrapper approach has a response similar to the one obtained

using the NoFeatSel method. The last method is the one that detects more tissue below the

searched interface. These �gures also show that the MAFW interface and the muscle bundle

place below the MAFW have equivalent responses because they have simillar anatomical

structures.

These di�erences occurs in the minority of the images. This happens for 9 images

of the 27 tested from Rocha's database and 4 of the 90 tested from Molinari's database.

Appendix B shows some of these images.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.6: Score maps of LIFW (left column) and MAFW (right column) for one image of
Rocha's database using the In-In method ((a) and (b)), the wrapper approach
((c) and (d)) and the NoFeatSel method ((e) and (f)). The pixel intensities
represent their probability of belonging to the searched interface.

4.5.2 Dynamic Programming

The fourth stage of the developed method is the application of the dynamic programming

function to the obtained score maps (Fig. 4.1)

The dynamic programming used in Rocha et al. [2011] combines the score map with a

geometric smoothness information. The de�nition of the geometric coe�cients ( 3.26) for

each interface of each database is presented below. The �nal contour obtained using the

three di�erent feature selection methods is also presented.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.7: Score maps of LIFW (left column) and MAFW (right column) for one image of
Molinari's database using the In-In method ((a) and (b)), the wrapper approach
((c) and (d)) and the NoFeatSel method ((e) and (f)). The pixel intensities
represent their probability of belonging to the searched interface.

Geometric Coe�cients De�nition

The dynamic programming geometric coe�cients were chosen by evaluating the mean

distance error obtained for each coe�cient using the test set. Table 4.5.2 shows the

chosen coe�cients.

For Rocha's database, the geometric coe�cients were evaluated between 0 and 55 and

for Molinari's database, these were evaluated between 0 and 100. The di�erence between
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evaluated ranges was caused by computational limitations related with the test stage for

Rocha's database. As it was already mentioned, the test stage for Rocha's database use all

the image pixels as interfaces candidates, while the test stage of Molinari's database only

uses the local maxima of the ICOV in the gradient direction pixels as interfaces candidates,

making the Rocha's database test stage much more time-consuming than the test stage of

Molinari's database.

The plots presented in Fig. 4.8 (a) - (d) represent the error evolution as the geometric

coe�cient increases for Rocha's database and Fig. 4.8 (e) and (f) represent the error

evolution as the geometric coe�cient increases for Molinari's database.

Table 4.5.2 presents the selected geometric coe�cients.

Tab. 4.7: Geometric coe�cients used by the dynamic programming function for each
database

Database
Geometric coe�cient

LINW LIFW MANW MAFW

Rocha's 0 5 50 55
Molinari's NA 90 NA 95

As table 4.5.2 shows, the geometric coe�cients selected for Molinari's database are

higher than the ones selected for Rocha's database. This is caused by the high sensibility

of Rocha's method to noise in comparison with the Molinari's method and also because

Molinari's database has few images with plaques or large IMTs, unlike Rocha's database,

leading to a higher smoothness of the contour.

After de�ning the geometric coe�cient used by the dynamic programming function for

each interface, the �nal contours are drawn.

Final Interfaces

The detection of the LI and MA interfaces is the last step of the proposed method (Fig.

4.1).

The �nal interfaces for an image of Rocha's database, using the di�erent feature selec-

tion methods, are presented in Fig. 4.9. Figure 4.9 (a) presents the result obtained using

the In-In method, Fig. 4.9 (b) reports the result using the wrapper approach and Fig. 4.9

(c) presents the result obtained using the NoFeatSel method.

For the image presented in Fig. 4.9, the results obtained with the NoFeatSel method

and with the wrapper approach are similar and are better than the result of the In-In

method. This method is worse in the detection of the plaque. It is important to say that

the results presented in Fig. 4.9 are illustrative. In other images the di�erences between

methods are less signi�cant or even negligible. Appendix B shows the images where the

di�erence between methods were more signi�cant.

The �nal interfaces for an image of Molinari's database, using the di�erent methods, are
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.8: Error and geometric coe�cient, λ, for the dynamic programming using Rocha's
database ((a)-(d)) and Molinari's database ((e) and (f)): (a) λ = 0 for LINW,
(b) λ = 5 for LIFW,(c) λ = 50 for MANW and (d) λ = 55 for MAFW; (e)
λ = 90 for LIFW and (f) λ = 95 for MAFW. The red dot corresponds these
points.
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(a) (b)

(c)

Fig. 4.9: Final interfaces obtained with di�erent feature selection method for Rocha's
database: (a) In-In method, (b) wrapper approach and (c) NoFeatSel method.
The green contours are the MA1 traces and the red contours are the ones ob-
tained by the proposed method.

presented in Fig. 4.10. Figure 4.10(a) presents the result obtained using the In-In method,

Fig. 4.10 (b) shows the result using the wrapper approach and Fig. 4.10 (c) presents the

result obtained using the NoFeatSel method.

For the presented image (Fig. 4.10), the results obtained with the NoFeatSel method

is the worst of the three. The interface obtained with the In-In method (Fig. 4.10) (b) is

also miss classi�ed. The motive for this di�erence relies on the di�erent score maps. The

di�erences between methods for the majority of Molinari's database is small. Appendix B

shows the images where the di�erence between methods were more signi�cant.

4.6 Statistical Analysis

In this section the statistical analysis of the �nal test results is presented. These results are

presented in millimeters and in percentages. The MAD, MSE, CV, FOM and classi�cation

performance are measured. The results are also presented using Bland-Altman plots.

The developed method was tested in 65 images from Molinari's database and 27 images

from Rocha's database. These images are di�erent from the ones used for the training pro-

cedure. The results obtained for the Molinari's database are compared with the respective

ground-truth (MM1). The results obtained for Rocha's database are compared with the

three given ground-truths (MA1, MA2 and MB1).

The automatic detection of the IMT failed completely (IMT error higher than 1 mm)
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(a) (b)

(c)

Fig. 4.10: Final interfaces obtained with di�erent feature selection method for Molinari's
database: (a) In-In method, (b) wrapper approach and (c) NoFeatSel method.
The green contours are the MA1 traces and the red contours are the ones
obtained by the proposed method.

in one of Rocha's images, using the NoFeatSel method approach (Fig. 4.11 (a)). For

Molinari's database, only one IMT was miss-detected and it occurred for the wrapper

approach (Fig. 4.11 (b)). The presented statistical results do not consider these two failed

detections.

This method was compiled using Matlab 2011b, on a computer equipped with an Intel

Core i7 quad core processor at 2.67 GHz. The mean time, t, required to segment an image

was 1.73 min for Rocha's database and 20.49s for Molinari's database. The signi�cant

di�erence between the computational times was caused because the Molinari's test stage

only considers the pixels that are local maxima of the ICOV in the gradient direction

as interface candidates and the Rocha's test stage considers all the pixels as interface

candidates.

4.6.1 Performance Measurements for Interfaces

This section presents the MAD, MSE, CV and FOM performance measures used to evaluate

the proposed method. These measures were used to evaluate the inter-method (automatic

versus manual operators), inter-observer (manual versus manual between two di�erent

operators) and intra-observer (manual versus manual, same operator on di�erent periods)

variability. The measurement of the inter-observer and intra-observer variability is only

possible for Rocha's database, since it has three ground-truths (GT), being MA1 and MB1
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(a) (b)

Fig. 4.11: Failed detections for Rocha's and Molinari's databases: (a) represent the failed
detection for Rocha's database using the NoFeatSel method and (b) represent
the failed detection obtained for Molinari's database using the wrapper ap-
proach.

from the same opertator.

Table 4.8 presents the results for the performance measurement between interfaces.

Each pixel of the automatic contour is compared with the corresponding one of the GT.

This type of statistics allows an accurate comparison between pixel pairs and of its agree-

ment with the di�erent GTs. The best FOM results for each interface are presented in

green and the worst in red.

For Rocha's database, the obtained FOMs were very good. The worst FOM for the

LINW was 95.82% using the NoFeatSel method approach and the best was 96.89% using

the In-In method. For the LIFW, the worst FOM was 98.48% using the In-In method and

the best was 98.98% using the NoFeatSel method approach. This result was expected since

the LIFW has higher contrast and well de�ned edges than the LINW. The performance

presented by the NoFeatSel method was also expected beacuse, since it uses all the features,

the classi�cation is more adaptable to di�erent images (like the ones with and without

plaque). For the MANW, the worst FOM was 96.95% using the In-In method and the best

was 97.80% using the NoFeatSel method approach. For the MAFW, the worst obtained

FOM was 97.72% using the NoFeatSel method approach and the best was 98.72% obtained

using the wrapper approach. The maximum di�erence, for Rocha's database, between the

best and worst FOMs does not exceed 1.07% which indicates that the developed methods

have simillar behaviours in the interface detection.

The worst FOM obtained for the LIFW was 98.52% using the In-In method and the best

was 98.60%, using the wrapper approach. For the MAFW, the worst FOM was 98.73%,

using the NoFeatSel method and the best was 98.97% using the In-In and wrapper methods.

The performance values for the MAFW are similar to the ones obtained for the LIFW.

The referred best results are presented in table 4.8 in green and the worst are presented

in red.

4.6.2 Performance Measurements for the IMT

Table 4.9 presents the results obtained for the IMT mean, maximum, minimum and

the coe�cient of variation for the mean IMT (CVIMT) using the three di�erent feature



4.6. Statistical Analysis 77

Tab. 4.8: Performance measurements (mm) for interfaces for pixel pairs using di�erent
features selection methods. The best FOM results for each interface are pre-
sented in green and the worst in red.

Database Comparison
LI MA

MAD MSE CV(%) FOM(%) MAD MSE CV(%) FOM(%)

Rocha's

(MA1,MA2)
NW 0.178 0.251 1.608 97.70 0.134 0.255 2.25 98.03
FW 0.098 0.133 0.504 99.22 0.111 0.144 0.467 99.18

(MA1,MB1)
NW 0.138 0.197 1.282 98.21 0.133 0.210 1.681 98.05
FW 0.092 0.132 0.534 99.27 0.0871 0.132 0.513 99.35

(MA2,MB1)
NW 0.120 0.190 1.33 98.45 0.131 0.192 1.457 98.09
FW 0.079 0.122 0.522 99.37 0.1414 0.179 0.710 99.16

In-In method

Rocha's

(MA1,Auto)
NW 0.263 0.403 2.75 96.62 0.192 0.309 2.53 97.14
FW 0.159 0.300 1.42 98.75 0.219 0.361 1.481 98.41

(MA2,Auto)
NW 0.242 0.400 2.88 96.89 0.204 0.328 2.687 96.95
FW 0.193 0.304 1.30 98.48 0.202 0.364 1.562 98.53

(MB1,Auto)
NW 0.252 0.408 2.91 96.76 0.200 0.313 2.507 97.02
FW 0.18 0.341 1.43 98.59 0.243 0.398 1.632 98.23

Molinari's (MM1,Auto) FW 0.172 0.226 0.888 98.52 0.127 0.151 0.475 98.97

wrapper approach

Rocha's

(MA1,Auto)
NW 0.292 0.618 5.021 96.17 0.166 0.268 2.178 97.57
FW 0.158 0.245 1.087 98.83 0.176 0.243 0.86 98.71

(MA2,Auto)
NW 0.296 0.624 5.020 96.12 0.188 0.268 1.977 97.26
FW 0.169 0.244 0.975 98.66 0.174 0.254 0.958 98.72

(MB1,Auto)
NW 0.300 0.627 5.031 96.05 0.0175 0.250 1.852 97.44
FW 0.152 0.247 1.081 98.79 0.191 0.260 0.909 98.60

Molinari's (MM1,Auto) FW 0.163 0.200 0.704 98.60 0.126 0.247 1.229 98.970

NoFeatSel method

Rocha's

(MA1,Auto)
NW 0.300 0.649 5.29 96.05 0.148 0.278 2.44 97.80
FW 0.136 0.234 1.06 98.92 0.292 0.356 1.04 97.87

(MA2,Auto)
NW 0.311 0.659 5.30 95.91 0.184 0.340 2.96 97.26
FW 0.144 0.223 0.95 98.86 0.259 0.336 1.093 98.11

(MB1,Auto)
NW 0.318 0.662 5.31 95.82 0.175 0.306 2.59 97.40
FW 0.129 0.223 1.02 98.98 0.313 0.378 1.075 97.72

Molinari's (MM1,Auto) FW 0.171 0.225 0.885 98.53 0.157 0.257 1.167 98.73

selection methods and the two databases. In table 4.9, the best results are presented in

green and the worst are presented in red.

Using Rocha's database, the best CVIMT for the NW was 1.93% (MB1,Auto - using the

wrapper approach) and the worse was 11.22% (MA1,Auto - using the NoFeatSel method).

For the FW, the best CVIMT result was 0.96% (MB1, Auto - using the wrapper approach)

and the worse was 4.66% (MA1,Auto - using the In-In method). The method that presented

the best performance for Rocha's database was the wrapper approach.
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Tab. 4.9: Performance measurements for mean, max and minimum IMT measures (mm)
and coe�cient of variation for the mean IMT (%) using di�erent features se-
lection methods. The best mean CVIMT results for each wall are presented in
green and the worst in red.

Database IMT min IMT mean IMT max CVIMT(%)

Rocha's

(MA1,MA2)
NW 0.182 0.12 0.043 3.76
FW 0.080 0.116 0.141 4.66

(MA1,MB1)
NW 0.090 0.062 0.274 1.90
FW 0.079 0.019 0.035 3.69

(MA2,MB1)
NW 0.092 0.061 0.264 2.01
FW 0.036 0.116 0.162 4.30

In-In method

Rocha's

(MA1,Auto)
NW 0.040 0.193 0.132 8.32
FW 0.028 0.099 0.1147 4.66

(MA2,Auto)
NW 0.197 0.073 0.155 6.43
FW 0.107 0.058 0.237 3.69

(MB1,Auto)
NW 0.108 0.134 0.402 7.39
FW 0.107 0.096 0.087 4.30

Molinari's (GT,Auto) FW 0,186 0,054 0,203 9.37

wrapper approach

Rocha's

(MA1,Auto)
NW 0.069 0.070 0.427 2.90
FW 0.028 0.022 0.054 1.87

(MA2,Auto)
NW 0.240 0.047 0.400 2.47
FW 0.110 0.128 0.167 2.26

(MB1,Auto)
NW 0.149 0.028 0.200 1.93
FW 0.107 0.016 0.090 0.96

Molinari's (GT,Auto) FW 0,236 0,093 0,201 17.58

NoFeatSel method

Rocha's

(MA1,Auto)
NW 0.076 0.262 2.553 11.22
FW 0.029 0.031 0.054 2.04

(MA2,Auto)
NW 0.255 0.369 2.526 8.86
FW 0.109 0.121 0.167 1.70

(MB1,Auto)
NW 0.163 0.313 2.326 9.52
FW 0.108 0.023 0.090 1.16

Molinari's (GT,Auto) FW 0,188 0,080 0,254 18.21

For Molinari's database, the best CVIMT was 9.37%, using the In-In method, and the

worst was 18.21%, using the NoFeatSel method.

Table 4.9 shows that the best CVIMT was obtained using the wrapper approach in

Rocha's database and the In-In method in Molinari's database. Therefore, we can conclude

that the best method to classify the US carotid images of Rocha's database is based on

a wrapper approach, using a ParzenC for the LINW dataset, a QDC for the LIFW and

MANW datasets and a KNNC for the MAFW dataset (see table 4.5 and 4.4). The best
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method to classify US carotid images of Molinari's database is the In-In method using a

ParzenC for the LIFW and MAFW datasets (see table 4.5 and 4.4).

4.6.3 Bland-Altman Plots

Besides the above mentioned measurements, the Bland-Altman plots can also be used to

evaluate the proposed method. The Bland-Altman plots are presented for the selected

methods.

Bland-Altman plots, like the one presented in Fig. 4.12, represent the IMT mean

di�erences between the two di�erent segmentations methods against the average of those

values.

Fig. 4.12: Bland-Altman plot for the comparison of mean IMT measurements for Moli-
nari's database using In-In method. Mean stands for the IMT mean value of
the two segmentation methods and STD is their standard deviation.

Figure 4.12 represents the Bland-Altman plot for Molinari's database. Since this

database only has one GT, that makes the inter-operator variability evaluation impossible.

This graphic shows that the developed method does not generate outliers, its mean is

around 0 mm and the standard deviation is 0.09 mm.

The same evaluation is performed for Rocha's database, but, in this case, both the inter-

observer and inter-method evaluation are possible. Figure 4.13 presents the inter operator

Bland-Altman plots. These plots compare the IMT measurements from two traces for each

wall.

The two GT, for the NW and the FW, that are more related are the (MA1,MB1) and

the less related are the (MA1,MA2). The maximum absolute mean for the NW was 0.12

mm with a standard deviation of 0.060 mm and the minimum was 0.0059 mm with a

standard deviation of 0.035 mm. The maximum absolute mean for the FW was 0.116 mm

with a std of 0.021 mm and the minimum was 0.0025 mm with a std of 0.025 mm.

Figure 4.14 presents the Bland-Altman plots obtained for the inter�method variability

analysis.

The two mean IMT measures, between two methods, for the NW and the FW that are
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.13: Bland-Altman plots for the comparison between GT IMT measurements at the
NW (left column) and FW (right column) in Rocha's database. (MA1,MA2)
(a) and (b); (MA1, MB1) (c) and (d); (MA2,MB1) (e) and (f).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.14: Bland-Altman plots for the comparison between automatic and manual opera-
tors for Rocha's database of near wall (left column) and far wall (right column).
(MA1,Auto) (a) and (b); (MA2,Auto) (c) and (d); (MB1, Auto) (e) and (f).
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(a) (b)

Fig. 4.15: Rocha's database. (a) and (b) represent two good results. The green contour
is the MA1 manual contour and the red contour is the one obtained by the
proposed method.

more related are the (MB1,Auto) ones and the two less related are the (MA1,Auto) ones

for the NW and the (MA2, Auto) for the FW. The maximum absolute mean of the NW

was 0.080 mm with an standard deviation of 0.0.050 mm and the minimum was 0.021 mm

with a standard deviation of 0.037 mm. The maximum absolute mean for the FW was

0.128 mm with a standard deviation of 0.041 mm. It is important to refer that the mean

of the inter-observer variability between the MA1 and the MA2 was also the higher and

had a mean of 0.116 mm with a standard deviation of 0.0212 mm. The minimum absolute

mean for the FW was 0.0121 mm with a standard deviation of 0.038 mm.

The inter-method variability and the inter-operator variability are in the same range.

The manual contour more related with the developed method is the MB1. The mean of the

inter-observer variability between the MA1 and the MB1 is -0.0587 mm with a standard

deviation of 0.0352 mm whereas the mean of the inter variability between the MB1 and

the developed method is 0.021 mm, with a standard deviation of 0.037 mm. The higher

inter method variability occurred between the MA2 and the automatic method, showing a

mean of 0.128 mm and a standard deviation of 0.0408 mm.

These results indicate that the developed method has a variability similar to the one

that occurs between two medical experts.

4.6.4 Good and Bad Results

After the statistical analysis of the results, the best method is selected and some good

and bad results are shown. For Rocha's database, the best method is the one using the

wrapper approach while for Molinari's database the best one is the In-In method.

As an example, Fig. 4.15 shows two good detections. These two good examples present

two images with plaques, which are them selves di�cult images.

Figure 4.16 presents two bad detections of interfaces with a di�erent cause of miss-

detection. The MA interface was wrongly detected in Fig. 4.16 (a) due to a small cal-

ci�cation in the intima media complex. The resultant score map (Fig. 4.16 (b)) shows
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(a) (b)

(c) (d)

Fig. 4.16: Justi�cation for bad detection in Rocha's database: (a) and (c) represent
the original images that caused the segmentation problems and (b) and (d)
show the justi�cation for these problems. These problems are caused by high
echogenic structures and low adaptability of the classi�er for di�erent images.

the resultant shadow marked with an arrow. Figure 4.16 (c) presents an image that is

very di�erent from the others in Rocha's database. The wrong classi�cation in this image

happens because the lumen has higher intensity values than the lumen of the majority of

the other images. The lumen pixels are understood by the classi�er as belonging. As a

result, the score map presents pixels at the lumen with high probability of belonging to

the LI class. Figure 4.16 (d) reveals this classi�ers mistake (marked with an arrow). This

problem could have been corrected if the training set had more images like this one.

Figure 4.17 (a) and (b) show two good results obtained with the In-In method for

Molinari's database. These �gures show that the interfaces were correctly detected, even

in diagonal arteries and in cases with a small IMT.

Figure 4.18 presents two bad interface detections. In this case, the IMT was under-

estimated in Fig. 4.18 (a). This was caused by the muscle highlighted in the NW. The

resultant score map (Fig. 4.18 (b)) shows high noise below the searched interface. Figure

4.18 (c) presents an image with some noise in the lumen region. This results in a poor

score map, presented in Fig. 4.18 (d). This shows that the developed method is sensitive

to the lumen noise.

Appendix C shows more examples interfaces detection for both databases.
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(a) (b)

Fig. 4.17: Molinari's database. (a) and (b) represent two good results and (c) and (d)
represent two bad results obtained using Molinari's database. The green con-
tour is the MA1 manual contour and the red contour is the one obtained by
the proposed method.

(a) (b)

(c) (d)

Fig. 4.18: Justi�cation of bad results for Molinari's database: (a) and (c) represent the
original images that caused the segmentation problems and (b) and (d) rep-
resent the justi�cation to these problems. These problems are caused by an
agglomerate of structures above the searched interface and sensitivity of the
detection method to lumen noise.



Chapter 5
Conclusion

The main goal of this work was the development of a classi�cation approach to classify

artery interfaces, in order to diagnose the arteriosclerosis. This classi�cation approach was

included, as an alternative interfaces classi�cation method, in a previous work developed

by Rocha et al. [2012] at the INEB - Bioimaging group. We tried to develop an approach

as little empirical as possible to avoid subjectivity problems, like incompatibility to other

databases or hardware.

The developed method is a new technique for the arteriosclerosis diagnosis since it uses

a pattern recognition approach, which is rarely used by the state-of-the-art articles.

Two of the most important issues are the image quality of Rocha's database and the

image compression using JPEG. This type of images does not return a good output to the

interface detection because the developed method is sensitive to noise and more precisely

to the lumen noise. The compression of these images result in low image resolution and

in the pixelization e�ect. As in Molinari's database the images were not compressed with

JPEG, the classi�cation results were not a�ected by these drawbacks.

A signi�cant disadvantage of the proposed method is the binary classi�cation performed

by the trained classi�ers. This is not the better way to perform the interfaces classi�cation.

If a pixel is classi�ed as belonging to the LI interface but it is not coincident with the

reference contour, the classi�cation would be wrong from a computational point of view

but, from a medical point of view, that di�erence would not be signi�cat. An alternative

way to train the classi�ers would be using the distance between the classi�ed pixel and the

reference one.

The developed method, as well as the ones presented in the state-of-the-art, reported

better results for the far wall. This interface has usually more de�nition and contrast, and

this property is related with the probe position during the ultrasonography.

The results obtained for Rocha's database and Molinari's database were di�erent in

many important aspects. The feature selection method that presented better results for

Rocha's database was the one using the wrapper approach. The one selected for Molinari's
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database was the In-In method. The selected features for each interface were also di�erent.

Only 3 features were coincident for the LIFW and 4 for the MAFW. For Rocha's LINW,

the selected classi�er was the KNNC. The LIFW, MANW and MAFW were classi�ed using

a ParzenC. For Molinari's database, the classi�er that presented the best performance for

the LIFW and the MAFW was the ParzenC.

All of the 27 tested images selected from Rocha's database were correctly detected and

the same happened in the 90 images used as testing from the Molinari's database.

The presented results show that for Rocha's database, the developed method inter

variability is similar to the intra observer variability. The performance measurements used

to evaluate the �nal interfaces compare each interface pixel with the corresponding one of

the ground-truth. The FOMs obtained for these interfaces were very high, between 96%

and 98%. The CV obtained for the IMT mean measurement was between 0.96% and 8.32%.

For Molinari's database, the FOM obtained between the pixels pairs was around 98.89%

and the CV between the mean IMT measurements ranged between 9.37% and 18.21%.

This last CV value is considered to be have high variability.

The processing time obtained for Rocha's (1.73 min) database is signi�cantly higher

in comparison with the one obtained for Molinari's database (20.49 seconds ). This di�er-

ence happened because all the pixels from Rocha's database were considered as interface

candidates and only the maximum of the ICOV in the gradient direction were considered

for Molinari's database.

One of the most important aspects of this work is the dependency on the dynamic

programming function. This method should be improved in order to reduce the interfaces

detection error.

As future work, the classi�er training should be done according to the distance between

the GT and the automatic contour. The ICOV detector could be replaced by the FOAM

detector, which is becoming more frequent in the literature due to its reliable results. The

classi�cation strategy could also be rede�ned by detecting the MA interface and the LI

interface afterwards. This could be done because the MA interfaces have a low classi�cation

error and high response to the edge detectors. At last, some more textural features could

be used in order to obtain better information about the pixels neighborhood.



Appendix A
Commercial software

There are already commercial systems that perform IMT measurements. They can be

automatic or semi-automatic, perform IMT assessment measures like maximum, mean and

minimum, allow manual and automatic tracings and it the storage, among other features.

This subject was deeply explored in Carvalho [2011].

These commercial systems are:

• �Vivid 7 Dimension / Vivid i� of General Electrics Vivid General Electrics [2012].

This software does a semi-automatic analysis of the near and far wall IMT. To perform

this analysis, it is only necessary to follow four steps. The �rst one is the selection

of the speci�c button from the ultrasound equipment, followed by the selection of 2

points at the arterial lumen. The third step is the recording of the results. The last

step is the conversion of that data into medical report format. This software returns

the maximum and mean IMT values Vivid General Electrics [2012].

• �SonoCalc IMT� of SonoSite Sonosite [2012]. This software is fully automatic when

the processed images have good quality and of semi-automatic when this quality is

low. With this software it is possible to measure IMT manually, do an analysis of

multiple images and measure IMT maximum, mean and average values. It allows the

storage of the patient's information as well as the patient's pathology. At the end, it

prints a report with the patient's results and the pathology reference values.

• �M'Ath� of imt-Intelligence in Medical Technologies imt-Intelligence in Medical Tech-

nologies [2012]. With this software it is possible to do a semi-automatic near and

far wall IMT measurement and measure the stenosis degree. It is possible to store

the patient's data and measure the image quality using the results of the resultant

contour. If this contour was too fragmented, the image quality is low. It returns the

mean, maximum and minimum IMT. However, this software can not measure the

IMT of images with plaque.
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• �SDU-2200 Pro� of Shimadzu Shimadzu [2012]. It allows the integration of a IMT

measurement module that performs the automatic tracings and the IMT analysis.

• Prosound α 7 of ALOKA Prosound [2012]. The ProSound α 7 is a portable diagnostic

ultrasound system that automatically extracts the maximum IMT and the mean IMT

only by setting a ROI on a vertical view of the vessel.



Appendix B
Di�erences of Three Tested Methods

This appendix shows the images that presented a signi�cant di�erence between the result

of the three feature selection methods. Figure B.1 shows the most signi�cant di�erences

for the Rocha's database.

(a) (b) (c)

(d) (e) (f)

Fig. B.1: Di�erences between methods for Molinari's database. The left column rep-
resents the result using the In-In method, the middle column represent the
wrapper approach and the right represents the result using the total dataset

Figure B.2 shows the most signi�cant di�erences for the Molinari's database.

As this �gures show, depending on the chosen feature selection method, the classi�-

cation result can be very di�erent. This is one of the reasons for any of these have been

discharged from the potential methods until the analysis of the �nal results.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. B.2: Di�erences between methods for Rocha's database. The left column represents
the result using the In-In method, the middle column represent the wrapper
approach and the right represent the result using the total dataset



Appendix C
Classi�cation Results For Both Databases

This appendix shows more examples of detected interfaces.

Figure C.1 shows the classi�cation result for 9 images of Rocha's database.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. C.1: Results for Rocha's database: (a), (b) and (c) present arteries with low IMT;
(d), (e) and (f) present arteries with some thickness; (g), (h) and (i) present
arteries with plaques.

Figure C.1 (a) - (c) present arteries with low IMT. The interfaces detection of these
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images is well performed. Figure C.1 (d) - (f) present arteries with some thickness. These

images are more harder to classify but the �nal result is also good. Figure C.1 (g) - (i)

present arteries with plaques. The interfaces detection for these images is also good, but

MANW of Fig. C.1 (i) is little displaced.

Figure C.1 show the classi�cation result for 9 images of Molinari's database.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. C.2: Results for Molinari's database: (a), (b) and (c) present horizontal arteries with
low IMT; (d), (e) and (f) present sloping arteries; (g), (h) and (i) present some
bad detections.

Figure C.2 (a) - (c) present horizontal arteries with low IMT. The interfaces detection

of these images is well performed. Figure C.2 (d) - (f) present sloping arteries. Despite the

slope, the interfaces detection is well performed. Figure C.2 (g) - (i) present bad detection

cases. Figure C.2 (g) was wrongly detected because the high imposed geometric strength.

Figure C.2 (h) present a case of subestimation of the IMT. This was caused by the lumen

noise. Figure C.2 (i) present a wrong classi�cation caused by external marks.
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