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Abstract 

This thesis is about electrons in disordered structures, and electrons correlated with other degrees of freedom. In 
particular, the discussions and results in the ensuing chapters pertain to two main categories that can be summarily 
synthesized as electrons interacting with localized magnetic moments - as in the DEM - and electrons in disordered 
two dimensional carbon. 

Double Exchange Model (DEM). With regard to the DEM, we discuss in detail the region of validity of the 
DE limit for magnetic systems described by a Kondo lattice Hamiltonian, putting in perspective the two opposed 
limits J —v oo and J —► 0, and concluding that the former appears as the best approximation in the intermediate 
coupling regime. For DE systems with low densities of electronic carriers, the effects of Anderson localization are 
found here to be of paramount relevance. In that context we provide the first mapping of the mobility edge, Ec, 
as a function of the local spin magnetization in this system, and show that such magnetization dependent Ec has 
profound consequences to the magneto­transport response, including CMR effects, strongly enhanced electrical 
conductivities in the ferromagnetic phase, or blue­shifts of the plasma edge in the optical reflectivity. 

The stability of free magnetic polarons in the pure low density DEM is addressed both phenomenologically and 
numerically. It is found that, at low densities, the PM­FM transition is mediated by a polaronic phase, which has the 
effect of considerably reducing the Curie temperatures, Tc, with respect to the mean­field estimates. At the same 
time, we analyze the related problem of phase separation in this same low density regime. We demonstrate that the 
phase separation instability characteristic of this model is strongly suppressed when electrostatic and localization 
corrections are included in the free energy, and establish a connection between the resulting ground state and the 
non­interacting polaronic phase. 

Magnetic Hexaborides. A microscopic theory forrare­earth ferromagnetic hexaborides, of the type Eui_xCaxB6, 
is proposed on the basis of the DE Hamiltonian. In these compounds, the reduced carrier concentrations place the 
Fermi level near the mobility edge, introduced in the spectral density by the disordered spin background. We 
show that some of their puzzling experimental signatures, such as the Hall effect, magnetoresistance, frequency 
dependent conductivity, and dc resistivity can be quantitatively described and coherently understood within the 
model. The region of magnetic polaron stability detected through Raman scattering experiments is also well re­

produced, and we make specific predictions as to the behavior of the Curie temperature as a function of the plasma 
frequency, proposing a phase diagram for the doped family. We also discuss how recent transport and magneto­

optical measurements confirm our Double Exchange (DE)­based picture and reproduce our originally proposed 
phase diagram. 

Anderson Localization. We present evidence regarding the relevance of the local environment statistics in the 
phenomenon of Anderson localization. It is shown that the fluctuations in the inverse participation ratio, or in the 
local density of states, exhibit critical behavior, and provide strong evidence supporting the LDOS as an order 
parameter for the Anderson transition. 

Graphene. Our incursion onto the subject of two dimensional carbon, reveals the consequences of different 
types of disorder for the electronic structure of graphene. We underline, in particular, the case of vacancies, which 
are shown to induce the emergence of localized modes at the Fermi energy, with a huge concomitant enhancement 
of the density of states. The relevance of these results in the explanation of the magnetism detected in disordered 
graphite is addressed. 
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Resumo 

A presente tese é dedicada ao estudo de electrões em estruturas desordenadas, e electrões correlacionados com 
outros graus de liberdade. Em particular, as discussões e resultados apresentados nos capítulos seguintes poderão 
organizar-se segundo duas categorias principais, nomeadamente electrões interagindo com momentos magnéticos 
locais - tal como no MDT - e electrões no carbono bidimensional com desordem. 

Modelo de Dupla Troca (MDT). Relativamente ao MDT, o regime de validade do limite de dupla troca é dis­
cutido em detalhe no âmbito de sistemas descritos pela rede de Kondo, colocando-se em perspectiva os limites 
J — K » e . / - í O , e concluindo-se acerca da melhor aplicabilidade do primeiro nos casos de acoplamento intermé­
dio. Para sistemas de DT com uma densidade baixa de portadores, mostra-se que os efeitos associados à localização 
de Anderson são de máxima relevância. Nesse contexto, é apresentada a primeira trajectória do limiar de mobi­
lidade, Ec, como função da magnetização local para este problema, mostrando-se ainda que a existência de um 
limiar de mobilidade dependente da magnetização tem profundas consequências na resposta eléctrica e magnética 
do sistema, incluindo o aparecimento de efeitos de magnetorresistência colossal, condutividades dramaticamente 
amplificadas na fase ferromagnética, ou desvios para o azul na frequência de plasma. 

A estabilidade de polarões magnéticos no MDT a baixa densidade é estudada fenomenológica e numericamente. 
Decorre dos resultados que, a baixas densidades, a transição PM-FM é mediada por uma fase polarónica, donde 
decorre um abaixamento considerável das temperaturas de Curie, Tc, relativamente às estimativas típicas de campo 
médio. Ao mesmo tempo, é abordada a questão da separação de fases no MDT. Demonstra-se que a instabilidade 
subjacente à separação de fases é fortemente suprimida através da inclusão de contribuições electrostáticas e de 
localização na energia livre, evidenciando-se ainda as similaridades entre o estado fundamental daí resultante e a 
fase polarónica. 

Hexaboretos magnéticos. No âmbito dos hexaboretos de európio do tipo Eui_xCaxB6, é proposto um mo­
delo microscópico alicerçado no MDT. Nestes compostos, a reduzida densidade electrónica implica a significativa 
proximidade entre o nível de Fermi e o limiar de mobilidade induzido pela desordem magnética. Mostra-se aqui 
que as intrigantes características experimentais destes hexaboretos, como sejam o efeito Hall, a magnetorresistên­
cia, a condutividade óptica ou a resistividade, podem ser descritas e entendidas de modo coerente com base nesse 
modelo. A região de estabilidade polarónica registada em medidas Raman é igualmente bem reproduzida pelo cor­
respondente diagrama de fases do MDT, sendo ainda proposto o diagrama de fases para os hexaboretos dopados. 
Finalmente, discute-se como este modelo e o diagrama de fases proposto vêm a ser corroborados por resultados 
experimentais subsequentes. 

Localização. Entre os nossos resultados, são avançadas provas relativas à importância das propriedades locais 
no processo de localização de Anderson. Mostra-se que tanto a fracção de orbitais que contribuem para um dado 
autoestado, como a densidade local de estados, exibem flutuações com comportamento crítico, dando força a uma 
interpretação da densidade local de estados como possível parâmetro de ordem na transição de Anderson. 

Grafeno. A incursão no tópico do carbono bidimensional revela algumas das consequências que diferentes 
modelos de desordem trazem para a estrutura electrónica do grafeno. É destacado, em particular, o caso de lacunas, 
das quais resultam estados localizados no nível de Fermi, ao mesmo tempo que fazem surgir um pico significativo 
na densidade de estados em EF. O significado destes resultados para a compreensão do magnetismo detectado em 
amostras de grafite é discutido no final. 
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Résumé 

Le sujet de cette thèse est les électrons en structures désordonnées, et les électrons corrélées avec d'autres degrés 
de liberté. En particulier, les discussions et les résultats dans les chapitres suivants concernent deux catégories 
principales qui peuvent être sommairement synthétisées comme des électrons en interaction avec des moments 
magnétiques localisés - comme dans le MDE - et des électrons dans le carbone bidimensionnel désordonné. 

Modèle du Double Échange (MDE). En qui concerne le MDE, on discute en détail la région de validité du 
limite de DE pour des systèmes magnétiques décrits par un Hamiltonien de Kondo, et on compare les deux limites 
opposées, J —> oo et J —» 0, en concluant que le premier apparaît comme une meilleure approximation dans 
le régime d'accouplement intermédiaire. Pour des systèmes avec de faibles densités des électrons, les effets de 
localisation d'Anderson ont une importance primordiale. Dans ce contexte on fournisse la dépendance du bord 
de mobilité, Ec, en fonction de la magnétisation du système, et nous prouvons qu'une telle dépendance a des 
conséquences profondes sur la réponse magnétique et électrique, comme par exemple, des effets de CMR, des 
conductivités fortement augmentées dans la phase ferromagnétique, ou le décalage vers le bleu de la fréquence de 
plasma dans la réflectivité optique. 

La stabilité des polarons magnétiques dans le MDE est adressée phénoménologique et numériquement. On 
constate que, pour des faibles densités, la transition PM-FM est interpolée par une phase polaronique qui a l'effet 
d'une considérable réduction des températures de Curie, Te, vis-a-vis les valeurs obtenus en champ moyen. En 
même temps, on étude le problème de la séparation et coexistence des phases dans ce même régime de faible 
densité. On démontre que l'instabilité vers la séparation des phases caractéristique de ce modèle est fortement 
supprimée sur l'effet des contributions électrostatiques et de localisation dans l'énergie libre, et on établisse une 
liaison entre l'état fondamental résultant et la phase polaronique. 

Hexaborures magnétiques. On propose une théorie microscopique pour les Hexaborures ferromagnétiques, du 
type Eui_xCaxB6, basée sur le Hamiltonien de DE. Dans ces substances, pour vue de la faible concentration 
d'électrons, le niveau de Fermi et le bord de mobilité se trouvent très proches. On montre que la majorité de leur 
signatures expérimentales, comme l'effet de Hall, la magnetorésistance colossale, la conductivité optique, et la 
résistivité peuvent être quantitativement décrites et entendus dune façon cohérente avec ce modèle. La région de 
stabilité des polarons magnétiques détectée par Raman est également reproduite, et nous faisons des prévisions 
spécifiques en ce qui concerne le comportement relatif entre la température de Curie et la fréquence de plasma, 
proposant le diagramme de phase pour la famille dopée. On discute également les récentes expériences magnéto-
optiques que confirment notre scénario théorique basé dans le MDE, et reproduisent le diagramme de phase. 

Localisation d'Anderson. On présente des évidences concernant la pertinence de l'environnement local dans le 
phénomène de la localisation d'Anderson. On montre que les fluctuations dans le rapport inverse de participation, 
ou dans la densité locale d'états ont un comportement critique, et fournissent évidence soutenant la densité locale 
d'états comme paramètre d'ordre pour la transition d'Anderson. 

Graphène. Notre incursion dans le sujet du carbone bidimensionnel montre les conséquences que différents 
modeles de désordre peuvent avoir dans la structure électronique de graphène. Nous accentuons, en particulier, 
le cas de lacunes, qui donnent lieu a l'émergence des modes localisés à l'énergie de Fermi, au même temps 
qu'une énorme résonance apparaît dans la densité d'états. La pertinence de ces résultats pour une explication du 
magnétisme détecté en graphite désordonné est adressée. 
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"Those who have taken upon them to lay down the law of nature as a thing 
already searched out and understood, whether they have spoken in simple 
assurance or professional affectation, have therein done philosophy and the 
sciences great injury. For as they have been successful in inducing belief, so 
they have been effective in quenching and stopping inquiry; and have done 
more harm by spoiling and putting an end to other men's efforts than good by 
their own." 

— Francis Bacon, Novum Organum [Bacon, 1620]. 



1. Introduction 

"God could cause us considerable embarrassment by revealing all the secrets 
of nature to us: we should not know what to do for sheer apathy and boredom" 

— J. W. von Goethe. 

1.1. Context 

The fields of correlated and disordered electronic systems have been the most active areas of research 
in condensed matter theory in the last decades. This derives mainly from the unexpected and intrigu­
ing behaviour that can be extracted when correlations and/or disorder are added to electronic mod­
els. The distinctive trait of these problems is the fact that traditional perturbative methods tend to fail 
in properly describing the many-body ground state of those systems. In addition, there is the non-
irrelevant motivation that correlations and disorder are the driving mechanisms of many exciting and 
promising phenomena such as High Temperature Superconductivity (HTSC), Kondo physics, Colossal 
Magnetoresistance (CMR) or spin transport. 

In the recent years a large fraction of theoretical and experimental effort in solid state physics has been 
oriented towards the understanding and optimization of very large changes occurring in the electric re­
sistivity under the application of small magnetic fields. This magnetoresistive effect occurs traditionally 
in specially tailored thin film heterostructures, or in ferromagnetic metallic oxides like mixed-valence 
manganites1 [Pu et al., 1995]. In fact, it was in the context of manganites, one of the richest topics in 
condensed matter [Dagotto, 2003], that the Double Exchange Model (DEM) and its variants acquired its 
notorious relevance. 

The DEM is one of our subjects, but in a slightly different context. Large magnetoresistance effects 
are known to occur in Eu-based hexaborides [Paschen et al., 2000]. As a consequence — and follow­
ing a series of experiments which unveiled intriguing connections between their magnetic, transport and 
optical properties — the series of compounds Ri_;rAxB6, where A is an alkaline-earth metal such as 
Ca or Sr, and R a rare-earth magnetic ion, has recently attracted considerable interest. EuB6 is a ferro­
magnetic metal, with many intriguing properties like its very small carrier density, which increases upon 
decreasing the temperature, or an electrical resistivity that drops precipitously below Tc- The theoretical 
understanding of these and other effects in EuB6 has been characterized by controversies surrounding 
their underlying microscopic origins. 

'Although its origin and magnitude is quite different in these two classes of materials. 
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4 1. INTRODUCTION 

One of our central objectives with this thesis, is to state our case whereby the DE mechanism, com­
bined with a reduced carrier density and the inevitable Anderson localization effects, provides a coherent 
framework for the interpretation of most experimental measurements pertaining to these hexaborides. 
As it turns out, the extremely low density regime of the DEM has remained much unexplored, mainly 
because all attentions were upon the opposite limit, suitable for the manganites. This work tries to fill 
some of those gaps and clarify others. 

As our work in those matters unfolded, exciting, unconventional and unforeseeable physics started to 
emerge from studies of graphene, made possible by recent developments in the techniques for growth 
and control of materials at the atomic scale. Graphene is one of the allotropie forms of carbon, consisting 
of a two dimensional sheet of carbon atoms with sp2 hybridization arranged in a honeycomb lattice, and 
constitutes the building block of most Carbon-based materials, including graphite, nanotubes, fullerenes, 
etc. Presumed until recently to be unstable on account of instabilities towards the formation of curved 
structures, single planes of graphene have now been successfully prepared and characterized by indepen­
dent experimental groups [Novoselov et al., 2005a,b; Zhang et al., 2005]. 

Magneto-transport measurements indicate that the low energy charge and spin excitations in these sys­
tems are Dirac fermions (electrons with a linear dispersion), a consequence of the peculiar structure of the 
honeycomb lattice. This means that the concept of effective mass, which controls much of the physical 
properties of ordinary metals and semiconductors, doesn't hold and leads to an unusual electrodynamics. 
As an example, Dirac fermions are known to exhibit anomalous properties, like suppression of screen­
ing, in the presence of disorder and interactions [DiVincenzo and Mele, 1984; Gonzalez et al., 1996]. 
In addition, the high mobility of graphene samples allowed the identification of anomalous features in 
the Shubikov de-Haas oscillations and the integer Quantum Hall Effect (QHE), the latter displaying an 
anomalous (half-integer) quantization rule for the conductance [Novoselov et al., 2005a; Zhang et al, 
2005]. 

The role of disorder is crucial. It was always observed that when graphite or fullerenes are bom­
barded with high energy protons, ferromagnetic behavior is measured [Esquinazi et al., 2003]. The po­
tential technological implications of these findings in micro and nano devices for spintronics, optics, 
and quantum computing are clear. Ferromagnetism in Carbon based structures above room tempera­
ture, clearly challenges the traditional paradigm of localized magnetism based on d and f orbitais, and 
remains to be explained. Graphene also confronts the current wisdom on localization and transport 
in 2D since graphene and graphite-based devices exhibit an unexpected universal minimum metallic 
conductivity, have very high mobilities and display ballistic transport over micrometer distance scales 
[Novoselov et al., 2005a]. The wealth of results, formalism and predictions tailored for the usual metal­
lic Fermi liquid paradigm, is, to a great extent, not directly applicable to graphene. Therefore many of the 
concepts upon which our physical intuition regarding electronic systems is founded, require a revision 
for this new scenario. 

1.2. Organization of the Thesis 

The thesis begins with a review of the recursive method, a powerful, versatile and efficient method to 
extract relevant physical information like spectral densities, the spectrum itself and response functions 
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from (mostly, but not restricted to) single-particle Hamiltonians. This chapter was designed much like a 
general review and overview, including some historical notes on the method and condensed matter theory 
as well. It is completely self-contained and serves mainly for the author's own reference and sorting of 
ideas, but can also be a useful starting point for a student or whoever feels interested in the matter. 

The core matter of the thesis lies within chapter 4, wherein our studies regarding the double exchange 
model at low densities are expounded. Before that, an excursion into the phenomenology of the Eu-
based hexaborides is needed, and so the third chapter is dedicated to a brief coverage of the experimental 
knowledge about those compounds. Chapter 4 is the longest and densest, as it includes the discussions 
about Anderson localization, and the double exchange model for magnetic hexaborides. 

Chapter 5 is devoted to the physics of magnetic polarons and the phase separation instability in the 
double exchange model, and the last chapter describes some of our results in the context of disorder and 
localization effects for electrons in graphene. 

Throughout the text, several ancillary details of direct relevance to our argumentation have been trans­
ferred to the appendices at the end of each chapter. 

1.3. Original Content and External Material 

This thesis contains around 80 figures, the vast majority of which is divided into further subfigures. With 
the exception of chapter 3, dedicated to the experimental signatures of Eu-based hexaborides, all these 
figures exhibit results obtained by the author, including all the demonstrative plots presented in the chap­
ter about the recursive method. Moreover, all the numerical algorithms used for the core computations, 
have been coded by the author from blank files. The only exception where recourse was made to external 
routines is for the full diagonalization of matrices, where LAPACK, or LAPACK-derived routines were 
used. 



2. The Recursive Method 

"(...) in a large system, such as all solid state physics, one is always over­
whelmed by too much information, in principle an infinite amount. The trouble 
with computers is that they give too many numbers, whereas physically one 
wants some combined quantity such as a magnetic moment." 

— V. Heine, The Recursion Method and its Applications [Heine, 1980, pp. 3] 

2.1. Introduction 

2.1.1. When k-space will not do 

The most immediate, and certainly self-evident, property of a disordered system is the absence of sym­
metry, wherefrom its classification arises. Of particular relevance in the context of solid-state theory is 
the lack of the periodicity that characterizes crystals. The enormous developments in solid state physics 
during the most of the XXth century hinge, one may say, upon a central cornerstone: Bloch's theorem 
and the concept of electronic band. A wealth of important theoretical tools, theorems and results have 
been developed within a theoretical framework that assumes translational invariance of the target sys­
tems. This is true to the extent that solid state physics is developed in classical textbooks around perfect 
lattices in perfect crystals. 

Absence of such ideal regularity is, nonetheless, an insurmountable reality of the solid state, that starts 
with the ideal crystal being thermodynamically unstable towards the presence of defects'. Next come 
the real crystals where all classes of defects, grain boundaries and impurities are intrinsic to the growth 
process. Of course these are still the "clean" cases, where the overall regularity is scarcely broken, and 
always at scales considerably larger than the interatomic distances. For such cases, Bloch's theorem 
is still a central and decisive player, side by side with the tools of perturbative approaches. For them, 
disorder is frequently seen as an unsought property from the materials scientist perspective, or as a 
technical hindrance for the theoretical approaches. 

Then, there is the broad class of the so-called disordered systems. For the purpose of our discussion, 
these are the cases in which absence of periodicity is a feature, rather than a nuisance. Here k-space 
methods often become unwieldy, as the plane wave basis might be just as good as anything else. That 
disorder is a feature means simply that the system's properties and behavior are such that, had disorder 
been absent, they would be something completely different. To this class of materials belong many of 
the systems at the forefront of today's research in condensed matter (amorphous solids, alloys, glasses, 

' At any non-zero temperature. 

7 
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diluted ferromagnetic metals, some nanostructured materials, etc.). Of course, absence of periodicity is 
not an exclusive consequence of disorder or vice-versa. Full translational invariance makes little sense in 
problems involving surfaces (surface states, adatoms, the Density of States (DOS) at the surface of some 
metal, etc), interfaces, quantum dots and certain mesoscopic systems. 

The message is then that, such examples beg that absence of periodicity in the electronic environment 
be accounted for from the beginning, as opposed to starting from a Bloch-like view, trying to make 
physics fit the mathematics of perfect periodicity. 

2.1.2. Local electronic structure 

The above cited examples are not the only ones in which one might consider abandoning k-space. In 
many situations, the attention is upon the local electronic environment, and it is of interest to develop 
a theory or approach closer to the physics we want to describe. This might occur because in a system 
only the first few atomic shells neighboring some atom are of relevance in describing its physics (like 
in many transition metal compounds [Haydock, 1980]; or because one is really focusing on the local 
electronic structure, as when addressing the intriguing features revealed by surface scanning techniques 
as Scanning Tunneling Microscopy (STM), Magnetic Force Microscopy (MFM) or even Angle-Resolved 
Photoemission Spectroscopy (ARPES). 

The development of the recursive approach is closely connected with the problem of local electronic 
structure. The ideas behind this technique germinated during the early 1970's in the context of studies 
involving random and ordered alloys, moment formation and studies regarding metal surfaces2. The 
basic concepts were strongly inspired by Friedel: he introduced the Local Density of States (LDOS) in 
electronic structure calculations, replacing wave functions [Friedel, 1954], and realized that the LDOS 
exhibits an independence upon boundary conditions known as invariance property1 4 [Friedel, 1954; 
Heine, 1980]. 

The local point of view, besides allowing us to follow the historical path of the developments in the 
recursive technique, is of great avail in providing us with a notation and language most appropriate for 
the discussions that will follow. Recursion is useful in any problem (physical or not) regarding spectral 
properties of operators that, when defined on a countable basis, are relatively sparse, and anything that 
can be formulated as a linear eigenvalue problem will do. But, when presented with recourse to atomic 
orbitais, neighboring atomic shells, one-dimensional chains, and tight-binding models, the method ac­
quires a very intuitive physical meaning, rather appropriate for the overall context of this work. 

The recursive method is tailored for the calculation of LDOS. Physically the LDOS describes the 
effect of the rest of the solid on a given region: it measures the amplitude of each eigenstate within some 
energy E on a particular atom or bond. In terms of the eigenstates ipn{r) and eigenenergies En of a given 

2Heine [1980, Chap. VI] gives a very personal and interesting account of the relevant historical circumstances. 
3This insensitivity to distant changes in the system, besides being of obvious relevance in studying local properties, contrasts 

with the unpredictably erratic behavior of the eigenstates under the same kind of perturbation. 
"The concept of nearsightedness of the electronic system introduced by Kohn [1996] in the context of DFT is very closely 

related to this (see also cond-mat/0506687 for a more recent discussion). 
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Hamiltonian it is simply the DOS projected upon a given orbital: 

nr(E) = Y,\Mr)\2S(E-En), (2.1) 
n 

where 4>n{r) = (r\tpn) and r is a general coordinate representing a given orbital5. The fact that, as we 
will see below, nr(E) can be expressed in terms of a Green Function, permits a powerful generalization 
of the physical quantities that can be addressed, much beyond what (2.1) would seem to imply6. This, 
added to the fact that in solid-state theory much of what we need is presentable through some appropriate 
Green Function (GF), is a first hint of the broad capabilities of this tool. 

2.1.3. Why Recur? 

Quantum mechanical problems are traditionally formulated in terms of the Schrõdinger equation and its 
solution [Fetter and Walecka, 1971]. In solid-state physics this entreats the calculation of a quantity of 
eigenstates and eigenvalues of the order of 1023 which, well, most of the time are rather useless, not to 
speak about the numerical difficulties in obtaining them in the first place! Solving for the greenian, being 
totally equivalent to the solution of Schrõdinger equation, allows for a much more interesting approach. 
This happens because small parts of the GF can be computed independently of the unwanted remainder 
and, therefore, for the set of problems that can be cast as a few matrix elements of some greenian operator, 
recursion is arguably the best procedure, as it yields a convergent sequence of bounded approximants for 
those matrix elements. 

Recursive algorithms, at use since at least Euclid of Alexandria, are highly advantageous for numerical 
tasks: they are easy to implement, of fast execution and generally economical in storage. A recursion 
scheme is almost a machine ready formulation of a problem. To this we add elegance of representation: 
the recursive method was the first to produce and make use of a Continued Fraction (CF) representation 
of the local GF [Kelly, 1980]. 

Tight-binding Hamiltonians, to which we devote our attention, are strikingly sparse in their matrix 
representation. Thus, it comes as no surprise the feeling of uneasiness one might encounter if having 
to apply generic diagonalization schemes to store, handle and diagonalize a matrix that has ~ 100 % of 
zeros. More seriously, generic diagonalization routines put hard limits upon the treatable sizes of the 
model systems. In the recursion method the sparseness is key because repeated matrix-vector operations 
are the elementary operations. The spirit is to calculate nothing more than what is exactly needed to 
address the spectral problem. Such laconism is possible through the tailoring of an optimized basis of 
states, generated iteratively by the recursive procedure, and particularly fit for the calculation of local 
quantities like the LDOS in (2.1). How this can be achieved so efficiently constitutes the subject of the 
coming paragraphs. 

In the sections that shall ensue, all the numerical examples, demonstrations and tests have been im­
plemented by the author, all the plots in the figures resulting from these calculations. 

5In most cases used along this work it coincides with the Wannier orbital of an atom at position r. 
6Here local is an example of the use of the language of electronic structure to describe a projected spectral density. 
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2.2. The Chain Model and the Tridiagonalization Scheme 

2.2.1. Transformation to a chain 

The power of the recursive method resides in that calculating matrix elements of the greenian can be 
converted in a highly efficient iterative procedure through its representation in terms of a CF. In section 
2.3 it will become obvious that such economy requires a tridiagonal — or Jacobi — representation of 
the Hamiltonian. Again, standard tridiagonalization algorithms like the Givens or Householder reduction 
[Press et al., 1992] turn out to be rather demanding for the solid-state applications of our interest, as far 
as storage and time resources are concerned. Let us then expose one of the most efficient ways to achieve 
the Jacobi form of an hermitian operator. 

We consider discrete basis sets (usually infinite), that generate the Hilbert space, H, of the problem, 
and will refer frequently to the local basis {<j>o(r),$i(r),... ,<pn(r),...} which, for convenience, we 
take as orthogonal and normalized7. They provide a definition for the matrix elements, Hmn, ofH: 

i f = 5^#mn|<M(</>n|- (2.2) 
ran 

The task is, hence, to construct a new basis {uo,ui, . . . , « „ , . . . } in which H has the tridiagonal 
representation 

/do 61 0 0 0 . . . \ 
61 01 62 0 0 .. 
0 Ò2 a2 63 0 .. 

V '••/ 
We call such basis the tridiagonal basis. This form determines that only neighboring states in the tridi­
agonal basis are connected through the Hamiltonian: 

H \un) = an\un) + bn\un-x) + 6n + i |«n + 1) . (2.4) 

This is the familiar situation encountered in one-dimensional chains with nearest neighbor hopping. 
Interestingly, it means that, since an hermitian operator can always be brought to tridiagonal form, every 
quantum-mechanical problem has some effective chain model representation. The sole information being 
H, the determination of the unknown an, bn,un proceeds iterative ly as follows: 

1. An arbitrary^, normalized, state \uo) is chosen as starter. This state determines trivially the value 
of ao: 

a0 = (uo\H\u0) ; (2.5) 

2. In the next step we apply H to generate a new state, from which we remove the projection onto 
|UQ). This state, defined by |«i) = H \UQ) - ao\uo), is by construction orthogonal to \UQ). Its 

H = (2.3) 

7 This saves the introduction of an overlap matrix and causes no loss of generality, as the extension to non-orthogonal basis is 
straightforward [Haydock, 1980]. 

Most of the times there are physical reasons which determine a specific choice as will be shown below. 
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norm and normalized counterpart are denoted by òi and |ui): 

|6i|2 = (ûi|ni) (2.6a) 

1̂ 1) = 6^1¾) . (2.6b) 

At this stage we have produced two matrix elements, ao and 6i, and a new basis vector, u\. 

3. The third and following iterations are completely analogous, and we give their general form. The 
an are always the diagonal elements, (un \H\un), calculated with the vectors from the previ­

ous step. Having calculated the set of orthonormal states {uo, ■ ■ ■ ,un}, the next one is obtained 
calculating H \un), after which its components of un and un­\ are projected out: 

|«n+l) = H \un) ­ an\un) ­ 6„|itn_i) (2.7a) 

|6n + i | = (un+iHWi) (2.7b) 

|Un+l> = i^n+ll^n+l) • (2­7c) 

The orthonormality condition only fixes |6n| , an arbitrariness that we use to choose the bn as 
positive reals, as is already implicit in (2.6) and (2.7). 

Having said this, we can condense the complete recursion scheme with regard to a starting vector |ito) 
as a tree­term recurrence with an initial condition: 

6o |u_ i )=0 , (2.8a) 

K+iWn+i) = H \un) ­ an\un) ­ bn\un­i). (2.8b) 

By construction, each |un) is orthogonal to its two predecessors. It remains to show that it is in fact 
orthogonal to all the preceding vectors9. The reader can convince itself easily of this by noting that any 
extra orthogonalizing terms on the r.h.s of (2.8b) will have a zero coefficient. 

As the algorithm unfolds, the prescription (2.8) generates a new basis element and a pair of tridiagonal 
coefficients with each step. Aside from the orthogonalizing operation, each step involves only repeated 
multiplications of the previously calculated un by H, which is a very fast operation for sparse matrices 
and tight­binding Hamiltonians. To this, we add the enormous advantage that a three­term recurrence 
in a carefully organized numerical implementation permits the calculation of {an,bn} keeping only 
two vectors in back­storage. These two features allow us to work with Hilbert spaces of much higher 
dimension than would be possible otherwise, an attractive feature for typical condensed matter problems. 
Regardless of the fact that we are building an orthonormal basis, we are not guaranteed to generate a 
tridiagonal basis that spans the whole original Hilbert space. This peculiarity is due to the fact that we 
had to choose a given «o upon which H is repeatedly applied, and, therefore, only states that belong to 
the invariant subspace generated by uQ will appear in the chain. This is particularly important when H 

'For that we can take any m < n ­ 1. We know that (itm|û„_i) = (um |H|un) = (H l um»^^ ) , and that, from (2.8b), 
the highest index state generated by H \um) is |um+i). Therefore the last equality is zero since we assumed m + 1 < n. 
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exhibits some symmetry: if u0 is chosen belonging to an invariant subspace generated by a symmetry 
operation, the chain states will remain in that subspace. This determines whether the chain terminates 
before N = dim(H) iterations or not. If a state of zero norm is encountered, implying that òjv = 0, 
the recursion relation is interrupted and the chain terminates: the set of linearly independent states, 
«5 = {un}, such that H\un) G S has been exhausted. 

Let us now introduce some physical content in these general arguments. That the outcome of the 
recursion scheme depends on the choice for the initial state, means that, whereas H defines the model in 
a physical problem, UQ poses the specific question. Take, for instance, the Heisenberg model that couples 
neighboring spins via an exchange energy. The total spin along the quantization axis, Sz, is a conserved 
quantity reflecting the underlying global rotational invariance of the problem. We can study the spectral 
properties of this model by focusing only upon a subspace of given Sz at a time, on which we apply the 
recursive approach 10. 

Another important physical example for our purposes, is the case of non-interacting, tight-binding, 
electronic problems on a lattice, modeled by an Hamiltonian in the second quantized form: 

H = ^tits4ci+S> (2.9) 
i,6 

where c] is the operator that creates an electron at the local Wannier orbital 4>i{r) = 0(r — Ri), and tij 
the nearest-neighbor hopping (taken as constant below, for simplicity of discussion). Any quantum state 
of a single electron in this iV-orbital system is of the form 

N 

|*) = £ > | ^ ) . (2.10) 

Suppose we apply our recursive scheme to (2.9), choosing for initial state a single local orbital, 0o. The 
starter for the tridiagonal basis is UQ = 0o and, from (2.8), the next vector, u\, will be a state with 
amplitude limited to the neighboring sites from the original orbital; the second will extend to the next 
nearest neighbors, and so on, in such a manner that the nth chain state spreads until the nth "shell" around 
the original orbital. This is clearly seen in Fig. 2.1, where the real space representation of selected chain 
states is shown. Three aspects are worth mentioning in this figure: (i) the amplitude distributes itself most 
significantly farther and farther from the central site (the starting orbital) as the index n of un increases; 
(»') all the states exhibit the full point symmetry of the lattice about the origin, reflecting the fact that the 
starting vector is localized on a single site having an s-wave symmetry (it is also remarkable that in 2.Id 
the details of the lattice start to vanish and one can appreciate a coarse-grained s-wave symmetry); (Hi) 
despite (/), states higher in the the chain still exhibit residual amplitudes at almost all inner shells whose 
purpose is to ensure orthogonality of the basis. For comparison and better appreciation of these remarks, 
we present in Fig. 2.2 the corresponding plots for an initial state of different symmetry, namely the state 
UQ OC 0(1,0) — 0(0,1) + 0(—i,o) — 0(0,-1)' f°r which the similarities and differences are self-evident. 

We have thus come to the point where we know a numerically efficient procedure to obtain a tridiag­
onal representation of our Hamiltonian. In the way we learned that states obtained at higher recursion 
10This turns out to be the only manageable way to perform exact diagonalization calculations on such problems. 
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FIGURE 2.1 .: Selected chain states for the tight-binding model (2.9) in 2D. The starting orbital occupies the 
central position (black). Each circle has a radius proportional to the amplitude of the state on that lattice site, and 
a color that identifies its sign: red for negative and blue for positive amplitudes. 

• • 

(a) State UQ (b) State u\ (c) State U\Q (d) State Ui5 

FIGURE 2.2 .: An analogous plot to the one in Fig. 2.1, this time for a starting vector with p-symmetry u0 oc 
^(1,0) ~~ 0(0,1) + 0(-1,0) — 0(0,-1) as described in the text, (d) 
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steps have lesser and lesser weight on the local environment around UQ. Incidentally, the examples above 
demonstrate the usefulness of borrowing the language of local electronic structure in discussing this 
general technique. 

2.2.2. Exact diagonalization and orthogonal polynomials 

Although a pure analytical approach based on the recursion scheme can suit some specific problems, its 
numerical implementation and most real life situations require a finite-dimensional Hamiltonian matrix. 
We now consider that a finite chain of length iV has been constructed and the tridiagonal form of the 
Hamiltonian 

/ao 6i 0 . . . 0 0 \ 
6i oi b2 ... 0 0 

0 0 0 . . . ajv-2 &JV-I 

\ 0 0 0 . . . 6;v_i a jv- i / 

has been hence attained. We assume additionally, that such finite chain is the result of a truncation in the 
recursive procedure11, thereby being an incomplete representation of the original Hamiltonian. Since all 
knowledge about a system is contained in its eigenstates and eigenvalues, the first thing one can do with 
the information at hand in (2.11) is to calculate those quantities. Diagonalization of a Jacobi matrix is a 
reasonably fast numerical procedure and (2.11) lends itself very suitable to direct application of standard 
numerical diagonalization routines. Although this is what suffices for practical purposes we will explore 
some important consequences of the Jacobi form. The secular equation in the tridiagonal basis reads 

H |V;a) = Y, pn(Ea) H \un) = EaJ2 Pn(Ea) H \un), (2.12) 
n n 

where Pn(E) is the amplitude of the eigenstate belonging to the eigenvalue E on the chain state un. 
The eigenvalues, E, are the zeros of det(lE — H ), which is rather easy to calculate from (2.11). For 
that, let An(E) represent the principal leading minor 12 of order n of IE — H, and, in particular, 
AN(E) = det(lE — H ). Developing the determinant along the last line, we have 

AN(E) = (E- ajv-i)AAr-i(£) - b2
N^AN_2(E). (2.13) 

Given that all An(E) are determinants of tridiagonal matrices, the above relation is valid for any or­
der principal leading minors, which results in a definition in terms of a recurrence relation with initial 

"The other possibility is, naturally that H was originally finite and small enough that machine limitations would not call the 
practical need for such truncation. 

12 The /cth order principal leading minor o f a n x n matrix A is the determinant of the first k rows and columns of A. 
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conditions cast as 

A0(£) = l, A_i(£) = 0 (2.14a) 

An(E) = (E­ an_!)An_i(£;) ­ ^ . 1 A „ ­ 2 ( £ 7 ) . (2.14b) 

The initial conditions guarantee that An(E) is a polynomial of order n in E and that the zeros of A^(E) 
are the eigenvalues of (2.11). As to the eigenstates, if (2.8) is applied to the r.h.s of (2.12), one readily 
obtains another three­term recurrence relation for the Pn 's (cfr. (2.8)): 

bn+1Pn+1(E) = {E­ an)Pn(E) ­ bnPn­X{E). (2.15) 

Eq. (2.15) is a second­order difference equation and, as such, needs two initial conditions. If we do not 
impose a normalization of the eigenstates, the Pn(E) are undefined up to a constant factor, allowing us 
to choose a particularly adequate initial condition: 

P_1(£7) = 0> P0(E) = 1, (2.16) 

in order to make Pn{E) a real polynomial of order n in E. Not only that, but the {Pn(E)} turn out to 
be a family of orthogonal polynomials13. To appreciate how this comes about, it suffices to expand the 
definition of orthogonality of the chain states, (um\un) = Smn, using the resolution of the identity for 
the vector space defined by {un}. Recalling that the eigenstates in (2.12) are not normalized we have: 

where the normalization is just 
r^ i

1/2 

Ma= Y.PniEa? • (2.18) 
­ n ■* 

With the help of (2.16) a simpler expression for the eigenstates' normalization is J\f~x — (uo\ipa), and 
therefore 

(«m|un> = ^ ( ^ 1 ^ ) 1 ( ^ 0 ^ ) 1 ^ ^ 1 ^ ) = ^ l ^ o l ^ l ^ m i ^ P n ^ a ) (2.19) 
a a 

= ^ | ( u o | V > a } | 2 [ Pm(E)Pn(E)6(E ­ Ea)dE . (2.20) 

Resorting to the earlier definition of local density of states in (2.1), this can be cast simply as 

Smn = J Pm(E)Pn(E)n0{E)dE : (2.21) 

13Because (2.15) is of second order, there is another, linearly independent, solution, {Qn{E)}, resulting from the choice 
Qo(E) = 0 , Qi(E) = 1. This is the so­called irregular solution [Haydock, 1980, §11], and, with due differences, shares 
all the properties of {Pn(E)}. 
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the statement that {Pn(E)} are, indeed, a family of orthogonal polynomials under a weight function, n0, 
that coincides with the LDOS on the starting orbital. This conclusion allows, at once, the enumeration 
of rather important properties of the spectrum of (2.11). 

First, is easily shown by inspection that the determinants An(E) are related to these polynomials via 

n 
An(E) = Pn{E)l[bi, (2.22) 

i 

with the consequence that the eigenvalues of (2.11) are also the zeros of PN(E)14. NOW, a general 
characteristic of orthogonal polynomials is the Sturm property of the zeros of successive Pn(E)'s: i.e., 
the zeros of Pn(E) interlace the ones of Pn+i(E)15, the same applying directly to the eigenvalues of 
our tridiagonal matrix16. For practical applications this Sturm property can be useful in the numerical 
calculation of the zeros of PN{E) (the eigenvalues), although in most cases one is better resorting to 
standard and optimized diagonalization routines applied to (2.11). 

Second, an immediate consequence of the Sturm property is the absence of degeneracy in the eigen­
values (Appendix 2.A). Degenerate eigenvalues are always a consequence of some underlying symmetry 
- physical or merely abstract - in the Hamiltonian, and its absence in the tridiagonal representation in­
dicates that the chain model is a somewhat symmetry-purged representation of the original problem. So, 
even for a problem with small iV = dim(H ) where one could easily obtain the N chain states, the chain 
would terminate after some fraction of N steps, every time the original problem is degenerate. This was 
already unveiled in page 12, where it was stated that the chain model contains only one symmetry -
the symmetry of UQ. This is one of the trade-offs of the recursive technique for tridiagonalization: it is 
fast, economical and numerically stable, but we are always bound to our choice for UQ — a particular 
realization of that old prosaic aphorism that guarantees the non-existence of such thing as a free lunch. 

Third, and important to the extent of justifying the title of the present subsection, the extremal eigen­
values of the chain model (2.11) converge uniformly (and rapidly) to the eigenvalues of the original 
problem, provided care has been taken in handling the subtleties just mentioned with an appropriate 
choice of the starting state, UQ. This is again a trivial consequence of the Sturm property of the zeros of 
An(E), and the fact that the spectrum is bound in almost all problems of interest. 

This last point is the essence of the Lanczos approach and what lies behind the designation "exact 
diagonalization " in the context of solid state problems. Many times the knowledge of the ground state 
and a few low-lying excited states suffices for a broad understanding of a physical system, but, just as 
often, the problem is unmanageable for a full diagonalization. The field of strongly correlated electronic 
systems has been rather prolific on that regard, with Hilbert spaces rising exponentially with the system 
size. For them, the local or short-range character of the interactions has meant that this so-called "exact 

14 This can be interpreted in terms of boundary conditions as follows: because the chain of size N terminates at the orbital 
UN-i, the amplitude of any eigenstate on the hypothetical UN (i.e. PJV(-EQ)) can only be zero. 

15This is quite familiar in the context of quantum mechanics where the wavefunctions of successively excited states have inter­
laced zeros (seek no further than, for instance, the solutions for the ID infinite square well problem), a simple consequence 
of the stationary Schrõdinger equation reducing to a Sturm-Liouville differential problem. 

l6That is indeed a property one expects for any hermitian tridiagonal matrix, as hinted by the generality of the above develop­
ments. 
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diagonalization" scheme has been very fruitful in the obtention of exact ground states17 for important 
models. The basic procedure for an "exact diagonalization" calculation is rapidly outlined as: 

1. Choose some adequate UQ in the Hilbert space of interest of the target problem (usually a random 
state to overcome the symmetry related problems above). 

2. Use the recursive method to build an effective chain of size N, and monitor the values of its ground 
state as N increases. 

3. Wait until the ground state of the chain has converged (which usually happens for incredibly 
less iterations than dim(H)18) and terminate the chain. Transform the ground state of the con­
verged/truncated chain back to the original basis and there you have the ground state of the original 
problem. 

At first sight, the last step is easier said than done. The attraction of the recursive method, and what 
guarantees its usability in the above mentioned cases, lies on the economy that comes from the need to 
retain only the complete representation of two chain states during the recursion, which keeps storage 
requirements at O(N) as opposed to 0(2N), as is typically the case for S = 1/2 systems. Assume that 
the chain truncation occurs at the Nth state, and that the original vector space has M — dim (H ). If the 
ground state, \^o), is wanted in the original basis {fa, fa,..., 4>M], then a change of basis is required: 

N M 

l*o> = Y l g n ^ = X ! 7m\4>m) , (2.23a) 
n=0 m=X 

N 
with 7 m = J ^ ((j)m\un) gn . (2.23b) 

71=0 

The last result obviously requires the knowledge of all the chain states! Fortunately, it doesn't require 
them all at once. So, the only way to obtain the 7m 's is to rebuild the chain model19, bookkeeping 
(4>m\un) at every step so that, in the end, all 7m 's are obtained. Compared to the sole calculation of the 
ground state energy, the execution time clearly doubles when we want to know the ground state proper, 
introducing another trade-off. 

This method was used by the author to obtain the spin stiffness and spin correlations of the XXZ 
Heisenberg model with S = 1/2, and to investigate the scaling properties of this and other ground state 
properties [Gu, VÍTOR M. PEREIRA, and Peres, 2002]. It is widely used in current problems, either in 
the form presented here, or in one of its variations that, among others, include optimized algorithms, or 
extensions for finite temperature calculations [Aichhorn et al., 2003; Jaklic and Prelovsek, 1994]. 

l7Or, more accurately, extremal eigenvalues and eigenstates with a controlled convergence. 
l8More on this will come in sec. 2.5.2. 
19Using the same starter, uo, naturally. 
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2.3. Local Density of States and Green Functions 

The first attempts to calculate LDOS are attributed to Cryot-Lackmann [Kelly, 1980] who introduced 
[Cyrot-Lackmann, 1967, 1968, 1969] a method based on the calculation of the moments of the LDOS, 

M(n) s f Ennr{E)dE = (r \Hn\r) (2.24a) 

= Y^ {r\H\rl){rl\H\r2)...{rn^\H\r) . (2.24b) 
n,r2,...,rn_i 

which involved the analytical calculation of as many moments as possible by, essentially, counting the 
returning paths to the target local orbital. Although the calculation of the first few is a feasible analytical 
task, for the higher order moments, the work quickly becomes daunting and numerical approaches are 
needed. Sadly enough, the problem of extracting the LDOS numerically from a finite set of moments is 
rather troublesome insofar as the absolute values of /^ grow very rapidly, and, besides, a finite set of 
moments does not determine univocally a given LDOS. Amidst such difficulties the recursive technique 
emerged as a much more controlled and efficient way to get nr{E) from the corresponding local GF. 

2.3.1. Green Functions 

Given that the subject of Green Functions (GFs) in solid-state problems is extensively documented 
[Mahan] we limit our prose to a brief presentation of the quantities of relevance for our applications 
of this method, mainly for establishing the notation. 

The Greenian or resolvent operator, G(E), associated with the Hamiltonian H is an alternative to the 
Schrõdinger equation method of tackling a quantum mechanical problem. It is defined formally as 

G{E) = E~hr = S \^)-Ë~T^ ' (2-25) 
a 

where the last equality results from a simple spectral decomposition. Of special interest for us are the 
matrix elements of the Greenian defined, as usual, through 

Gry(E) = (r\G(E)\r') , (2.26) 

and, in particular, the diagonal matrix elements, that we designate generally by Green functions: 

Gr(E) = (r \G{E)\r) = £ |<r|^)|2 ^ - . (2.27) 

Dynamical properties are readily obtained from the so-called retarded Green functions which, in the 
energy representation used above, are obtained from Gr(E) by adding a small imaginary part to the 
argument E20. From now on, we will be using the retarded counterpart of (2.25). Having established 
this, we drop the qualifier retarded and use Gr{E) without the explicit imaginary part, always having in 
mind that it actually stands for G^(E) and the limit is implied. 

"More precisely, the retarded GF is related to the GF through Gr(E) = lim^^o Gr(E + irf). 
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The representation in (2.27) is very useful in that we readily conclude that the only singularities of 
Gr(E) are simple poles at the (real) eigenvalues of H . Since the residues at those poles are necessarily 
positive, the imaginary part of the retarded GF is positive whenever its complex argument E lies in the 
lower half of the complex plane. Given that the converse follows from hermiticity, one concludes that 
the zeros of Gr(E) are also real and interspersed with the eigenvalues Ea

 21. 

The total DOS is related to the trace of G(E), and a simple application of the Cauchy identity allows 
one to present the LDOS as 

nr(E) = - - lim lm\Gr(E + in)] ■ (2.28) .(E) = — lim lm[Gr(E + ir])] . 

The analytical properties enumerated above guarantee that no is defined positive. 

2.3.2. Continued Fraction Representation 

Obtaining the local GF, GQ(E) , is straightforward in the tridiagonal basis. Recalling the definitions 
(2.25) and (2.26) for the GFs, using the orthogonal, tridiagonal basis generated by UQ, {UQ, U\, . . . , u^}, 
and knowing that the representation of H in this basis is what was shown in (2.11), what is needed is 
but the first diagonal element of 

/E-a0 -h 0 
-h E-ai -62 

0 -62 E-a2 

0 0 0 

\ 0 0 0 

0 

0 

0 

0 

0 

0 

\ 
- 1 

(2.29) 

E - ayv-2 E - ò/v-i 
-òjv-i E - a/v- i / 

It is useful to introduce the quantities Dn(E), defined as the determinants of the submatrix obtained from 
IE — H by removing its first n lines and columns 22. GQ(E) will simply be the first cofactor of the 
quantity between braces divided by its determinant. As we already know from Sec. 2.2.2, determinants 
of tridiagonal matrices have a peculiar recursive structure that arises here again. Namely, 

Go(E) giCg) 
D0(E) 

1 

E a0 6? 
£>2(£) 
Di(E) 

(2.30) 

21A function with such analytical properties is called a Herglotz function. 
22Notice that this is the opposite of the definition of the principal leading minors, An(E), introduced before. (See footnote 12 

on page 14). 
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and is obvious that this structure will repeat itself in D2{E)/Di (£7) and subsequent quotients of the type 
Dk+i{E)/Dk(E), resulting in the Continued Fraction expansion for Go (£7) : 

Go(E) = . (2.31) 

E-ao- b\  
£ 7 - 0 1 - 6 2 a\ — Oj-

•-... 6i 'N-l E - CLN-l 

By analogy with eq. (2.30), we can define the quantities23 Gk{E) = Dk+i{E)/Dk{E), whereupon their 
recursive character is immediately exposed: 

GN-I = -= . (2.32b) 
h - ajv-i 

The single most important fact about this CF expansion is the fact that its coefficients are the same as 
the ones appearing in the tridiagonal representation of H (2.11), and in the recursion relations for the 
orthogonal polynomials Pn(E) that define the eigenstates of the chain (2.15). Although we have been 
using iV-sized chains, the case of interest in condensed matter problems is, usually, the infinite target 
solid, in which case, the CF expansion above extends indefinitely. In any way, those cases require in 
general the truncation of the chain at some point, and (2.31) above represents just an approximation to 
GQ(E) . For those cases, it is more appropriate to refer to the expansion in (2.31) as GQ (£7), which 
stands for the Ntb order approximation to Go (£7) . 

The relation between GQ '(£7) and the orthogonal family of polynomials is more profound than this 
mere sharing of coefficients. In fact, it can be shown that this truncated approximation corresponds 
precisely to the Padé approximant [N - 1/N] to Go(£7), which turns out to be simply 

G° {E)-bJMË)> (2-33) 

where Pn and Qn are the orthogonal polynomials introduced above (see Appendix 2.B). When compared 
to the CF expansion (2.31), this form is very transparent in what concerns the analytic structure of 
G0 (E), namely, that all its poles are at the eigenstates of the chain and interlace its zeros: 

G° {E)-bJyïï\E-^E-a- (2-34) 

Incidentally, since this corresponds to the LDOS 

noN)W = E rWr£-^E ~Ea)^J2w-S(E-Ea), (2.35) 
„ OlPN{Ea) <-? 

These are, essentially, the local GFs for the sub-chains constructed from the original one by removing the first k states. 
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and since it was shown in one of the Appendices that Va : P^(Ea) = 0 => QN{EO) ¥" 0 one concludes, 
via (2.27), that all eigenstates of the chain have some finite weight on the initial state. 

Another physically important property to retain from GQ ' (E) brings us back to the question of the 
moments of the LDOS (2.24). One of the solutions that tries to avoid the problems raised at the opening 
of the current section in calculations involving moments relies upon the use of polynomial moments, 
instead of the actual /U0 '. The polynomial moments are defined as 

Xn= ÍTn(E)n0(E)dE, (2.36) 

where {Tn(E)} is a set of orthogonal polynomials under some known weight function. These do not 
grow as uncontrollably as (J,Q, and are efficient provided that their weight function has the same es­
sential singularities as UQ{E) [Haydock, 1980]. For example, the so-called kernel polynomial method24 

introduced by Silver et al. [Parker et al., 1996; Silver and Roder, 1997; Silver et al., 1996; Weisse et al., 
2005] uses Chebyshev polynomials for Tn(E). We can see here that the optimal polynomials for such 
procedure are precisely the Pn(E) obtained from the chain model and, in this sense, an optimization 
of the polynomial moments method degenerates into the recursive scheme. Not only this but, the more 
important point we want to underline regarding the moments of the LDOS is that the convergent GQ 
contains an information equivalent to the calculation of 2N moments25 

Having said this we still face a problem. The inevitable truncation of the chain model in practical 
applications implies that our approximation for the LDOS is a sum of Dirac 6 functions. This is nothing 
new, inasmuch as, strictly, it is the DOS of a finite system. The problem with that is that we want G0 

to be an approximation to the GF, Go(E), of a macroscopic system. In particular our approximation 
should retain the analytical features of Go(E), with special emphasis on the branch cut in lm(Go(E)) 
responsible for the overall smoothness of the DOS characteristic of macroscopic systems. We, therefore, 
need some extra processing of the CF expansion. 

2.3.3. Processing the Continued fraction 

"Strictly, the LDOS for any finite cluster is a mess of spikes and one must not 
complain if that is what the calculations give. " 

— V. Heine, The Recursion Method and its Applications [Heine, 1980, pp. 77]. 

What guarantee do we have that our approximation G0 gets better as we increase the chain size, N ? 
At first one might be tempted to invoke the algebraic properties of the CF expansions of real numbers 
[Beskin, 1987] and conclude that, since G0 ' is just a convergent, it should approximate monotonically 
some limiting value. Things are more elaborated when dealing with meromorphic functions. Haydock 

The kernel polynomial method is perhaps the closest competitor to the recursive technique in the calculation of projected 
spectral properties [Weisse et al., 2005]. 

25The mathematical justification is discussed at the end of Appendix 2.B. See also [Haydock et al., 1975, §3]. 
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Wo) = \<h) 
| f i i )= t |£_ i ) + t|0i) 

|«l> = ( |<M + |0i>)/V2 a0 = e, h = \/2í 

M = (10-2) + |02»/v /2 oi = e, 62 = i 

|w3> = (|<A-3> + | 0 3 » / v ^ a2 = e, 63 = t 

\un) = (| </>_„) + |</>n))/\/2 an_i = e, i>n = t 

FIGURE 2.3 .: Transformation to a chain applied to the ID tight-binding model. The \<j>n) represent the local 
Wannier orbitais at site n. 

showed that, for complex E, the recursion scheme gives a monotonically convergent sequence of ap­
proximations for the projected resolvent, in the case the {an, bn} can be computed exactly [Haydock, 
1980; Haydock and Te, 1994]. When exact arithmetic is beyond reach (in a computer implementation) 
he showed that errors introduced in the computation of the states/coefficients decrease exponentially with 
their chain index [Haydock and Te, 1994]. This what we expect physically because GQ(E), or rio(E), 
are local quantities and we know since Fig. 2.1 that the amplitude of un is concentrated within shells 
farther and farther away from UQ as n increases. 

2.3.3.1. The Square Root Terminator 

For defmiteness, we now rum to an example that can be treated exactly with the recursive technique: the 
infinite length tight-binding model (2.9) in ID, with constant hopping t. At each site of the ID lattice 
there is a local orbital (fin, with n e Z, and a local energy, e. We will calculate the LDOS on a single 
orbital, 0o> chosen for convenience. Application of the recursive prescription of (2.8b), results in the 
parameters cast in Fig. 2.3. Apart from the first iteration, the {an, bn} settle immediately, allowing us to 
write (2.32) as 

W-f-.-W«)' «V-B-.-W (237) 

with the converged part (independent of n) represented as g(E). A general property of the recursive 
transformation, evidenced here in a somewhat extreme way, is that the bn are of the order of the average 
hopping multiplied by the average number of neighbors. Therefore we should not expect the conver­
gence of the approximants G0 (E) to arise from the divergence or weakening in the magnitude of the 
tridiagonal coefficients. It is rather the contrary. The exact convergence in Fig. 2.3 comes as a great 
convenience providing a mean to solve the infinite continued fraction for its infinite convergent. In fact, 

){E) = ±{E-e-V(E-er-4t>}, 90(E) = - , \E - e - y/{E - e)* - W , (2.38) 
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and we obtain immediately, via (2.28) 

' 1 

n0(E) = < 
,-2t<E-e<2t 

ir y/(E-e-2t)(E-e + 2t) (2.39) 
0 , otherwise, 

for the exact LDOS at (f>0 which, because the system is translationally invariant, coincides with the ex­
act DOS for this problem26. This last point is completely general and shows that the calculation of the 
LDOS yields at once the total DOS in ordered problems. As the reader familiar with the classical or­
thogonal polynomials might have already suspected from the recursion coefficients in Fig. 2.3, the chain 
transformation of this problem corresponds to the solution of the recursion relations for the Chebyshev 
polynomials of the first kind, Tn(E) [Arfken, 1970, Chap. 13], a statement readily confirmed by the 
weight function n0(E) in (2.39) with t = 1/2 and e = 0. 

This example is of high relevance in that it exemplifies one of the ways in which the CF expansion can 
be processed (in this case solved exactly). Indeed, the common situation for a broad class of problems is 
that the {an,bn} tend to converge for asymptotic values — say a^ and b^ — if n0(E) has a connected 
support, that is, if there are no band gaps. Such circumstance, implies that, in (2.32) the CF can be 
terminated not with G/v-i but, instead, by effectively replacing GN by go above and, again, the chain 
can be solved exactly. The asymptotic go(E), with e replaced by doo and t by b^, g° e s by the name 
of square root terminator for the Continued Fraction, a terminology that reflects the fact that go(E) is 
appended at some iteration of the CF, thus allowing the practical termination of the CF. This type of pro­
cedure was the one originally introduced by Haydock et al. [Haydock et al., 1972], not only because the 
"experimental" knowledge at the time supported the stated asymptotic behavior of {an, bn} , but mostly 
because the terminator go(E) readily solves the problem of the analytical structure of the GF. In partic­
ular it introduces the branch cut in the real energy axis needed to obtain a smooth DOS characteristic of 
macroscopic systems. In practical terms, the DOS obtained with a square root terminator corresponds to 
a semi-circular DOS (the imaginary part of g0), upon which the extra, non-converged, {an, bn} add the 
structure needed to reproduce the LDOS of the system. The role of the terminator is, roughly speaking, 
to define the center of the band (a^) and its bandwidth (46^), the profile of n0(E) being contained in 
the local information carried by the tridiagonal coefficients. 

A working example of these aspects is presented in Fig. 2.4 for a tight-binding Hamiltonian in a 3D 
square lattice. This is a non-trivial example27 but the figure leaves no doubt as to the convergence of 
the coefficients bn, and to the fact that just a few iterations suffice to delineate the distinctive features 
of the DOS, which then becomes indistinguishable from the actual result within a couple dozen steps. 
In particular, the van Hove singularities are reproduced exactly at the band edges, and with remarkable 
accuracy at |JE?| = 2. The accuracy at the band edges derives from the choice of the square root terminator, 
which carries its square root singularity to the final LDOS, thus rendering it generally adequate for DOS 
calculations in 3D systems. Another, more subtle, aspect regarding the numerical DOS plotted in Fig. 2.4 

26A subtle detail deserves a comment. Eq. 2.38 is quadratic in g(E) and a selection of the solution was made in 2.39. The 
choice is determined by the fact that, being itself a GF, g(E) needs to have the correct analytical properties mentioned in 
(sec. 2.3.1), which are satisfied by only one of the solutions. 

27In the sense that, contrary to the case in Fig. 2.3, the analytical calculation of the {a„, 6„} soon becomes impossible. 
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(a) (b) 

FIGURE 2.4 .: Numerical results for the 3D tight­binding example discussed in the text (t = I), (a) The LDOS 
calculated by appending a square root terminator after N iterations (for clarity of the presentation, the vertical 
axis was shifted for N > 1). (b) The corresponding chain coefficients bn (notice that the vertical axis was truncated 
for clarity). 

is the fact that the van Hove singularities are well reproduced without noticeable Gibbs oscillations. This 
differs from what would be obtained via standard polynomial approximations28, and the reason lies 
in that the recursion method provides the optimal orthogonal family for polynomial interpolations, as 
aforementioned at the end of sec. 2.3.2. Finally, the 2D case is also provided in Fig. 2.5 for comparison. 

2.3.3.2. Delta Function Broadening 

Going back to the problem of having a truncated chain, an alternate way to obviate the difficulties that 
the form in eq. (2.35) presents is to broaden the set of 5 functions. This is achieved with the introduction 
of a finite, but small, imaginary part for the energy E in the expression for the GF (2.34), akin to the 
introduction, by hand, of a finite lifetime for the eigenstates. In practice this means that an approximation 
for the GF is obtained from the truncated form in (2.32) by replacing E+i T for E. As a result, eq. (2.35) 
is transformed to a sum of Lorentzians of half­width 2T, thereby lending some degree of smoothness to 
the resulting DOS. 

An explicit demonstration of this expedient at work is presented in Fig. 2.6 for the 3D tight­binding 
on the square lattice. The trade­offs involved in this smoothing procedure are obvious. A finite chain of 
size N has an average energy resolution, of which a rough estimation is AE ~ w/N, where w is the 
bandwidth of the target system. Applying this estimate to the example in the figure built with TV = 80 
chain states, we get w/N = 12/80 ~ 0.15. Accordingly, it doesn't come as a surprise that the DOS 
obtained with a broadening T = 0.1 (and smaller) appears too spiky, particularly at the band center29. 
With T = 0.5, on the other hand, the resulting approximation for the DOS appears clearly over­smoothed, 
missing essentially all the relevant features. By construction, sharply defined band edges and van Hove 
28For example, in the kernel polynomial method that relies on a Chebyshev expansion of the Dirac­á function, Gibbs oscil­

lations at singularities are a known pathology that has to be handled by the introduction of seemingly arbitrary damping 
factors to smooth this effect [Silver et al., 1996]. 

29Remember that the eigenstates of the finite chain tend to be more dense at the extremal energies, a consequence of the Sturm 
property of the zeros of Pn(E) (Appendix 2. A) 
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FIGURE 2.5. : Numerical results for the 2D counterpart ofthe tight-binding example presented in Fig. 2.4 (t = I), 
(a) The LDOS calculated by appending a square root terminator after N iterations (for clarity of the presentation, 
the vertical axis was shifted for N > 1). (b) The corresponding bn coefficients. 
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FIGURE 2.6 ./ (left) The DOS for the 3D tight-binding on the square lattice obtained for different broadening 
widths, T, of a chain truncated at N — 80 (t = 1). For comparison, each panel also displays the DOS obtained 
from a sampling of the k-space with 20003 reciprocal space cells, (right) The relative difference of energies 
calculated with broadening and with k-space sampling. 
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singularities are beyond reach, as is the reproduction of any features with characteristic energies smaller 
than ~ T. This arises from the limit that the chain length imposes on the resolution of the broadened 
DOS, with the consequence that higher resolutions imply higher chains. It is remarkable, though, that 
integrated quantities, out of which most physics arises, are much more controlled, in the sense illustrated 
by the right panel of Fig. 2.6. The energy 

rEF 
E(EF) = / n(E)EdE (2.40) 

J—oo 

is evaluated for the different broadenings and is then relatively compared with the, for all purposes, exact 
result obtained from a sampling on the fc-space. If Y = 0.1 the relative error is within ~ 1% for the most 
part of the band, and is clear that, despite the spikier structure of the DOS, the smaller the T, the better 
the approximation to the exact result. We will come back later to the question of integrated quantities 
and their convergence. 

For the cases where the square root terminator becomes unwieldy, this broadening scheme is the easiest 
approach to extract an overall profile of the DOS, and other physical quantities depending on it. But care 
is always advised in the conclusions drawn. 

2.3.3.3. Integrated Quantities and Re-differentiation 

That different methods for processing the continued fraction are being presented here somehow reflects 
the circumstance that the LDOS (or GF) obtained from the finite approximants to the CF is not a stable 
convergent quantity for real energies. The convergence of the approximants G0 {E), alluded before 
for complex E, fails if E rests on the real axis [Haydock, 1980; Haydock and Te, 1994]. Nothing un­
expected, though. Just have present what happens to the LDOS when one goes from a chain of size 
AT to a chain of size N + 1: all the eigenvalues are displaced (always the Sturm property) introducing 
infinite changes in the LDOS at those energies, or, equivalently, on the GF near its poles. As generally 
happens with quantities expressed in terms of Dirac 6 functions, their definition begs the definition of 
some associated integrated quantity. In solid-state problems the DOS is not habitually an aim per se, but 
rather a mean to achieve some physically measurable property, defined as 

F= in0(E)f(E)dE, (2.41) 

of which the total energy is an example corresponding to f(E) — E. It turns out that F above is a stable 
convergent quantity, provided that f(E) is a well behaved function [Haydock, 1980; Nex, 1978]. 

There are two distinct situations regarding the expression above: the integral can be over the whole 
support of i%o(E), or it can be within a defined interval. The first case is almost trivially understood by 
inserting eq. (2.35) in the last one: 

N 

F = / n0(E)f(E)dE = Yl w*f(Ea). (2.42) 

This corresponds to a general Gaussian quadrature formula whose weights are obtained from the or-
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FIGURE 2.7 .: An example of the crude approximation to F(E) = j e2n0(e)de via the naïve quadrature 
discussed in the text, for n0(e) = | 6 ( e + 1)0(1 ­ e). the continuous (red) line denotes the exact result for F(E). 
Several chain lengths, TV, were used for comparison. 

thogonal family Pn(E), just as in Legendre's or other classical Gaussian quadrature scheme30. The 
convergence of F then follows as in the classical quadrature problem, and all known properties of the 
Gaussian quadrature remain valid. 

The case of indefinite integrals of the form 

F(EF) = / n0(E)f(E)dE 
J—oo 

(2.43) 

is more interesting, not so straightforward, and deserves more attention. A crude estimate of F(EF) 
could be obtained from (2.42) restricting the terms of the sum that satisfy Ea < EF. This would yield a 
very crude approximation indeed, for F(E) would exhibit a square step structure, with plateaux between 
the Ea, as depicted in Fig. 2.7. The solution, adapted from the classical moments problem to the language 
of the recursive technique by Nex [1978], hinges upon a very smart trick. The step­like structure that 
F(E) would acquire from that naive generalization of the quadrature to an indefinite integral is a simple 
consequence of the fact that, in (2.42) the nodes are fixed, whereas EF can be anything. How useful 
would it be if one could have a node that moves along the upper limit EF1 Here is how to achieve that. 
A given chain characterized by {a0,. ■ ■, a ^ ­ i } and {b\,..., bN} determines a set of fixed nodes. An 
extra node is forced to lie at EF, and, since an extra node implies a longer chain, a fictitious state, a*N, is 
added to the chain (that now has N + 1 states). From the recursion relations for P/v+i (E) (2.15), a node 
at EF is present if one requires 

a*N = EF ­ bNPN^{EF)/PN(EF). (2.44) 

Therefore the result is a N + 1­sized chain whose associated spectrum, following from P^+1(E) — 0, 

30This is a Gaussian quadrature in the strict sense. Since Jacobi and Christoffel, it is known that the optimal abscissas for 
the ./V­point Gaussian quadrature formula are precisely the roots of the orthogonal polynomial for the same interval and 
weighting function: i.e., the eigenstates, roots of PN (E), orthogonal under noí­E). 
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FIGURE 2.8 .: An example of the proper quadrature applied to F(E) = /■ e2no(e)de, with no(e) = | 6 ( e + 
1)0(1 — e). Two chain lengths, N = 10 and N = 20, were used. The continuous (red) line denotes the exact 
result and the circles, with respective error bars, represent the results of quadrature. Notice how N = 10 is 
sufficient to render the quadrature quite indistinguishable from the exact result. Notice also that the error bars 
differ approximately by half between the two cases. 

determines the nodes for a Gaussian quadrature to (2.43). The associated weights are obtained from the 

new chain exactly in the same way as the ones in (2.42). Eq. (2.42) can now be applied, discarding again 

the terms with Ea > EF, and the dubious status31 of the node at EF will be used to define precise upper 

and lower bounds for F{EF) [Nex, 1978]: 

F_(EF) = J2 Kf(Ea) 
Ea<EF 

F+{EF)= Y, w*af(Ea) + wFf(EF), 
Ea<EF 

the approximate result being defined as the average of the above bounds: 

F(EF)= J2 <f(Ea) + \wFf(EF). 
Ea<Ep 

(2.45a) 

(2.45b) 

(2.46) 

Fig. 2.8 shows the result of this procedure applied to the same example used in Fig. 2.7. The first 

virtue of this result is the appearance of a majorant and minorant for the approximated F(EF), allowing 

the introduction of error bars in the resulting curve. The second virtue is the very good approximation 

attained with a reduced number of chain states. In fact, despite the error bars, the points in Fig. 2.8 rest 

on top of the exact curve even for N = 10, a situation verified in general whenever f(E) is a smooth 

function. Another example, perhaps physically more meaningful, is the one shown in Fig. 2.9, where 

the integrated DOS, (NQ(E) = J no(e)de), is presented. This last particular choice is deliberate. The 

third virtue of the quadrature formula (2.46) is the smoothness of the resulting F{EF), in opposition 

with the situation in Fig. 2.7. This is rather convenient as one can calculate the integrated DOS using 

quadrature and re­differentiate the result to obtain the DOS proper. As a matter of fact, in those cases 

where one does not know anything a priory about the band under analysis, other than the chain coeffi­

31 This is related with the fact that the last term retained in the quadrature sum is / F WFÎ{E)5(E — EF)(IE. 
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FIGURE 2.9.: The integrated DOS (F(E) = N0(E) = J n0{e)de) for the tight-binding model on a 3D square 
lattice, at different chain lengths, N, obtained by quadrature. The shadowed region is limited by the upper and 
lower bounds F±(E) defined in (2.45). The (red/dotted) curve labeled exact was obtained from a sampling in 
K-space. Notice how it cannot be distinguished from the approximate F(E)for N = 25 and above. 

cients {an, bn} it generates, this re-differentiation method is certainly the most adequate. Returning to 
our ubiquitous example, the data in Fig. 2.9 concerning N0(E) can be differentiated yielding the curve 
shown in 2.10a. Notice how the exact result is remarkably reproduced, despite the additional numerical 
differentiation operation, and using no information other than the {an,bn} . The sole exceptions are the 
immediate vicinity of the singularities, which, even so, are accounted for within the error bars obtained 
by differentiation of the F±(E). The power of this approach for the estimation of DOS is better appre­
ciated when the band is gapped. One such case is depicted in 2.10b for a DOS exhibiting two regions of 
abrupt gaps 32. A self-evidence that would qualify as a fourth virtue of the quadrature approach regards 
the fact that, in those cases where the DOS is not a goal, its calculation is naturally bypassed in the 
calculation of integrated quantities. 

Amongst the three techniques presented here for the extraction of the DOS from the finite approx-
imants G^ (E) the last two, S function broadening and quadrature, are the ones that do not assume 
anything about the DOS, thereby having a broad scope of application. The square-root termination is 
specific of bands with connected support. The concept of terminator has a very precise physical mean­
ing. A terminator is nothing but the Green Function associated with a semi-infinite tight-binding chain 
for which we know the exact behavior of the coefficients {an, bn} ad infinitum, and for which we can 

32The exact expression for the DOS in 2.10b is, apart from a normalization factor, cos(7ra;/6) [6(3 - x ) 0 ( - 2 + x) + 9 (1 -
x)Q(x) + 0 ( 3 + x ) 6 ( - 1 + a;)]. In this case we did not start from a given model Hamiltonian, but departed instead from 
this expression for the DOS, for which the {a„, bn} coefficients were constructed using the polynomials orthogonal under 
it. Then we applied the quadrature and differentiated to obtain Fig. 2.10b. 
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FIGURE 2.10 .: (a) The DOS for the tight-binding model on a 3D cubic lattice obtained by differentiation of 
No(E) in Fig. 2.9. (b) The same procedure appliedto an arbitrary band with two gaps32. Notice that, in both cases, 
although the error bars are relatively high, the expected value for the DOS (the circles) is barely distinguishable 
from the exact one throughout most of the domain. 

solve the infinite CF expansion in some closed form. Hence, appending a terminator to the chain model 
representation of a physical problem corresponds to reducing the infinite system to a local region of 
interest plus an infinite, exactly solvable, system, with a matching boundary condition, as illustrated 
schematically in Fig. 2.11. The matching is essential as, otherwise, it would correspond to the introduc­
tion of an artificial potential at the boundary and strong scattering occurs. The manifestation of this is 
the appearance of strong spikes interspersing the resulting DOS. This is one of the reasons that render 
the square root terminator discussed above rather useless in systems with gaps. Possible generalizations 
for those cases are to be addressed next. 

2.4. Gapped and Disordered Systems 

2.4.1. Singularities and Asymptotic Behavior of the Continued Fraction 

The complete set of tridiagonal coefficients, defining an alternative representation for a given Hamilto-
nian, encodes all the information about it. The tailoring of the tridiagonal basis in such a way that the 

FIGURE 2.11 .: Schematic representation of the physical meaning of a terminator for the CF in the recursive 
method. In the calculation of the projected DOS, or local GF, on UQ using a terminator one retains a locally 
relevant portion of the system of interest, S, and connects a solvable chain that matches the original one at the 
boundary E. 
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probability density for successive un gets distributed farther and farther away from the starting state has 
the consequence that, at least for ordered systems, the {an, bn} reach some asymptotic regime. The cases 
discussed above are representative of the simplest of such regimes: a damped oscillation converging to­

wards limiting values {aoo,froo}­ hi reality, the asymptotic regime conceals a richness much beyond 
this. 

First, the damped oscillations reflect the presence of internal singularities in n0(E). The period of 
oscillation is related to the position of the singularities within the band, while the decaying rate to its 
strength [Gaspard and Cyrot­Lackmann, 1973; Hodges, 1977; Luchini and Nex, 1987]. This is impor­

tant because, on one hand, for the cases where the band structure is totally unknown, one can identify 
the type of singularities just from the observation of the asymptotic regime, and, on the other, knowl­

edge of an analytic form for the asymptotic behavior allows the construction of much more appropriate 
terminators. This has been pursued by Magnus [1984] who, studying classical orthogonal polynomials 
associated with singular weight functions, was able to systematize some analytical expressions for the 
asymptotic of {an, bn} for several types of singularities. This raises the possibility, at least in principle, 
of constructing chain models asymptotically equivalent to the physical system of interest, but with a 
precisely known structure of coefficients that would allow the computation of specifically tailored termi­

nators. The proposal of a general terminator for the recursion method [Haydock and Nex, 1985] follows 
closely along these same lines. 

Second, as was early realized [Gaspard and Cyrot­Lackmann, 1973], this convergence only applies 
to single connected band structures. Multiband systems are characterized by coefficients oscillating 
endlessly in a somewhat predictable way [Turchi et al., 1982]. For them, internal van Hove singularities 
have a secondary role, being overshadowed by the influence of the relative position and spectral weight 
of the multiple bands in determining the profile of {an, bn} . 

2.4.2. Band Gaps and the asymptotic problem 

Consider a LDOS, UQ{E), consisting of two symmetric square steps, separated by a sizeable gap, as 
shown in the lower panels of Fig. 2.12. Building the orthogonal family {Pn(E)} associated with it al­

lows us to obtain the recursive coefficients show in Fig. 2.12a,b. As expected, bn oscillates perpetually 
between two limiting values, which poses an immediate problem for the square root termination: which 
of the two limiting values should one consider in the terminator? Since in the simple square root ter­

mination (sec. 2.3.3.1) òoo determines the bandwidth, one should choose the largest asymptotic value. 
But the result is terrible, as Fig. 2.12c documents, with the resulting DOS ending contaminated by strong 
spikes33. This example is a very particular case of the periodicity imposed on the coefficients by the band 
gaps, happening only for a symmetric, single gap, band. A periodic behavior of the coefficients in gen­

eral determines that, having reached the asymptotic regime after, say, N chain states, the CF expansion 

33 If the terminator is applied after the iV­th iteration there will be always N spikes centered at the zeros of PN(E). These 
spikes are therefore just the 6's expected from a truncated GQ(E), broadened by the imaginary_part of the terminator. 
This is completely general, independent of the shape and position of the bands. FacuMa^i» r!i> Clêr . . Porto 

''■' '
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FIGURE 2.12 .; Recursive coefficients associated with a band consisting of two symmetric square steps (the 
dashed/red curves in the lower of panels), (a) The coefficients bn exhibit an oscillating behavior, converging 
towards two well separated values, (b) A detail of the convergence ofbn to the upper limit, (c) The square root 
terminator applied after 15 iterations. Notice the 14 spikes33 in the DOS obtained with this terminator, and how 
it completely fails to reproduce the shape of the exact DOS. This should be compared with the results from the 
periodic terminator (2.49) using 15 (d) and 51 (e) iterations. 

(2.32) acquires the form 

GQ(E) = (2.47) 

E-ao-bl-

E-cn-bh 
^ - r 

E-aN-x-b%tg(E) 

where tm(E) is the periodic tail of the CF, and m is the period {an+m = an): 

C(E) = 
1 

. (2.48) 

E — a/v — bN+1 ■ 

E — ajv+i — bb N+2 

' • ■ • • • ^ - 1 
E-aN+m^-b2

N+mC(E) 

This is nothing but the generalization of (2.37) and, t^(E) in itself qualifies as the CF expansion of a 

finite chain of size m. Everything we know applies here as well, in particular, t%(E) can be cast in 

the form of eq. (2.33) with the corresponding polynomials {Vn, Qn} being determined by the periodic 

{ajv+i, &jv+i}, and permitting to obtain a closed form for the terminator. t%(E) will satisfy a quadratic 
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equation of the type t(E)2 + B(E)t(E) + C(E) = 0, with coefficients that involve combinations 
of {Vn, Q n} 3 4 . The solution for t%(E) is therefore a more generalized square root terminator. For the 
symmetric case illustrated in Fig. 2.12, it's straightforward to obtain the terminator used in Figs. 2.12(d,e) 

t»(E) = 2(E-q„+1) = = = ^ w . t h ( 2 4 9 a ) 

W - X + ^ ( W + X) 2 - 4XÒ2
V+1 

W = (bN+1 + bN+2)(bN+i-bN+2), X = {E - aN)(E - aN+1), (2.49b) 

as well as the, notoriously symmetric, band edges Ef. 

^ = aN + aN+1 ±1_{{aN_ aN+lf + 4(6jv+1 ± 6jv+2)2}5 . (250) 

The identification of the periodicities in the unsymmetrical gap and multiple gap cases is not as easy. 
The {an, bn} in Fig. 2.13a are self evident with respect to this difficulty. Moreover, it is not guaranteed 
that the periodicity is commensurate with the chain as the expression in (2.48) implies. The periodicity 
in those cases is better appreciated in the phase space representation (an, fr£) suggested by Turchi et al. 
[1982] and shown in Fig. 2.13b. It is possible also to attain closed expressions for the general gap 
[Haydock and Nex, 1984; Turchi et al., 1982] but, as it would certainly lead to a rather lengthy section, 
we refrain to elaborate further on that, and limit ourselves to presenting the form of the terminator for 
the general single gap [Haydock and Nex, 1984]: 

fN(F, 1 (E-Af + A'-B + 2b%-^XiË) f 2 5 n 
1 {E) = K E-2A + aN.1 ' ( 2 ' 5 1 ) 

with A and B related to the band edges through, A A = Y.Ei a n d 4 5 = Y*Eh a n d xiE) = 
Y[i=1(E - Ei). This has been applied to the unsymmetrical band in Fig. 2.13(c,d), allowing the success­
ful reconstruction of the DOS. Notice that such favorable outcome means that the terminator represents 
an infinite chain that matches the finite set of calculated {an, bn} and exhibits the same periodic behavior. 
This is rather remarkable, judging from the seemingly non-periodic aspect of Fig. 2.13(a). 

2.4.3. Stochastic Recursive Method 

So far our emphasis has been almost exclusively restricted to the calculations leading to the LDOS. This 
is a special type of spectral density. Thermodynamic properties of physical systems, such as its energy, 
or chemical potential, require the knowledge of the full spectral density: 

n(E) = ^ £<*(£ -Ea), (2.52) 
a 

To see this write (2.48) in the form Qm{E)/bN+iVm(E), as if bN+m were zero. Then use (2.15) to expand Vm(E), 
Qm(E) and replace aN+m+i + t^{E) for ajv+m+i in those expressions. 
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FIGURE 2.13 .: Recursive method applied to the general gapped band shown in the lower panels, (a) The 
{an, bn} coefficients, (b) The phase space representation (an, 6^) and (a„_i, b„). In (c) and(d) the terminator in 
eq. 2.51 is used to append the CF expansion of chains with N = 15 and N = 51, respectively. 

which involves the sum over all the eigenstates Ea. Clearly, from completeness of the Hilbert space, the 
DOS and LDOS are related via 

i(£) = 4£M£)­ (2­53) n TV 

In ordered systems (like all the examples presented up to this point), translational invariance dictates that 
the DOS is effectively the LDOS, or, at most, a sum over a restricted number of orbitais if the unit cell of 
the model accommodates several orbitais. In the absence of this symmetry, the LDOS is just what it is — 
a spectral density projected onto a single state in the Hilbert space of the problem, usually a local orbital 
in the real space. Using the relation above to arrive at the DOS amounts to going back and diagonalize it 
exactly. Fortunately, we can obtain 2.52 from the identity 

(nv(E)) = n(E), (2.54) 

where {n<p(E)) is the average of the LDOS projected onto some random state35, <p, spanning the full 
Hilbert space, H, of the problem (see Appendix 2.D for details regarding the identity above)36. Having 
(p spread over H requires something we didn't contemplate so far, that being the need for a finite system. 

35This means that \ip) = J2r Vr \r}> an(^ tne fr a r e randomly distributed as discussed in Appendix 2.D. 
36Total randomness of the state <p is crucial because, otherwise, one might be in fact calculating just another projected DOS on 

some subspace of H. 
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FIGURE 2.14 .: DOS for the 2D tight-binding model on the square lattice. The main panels show the LDOS 
calculated with a random state u0 on a lattice with 200 x 200 sites (a) and 2000 x 2000 sites (b). 100 chain 
states and PBC were used. The dashed line is the DOS obtained from a K-space sampling. The insets show the 
corresponding coefficients an andbn (cfr. with Fig. 2.5). No averages have been performed. 

Up to this point our system was, for all purposes, infinite in the sense that there were no boundaries 
and the chain states un could spread further and further as in Figs. 2.1 and 2.237. Using tp = UQ leads 
to a chain model of a finite system and this should reflect itself through finite size effects of some sort. 
Fig. 2.14 shows what happens when the LDOS for the ordered 2D tight-binding model is calculated with 
different system sizes. If we compare the chain model in 2.14a with its infinite counterpart of Fig. 2.5, 
the salient difference is the behavior of the bn- It ts no longer a uniform, damped oscillating function, and 
its behavior leads to a noisy LDOS in the end, as shown. Things improve considerably for a large system 
as in Fig. 2.14b. This last panel also reflects the self-averaging property of the DOS: the calculation of 
the LDOS using a random u0 in a very large system almost dispenses the averaging process of eq. 2.54. 

In a disordered electronic problem one is frequently facing the need for calculating configurational 
averages. If the disordered model is parametrized by a set of variables {si} having some joint probability 
distribution, V{{EÍ}), then we can define the configuration averaged DOS as 

(E) = J2j..-J6[E-Ea{{ei}))v({ei})V{ei}. (2.55) 

To apply the recursive method, the most expedite way38 is resorting to 2.54 so that our starting orbital 
samples the entire system uniformly and, in practice, two averaging procedures are performed: one over 
the random starting vectors, tp, and one over configurations of disorder : 

n(E) = ME)) . (2.56) 
37A machine representation of the entire system/Hilbert space was clearly not needed, the ones for neighboring u„ being 

enough. 
38There is an alternate and very elegant proposal by Mookerjee [1973] for configurational averages of the type 2.55. It is based 

upon the fact that the positive deflniteness of a probability distribution p(ei) can itself be viewed as the LDOS for some 
chain model in a given Hilbert space. The proposed method consists in finding that chain (the reverse recursive problem) 
and the calculation of a given average, A, follows from the Greenian associated with a specially crafted hyper-Hamiltonian 
in the expanded Hilbert space. 
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FIGURE 2.15 .: DOS of the 2D Anderson model, obtained averaging over disorder configurations on a 2000 x 
2000 lattice, for disorder strengths W = 4 (a), and W = 8 (b). 100 chain states were used. Each panel exhibits 
the DOS for a single configuration (left axis), and averaged over 10 configurations (right axis). The insets show 
the relative difference (nv — nv)/nv. 

A frequent example of such kind of system is the Anderson model, whose Hamiltonian reads 

i i,8 

with S{ a random variable uniformly distributed in the interval [­W/2, W/2). The strength of disorder is 
quantified by the width, W, of the site energies' distribution. In Fig. 2.15 the DOS for the 2D Anderson 
model has been calculated as prescribed above, and one sees that the DOS obtained from a single disorder 
configuration is already a good approximation to n(E), the relative error being well below 5% for most 
of the band. Also significant is the fact that the Lifshitz tails in the DOS appear well defined even for a 
single configuration, without averaging. 

The conclusion follows that this stochastic approach permits the fast calculation of the DOS for sys­

tems with sizes much beyond the capacity of exact spectral methods. The self­averaging property of the 
DOS and a random, uniform, starting orbital allows for rather accurate results with a relatively small 
number of averages. 

2.5. Numerical Caveats 

We reserved this space for a few brief remarks regarding some aspects that, having been omitted in 
the preceding sections, might have raised legitimate questions from the reader, and, hence, beg to be 
clarified. 

2.5.1. Versatility from a smart choice of the starting state 

From what was presented so far regarding the recursive method, one is now in the position to know that 
the choice of the starting state, UQ, determines the questions one might ask. The basic question is the 
proper LDOS, that is, the DOS projected onto a single local orbital. But the formalism is completely 
general and any state in the Hilbert space of the problem is an equally suited candidate for UQ. Of course, 
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some especially tailored states are more useful than others in addressing typical questions for solid-state 
problems. One such question is the single particle spectral function, A(k,u>), defined as 

A(k,u) = £ 1(0 Icikl ̂ a)\25(co -Ea + Eo). (2.58) 
a 

Clearly, this is just the DOS projected onto a plane wave state because we have simply c'k\0) = \k). 
Instead of enumerating other particular cases (like absorption rates, etc.), we present a generalization of 
the formulation that broadens the scope of direct applicability of the method. 

Given an arbitrary quantum mechanical operator A defined in the Hilbert space of some Hamiltonian 
H whose ground state is |*o)> w e define the zero temperature autocorrelator: 

SA(t) = (¢0 A\t)A *o) , (2.59) 

and its Fourier transform, that we call spectral function associated with A: 

+ 0O 

Aiot SA{u)= / SA(t)eluJtdt. (2.60) 
—oo 

It is straightforward to show that (2.60) can be written using a Lehmann representation as 

SA(u>) = 2TT £ < * o | A t | m ) (m \A\ * 0 ) 6(E0 -Em + oj), (2.61) 
m 

in order to emphasize our familiar form. SA (W) can be obtained via recursion method, but now two 
steps are needed. First we need to calculate the exact ground state, \^o), of the problem by performing 
a Lanczos diagonalization. Having obtained |*o). a normal recursion procedure yields SA(W) if the 
starting vector is chosen as 

A\VQ) 
U0 = \[Ãm\- (2-62) 

That this is true follows from the fact that, apart from a normalization factor, SU(u>) is simply a projected 
DOS. Since most measurable properties in solid-state problems can be expressed in terms of correlators 
of the form (2.59), this demonstrates how useful and versatile the method is. One needs only to tailor the 
starting vector, u0 according to the question we intend to address. 

2.5.2. On the chain model 

The discussion of the recursive method and the transformation to a chain has been restricted to Hermitian 
operators (the Hamiltonian) and orthogonal (Wannier) orbitais. This choice is motivated solely by the 
simplicity of the discussions, formulas and expressions that are obtained for those cases, and is by no 
means a restriction of the method. The generalization to non-hermitian and non-orthogonal basis sets is 
straightforward as discussed in [Haydock, 1980; Haydock and Kelly, 1975]. 

The recursive steps in eq. 2.8b for the transformation to a chain imply that, within exact arithmetics, 
all chain states are strictly orthogonal. The numerical computation will always introduce roundoff errors 
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that lead to an accumulated loss of orthogonality. Remarkably, the stability in the construction of the 
chain (and in particular, the calculation of the {an, bn} ) requires just the linear Independence of the un. 
Therefore, in most cases one doesn't need to venture into re­orthogonalization schemes that would spoil 
the economy of the recursive technique [Haydock, 1980, Sec. 7]. Nonetheless loss of orthogonality has 
serious consequences for exact diagonalization calculations, one of them being the appearance of the so­

called "ghost" eigenvalues: spurious states that cannot be mapped to the eigenvalues of the original H. 
For example, a frequent situation is that some eigenvalues of the finite chain appear with multiplicities 
higher than one. 

Still in the context of exact diagonalization (Lanczos), the convergence of the chain eigenvalues to 
the real eigenvalues of the problem occurs later and later for successively excited state energies. Adding 
the mentioned problems with loss of orthogonality to this, when an eigenstate at some arbitrary energy 
is needed, it is sometimes advisable to perform a suitable transformation of the original Hamiltonian so 
that the new extremal eigenenergies lie in the desired energy range, improving convergence. In fact, the 
convergence of the Lanczos method is closely related to the convergence of the simpler power method39 

or the inverse iteration methods, [Press etal., 1992] which depends strongly on the level spacing be­

tween the target/extremal eigenvalue and the immediate neighboring eigenvalues. Therefore, even the 
convergence to the ground state depends on the particular spectrum of the problem at hand40. 

As to the execution time efficiency, the sole fundamental fact to be retained is that, in the transforma­

tion to the chain, execution time is essentially determined by the algorithm chosen to calculate H\un). 
Thus, in order to improve on the CPU time effort, the attention should be on the method used for the 
implementation of this key operation. 

2.5.3. On the calculation of the LDOS 

An important practical detail when using square root terminators to terminate the CF expansion and 
obtain the LDOS is that, many times, the asymptotic value of bn is hard to define41. Since a good asymp­

totic value is needed to avoid a spiky DOS, when that happens, an overestimate for b^ is preferred and 
the reason is simple. An overestimated b^ will lead to an effective bandwidth larger than the bandwidth 
of the target system. However, since the LDOS drops very rapidly to zero at energies out of the band of 
the target system42, the LDOS calculated with the overestimated boo will be effectively zero beyond the 
real band edges. This can be used to detect the actual band edges and extract a better estimate for the 
asymptotic bn. 

Another caveat is that, although a random UQ should be allright as a general purpose starting vector for 
the chain, in ordered systems one is better off starting with a localized state. The reason is efficiency: with 
a localized state, the vector­vector and vector­matrix operations involve operations with a considerable 
number of zeros, when compared with the random u0. At the machine level, handling zeros is much 
39The Lanczos tridiagonalization procedure can be seen as a Gram­Schmidt orthogonalization procedure on the Krylov space 

{uo, H IÍO, H 2uo, •. •, H Nuo} generated in the power method. Since the eigenvalues of the Lanczos matrices are the 
eigenvalues of i f projected onto these Krylov spaces, the convergence to the extremal eigenvalues is quite natural. 

40Exact results for majorants can be obtained, as mentioned en passant by Haydock and Te [1994, Sec. II.A]. 
■"Disordered systems are typical examples. 
42To see this happening look, for instance, to what happens in the gapped region of Fig. 2.12c when the simple square­root 

terminator is tentatively applied to a gapped DOS. 
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faster than floating point reals and the execution time is substantially reduced43. 
Contrary to what happens when using polynomial moments for the estimation of the DOS, the recur­

sive method doesn't provide us with an intrinsic energy resolution associated with the number of chain 
states used in the computations. An average resolution of the method can be defined as 

AE = w/N (2.63) 

where w is the bandwidth of the problem, and N the number of chain states used. The motivation of this 
definition is purely heuristic and says that, since the chain model has necessarily N distinct eigenvalues 
spread between EQ and E0 + w, we define AE to be the average level spacing. This was somehow 
explored in Sec. 2.3.3.2 and can be inferred from Fig. 2.6. 

Finally, if for some reason one is limited to a small sized cluster which should mimic an infinite 
system, then boundary conditions can be important. In particular, for open boundary conditions a highly 
symmetric cluster shape is discouraged because the interference effects are strongest in such case. More 
efficient alternatives are a rough boundary or periodic boundary conditions. In any case, the recursion 
steps should not go past some empirical threshold that balances the trade-off between the need for as 
many chain states as possible, and the unwanted features related to the finite size of the cluster [Hay dock, 
1980; Heine, 1980] 

Other advantage is that one doesn't get finite-size structure in the DOS nor does one need to average over uo as in sec. 2.4.3. 



Appendices for this chapter 

Appendix 2.A On the Sturm property of the leading minors 

Definition Let A be a tridiagonal symmetric matrix as in (2.11), with bi ^ 0 , Vi < N, and An(E) its 
principal leading minor12 of order n, obeying the recurrence relations (2.14): 

AQ(E) = 1, A­i(E)=0 
An(E) = (E­ an_1)An_1(f;) ­ fe2_lAri_2(£), 

Lemma 2.1. The zeros of successive determinants An{E) are never coincident. 

(2.64a) 

(2.64b) 

Proof For reductio ad absurdum purposes assume that it was otherwise for, say, £*. Then An{Ek) = 
An­i(Ek) = 0 and we would have immediately An­2(Ek) = 0. The recursion relation above (2.64) 
would then propagate this result leading to the impossibility of having A0(E) — 0. 

Theorem 2.2. For all n, the principal leading minor An(E) of a symmetric tridiagonal matrix has its 
zeros interlaced with the ones of An­\{E). 

Proof To prove the theorem we resort to induction. Fig. 2.16 is provided for guidance in the arguments 
to follow. 

The result is readily proven for n — 1 and n — 2. As­

sume then its validity for all p < n, meaning that the zeros 
of An_2(.E) interpolate the ones of An­i(E). Let E\ < 
E2 < ■ ■ ■ < En­i, be the zeros of An­i(E). For every 
Ek, An­2(Ek) and An(Ek) have opposite signs by virtue 
of (2.64). But, given that An­2(E) has exactly one zero be­

tween adjacent ^ ' s (induction hypothesis), it changes sign 
once in that interval and likewise for An(E). Therefore, 
An(£') has n ­ 2 zeros that interpolate the Ek's. Now, 
for the remainder 2 zeros notice that, for n even, because FIGURE 2.16 .: Three successive orthogo­

,. A /T­.\ l­ A /ZT>\ i a. nal polynomials associated with a flat LDOS 
\\mE­,±oaAn­2{E) = hmE^iooA^.E) = +oo, then * * 

in the domain ­1 ,1 • They are proportional 
An_2 J5i > 0 and A„_ 2 (K­ i ) > 0, which implies that l ' \ y 

v to the respective An(E), via eq. (2.22). The 
An{Ex) < 0 and An(£7n_i) < 0. For odd n just invert all ^ ^ .„ {f]e horizmtd ^ mark the zems> 

the signs. Together with the lemma above, this guarantees £fc 0fp^E) (or A4(E)). 
the existence of two additional zeros of An : one below E\ 
and one above En­\. All zeros of A n are thereby interlaced with the zeros of A„_i, which, by induction, 
proves the theorem. □ 41 
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Corollary 2.3. An has n distinct wots. 

Appendix 2.B The truncated CF and Padé approximants 

Let us revisit the expression (2.30) that gives GQ(E) as the quotient of two determinants: 

G o ( £ ) = | | | | . (2.65, 

DQ(E) is the determinant of the matrix IE — H corresponding to the entire chain and, therefore, 
coincides with AN{E) introduced in (2.13) and (2.14). For the full chain we could define the family 
of polynomials Pn(E), orthogonal under the LDOS on the state uo, and saw in (2.22) that AN(E) = 
b1b2...bNPN(E) = D0(E). 

D\ (E), being the first cofactor, is the determinant of IE — H with its first line and column removed. 
Clearly, this corresponds to the same chain with the state UQ suppressed. Therefore, we can construct a 
new family of orthogonal polynomials, Qn(E), for this chain and conclude, in a totally analogous way, 
that Dx(E) = Ò263 . . . ÒJVQAK-E1). This yields at once 

Both Pn and Qn are a very peculiar set. They obey the same recursion relation (2.15) and are nothing 
but two linearly independent solutions for this second order difference equations (as already hinted in 
footnote 13, page 15). Their differences stem from the initial conditions P_i = QQ — 0 and PQ = Qi = 
1, which conditions also determine that Qn(E) is of degree n — 1, and that its zeros never coincide with 
the ones of Pn(E) [Haydock, 1980]. 

Now notice that G0 (E) is also what, in the language of continued fractions [Baker, 1975; Beskin, 
1987], is called the Nth convergent to GQ(E). That G{

0
N)(E) corresponds to the [N - l/N] Padé 

approximant to GQ(E) follows directly from the normalization Po{E) = 1 and from a general theorem 
relating the sequence of approximants to a Continued Fraction with sequences of Padé approximants 
[See Baker, 1975, Chap. 4]. 

Finally, we terminate this digression through Padé approximants by noting a result with physical sig­
nificance. It can be shown very generally [see Baker, 1975, Chap. 7] that the denominators of the se­
quence of [N — l/N] Padé approximants to a particular power series 

A(x) = J2aJxi (2-67> 

for successive values of iV are orthogonal to each other under a specific weight function, w(E) that 
satisfies 

o n = ÍEnw(E)dE. (2.68) 

From the above discussion, and from (2.66), we already know that the denominators are the PN(E), and 
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know further under which weight function they constitute an orthogonal family: the LDOS 

no(E) = £ K^olV'a)!2 S(E - Ea) (2.69) 
a 

Therefore, since the Padé approximant [N - 1/N] reproduces the first 2N coefficients of (2.67) (i.e.: the 
an are explicitly contained within the coefficients of the Padé approximant) this means that, it reproduces 
the first 2N moments of the LDOS as well. Stated plainly, G^ contains all the information to reproduce 
the first 2N moments of the LDOS. 

Appendix 2.C The CF expansion and Dyson's equation 

Here we provide a different perspective on the CF expansion of the local Green Function (GF). We first 
recall that if the Hamiltonian can be written as 

H = H0 + V (2.70) 

then, using the definition in eq. (2.25) for the greenian, we have 

1 ' =G0 I (2.71) 
E-Ho-V ( G 0 ) - 1 - ^ 1 - V G 0 ' 

which, is readily expanded into the infinite series 

G = G° + G°VG° + G°VG°VG0 + ... . (2.72) 

This expansion can be condensed in the recursive form known as Dyson's equation: 

G = G° + G°VG . (2.73) 

When we want to calculate the LDOS, we are interested in a particular matrix element of the greenian, 
namely GQ{E) = (UQ \G(E)\ UQ). In the tridiagonal basis defined by |un) (2.8) the Hamiltonian reads 

H = Y l a»CnCn + X I bnCl+lCn + h-C' . (2-74) 
n n 

where the {an,bn}arQ just the associated tridiagonal coefficients (2.3). The best way to calculate 
Gn(£)is to use a diagrammatic representation of Dyson's expansion for the local GF GQ(E) as in 
Fig. 2.C. Such representation is useful because it clearly shows that the calculation of Go(E) amounts 
to finding all possible paths that depart and terminate at the starting orbital. In particular, G\(E) in 
Fig. 2.17b includes all paths that depart and arrive at orbital u\ without ever passing by UQ44. From the 

G\ (E) is, thus, equivalent to the local GF for a chain that starts with the orbital u\, instead of uo. 
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FIGURE 2.17.: Diagrammatic expansion for the calculation ofGo(E) based on Dyson's expansion ofeq.2.73. 

diagrammatic expansion it is transparent that 

G0(E) = G°0(E) + b\ G°0(E)G1(E)G0(E), (2.75a) 

Gn(E) = G°n(E) + b2
n+1 G°n(E)Gn+1(E)Gn(E), (2.75b) 

where G° (E) is just (E - a„ ) - 1 . We can now solve (2.75a) for GQ(E) obtaining 

Notice that this generates a continued fraction expansion for Go (E) just as we expect. In fact, eqs. (2.76) 
correspond exactly to the ones obtained before using an explicit expansion of the determinants in (2.30-
2.32). 

Appendix 2.D DOS from the average LDOS 

Let us use the definition 

n(E) = ̂ -^6(E-Ea) (2.77) 
fV 

for the exact, total, DOS, and 

TV 

nv(E) = ^2\{^a}\25(E-Ea), (2.78) 
Q 

for the DOS projected on the state ip. If we expand this state in the local basis as \<p) = Y^r <PrV), then 
the expression above can be cast as 

nv(E) = £ * ( £ ? - E") E ^° l r > < r ' ^«} ¥ W • (2-79) 
/ y r 

Without loss of generality, we restrict ourselves to the cases where the matrix representation of the 
Hamiltonian in the local basis has only real entries, and, hence, we can consider that the <pr are all real, 
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apart from an unphysical global phase. Now if the <pr are random variables subject to the sole constraint 
Y^r <fr — 1, the average of the LDOS will be 

(nv(E)) = Y,5(E-Ea)Y,(il>a\r)(r,\il;a){<pr<pr,) , (2.80) 
a r,r' 

with, 
N 1 Í-OO roo . . iv 

(<Pr<pr>) = Yf ' " / Sn-J^'Pij'Pr'Pr'Yldipi, (2.81) 
M 7_oo 7-00 . , = 1 

.A/ being a normalizing factor45. The integral above, well familiar in the context of problems in statistical 
mechanics, equals 

1 TTN/2 

2F(fTT)v- (2'82) 

Combining this with the result for the norm, N = Y(N/2) ' t r i e e x a c t anc* in t u i t r v e result 

(tPr<Pr') = TrSr,r' (2.83) 

is readily obtained. The consequence of this result is that the average of the LDOS can now be written as 

a 

Of course, the spherical normalization constraint on the variables tpi means they can take values only in the interval [—1,1]. 
The presence of the 6 function permits the safe extension of the integration limits to infinity. 



3. EuB6: Background and Significance 

"The men of experiment are like the ant, they only collect and use; the rea-
soners resemble spiders, who make cobwebs out of their own substance. But 
the bee takes the middle course: it gathers its material from the flowers of the 
garden and field, but transforms and digests it by a power of its own. Not unlike 
this is the true business of philosophy (science); for it neither relies solely or 
chiefly on the powers of the mind, nor does it take the matter which it gathers 
from natural history and mechanical experiments and lay up in the memory 
whole, as it finds it, but lays it up in the understanding altered and disgested. 
Therefore, from a closer and purer league between these two faculties, the 
experimental and the rational (such as has never been made), much may be 
hoped." 

— Francis Bacon, Novum Organum [Bacon, 1620, XCV]. 

3.1. Crystal Structure 

Almost all stable Rare-Earth (RE) borides belong to the class of clathrates1 [Etourneau and Hagenmuller, 
1985]. In the hexaborides, the boron atoms are arranged in a tridimensional skeleton of interconnected 
B6 octahedra, the interstices of which are occupied by the RE (Fig. 3.1). The rare-earth ion is weakly 
bound, undergoing large excursions from its equilibrium position. The boron framework, on the other 
hand, is kept through strong covalent bonds, accounting for the hardness of hexaborides, with high 
melting points and low coefficients of thermal expansion [Mandrus et al., 2001]. EuBg has the full cubic 
symmetry, belonging to the Pmzm (0\) space group, with a lattice parameter of 4.185Â (as determined 
by high-resolution, synchrotron X-ray diffraction [Blomberg et al., 1995; Fisk et al., 1979; Sullow et al., 
1998]). Within this space group the Eu ions are located at the mZm (0,0,0) corners while a B6 octahedron 
is at the body-centered position. The shortest B-B bonds connect the B6 octahedra through the cell faces, 
as in Fig. 3.1. 

Despite the high cohesion of the B skeleton, the presence of Boron defects seems ubiquitous, perhaps 
due to the sample preparation techniques [Blomberg et al., 1995]. In particular, Monnier and Delley 
[2001] showed by first-principles calculations that a B6 vacancy is energetically more favorable than 6 
individual, separated, B vacancies, thus being the likeliest type of defect in the bulk. 

For the specific case of EuB6, the presence of a robust Ferromagnetic or Ferromagnetism (FM) 
phase would imply a symmetry lowering either to orthorhombic or tetragonal, since long range or-

1 Clathrates are inclusion compounds in which a guest species (an atom, ion or molecule) occupies the inside of a cage formed 
by the host species or by a rigidly bonded lattice of host species [McNaught and Wilkinson, 2005]. 

47 
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FIGURE 3.1 .: (a) Representation of the real-space crystal structure o/EuB6 . (b) Relevant lattice distances 
[Blomberg et al, 1995]. 

der FM is forbidden by group-theoretical arguments within the Pmzm space group [Rado and Suhl, 
1965]. The FM transition is not accompanied by any detectable, long-range, structural change as seen 
in X-ray scattering [Henggeler et al., 1998; Sùllow et al., 1998], or in magneto-acoustic experiments 
[Zherlitsyn et al., 2001], and thus the global cubic symmetry is preserved inside the FM phase. Nonethe­
less, other experiments did find evidence for very small local reductions of symmetry [Gavilano et al., 
1998; Martinho et al., 2005]. 

3.2. Theoretical Electronic Structure 

In and of itself, Boron is a rather remarkable atomic species from the chemical point of view [Pauling, 
1931]. For example, the valence of boron ions in many metal borides cannot be described by an usual 
oxidation state, especially for MBQ. Early theoretical studies established that, for the B framework, 
there are 7 internal bonding molecular orbitais requiring seven pairs of electrons, and 6 external orbitais 
connecting adjacent BQ octahedra. To saturate these 10 (covalent) bonding orbitais per Bg, an electron 
transfer of 2 electrons from the metallic atom is needed [Lipscomb, 1954; Lipscomb and Britton, I960]. 
In view of this, the metallic or semiconducting character would depend whether the RE is di- or trivalent 
in the hexaboride. While this simple electron counting argument seems to apply in the case of trivalent 
hexaborides2, in EuBg, the metallic ion clearly adopts a divalent configuration3, whence a semiconduct­
ing behavior should emerge. 

The nature of the electronic structure of MBQ has been for a long time a rather unsettled matter4. The 
debate hinges around the X point in the Brillouin Zone (BZ): the crucial point. Pioneering calculations 
predict EuB6 to be a polar semiconductor [Yamazaki, 1956], but self-consistent bandstructure calcula-

2 Say, LaB6orYbB6. 
3Mossbauer and isomer-shift spectroscopy clearly confirm the presence of divalent Eu only in the hexaborides 

[Blomberg et al , 1995; Clack et al.; Fisk et al., 1979; Geballe et al., 1968; Li et al., 2000]. 
4And, in my opinion, still is as far as theoretical Density Functional Theory (DFT) approaches are considered. 

Parameter 

a 
"inter 
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tions reveal that divalent hexaborides should be semimetals instead [Hasegawa and Yanase, 1979]. This 
was confirmed via Local Density Approximation (LDA) by [Massidda et al., 1996] and a view of EUBQ 

as a semimetal with a tiny valence-conduction band overlap at the X point in the BZ lingered for some 
time. However, bandstructure calculations are well known to give highly distinct, and even contradictory, 
results when applied to this class of materials5 : depending on the approximations and implementations 
of DFT used, the result of LDA calculations for the same compound can be rather different both at the 
qualitative and quantitative level. Calculations going beyond LDA use the so-called GW approximation 
for the self-energy and still exhibit notable disparities: at times a gap of ~ 0.8 eV [Tromp et al., 2001], 
or a smaller one of ~ 0.3 eV [Kino et al., 2002] appears, (both for CaBe); at others, an increased overlap 
is found [Kino et al., 2002; Rodriguez et al., 2000], The most recent band structure calculations reveal 
a gap of 0.8 eV, within a Weighted Density Approximation (WDA) approximation [Wu et al., 2004]. 
Such uneven conclusions are clearly seen in the plots of Fig. 3.2 that summarizes those results. 

There are two issues that, somehow, justify this unsettled state of affairs. First, it is recognized by 
the authors that slight differences in the implementation can yield such discrepancies6. Second, and of 
special relevance for our discussion, is the frequent extrapolation of results obtained for nonmagnetic 
hexaborides to the case of EUBÔ, which is clearly different due to the presence of the / orbitais that 
require careful account of Coulomb interactions within DFT [Kunes and Pickett, 2004]. 

From this disparity, one can certainly say that, the available methods and results for band structure 
calculations are not reliable nor definitive sources in characterizing the band structure near the X point 
in the BZ. The question remains: is stoichiometric EuB6 a semiconductor or a semimetal? Nevertheless, 
they all agree to other important aspects, like the bandstructure in the remainder of the BZ, the various 
lattice parameters obtained from total energy minimization, or the atomic orbital character of the bands: 
the s,p, d orbitais of the RE do not contribute for the valence band, which is made up from the bonding 
combination of the 2p orbitais of B. Additionally, the bottom of the conduction band has a strong 5d(Eu) 
nature, with the highest charge density found in the interstitial regions between neighboring RE ions 
[Kino et al., 2002; Massidda et al., 1996]. 

3.3. Experimental Electronic Structure 

For some time it was believed that the four frequencies observed in de Haas-van Alphen (dHvA) and 
Shubnikov de Hass (SdH) experiments were associated with a Fermi surface consisting of an electron and 
a hole pocket at the X point, and hence consistent with a semimetallic nature of EuB6 [Aronson et al., 
1999]. 

Notwithstanding, among the probes that, on the experimental front, can glimpse the underlying elec­
tronic structure, ARPES and X-Ray Emission Spectroscopy (XRES) are, arguably, the most reliable 
sources at our hands in this matter7. All such experiments, performed on EuB6, and other non-magnetic 

5This has maculated results since Hasegawa and Yanase. See further discussions in Tromp et al. [2001] or Wu et al. [2004]. 
6These slight differences, which would not lead to such catastrophic differences in more conventional compounds, can be a 

slightly different value used for the volume of the unit cell [Hasegawa and Yanase, 1979; Massidda et al., 1996], a different 
approximation for the pseudopotentials, whether / electrons are accounted for or not, etc. [Kino et al., 2002; Wu et al., 
2004] 

'Anticipating perhaps the critique of ARPES being a surface probe, we underline that, there is overwhelming evidence that the 
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FIGURE 3.2 .; (a) Bandstructure calculated for CaB§ within LDA and LDA+GW, featuring, respectively, a tiny 
gap and an overlap, as calculated by Kino et al. [2002]'. (b) LDA + Ufor EUBQ, featuring a band overlap and slight 
spin-splitting of the bands, after Kunes and Pickett [2004]. (c) LDA and LDA+GWfor CaB$, featuring a small 
overlap anda significant gap, respectively [Tromp et ai, 2001]. (d) LDA and LDA + WDA, featuring, respectively, 
a tiny gap and sizeable gap, obtained by Wu et al. [2004]. Notice that, apart from the vicinity of the X point near 
the Fermi level, the remainder of the band structure is accurately reproduced among all existing results. 

hexaborides clearly show the presence of a sizeable gap of ~ 1 eV [Denlinger et al., 2002; Souma et al, 
2003]. An example is shown in Fig. 3.3. In particular, EuBg exhibits an ellipsoidal, pocket-like, Fermi 
surface, with a Fermi energy lying at the bottom of the conduction band (Fig. 3.3b). This is further 
supported by electronic tunneling experiments that unveil a gap of this same order of magnitude, and 
by the optical absorption threshold in CaB6 [Rhyee et al., 2003b]. Adding to this, the behavior of the 
low-temperature thermoelectric power hints at a clear separation between conduction and valence bands 
[Giannò et al., 2002]. 

It is thus evident that overwhelming evidence for a gap between the conduction and valence bands 
in the hexaborides comes from these experiments probing more or less directly the excitation spectrum. 

results thus obtained reflect indeed the bulk behavior: the measured band dispersions match well with that of the bulk, band 
bendings are absent, and the size of the Fermi surface estimated from ARPES agrees with the Hall resistivity measurements 
of the carrier densities. 
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FIGURE 3.3 .: (a) Band structure along T­X in the BZ as observed in ARPES for CaB6, compared with the 
LDA+GW calculations [Denlinger et al, 2002]. (b) Band structure near the X point for SrB6 and EUBQ (top) and 
a snapshot of the Fermi surface (bottom) revealing the electron pockets [Denlinger et al., 2002]. (c) The same as 
in (a), measured by Souma et al. [2003]. (d) Infrared absorption for 2 samples ofCaB%, after Rhyee et al. [2003 b]. 

As to the dHvA and SdH results cited above, the dozens of Tesla required to observe the quantum 
oscillations allow for the re­interpretation of the carrier pockets as the result of a spin­split conduction 
band [Denlinger et al., 2002]. In fact, other authors measuring dHvA and SdH oscillations, even though 
obtaining results consistent with the latter, find clear evidence for full spin splitting of at least some 
pockets due to the high magnetic fields [Goodrich et al., 1998]. 

In summary, the electronic structure of divalent hexaborides is well reproduced using current imple­

mentations of DFT and LDA except for the vicinity of the Fermi level in the neighborhood of the crucial 
X point in the BZ. Here, theoretical calculations reveal themselves highly unreliable. This hindrance is 
solved by precise experimental probes that agree as to the presence of a gap of ~ 1 eV between conduc­

tion and valence bands. In the case of EuB6 it is found that the Fermi level lies at the very bottom of the 
conduction band. 
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3.4. Magnetism 

EuB6 outstands among divalent hexaborides for its robust ferromagnetism, due to the half­filled 4 / 7 

shell of Eu2+8. The 8S ,
7/2 state adopted by the ion, implies an effective Curie­Weiss magnetic mo­

ment9 of fieff = 7.94 /j,B, a value confirmed by several susceptibility and magnetization measurements, 
which also reveal that the long range magnetic order is established below Tc — 15 K [Fisk et al., 1979; 
Geballe et al., 1968; Henggeler et al, 1998; Sûllow et al., 1998; Wigger et al., 2004]. 

With regards to the bulk properties as a magnet, EuB6 turns out to be a remarkably soft ferromagnet: 
there is no detectable hysteresis in the M{H) curves (Fig. 3.4a), and remanent magnetization or coercive 
fields are well below the accuracy of the SQUIDs typically used [Goodrich et al., 1998; Siillow et al., 
1998]. The magnetic response is generally isotropic but, under applied fields, Siillow et al. [1998] finds 
an interesting anisotropic behavior emerging below Tc '■ the system exhibits some magnetic anisotropy 
with an easy axis varying in direction with T and H (Fig. 3.4d). Connected with this, the FM transition 
occurs through 2 magnetic transitions at Tci = 15.3 K and TQ2 = 12.7 K, the latter being associated 
with a spin reorientation caused by the varying easy axis. At any rate, these anisotropics are rather small, 
to such an extent that, at zero field, the magnetic ground states are presumably degenerate, implying in 
turn the absence of FM domains. 

No doubt is left as to the bulk character of the FM transition from the specific heat dependence on 
the temperature (Fig. 3.4f) [Fisk et al., 1979; Geballe et al., 1968; Sûllow et al., 1998]. In addition, spe­

cific heat undoubtedly corroborates the origin of the magnetic moment stemming from the 4 / shell, 
because of the release of iîlog(8) of entropy between T — 0 and T > Tc (see inset in Fig. 3.4f). 
The magnetization curves M(T, H) are generally well described by a Brillouin model10 with J = 7/2 
[Goodrich et al., 1998; Sûllow et al., 1998; Wigger et al, 2004], and near the critical point the order pa­

rameter exhibits a power law scaling in T, H very close to what is expected for a Heisenberg ferromagnet 
[Sûllow et al., 2000]. Finally, the pressure dependence of Tc (Fig. 3.4c) clearly reveals the enhancement 
of bulk ferromagnetism. 

3.5. Transport 

The interesting and unconventional nature of EuB6 is best apprehended when analyzing the intricate cor­

relations between electronic and magnetic degrees of freedom. Since the beginning, EuB6 has revealed 
itself as an extremely good metal [Fisk et al., 1979; Guy et al., 1980], with residual resistivities (T —» 0) 
of the order of ~ 10/xilcm, or less [Aronson et al., 1999; Sûllow et al., 1998]. This observations clearly 
challenged the earlier theories for the electronic structure of divalent hexaborides and are responsible for 
the interest developed around this material in the beginning (70's­80's). A distinctive feature occurs in 
the behavior of p(T) as the temperature is lowered past Tc . As seen in Fig. 3.5b, the onset of FM order 
signaled by the sharp increase in the magnetic susceptibility is accompanied by a precipitous drop of 

8This should imply a strongly localized magnetism. Also remarkable is that EuB6 is one of the few metallic ferromagnets 
that keep an apparent 0\ symmetry (sec. 3.1). 

'This is defined as /j,2eff = \J?B g2J(J + 1), g being the Lande giromagnetic factor. 
10 A notable exception are the results inferred for the magnetic moment from neutron diffraction, which unveil a rather sluggish 

onset of the magnetic order close to Tc [Henggeler et al., 1998]. 
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FIGURE 3.4 .: Magnetic behavior o/EuB6. (a) Magnetization curves displaying no hysteresis [Goodrich et al., 
1998]. (b) Typical behavior of the magnetic susceptibility (H=0.005, 0.01, 0.02, 0.05, 0.1 and 0.2 T). (c) Pressure 
dependence of Tc [Cooley et al, 1997]. (d) Slight magnetic anisotropy below Tc for J3||[100](O). B||[110](A) 
and B|| [111](D). (e) Specific heat and detail of its field dependence near Tc [Urbano et al, 2004]. (f) Specific 
heat, cp(H = 0), and entropy (inset). All data from Siillow et al [1998], except in (a), (c) and (e). 

the electrical resistivity. Such steep plunging is best appreciated in the normal T­scale of Fig. 3.5a, in 
which the drop in p(T) almost resembles a superconducting transition in a dirty superconductor. Another 
point of notice is that, this enormous variation is preceded by a cusp­shaped upturn in p(T) that develops 
slightly above TQ , and can be very accurately used to determine the Curie temperature by pure electrical 
means, as documented in Fig. 3.5c. Such cusp features are typical evidence for spin fluctuations inter­

fering with transport [Fisher and Langer, 1968]. This hint is confirmed by the CMR response of EUBÔ 

under external magnetic fields, which can be as high as 100% in the vicinity of Tc [Paschen et al., 2000; 
Siillow et al., 1998] (Figs. 3.5e and 3.5f are quite explicit on this regard). 

So far, these magneto­transport properties are reminiscent from the behavior observed in the heavily 
studied CMR manganites [Salamon and Jaime, 2001], albeit with smaller Tc 's. In fact, the realization 
that EuB6 was a CMR material with a much simpler structure than the manganites, fueled the renewed 
interest and a series of important experiments during the last couple of years. 

But some surprises exist down the road. Despite being a good metal, EuB6 has a very small carrier 
density. More precisely, carrier densities estimated from Hall effect measurements amount to as little 
as ~ 1019cm~3, or ~ 0.001 carriers per unit cell [Fisk et al., 1979; Paschen et al., 2000; Rhyee et al., 
2003a]. This is consistent with the small electron pockets that define the electronic bandstructure of 
EuB6 in the vicinity of the Fermi energy, as resolved by ARPES. Notwithstanding, this material can 
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FIGURE 3.5./ So/we magneto-transport properties o/EuBe. faj Temperature dependence of p(T) [Siillow et al, 
1998]. (b) p(T) and x(T) display a clear correlation, (c) Low-temperature behavior of dp(T)/dT. (d) The 
Hall coefficient under different applied magnetic fields, (e) Magnetic field effect upon p{T) and its derivative 
[Urbano et al., 2004]. (f) Magnetoresistance [Siillow et al, 1998]. Other data from [Paschen et al, 2000]. 

attain residual resistivity ratios "of the order of 50-100 [Siillow et al., 1998, Table I], and consequent 
variations in electronic Hall mobility of one order of magnitude, exhibiting \fin\ as high as 2000cm2/V 
at T = 1.5 K [Paschen et al., 2000]. 

Most intriguing has been the reproducible variation of the effective carrier density, ne with temper­
ature. As soon as the FM order sets in at Tc , ne is significantly enhanced with decreasing temper­
atures, and can vary by a factor of 3 between T > Tc and T ~ 0 K, as in Paschen et al. [2000]. 
Conversely, the same response is seemingly obtained with the application of an external magnetic field 
(Fig. 3.5d), and such situation is not related with the anomalous Hall effect characteristic of some FM 
metals [Pugh and Rostoker, 1953]. This implies that the localized spins influence the transport at a deeper 
level — much beyond scattering effects — that implies some sort of influence in the electronic structure. 

Finally, specific heat, electrical resistivity and thermal conductivity measurements support the idea 
advanced earlier that the Boron skeleton and rare-earth ion are relatively independent in structural terms. 
This influences the phonon spectrum of the system and brings some peculiarities. In particular, the 
phonon spectrum can be explained in terms of a model that combines a typical Debye solid with an 
Einstein, dispersionless, mode [Mandrus et al., 2001]. The first is ascribed to the Boron cage for which a 
Debye temperature Qp — 1160 K is obtained [Mandrus et al., 2001], thus reflecting the expected rigidity 
of the covalent structure. In, opposition, the dispersionless mode ascribed to the independent Eu ion lies 

np(T~300K)/p(T~0)) . 
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FIGURE 3.6.. Magneto­optical response o/EuB6. (a) Reflectivity spectra for EuB6 in the IR region. Inset shows 
ojp and the metallic scattering rate, T [Degiorgi et al, 1997]. (b) Optical conductivity in the FIR. Inset shows 
the complete o\ (u) at 300 K /ibiderri/. (c) Temperature and field dependence ofu>p [Broderick et al, 2002b]. (d) 
Scaling of Up with the magnetization /ibidem/ (e) Low energy polar Kerr rotation spectra above Tc , showing a 
blue­shift with increasing magnetic fields, after Broderick et al. [2003]. (f) The same as in (e), but far below Tc , 
and showing no shift in the resonance energy. 

only at QE = 150­200 K [Vonlanthen et al., 2000; Wigger et al., 2004]. 

3.6. Optical Response 

Optical reflectivity experiments performed in EuB6 confirm the last mentioned phonon energy scales, 
that reflect themselves in the appearance of an optical mode near 145 cm ­ 1 and another dispersive mode 
around 850 cm ­ 1 [Degiorgi etal., 1997]12. However, the most remarkable feature in the reflectivity 
signal is the giant blue­shift of the unscreened plasma edge, UJP , simply under a temperature variation, 
never before seen [Broderick et al., 2003; Degiorgi et al., 1997]. 

At T > Tc , the reflectivity spectrum displays a typical metallic behavior, with a very well defined 
plasma threshold in the Far Infra­Red (FIR), at about 2200 cm ­ 1 , as shown in Fig. 3.6a. As a conse­

quence, its Kramers­Kronig transform, the optical conductivity, exhibits a consistent Drude­like shape 
in the FIR, as documented in Fig. 3.6b. With the establishment of the long­range magnetic order, the 
plasma edge increases markedly in such a way that up varies by a factor of almost 3 between Tc and 

l2A brief conversion reminder: 1 cm * ~ 1.44 K ~ 1.24 x 10 4 eV. 
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T < Te [Broderick et al., 2002b; Degiorgi et al, 1997]. Underlying this giant effect is a considerable 
transfer of spectral weight from the high energy components to the FIR region. The effect occurs irre­
spective of whether the temperature is lowered below Tc , or an external magnetic field is applied to the 
sample: for instance, at T ~ 1 K there is no prominent shift up to H = 10 T [Broderick et al., 2002a]. 
This is summarized by the curves UJP (T,H) in Fig. 3.6c, and is best appreciated through the remarkable 
scaling of cjpwith the magnetization shown in Fig. 3.6d. These experimental values of upare obtained 
from fittings of the data to a Drude-Lorentz model13, that describe quite accurately the reflectivity spectra 
at all temperatures and magnetic fields studied. 

Another optical experiment especially suited to probe the response of the electronic system to the 
local magnetic environment, is the magneto-optical Kerr effect. EuB6 is exceptional here too, with max­
imum values of the Kerr rotations lying among the very largest values ever observed [Broderick et al., 
2002a]. A resonance occurs near 0.3 eV, and its blue-shift with H clearly reveals its association with 
the plasma edge (Figs. 3.6e,3.6f)14. This is strong evidence for an interplay between the free electron 
components (the conduction band electrons) and the localized electron components (the / electrons), in 
the sense that such interplay is known to cause a strong resonance in the Kerr angle at frequencies co­
inciding with the plasma edge [Feil and Haas, 1986], and has been observed in other /-electron systems 
[Salghetti-Drioli et al., 1999]. 

From a macroscopic and qualitative point of view, these features in the absorption spectra amount to 
a temperature (or field) induced variation of the color of this material, an interesting behavior in itself as 
color changes in solids usually happen through doping or structural transitions15 . 

At last, we come to Raman spectroscopy. It turns out that, in the FIR spectral region, and in a rela­
tively narrow temperature window Tc < T < Tm, the diffusive response characteristic of a collision-
dominated electronic scattering is replaced by a broad gaussian peak developing around 50-100 cm, as 
shown in Fig. 3.7a. The fact that this feature is strongly polarization dependent16, and that the peak 
position evolves with T or H as plotted in Fig. 3.7b, is claimed to be strong evidence for the presence 
of magnetic polarons in this temperature range [Heiman et al., 1983; Peterson et al., 1985]. It there­
fore means that the PM-FM transition is mediated by the presence of a polaronic phase, and that these 
polarons are involved in precipitating the transition into the long-range ordered magnetic phase. 

3.7. Doping EuB6 

Due to the structural organization of the atoms inside the hexaborides' unit cell, the rare earth ion can be 
substituted relatively easily. Of interest to us is the substitution of Ca for some of the Eu atoms, defining 
the family of Calcium-doped Europium hexaboride (Eui_xCaxB6). 

Calcium hexaboride (CaBg) — the extreme opposite to EuBg within this family — has been in the 
spotlight for some time following some experimental reports claiming its association with a new kind 
13Which models incorporate a Drude (metallic) component and 4 or 5 Lorentz oscillator components associated with interband 

processes [Broderick et al., 2002b], 
14For reference, 0.3 eV equates to approximately 2400 cm - 1 . 
15The blackbody glowing is obviously excluded from this discussion. Furthermore, besides EuB6, only the pnictide TbN is 

known to display this temperature induced blue-shift [Wachter et al., 1998]. 
l6It occurs only for selected configurations of the relative polarizations of the incident and scattered beams. 
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of, high­Tc , exotic magnetism [Young et al., 1999]. Nonetheless, since such conclusions have been 
proven to stem from a deficient experimental interpretation, they will not be addressed here, beyond the 
discussion included in Appendix 3.A. 

The first thing one notices as EuBg is doped is a frailer ferromagnetism, with lower values of TQ 
consistently obtained the higher the doping strength, x (Fig. 3.8a), and terminating in CaB6 exhibiting 
no FM at all. Concurrently, the massive drop in p(T) below Tc characteristic of the compound at x — 0, 
is weakened and the distinctive metallic character evolves into a bad metal behavior at low/intermediate 
dopings (Fig. 3.8b). Despite this, the system still exhibits quite a CMR at x — 0.2 as shown in Fig. 3.8d. 
As x is increased from zero, the doped compounds start to display higher residual resistivities (Fig. 3.8b) 
and at the extreme doping limit, the resistivity ends up in a typical semiconducting behavior for CaB6 
(Fig. 3.8c). Hence the system clearly undergoes a Metal­Insulator (MI) transition induced by the doping 
level. 

It is most interesting to observe how the transport correlates with the magnetization of the samples. 
One of the intriguing features is the fact that, for x = 0.4, the Hall coefficient RH scales with the 
magnetization in a way that is at odds with the behavior found at x = 0. RH is depicted in Fig. 3.8e: 
there is a range of magnetizations where this quantity remains basically unchanged, until some threshold 
is attained, above which \RJJ\ is suddenly reduced (or, conversely, ne increased)17. Also intriguing is 
the exponential dependence of the resistivity on the magnetization, as in Fig. 3.8f, and the exponential 
scaling of wp with M for Euo.6Cao.4B6: there is a clear an significant distinction between this and the 
linear scaling observed in pure Europium hexaboride (Fig. 3.6d), that correlates with the fact that p{T) 
seems to indicate that the x = 0.4 compound is arguably on or quite near the insulating side of the MI 
transition. 

Unlike what happens at x = 0, where the carrier density is immediately increased as soon as the magnetization is non­zero 
(Fig. 3.5c). 

http://Euo.6Cao.4B6
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FIGURE 3.8.: Some effects of doping in the magneto-transport properties o/Eui_xCaxB6 . (a) M(T)/Tforx=0 
andx=0.2, showing the smaller Tc of the latter [Rhyee et ai, 2003c]. (b) Comparison of the normalized resistiv­
ity, p(T)/p(288K),forx=0, 0.2 and 1 [Paschen et ai, 2000]. (c) p(T)forx=0.2, 0.4, 0.6, 0.9andl (inset), where 
the evolution into the semiconducting behavior is clearly visible [Rhyee et ai, 2003a]. (d) Magnetoresistance for 
x=0.2 at several external magnetic fields [Paschen et al, 2000]. (e) Scaling of the Hall coefficient, RH, with M, 
for x=0.4 [Wigger et al, 2002b]. (f) Exponential dependence of the resistivity on the magnetization for x=0.4 
/ïbidemy. (g) Scaling of the unscreened plasma frequency with M for x=0.4 [Perucchi et al., 2003]. 

A last point on the measured properties of Eu-based hexaborides is due to be addressed. Perhaps 

the reader became curious after examining Fig. 3.8, and comparing the data in panels 3.8b and 3.8c 

for p(T) of CaB6- Although the former uses a log scale in the horizontal axis, it is clear that this 

sample shows an overall featureless resistivity, whereas panel 3.8c displays a clear semiconducting-

like p(T). This example serves to illustrate an important point: the measured properties of Eu-based 

hexaborides are sample-dependent [Cooley et al., 1997; Denlinger et al., 2002; Sùllow et al., 2000]. This 

is not so surprising as the origin of carriers lies in the presence of structural defects which beget a 

chemical potential at the bottom of the conduction band and a very small carrier concentration. This 

sensitivity to the sample preparation technique manifests itself both in EuE<6 and understandably more so 

in Eui_ x Ca x B6. Therefore, there is no guarantee, in principle, that differently prepared/treated samples 

will exhibit exactly the same quantitative behavior for a given nominal composition18 . 

Just as an example, the experimental signature for the two magnetic transitions described above for EuBe is seen only in the 
purest samples (characterized by the lowest p(T = 0)), the same happening with the tiny anisotropy in the magnetism. 



Appendices for this chapter 

Appendix 3.A A word on the magnetism of CaB6 

In 1999, Young et al. [1999] presented experimental evidence for ferromagnetism with Tc — 600 K in a 
low density electron gas with densities of the order of 1019 cm - 3 . Such unexpected magnetism appeared 
in samples of slightly doped CaBg, namely Cai-^La^Bô and Cai_xThxB6, but the effect was limited to 
an extremely narrow compositional range (0.005 < x < 0.015). In fact, this was the first experimental 
report of a FM ground state in a 3D diluted electron gas, and it was so apparently remarkable that David 
Ceperley himself commented on the same issue of Nature [Ceperley, 1999] that the reported effect might 
well be the blueprint for a polarized Wigner solid, a long standing theoretical prediction for the ground 
state of an extremely diluted electron gas [Jones and Ceperley, 1996; Zong et al., 2002]. 

As expected, a series of studies in CaBô ensued, trying to pinpoint the cause for such high-Tc magnetism. 
On the theoretical side, besides the polarized Wigner solid hypothesis, excitonic effects [Murakami et al., 
2002] and defect states [Monnier and Delley, 2001 ] have been invoked. Interest in this compound raised, 
and it certainly influenced the amount of work done in EuB6. 

To my best knowledge of the literature, however, the magnetism seen in this compound has an extrinsic 
origin. In particular, Fe and Ni contaminants are the likeliest culprits. Despite the fact that initial experi­
ments seemingly had control over the amount of magnetic impurities in the samples, a reasonable amount 
of literature concluded otherwise. All experiments that include a careful chemical characterization of the 
samples found that, although as-grown samples exhibit roughly the same magnetic behavior, the strength 
of the magnetic moment and the magnetic phase itself either disappears or is almost completely reduced 
upon surface treatment. These magnetic impurities are imprinted in the samples though electrochemi­
cal effects during the mixing phase [Bennett et al., 2004; Mori and Otani, 2003; Otani and Mori, 2002], 
and by contamination from the crucibles used in sample preparation [Matsubayashi et al., 2002, 2003; 
Taniguchi et al., 2002]. 

For this reason, CaB6 is considered here as a diamagnet. 
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"The theoretical oriented scientist cannot be envied, because nature, i.e. the 
experiment, is a relentless and not very friendly judge of his work. In the best 
case scenario it only says "maybe" to a theory, but never "yes" and in most 
cases "no". If an experiment agrees with theory it means "perhaps" for the 
latter. If it does not agree it means "no". Almost any theory will experience 
a "no" at one point in time — most theories very soon after they have been 
developed." 

— Albert Einstein, Theoretische Bemerkungen zur Supraleitung der Metalle 
[Einstein, 1922]. 

4.1. The Basic Premises 

The development of the microscopic model that is to be described in a moment, draws support from a 
series of factors revealed by the wealth of measurements presented in the last section. So, now I summa­

rize my understanding of the essential experimental results in a way suitable for theoretical consideration 
in the following premises. 

1. EuB6 is a good metal characterized by a very small carrier density which, at T » Tc is of the 
order of 10~3 electrons per unit cell. For definiteness, I take the reference values ne(T » Tc ) — 
0.003 and ne(T « Tc ) m 0.009, as reported by Paschen et al. [2000]. 

2. The magnetism of EuB6 arises entirely from the half­filled 4 / shell of Eu2+ in the state 8S7/2. 
This implies localized magnetism stemming from magnetic moments of magnitude S = 7/2. 
Within this formulation these electrons do not itinerate at all. We designate the resulting magnetic 
moment by local spin, and use the term magnetization of the system when alluding to long range 
ordered phases of these spins. 

3. The electronic properties are to a great extent determined by the electronic structure near the Fermi 
level, Ep ■ The conduction and valence bands of EUBÔ are separated by a gap of the order of 1 eV, 
as per the discussion in section 3.3. This fundamental gap lies at the X point in the BZ, and the 
close proximity of Ep to the bottom of the conduction band dictates a pocket­like structure for 
the Fermi surface. Given that the interest will be almost completely in a temperature range of the 
order, or below, Tc , the electronic states in the valence band are disregarded. 

4. The conduction electrons arise from the presence of defects in the structural arrangement of the 
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boron framework. These defects generate a surplus of electrons that occupy states in the conduc­

tion band. 

5. Given the scalings of several magneto­transport properties, it is assumed that the influence of 
external magnetic fields is happening only through its effect on the magnetization of the localized 
spins. This excludes orbital effects, which is a generally valid assumption for moderate magnetic 
fields, like the ones used in most experiments. 

6. The conduction band electrons interact with the local spins only through the Hund's coupling 
between the electron's spin and the local moments'. 

7. Given the isovalency of Ca and Eu in the hexaborides, the Eu—>Ca substitution in Eui_xCaxB6 

does not change significantly the number of carriers in first approximation. Therefore, from the 
point of view of our microscopic mechanism, this substitution has the simple effect of diluting the 
cubic lattice of localized spins, and of suppressing the number of lattice sites among which the 
conduction electrons can itinerate. 

Our discussion starts with the case of EuBg. The Hamiltonian describing conduction electrons hop­

ping in a tridimensional cubic lattice, and coupled to local spins at each lattice site is 

UKLM= Yl kj A,aci,°+h­c­ + Jn Yl & ■ v / 3 cUCi>p i4­1) 
(i,j),<r i,a,P 

usually known as s — f or Kondo Lattice Model (KLM) Hamiltonian [Doniach, 1977], and is one of the 
canonical models in strongly correlated electronic systems. It applies generally to many materials that get 
their magnetic properties from a system of localized magnetic moments coupled indirectly via an inter­

band exchange coupling to itinerant electrons. In this expression, Uj = t is the hopping integral between 
neighboring lattice sites, cjff(cii(r) are the second­quantized fermionic creation (annihilation) operators 
at latice site i, Si represents the local magnetic moment of magnitude S = 7/2, J H the exchange cou­

pling of the latter to the itinerating electrons, and f = (TI,T2,TZ) is the vector of Pauli matrices. The 
sum in the first term is over all pairs of nearest neighboring sites (i,j). 

Since S = 7/2 is a rather high spin, the local spin operator is replaced by the classical vector S<, 
parametrized with spherical angles as 5, = S(sm(9i) cos(ipi), sin(0j) sm(ipi), cos(0j)). This transforms 
the second term in (4.1) into a generalized potential term for the electrons, which will be a disordered 
potential above Tc , where all Si are uncorrected. Furthermore, the magnetic and electronic time scales 
are well apart in such a way that the magnetic background provided by the Si is essentially quenched. 
This means that the typical time between spin fluctuations is much longer than the time for the electronic 
subsystem to reach its ground state1. 

4.1.1. Estimation of Parameters 

The KLM requires a total of 3 parameters, namely t, J H and the electronic density, ne, that should be 
matched with the experimentally accessible values for EuB6­ The electronic density comes directly from 

'in other words, the electronic problem can be diagonalized for static configurations of the local spins (adiabaticity). 
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the Hall effect measurements and, as said above, is taken as ne(T » Tc ) — 0.003 and ne(T < Tc ) — 
0.009. 

The hopping parameter, t, can be estimated both from electronic structure calculations and from effec­
tive electronic masses accessed through transport and optical experiments. Since both tend to present 
the results in terms of the effective mass, m*, we extract the value of t by means of the relation 
t ~ h?/2m*a2 , that arises within a low-wavelength expansion of the simple cubic, tight-binding, disper­
sion relation. Using several sources that relate both m* [Aronson et al., 1999; Kunes and Pickett, 2004; 
Massidda et al., 1996; Wiggeretal., 2004] and t [Kunes and Pickett, 2004; Lin and Andrew.J.Millis, 
2004; Massidda et al., 1996], one can see that t should lie somewhere in the interval 

t ~ 0.5 - 1 eV. (4.2) 

In our model t will be taken as a free fitting parameter. Consequently, for the model to be meaningful in 
the context of EUBÔ the results should lie within the above range. 

As for JH it is generally agreed in the literature [Kunes and Pickett, 2004; Lin and Andrew.J.Millis, 
2004; Wigger et al., 2004] that, for divalent Eu: 

JH ~ 0.15 - 0.20 eV, which yields JHS ~ 0.52 - 0.70eV. (4.3) 

Therefore, t and J H are of the same order of magnitude. Since the carrier density of our target system 
is so small, we anticipate that our KLM will in fact reduce effectively to the DE limit of the former. 
The DE limit of eq. (4.1) corresponds to the effective Hamiltonian (zeroth order in t/Jn) that is usually 
derived from the KLM in the strongly interacting limit J# > t. This might certainly qualify as a bold 
assumption insofar as (4.3) and (4.2) do not yield such limit. The crucial point, however, is that the 
electron density is very small, thus placing the Fermi level too close to the bottom of the band. As we 
show below, this configures another limit for the application of the DEM, in which case the parameter 
JH is removed from the problem2 , and the reasonable parameter space reduces to the relations in (4.2) 
and the possible values of ne. The procedure to connect our model with the theory will be to pin the 
value of ne to the densities found experimentally in the Paramagnetic or Paramagnetism (PM) phase. By 
doing this there remains only a single parameter - 1 - that is to be fitted and the result compared to (4.2). 

4.2. The Double Exchange Model at Low Density 

4.2.1. The DE Hamiltonian 

All the subsequent discussions behoove the description of how the DEM emerges as the effective Hamil­
tonian of eq. (4.1). In (4.1) the quantization axes for the electron's spin have been chosen globally, say the 
Oz direction (the same for all classical spins Si, Fig. 4.1). Since we are interested in the limit JH > t, 
this is not the best choice as the interacting term is nondiagonal in this representation, and it better be 
to simplify the projection of the high energy states within perturbation theory. Therefore, one needs to 

2It is important to know that J H has the value reported above, though. 
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0-

;1 

FIGURE 4 . 1 . : Schematic representation of the quantization axes. The global quantization axis is Oz, and one 
defines local quantization axes, Oz[ that correspond to the orthogonal coordinate system obtained from Oxyz by 
a space rotation (#j, ¢{), thereby yielding a Oz\ axis parallel to the direction of the (classical) local spin Si. The 
right­most depiction exemplifies the definition of the relative tridimensional angle, 0j j . 

diagonalize the second term of (4.1), which is accomplished by making the quantization axis to coincide 
with the direction of Si at each site (a rotation by (9i,<pi), see Fig. 4.1). 

In order to simplify the notation we rewrite eq. (4.1) using a spinor notation for the second quantized 
fermion operators: 

n KLM = E ** j * ! T O * J + h ­ c ­ + J E * ! fa ■7) * « ' (4.4) 
« j 

where 

J = JHS, Si= Sn% , % = (y) , *J s (cjit 4tl) , TO 
'1 0̂  
.0 1, 

(4.5) 

the last one (TQ) reflecting the fact that the kinetic term is diagonal in spin space in the eigenbasis of T$. 
We now introduce the SU{2) matrices fjj, that define the unitary transformation in the Hilbert space of 
the single particle problem (h <g> s)3 : 

N 

U=iQUi\. (4.6) 

and that allows us to write (4.4) as: 

n KLM = J2 Ki VlUJUiToUJUM + b.c. + J Y, *]MUi (ni ■ T) U}Ut*i. (4.7) 

The goal, of course, is to find the Ui that diagonalize Si ■ f: 

T3 = Ui(fti ­T)U}. (4.8) 

Fortunately we know from elementary quantum mechanics that, upon performing a rotation that brings 
Oz into the direction of n, the eigenstates of r3, {| | ) , | J.)}, are transformed into the eigenstates of 

ih is the Hilbert space defined on the basis of local Wannier orbitais {|0i}} and s the Hilbert space defined by {| T), | | ) } . 
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n% ■ T, {|+), |—)}. Therefore, ifÛ(tp,9) is the operator corresponding to such rotation and R(<p,9) its 
representation in the basis (| î) , | J.)}, we have: 

R(<pu9i) = Ul (4.9) 

Therefore, using the gauge x — ~ f f°r the Euler angles, one sees that 

R(u>. 9)­( C0S^ ­MÏ)*­*») ^ u = ( c o s ( | ) s i n ( | ) e ­ ­ \ 

and the Hamiltonian (4.7) can be written as 

where 

J y = J rã <?y , 3¾ = UjUiV] = ta I a[i biÍ J , ^ = ̂ ^ = ( ° a J (4.12) 
\­h*i a*jJ \C^J 

with new fermionic operators q | ( c ! J that destroy (create) electrons at a site Ti with spin parallel or 
anti­parallel to the local moment therein. The hopping coefficients in this basis are explicitly: 

9­i \ ( 9 
ay = a£ ay = cos ^ J cos I ­ £ j + sin ^ 1 sin I ­ £ J e ' W ­ w (4.13a) 

6y = ­ 6 , , fty = sin ( | ) cos (?f\ e­^ + sin f | ) cos ( | ) e " ^ . (4.13b) 

Notice that, in this local quantization basis, the off­diagonal part of HKLM has been transferred com­

pletely to the kinetic term, both in real and spin space. It is useful to realize that the diagonal and 
off­diagonal hopping elements have moduli 

\aij\ = \l g— = c o s ( 2 ' 

IM­~­\/M^ = sin(%) , M L i b ) 

the angle ©y being the angle between the neighboring local spins, as illustrated in Fig. 4.1. The form 
(4.11) is perfect for the separation of the energy scales in the limit J » t. Such energies correspond 
to the eigenvalues of the (diagonal) second term in (4.11). For that we use the projection technique by 
means of which a unitary transformation is applied to HKLM 

J Ù ­s H'=ebHe­b, (4.15) 

and S should be chosen so as to integrate out the transitions between the eigenstates of J'y in first order 
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in t/J. A suitable choice turns out to be (see Appendix 4.B for details) 

S = E *U*i*i > with su = YJ ( ft° biA , (4.16) 

that has precisely the intended effect upon the off-diagonal terms, yielding an effective Hamiltonian that 
reads 

n'KLM = eSHKLMe-S = Ç *} tiifij , (4.17) 

where 

* - ' * ( ; -0+t«(: ; ) + °( i ) ' 
When the high energy states are projected out in the strong coupling regime, the so-called Double 
Exchange effective Hamiltonian obtains: 

HDE = ^ti3aij4di- (4-19) 

In this expression we took J < 0 for definiteness and dropped the constants. The operator d; = c^ 
corresponds to an effective spinless electron4 . 

The DEM Hamiltonian looks extremely simple in that it corresponds to a tight binding problem for 
spinless electrons, but the simplicity is only superficial per force of the factor a^ that encompasses the 
information about the local spin background. It is obvious at once that the electronic problem described 
by (4.19) is intrinsically disordered at any non-zero temperature on account of the existence of disordered 
spin configurations. 

4.2.2. The DE Regime 

It is worth to underline that the condition J » t is essential for eq. (4.19) to be a strict effective Hamil­
tonian in the low energy subspace. Now it is shown that the DE approximation is still a valid one even if 
J ~ t provided the carrier density is small. Recalling what as been estimated for J H and t in § 4.1.1,1 
will concentrate on the case J = JJJS ~ t. 

The distinctive feature of the DE limit is that the electron always keeps its spin parallel to the local 
moment's at every visited site. Stated formally, this means that the local spin polarization per electron 

1 N 

is equal to unity for electron densities satisfying ne < 1. Moreover, in the strict DEM limit (J 3> t), 
m, by construction, is unity for any configuration of the local spins, which is the same as saying, for any 
magnetization of the system. This is strikingly different from what happens in the opposite (Ruderman-

4It appears here spinless because it is the dynamic variable of an electron that hops between neighboring sites keeping its spin 
always parallel to the local moment directions. So, in actuality, it works as if there was no spin degree of freedom for these 
quasiparticles. 
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Kittel-Kasuya-Yosida (RKKY)) limit of the interaction strength: to lowest order of perturbation theory 
in J/t, the local spin polarization (4.20) is identically zero5 . Therefore the local spin polarization is a 
good quantity to ascertain how close we are to the DE limit for arbitrary t/J, and that is what is studied 
below. 

Let us start with the complete KLM Hamiltonian in the form (4.11), where we have a basis defined 
with local quantization axes. In order to proceed analytically in obtaining some estimates, we restore the 
translational symmetry by hand imposing a virtual crystal type of approximation (VCA) that amounts to 
replacing the hopping parameters Ojj and bij in (4.12) as follows: 

Hj 
e\ . ,. , . . /e ij\ -* a = cos ( — , b^ -> \bij\ -> 6 = sin I — ] . (4.21) 
2/' J ' V l \2 

Therefore the complex phases are ignored and a uniform tilting angle, 0 , is considered. With these 
simplifications, the KLM Hamiltonian is straightforwardly diagonalized in real space through a simple 
Fourier transform, yielding: 

HKLM = £ * I *»** , with hk = (eÁk) + J ^ ] and ex(k) = -2xt £ «*(*„) . 

(4.22) 
In this result it is interesting to see that the hybridization between the two bands is dispersive and is not 
perturbative with respect to the ea(k) bands6 . In addition, the hybridization is extremal at the center and 
boundaries of the BZ, being zero only at the fc-space surface corresponding to \ filling. Working out the 
diagonalization in the spin sector, one gets the two bands: 

E±(k) = ea(k) ± V J 2 + eb(k)i, (4.23) 

and, as discussed in detail in Appendix 4.C, the expression for the local polarization (4.20) within this 
VCA: i 

m = _sign(J)-l W l + ^ V V (4.24) 
6 k<kF ^ ' 

In the limit of extremely low carrier density, the local polarization reads: 

-1/2 

m ~ — sign( J) 1 /6*6 Y 
1 + (T) 

(4.25) 

For definiteness, consider the PM phase, in which case b = 2/37 , and the local polarization at low 

5This is readily seen writing (4.20) in the basis with global spin quantization axis where m oc ]TV cos(0j) (c! TCi,f - cj jCi.j ). 
This is identically zero to zeroth order or in a PM regime. Notice how different this is from the global spin polarization. 

6I.e., the hybridization between the two bands is essentially of the same order as the dispersion of the bands themselves. 
7Consult Appendix 4.D for details. 
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FIGURE 4.2.: DOS for the KLM in the PM phase (M = 0) within several approximations, (a) DOS associated 
with the spectrum of the VCA expressed in eq. (4.23) for b = 2/3. The inset is a magnification of the low energy 
range to highlight the features at smaller J. (b) DOS associated with the full KLM Hamiltonian (4.11) when the 
complex phases ofaij and bij are ignored. The result is averaged over 100 configurations of local spin disorder, 
(c) Exact DOS for the full KLM Hamiltonian, averaged over 100 configurations of local spin disorder, (d) Case by 
case comparison between the results of (a) and (b). 

densities will have values like 

0.243 if J = ­t 

m(ne <C 1) = < 0.447 if J=­2t 

0.781 if J = ­U 

(4.26) 

Well, it turns out that these results reveal nothing particularly interesting. But one should not neglect the 
approximations involved in the Virtual Crystal Approximation (VCA). In particular, we neglected the 
complex phases which is an uncontrolled assumption because the coherence factors are simply dropped 
ad­hoc. For example, the spectrum (4.23) is gapped no matter the strength of J, which is clearly wrong. 
In fact, the effects of the approximations assumed above can be observed in a rather illustrative way in 
the plots of Fig. 4.2 obtained with the recursive method. Panel 4.2a shows the DOS coming out of the 
VCA spectrum (4.23). Since within the VCA the full symmetry of the underlying lattice is maintained, 
one observes the expected sharp van Hove singularities and the gap mentioned above. Now, if we had 
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FIGURE 4.3 .: Examples of projected DOS, p${E), calculated via recursive method for the full KLM (solid 
lines), in comparison with the total DOS (dashed lines). Each panel pertains to a different coupling J. All results 
averaged over several instances of magnetic disorder (M = 0). 

not undergone the VCA and had restrained ourselves to the first simplification in (4.21) ((ay, fcy) —* 
(\aij\, |&ijD), we would have obtained a disordered problem, whose DOS in the PM phase is presented 
in 4.2b. The magnetic disorder clearly smoothens the van Hove critical points while preserving the 
bandwidth. But, most importantly, the gap opens only above some threshold coupling. Panel 4.2d shows 
an explicit comparison between the two approximations. Panel 4.2c displays the exact DOS for the 
KLM. No approximations are involved other than averaging over configurations of magnetic disorder. 
The errors introduced by the different approximations are obvious from comparison with the exact DOS, 
namely, the overestimate of bandwidths, and the features small coupling J. 

Figure 4.2c is the exact, disorder averaged DOS for the KLM, and the local polarization (4.20) can be 
calculated numerically just as well. The procedure is as follows. The zero temperature ground state of 
the electron system will be some Fermi sea wavefunction, which we designate \FS): 

Ne 
\FS) = ] I cm|0) , with eigenstates {Em}: EY < E2 < ■ ■ ■ < ENe (4.27) 

m = l 

Naturally, if we choose some arbitrary basis {a} the expectation value of caca is related to the eigenbasis 
projections through 

Ne 

FS CQCQ; FS) = £ \(a\m)f (4.28) 
m = l 
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FIGURE 4.4 .: Local polarization per electron as a function ofne in for the KLM. (a) The local polarization 
in the PM phase for different couplings J/t. (b) The local polarization at different couplings and magnetizations 
(logarithmic scale in the horizontal axes). 

and this is true, in particular, for the local quantization basis, making it possible to write (4.20) relative 
to the eigenstates: 

i m = l 

TV / ­ ^ 
= -0- / M£) - M*0] ■ 

■ " e . / - 0 0 

In the last expression we introduced the locally polarized LDOS, defined as 

1 N 

pt(E)=M^pidE) a n d 

(4.29) 

i = i 

Pi,t(E) = ^2^tH\2S(E­Ev 

(4.30) 

(4.31) 

The last expression is simply a projected DOS, and since Chapter 2 that we are familiar with the pro­

cedures to handle projected DOS for any type of quantum system. In particular we know (Appendix 
2.D) that, within the philosophy of the recursive method, (4.30) can be readily obtained from an average 
over random choices of starting vectors projected onto a single local spin subspace (either | ­ff) or | ^))8. 
Examples of these projected DOS thus calculated are shown in Fig. 4.2.2. These projected DOS and the 
global DOS allow the direct calculation of m, which has been calculated for the exact KLM with the 
outcome shown in Fig. 4.4. There are several interesting aspects regarding the results in this figure. Let 
us look first at panel (a), calculated for the PM phase (random local spin orientations). First, it clearly 
evinces that, in the case where J = t, the local polarization per electron is roughly ~ 0.5 for small 

8This means that we can simply choose a normalized starting vector of the type |«o> = £i=i a°\i, ­ft­) and calculate the LDOS 
projected onto this state (averaging over a set of random {a°}) to obtain p^{E). 



4.3. Magnetic Disorder in the DEM 71 

densities, meaning that 75% of the states are parallel to the local spins. Now a 75% polarization is a 
considerable polarization and thus one can argue that the system is leaning rather significantly towards 
the DE limit9. The situation improves significantly as J is increased, just as expected. In second place, 
we notice that this state of affairs persists over a rather broad range of densities, wherefrom one can ten­
tatively infer that the DE limit describes more successfully the KLM for J/t ~ 1 than the RKKY limit 
does. The third point has to do with the maximum of m(ne) occurring at some density in the vicinity of 
1/4 filling. To comprehend that we invoke the analytical calculation developed above, and the resulting 
dispersion (4.23) in particular. As mentioned above, the hybridization is maximal at the bottom of the 
band, and zero precisely at 1/4 filling. Although with due caution in view of the consequences of the 
approximations involved, this provides a qualitative explanation for the behavior of the curves m(ne). 

Of course that a criterion based on the magnitude of local polarization is only valid in the PM phase, 
where we know that such quantity vanishes in the RKKY limit. Within RKKY, as soon as the local spins 
start to be polarized (i.e., as soon as M > 0) the global polarization per electron will be unity in the limit 
ne -+ 0. Since 

m = — J2cos(9i)(c[TCi,T - c\Achi), (4.32) 
i 

we can expect, for the sake of the argument, local and global polarizations to be related on average by 
m ~ Mrrigiobai, in the RKKY limit. Consequently, if the RKKY were to hold, m would be expected to 
saturate at M. In panel (b) one observes that as the magnetization of the system is increased, the local 
polarization increases accordingly, and is maximum at the lowest densities. The important note, however, 
is that the saturation of m as ne —> 0 occurs not at M but at higher values. In particular, already for 
J = 1 the saturation value of m is always closer to unity (the DE limit) than M (the RKKY limit), as is 
clearly shown in that panel. 

Therefore, the lowest densities are closer and closer to the DE limit even for moderate couplings. From 
this we argue that the physics of the KLM at moderate dopings, J > t can be captured to a great extent 
by the DE effective Hamiltonian. From here onwards, and unless explicitly mentioned otherwise, the 
discussion is based on such Hamiltonian, in the form written in (4.19). 

4.3. Magnetic Disorder in the DEM 

Due to the assumption of classical localized spins, the DEM (and, naturally, its ascendant the KLM) is 
intrinsically disordered. A glimpse of that was already seen in the former paragraphs where the need to 
average over several realizations of disorder arose. We recall that 

^ = 2 ¾ ¾ ^ ¾ . <Hj = cos ($& J c**« , (4.33) 

9It is important to notice that in the extreme RKKY limit the local polarization is effectively zero. Thus we are comparing 
0.75 with zero. 
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where the relative complex phase has the value 

$ij = — arccot COt((fi - tpj) + cot ( -± \ cot ( -Í- j csc(ifi <Pj) (4.34) 

This places the DEM among one of the conventional models of disorder for electronic systems [Kramer and MacKinno 
1993]: non-diagonal disorder. The essence of this lies in that we assume static configurations of the {Si } 
which, through the spin dependent hopping, provides a random background among which the electrons 
itinerate. This is an approximation of quenched magnetic disorder, and assumes the separation of the 
characteristic relaxation times of the electronic and local spin subsystems. 

From (4.33) two important aspects regarding the nature of the disorder in this system emerge. The 
first one is that the complex Berry phase in ay works as if a random magnetic flux crosses each closed 
path within the lattice, and, in this sense it is a mixture of a random hopping and random flux models. 
Secondly, the disorder is quite weak indeed. Although off-diagonal disorder is generally weaker in 
comparison with diagonal disorder, the DEM provides one of the weakest cases. This can be seen 
analyzing the probability distribution for the absolute value of the hopping |ay |: 

l IN f (Mi f d^1 r ( /l+COs(ei7) \ 
V(a = |ay |) -J^J^-S [a- yj ^ Z Z J = 2a, (0 < a < 1). (4.35) 

Via) is linear and drops to zero as a approaches zero, which is clearly weaker than, say, an uniform 
distribution with the same width. This qualification based solely upon the probability distributions and 
their statistical consequences10 , is naturally inconclusive as to the physical consequences. For that one 
needs to address the nature of the states, namely which and how many states are localized. But before 
delving onto such matters, it is appropriate to introduce our approach to the thermodynamics of the DEM. 

4.3.1. Hybrid Thermodynamic Approach 

The DE Hamiltonian (4.33) represents a system of classical spins that do not interact directly via a 
conventional exchange term. Their interaction comes indirectly from the fact that certain configurations 
of the local spins will minimize the energy of the electron gas. At absolute zero temperature, it is 
more or less evident that the ground state corresponds to ferromagnetism for any density of electrons 
[Tsunetsugu et al , 1997]. For other than this specific case, thermodynamics comes into play. Of course, 
all relevant quantities follow from the partition function 

jvSi TV [exp{-0{H(Si ) - fiN)) (4.36) 

The integral spans all local spins, Si, and the trace is over the electronic degrees of freedom, for which N 
is the number operator. The electrons can be easily traced out in this grand canonical ensemble yielding 

'For instance, the average fluctuations associated with them. 
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an (exact) effective spin Hamiltonian that reads 

E = J VSi exp(­(3Heff(Si )) , 0Heff = ­ J ] log [l + exp (­ /?(£„($ ) ­ /*)) (4.37) 

En(Si ) being the eigenenergies of the one­electron Hamiltonian. Here, however, lies the origin of the 
difficulties that this system poses to analytical and numerical approaches. The latter are rather notorious, 
for one might think that once the effective spin Hamiltonian is written down, the energy of spin con­

figurations can be calculated and the problem can be tackled with usual Monte Carlo (MC) techniques. 
That is indeed so formally. Unfortunately, the effective Hamiltonian — that is, the energy associated 
with a given spin configuration — requires the knowledge of the electronic eigenstates associated with 
such configuration. In other terms, the MC methodology would imply the full re­diagonalization of the 
electronic problem at every tentative update of the local spin configuration1 ' . This is clearly prohibitive, 
imposing an upper limit of ~ 63 on the sizes of the systems that can be thus studied [Calderón and Brey, 
1998; Dagotto, 2003], and such sizes are meaningless as far as localization studies are concerned. 

Our approach to this problem tries to circumvent these issues through a compromise in which the 
electronic problem is solved exactly and the spin subsystem treated within mean­field12. It hinges upon 
the fact that, writing Heff in terms of the total electronic DOS 

p{E, Si ) log 1 + exp(­/?(£ ­ n)) dE, (4.38) 
-00 

the dependence on the spin configuration is completely transferred to the DOS. Since the treatment of 
the exact effective Hamiltonian is out of reach, we resort to the Bogoliubov­Gibbs inequality for the 
canonical free energy13 : 

T=­T log(S) < (Heff)t ­ TSt ■ (4.39) 

Here (...)t means the averages are calculated with a trial statistical operator — other than the canonical 
Maxwell distribution — and St is the associated entropy. Since our system is expected to exhibit either 
ferro or paramagnetism, the simplest suitable choice is the one generated by the uniform mean­field 
Hamiltonian 

N 

Ht = ­hY,SiZ, (4.40) 
i 

where h is a variational parameter used to minimize the inequality (4.39). Since all averages are now 
done with regard to this Ht, we have: 

M = (Si ) t = J VSi exp(­(3Ht)Si = (œïhtfh) ­ ­ M ûz = C{(3h) ûz , (4.41) 

"This is a serious difficulty because the electronic spectrum, as a whole, reflects global properties of the system and therefore 
is rather sensitive even to minor changes in the underlying spin configuration. 

12The principles behind this approach have also been presented by Alonso et al. [2001b]. 
13Units where kB = 1, and thus T = 1//3. 
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(C(x) is the familiar Langevin function), 

- TSt = log 
sinh(/i) 

hM, 

and 

P (Heff)t = - T (p(E, Si )) log [l + exp(-/?(£ - p)) 
J—oo * ' * 

dE. 

(4.42) 

(4.43) 

Therefore, the trouble in calculating the equilibrium free energy now boils down to the computation of 
(p(E, Si)) . We know that the recursive method can be used to obtain the exact p(E, Si ) for a given 
configuration {Si}. It is then a matter of straightforward statistics to obtain the averaged DOS. Hence, 
the electronic problem is still treated exactly for every configuration of local spins. These configurations 
are generated with the probability distribution ~ exp(-(3h ^ 5,z) and, since j3h and M are univocally 
related through (4.41), we simplify the notation and write 

(p(E,Si))t = p(E,M) (4.44) 

whenever we refer to the DOS averaged over configurations of disorder compatible with an average 
magnetization A4. 

We also recall that when EF » T, the log­
arithm in eq. (4.43) can be replaced by 0(// -
E) meaning that the thermal excitations of the 
electronic subsystem can be neglected to a great 
extent. According to our discussion in sec. 4.1, 
t ~ 1 eV in EuB6, whereas Tc - 15K. This 
suggests a "zero-temperature" description of the 
electronic system, the thermal/entropic effects be­
ing assigned entirely to the spin subsystem14 . 

The essential ingredient is the ability to calcu­
late p(E, M) accurately, yet in a time and mem­
ory effective manner, provided by the recursive 
method. It is worth reminding the reader that, ac­
cording to the details of the recursive technique 

expounded in chapter 2, the calculation of p(E, Si ) (that is, for a given configuration) encompasses in 
itself an average over stochastic starting orbitais. This would require a double averaging procedure15 to 
extract p(E, M). In view of the self-averaging nature of the DOS, it turns out that this averages can be 
combined in one single averaging process, changing the spin configuration at every new starting vector. 
Fig. 4.5 shows some examples of this central quantity obtained at different magnetizations. Each of 
those curves — all averages included — can be obtained in essentially the same time it takes to fully 
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FIGURE 4.5 .: DOS for the DEM at different magneti­
zations, as defined in eq. (4.44). The arrows signal the 
position ofEp{M = 0)for an electron concentration of 
ne = 0.01 (N = 1003 sites, PBCs, 10 x 5 averages). 

'"Clearly this is true as far as thermal excitations of the electronic states across the Fermi level are concerned. The electron 
system will indirectly feel the effects of temperature through the dependence of the DOS on M and, consequently, on T. 

15Over starting wavefunctions for a static configuration {Si }, repeated several times for different {Si }, generated stochasti­
cally. 
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FIGURE 4.6 .: Schematic depiction of a putative random potential for Anderson's model of diagonal disorder 
(a), and for a non-diagonal situation, similar to the DEM (b). On the top of (a) we sketch two putative localized 
wavefunctions. The last picture (c) is a schematic representation of the mobility edges (Ec). 

diagonalize the Hamiltonian of a system 250 times smaller using standard diagonalization routines! 

4.3.2. Anderson Localization 

We shall give a precise definition for our utilization of the term disordered in the context of electronic 
systems. An electronic system is ordered whenever its characteristics can be explained departing from 
a long-range ordered, translationally invariant, description, including the effects of dynamic or static 
disturbances by perturbation theory. It is disordered when such an approximation is meaningless — and 
the DEM (4.33) at finite magnetization is one such case. 

Disordered problems are interesting because localized states can therein occur. Again, we need an 
operational definition of localized state. In the crystalline case, the probability of finding a Bloch electron 
at a given lattice site, Ri, is the same for all sites, and for all fc-states16 . Bloch states are cases of ideal 
extended states in that they spread uniformly over the entire system. When disorder is gradually added, 
the phase coherence length and mean free path of the states decrease, and \ip\ starts to fluctuate markedly 
in space. Nevertheless, such states can still be extended if the wavefunctions spread indefinitely across 
the system. At some point, disorder and interference will be so intense that some wavefunctions will 
remain finite only within restricted regions of space, decaying exponentially to the outside. The extent 
of those regions is characterized in terms of a characteristic length — the localization length. 

Anderson [1958] carried the first quantitative calculations on the problem of localization using a simple 
but relevant model of electronic disorder. He considered a three dimensional point lattice occupied with 
atoms having a single state of energy e*, and studied the effects of disorder by maintaining the lattice 
positions and taking e, as a stochastic variable, uniformly distributed within [—W/2, W/2] (Fig. 4.6a). 
The Hamiltonian for such model is 

'HAM = t ^2 C\CJ + ^ e* cf c* (4.45) 
</ 

Anderson places a single electron at some site Ri at t = 0, and, studying the time evolution of the 
wavefunction, inquires about the probability of finding the electron at that point again as t —» oo. If there 
is no localization, the wavefunction amplitude will diffuse away to infinity, leading to a zero probability 

6This probability is N 1//2, and follows from the plane-wave normalization. 
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of return as t —> oo. However, this probability will be nonzero if the starting site belongs to a region 
containing a localized state. This happens because in such case, the starting state has a finite overlap 
with the localized one(s), meaning that diffusion gets restricted to a finite volume. His important result 
was that the magnitude W/t decides between these two alternatives, and that there is a critical Wc above 
which the probability of return is zero for a state with E = 0. This threshold defines the so-called 
Anderson transition: the point at which all the states become localized. 

Later Economou and Cohen [1972], studying the analytical properties and convergence of a suitably 
defined perturbation expansion of the electronic self energy, were able to establish that, for a given 
energy, there exists a WC(E) such that when W > WC(E) the states at that energy are localized. Stated 
differently, for a given strength of disorder, W, there will be regions of the spectrum consisting of only 
localized states, the remainder of the band corresponding to extended states (Fig. 4.6c). This is the 
sort of transition we are interested in. It follows from Economou's calculation that the transition between 
extended and localized regions is sharp, characterized by a specific energy, Ec, dubbed mobility edgellby 
Mott [1967]. The Anderson transition can therefore be interpreted as the merging of pairs of mobility 
edges as depicted in Fig. 4.6c, thus completely exhausting the extended states. 

Two ingredients are crucial in Anderson's and Economu's treatment: the local point of view, and the 
considerations of statistical distributions imposed by the stochasticity of e». Unfortunately, these are also 
the reasons why analytical approaches are so difficult and generally inaccurate. In a simplistic way, any 
analytical approach will need to employ some averaging procedure at some point to proceed and, as 
Economu already pointed out, there lies the very delicate point: either calculations are cumbersomely 
difficult, or the wrong assumptions simply wipe out the localization effects from the results. 

Numerical calculations have been an essential tool in establishing the remarkable features of local­
ization since the early years, and arguably the most reliable means in obtaining precise quantitative 
information [Kramer and MacKinnon, 1993]. The Anderson Hamiltonian (4.45) played an important 
role, being the most studied model in this context. As a consequence, much of the concepts, results and 
intuitions related to Anderson localization in disordered electronic systems, stem from the properties 
of this specific model. The DEM, on the other hand, has remained much unexplored in this context18, 
and, as we will see below, there are some peculiarities not found in the results for the Anderson model. 
For comparison purposes, and clarity, we decided to accompany the results below for the DEM with the 
behavior of the Anderson model under the same circumstances. We therefore proceed to analyze the 
problem of disorder in the DEM versus the Anderson model under different perspectives19 . 

4.3.2.1. Full Diagonalization — Wavefunction Based 

There are essentially two rigorous ways to ascertain exactly whether we have localization in a system 
or not. One of them is obviously through aDC at (T = 0)20, and the other is by looking directly at the 
spacial distribution of wavefunctions of the disordered Hamiltonian. Both entail the full diagonalization 
17 Absence of diffusion for the localized states, results in a vanishing Kubo-Greenwood conductivity: hence the origin of the 

term mobility edge. See also Cohen et al. [1969]. 
'"Essentially because of the DEM had been studied in the context of the manganites, where Anderson localization effects alone 

turned out to be rather inconsequent for such target compounds [Li et al., 1997; Millis et al., 1995; Varma, 1996]. 
19It goes without saying that we are only interested in the 3D case. 
20T = 0 is important to suppress activated behavior. 
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FIGURE 4.7 ..• (a) Paramagnetic DOS: Full diagonalization for N = 14,16,18,20 VS. thermodynamic limit 
(recursion). Frames (b), (c), (e) and (f) show 3D contour plots of selected single particle wavefunctions obtained at 
M = 0 for selected system sizes and energies. The iso-surfaces represent the regions ofconstant \^i{r\)2. Inframe 
(d) we show the same ground-state wavefunction plotted in (e), but now using the unfolded lattice representation 
discussed in the text. Each inset of this frame represents different magnifications, as sketched. 

of the Hamiltonian and the recourse to numerical diagonalization techniques. This poses immediately 
two possible problems. The first is that, in order to trust that a result obtained for a single configuration 
of disorder will apply to a macroscopic system, we need a self-averaging quantity. But self-averaging 
requires rather large systems — a clear obstacle for a full diagonalization procedure21. 

The second difficulty is a consequence of this: for weak disorder one expects the typical localization 
lengths to span several unit cells, and thus small systems are again a problem. Notwithstanding, it is 
instructive to analyze directly some results coming from the full diagonalization of the Hamiltonian. The 
first thing one notices, by inspection of Fig. 4.7a, is that the spectrum and spectral density obtained from 
the full diagonalization of finite systems does not resemble the behavior expected for the thermodynamic 
limit but for iV > 163. It is particularly important to notice that the bandwidth in smaller systems is es­
sentially ~ 12t (the bandwidth in the FM limit) even for the highest disorder case (M — 0), which poses 
an important restriction upon the reasonable sizes to consider in the study of a DEM system with small 
carrier densities. Next, we look directly at the wavefunctions. For that, tridimensional contour plots of 

21For instance, standard diagonalization routines requiring the complete storage of the matrix, demand ~ 1, 1.7 and 3.4 GB of 
RAM to fully diagonalize the DE Hamiltonian in cubic systems of linear dimension 20, 22 and 24 respectively. The fact 
that the matrix is complex is not favorable either. 
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\^n(fi)\2 have been included in figs. 4.7b, 4.7c, 4.7e and 4.7f. These show the surfaces where the square 
modulus of the wavefunction is constant. To put all in perspective, 20 equidistant surfaces have been 
chosen for the different plots, the scale varying as depicted. So in Fig. 4.7b the lowest energy eigenstate 
for N = 143 is shown, being evident that such wavefunction spreads over the entire lattice, albeit only on 
a restricted region in the z direction. Higher energy states only spread more and more uniformly across 
the system and therefore no localized states exist in this smaller system, disorder notwithstanding. This 
is also the reason why the bandwidth is so different from its value as N —► oo. 

Turning our attention now to Figs. 4.7c and 4.7e that correspond to the lowest eigenstates for N = 163 

and N = 203, we verify that they are indeed localized, because the wavefunction weight is mostly 
distributed within a quite restricted region of the lattice. To ascertain whether they are exponentially 
localized, we plotted one of them using an unfolded representation of the lattice22 in Fig. 4.7d. The first 
thing to notice is the logarithmic scale in the vertical axes an that the wavefunction squared varies among 
12 orders of magnitude! The main panel in this figure shows | * n ( r , ) | 2 for the entire lattice. In the chosen 
representation, each lump of points represents a given z plane and so, if we follow the maxima at each of 
these lumps, we see that they decay linearly (the dashed lines are a guide for the eye in this comparison). 
We can do the same within a given z plane, as is shown in the first inset, or even look along a single x 
direction as is done in the second inset. In any case, the decay is clearly exponential. An estimate of the 
localization length based on the exponential decay for this specific state gives 

A - 1 . 7 , (4.46) 

in lattice units. At higher energies, the states shall become extended and that is seen in Fig. 4.7f where 
we see an eigenstate slightly above the mobility edge, already spreading throughout the entire lattice. 

Unfortunately, this sort of analysis becomes unwieldy precisely in the most interesting region near Ec. 
According to the scaling theory of localization [Abrahams et al., 1979], the localization length diverges 
at Ec, posing obvious and serious finite size problems. Adding to this the known multifractal nature of 
the wavefunctions at Ec [Bindiar and Markos, 2006; Grussbach and Schreiber, 1995], then quantitative 
numerical conclusions based on an estimate of the localization length as above are essentially impossible 
in practice. 

An interesting peculiarity of the nature of disorder and localization in the DEM is that, unlike the 
Anderson model, the localization length cannot get arbitrarily small. Indeed, in Anderson's case, for W 
large enough we expect the states at the bottom of the band (the more localized ones) to have amplitude 
only within a single lattice site (cfr. Fig. 4.6a). That corresponds to an electron being trapped by a large 
fluctuation in the local potential. By contrast, the DEM exhibits non-diagonal disorder. Furthermore, the 
only energy in the electronic system is kinetic, coming from the hopping. Now, the states for whom the 
localization length is the smallest are the ones at the extremes of the band. But being at the extremes 
means having the highest/lowest kinetic energies, which, in tight binding, implies derealization! So 
there has to be a trade-off in this process. This is even more stringent in the case of DE because the 

To each lattice site we ascribe an index i denned as i = x + yL + zL2, where (x, y, z) is the coordinate of the lattice point 
and L the linear size of the cubic lattice. 
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probability of having iy = 0 is exactly zero!, as shown in eq. (4.35) . The states seen in figs. 4.7c and 
4.7e are the more localized ones in the case of maximum disorder possible (M = 0). 

Moving along, there is a quantity of great interest derived directly from the exact, normalized, wave-
functions: the moments of the wavefunction amplitude 

Iq(En) = Ç |*n ( r< ) | 2 < r . (4.47) 
i 

In particular, h{E) defines the so-called Inverse Participation Ratio (IPR), 

V(En) = Y^\*n(ri)\\ (4.48) 
i 

and is the parameter used in the earliest numerical investigations of localization [Edwards and Thouless, 
1972]. The very definition of extended state entails that the wavefunction is spread rather uniformly 
across the entire system, wherefrom V(E) for such state should scale as ~ TV-1. On the contrary, 
localized wavefunctions will contribute significant amplitudes only from the R sites in which they lie, 
and V(E) will consequently scale as ~ RT1, and should be size independent. This parameter essentially 
gives an account of the number of orbitais participating in a certain eigenstate. Since it permits this 
distinction (albeit rather coarsely near Ec), the IPR can be used as a sort of order parameter for the 
localization transition. The main advantage for us here is that using the IPR we can perform ensemble 
averages and study some of its statistics which are rather illuminating24. 

We calculated such quantity for different system sizes (N), and over many realizations of disorder. 
Afterwards, statistics are collected within a narrow energy window. Plots for the resulting average IPR 
along the band are shown in Fig. 4.8a. Two things are clear in these curves: the IPR is ~ TV-1 for most 
of the band, rising several orders of magnitude as the band edges are approached. This rapid increase 
in the IPR is monotonous and correlates with the decreasing localization lengths. The inset shows that 
V(E) x N is indeed iV-independent far from the band edges. For a quick exercise, we pick the highest 
value of the IPR: V(E\) ~ 0.026, and obtain that an estimate for the localization length of the lowest 
eigenstates is 

2A ~ \ÍR ~ ^/1/0.026 = 3.38. (4.49) 

This is fully consistent with the above estimate of A from the decay of the wavefunction amplitude. 
Although (V(E)) is rather revealing, the fluctuations of this parameter are more interesting. In Fig. 4.9 

the relative fluctuations of the IPR are plotted. These are the standard deviations of V(E) (designated 
a-p) divided by the respective mean (P(E)). It's quite remarkable that the relative fluctuations increase 
markedly at the band edges. But most remarkable yet is the fact that there is a certain energy where 
the relative fluctuations are maximized. And this fact is independent on the system size or the energy 
window considered. We could conjecture, in view of this, that 

The point of maximum fluctuation signals the mobility edge Ec. 
23For a system with V{Uj = 0) =̂ 0 it is statistically possible to have disconnected clusters and the problem acquires some 

flavors of quantum percolation. The small humps at E — 0 in figs. 4.8a and 4.9 to come are interpreted in this context. 
24Just as an aside comment, a practical aspect of using the IPR is that one doesn't need to carry a data file containing the 

wavefunctions with some ~ 2GB around! 
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FIGURE 4.8 .: IPR statistics for the DEM at M = 0. (a) Averaged IPR using an energy window o/O.ltfor 
TV = 163,183,203,223, and averaging over 240,160,40,10 configurations, respectively. The thermodynamic 
DOS is also shown in the main panel for reference. The inset shows V(E) x N outside the band edges, (b) In this 
panel, distributions of\og(V(E))for N = 183 are shown at different zones of the band. The continuous lines, are 
fitting results: to a Gaussian in the first 2 frames, and to log-normal distributions in the remainder. 

Thus, the prediction for the mobility edge at M — 0 would be 

Ec = 3.65 ± 0.05 . (4.50) 

The mobility edge for the DEM at M = 0 has been calculated25 by Lietal. [1997] who obtained 
3.55 < Ec < 3.6, in accord with the conjecture. This sort of behavior in the fluctuations of V has 
never been explored in this way before in the literature, and such diverging fluctuations surely bring the 
IPR closer to being a proper order parameter in the classical sense of critical phenomena. A closer look 
near Ec reveals yet another interesting aspect. To see what is involved here let us look at the inset of 
Fig. 4.9. The existence of a critical energy at which av/ (V) becomes size-invariant is apparent in a 
very compelling way, since the four curves seem to cross very close to each other. Unfortunately, unlike 
the maximum, this crossing point is rather sensitive to the energy window chosen to collect statistics. 
A finite size scaling was actually attempted but without any significant success. The reason lies in the 
impossibility of collecting more statistics at such large system sizes, which, in turn, forces us to consider 
a relatively large energy window, and a large distance between successive data points ensues. This 
renders the task of analyzing a-pj (V) and its possible scaling behavior close to the crossing point very 
difficult at the current time. 

For the reader who might care about the actual distributions for the IPR, their histograms have been 
plotted in Fig. 4.8b at different energies, using N = 183, and the same energy window of O.lt. It is 
more convenient to build the histograms of log (V) rather than V itself, these being the results actually 
shown. From those plots one sees that, at energies near the center of the band, the log of IPR has a 
Gaussian distribution, meaning that V itself is log-normally distributed26. However, the statistics of 
logCP) collected closer to the band edges start to behave like a log-normal distribution as the plotted fits 
25Although the mobility edge at M = 0 has been known since 1997, its trajectory with M had not been calculated, to our 

knowledge, until this work. This will be shown in the subsequent pages. 
26x is said to be log-normally distributed if its logarithm is normally distributed. Consequently, the probability distribution of 
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FIGURE 4.9.; Ratio of the standard deviation to the average of the IPR using the same parameters as in Fig. 4.8. 
The inset is a magnification showing an apparent point of scale invariance. 

document. This means that V starts to behave log-log-normally!, in a clear indication of considerable fat 
tail behavior in the distribution, and the cause of the increasing fluctuations observed in Fig. 4.927. 

Another interesting aspect following from Fig. 4.9 is the noticeable enhancement of the relative fluc­
tuations near the center of the band. By extension, this behavior reveals a slight tendency for localization 
at those energies, and is completely understandable in terms of the DEM. Even though the probability 
distribution for the hopping modulus being exactly zero is itself zero (4.35), it is not hard to envisage 
the occurrence of very small hopping probabilities around some atom. When that happens, and adds to 
interference effects induced by the phase of the hopping, the electron will have an impaired diffusion and 
its energy will lie close to zero. Hence it is not very surprising that the relative fluctuations in the IPR, 
and the IPR itself, are enhanced near zero energy. Notwithstanding, the metallicity of the system should 
arguably be rather insensitive to this effects because of the high DOS at E = 0. 

We are thus presenting a new method for the identifications of the mobility edge. Additional results 
demonstrating the reproducibility of the behavior of the IPR near the critical point are given in Ap­
pendix 4.E, both for the DE and Anderson models, lending more support as to the applicability of the 
above conjecture. 

x isp(x) = exp[-(log(aO - tf/(2a2)\/y/(2na2x2) . 
27The log-normal fits in some panels of Fig. 4.8b were performed doing a translation x 

of negative quantities. 
x + c to circumvent the logarithms 
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4.3.2.2. Local Environment— LDOS Fluctuations 

Full diagonalization of the Hamiltonian matrix is always restricted to small lattice sizes, an imposition 
arising both from storage and execution time restrictions. Even more so when statistics are needed and 
we have seen that, in this particular problem, results start being meaningful for greater iV's. 

Perhaps the most challenging and enduring theoretical difficulty surrounding the Anderson transition 
has been the difficulty in defining a proper order parameter for the transition. The discovery that the 
Anderson problem can be mapped onto an effective field theory based on the non-linear, supersymmet-
ric, a model [Efetov, 1983], brought some hopes of an order parameter. However, these so derived 
order parameters are related to the DOS, and turned out to be analytical at the transition. Hence, the 
usual machinery of critical phenomena remains inapplicable at a precise quantitative level. Later on, 
Mirlin and Fyodorov [1993] reinterpreted some results of the supersymmetric formalism, conjecturing 
that a meaningful order parameter is in fact related to the distribution of local Green functions. 

In this context we set about to study the distribution of LDOS which are directly related to the local 
Green functions. As a matter of fact, we can be easily convinced that the LDOS is indeed a quantity of 
interest, for if we recall its definition: 

Pi(E) = £ \(ri\Vn)\2 5(E - En), (4.51) 
n 

it says that pi(E) simply measures the total weight of the wavefunctions with energy E±5E at the lattice 
site r-j. If E happens to be on the localized side, the corresponding eigenfunction will have considerable 
weight on very few sites and, consequently, the typical value of the LDOS has to be very close to zero. 
A precise definition of typical LDOS will be presented in a moment. The important point is that, for this 
reasoning to work, a considerable sampling of LDOS thoughout the lattice has to be made, and, again, 
the study of its distribution becomes crucial. 

Aiming at the understanding of its statistics in disordered tight-binding systems in general — and our 
DEM in particular — the recursive method was employed to calculate LDOS in much larger lattices 
(TV = 1003) than the ones considered in the previous section. The process involves the random choice 
of a lattice site, the calculation of the LDOS there and the repetition of the process for different spin 
configurations and lattice points. In the end, statistics are collected within a narrow energy window28. 
The fact that the consideration of a finite energy window has no influence on the results can be confirmed 
with reference to Figs. 4.10a, 4.10b and 4.10c, that show a density plot of the probability distribution 
for the LDOS in the (E, pi) plane. These are for the Anderson model (4.45), and, for comparison, we 
present the ordered case (W = 0) together with two small disorder strengths (W = 1,2). As the pictures 
document, the features in the probability distributions are due entirely to disorder29. 

Fig. 4.10 shows the aspect of the LDOS histograms along the band for M = 0. The distribution 
of pi is unimodal across the entire band. Near the band center, it is clearly log-normal, something 
28 This is not strictly necessary because the recursive method allows the consideration of arbitrarily small energy windows, 

zero in particular. However, we still chose to stick with the energy window because it allows a useful amplification of the 
statistics, with no influence on the results. 

29For instance, the ordered case is sharply peaked, showing no broadening at all, other than the one due to the finite energy 
window. As a result the density plot is simply the profile of the global DOS for the tight-binding Hamiltonian in the cubic 
lattice, as we naturally expect. 



4.3. Magnetic Disorder in lhe DEM 83 

LDOS distribution ­ Anderson Model (W=0) LDOS distribution ­ Anderson Model (W=l) LDOS distribution ­ Anderson Model (W­2) 

(a) (b) 

30 

^ 20 

x10' 

I 
v. 

iinm | i i limn | i i MIII« 

'- I i . ■' ^ 

— log-normal 
— log-normal 
— log-normal 
• E = 0.0 
■ E-2.0 
• E = 3.0 
' E = 3.5 

E = 3.6 
' E-3J 
• E = 3.B 

iinm | i i limn | i i MIII« 

'- I i . ■' ^ 
0.0001 0.01 

l°9( P, ) 

3, 
g . 0 . 6 ­

5T 
0.4 ­

"Ó 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

Pi 

(d) 

(c) 

E­0.0 
E = 2.0 
E = 3.0 
£ = 3.5 
E = 3.6 
E = 3.7 
E = 3.8 

~~~~«r^ 
­30 ­25 ­20 ­15 ­10 

(e) 

­5 0 

FIGURE 4.10 .: LDOS distributions. Frames (a), (b) and (c) are density plots of the probability distribution of 
the LDOS, P(E, Pi{E)), for the Anderson model, (d) Histograms of pi(E) in the DEM at M = Ofor selected 
energies, using an energy window of0.lt. The solid lines are log­normal fits. The inset presents the same data in a 
log­log plot scale. Notice how a maximum is absent after a certain energy, (e) Histograms of\og(pi(E)) showing 
how rapidly the distribution broadens after certain energies. All data were obtained with systems with N — 1003 

orbitais. 

confirmed by the excellent fits superimposed on the numerical data. Progressing towards the band edge 
the distribution consistently deviates from log­normality (the quality of the fit worsens visibly) and, past 
some threshold, its modal point ceases to rest at finite pi, being actually zero. This is best appreciated in 
the log­log plot included as inset to this frame. There one clearly witnesses something changing between 
E = 3.6 and E = 3.7 that causes the maximum to disappear. In Fig. 4.10e we gain a deeper insight 
into what is really happening. The plots are now histograms of log (/¾(E)), and is evident that, at the 
same threshold, the probability distributions begin to broaden quite abruptly, with their weight rapidly 
spreading across many orders of (negative) magnitude! This means that fluctuations are again playing a 
role near the Anderson transition. As it turns out, the fluctuations in log(pi) are actually diverging at the 
Anderson transition. This is demonstrated by the curves in Fig. 4.11, where the relative fluctuations in 
log(pi) (i.e. criog(Pi)/ (log(Pi))) are plotted for the DEM and, to better appreciate the reproducibility of 
the phenomenon, for the Anderson model as well. As already happened with the fluctuations in the IPR, 
the LDOS also displays diverging fluctuations at some energy close to the band edges. A new conjecture 
is therefore introduced stating that 

The LDOS has statistical fluctuations diverging at the mobility edge. 

http://of0.lt


84 4. THE DEM AND MAGNETIC HEXABORIDES 

(a) (b) 

FIGURE 4.11.: LDOS fluctuations (a) Relative fluctuations oflog(pi) in the DEM at different magnetizations. 
Zero values signify that (log(pi)) = 0. (b) Relative fluctuations of\og{pi)for the Anderson model at different 
disorder strengths, W. Both data have been sampled from 40 x 40 realizations of disorder. 

Faithful to this, the mobility edge can be easily extracted from the plots on the figure, and in particular, 
we obtain in the paramagnetic regime, 

Er = 3.70 ± 0.05 . (4.52) 

This value is in complete accord with the one obtained previously in (4.50) through the statistics of the 
IPR. 

We remark, however, that while the divergence is clearly pronounced in the DEM at all magnetizations 
(Fig. 4.11a), it is not so in the case of the Anderson model (Fig. 4.11b). It is indeed visible that above 
W ~ 8i, the peak in the relative fluctuations is considerably softened for the case of diagonal disorder. 
But we should bear in mind that at this point, the disorder strength is already of the same magnitude as 
the bandwidth in the clean system. This means strong diagonal disorder, in which case our conjecture 
seems weaker. It is not clear at this time the reason for the softening of the divergence under strong 
disorder, but presumably it will have to do with poor statistics, and the possibility that for certain static 
configuration of disorder, the band starts to loose its connected support (gaps), posing problems to the 
accurate determination of the LDOS in those cases. 

Such obviously diverging fluctuations certainly hint at the putative existence of an underlying order 
parameter. Given that the fluctuations are in the log(pi), it has to be (log(pi)}. A momentarily reflection 
will show us that 

1 
M 

(log(pi)) = T 7 ^ l 0 g ( ( p i ) p ) = log 
p = l 

M 

P=I 

1/M 

= log(^) , (4.53) 

where Q1 is the geometrical average of the LDOS. Thus, unlike the arithmetic average that simply 
yields the DOS in the thermodynamic limit and is featureless at the localization transition, the geometric 
average is quite interesting. We designate this geometric average by Typical Density of States (TDOS), 
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FIGURE 4.12 .: Typical DOS in the (E, M) plane, (a) Joint plot ofT and the relative fluctuations for selected 
magnetizations in the DEM. (b) Density plot of the parameter T in the DEM. (c) Density plot of the parameter T 
in the Anderson model. The black boundary marks the position of the Lifshitz band edges. 

and its ratio to the average DOS defines the order parameter T(E, M): 

T(E, M) = Ql(E,M) 
p(E,M) (4.54) 

When this is plotted as a function of energy and magnetization, the results of Fig. 4.12 obtain. In the 
first panel we have the density plot of T(E, M), and is quite noticeable that T drops precipitously at 
the point where the fluctuations diverge (vis. panel 4.12a). Either this or Fig. 4.11 provide us with the 
trajectory of the mobility edge in the (E, M) plane. As for the results of T pertaining to the Anderson 
model (Fig. 4.12c), it is clear that the transition is not as sharp at higher disorder strengths, which is 
consistent with the weakening in the divergence of the relative fluctuations already mentioned and seen 
in Fig. 4.11b. 

Treating the geometric average of the LDOS 
as an order parameter is actually quite reasonable 
from the physical point of view. The definition 
(4.51) can be understood as stating that the LDOS 
gives an account of the overall projection of the 
eigenstates onto the specific site J\ at which /¾ is 
being calculated. In the localized regime, when 
the eigenstates correspond to energy levels with 
E < Ec, the wavefunctions are expected to be exponentially localized, with a real space distribution 
somehow similar to the illustration in Fig. 4.13. Evidently, on our sampling we are randomly selecting 
the sites r̂  for each energy, E, and so, it is not surprising that at some point we will pick a site where there 

FIGURE 4.13 

Ec. 
Schematic wavefunctions when E < 
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is no amplitude contribution from any of the eigenstates, provided that E < Ec and that the sampling is 
statistically good enough. Hence pi = 0 at such energy and at such site. Of course, the vast majority of 
the lattice sites will not have this property because we know that, on (arithmetic) average, we should be 
picking the global DOS, which is smooth across Ec and vanishes only at the band edge. The remarkable 
fact is that, if we are in the localized region, then there ought to be some sites for which /¾ is zero in 
practice30. 

The typical DOS (4.53), being the geometric mean of our sample is most appropriate to pinpoint 
this threshold. Actually a single one would suffice to establish that we are beyond Ec onto the localized 
phase: given that it involves the product of all pi, the presence of a single occurrence for which pi(E) = 0 
immediately kills the final result. That's why T, as defined above, is a seemingly good order parameter 
for the localization transition. 

That T might be a good candidate for order parameter in the Anderson transition has also been pro­
posed quite recently by Schubert et al. [2003], using a related approach to the numerical calculation of 
the LDOS. However, these authors limit themselves to the study of the TDOS for the Anderson Hamilto-
nian, with a special emphasis on the Anderson transition at E = 0. They completely ignore the question 
of fluctuations, which are indeed the driving and implicit mechanism underlying this novel order param­
eter31. 

Our current results provide an extension to non-diagonally disordered electrons, and quite convinc­
ingly support the inference by Mirlin and Fyodorov [1993] in the context of supersymmetry that a proper 
order parameter for the Anderson transition is related to the local DOS. 

This and the previous section prove that fluctuations play a vital role at the localization-delocalization 
transition. In particular, the physical meaning of the fluctuating parameters underlines the relevance of 
the local point of view in the problem of disordered electronic systems, just as Anderson and Economu 
envisaged in the early years. 

4.3.2.3. Trajectory of the Mobility Edge 

We culminate the discussion around the Anderson localization problem in the DEM, by presenting a map 
of the mobility edge both as a function of energy and magnetization. This result has been obtained for 
the first time in the context of this PhD program when trying to unveil the physics of EuB6. The result is 
shown in Fig. 4.14a, whose purpose is mainly to compare the results calculated with different methods, 
and to show how reliably the study of LDOS fluctuations permits the determination of Ec. The results 
from the transfer matrix method [MacKinnon and Kramer, 1981; Pichard and Sarma, 1981] have been 
obtained by E. V. Castro and first published in VlTOR M. PEREIRAet al. [2004a]. The results from the 
fluctuations in the LDOS have been obtained by inspecting the energies at which their distributions loose 
the finite modal point (cfr. inset of Fig. 4.10d), and the error bars are just the size of the energy window 
considered. Again we stress that, in principle, the energy window can be reduced, at the expense of more 

30The states are exponentially localized, so we always expect some finite but arbitrarily small LDOS, as can be seen in the 
plots of Fig. 4.10e. 

3'Furthermore, a practical consequence of the direct observation of the diverging fluctuations is that it allows the introduction 
of appropriate error bars in the position of the mobility edge. 
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in the (W, E) plane (b). For comparison, estimated band edges and Lifshitz band edges are also plotted. 

statistics being required32 . 
For comparison we add the corresponding result for the Anderson model in Fig. 4.14b. In this case, 

results from the transfer matrix were extracted from Bulka et al. [1985]. Overall the agreement between 
Ec from the LDOS and Ec from transfer matrix is not as perfect as in the case of the DEM, particularly 
at higher values of W, a circumstance stemming from the issues mentioned before with regards to the 
strong disorder regime. 

The most relevant detail regarding Ec in the DEM for the physics of EuB6 is related with the close 
proximity between the Ec and the band edge. This is obvious in Fig. 4.14a, where both the actual and 
Lifshitz band edges have been added33. The consequences are explored next. 

4.3.3. Spectral and Transport Properties 

4.3.3.1. Single Particle Spectral Function 

A conventional way to begin to address the nature of the electronic transport in a system is to investigate, 
for instance, the momentum state lifetimes around EF. The lifetime, T(E) is an important quantity 
insofar as all theories of transport, from classical Drude, to semiclassical Boltzmann and up, resort to 
such concept for quantifying the electrical response of the material. For now we will be interested 
in the one-electron response to the disordered potential caused by the random spin orientations. The 
standard treatment begins with the unperturbed lattice ("free" electrons), for which k is a proper quantum 
number, and summarizes the effects of the disorder (and interactions, if present) in the electron self-
energy, Ejfe(w). The Green Function (GF) formalism is of great avail here. In particular, the Matsubara 
GF 

Gk(iun) = 
ÍUn - £ f c - £fc(ÏWn) 

(4.55) 

"Meaning longer times of execution and, preferably, greater system sizes. 
33The term "actual band edge" designates the energy behind which the global DOS is effectively zero. It is the physically 

relevant band edge in the thermodynamic limit 
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can be used to calculate the retarded GFs via the usual analytical continuation 

G%{u>) = Qk{u + i8) = 1 where Ef(w) = Efc(w + iJ ) . (4.56) 
u> — e% — E£ (V) + 10 

An important derived quantity is the one-electron spectral function, relevant for its direct connection with 
spectroscopic experiments, and defined as the imaginary part of (4.56): 

A(k,w) = --^[G§(co)]. (4.57) 
IT 

A moment's notice will bring about that, for the unperturbed lattice where S/; = 0, A(k, w) is simply 
S(ui — ek), whereas for a perturbed system one has in general: 

A f t » ) - - » ^ ¾ ) — i E # . (4.58) 
*(u-e»-R[EjJM]) +3[E«H]2 *(«-nt(w)) +rt(u,)2 

For w-independent T and Í7, one has simply a lorentzian centered at some renormalized eigenenergies. 
This lorentzian corresponds to the broadening of the Dirac-deltas caused by the nonzero imaginary part 
of the self-energy. Therefore, Tfc = 3(2¾) is associated with damping, and physically translates into the 
inverse lifetime of a A; state in the perturbed system. 

It is important to notice that A(k,u>) is just another instance of a projected DOS. To appreciate that, 
consider the GF of a single electron in the spectral (Lehmann) representation34 : 

G?M-£|(A o u> — E\ + iS ' 
(4.59) 

and take its imaginary part: 

A(k,u;) = --^(G§(u)) = y]\(k\\}\2S(u-Ex). (4.60) 

This means that A(k,u) can be obtained via recursion method, using a Bloch state \k) as the starting 
vector. Hence, it is possible to numerically calculate the spectral function without any approximation. 
Such numerical results are presented in Fig. 4.15 for selected magnetizations in the DEM. These plots 
have been obtained by calculating A(k, u) for selected k within the cubic BZ. Following convention, the 
k vectors were chosen along the symmetry directions of the BZ, as labeled in each panel. It is quite visible 
the remarkable broadening occurring at M = 0, particularly in the middle of the band. The linewidth 
diminishes consistently with increasing M as expected and, for a given magnetization, the sharpest lines 
always appear at the band edges. Another aspect, observable particularly well in the panels at the lower 
row, is that A(k, co) fits well to a lorentzian distribution near the band center (high energies), but starts to 
deviate from this shape the closer the peak is to the band edges. This hints at stronger ^-dependencies 
of the inverse lifetime Tk(u) and renormalized energy iîjt(w) near the band edges. 

Notice that we are considering a single electron, and hence, the absence of the second term in (4.59), that would correspond 
to states below the Fermi energy. 
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(a) (b) (c) 

Energy Energy Energy 
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FIGURE 4.15 .. Single particle spectral function in the DEM along the symmetry directions of the cubic BZ. The 
top row are density plots ofA(k, w) along F -* R -> X -> M -+ T at M = 0 (a), M = 40 (b) and M = 80 (c). 
The second row, shows a detail of individual A(k,w) along T —► R, for the same M as above. The density color 
scale is the same used in Fig. 4.12b. 

These two facts seem consistent with a perturbative calculation ofTfc(tj) that yields a damping factor 
proportional to the DOS. In fact, it can be shown (Appendix 4.F for details) that, in the case of the 
Anderson model (4.45), first order perturbation theory prescribes 

W2 

Tk(uj) = 2vp0(ek)—. (4.61) 

We can actually see this working in practice for this case of Anderson disorder. With that goal, we 
took the Anderson model and calculated the spectral functions A(k, u>), just as in the case of the DEM. 
The curves A(k, w) were fitted to lorentzian distributions after which their centers and widths have been 
obtained. According to the result above, plotting the width against the center should yield a curve that 
reproduces the (unperturbed) DOS multiplied by a constant. Results gathered for disorder strengths 
W — 1,5,10 are presented in Fig. 4.16a. These three panels show the inverse lifetime as a function of 
energy throughout the band, with very interesting results. In particular, it is remarkable that 

1. At low disorder (W = 1, first panel in Fig. 4.16a), the lifetimes that follow from the lorentzian fits 
to A(k, LO) are very well reproduced by the perturbative result (4.61). 

2. At moderate disorder (W = 5, second panel in Fig. 4.16a) the perturbative result (dashed/blue) 
curve no longer follows the actual lifetimes extracted from the spectral function. However, if 
the unperturbed DOS, p(°\ is replaced by the true, disorder averaged, DOS in (4.61), then the 
perturbative calculation still works, albeit not as perfectly as before. 

In virtue of this, we conclude that the perturbative result is seemingly reliable considerably beyond the 
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DOS (solid/red lines) or the unperturbed DOS (dashed/blue lines), (b) The lower row presents the inverse lifetimes 
Y{E) obtained from lorentzian fits to A{k,w) in the DEM, for several magnetizations, as indicated. 

perturbative regime35, provided that the unperturbed DOS is replaced by the actual DOS corresponding 

to such particular disorder strength. This in turn is a signature that the major corrections to (4.61) come 

essentially from the renormalization of the DOS when disorder is progressively turned on36 . 

Returning from our brief digression into the Anderson model, can we expect these findings to hold 

in the case of disorder caused by the DE? First of all, the only analogue of a perturbative parameter 

in the DEM is the average magnetization, M. Thus the DEM nature of disorder in this model is non­

perturbative in the sense that, say in the PM regime, one cannot turn on an arbitrarily small potential. In 

second place, we can always re­write the Hamiltonian (4.19) as 

HDE = ­t 53 d\dj + h.c + t J^(l ­ ai^dtdj , 
(ij) {ij) 

(4.62) 

and treat the second terms as the perturbing part. But, unlike the Anderson model, the perturbing potential 

now happens to be non­local. An essential point in deriving the inverse lifetime given above (eq. (4.61) 

"Notice that at W = 5, the disorder distribution has a width of half the bandwidth of the clean lattice, and therefore, the 
amplitude of the perturbing potential is quite high already. 

36A comment is perhaps in order here. In effect, the fact that (4.61) has p°(sk) instead of the full p(ek) follows from the fact 
that the calculation is based upon simple perturbation theory. In diagrammatic terms this is akin to a self energy containing 
G°(w). It is possible to show that, using a more detailed diagrammatic expansion of the self energy that includes self­
consistency, the same result (4.61) is obtained with p°(ejc) replaced by p(sk). 
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and Appendix 4.F) was the local and uncorrelated nature of the perturbing potential that allows a simple 
calculation of averages of the type ejëj. The same procedure applied to the Hamiltonian in the form 
(4.62) will bring about disorder averages of terms such as 

{1 - aij)(l - amn)*. (4.63) 

But, now, these terms are not completely uncorrelated, for the hopping from i —> j is correlated with 
the hopping j —* k. Furthermore, the 0¾ are complex entities and interference effects are expected 
to be significant in the averaging above. All this, added to the non-locality that introduces an extra 
momentum summation, renders the perturbative approach unwieldy for the case of DE. But, although, 
such analytical result might be important for comparison purposes as it was in Anderson's case above, it 
is actually immaterial, as far as the numerical calculations are concerned. Indeed, the recursive method 
is impervious to such intricacies of the problem, and results are readily obtained for the spectral function 
in that case. They are shown in Fig. 4.16b, where only the T(u) extracted from lorentzian fits to ^4(̂ :, w) 
are shown. Two important observations are due: one is that the highest values of T obtained for M are of 
the same order of magnitude than the ones at W ~ 5 in the Anderson model. The second observation is 
to the shape of curve T(E) at M = 80: it does not resemble the unperturbed DOS at all, and, inclusively, 
displays a marked dip as E approaches the band center. This provides strong evidence for the peculiarities 
of the electronic disorder in the DEM discussed just above, and certainly deserves further investigation 
in the future. As far as we know, this numerical approach to the calculation of momentum lifetimes has 
not been reported before in the literature. 

4.3.3.2. Mobility Gap, Extended and Localized Carriers 

Given that the DEM displays a clearly defined mobility edge (Fig. 4.14a) it remains to understand how 
this can affect the physical response of DE based materials. Of course, the quantities most sensitive to 
the existence of this mobility edge, will be the ones related to electrical transport. Electrical transport 
is governed to a great extent by the nature of the states near the Fermi level, EF, and by the number of 
carriers involved in the current carrying process. Therefore, it is more or less evident that the relative 
position of Ep with regards to Ec plays a role of paramount importance. To analyze that, a few definitions 
are introduced. The density of localized states, ni0C(M), and of conducting (extended) states, ncond(M), 
are defined as 

rEc{M) rEF(M) 
nioc(M)= p(E,M)dE, ncond{M) = p(E,M)dE. (4.64) 

J-oo JEC(M) 

The total density of electrons per unit cell is, of course, 

rEF(M) 
ne= p(E, M)dE, (4.65) 

J—oo 

and a completely filled band has ne = 1. In the above, p(E, M) is the numerical DOS, averaged over 
disorder configurations at a given magnetization M (as discussed in § 4.3.1). We also introduce the 
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magnetization dependent mobility gap: 

A(M) = EC(M) - EF(M), (4.66) 

that quantifies the relative position of the two energies. Unless otherwise mentioned, we work in the 
canonical ensemble where the total electronic density ne is constant. Consequently, in virtue of the M 
dependence of the bandwidth and the overall shape of the DOS (Fig. 4.5), the Fermi level is necessarily 
M-dependent, and this dependence was explicitly shown in the above formulae. 

The density of localized carriers is an intrinsic property of the model, just as Ec is. Their values are 
shown in Fig. 4.17 in two different circumstances. The first one (circles) is just n;oc obtained from the 
strict application of (4.64) using the numerically calculated p(M) and EC(M). The magnetic disorder 
intrinsic to the DEM localizes 0.32 % of the electronic states in the PM phase37. As expected, the onset 
of ferromagnetism suppresses the disorder, causing a considerable reduction of n/oc, which eventually 
reaches zero in the fully polarized regime (M = 1). Now the figure n;oc = 0.003 might seem rather 
tiny ,insofar as it means that only a system having carrier densities of 0.003 electrons per unit cell, or 
less, can be a complete Anderson insulator38. However, this is the point at which the discussions in § 4.1 
need to be recalled. Our target physical system is the FM metal EUBÔ, which, as discussed before, has 
typical carrier densities in the PM phase of the order of precisely 0.003! [Paschen et al., 2000]. So, if 
EuB6 is a DE system as we claim, this circumstance where localized and extended carrier densities are 
of the same order of magnitude, should imply a critical sensitivity of these hexaborides to Anderson 
localization effects! 

Experimental evidence strongly points to the carriers in EUBQ originating from the presence of B-
related defects in the crystalline lattice (recall the experimental details mentioned in 3.1). Such defects 

37 Only the states localized at the bottom of the band are accounted for by this number. When the states localized at the opposite 
extreme of the band are considered, the figure doubles, obviously. 

38The same applies for holes, of course. But, again, only the bottom of the band is considered in this discussion. 
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certainly introduce an additional source of disorder into the electronic system. At first sight this kind 
of substitutional disorder should be considerably small because, assuming that defects are actually B 
octahedra, whose absence promotes 2 bonding electrons to the conduction band, then their concentration 
would be of the order of half the carrier density, and thus very small. Under such assumption, and given 
that the source of carriers is not definitely established experimentally yet39, we condense the effects of 
this disorder into a small, magnetization independent, renormalization of the mobility edge. In particular 
we take 

EC{M) -+ EC(M) + 0.1*., (4.67) 

which is a correction of ~ 3 % to the value of EC(M = 0). This modification will naturally affect the 
Ec dependent quantities, n;oc being one example in particular. The nioc(M) obtained after (4.67) are 
shown in the same Fig. 4.17, in the data conveyed by the red (squares) line. As expected, the procedure 
in (4.67) leads to an overall enhancement of the localized carriers, and the existence of some residual 
localized states (~ 5 x 10 - 4) even when the magnetic subsystem is fully polarized. This is totally 
acceptable physically inasmuch as not only the presumed B-related disorder, but also intrinsic lattice 
inhomogeneities tend to localize a few of the last states in the band.40 

Localized states do not contribute to transport, and the interesting physics lies in the amount of ex­
tended states, and its dependence upon the magnetization of the sample. Hall effect measurements in 
EuB6 reveal the presence of ~ 0.003 negative carriers per unit cell in the PM phase. If we add up the 
knowledge that the behavior of the electrical resistivity is undoubtedly metallic, then this implies that the 
density of conducting (extended) carriers is 

nCOnd(0) = 0.003 (4.68) 

in EUBÔ, and, consequently, this is the value to be used in our model calculations. Knowing this and 
nioc(M), we can determine EF(M = 0), which in turn determines every other density at any finite 
magnetization41. Hence, the knowledge of the experimental carrier density completely constrains the 
other quantities within our model. In particular we have for the PM phase: 

ne = 0.0096, EF(0) = -3.489Í, A(0) = -0.071*. (4.69) 

The complete dependence of the conducting carriers on M is plotted in Fig. 4.18, where is visible the 
marked enhancement of the carriers available for electrical transport with the onset of the FM long range 
order. Overall there is a threefold amplitude in the variation of ncond between M = 0 and M = 1. But 
the most outstanding fact in this plot is that this enhancement of the carriers reproduces very well the 
experimental quantitative result, as can be confirmed by comparing this curve with the experimental one 
shown in Paschen et al. [2000, Fig. 10]. Again, we underline that the only tuning parameter is ncond(0), 
chosen to agree with the experimental one. After that, the variation with M shown in Fig. 4.18 is totally 
determined by the behavior of EC(M), which is a characteristic of the DEM. Thus 

39...and therefore no specific model of disorder to mimic the B-defects stands up as preferable. 
40This is just a consequence of the fact that any arbitrarily small disorder always induces a mobility edge lying at a finite 

distance from the bottom of the band. 
41Because EF{M = 0) determines the total carrier density (4.65), which is constant, irrespective of the value of M. 
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(a) (b) 

FIGURE 4.18 .: (a) Variation ofncond with M using nconci(0) = 0.003 as discussed. The inset displays the 
corresponding evolution of the Fermi energy, (b) M-dependence of the (negative) mobility gap, — A(M), for 
different values ofnext(0). 

the DEM mechanism and its associated Anderson localization effects reproduce with very 
good quantitative and qualitative accord, the puzzling enhancement of the carrier density 
measured in the Hall response of EUBQ. 

Within this DE-based perspective, such experimental behavior is no longer as puzzling as it first ap­
peared: the appearance of FM progressively reduces the magnetic disorder, producing a concomitant 
sliding of the mobility edge towards the bottom of the band. During this process localized carriers are 
progressively released into the extended side, with more and more being detected in the Hall measure­
ments as a result. Notice that it is not a trivial matter that the extended carrier density should increase in 
general, because such outcome depends upon the relative motion of both EC(M) and Ep{M), together 
with the changes in the DOS at different magnetizations. This mechanism in the DEM not only gives the 
correct qualitative behavior found in EuB6, but also exhibits an important numerical agreement. Further­
more, it might have been noticed that the hopping parameter t does not enter here at all: the reproduction 
of the experimental variation of nconci{M) within our DE picture, being in essence, a spectral property 
(counting of states), doesn't depend on the specific energy scale dictated by the hopping42. A more di­
rect comparison with experiment can be obtained by plotting the density of conducting carriers against 
temperature. In order to map magnetizations into temperatures we use the zero-field curve M(T) from 
[Henggeler et al., 1998], and plot the resulting curve of ncond(T) in Fig. 4.19a. In the same graph the 
experimental results from [Paschen et al., 2000] are superimposed for comparison. One can appreciate 
again how the amplitude of variation is well reproduced. The overall shape of the two curves seems to 
differ but it should be remarked that the experimental data, coming from the Hall effect, are taken at 
a constant external field (1 T in this case), and also that the M(T) curve from [Henggeler et al., 1998] 
has been obtained with a different sample. In view of this, the agreement is still quite remarkable, in a 
confirmation of the extreme sensitivity of EuB6 to Anderson localization effects. 

42 As remarked before, since Te ~ 15 K, the temperature is effectively zero from the point of view of the electronic system. 
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FIGURE 4.19 .: (a) Comparison between the temperature dependence ofncond obtained within the DE picture, 
and the experimental results by Paschen et al. [2000, Fig, 10]. (b) Temperature dependence of the resistivity cal­

culated within the scaling prescription, and comparison with the experimental data extracted from Paschen et al. 
[2000, Fig. 6a] (also reproduced in our Fig. 3.5b). 

4.3.3.3. Electrical Resistivity 

In the context of the scaling theory of localization it is known that, in order for a single parameter scaling 
to hold, the zero­temperature conductivity, a^(E), should be critical in the vicinity of the Anderson 
transition [Lee and Ramakrishnan, 1985], just like the localization length: 

a0(E) oc (E ­ Ec)
s 

£{E) oc(E­ Ecy (4.70) 

If we take this result together with Mott's prescription for the behavior of the finite temperature conduc­

tivity [Mott and Davis, 1987] 

a(T) f 
JE, 

ME) 
exp 

E EF^ f{E?dE, with f(E) = e{E_E
l
F)/T i , (4.71) 

then we have a way to estimate the contribution of the localization effects to the conductivity. Although 
the scaling exponents u, and s are still unknown for the localization transition in the DEM, we can 
employ the values (s = v = 1.5) known for the Anderson model [Kramer and MacKinnon, 1993] 
without great loss and calculate a(T) in the vicinity of the transition within this model. The resulting 
curve is plotted in Fig. 4.19a, where, instead of cr(T) we show the experimentally accessible resistivity. 
Once again, to map temperatures into magnetizations the experimental data for M(T) cited above has 
been used. 

Let us analyze this curve in some detail. It is clear that the onset of ferromagnetism has a dramatic 
impact on the resistivity, which drops precipitously immediately below Tc­ This steep suppression as 
the temperature is lowered is caused entirely by the variation occurring at the mobility gap. The role 
of temperature in (4.71) is mainly indirect, through M(T) only. This is clearly seen by observing the 
region T > Tc of the plot, where the variation of pdc(T), due solely to temperature activation effects, 
is manifestly small. The decisive mechanism is still the magnetization induced drift of the mobility 
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edge. For comparison purposes, the experimental curve of Pdc{T) from Paschen et al. [2000, Fig. 6a], 
corresponding to the same sample used in the Hall measurements, has been superimposed on our graph. 
Clearly, a strict comparison of the two curves is beyond reasonableness, for the experimental curve 
encompasses all kinds of contributions, including phonons, spin scattering (presumably responsible for 
the cusp at Tc [Fisher and Langer, 1968]), etc. The main point in contrasting the model result with the 
experimental curve is to show that the amplitude of variation pdc(Tc )/pdc{T <C Tc ) is well reproduced 
by the theory. This lends a strong support to the interpretation above of the underlying mechanism being 
caused by Anderson localization, through the release of localized carriers into the conducting region of 
the band. 

Naturally this analysis based on eqs. (4.70) and (4.71) only addresses the localization-induced effects. 
We see that they are the most relevant near/below Tc , but in order to explain the overall profile of 
the resistivity from zero to room temperatures, the other intervening contributions need to be properly 
investigated. Given that our interest was upon the regions with T < Tc » and on the localization effects, 
we did not pursue the calculation of those contributions. 

4.3.3.4. Optical Response: The Plasma Edge 

As was discussed more or less extensively in § 3.6, the electrical resistivity is not the only property ex­
hibiting unexpected features in EuB6. Its optical response, registered mainly in reflectivity and magneto-
optical Kerr effect experiments, also reveals surprising characteristics. The magnetization-induced blue-
shift of the plasma edge is arguably the most remarkable [Degiorgi et al., 1997]. Recalling briefly the 
essence of this phenomenon, it is observed that the signal for the frequency dependent reflectivity in 
EuB6 denounces a good metal with a completely defined plasma edge at u — up. As soon as the sys­
tems enters into the FM phase, the value of u>p is considerably enhanced (blue-shift), increasing more 
than twice between Tc and T ~ 0. A plot of OJP obtained at different temperatures and magnetic fields, 
shows a remarkable scaling of the plasma edge with the magnetization [Broderick et al., 2002b]. This 
means that u>p (T, H) — up (M(T, H)) and, consequently, the variation of LOP can be ascribed entirely 
to the changes in the magnetization of the system. 

Now that we know what happens to the carrier density when M varies, it might not seem that sur­
prising, for in the context of this DE interpretation, the enhancement of ncond has to be directly related 
with the changes in the plasma frequency. This statement follows from the consideration of the Drude 
classical definition of the plasma frequency: 

Since the classical theory hinges upon the dynamics of mobile carriers, then n above shall correspond to 
the density of extended states, ncond. Given that ncond increases below Tc , the concurrent increase in 
Lop is not unexpected. But even the classical result (4.72) adds a slight complication: the optical effective 
mass, m*, is not expected to be constant, and there is experimental evidence for considerable variations 
of m* [Broderick et al., 2002b]. So additional care must be undertaken in the analysis of uip within this 
model. 
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Although disordered, and hence non-trivial for analytical approaches sensitive to the details of An­
derson localization, our model is still modeled by a tight-binding Hamiltonian. For those cases, LOV is 
related to the average kinetic energy of the system43 via a sum rule. Given that this is a general result we 
will expound it hereupon. The emphasis is on the sum rule, but we sketch the main steps involved in the 
overall argument. 

Interaction Hamiltonian Since we are interested in the linear response of the solid to external elec­
tromagnetic fields, the interaction (perturbing) Hamiltonian retains only the terms linear in the vector 
potential operator A(r, t): 

H' = -\ J j(f,t) • Í(f,í), (4.73) 

with the electric potential, 4>{r, t) being zero in the chosen Coulomb gauge, and the current operator 
j{r,t) denned as 

j(r,t) = —J2ei\Pi5^-ri) + ô(r- fi)pi\ . (4.74) 
i 

Notice, however, that this current is not the one the experimentalist is interested in when magnetic fields 
are included. This happens because the measured current relates to the average carrier velocity, and, as 
well known, momentum and velocity are not the same in the presence of B(f, t): 

mv = p Air, t). (4.75) 
c 

Consequently, the truly measured current is in fact 

2 

J = ( 1 ) - - A(f,t)p(r), (4.76) 

where p is the particle density. When an electric field (external+induced) E(f, t) = E0(f, t)e^'i'~iu^ is 
applied, this current should be, in linear response: 

J(r,t) = a(q,uj)Ê(r,t) o Ja = ^ aa0(q, u)E0{f, t). (4.77) 
0 

The above defines the microscopic optical conductivity. In the Coulomb gauge, È = -c~ldtÃ, which 
means that E(f, t) = iu/cÃ(f, t). Plugging back in eq. (4.76) we get 

2 

Ar, t) = (j(f, t)) + i—E(r, t)p(r), (4.78) 
\ I mui 

and hence the calculation of (J) is all that is needed to get the optical conductivity from (4.77). 

Which should not come as a surprise since there is only one energy scale: the hopping (. 
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Kubo Formula for the Optical conductivity The microscopic details of (j) involve the calcula­

tion of, formally and exactly, 

(j(f,t)) = <^o \emja(f,t)e-m\ V>o> , (4.79) 

plus a spacial averaging over the entire system that eliminates atomic fluctuations and connects the 
result with the macroscopic electromagnetism to which the experimental probes are sensitive. The Kubo 
formula corresponds to the perturbative calculation of the above up to O(H'), yielding [Mahan] 

<M0> = ­ E ^ ^ ^ ­ î f f r ^'^([Jai^MM]), . (4­80) 
U 0 J-oo N ' V>o 

which is then spatially averaged, and substituted back in (4.78), providing the frequency and momentum 
dependent conductivity44 

1 f°° ■ I \ ine2 

<r*p(q,u) = - / dte^H [jÍ(^,t)J0(q,t')] ) + 8a,p . (4.81) 
r°° i , i ̂  „2 

/o 

It is useful to introduce the retarded correlation function 

Xc0(M = i [ dt9(t)eiut( [jÍ(q,t),jp(q,0)] ) , (4.82) 
J-oo x I WO 

in terms of which the conductivity reads 

Vapiq,") = -r-\xa/3(q,^) T5oc,(3 \ ■ (4.83) 
î w l m* J 

Sum Rules The above is still a formal and general result, which we are interested to particularize for 
a tight­binding Hamiltonian. In the following we assume homogeneous (or sufficiently long wavelength) 
fields and drop the q dependence. In addition, we will focus upon an isotropic medium where the non­

diagonal Xa0 vanish and xn — X22 = X33 (which is always the case for a cubic crystal). 

In terms of the real and imaginary components, a = a' + ia", our goal is to get an expression for the 
complete integral JQ°° a'(ui)du. The correlation function x c a n be spectrally decomposed as 

X*a(u) = J2\(0\ja\n)\2 ( 1 1 x . ) , (4.84) 
t-f \io + e„ ­ e0 + IT] u;-€n + €Q + ir]J 

and from (4.83) it follows that 

,|2 

<*(") = 'AM , O ) =7r^l^MJ i ( M + eo _ tn). (4.85) 
Lu tn to 

In order to see how this form is useful consider the polarization operator, P, and its representation in 

4Here, the electron spacial density, p(r), is replaced by its homogeneous (q == 0) component, or average density, n. 
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terms of Wannier orbitais 

p = J tf(r)R^(f)dr = J2 Md ■ (4­86) 

To obtain the current operator required for the calculation of Eq. (4.85) we simply notice that 

j = qdtP = iq[H, P] = ­iq J ] tijC\Cj(fj ­ f<). (4.87) 

Hence, we can take (0 \ja\ n) = iq(eo — en) (0 \Pa\ n) and substitute in (4.85) as follows: 

' ( \ n V " i(°\Ja\n)(n\Ja\°} , (° liai n)(n \J<*\ °)\ xn. .\ , , c \ 
* ~ \ en ­ eo n̂ ­ eo / 

= y ^ ( ( 0 liai n) (n |PQ | 0) ­ (0 \Pa\ n) (n \ja\ 0)) 6(\u>\ + e0 ­ en). (4.88) 
n 

After integration: 
f°° IT 
I *'aP(u)du>=­iq(\ja,Pa]). (4.89) 

So, it remains to calculate the current­polarization commutator, which is trivial for a tight­binding Hamil­

tonian: 
\ja,Pp] = ­ w £ t « ( i ? ­ xf)(af ­ xf) c ;C j , (4.90) 

Of) 
and therefore 

If we define <r(w) as the average of the three components 

*M = fl>a«M> (4­92> 
a 

and take (x? — zf) = a as the cubic lattice parameter, we finally obtain 

9 C°° 1 
­ / o­'(o;)dw = ­ ­ g V («) (4.93) 
n Jo 3 

This sum rule states that the frequency integrated a' is simply the kinetic energy of the system, irrespec­

tive of the details of the microscopic hoppings iy. 

Relation to the Optical Sum Rule There is an important sum rule for crystals that reads [Wooten, 
1972] 

r°° IT 
/ ioe"(Lo)du = ­ojp

2, (4.94) 
Jo 2 

and, since e"(u>) is associated with dissipation, it physically means that the total rate of energy absorption 
by the solid is determined by its plasma edge, UJP . For a good metal as EUBÔ, it generally happens that 
the optical response of the solid is quite well described within the Drude­Lorentz classical absorption 
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FIGURE 4.20 .; Plasma frequency, u>p, as function of the magnetization, (a) Comparison between the three 
scenarios discussed in the text for the calculation ofu>p. (b) Comparison of the model prediction for u>p (M) 
with the experimental dependence. For the experimental points, up{T) data from Broderick et al. [2002b] have 
been combined with M(T) data from Henggeler et al. [1998]. All theoretical curves have been obtained with 
t = 0.55 eV and ncond(0) = 0.003, as in the previous figure 4.19. 

theory. In practice, this means that the measured optical reflectivity (or, for that matter, other accessible 
optical property), and its frequency dependence can be fitted to a(u) and e(w) predicted by such classical 
model with great accuracy. In that case, when Drude­Lorentz holds, we have 

, \ ­, 4­7TÍ , 
e(u>) = 1 H cr{u)) 

whence 
2 f°° i 
— / a'(u>)duj = — ujp

2 , 
7T JQ 

1 
47r" 

and the desired relation between u>p and the kinetic energy ensues: 

o 4.7T 
LOn q2a2 (H) 

(4.95) 

(4.96) 

(4.97) 

Comparison with the Experiment The last result provides us with means to address the optical 
response predicted by our theoretical model and compare the result with the measured values. For that, it 
is necessary to recollect how the experimental values of up are calculated. In the experiments of concern 
to us, the procedure is to measure the frequency dependent reflectivity, 1Z(UJ), [Broderick et al., 2002b; 
Degiorgi et al., 1997] or the optical Kerr rotation, 9K(u), [Broderick et al., 2002a, 2003]. From 1Z(OJ) all 
the optical functions (conductivity, refractive index, dielectric constant, etc.) are then straightforwardly 
extracted via Kramers­Kronig transformations and classical identities [Wooten, 1972]. Classical disper­

sion theory is subsequently used to fit the data, and fits of excellent quality are obtained [Degiorgi et al., 
1997], which in turn implies that the optical response is well described within the Drude­Lorentz frame­

work. There are two main techniques used by experimentalists to obtain UJP . One of them is to extract 
the optical conductivity cr(uj), integrate over all the frequencies and use the optical sum­rule (4.96) to 
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get the value of up
 5. The other method hinges upon the fact that u>p is itself a fitting parameter of the 

classical Drude­Lorentz model [Fox, 2004], and can be extracted in that way from the fit results. 
Anyhow, the signals being well described within Drude­Lorent, and Drude­Lorentz pertaining to the 

dynamical description of free carriers, strongly hints at the extended carriers being the main players 
in these optical processes. The argument is that, since the densities of localized and extended carriers 
is of the same order of magnitude, and since at M — 0 there are presumably more localized than 
extended states (roughly in the proportion 2:1, Fig. 4.19), the localized states should provide only a 
small contribution to the optical response. This is important because, in order to obtain the model results 
for Up using eq. (4.97), we need to calculate (TLDEM) using the numerical DOS: 

fEF(M) 
(HDEM)M= I P(E,M)EdE. (4.98) 

The question mark underlines the point we have been trying to introduce: that it is not trivial where the 
lower limit of integration should be. We have essentially three distinct possibilities: 

(i) only extended states contribute and ? = EC(M); 

(ii) a fraction of the localized states also contributes and — oo <? < EC(M): 

(iii) all the band states contribute and ? = ­oo. 

The outcome of each of these scenarios is shown in Fig. 4.20a for the magnetization dependence of the 
plasma frequency. The results have been calculated by setting ncond{M = 0) = 0.003 as before, and 
taking for the hopping t = 0.55 eV. The first curve (o) has been calculated in the first scenario, where only 
states between EC(M) and EF(M) accounted. In the second case (□) 70% of the localized states closest 
to Ec are taken into account. This means that the integration is done in the domain [E*(M),EF(M)], 

where E* (M) satisfies 

(1 ­ 0.7) nl0C(M) = / p(E, M)dE. (4.99) 
J — oo 

It has to be remarked, however, that this case, and the choice of the figure 70% in particular, is rather ar­

bitrary. The physical idea is that one might envisage some of the localized states with largest localization 
lengths contributing to the optical processes, and hence needing to be accounted for in the calculation 
of the kinetic energy. Even if this were the case, the condition above would be a considerable simplifi­

cation because it takes a rigid fraction of carriers at all magnetizations, whereas we would expect this 
fraction to be a function of M as well, determined by some definite criterion. This curve is shown here 
mainly for illustration purposes since it interpolates between scenario (i) and (iii). As to the latter, rep­

resented by the triangles in the figure, it is the situation more difficult to reconcile conceptualy with the 
great success of the Drude­Lorentz fits to the experiments, as discussed above. In this scenario, LOP(M)2 

basically follows the variation of the bandwidth with magnetization, as can be see by comparison with 
the M­dependence of the bandwidth (cfr. blue curve in Fig. 4.14a, or 4.23), while the situation in the 
other two cases is quite different. An important point in common between all three scenarios is the linear 

Actually, due to the finite frequency range scanned experimentally, in practice the frequency integration is done up to some 
high energy cut­off. 
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dependence uip{M)2 ~ A + BM at high magnetizations, in accord with the experimental scaling of the 
plasma edge with M [Broderick et al., 2002b]. 

In Fig. 4.20b we set the results obtained under (i) face to face with the experimental data for UJP at 
different magnetizations. The quantitative agreement is quite striking, especially at higher magnetiza­
tions. Once again, this agreement demonstrates how important the consideration of localized states is 
to the physics of this hexaboride, in the sense that the theoretical curve plotted there corresponds to the 
calculation of 

4 y r rEF(M) 
Lul = -—q2a2 p{E,M)EdE, (4.100) 

6 JEC(M) 

where the contribution from the localized states is explicitly taken out. This theoretical result adds to 
the ones shown previously in Fig. 4.19, in support of our DE-based interpretation of the interesting 
physics in EUBÔ- AS the results document, this theoretical picture does seem to capture the essence 
of the most intriguing experimental features of these compounds. This has been published in the letter 
[VlTOR M. PERElRAet al., 2004a]. 

Before closing this section, a point is worth mentioning. To obtain the variation of ncond(M) and 
resistivity (Fig. 4.19) we had to adjust a single parameter: the carrier density. In reality, this is not quite a 
free parameter in the sense that ncond{0) was tied to the experimentally measured values. Notwithstand­
ing, the curve calculated for ncond{M) accords to the extent visible in the figure with the measured one. 
The hopping doesn't enter at this stage, because the calculation involves just counting states. But, of 
course, the hopping is essential to determine UJP . Having fixed nCO7Mf(0), we determined the hopping, t, 
that best reproduces the experimental plasma frequency, having obtained t = 0.55 eV. This value is com­
pletely within the range indicated in (4.2), which is based on several experiments and electronic structure 
calculations. This shows consistency of the model predictions among the two independent experiments. 

4.4. The DE interpretation of Eui_xCaxB6 

In the previous pages, a series of theoretical results were derived for the DEM in the regime of low 
carrier densities. By substituting the hopping and density parameters adequate in the context of EuB6, 
a good agreement between theory and experiment followed. It is appropriate at this point to summarize 
the overall understanding that this DE-based picture provides regarding the microscopic details of these 
hexaborides, and how several distinctive experimental signatures can be consistently understood within 
this framework. 

The series R I ^ A ^ B Ô , where A is an alkaline-earth metal such as Ca or Sr, and R a rare-earth magnetic 
ion, constitutes a family of cubic compounds where a divalent lanthanoid occupies the central position 
on a cube, surrounded by eight B6 octahedra at each vertex. Boron atoms make up a rigid cage, held 
together by covalent bonds between neighboring B atoms. EuB6 is a ferromagnetic metal, ordering at 
Tc « 15 K, and characterized by a quite small effective carrier density, of order of 10 - 3 per unit cell, at 
high temperatures. Magnetism is found to arise from the half-filled 4 / shell of Eu, whose localized 
electrons account for the measured magnetic moment of 7/^B per formula unit. The FM transition 
temperature is reported to decrease with increasing Ca content and the totally substituted compound 
CaB6 exhibits no magnetism. 
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In the previous sections we have proposed a simple model that describes quantitatively the following 
properties revealed by the experiments done in EuB^: 

(i) A precipitous drop in the dc resistivity just below Tc, with a change by a factor as high as 50 
between Tc and the lowest temperatures; 

(ii) The large negative magnetoresistance observed near Tc; 

(iii) An increase in the number of carriers, by a factor of 2 ­ 3, upon entering the ordered phase, as 
evidenced by Hall effect; 

(iv) A large blue shift of the plasma edge, seen also for T < Tc, both in reflectivity, R(u>), and polar 
Kerr rotation; 

(v) A scaling of the plasma frequency with the magnetization. 

The enumerated features constitute a definite case of strong coupling of the magnetization to the trans­

port properties. As will be clear below, the effects of chemical doping with non­magnetic Ca are also 
considered, and the theory explains qualitatively the following experimental findings: 

1. With doping, x, the metallic regime, found in EuB6 (x = 0), evolves to a semiconducting behavior 
above Tc; 

2. Just below Tc the carrier density increases by at least two orders of magnitude; 

3. The plasma edge is visibly smeared while the corresponding resonance in the polar Kerr rotation 
is greatly attenuated; 

4. p(T, H) and top display an exponential dependence in the magnetization; 

5. There remains a significant and rapid decrease of p(T) just below Tc, albeit by a smaller factor 
than in the undoped case. 

To understand how this comes about in the doped case consider the following. Band structure cal­

culations seem to agree that the conduction band has a strong 5d Eu component. Ca doping not only 
dilutes the magnetic system but also the conducting lattice. In order to model this effect, the hoping 
parameter Uj should then be replaced by UjpiPj, where pi — l if the site i is occupied by a Eu atom and 
Pi — 0, otherwise. The microscopic problem thus becomes a DE problem in a percolating lattice which, 
at T = 0 K, reduces to a quantum percolation problem [Shapir et al., 1982]. 

Since Ca and Eu are isovalent in hexaborides one does not expect the number of carriers to depend 
on x. Nevertheless, since carriers are presumed to arise from defects it is difficult to be specific on 
this issue. The mobility edge, on the other hand, is very sensitive to the Eu —► Ca substitution, and 
should drift toward the band center reflecting the increased disorder. Therefore, the effects should be 
much more pronounced in Ec than in Ep­ In the paramagnetic regime (T > Tc), and as more Ca is 
introduced, Ec should move past the Fermi energy at some critical doping x^i, after which the mobility 
gap (4.66) becomes positive (Fig. 4.21). Naturally, this determines a crossover from the metallic regime 
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FIGURE 4.21 ..■ Schematic phase diagram for Eu\­xCaxB§ in the T — x plane in standard notation: PM stands 
for paramagnetic metal, PI for paramagnetic insulator, FM means ferromagnetic metal and FI ferromagnetic 
insulator. 

to an insulating behavior for T > TQ, exactly as seen in the doped compounds [Paschen et al., 2000; 
Wigger et al., 2002a]. At finite T the mobile carriers arise from thermal activation across the mobility 
gap. The resistivity should display a semiconducting behavior with T and its dependence on M should 
be dominated by an exponential factor p(M) ~ exp(A(M)/T) [Mott and Davis, 1971]. In fact, using 
A(M) ss Ao(l — aM), as happens in the non­diluted case for either of the A(M) ^ 0 situations, we 
find that p(M) ~ exp(—(M) (£ is a constant), as seen in the experiments [Wigger et al., 2002a]. 

As T is lowered below TQ and M increases on the percolating cluster, one expects the crossover 
from metallic to semiconducting behavior to occur at larger values of x; this is illustrated in Fig. 4.21 
by the curved/dashed line separating the FM and FI regions. In the vicinity of this line, a sharp metal­

semiconducting distinction is not possible on account of thermal effects, resulting possibly in a bad­

metal behavior. At T = 0, there is a metal­insulator transition occurring at a concentration XMI > XMI> 

which corresponds to the quantum percolation transition for a small number of carriers46. Even though 
we expect XMI to be close to xMI, the possibility of a semiconducting behavior crossing over to metallic 
at low T (for some xMI < x < XMI) cannot be excluded47. 

Ferromagnetism induced by the DE mechanism is expected to persist past XMI as long as the local­

ization length is greater than the lattice spacing. Naturally, the critical concentration, xc, where Tc —> 0, 
should not be higher than pc « 0.69, the classical site­percolation threshold for the simple cubic lattice 
[Stauffer and Aharony, 1994]. The values of xMI and XMI in Fig. 4.21 vary with carrier density and 
are expected to be sample dependent, since carriers seemingly arise from defects. Actually, annealing 
experiments can be quite important for the study of the phase diagram. 

46This is different from the usual quantum percolation point p<p < pc, which is defined by the localization of all states in the 
band [I. Chang et al., 1994]. 

47 According to this picture, the mobility edge still changes with magnetization, even with doping. Therefore, if we have a 
system with x closely above i [ , , (which, in turn, means that EF(M = 0) ~ EC(M = 0)) then, upon entering the FM 
phase Ec should move towards the band edge just as in pure EuB6, causing Ec to stay behind EF and yielding a metal at 
lower temperatures. 
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FIGURE 4.22 .: Recent developments in the experimental data available for Eui_xCaxB6. (a) Magnetic phase 
diagram obtained from specific heat, resistivity and magnetization measurements in Eui_xCaxB6. The small 
dome in the range 70 < x < 90 corresponds to a region where glassy­like correlations are found [Wigger et al, 
2005]. (b) Dependence of Tc on the Ca doping level, compared with the change of spectral weight of the Drude 
component in cr'(u)). Notice that, irrespective of the external magnetic field, the magneto­optical response drops 
to zero much earlier than the magnetism [Caimi et al., 2006]. 

Another consequence of the DE picture is that within this model Tc scales with (H) [de Germes, 1960; 
Kubo and Ohata, 1972]. Since Up follows the same scaling, we expect that in the series Eui_xCaxB6 the 
squared plasma frequency should scale approximately with Tc­

This interpretation is summarized in the phase diagram presented in Fig. 4.21. At the time of original 
publication [VlTOR M. PERElRAet al., 2004b], this phase diagram was still a prediction since only 
two experimental studies for x — 0.2 and x — 0.4 were known. Next we reproduce some subsequent 
developments that seemingly confirm this phase diagram for the family Eui_xCaxB6. 

4.4.1. Recent Experimental Developments 

The first relevant set of results came from a relatively comprehensive study of the magneto­transport 
thoughout the Ca­doped series by Wigger et al. [2004]. These experiments revealed that the Eu—>Ca 
substitution leads to strong percolation­related effects in the characteristics of both the magnetic order 
and electrical transport. They made possible the construction of the experimental phase diagram shown 
in Fig. 4.22a, which clearly resembles the theoretically proposed one in Fig. 4.21. 

Another set of experiments undertook the analysis of the optical response in the Eui_xCaxB6 se­

ries, and provides a most interesting and revealing study complementary to the magneto­transport results 
[Caimi etal., 2006]. The practical procedure consisted in collecting reflectivity spectra, 7?.(u;), for dif­

ferently doped samples, and analyzing them within Kramers­Kronig and Drude­Lorentz theory, just as 
described in § 4.3.3.4. 

The primary target was the evaluation of the change of Spectral Weight (SW) of the metallic compo­

nent of a'(u>) at T > Tc, between 0 and 7 T. This difference is calculated on the basis of the Drude­
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Lorentz results and is defined as: 

ASWDmde = SWDmde(T, 7 T) - SWDrude{T, 0 T) (4.101) 

The magnetic field of 7 T is high enough to drive the system into magnetic saturation for all values of x, 
such that (r'(u>) at 7 T reflects the maximum metallicity reached by increasing the magnetic field. 

Fig. 4.22b reproduces the variation of the normalized Drude spectral weight (i.e., ASWDmde / SWToUl) 
as a function of x, in comparison with the variation of Tc across the series [Caimi et al., 2006]. The 
ranges on the vertical axes were chosen such that Tc(x — 0) coincides with the renormalized changes 
of the Drude spectral weight. ASWDvade decreases sharply between x = 0 and 0.3, reaching zero at 
approximately 50 % Ca content. 

The x dependence of ASWDmde reveals the reduction of the itinerant charge carriers with increasing 
doping. The field-induced enhancement of ASWDmde as a function of x and its correlation with the 
evolution of TQ is fully consistent with the microscopic mechanisms that are considered in the low-
density DE model applied to a percolating lattice. Fig. 4.22b shows that the spectral weight of the 
Drude contribution to <J'(UJ) is enhanced when the system is driven from a PM metallic state into full 
polarization, up to x ~ 0.4. The progressive reduction of this enhancement with x reflects the drift of Ec 
and the consequently weakened metallic conduction. For higher Ca concentrations, the Drude spectral 
weight is insensitive to the spin polarization, a signal that the mobility edge went past the Fermi energy 
and thus the polarization no longer releases any of the localized states. The decay to zero in the curves 
for AS'WDrude/S'iyTotal is equivalent to the T-dependent crossover line in the theoretical phase diagram 
(dashed line in Fig. 4.21). The tail-like behavior of ASWDmde/SWTotal for x > 0.4 can be understood 
as originating from the nonzero temperature excitations of carriers across the mobility gap. It is also 
significant that the results do not depend on the magnetic field used for the normalization of ASWDmde, 
as evidenced by the two curves, where ASWDmde is normalized by SWTotal at either 0 or 7 T. 

With respect to magnetic order, Fig. 4.22b shows that the Curie temperature decreases with x, as 
expected if site percolation is important. Unlike the Drude spectral weight, long-range magnetic order 
survives until the Ca concentration coincides with the threshold of site percolation. This is in accord with 
the DE scenario in which the effective magnetic coupling is the result of the electron itinerancy among 
sites with localized moments. From the optical point of view, the results in Fig. 4.22b perfectly reflect 
the phase diagram predicted in Fig. 4.21: up to XMI — 0.4 one has a metallic ferromagnet; for higher Ca 
content the system remains a ferromagnetic Anderson insulator until it reaches the percolation threshold. 
Near and above the percolation threshold the number of disconnected Eu-rich magnetic clusters becomes 
significant. Even though the tendency should be towards ferromagnetism, it is not surprising that the 
regime above x ~ 0.7 (beyond percolation, and at very low temperatures) seems to be characterized 
by glassy magnetism [Wigger et al., 2005], on account of the possible presence of superparamagnetic 
clusters and competing dipolar interactions at such extreme dilutions of the magnetic moments. 

The fact that this optical phase diagram strongly resembles the phase diagram coming from our DE 
picture, underlines the significance of localization effects in the description of these compounds. 



Appendices for this chapter 

Appendix 4.A Bilinear Fermionic Commutators 

Consider the À and B operators, bilinear in the fermionic creation and annihilation operators: 

Â = * U * = J2 AiAc3 and B = *tfí* = Yl Bi>ic\ci > with * = 
hj » j 

/ d \ 

\cNJ 
(4.102) 

The commutator [Â, B ] evaluates as follows: 

[Â,B] =^AijBki[c\cj,c\ci\ = J2AvBki(sjk4ci - 6uclcj) = YZc\cÁAikBkj - BikAkj) 
ijkl ijkl ijk 

= &[A,B]V. (4.103) 

This is not surprising at all. Now, suppose that the basis of the Hilbert space for which the c, are defined, 
is actually a tensorial product of two vectorial spaces, say h\ ® s, that suits electrons in some single 
particle Hilbert space h\. Rather than using the extended spinor notation spanning the full Hilbert space, 
as in (4.102), second quantized operators for single particle processes are customarily presented as 

a/3 

If we commute two operators in this representation the result will be48 

ijkl a(3*f5 

= J2Y1 aij bll(ô3kÔ0y4aCltS - 6U6aSclnCj0) 
ijkl a/ByS 

= EE^<-^fe 
ijk a/37 

= Yl *1 (aikhj - bikakj) *j -
ijk 

(4.104) 

(4.105) 

Notice that now the oy are 2 x 2 matrices and off its matrix elements. 
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One notices that the last term is not the commutator of the two 2 x 2 matrices o^ and bij. It is just an 
explicit form of the result that, for matrices in h\ <g> s, we have 

[hi ® sa, h\ ® sb] = hlhl ® s V - hlhí <g> s V . (4.106) 

Appendix 4.B DEM: Projecting out the high energy scales 

Recall the KLM hamiltonian written in the local quantization basis presented in eq. (4.11), that we 
decompose here, for simplicity, as 

WK ÍM = E * Í ( ^ ' + ^ ) * Í = T + J . (4.107) 

One then starts from the formal identity 

H> =e§He-§ =H +IS,H} + ±[[S,[S,H]]+^[S,[[S,IS,H)} 

applied to HKLM- We will have then 

+ . . . , (4.108) 

W = J + T + [S, T] + [S, J] + \ [[S, [S, T]] + \ [[S, [S, J]] + ... . (4.109) 

The objective is to project out the off-diagonal terms in spin space. For that one would usually separate 
the Hamiltonian into diagonal and an off-diagonal parts, and follow a straightforward process to deter­
mine the S that accomplishes that. Here we chose the separation above because it simplifies some sums 
in real space that will arise below. What is needed to project out the off-diagonal spin components to 
lowest order in perturbation theory is an operator S that is S ~ 0(t/J) and such that 

T+[5,J] = P = Ç * î p ^ (4.110) 

is diagonal. Now from Appendix 4.A one knows that 

Pij = %j + J ^(sifc T3 ôkj - r3 ôik Skj) = Tij + J(sij r3 - r3 s;/) (4.111) 
k 

1-¾ "til Wl « J 
A valid choice for Sij is 

^ = ¾ (° bij)- (4-113) 

Defining Q = [S, J] and using the definition of P above, the transformed Hamiltonian is at this stage 

H> =S + ? + [S,?]-\[S,Q} + o(Ç\ . (4.114) 
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We thus still need to evaluate these two commutators. 

[S, P] = Y^ * Î (SikPkj - PikSkj)^j 
ijk 

[ s , p ] . = z ^ L ° . , . ^ : ^ ) . (4-115) 

ijk 

Interestingly, these two terms allow for three site hopping processes as we expect in second order of per­
turbation in t/J. Replacing the last results back in eq. (4.114), one obtains the transformed Hamiltonian 
below: 

H' = Y,^\h'i^J (4-117) 
h j 

in which 

/4- = J8l3 (1 °)+ ut fa °)+yMhi fabh o 

+£^rL ° ,„ H : ^M( i ) . (4.118) 
k 2J \b>kj - a*kb*kj 0 J \J2J 

Unluckily, there remains a non-diagonal term in second order. This isn't a surprise and is the trade­
off for having chosen the separation (4.107) instead of a full diagonal-off diagonal one49 . This poses 
no problem at all inasmuch as a second unitary transformation can now be applied, yielding another 
Hamiltonian diagonal up to 0(t/J2). We separate H' exactly in the same way as in eq. (4.107), upon 
which our newly transformed Hamiltonian finally reads 

At this point, given that transitions between the states {\Ri, +)} and {\Rj, - ) } have been suppressed up 
to second order, the high energy subspace can be projected out in the strong coupling limit and, if only 

This is just a reminiscence of the fact that there is an arbitrariness in the second and higher order terms in perturbation theory, 
depending on the choice at 1st order. And the requirement that (4.110) be diagonal just takes care of the lowest order. This 
is analogous to the arbitrariness in the formal quantum mechanical perturbation expansions that interpolate between the 
Rayleigh-Schrodinger and Brillouin-Wigner schemes. 
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two site terms are considered, the following effective Hamiltonian is generated50 : 

\t I2 

H"ff = E %°«dk ­ E ­jj­i^^Mdi. (4.120) 
ij ik 

The constants have been dropped in the above result and the last term uses the fact that, according to 
(4.13b), 

2 1 ­ni.nk . f@ij\ .. . . . . 
m\ =—2— = s m ( 2 J ■ (4­121) 

A final comment to this result is the fact that an effective magnetic coupling between the local spins 
and results from this effective Hamiltonian. There is an implicit coupling embedded int the first term, 
which is ferromagnetic insofar as the FM state for the local spins minimizes the energy of the electronic 
system in first order. But there is in addition an explicit Antiferromagnetic or Antiferromagnetism (AFM) 
coupling in the second term that couples to the electronic density. 

The Hamiltonian (4.120) with only its first term retained is known as the Double Exchange (DE) 
Hamiltonian [Anderson and Hasegawa, 1955; de Gennes, 1960], and describes effective spinless fermions 
with a hopping integral Ujdij that depends explicitly on the spacial orientation of the local spins at Ri 
and Rj : 

aij = cos ( I ) cos ( | ) + sin ( | ) sin ( | ) e«W­**>. (4.122) 

Appendix 4.C KLM within a Virtual Crystal Approximation 

The starting point is the KLM Hamiltonian in the basis that diagonalizes Si .r at each site (4.11), and the 
results of (4.11), (4.13b) and (4.14b) for the different matrix elements. It is clear that, at any non­zero 
temperature, there will be no translation invariance as a consequence of fluctuations in the local spins, 
and hence, in the magnetic background landscape within which the electrons move. 

In its essence, the VCA aims at, to some extent, restore this broken symmetry by introducing an 
effective medium that somehow summarizes the macroscopic consequences of the local fluctuations. In 
the present case, the variation of the hopping integrals a^ and 6̂ ­ from site to site is substituted by global 
(constant) parameters a and b, as defined along the main text in (4.21). 

aij ­> \oij\ ­> (\aij\) = a = cos Í — J , 6y ­» \hj\ ­> (|OÍJ|) = b = sin Í — J . (4.123) 

A further simplification consists in avoiding the complex phases, resulting in a generalized de Gennes­

like approach to the KLM: 

ij \ / i 

'For definiteness J < 0 is assumed, although the result for J > 0 is trivially related to this one. 
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Introducing the Fourier transformed spinor operators 

1 (4.125) 

is immediate to obtain 

where the matrix elements read 

3 / 0 \ 3 

Ca(k) = —2at\]cos(kfj,) = —2icos I — ) }]cos(fcM) 
M = l ^ 2 ' / . = 1 

3 / © \ 3 

efc(fc) = -2bty^co3(fcM) = -2£sin I — y^cos(fcM) 
/ 1 = 1 ^ 2 ^ / x = l 

As usual, a 517(2) matrix, V, that diagonalizes /¾ is introduced so that 

w™, = E •Ivtvu.vtvt, = E •&*» = E *t (£+
0
(t) s ° ,~ 

is diagonal in the transformed operators. The eigenvalues E±(k) are trivial: 

£±(&) = e a ( f c ) ± ^ J 2 + e6(fc)2, 

and the transformation matrix V is also computed straightforwardly reading 

v = f*Ht+) cos(^+)\ 
^sin(£_) cos(Ç_); 

where the parametrization hides the explicit values 

sin(£A) = aX\ 1 + 
J 

Ex - ea(k) 

cos(ÇA) = 
J 

and a\ = 

Ex - ea(k) 

+ 1 if A = "+", 

- 1 if A = "-" 

(4.126) 

(4.127a) 

(4.127b) 

*fc (4.128) 

(4.129) 

(4.130) 

(4.131) 

It is now a matter of algebra to calculate the expectation value of any operator. Of particular interest is 
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the local spin polarization, introduced in eq (4.20). One has 

e k e k 

= F E( c o s 2(£­) ­ sin2(^­)) (4+<*+ ­ 4­ c*­) > (4­132) 
e fe 

whence, using the above expressions for £,\, we get 

m = —­ > ; (nfc+ ­ nfc_) (4.133) 
Ne Y V J2 + eb(A;)2 V + ' V ' 

Since the two bands (+, ­ ) in (4.129) never overlap, for systems less than half­filled (iVe < N) only the 
lowest bands needs to be accounted for and thus 

1 v ^ J 
m= ­— > —== ==. (4.134) 

N* k<kF VJ2 + ^)2 

For small densities, near the bottom of the band, it is legitimate to introduce the parabolic approximation 
for the dispersion e^k): 

ífU­25(3­f) = ­p(3­f), (4.,35) 
after which the calculation of m can be carried out analytically: 

mnec­ sign(J) J * k\l + 9g2 ­ S ^ * 2 ) " 1 ' 2 ^ 

^ _ _ s i g n G ^ _ f ' f 3 g2fc2 \ 2 sign(J) (]£_ 3 g2k5
F \ 

2^y/T+9pJo V 21 + 9g2) ­fT+wW2 20^l + 9g2J 
sign(J) 

m ~ — ­
vT+95

5 

-,2 

'^w^'
1 

(4.136) 

We see at once that in the limit ne —> 0 there is a residual local spin polarization per electron equal to 
­sign( J) [1 + (6ÍÒ/J)2]"1/2. 

Appendix 4.D Average hoppings within mean field 

The mean angle between any two local spins arises when the KLM is projected onto the DE limit, and 
has been introduced in eqs. (4.13b) and (4.14b). Within mean field we can easily compute 

« ■ . ( & ) ) ­ ( ­ n ^ ) ) (4,37) 
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where the average is over configurations of disorder compatible with a given magnetization, M. These 
averages are defined as 

F {{Si})) M = j ­ J' dSx­ ■ ■ J' dSN F ({Si}) e^^cosm ( 4 1 3 8 ) 

implying uncorrelated moments, and where the magnetization enters implicitly through the mean field, 
h(M) (that absorbs the temperature of the Boltzmann factor): 

M(h) = C(h) = coth(/i) ­ I (4.139) 
h 

Clearly, the probability distribution for a single spin is simply 

VM&>^ = ZjM)eh{M)COS{6l) w i t h Z i W = ysinh(/i) (4.140) 

To start we decompose the co­sine of the mean angle into Legendre polynomials: 

cos (*&) = JH^M = JT^Piix) (x = cos(ey)) (4.141) 

Ai = ̂ ± 2 f1 dxxi^^Piix) = ( ­ l ) m ^ Ir­, v (4­142) 
2 J_x V 2 lK ' v ; (2/­1)(2/ + 3) V ' 

We see at once from the above and the parity of the P\ (x) that the expansion coefficients for sin [ ­£• J 
are simply A\ = (­1)1 Ai, and thus we need to care only about the average (Pi(x))M'. 

) S ( ^ ) ) M = E ^ ( ^ ( ­ ) > M (4­143) 

We now recall that 0^­ is the angle between two unit vectors Hi = (sin(0j) cos(<#), sin(^) sin(</?i), cos(^)) 
and Hj = (sin(0j) cosfaj), sin(0j) sin(<pj),cos(0j)). Hence, the addition theorem for the spherical har­

monics comes to great avail here insomuch as it states that [Arfken, 1970] 

PB(ooB(0y)) = ^ ­ x J2 Y?ViM)Y?ifiiWr » (4­144) 
m= —n 

the spherical harmonics Y^l(6i,(pi) relating to the associated Legendre functions through the standard 
definitions [Arfken, 1970]: 

Y™{9M = ( ­ i r y ^ ^ g ­ ^ ! p r ( c o s W ) e ^ (4.145) 

P™(x) = (1 ­ X^±­Pn(x). (4.146) 

This is good because the averaging in (P; (cos(0^­)) ) M is over uncorrelated spins with uniform distri­

bution in the variable ip. Therefore, the angular integrals over <pi integrate the components with m ^ 0 
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out to zero and hence: 

( 3 ( 0 0 8 ( 6 ^ ) ) ) ^ = 2 ^ ï W ( ^ . V i ) > W ( ^ , ^ ) > = (Pl(™S(9i)))M (4.147) 

This is easier to handle because [Arfken, 1970] 

<P ;(cO S(^)))M = _ _ 1^ Pn(x)e~h* =­­ —­2Tjn(ih), (4.148) 

the jn(x) being the spherical Bessel functions. Finally, rearranging everything, and using the fact that 

«')-(-«"«■ ( s ) " = ^ 
one gets 

c o s , 5 « ) \ = ­ ^ ^ £ I m ? (4,50a) 
2 llu » H A ) 2 t í ( 2 I ­ l ) ( 2 ( + 3)' 

■ " ■ ^ ^ = ­ ^ W £ r M ­ n ? L . ^ ' W . <4­'50b) 
» ( ­ i f c ) 2 ^ J ( 2 ( ­ 1 ) ( 2 ( + 3)' 

In this last result, the magnetization enters still implicitly through h and (4.139). We can pursue a 
series expansion of the above result in terms of M, that might be useful for mean­field, de­Gennes­like 
approaches to the DE problem. The first few terms of such expansion are as follows 

sin(®M.)\ = 2 _ 2 M 2 _ 6 M 4 _ 162 M 6 _ 7758 M 8 + O ( M 1 0 ) _ ^ ^ 
2 j IM 3 5 175 6125 336875 

Closing this discussion, it is interesting to remark that, notwithstanding the rather cumbersome aspect of 
the exact results in eqs. (4.150), an extremely simple algebraic form can be obtained for an approximation 
that interpolates incredibly well those results at all magnetizations: 

cos m)Ah>^ <­(¥)>M«i^­ «"* 
That this is so can be seen in Fig. 4.23 where the above interpolations are compared with the actual 
exact results of (4.150). Of course, a little inspection reveals that the above doesn't reproduce the series 
expansion in eqs. (4.151), starting at 0(M 2 ) 5 1 . In case an interpolation that respects the analyticity of 

51Notice, however, that in the case of cos(0»3/2), the second order coefficient is exactly 25/24 of the exact expansion coeffi­

cient, and thus, still a good approximation for Landau­type expansions of the Free energy. 
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FIGURE 4.23.: Comparison of the two interpolations for the average cosine and sine of the half­angle between 
pairs of spins. The left column pertains to the results for (cos(0jj:/2)), and the one on the right to (sin(0jj/2)). 
The top row compares the exact results with the approximations in eq. (4.152), whereas in the bottom are the 
interpolations of eq. (4.153). 

the exact series is wanted, one can use 

(**$)) MA\ / 1 + ^ M 2 ­ ^ M 2 ( l ­ M2) (4.153a) 

H f ) ) M ^ /l­M2­ ^ M 2 ( l ­ M 2 ) , (4.153b) 

which are also comparatively shown in Fig. 4.23. 

Appendix 4.E IPR Statistics - Additional Results 

In § 4.3.2.1, and Fig. 4.9 in particular, we have shown the relative fluctuations of the IPR for the DEM at 
M = 0. It was advanced that the behavior of this quantity might work as an indicator of the localization 
transition. Here we reinforce this statement with additional results for a­p/ (P). The first data pertain 
to the DEM, but now for an average magnetization of 20%, and are presented in Fig. 4.24. The overal 
behavior is exactly the same found in Fig. 4.9, with the relative fluctuations being significantly enhanced 
at a given energy. Unlike the case with M — 0, the inset does not show such a good crossing as could be 
seen before, and gives an example of how more extensive numerical calculations are needed to ascertain 
with definiteness the existence of scale invariance or not. The same sort of analysis has been undertaken 
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4 
v 0.1 

0.01 

FIGURE 4.24 ..■ Ratio of the standard deviation to the average of the IPRfor the DEM at M = 0.2. The inset is 
a magnification, and statistics have been collected with an energy window ofAE = 0.1. 

for the Anderson model, with the outcome shown in Fig. 4.25. Again, the qualitative behavior of the 
relative fluctuations of the IPR consists of a marked enhancement at the band edges, and the existence of 
a maximum at a given energy. Two cases, W = 3 and W = 5 are presented in panels 4.25a and 4.25b, 
respectively. In the latter we introduced two insets that put in evidence the fact that the existence of a 
well defined crossing point is rather sensitive to the energy window considered. This, again, is evidence 
that more statistics are needed. 

Finally, it is worth underlying that the behavior of the relative fluctuations at E ~ 0 is clearly distinct 
in the DEM and the Anderson model, having to do with the details and nature of disorder in these two 
cases, as discussed in the main text. 

Appendix 4.F Lifetime within perturbation theory for the 
Anderson model 

We start from the Anderson Hamiltonian 

71 AM = t ̂ 2 4C3 + ]C €i C i C •t.. (4.154) 
1] 

and treat the first term as the interaction with a local perturbing potential, calling it V. Assume that 
we have an electron in an eigenstate, \k), of the unperturbed lattice. The probability amplitude for a 
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$ 
V 

O 0.1 

FIGURE 4.25.: Ratio of the standard deviation to the average of the IPRfor the Anderson model at W — 3 (a) 
and W — 5 (b). Statistics collected within energy windows ofAE = 0.1. In (b) there are two insets: the one on 
the left is just the magnification of the main panel; the one on the right shows the same region but using AE = 0.2. 

transition into some other state is, to first order in V, 

■1 = 2n^2\(k'\V\k)\2S(Ek>­Ek) 
k' 

(4.155) 

Now we know that, 

{k'\V\k) = Yjei{k,\clcll 
i 

= — ]T et exp(i(k' ­ k).n) 
i 

\{k'\V\k)\2 = i j ][>£,• exp(i(fc'­ k).{n­ »$)),. 

(4.156) 

(4.157) 
y 

When the average over disorder is performed, we get averages of S<ZJ. Since in the Anderson model the 
E{ are uncorrelated and have a uniform probability distribution 

P(e«) = ­ ^ W 2 ­ M ) , (4.158) 

it follows that 6iEj = ejSij, and hence, 

\(k'W\k)\2 = y . (4.159) 

The average of ef follows trivially from (4.158), and putting everything back together we attain 

k' 

(4.160) 
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where p° is the unperturbed DOS. 



5. Magnetic Polarons and Phase Separation 

5.1. Magnetic Polarons in the DEM 

5.1.1. Magnetic Polarons in Perspective 

The earlier descriptions of the concept of magnetic polaron appear with the considerations by de Gennes 
on the relevance of the Double Exchange (DE) mechanism to the mixed valent manganites [de Gennes, 
1960], and then with Nagaev's studies of antiferromagnetic semiconductors, who coined the term ferron 
also often used in the context1. Some of the first theories based upon the presence of magnetic polarons 
were developed later in the context of the ferromagnetic semiconductor EuO, to explain the spectacular 
metal-insulator transition found at the onset of ferromagnetism for the Eu-rich samples of this compound 
[Oliver et al., 1972; Torrance et al., 1972]. Further developments on this concept permitted the explana­
tion of the spin-flip Raman scattering characteristic of certain Diluted Magnetic Semiconductors (DMS) 
[Dietl and Spalek, 1982, 1983; Heiman et al., 1983; Torrance et al., 1972] and, more recently, their pres­
ence was also claimed to be present in the EuB6 hexaborides, as we saw in § 3.6 [Nyhus et al., 1997; 
Snow et al., 2001]. 

Just as in the analogous case of the electrostatic polaron, one can devise a pictorial description of a 
magnetic polaron in real space as consisting of a charge carrier surrounded by a cloud of polarized local 
spins in an unpolarized magnetic background — a state that arises from the exchange interaction between 
the carrier spin and the lattice spins. A distinction is usually made between the so-called Bound Magnetic 
Polaron (BMP) and the Free Magnetic Polaron (FMP). The BMP is invoked when the charge carrier is 
bound via Coulomb interaction to an impurity center, and is typical in the magnetic semiconductors. In 
this case the trapped carrier polarizes the lattice spins within its effective Bohr radius as a consequence 
of the s-cMike interaction between electron and lattice spins. The FMP, by contrast, results from the fact 
that a free carrier interacting with lattice spins via an s-d coupling, can minimize its kinetic energy by 
polarizing its vicinity. Under certain conditions this carrier can then become self-trapped in the resulting 
potential well created by the effect of the local ferromagnetism. 

The presence of such type of entities is believed to play an important role in the emergence of many 
interesting properties of several important magnetic materials: many peculiarities of the manganites, 
such as the CMR effect and other anomalies in its transport and magnetism, have been attributed in 
part to the development of magnetic polarons near the ferromagnetic transition 2[Amaral etal., 1998; 
Teresa et al., 1997, 2000]; an interpretation for the CMR in the Mn pyrochlores was also proposed on 
the basis of magnetic polarons Majumdar and Littlewood [1998]; besides their relevance for the already 

'See, for instance, Nagaev [2001, 2002] and references therein. 
2 Although in this case the influence of orbital and lattice degrees of freedom are equally important. 
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mentioned Eu-chalcogenides and II-VI semiconductors, in the III-V DMS like Gai-^Mn^As, the ferro­
magnetic transition can be interpreted within a BMP percolating scenario [Kaminski and Sarma, 2002]; 
in EuB6, our target magnetic metal exhibiting CMR, their presence in signaled in the optical response 
[Nyhusetal., 1997; Snow et al., 2001], although the theoretical interpretation of these results is still 
subject to questioning [Calderon et al., 2004]. 

Given that these different classes of magnetic materials have attracted considerable attention in re­
cent years because of their potential for the development of new magnetoelectronic devices, and since 
magnetic polarons have an apparently ubiquitous presence among them, a number of theoretical ap­
proaches to the problem have been developed through the years. In particular, extensive work has been 
done with emphasis in the physics of magnetic semiconductors [Dietl and Spalek, 1982; Heiman et al., 
1983; Kasuyaetal., 1970; Mauger, 1983; Nagaev, 2002] and CMR manganites [Batista et al, 2000; 
Garcia et al., 2002; Meskine et al, 2004; Varma, 1996]. 

In the ensuing paragraphs we will focus our attention on the stability conditions for the free mag­
netic polaron in the DEM. Studies devoted to the polaronic stability in this particular model and its 
variations have been performed by several authors both analytically and numerically, although under dif­
ferent assumptions [Daghofer et al., 2004a,b; Garcia et al., 2002; Koller et al., 2003; Neuber et al., 2004; 
Pathak and Satpathy, 2001; Wang and J.Freeman, 1997; Yi et al., 2000]. 

5.1.2. The Independent Polaron Model 

For the present discussion, we consider the DEM Hamiltonian (4.19) that reads 

KDE = t ^T a,ijd\dj . (5.1) 

m 
where a{j = cos (^/2) cos (0,-/2) + sin (9,/2) sin (0,-/2) e ^ * - ^ . 

Within the simple DEM, where no other polaron-favoring interactions are included3, the only possi­
bility for the stabilization of magnetic polarons is at low electronic densities. This happens because the 
local spins of several neighboring unit cells are expected to participate in the magnetization cloud of 
each electron. Were it otherwise (i.e. at high electronic densities), the electronic wave functions would 
overlap considerably destroying this polaron picture. 

In order to investigate these questions we will first discuss the thermodynamic stability of magnetic 
polarons within the DEM. We can write a free energy for the system including an electronic contribution 
consisting of the ground state energy for the electrons in a given magnetic configuration 4, the local 
spins contributing only with an entropie term. To tackle the first part, one can calculate numerically the 
exact electronic DOS for a given spin configuration as usual. Averaging over disorder, we can write the 
electronic contribution as 

Eel(M, ne)= [e (EF(M, ne) - e) Ep(E, M)dE , (5.2) 

3For instance, many of the existing approaches include an AFM exchange term between the local spins. 
4The relevant temperature ranges satisfy ksT -C t. 
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When ne < 1, and for the purposes of the current calculation, eq. (5.2) can be approximated simply by 

Eel{M,ne)*Eb(M)ne, (5.3) 

with Eb representing the bottom of the band - it becomes just a single electron problem. Indeed, given 
the nature of the calculation and approximations involved here, the consideration of the finite band filling 
introduces only minor corrections and thus we proceed with the above approximation to the electronic 
energy (Appendix 5.A). Now, for a disordered system, the concept of "bottom of the band" has to be 
taken carefully as the DOS will always exhibit Lifshitz exponential tails. In this case, from the calcula­
tions of the averaged DOS, the bottom of the band is found to lie at —At for the PM (M = 0) case5 (cfr. 
Figs. 4.14a and 4.5). We intend to construct the polaronic phase having the paramagnetic, uniform, phase 
as reference. Within a virtual-crystal approximation, the electron at the bottom of the band has an energy 
of — At, and will be extended throughout the system. If a region of ferromagnetism develops locally, its 
reference energy in this region will be lowered to - 6 i , but there is an extra energy that has to be paid 
if the electron is to become confined to this region. For simplicity let us assume that the polaron so 
formed consists of a region inside a cube of side R (in units of the lattice parameter, a), inside which 
M = 1. Obviously, given that in the DEM the magnetic interaction is mediated by electron itinerancy, 
one expects that, once the electron localizes inside this cube, there will be no magnetism outside, at any 
temperature. The variation of free energy per lattice site when going from the PM homogeneous phase 
to this polaronic one will be written as 

AFfoi(R, T) = Atne - 6tne cos ( ^ y J + TneR3 \og(2S + 1 ) - r«SCfgK, R), (5.4) 

and reflects the two competing effects at play: the first is the electron's preference for a ferromagnetic 
background accompanied by an energy cost for the localization; the second is the reduction of entropy 
caused by the appearance of the (fully polarized) magnetic polarons. The last contribution, Scfg> ex­
presses a configurational entropy, related to the spacial distribution of the polarons inside the system. It 
can be approximated by 

5cf*K wlog (rdbO "ne log (nNbO ' (5-5) 
but, since we are working with t i e C l and the polaronic system is below the percolation threshold, it 
happens to be the smallest contribution to AS, allowing us to neglect it without important quantitative 
consequences. 

In writing eq. (5.4) some important assumptions were made regarding the wave function of the elec­
tron. Reasoning in terms of the original band state of the electron, it is clear that when the magnetic 
background polarizes, the electron energy is lowered by 2i. Thus, the potential well is, at most, 2t deep 
and any bound state will always exhibit exponential leaking of the wave function to the outside, whereas 
the energy of the bound state in (5.4) was chosen as the energy of an electron inside an infinite poten-

5Interestingly, this result is actually the one we would obtain following the mean-field procedure carried by de Germes [1960]. 
See also Appendix 4.D. 
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FIGURE 5.2.: Comparison of the disorder­averaged electronic DOS for the homogeneous PM phase (line) with 
the exact spectrum obtained for the same configuration with a polaronic region or size R (histogram). Arrows 
highlight the lowest bound state. The results are for 2­D (a) and 3­D (b) lattices, neglecting the Berry phase in the 
hopping (i.e.: using CHJ —> \a,ij \). Panel (b) shows one of those spin configurations together with the wavefunction 
of the lowest bound state. 

tial well. On the other hand, since one can think of an effective magnetic coupling as proportional to 
\ipe(r)\ , the magnetization profile of the polaron should also display a smooth variation, whereas in 
eq. (5.4) M = 0 outside and M = 1 inside the polaron. These statements amount to say that the exact 
treatment of the problem requires a self­consistent calculation of the bound state starting from the DEM 
or perhaps from the full Hamiltonian [Kasuya et al., 1970; Pathak and Satpathy, 2001]. In this sense, 
eq. (5.4) is to be understood in the spirit of a variational approach, R being the variational parameter. 

(a) There are several reasons to expect it to be a good approx­

ly(r)l' / N S imation: (i) the electron density is very small, meaning that 
■Vn­iV//| t t i t t i VyV / \ \ m e overlap of the wave functions of self­trapped electrons 

M(r) ! 1 (and thus the polarons) should be negligible; (ii) even if one 
could devise a full, self­consistent, solution to the problem, 

< » 
R the exact energy of the bound state is expected to differ from 

the one used in this approximation only by numerical factors 
of 0(1)6; (iii) numerical calculations strongly favor this ap­

f T H / i"*3</\ f \ f \/^­*"7 / \ \ proach. To dwell a while on this last point, we studied the 
effect of a region of full polarization embedded in a PM 
background on the electronic spectrum. Performing exact 

FIGURE 5.1 .: Contrasting the variational diagonalizations of the DEM using spin configurations like 

(b) 

M(r) 

approach considered in eq. (5.4) (a) to the 
more realistic, self­consistent, situation (b). 
Represented are the wavefunction of the self­

localized electron, a possible spin configura­

tion and the magnetization profile. 

the one depicted in Figs. 5.1 and 5.2c, one finds, as a re­

sult, the appearance of well defined bound states below the 
continuum band. This is clearly seen in Figs. 5.2a and 5.2b, 
where the bound states appear with energies and degener­

acy coinciding with the value expected for a finite box in 
c?­dimensions: — Idt J2t=i c o s ( fi+înM ) • At the same time, inspecting particular realizations of disor­

6Specific confirmation for this can be found, for instance, in the 1­D calculations of Pathak and Satpathy [2001], who find that 
the two energies (calculated using the same kind of variational wave function used in the current work and the exact energy 
obtained numerically) differ by less than 3 % in the limit relevant to our discussion. 
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der as the one in Fig. 5.2c, one concludes that the wave function is clearly localized within the polarized 
region, thus supporting our trial function selection for the evaluation of the electronic energy. 

The stability of the magnetic polaron is determined by the condition AT (Req, T) < 0, Req being the 
value that minimizes the free energy (5.4). Important insights can be extracted from the direct analytic 
results obtainable in its continuum version. In this case, it's trivial to see that the equilibrium radius is 

fleq(T) 
2Í7T2 

T log (25 + 1) 

1/5 
(5.6) 

increasing at low temperatures as T - 1 / 5 . Using this result in the stability condition, one finds the stability 
temperature, Tm , below which the polaronic phase appears: 

Tm=„ -,, " ^ . -/ft- (5-7) _8_ 
25TT3 log~(2S + 1) 

These two results convey the essential information for the physical situation as one reduces the temper­
ature of our system. The high-temperature phase is characterized by PM order until T decreases below 
Tm, at which point, the "entropiepressure" is not enough to counteract the energy gain and the pola­
ronic phase is stabilized. The transition is sharp as a consequence of the one-particle nature of the free 
energy (5.4), and the polarons set in with a finite radius Req (Tm). Continuing the decrease in tempera­
ture, the polaron radius increases until the overlapping probability can no longer be ignored, therefrom 
arising an instability towards an homogeneous FM phase. An estimate of the Curie temperature, Tc , 
can thus be extracted from a percolation criterion 

yielding 

nefleq {TCf - Pc , (5-8) 

lc = 108(25 + 1) ( j ^ ' ( 5-9 ) 

where pc is the percolation threshold (O (1)). For Tc < T < Tm, an anomaly in the paramagnetic 
susceptibility is expected to signal the presence of the polarons through an enhanced effective moment. 

A natural question can surface at this point regarding the fact that, since de Gennes [1960], we know 
that, using the virtual crystal and the one-particle approach used above, a transition between uniform PM 
and FM phases should occur. It is therefore of natural interest to investigate how this magnetic transition 
is altered by the stabilization of the polaronic phase. In order to do that we follow the same approach 
as the one carried by de Gennes in evaluating the electronic energy as a function of the magnetization, 
obtaining a description in terms of the free energy AFFM(T, M). Combining this with eq. (5.4) we 
can calculate the regions of relative stability of the three phases, and draw the phase diagram shown 
in Fig. 5.3. In this plot, TQF represents the line that would be obtained ignoring the possibility of 
polaron formation, as de Gennes did; TQ is just the curve from eq. (5.9) corresponding to the percolation 
criterion; Tc and Tm are the actual transition lines calculated by minimizing (5.4) with respect to the 
polaron radius and AFFM(T, M) with respect to M. Even in such simple phase diagram we observe 
important physical consequences of the presence of the polaronic phase, namely: (a) the polaronic phase 
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FIGURE 5.3 .: Phase boundaries obtained within the IPM. The polaronic phase (Pol) appears as a precursor to 
the ferromagnetism (FM) at low densities (dashed region). The dotted-line curve represents Tc obtained in mean 
field. See the text for other notations. The left vertical scale is in units oft, and the one on the right in Kelvin, 
using t = 0.55 eV. 

mediates the transition from an homogeneous PM to an homogeneous FM phase, as expected; (b) the 
transition temperature calculated in the mean-field approach TQF is notably reduced at low densities by 
the onset of the polarons; (c) the Curie temperature obtained with the percolation criterion, TQ, gives 
a very good estimate of Tc (as follows from the superposition of the two curves in almost the entire 
region), supporting the interpretation of the ferromagnetic transition arising from polaron percolation. 

Of course that, as discussed above, in the present framework the PM —> Pol transition in this diagram 
is of first order and, strictly speaking, the same occurs at the Pol —► FM transition, because the phase 
boundaries are calculated from the relative stability of the two phases. At first sight this would mean 
that, during the Pol —► FM transition, the magnetization has a discontinuity at TQ. However, from the 
interpretation of the FM transition in terms of polaron percolation, one expects a continuous transition, in 
the sense that the magnetization of the system should be weighted by the mass of the infinite percolating 
cluster, which evolves continuously from the percolation threshold. Finally, it is interesting to notice 
the order of magnitude of the relevant temperatures and densities for this phase. If, for definiteness, one 
assumes that t ~ 1 eV, eqs. (5.7) and (5.9) reveal that the stability condition is realized for densities of 
O (10 - 3) , and temperatures typically in the dozens of Kelvin. As is shown in Appendix 5.A, a more 
realistic approximation for the electronic energy doesn't appear to modify these ranges significantly, 
which somehow restrict the range of materials where the effect might be realizable. 

5.1.3. The Polaronic Evidence in EuB6 

As mentioned in the chapter dedicated to the experimental features of EuBg, this magnetic metal with 
extremely reduced electron density, exhibits all the characteristic signatures of a polaronic phase in Ra-
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man scattering measurements [Nyhus et al., 1997; Snow et al., 2001]. Such experiments reveal that the 
FM transition at Tc ^ 15 K is preceded by an interval of temperatures where the response of the system 
is dominated by the presence of magnetic polarons. 

Our theoretical proposal suggests that EUBÔ is very likely a DEM material in the low density regime 
[VITOR M. PEREiRAet al., 2004a], characterized by a hopping integral of t — 0.55 eV, and a carrier 
density per unit cell ne ~ 10 - 3 . If we incorporate such hopping (found in § 4.3.3.4 to reproduce the 
variation in uip for EuBô) in the phase diagram for the IPM, the result is the one in Fig. 5.3, where the 
absolute temperatures should be read in the rightmost vertical axis. 

It is interesting to compare this phase diagram for ne a 0.003 with the experimental results in Fig .3.7. 
They reveal a polaronic region being stabilized essentially in the same temperature range as the one in 
Fig. 5.3 for the appropriate densities. This seems to show that our simple description of the polaronic 
phase captures the essential details of the polaron physics in EuB6. In particular, we emphasize that, the 
calculation of the Curie temperature based on the de Gennes approach (the dotted portion of the straight 
line), clearly overestimates the actual Tc by a factor of 3 or more inside the polaron stability range. As a 
matter of fact, placing ourselves at a density ne — 0.003 in the diagram of Fig. 5.3, we find Tc ^ 17 K. 
This lies noticeably close to the experimental Tc , without adjusting parameters. 

5.2. The Problem of Phase Separation 

5.2.1. Canonical Free Energy and Phase Diagram 

The independent polaron model discussed before, is based on various approximations that stem from 
the low electronic density of the systems we aim to describe. In particular, the same assumption for the 
electronic energies used by de Gennes was employed. One of the implications of approximating eq. (5.2) 
by Eei(M, ne) « Eb(M)ne is that the Curie temperature calculated in mean-field for homogeneous PM 
and FM phases is simply proportional to the electronic density. 

But a more serious question regarding the double exchange in the low density limit is the problem of 
Phase Separation (PS). It is know that the DEM is unstable towards phase separation at low carrier den­
sities, even without additional AFM (superexchange) couplings between the lattice spins [Alonso et al., 
2001a,b; Arovas et al., 1999; Kagan et al., 1999; Nagaev, 1998; Yunoki et al., 1998]. In order to study 
this aspect of the model in more detail, we abandon the previous approximation for the electronic en­
ergy and calculate this quantity exactly within the Hybrid Thermodynamic Approach (HTA) discussed 
in § 4.3.1. Unless whenever stated otherwise, throughout this section we will be concerned only with 
the homogeneous phases (PM and FM) of the DEM. In the HTA one tries to trace the electrons out of 
the problem and obtain an effective Hamiltonian for the lattice spins, in such a way that the partition 
function becomes simply (4.37): 

3 = JVSi exp(-PHeff(Si)). 

This effective Hamiltonian contributes to the total free energy through eqs. (4.39), (4.42) and (4.43), and 
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FIGURE 5.4.: Phase diagram of the DEM obtained within the HTA. For comparison, the result for Tc obtained 
by de Gennes is also plotted (dashed line). 

we have, at the end: 

/

EF(ne,M) 
ep(e,M)de­TS(M). (5.10) 

The free energy in eq. (5.10) should be minimized with regards to M to obtain the equilibrium free 
energy Teq (ne). We work at constant electron density and our focus in the cases where T <C í is 
implicitly assumed in the omission of the electronic entropy. The phase diagram that emerges from 
the minimization of (5.10) is drawn in Fig. 5.4 and reproduces the results obtained by Alonso et al. 
[2001b]7. The PM­FM transition happens to be continuous for all densities and the deviations from the 
result obtained with the bottom of the band, de Gennes­like, approximation are quite evident. It turns 
out, however, that this phase diagram is incomplete. 

5.2.2. The Essence of the Problem 

Reflecting the relative stability of the two homogeneous phases, the plot in Fig. 5.4 says nothing regarding 
density fluctuations. To determine whether the system is unstable in relation to density fluctuations, we 
need to look at the behavior of the equilibrium free energy, Teq^e), with the electronic density. 

Thermodynamic stability requires Teq (ne) to be a globally upward convex function, so that the com­

pressibility, K = n~ldn/djj,, is never negative. Whenever this condition is violated and the density 
of the total system is kept constant, it will naturally segregate into two distinct phases in such a way 
that guarantees the restoration of convexity in the resulting free energy. The equilibrium state in this 
phase­separated region can be obtained by the so­called Maxwell construction, which, geometrically, is 
tantamount to substitute the underlying Feqin,,) by the envelope of all inferior tangents [Callen, 1985]. 
A sketch of the situation is presented in Fig. 5.5. 

7Not strictly since in [Alonso et al., 2001b] the authors used the full fermionic free energy (4.43), instead of the zero temper­
ature approximation used here. But the differences are barely visible. 
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FIGURE 5.6 .: Details of the Maxwell construction for the DEM at T = 0.03Í . The result of the construction 
is barely discernible from the underlying Feq(nè) (I) and, for clarity their difference is plotted on panel II. For 
comparison, the chemical potential extracted from the results in I is shown together with calculations in the grand 
canonical ensemble (III). Panel IVshows d2Jr

eq/dnl. 

It so happens that, when the behavior of the isothermals of Feq(ne) for the DEM calculated using 
eq. (5.10) is analyzed, the signature of this instability emerges at low densities by the violation of the 
global convexity. A typical result is shown in detail in Fig. 5.6. Since there is a considerable amount of 
information in this figure let us go through it in detail (everything is calculated at a constant temperature, 
T = 0.03*). 

In the first panel (I) we show the equilibrium free energy Feq{n^) as a function of the electronic 
density ne (continuous/black line). Despite looking like a straight line, it does have a slight upwards 
curvature at the lowest densities, downwards at intermediate densities, and upwards again at higher 
densities. This can be seen in the curve d2J7

eq/dnl plotted in panel (IV). Thus, we have an instability 
and a Maxwell construction has to be done in order to find the true equilibrium free energy of the system. 
The Maxwell construction is the dashed/red line in panel (I). Since the effect is rather subtle, we plot the 
difference between Teq(ne) and the free energy after the Maxwell construction in panel (II). In panel 
(I) we also show the density corresponding to the PM­FM transition at this temperature, signaled by the 
dot­dashed vertical line (cfr. Fig. 5.4). If we call this particular density ne(Tc = 0.03), then it is clear 
that n_ < ne(Tc — 0.03) < n+. Then, although the relative difference between the free energies is 
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FIGURE 5.5 .: Free energy for a system unstable to­
wards density fluctuations. The system is unstable for 
UA < n < ns and segregates between regions of den­
sity UA andriB- The Maxwell construction restoring the 
curvature ofTeqirie) is represented by the dashed lines. 

only ~ 1%, it is qualitatively significant because the system exibiths cohexistence of PM and FM, each 
of the cohexisting thermodynamic phases having its own electron density. 

In panel (III) we present the chemical poten­
tial calculated in three different ways. The first 
one (black/continuous) is simply the curve cor­
responding to dFeq{n)/dn, and the instability is 
also clearly seen here since /i(n) should be mo­
notonously increasing. The dashed (red) curve is 
the chemical potential resulting from the free en­
ergy after the Maxwell construction. Below n_ 
and above n+ the result is the same, but in be­
tween it is simply an horizontal line. Altough not 
shown in the figure, the position of this horizontal 
part is such that the areas A\ and A% are exactly 

equal, as it should happen8. The third curve (circles) shows the chemical potential obtained my mini­
mizing the free energy in the grand canonical ensemble. In this case, since not n but /J, is kept constant, 
the phase separation instability arises naturally through a discontinuity in the /x(n) curve. The disconti­
nuity appears precisely in the region of densities where the Maxwell construction is in effect, and is just 
another way to observe this phenomenon. 

Actually it is quite instructive to pursue in some more detail this complementarity between the canon­
ical and grand canonical treatments for this particular case. Our scenario is completely analogous to the 
well known behavior of the van der Waals isothermals for the liquid-gas transition [Callen, 1985]. This 
is best understood with reference to the plots of n(ne) in Fig. 5.7a at several temperatures. Just as in the 
P — v phase diagram of the gas, the fi(ne) curve is monotonous for temperatures above some critical 
value. Below this point, the compressibility of the system {dneJd\i) becomes negative in some density 
interval implying an instability. The coexistence curve is then defined by n_ and n+ obtained from the 
Maxwell construction and, naturally, coincides with the jump in the density obtained in the grand canon­
ical calculation. Despite the analogy and resemblance of the coexistence curve for the DEM and the van 
der Waals gas, there is an important qualitative detail not present in the latter case: the coexistence curve 
for the DEM is re-entrant. 

The stability analysis was performed for all the temperatures and densities shown in the phase diagram 
of Fig. 5.4. The system is unstable towards phase separation at low densities, and the qualitative behavior 
of the thermodynamic functions is always the one discussed above. As a consequence, one obtains the 
updated phase diagram presented in Fig. 5.7b. 

The information conveyed by this diagram can be translated as follows: for densities above ne ~ 0.04, 
the system is homogeneous and exhibits a magnetic transition at Tc(ne). If the density is lower than 
ne ~ 0.01 the system is homogeneous and PM at high temperatures until n-(T) is reached. At that 
point the homogeneous phase is no longer sustainable and two phases start to coexist: one with density 
n^(T) and PM together with another of density n+(T) and FM. Below a temperature signaled as Tps-i, 

8In fact, we can do the Maxwell construction in both the Feqin) or the /x(n) diagram. In the latter, the Maxwell construction 
corresponds to finding the horizontal line that yields exactly A\ = A2 [Callen, 1985]. 
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FIGURE 5.7.: (a) Isothermals in the (J, — ne plane for selectedtemperatures. The coexistence curves n_ (squares) 
and n+ (circles) were obtained from the Maxwell construction, whereas the /x(ne) curves are calculated in the 
grand canonical ensemble, for comparison, (b) Detail of the low density region of the updated T — ne phase 
diagram. The phase separated region (PS) is bounded by the curves n­(T) andn+(T) obtained from the Maxwell 
construction. 

n­(T) = 0 and thus the PM portion of the system is devoid of electrons9. If 0.01 < ne < 0.04, the re­

entrant nature of the coexistence curve means that the system can become an homogeneous ferromagnet 
below Tc(ne) but still segregate at lower temperatures whenever the condition ne = n+(T) is met. In 
any case, the magnetization of the system is always continuous ­ a simple consequence of the relation 
between the densities and volume fractions of each phase: 

V. 
n e = 7i­

V+ 
(5.11) 

This constraint introduces some peculiarities regarding the nature of the phase separated state. To under­

stand that, in Fig. 5.8 we draw a sketch of the phase separated region in the phase diagram of Fig. 5.7b. 
Using this sketch as reference, assume that our 

system is initially at some high temperature T > 
Ti and has a given density n. Under these circum­

stances, the phase diagram states that the equilib­

rium corresponds to an homogeneous PM phase. 
We can lower the temperature until Ti is reached, 
at which point an instability arises. Exactly at 
T — T\ there will be a segregation between a 
PM phase with density n\. = n and another, FM, 
with density ni+. In order to satisfy the constraint 
(5.11), the volume fraction of the FM phase will 
be Vi+ = 0, at T = T\. A slight decrease in the 
temperature from T\ to T2 will reorganize the system so that the PM phase with density ni. now coexists 

FIGURE 5.8.: Schematic representation of Fig. 5.7b. 

9The fact that n­(T) goes exactly to zero at Tps­i has to do with the zero temperature approximation used in (5.10) for 
the electronic energy. Had we included the Fermi­Dirac distribution in (5.10) the curve of n_ (T) would go to zero in a 
seemingly singular way, the result being barely distinguishable from the one plotted in Fig. 5.7b. 
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with a FM phase of density ni+. For Ti very close to T\, the density of the PM phase is just slightly 
different from the global density: 

ri2-= n — e, (5.12) 

where £ is a small quantity. This determines the volume fractions to be 

V2+ « — — . (5.13) 
ri2+ — n 

Evidently, this means that most of the electrons still remain in the PM phase, and just a few populate the 
FM regions. But this poses a problem. The Coulomb interaction will certainly prevent the accumulation 
of charges in a very small volume and the system must remain neutral. 

5.2.3. Electrostatic Suppression of Phase Separation 

The Maxwell construction is inexpressive with regards to the spatial organization of the phase separated 
state. This follows from the fact that the Maxwell construction for two coexisting phases of densities n+ 
and n_ amounts to saying that, 

fMaXWell(n) = Hn+)^y- + Hn-)^y- = F(n+)x + ^ (n_ ) ( l - x), (5.14) 

where x = V+/V and V-/V represents the volume fraction of the two coexisting phases. This is simply 
a linear interpolation between the two values F(n+) and F(n_) , as illustrated in Fig. 5.5. Therefore, 
the resulting free energy, J-'Maxwell, corresponds to the situation where we have a system made of two 
independent thermodynamic components. In particular, the Maxwell prescription above says nothing 
about the way the system reorganizes when it phase-separates. This can only come from additional 
interaction terms that should be added to the right hand side of eq. (5.14), in order to include surface, 
boundary and other effects. In our case the two phases have different electronic densities, both different 
from the homogeneous density, the latter satisfying 

n = n+x + n_( l — x). (5.15) 

Obviously, with mobile negative charges, the system can indeed adjust itself by accumulating electrons 
in some regions, and depleting them from others. But since the background of positive atomic charges 
stays essentially immutable and homogeneous, this means that the total charge of each phase is not zero. 
Coulomb interactions are therefore crucial. Under this assumption we now investigate two important 
corrections for the free energy in the phase separated regime. 

5.2.3.1. Electrostatic Correction 

Given that we are not assuming any sort of anisotropy, the electrostatic constraint will most certainly 
favor the development of bubbles of the FM, high density phase, dispersed in the PM, low density phase. 
Such scenario is schematically depicted in Fig. 5.9. 
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The charge density is assumed uniform and continuous inside each FM bubble and across the PM 
background. To calculate the electrostatic energy associated with this charge distribution we take notice 
to the fact that, on the grounds of overall charge neutrality, it should be possible to find an appropriate 
neighborhood around each FM bubble such that the total charge on the bubble plus PM neighborhood 
adds to zero. In Fig. 5.9 this is represented by the wavy lines that, in this way, define cells of charge 
neutrality. Following Wigner [Pines, 1963], these cells are replaced by the equivalent Wigner-Seitz (WS) 
spherical cell containing the same volume fractions of FM and PM phases (as shown on the right-hand 
side of the diagram), which means that 

Rl = xR3_ (5.16) 

For each WS cell, the total electrostatic energy 
is calculated considering three terms 

Ec = U++ + U— + C/+- (5.17) 

with the first accounting for the electrostatic self-
energy of the "+" region, the second the self-energy 

FIGURE 5.9.: Depiction of the Wigner-Seitz construe- o f the «.» Kgio^ a n d the l a s t ^ m u t u a l d e c t r o _ 
tion discussed in the text. ^ j ^ ^ b e t w e e n t h e t w 0 A „ o f ±em ^ 

calculated within classical electrostatic theory assuming uniform charge distributions in the two regions. 
Hence 

P + + = | | , (5..8) 

and represents the electrostatic energy of the inner sphere containing the "+" region; 

U— = 3Q2- (tit-R% 3 R- -
Rl-Rl{ 5 + 2 

R\ 
(5.19) 

stands for the energy of the outer shell of the "-" region, and 

U, 
3 ^ _ R2 R\ 

(5.20) 
+ 

is the electrostatic interaction between the inner sphere and outer shell. In the above Q± are the total 
charges (positive background + electrons) inside the two regions, and R± the respective radii, as depicted 
in Fig. 5.9. For reasons regarding numerical stability, in the following we will take always n_ = 0. 
Looking at Fig. 5.7b, this comes as a natural approximation because n+ » n_ for Tpsi < T < Tpsz, 
and becomes exact for T < Tpsi- Hence, using the identities 

Q+ — e(n — n+)V+ = en(x — 1)V 

Q_ = e(n - n_)V_ = en(l - xjV 

v+ = ffll 
v-=f(je Rl) (5.21) 
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the Coulomb term can be cast as 

Ec = ^e^n'R%- —0 ' - , (5.22) 

which yields an energy per unit of volume of 

-eWR% 3-

Ec 2 2 2 D 2 2 - 3 X X / 3 + X 
e c = -77- = - e zn * ix Rr . (5.23) 

V 5 x 

For simplicity we replaced R+ by i? and keep this lighter notation below. The bubble radius, R, is a 
variational parameter. The result (5.23) implies that, for a given volume fraction of the two phases, say 
x, the electrostatically favorable situation is to shrink the FM bubbles to an arbitrarily small size, meaning 
that R —> 010. But this treatment is yet incomplete, inasmuch as the consideration of finite-sized bubbles 
of electrons requires another correction, of different nature, to the ground-state energy. 

5.2.3.2. Phase Space Correction 

The electronic contribution to the free energy (5.10) is calculated in the thermodynamic limit. In the 
phase separated regime, the electron rich bubbles are expected to be of relatively small size. Therefore, 
one cannot rely on the electronic energy calculated in the thermodynamic limit and the need to introduce 
finite size corrections arises. 

The leading correction to the energy of an electron gas confined to a finite sized volume comes through 
the correction to the electronic DOS of the free electron gas which, as discussed in Appendix 5.B, leads 
to a correction to the ground state energy per electron reading 

E(R,n+) _ E(oo,n+) 
We ~ Ne 1 + 

15 ( 7T V / 3 1 
16 \Qn+J R 

(5.24) 

The term in R Ms the correction for each bubble. To obtain the total correction we just multiply by the 
number of WS cells, obtaining the total energy per unit volume 

E(R,n+,x) _ E(oo,n+) 
V = V 

15 /_7T_\ 1/3 xV3 
+ Ï 6 \ 6 ^ / ~R~ 

(5.25) 

As expected, the phase space correction acts to the effect of rising the ground state energy of the electron 
gas. This induces a tendency opposed to the one embodied in the electrostatic term (5.23), and the two 
should balance at some optimum value of R. 

The free energy in the phase separated regime (5.14) needs to be updated for these two corrections 
that go beyond the Maxwell construction. The result is 

^ 2 2 D2 2 — 3 a; + x FMaxwell(n) =T(n+)x + F{n-){1 - x) + - e n vr R 

Eel{n+) 15 / 7 r \ i / 3 x - 4 / 3 

V 16 \6n) R ' 
(5.26) 

10At first sight it might seem that the electrons are disappearing! In reality it just means that, according to the WS picture, 
more and more WS cells appear in the system, as R diminishes, because the total number of electrons and the total volume 
are fixed. 
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Since the FM radius is entering only in the correcting terms, the minimization with respect to R can be 
performed at once, and the final result is 

FMaxwell(n) = f(n+)x + .F (n_) ( l ­ x)+ 

'2 e^ 2^
 1 / 3 

22/3 \ba™e l^^^fMT 
2/3 

2 + x ­ 3X1/3 

X 5/3 

,1 /3 

(5.27) 

This last expression is the free energy per site of the original lattice when phase separation is in effect, a 
is the lattice parameter, ne the electron density per unit cell of the crystal, and t is the hopping integral. 
Naturally, when there is no PS instability, x = 1 by definition and the above reduces to F{ne) as one 
certainly expects. In the PS regime, the equilibrium radius of the electron rich FM bubbles satisfies 

4 „ 3 15 aí / 6v r 5 n e \ 1 / 3 1 , , „„, 
3 ™ ^ = Ï 6 ^ ( — ) 2 + X ­ 3 X ­ / 3 ' (5­28> 

and this relation can be used, for instance, to inspect the typical number of electrons inside each FM 
bubble. 

5.2.4. Consequences to the Phase Diagram 

The natural question is now: what happens when the equilibrium free energy is recalculated with these 
corrections? Namely, we want to know wheather the PS instability persists when the Maxwell construc­

tion is updated according to (5.27). It is useful to have a tuning parameter that interpolates between 
the case in (5.27) and the previous calculation where localization effects were disregarded. With that 
purpose, we introduce the dielectric constant, er, that renormalizes the electron charge as e2 —► e2/er 

in the expressions above. By varying e r between 1 and 1000 the curves in Fig. 5.10 were obtained. In 
this plot, we are focusing on the low density region of the phase diagram where PS occurs. The red 
(circles) curve pertains to the case er —> oo (or, equivalently, zero electronic charge) and is again the 
result shown before in the phase diagram of Fig. 5.7b11. The figure is transparent as to what happens 
when the Coulomb interaction is turned on: the PS region is progressively reduced! Not only that but it 
is clear that an overwhelming shrinking of the PS region takes place when e — 1, which is a reasonable 
value for a good metal. 

Thus, the consideration of the free energy (5.27), corrected for the effects arising as a consequence 
of charge accumulation, leads to the suppression of the PS instability. The electrostatic payoff involved 
in the segregation leads the system to phase­separate only at much lower densities and/or temperatures. 
Just how low these are is controlled by the effective electronic charge. 

"in order to compare directly with the polaronic stability region, the Langevin entropy was replaced by the Brillouin entropy 
in the magnetic contribution to the free energy, for consistency. The behavior is the same irrespective of which case is 
considered, up to global numerical factors. 
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FIGURE 5.10.: Phase diagram calculated within the HTA with a corrected Maxwell construction according to 
eq. (5.26). The arrow marks the polaronic stability region, represented by the dashed area at low density and 
temperature. Notice how the region of phase separation lies inside the polaronic bubble for dielectric constants of 
sr ~ 1. 

5.2.4.1. Phase Separation and Magnetic Polarons 

There is a question of relevance that we have been postponing since the beginning of this section on 
the problem of PS. In § 5.1 (pp. 119) we developed a set of calculations leading to the phase diagram 
of Fig. 5.3 (or Fig. 5.13a) describing the stability conditions for free magnetic polarons in the DEM. 
From the polaronic phase diagram follows that magnetic polarons are only stable at considerably low 
temperatures and densities. In fact much lower than the temperatures and densities at which the PS 
instability sets in. The reader might have noticed since Fig. 5.8 that the density and temperature scales 
for the PS bubble are much higher than the scales for the polaronic bubble. More precisely, the polaronic 
phase lies well inside the PS region when the corrections to the Maxwell construction are ignored. These 
two regions can be seen in perspective in Fig. 5.10, where the polaronic stability region is highlighted by 
the dashed region in the lower left corner, and completely inside the PS region for e —► oo. 

This is clearly a problem to our arguments concerning the polaronic phase. The polaronic stability 
has been determined by studying its relative stability with regards to an homogeneous FM phase. The 
diagram above is saying that, at such low densities, there are no homogeneous phases — the system 
phase separates! So the study of polaronic stability has a problem. 

But this is only if the electrostatic effects are ignored. With their inclusion, the PS region retreats to 
lower and lower densities and, as the figure documents, for er ~ 1, it rests already completely inside the 
polaronic region. So, it seems that the problems above with the polaronic phase have just diminished. 



5.2. The Problem of Phase Separation 135 

1(fk ' ' ' 

Í0" 

"1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T" : 

ie r=f000, T=130K 
. Er = 500, T = 120K 
er = 100, T = 80K 

\zr=10, T=50K 
zr=1, T=20K 

i i i i I i i i i I i i i J I I I I I I l_ 
0.005 0.01 0.015 0.02 0.025 0.03 

FIGURE 5.11 .: The number of carriers inside each FM bubble calculated according to (5.28) for selected 
temperatures and dielectric constants. 

The connection between PS and magnetic polarons is indeed remarkably close. The ferromagnetic 
droplets, associated with a localization energy for the electrons in a restricted volume, are nothing more 
than our description of the magnetic polaron. So, in this sense, the PS regime studied here and the 
magnetic polarons are different perspectives of the same physical concept. One of the differences is that, 
while the magnetic polaron is defined as a FM droplet with a single electron, the PS regime allows for 
droplets with many electrons. 

To explore this further, it is interesting to know the number of electrons inside each FM bubble in 
the PS regime. Some typical results are plotted in Fig. 5.11 for the same er used before. The most 
remarkable fact about these curves is that the one pertaining to er = 1 is of the order of unity. Therefore, 
there is essentially one electron per FM droplet. In addition, the temperatures at which PS occurs for this 
value of er are so low that the FM droplets are very nearly full polarization. But, a fully polarized FM 
droplet with one electron inside is just our definition of magnetic polaron! Thus, the peculiarities of the 
phase segregation in this system are completely consistent with the magnetic polaron picture and, with 
that respect, the similarity between the shape of the two phase diagrams (Figs. 5.7b and 5.13a) seems 
hardly coincidental. 

5.2.5. General Argument Regarding Phase Separation 

Although we have been focusing so far on the specificities of the phase separation instability in the DEM, 
phase separation is quite a general phenomenon in thermodynamics. To conclude our discussion, we put 
forward an argument showing that 

phase separation is ubiquitous in electronic systems whose bandwidth is magnetization de­
pendent. 
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To see how this happens, recall that the free energy (5.10) is given by only two contributions: the elec­

tronic ground state energy plus an entropie term attributed uniquely to the local moments. For reasons 
that will be clear in a moment, this argument unfolds more clearly if we work in the grand canonical 
ensemble, where the electronic chemical potential, /i, is held constant. In this case the free energy (5.10) 
is simply replaced by the grand canonical potential, and is akin to replacing EF —► /i and e —► e — \i 
there. 

Consider now the following facts, regarding the relevant thermodynamic quantities seen as functions 
of the magnetization: 

1. The magnetic entropy (4.42) is monotonous and downward convex, for all the domain of M; 

2. For a given chemical potential, /i, the electronic energy is monotonous and downward convex 
throughout the entire domain of variation of M; 

3. The electronic density is monotonous and upward convex. 

Item 1 follows from the fact that S(M) is a proper thermodynamic entropy for a magnetic system, having 
all the required analytical properties. 

Point 3 is a trivial consequence of the electronic density 
being the integrated DOS. Point 2 can be understood from 
the fact that the electronic bandwidth is monotonous with M 
(cfr Figs 4.5 or 4.14a). There is a subtlety however in that, 
if// happens to be below the band edge at M = 0, then, the 
electronic energy will be identically zero until some critical 
magnetization, say M*, is reached for which the band edge 
coincides with /t. For higher magnetizations, the energy de­

creases and the overall shape is as depicted in Fig. 5.12. 
Since the same plateau is present in the electronic density, 
for exactly the same reasons, the result for the grand canon­

ical potential will be something like the solid curve drawn 
schematically in the bottom frame panel of Fig. 5.12. Evi­

dently, there will be a temperature at which the minimum of 
FIGURE 5.12 .: Schematic variation of this curve exactly touches the horizontal axis (as depicted), 
DOS, entropy and electronic energy with M thus precipitating a first order transition. At the precise tem­

at constant /t. perature, T, at which this happens, the system stays unde­

cided as to which state it should have because the thermodynamic potentials at M = 0 and M = Mps 
are degenerate. Since /i is kept constant, M = 0 and M = Mps correspond to different electronic 
densities. This is but our phase separation instability seen from the grand canonical perspective. 

The important thing here is that nothing in this argument mentions the details of the specific model 
under consideration, and therefore is valid as long as the basic assumptions remain valid. In particular, 
the magnetization is as good as any other suitable thermodynamic parameter, and, thus, the arguments 
extends to any appropriate classical variable coupled to the electronic energy as the magnetization is in 
our specific case. 
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That phase separation has to emerge always follows from the fact that one can always place fi in 
between the band edges at M = 0 and M = 1. So, if temperatures are so low that the fermionic entropy 
can be disregarded, this kind of treatment should always yield a phase separated regime at low densities. 



Appendices for this chapter 

Appendix 5.A Effects of Finite Band Filling on Polaron Stability 

In the main discussion of the polaronic physics in the DEM, the simplification is made of considering 
that the electronic energy is simply accounted by the energy at the bottom of the band, multiplied by the 
electron density (5.3). 

In order to account for the finite electronic density, we rely on a rigid band approximation for the 
DOS. This means that we calculate the electronic energy for a given density of polarons, np, assuming 
the DOS in the conduction band doesn't change significantly12. The free energy per lattice site then 
becomes 

( TV \ rEF(ne-np,M) 
FPoi(R,M,np) = -6tn pcos ——- + / p(e,M)ede 

\K+LJ JEb(M) 
+ (l-npR3)TS(M,S). (5.29) 

In this approximation, the electronic energy is counted essentially by transferring electrons from the 
conduction band to the bound states. The Fermi energy satisfies EF(ne — np, M) > Eb(M), reflecting 
the existence of ne — np electrons in the band. An important difference relative to the case of the empty 
band considered in §. 5.1.2 follows: since we are allowing the existence of ne — np states extended 
throughout the system, the non-polaronic part can still be ferromagnetic below some temperature. So, in 
principle, the magnetic polarons could be embedded in a background with finite spin polarization, and, 
therefore, we have to introduce the magnetization of the background, M, as a third variational parameter, 
together with R and np. The minimization of 5.29 with respect to these parameters, and the comparison 
of the resulting equilibrium free energy with the homogeneous case (5.10), produces the phase diagram 
displayed in Fig. 5.13a. The overall qualitative features obtained previously in Fig. 5.3 remain basically 
the same, the important differences now being: (i) The PM-FM transition curve (dashed line) now 
places Tc for homogeneous phases at higher temperatures than the ones obtained with the de Gennes 
treatment; (ii) The polaron stability temperature, Tm, is seen to increase with density if ne < 0.001, 
just as expected because, the higher the density, the higher the Fermi energy and the more favorable it 
becomes to create a polaron for the same price in entropy; (iii) The reentrance of the polaronic phase is 
now very pronounced, being a consequence of (i). It is nonetheless interesting to observe that the critical 
density for the stabilization of the polaronic phase (ne £* 0.004) and the typical stabilization temperature, 
Tm, are almost exactly the same as the ones encountered in § 5.1.2. 

The nature of the transitions as the temperature is lowered is as follows (see Fig. 5.13b for reference). 

12We are actually allowed to do that since only a few bound states appear beyond the band edge, as can be seen in Fig. 5.2. 
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140 5. MAGNETIC POLARONS AND PHASE SEPARATION 

1 1 ' / 1 ' 

PM / 

1 ' 1 1 1 ' / 1 ' 

PM / 
— Tc (homogeneous) 

• 

0.01 

1 1 ' / 1 ' 

PM / 

Pol 

> > . 

^ . ^ ^ FM 

0> 1 ■ i . ,^~t~*-^TA ,— i . i . 

0.001 0.002 0.003 0.004 
Electron Density - n 

0.005 

63.8 Í . . 
e • 
i t 
I S 
6 I 

0.0 

1—'—I—' I ' 

■ i ■ i i _ k 
"0 20 40 eo si 

1 1 ' 1 1 1 

"V 
0.00) \ ­

na = 0.0014 \ 
t t La °0 20 40 

, 1 I 1 1 1 I 

' 

\ : „ 
ns = 0.0008 \ 

. . . 1 : 0 20 40 eo 9 S 
7 ' I ■ I ' I 

i 
0 

n, = 0.002 I 
_ . I . I . fr 

0 20 40 60 
Temperature (K) 

(a) (b) 

FIGURE 5.13 .: Polaronic stability relative to homogeneous PM/FM phases when a finite band filling is con­
sidered, (a) Phase diagram, (b) Each frame shows the equilibrium values ofnp and M (order parameters) for 
total electronic concentrations ofne = 0.0006, 0.0008, 0.0014, 0.0016. The blue (triangles) curve shows the 
equilibrium np that is obtained when only paramagnetism is allowed (i.e. constraining M — 0). 

Below ne ~ 0.001 the PM­Pol transition is continuous; np(T) varies continuously from 0 to the satura­

tion value np — ne, and no FM is stabilized except at very low temperatures, below the Pol phase. For 
ne > 0.001, FM is stabilized with a continuous PM­FM transition; FM persists only until Tm(ne) is 
reached, at which point the polarons set in; the FM­Pol transition is discontinuous because the magneti­

zation drops to zero and np jumps from 0 to quasi­saturation upon crossing Tm
 13. At lower temperatures, 

when the Tc line (red/circles) is crossed, the magnetization jumps to the value found in an homogeneous 
FM phase, concurrently with a discontinuous drop of np from ne to zero. Notice that the Tc line is 
barely changed by the consideration of a finite band filling. This is related to the fact that, when Tc is 
reached, the polaron density has long since saturated at ne, thus emptying the band from carriers. 

Appendix 5.B Finite Size Corrections to the Electronic DOS 

To estimate the 1/L corrections to the ground state energy of an electron gas consider free electrons 
inside a box of dimensions Lx, Ly and Lz. The electronic spectrum is 

Ek = $­k\ With fc = ^ f e , ^ , ^ ) , (n?. !) 
2m \LX Ly Lz; 

The integrated DOS will clearly be 

Sl(E)= ]T e (K2 ­ k(nx,ny,nz)
2) , 

nx,ny,nz>l 

(5.30) 

(5.31) 

This can be seen clearly in the bottom frames of Fig. 5.13b: above ne > 0.001 the curve Tm jumps discontinuously at 
Tm(ne) to meet rip. 



5.B. Finite Size Corrections to the Electronic DOS 141 

which corresponds, geometrically, to the set of integers (nx,ny, nz) bounded by the ellipsoid 

«2 ^ nl nv nl 
— > — A -A  

^ ­ LI
 + q + L\­

(5.32) 

In the thermodynamic limit, LXIVIZ —> oo and the usual 
procedure consists in replacing the discrete number of states 
satisfying (5.32) by the volume of the ellipsoid in the first 
octant, divided by the elementary phase space volume. It 
is obvious that, by doing this, one is either neglecting or 
overcounting some of the points in phase space that right­

fully satisfy (5.32). This happens mainly at the boundaries, 
and is all right when Lx,y,z —► oo because the errors are of 
the order of l/L or 1/L2 (Fig. 5.14). However, when L is 
finite, such corrections are clearly relevant. A particularly 
important one arises from the fact that, when we calculate 
the volume of the ellipsoid, the points lying at the coordinate axes are automatically included, whereas 
from (5.30) they should not be. So let 

t / L . 

FIGURE 5.14 .: Discrete Phase Space. 

n'(E)= ] P O (/¾2 ­ k(nx,ny,nz)
2) , with n , G Z , (5.33) 

Tlx }Tly jTlz 

which relates to Çl(E) defined in (5.31) by 

n'(E) = 8Sl(E) + 5^ 6 («2 ­ k{nx,ny,0)2) 
Tlx )Tly 

+ J2 6 (K2 ­ k{nx,0, nzf) + J2 0 («2 ­ *(0, ny,nz)
2) 

nx,nz ny,nz 

­J2®{*2­ Hnx,0,0)2) ­ £ 0 (K2 ­ k(0,ny,0)2) 
nx ny 

­J]e(K2­fc(0,0,nz)
2) + l. (5.34) 

The above result reflects the fact that, when calculating the continuum volume enclosed by the ellipsoid, 
one is adding an extra portion of phase space near the coordinate axes that should not be included, as in 
Fig. 5.14. Assuming that K2/TT2 is still reasonably greater than L~l, L~l or L~l, these terms correspond 
to 

Q'(E) ~ Volume of ellipsoid with axes Lx,Ly,Lz; 

2 , © (^2 ­ k(rii, rij,0)2) ~ Area of ellipse of axes Li, Lj ; 

^ 6 (/i2 ­ k(rii, 0,0)2) ~ Length of the axis Li. (5.35) 
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Therefore, we have that 

3 

ní-J LxLyLz = 8Çl(E)+Tr(-\ (LxLy + LyLz +LZLX)-2^(LX + Ly + Lz) + I, (536) 

implying that the corrected phase space volume is actually 

ft(E) = ^LxLyLz - ^(LxLy + LyLz + LZLX) + -£-(Lx + Ly + Lz) - - . (5.37) 

There is still the error associated with the under/over estimates of the volume near the surface of the 
ellipsoid. This gives an additional contribution of the order O ( K ) 1 4 . But since the precise numerical 
factors are impossible to extract analytically, we do not include this correction. Consequently, the ex­
pression above is meaningful only down to 0(K2). Given that the volume and surface area of the volume 
enclosing the electron gas are related to the L's by LxLyLz = V and LxLy + LyLz + LZLX = 5/2, the 
above can be summarized as 

(5.38) "M-S^-iS*' 
from which the corrected DOS follows: 

. dSl(K) k2 k f 7T s \ (5.39) 

For instance, taking the leading correction for electrons inside a cubic box (Li = L), implies a correction 
to the ground state energy per electron reading 

E _ .Eoo 
1 + 

1 5 7T 1 
8 L \67T2n 

1/3' 
with £ o 3 h2 

K2 

Ne 5 2m r°° 
(5.40) 

In the main text, we are interested in the corrections to the energy of an electron gas confined to finite 
sized spherical bubbles. We notice that for a cube of side L, 

cube 
(5.41) 

inscribed sphere 

the surface to volume ratio, equals the same ratio for the inscribed sphere with R = L/2. Hence we take 
the result (5.40) and simply substitute L by 2R, obtaining 

E _ Eoo 
i + 

15 /_7t_\l/3 1_ 
Ï6V6rJ R (5.42) 

which provides an estimate of the leading corrections to the ground state (and T — 0) energy of the 
confined electron gas. 

14This can be inspected numerically by plotting the difference between (5.37) and (5.31) against K. For Lx = Ly = Lz = L 
the difference appears majored by a term linear in K. 



6. Two Dimensional Carbon 

"It is surprising that a low-energy experiment can produce an effect thought to 
occur only with particles going close to the speed of light." 

— Norman Dombey, Quoted by Science NOW Daily News (23 Aug. 2006). 

6.1. A Two Dimensional Solid Made Reality 

Carbon is arguably the most important element in the periodic table: certainly so if the inquirer happens 
to be a earthly living form. Carbon defines the class of organic compounds which are present in virtually 
all cellular structures, and therefore leads ultimately to life. But the ubiquity and relevance of carbon is 
not restricted to the biological domains. Indeed, being the key element behind the great energetic yield of 
hydrocarbons, carbon is at the very foundation of our modern economies and, by extension, our societies. 

For the physicist, carbon is a very interesting element in itself, on account of its chemical versatility: 
carbon can form more compounds than any other element [Chang, 1991]. Its valence orbitais are known 
to hybridize in many different forms like sp1, sp2, sp3, and others. As a consequence, carbon can exist 
in many stable allotropie forms, characterized by the different relative orientions of the carbon atoms, 
with diamond and graphite being the ones more widely known1. Carbon binds through covalence, and 
leads to the strongest chemical bonds found in nature. This translates, for instance, into fusion points as 
high as ~ 4000 K for graphite and diamond2. 

These and other feats led to the quest and ultimate synthesis of new allotropes of carbon 3. One of 
them are the now well known carbon nanotubes, consisting of a rolled two dimensional sheet of sp2 

carbon. Nanorubes can be made of a single sheet or multi-walled, and can even come with caps of 
different shapes which determine some of their electronic properties. One of the remarkable peculiarities 
of the electronic structure of nanorubes is that, depending on the way in which they are rolled (the chiral 
vector) they can be metallic or insulating. This follows directly from the theoretical electronic structure 
associated with different chiral vectors [Hamada et al., 1992; Saito et al., 1992] and STM experiments 
reveal an impressive accord with the theoretical result [Odom et al., 1998] (Fig. 6.1). Since the nanotube 
diameter is of the order of a few lattice spacings, and much smaller than its length, nanorubes have one 
dimensional character because the allowed electronic wavevectors rest on a finite set of lines in the BZ. 

' Strictly speaking, graphite is the stable allotrope, diamond being actually unstable towards it. But, in practice and to reassure 
diamond owners, the rate of spontaneous transmutation is of the order of millions of years. 

Graphite does not even have a liquid state at normal pressures. It undergoes direct sublimation. 
As an aside note, there is, inclusively, a journal entirely dedicated to carbonaceous solids and structures, sponsored by the 

American Carbon Society, and published by Elsevier. It's name is, well, Carbon. 
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(a) (b) (c) 

Bias voltage (mV) B | M v 0 | t a g e ( m V ) Bias voltage (mV) 

(d) (e) (f) 

FIGURE 6.1.: Different rollings ofnanotubes and consequences on transport, (a) Zig-zag (n, 0) nanotube, (b) 
armchair (n, n) nanotube and (c) general chiral (n, m) nanotube. In the bottom row, we present experimental 
measurements of the normalized conductance and I-V curves corresponding to nanotubes with chiral vectors 
(11,2), (14, -3) and (12,3) respectively [Odom et al, 1998]. 

Fullerenes are another synthetic carbon allotrope, consisting of balls of carbon atoms held together by a 
combination of hexagonal and pentagonal structures. From the electronic point of view they have a zero-
dimensional character. Ceo is a representative example, consisting of a truncated icosahedron, exactly as 
in a soccer ball. Other known allotropes of carbon are represented in Fig. 6.2. 

Common to these forms of carbon is the so-called graphene sheet. Graphene is a single sheet of sp2 

carbon organized in an honeycomb lattice (Fig. 6.2b). Graphite, for instance, is made of stackings of 
graphene planes and nanotubes from rolled graphene sheets. Yet, for many years, it was believed that 
graphene itself would be thermodynamically unstable. This presumption has been put to rest by a series 
of remarkable experiments in which truly bidimensional (one atom thick) sheets of graphene have been 
synthesized and characterized [Novoselov et al., 2004]. So far this is the first known stable bidimensional 
crystal that can exist free standing, and with no need for some substrate, as reported4[Novoselov et al., 
2005b]. Since this discovery, graphene has sprung into the spotlight on account of the unconventional 
physics it exhibits. Among other no less interesting aspects, graphene displays a strong electric field 
effect in the sense that the nature of the electronic carriers can be changed continuously and smoothly 
from electron-like to hole-like under the application of appropriate gate voltages, and can support much 
higher density currents that conventional metals [Novoselov et al., 2004]. This arises because graphene 
is a degenerate semimetal, with conduction and valence bands touching exactly at the Fermi level, at 
which point the DOS vanishes. Its low energy electronic structure is described by the 2D Dirac equation, 
having a characteristic linear dispersion near the Fermi energy. This aspect is clearly catpured in STM 

4This means that studies of the 2D electron gas can now be performed on a truly 2D crystal, as opposed to the traditional mea­
surements made at interfaces as in Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) and other structures. 
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(a) (c) 

FIGURE 6.2 .: In panel (a) the different allotropie forms of carbon are represented: a-Diamond, b-Graphite, 
c-Lonsdaleite, d-Buckminsterfullerene (CQQ), e-Cs4o,f-Cjo, g-amorphous carbon, h-single-walled carbon nan-
otube. In panel (b) a folded graphene sheet is drawn and in (c) we show a depiction of how graphene can be 
thought of as an unrolled nanotube. 

and conductance measurements, that show results in complete accord with the theoretical DOS derived 
for graphene. In addition, this new material has seized people's attention because of the appearance of a 
minimum metallic conductivity and the exotic Quantum Hall Effect (QHE), characterized by an anoma­
lous quantization of the Landau levels [Novoselov et al., 2005a; Peres et al., 2005, 2006; Zhang et al., 
2005]. 

6.2. Electrons in a Honeycomb Lattice 

The purpose of this section is to review some properties of the electronic spectrum in graphene. It is 
no exhaustive analysis as the goal is just to introduce the basic properties and details relevant for the 
subsequent discussions. 

Graphene consists of carbon atoms organized into a honeycomb lattice, bonded through covalence 
between two sp2 orbitais of neighboring atoms (Fig. 6.3a). The graphene plane is defined by the plane 
of the sp2 orbitais. The saturation of the resulting a bonding orbitais, leaves an extra electron at the 
remaining 2pz orbital per carbon atom. Ideal graphene has therefore a half-filled electronic ground state. 
The Bravais lattice that underlies the translation symmetries of the honeycomb lattice is the triangular 
lattice, whose primitive vectors a\ and 0,2 are depicted in Fig. 6.3a. One of the consequences is the 
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• A - Lattice o B - Lattice 

(a) Real Space (b) Reciprocal Space (c) Dispersion 

FIGURE 6.3 .: Honeycomb lattice. In (a) a\ and 02 are the primitive vectors that define the WS unit cell 
highlighted as the dashed hexagon. The lattice parameter, a, is 1.4 Â. The first BZ of the associated reciprocal 
lattice is shown in (b), together with the points of high symmetry V, M and the nonequivalent K and K'. Panel (c) 
presents the band structure ofgraphene (t' = 0) with the two bands touching at the K and K' points of the BZ. 

existence of two atoms per unit cell, that define two sublattices (A and B in the figure): indeed, the 
honeycomb lattice can be thought as two interpenetrating triangular lattices. This bipartite nature of 
the crystal lattice, added to the half-filled band, imposes an important particle-hole symmetry as will be 
discussed hereafter. 

The electronic structure of graphene can be captured within a tight-binding approach, in which the 
electrons are allowed to hop between immediate neighbors with hopping integral t ~ 2.7 eV, and also 
between next-nearest neighbors: 

(6.1) 
{hj) 

The presence of the second term is motivated by some STM measurements that display a slight asym­
metry in the I-V curves [Matsui et al , 2005; Niimi et al., 2004; Peres et al., 2005], which is captured 
by the term in t', and violates particle-hole symmetry. To underline the two sublattice structure of the 
honeycomb, we can write the Hamiltonian as 

H = -t Y^ 4hi+6 - * £ blai+s - l' S alai+A - *' S blbi+A ' (6-2) 

ieA,s ieB,6 ieAA ieB,A 

with operators (¾ and h pertaining to sublattices A and B respectively. The vectors Ô connect the unit 
cells of atom % and its immediate neighbors, and, similarly, the A connect the unit cells of atom % and its 
six second neighbors. 
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Fourier transforming eq. (6.2) leads to 

In all the above equations, the index associated with the electronic spin has been omitted for simplicity, 
but is always implicitly included. The functions ei(fc) and 62(/.:) are5 

6i(fc) = ­ i J V * * , e2(k) = -t'Y,<riILÂ (6.4) 
S K 

€2(k) = —2t' cos(V3kya) — 4i'cos I —kya J cos I -kxa I (6.5) 

|ei(fc)|2 = 3i2 + 2i2 cos(V3kya) + 4i2 cos ( — kya J cos ( -kxaj , (6.6) 

and yield, after diagonalization of (6.3), the dispersion relations for graphene: 

E±(k) = e2(k)±\t\ ^ / 3 - ^ . (6.7) 

The two bands E±(k) are represented in Fig. 6.3c in the domain kx>y G [—7r,n]. The outstanding 
feature of this bandstructure is that, being half filled, graphene is a very peculiar semimetal. A semimetal 
because the valence and conduction band touch at the Fermi energy, peculiar because the bands meet at a 
set of measure zero constituted by the points K and K' of the BZ. Peculiar also because the low energy 
physics is dictated by the dispersion around those two nonequivalent points6, which turns out to be linear 
in k. In fact, expanding (6.6) around either 

.. 4TT (y/Z l \ _,, 4TT (V3 l \ 
K= ^Ta ( T « 2 J °r K=ÛTa{^-2) ^ 

one gets the so­called K. ft effective bandstructure: 

9t'a2 

E(K + p) = St' ±vF\p\ + —P2 , (6.9) 

with a Fermi velocity, vp = 3/2ta. When t' — 0 the dispersion is purely conical, as in a relativistic 
electron in 2D. For this reason, the two cones tipped at K and K' are known as Dirac cones. Indeed, the 
low­energy, continuum limit of (6.2) is given by 

H = vF I d2rip^(r)a ■ pi>(r), (6.10) 

where ip(r) is a two dimensional spinor obeying the Dirac equation in 2D [Gonzalez et al., 1992, 1996]. 
Some quantitative aspects of graphene's band structure are plotted in Fig. 6.4. In panel (a) the band 

5For obvious reasons, ei(k) alone is the dispersion relation of a triangular lattice. 
6Naturally, only one K and one K' point lie within the first BZ. 
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FIGURE 6.4 .: (a) Band structure along the symmetry directions of the reciprocal BZ of the honeycomb, (b) 
The band structure near the K points consists of the so­called Dirac cones, (c) DOS associated with eq. 6.7 for 
different values oft'. 

dispersion is plotted along the symmetry directions of the BZ indicated in Fig. 6.3b, and in panel (c) the 
DOS for different values of the nearest­neighbor hopping, t', are plotted. Focusing on the particle­hole 
symmetric case (t — 0), it is clear that, besides the marked van Hove singularities at E — ±t, the most 
important feature is the linear vanishing of the DOS at the Fermi level, a fact that is at the origin of many 
transport anomalies in this material [Peres et al., 2005]. 

Particle­hole symmetry in this problem arises from the bipartite nature of the honeycomb lattice, and 
is a general property of systems whose underlying crystal lattice has this sort of symmetry. To see how it 
comes about, when we have a bipartite lattice, the basis vectors of the Hilbert space can always be ordered 
so that, for any ket, \<p)t the amplitudes in sublattice A come first. For example, if {<t>\, (j>\,..., ¢^} are 
the Wannier functions for the orbitais in sublattice A, and {<f>B, 0 | , . . . , <j>%} the ones in sublattice B, 
then our ordered basis could be {<j>\,..., ¢^, <f>l

B,..., ¢^}. If the Hamiltonian includes hopping only 
between nearest neighbors, this means that it will only promote itinerancy between different sublattices. 
The stationary Schrõdinger equation then reads, in matrix block form, 

lAB 
(6.11) 

Expanding we get 

hAB H>B — EcpA 
hAB <PA = EifB 

=> (hABhAB)<pB = E2(pB, (6.12) 

and therefore, if E is an eigenstate, so is ­E. For a half­filled system, the elementary excitations around 



6.3. Disorder and Localization in Graphene 149 

the Fermi sea can be thought, as usual, as particle-hole pairs. Since in that case EF — 0, particles 
and holes have symmetric dispersions. This is completely analogous to the situation found in simple 
semiconductors or semimetals, although matters are slightly more complicated here because there are two 
degenerate points, K and K' in the BZ. Thus there will be two families of particle and hole excitations: 
one associated with the Dirac cone at K, and the other with the cone at K'. 

6.3. Disorder and Localization in Graphene 

6.3.1. Relevance of Disorder in Graphene 

Disorder is omnipresent in any real solid state material, graphene being no exception. In graphene this 
statement is even more insurmountable inasmuch as it is a bidimensional crystal. True long-range order in 
2D implies a broken continuous symmetry (translation), which violates the Hohenberg-Mermin-Wagner 
theorem [Hohenberg, 1967; Mermin and Wagner, 1966], So, defects must be present in graphene and, in 
a sense, as paradoxical as it might sound, are presumably at the basis of its thermodynamic stability. 

But the study of disorder effects on graphene is motivated by more extraordinary experimental re­
sults. One of them is the study undertaken by Esquinazi et al. [2003] in which Highly Oriented Pyrolytic 
Graphite (HOPG) samples were irradiated via high energy proton beams. As a result, the experiments re­
vealed that the samples acquired a magnetic moment, displaying long range FM order up to temperatures 
much above 300 K. This triggered enormous interest, since the technological possibilities arising from 
organic magnets are many and varied. Furthermore, carbon, being the most covalent of the elements, 
has a strong tendency to saturate its shell in its allotropes, and is somehow the antithesis of magnetism. 
More than the moment formation, it was found that the magnitude of the saturation moment registered in 
hysteresis curves was progressively increased with successive irradiations. This is strong evidence that 
the defects induced by the proton beam are playing a major role in this magnetism. In this context the 
study of defects and disorder in graphene gains a significant pertinence. 

In the following paragraphs we will unveil some details and peculiarities that emerge from different 
models of disorder applied to free electrons in the honeycomb lattice. 

6.3.2. Vacancies 

Vacancies are the defects more likely to be induced in the graphene structure by proton irradiation. A 
vacancy is simply the absence of an atom at a given site. Now, when an atom is removed two scenarios 
are possible: either the disrupted bonds remain as dangling bonds, or the structure undergoes a bond 
reconstruction in the vicinity of the vacancy, with several possible outcomes [Ding, 2005]. In either case, 
a slight local distortion of the lattice is expected. In the following discussion, however, it is assumed 
that, as first approximation, the creation of a vacancy has the sole effect of removing the nz orbital at 
a lattice point, together with its conduction band electron. In this sense, the physics of the conduction 
band electrons is still described by the Hamiltonian (6.1), where now the hopping to the vacancy sites is 
forbidden. 
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6.3.2.1. Vacancies and a theorem 

An interesting thing happens with vacancies when t' — 0. If the distribution of vacant sites is uneven 
between the two sublattices, then we can be sure that zero energy modes will appear. This follows from 
a theorem in linear algebra and can be seen as follows. Assume, very generally, that we have a bipartite 
lattice, with sublattices A and B1, and that the number of orbitals/sites in A (B) is NA (NB). Just as 
we did before, the basis vectors of the Hilbert space can always be ordered so that any ket, |ty), has the 
amplitudes on sublattice A appearing first, followed by the amplitudes on sublattice B: 

1̂) = (^,^) = (^,^,...,^:^,4,-.-,^). (6.13) 

We now consider an Hamiltonian containing only nearest-neighbor hopping, plus some local energy 
(^ A, efî) on each sublattice. The corresponding stationary Schrõdinger equation will then be (in matrix 
block form that respects the ordering of the basis) 

W) = E\V) ~ H»* kA* ) H = E M , (6.14) 
\ hAB eBlNA) \ipBj \<PBJ 

where 1 M is the M x M identity matrix, \IAB a NA X NB matrix, and <$A (V?B) a vector in a subspace 
of dimension NA (NB)-

The spectrum To analyze the spectrum we note that 

h<pB = (E-eA)<PA 

rf ipA = (E - eB)VB 
(6.15) 

which, from cross-substitution, certainly implies that 

tfh<pB = (E-eA)(E-eB)<PB- (6.16) 

If we call A2 to the (non-negative) eigenvalues of tfh, the spectrum of H is then 

E=e-à±^±f-^ + \*. (6.17) 

The symmetry about (BA + Ê B ) / 2 simply reflects the particle-hole symmetry already discussed. 

Uncompensated lattices and "localized" modes States of a peculiar nature should appear 
when the number of sites in each sublattice is different. Without any loss of generality we take NA > NB-
Since the block YIAB in (6.14) is a linear application from a vector space having dim (.A) = NA, onto a 
vector space B with dim(B) — NB, it follows from basic linear algebra that 

• rank(ft,AB) = rarik(/i]4jB) = NB', 
7It can be any bipartite lattice like the square or honeycomb lattices in 2D, etc. 

file:///ipBj
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• h,AB <PB = 0 has no solutions other than the trivial one; 

• "AB ipA = 0 has non-trivial solutions that we call tpA. From the rank-nullity theorem, 

iank(hAB) + nullity(/i^) - NA , (6.18) 

and hence the null space of hAB has dimension: nullity (/i^B) = NA - NB. 

Consequently, there are states of the form |#°) = ( ^ , 0 ) , in which <p°A satisfies hAB <pA = 0, that are 
eigenstates of H with eigenvalue eA: 

W|*°) = £?|*> i-» < hO = (eA-eA)VA 
(o.iyj 

/it ^° = (eA - eB)0 

Furthermore, since nullity(hAB) = NA - NB implies the existence of NA - NB linearly independent 
<pA, this eigenstate has a degeneracy of NA - NB. It should be noticed that a state of the form ( ^ , 0 ) 
has only amplitude in the A sublattice. Therefore, we conclude that, whenever the two sublattices are not 
balanced with respect to their number of atoms, there will appear NA - NB states with energy EA, all 
linearly independent and localized only on the majority sublattice. In addition, we can do whatever we 
fancy to the sublattice B (remove more sites, for instance) that these topologically localized states will 
remain totally undisturbed. 

It is important to notice that in the above the details of the hopping matrix hAB where not specified and 
need not be. The result holds in general, provided that the hopping induces transitions between different 
sublattice only, and that the diagonal energies are constant (diagonal disorder is excluded). 

Zero modes The case with eA = £B = 0 is of obvious relevance for us, since our model for pristine 
graphene does not include any local potentials. In this situation, the above results imply that introducing 
a vacancy in an otherwise perfect lattice, immediately creates a zero energy mode. Now this is im­
portant because those states are created precisely at the Fermi level, and have this peculiar topological 
localization determining that they should live in just one of the lattices. 

Even more interestingly, it is possible to obtain the exact analytical wavefunction associated with 
the zero mode induced by a single vacancy in a honeycomb lattice. This was done by the author and 
collaborators in [VITOR M. PERElRAet al., 2006], and will not be developed here. We only mention 
that the wavefunction can be constructed by an appropriate matching of the zero modes of two semi-
infinite and complementary ribbons of graphene8, and that, in the continuum limit the wavefunction has 
the form [VITOR M. PERElRAet al., 2006] 

/•4TT/3 

^L){x,y) ~ / dk(-2cos(k/2))2x/3eiky^ 
J2TT/3 

e(4my)/(3V3) e2ni(x+y /VS)/3 
+ ; . (6.20) 

x + ly x — iy 
It is known that graphene ribbons with zig-zag edges (like a zig-zag nanotube, Fig. 6.1a, but with a macroscopic radius) also 

support edge states with zero energy. See [ V I T O R M. PERElRAet al., 2006] and references therein. 
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The important point is that the amplitude of this state decays with the distance to the vacancy as ~ 1/r, 
and thus has a quasi-localized character, although not-normalizable. Once again, we underline that this 
localized state appears at the Fermi level. 

If another vacancy is introduced in the same sublattice, we already know that another zero mode will 
appear. However, the nature of the two zero modes will depend whether the vacancies are close or distant. 
In the latter case, the hybridization between the two modes should be small on account of the 1/r decay, 
and we can expect two states of the form (6.20) about each vacancy site. Of course significant effects in 
the thermodynamic limit can only arise with a finite concentration of vacancies, and for such analysis we 
undertook the numerical calculations described next. 

6.3.2.2. Numerical Results 

Single Vacancy The first calculation coming to mind is the numerical verification of the exact ana­
lytical result for the localized state in (6.20). For that, we consider the tight-binding Hamiltonian (6.1) 
and calculate numerically the exact spectrum and eigenstates in the presence of a single vacancy. For 
some typical results we turn our attention to Fig. 6.5. There we are plotting a real-space representation 
of some selected wavefunctions. This has been done by drawing a circle at each lattice site, whose radius 
is proportional to the wavefunction amplitude at that site, and whose color (red/blue) reflects the sign 
(+/-) of the amplitude at each site. Thus bigger circles mean higher amplitudes. In the first panel, (a), we 
are showing the eigenstate with lowest, yet non-zero, absolute energy. It is visible that the wavefunction 
associated with such state spreads uniformly across the totality of the system. In the second panel, (b), 
we draw the wavefunction of the state E = 0, that corresponds to (6.20). The state is clearly decaying as 
the distance to the central vacancy increases. In addition, the state exhibits the full (¾ point symmetry 
about the vacant site, just as expected. This picture provides a snapshot of the lattice version of (6.20). 
Since only one vacancy was introduced, the state shown in 6.5b is the only zero mode present. 

When particle-hole symmetry is disturbed by a non-zero t', we still find states having this quasi-
localized nature, although the wavefunction amplitude is not so concentrated about the vacancy. Two 
examples are shown in panels (b) and (c). They are two eigenstates with neighboring energy calculated 
for the same system. An important difference occurs here, in that, unlike the case t' = 0 where only one 
localized state appears, the particle-hole asymmetric case opens the possibility for more than one of such 
states. 

This fact can be seen perhaps more transparently through the Inverse Participation Ratio (IPR) of the 
eigenstates. With such purpose in mind, the IPR (4.48) 

V{En) = J2 l*«(r*)|4 

i 

was calculated across the band in both the t' = 0 and t' ^ 0 cases, with a single central vacancy. Typical 
results are shown in Fig. 6.6. From 6.6a we do confirm that, when t' = 0, the presence of a vacancy 
introduces a localized state at E = 0, which is reflected both by the enhanced IPR there, and by the 
sharply peaked LDOS calculated at the vicinity of the vacancy site. Although not shown in this figure, 
the amplitude of the peak in the LDOS at E = 0, pi(Q), decays as the distance between Ri and the 



6.3. Disorder and Localization in Graphene 153 

iixc SAX'.V 
(¾) i ' = 0.2 

FIGURE 6.5. : Selected eigenstates in a graphene sheet with 802 atoms containing a single impurity at the center 
(black dot). Only the region near the vacancy is shown, (a) The eigenstate with energy closest, but different, to 
zero., (b) The eigenstate with E = 0. (c) and (d) show the presence of two quasi-localized eigenstates even with 
í ' ^ 0 . 
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FIGURE 6.6.: IPR ctndLDOS calculated at one site closest to the vacancy. In panel (a), we have results for the 
IPR with t' — 0 and t' ^ 0 without any vacancy (top row), and with a single vacancy (bottom) for comparison. In 
panel (b) we show the dependence of the IPR of the zero mode, V{E — 0), with the system size N (left), and also 
(P(E)) versus N for the remainder states (right). Dashed lines are simply guides for the eye. 

vacancy increases, in total consistence with the analytical picture. When next-nearest neighbor hopping 
is included, we also confirm the appearance of states with a considerably enhanced IPR. Not only that, 
but, instead of one, we do observe a couple of states with IPR much larger than the average for the 
remainder of the band. The LDOS is also enhanced near these energies, although now the effect appears 
more like a resonance in contrast with the sharp peak in the previous, particle-hole symmetric, case. 

A more definite and quantitative analysis is provided by the results in the subsequent panel (Fig. 6.6b). 
Here we present the dependence ofV(E) on the system size, N. As discussed in previous sections, the 
IPR for extended states should scale as 

? > ( £ ) - 1 . (6.21) 

But, for the zero mode, we face an interesting circumstance9, Remember that the wavefunction (6.20) 
is not normalizable. So, strictly speaking, the state is not localized, and hence the designation quasi-
localized that we have adopted above. The consequence of this is that the normalization constant for 
¢(#, y) depends on the system size: 

N 

Y^ 1 ^ , y)|2 ~ logtv/ÃÕ ~ log(iV). (6.22) 

This, in turn has an effect on the IPR because V(E) is defined in terms of normalized wavefunctions: 

TV 

* ° > - ¾ ^ E w * » ) ! 4 - ^ • (6.23) 

This scaling of the IPR with TV is precisely the one obtained numerically in Fig. 6.6b (left) for the zero 
mode, and is just another way of confirming the 1/r decay of this wavefunction. 

9It should be obvious that when the term zero mode is employed, we are referring to the case with t' = 0. 
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FIGURE 6.7.: ZRR and DOS for the diluted honeycomb lattice. The concentration of vacancies is x, and only the 
vicinity of the Fermi level is shown, (a) DOS for selected concentrations, x, and different values oft', (b) IPR for 
selected values oft' using a concentration x = 0.5 %. For comparison, the corresponding DOS is also plotted in 
each case. 

Finite Concentration of Vacancies Unlike the single vacancy case, the dilution of the honeycomb 
via the introduction of a finite concentration of vacancies is not solvable using the analytical expedients 
employed in [VlTOR M. PERElRAet al., 2006], and numerical calculations become essential in this 
case. Our procedure consists in diluting the honeycomb lattice with a constant concentration of vacan­

cies, which we call x. The diluted sites are chosen at random and the global DOS, averaged over several 
vacancy configurations, is calculated afterwards. This is clearly a disordered problem, and we employ 
the recursive method allowing us to obtain the DOS for systems with 20002 sites10. Some results are 
summarized in Fig. 6.7. 

One of the effects of this disorder is, as always occurs, the softening of the van­Hove singularities 
(not shown). But the most significant changes occur in the vicinity of the Fermi level (Fig. 6.7a). In the 
presence of electron­hole symmetry (t' = 0), the inclusion of vacancies brings an increase of spectral 
weight to the surroundings of the Dirac point, leading to a DOS whose behavior for E « 0 mostly 
resembles the results obtained elsewhere within Coherent Potential Approximation (CPA) [Peres et al., 
2005]. Indeed, for higher dilutions, there is a flattening of the DOS around the center of the band 
just as in CPA. The most important feature, however, is the emergence of a sharp peak at the Fermi 
level, superimposed upon the flat portion of the DOS (apart from the peak, the DOS flattens out in this 
neighborhood as x is increased past the 5 % shown here). The breaking of the particle­hole symmetry by 
a finite t' results in the broadening of the peak at the Fermi energy, and the displacement of its position by 
10We remark that such number of atoms is already of the same order of magnitude of the number of atoms in real nanoscopic 

samples of graphene studied experimentally. 
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an amount of the order of t'. All these effects take place close to the the Fermi energy. At higher energies, 
the only deviations from the DOS of a clean system are the softening of the van Hove singularities and 
the development of Lifshitz tails (not shown either) at the band edge, both induced by the increasing 
disorder caused by the random dilution. The onset of this high energy regime, where the profile of the 

— 1/2 

DOS is essentially unperturbed by the presence of vacancies, is determined by e « vp/l, I ~ nim^ 
being essentially the average distance between impurities. 

To address the degree of localization for the states near the Fermi level, the IPR was calculated again, 
via exact diagonalization on smaller systems. Results for different values of t' are shown in Fig. 6.7b 
for random dilution at 0.5 %. One observes, first, that Vm ~ 3/iV for all energies but the Fermi level 
neighborhood, as expected for states extended up to the length scale of the system sizes used in the 
numerics. Secondly, the IPR becomes significant exactly in the same energy range where the DOS 
exhibits the vacancy-induced anomalies discussed above. Clearly, the farther the system is driven from 
the particle-hole symmetric case, the weaker the localization effect, as illustrated by the results obtained 
with t' = 0.21. To this respect, it is worth mentioning that the magnitude of the strongest peaks in Vm at 
t' = 0 and t' = 0.11 is equal to the magnitude of the IPR calculated above for a single impurity problem. 
Such behavior indicates the existence of quasi-localized states at the center of the resonance, induced 
by the presence of the vacancies. For higher doping strengths, the enhancement of Vm is weaker in the 
regions where the DOS becomes flat. This explains the qualitative agreement between our results and 
the ones obtained within CPA in that region, since CPA does not account for localization effects. 

In summary, before we abandon this section, we saw that a single vacancy introduces a quasi-localized 
zero mode. Its presence is ensured by the uncompensation between the number of orbitais in the two 
sublattices, and a theorem from linear algebra. The presence of this mode translates in the appearance of 
a peak in the LDOS near the vacancy, and in an enhanced IPR for this state. When we go from one to a 
macroscopic number of vacancies, we saw that both the peak and the enhancement of the IPR persists at 

6.3.3. Selective Dilution 

It is important to recall that the results of the previous section pertain to lattices that were randomly 
diluted. During such process, we expect that the number of vacancies in sublattice A will be equal to the 
number of vacancies in sublattice B, on average. Strictly speaking, since our original lattices are always 
chosen with NA = NB, the fluctuations on the degree of uncompensation, NA - NB, should scale 
as 1/VN thus vanishing in the thermodynamic limit. Because of this, in principle, we would expect 
the lattices used above to be reasonably compensated. But the theorem in (§ 6.3.2.1) only guarantees 
the presence of zero modes when the lattice is uncompensated. It turns out that, notwithstanding our 
utilization of rather large system sizes, such vN fluctuations are still significant and the lattices were 
indeed slightly uncompensated. 

This clearly begs the clarification of the origin of the zero modes in the cases with finite densities of 
vacancies. Do they appear only through these fluctuations in the degree of sublattice compensation, or 
can we have zero modes even with full compensation? To try to elucidate this we developed a controlled 
approach to this issue, as follows. From now on we consider only the particle-hole symmetric situation 
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FIGURE 6.8.: Dilution of just one sublattice of the honeycomb, (a) DOS for different dilution strengths, diluting 
only sublattice A. (b) On the left we show a detail of the DOS and the evolution of the gap with vacancy con­
centrations. On the right we plot the dependence of the missing spectral weight (= 1 — wg) with x (circles). The 
continuous line is a least squares fit using f(x) = ax/(b — x) to the data represented by the circles. 

(*' = 0). 

Complete uncompensat ion The first thing to do is to dilute selectively just one of the sublattices 
(sublattice B for definiteness). Accordingly, we have studied the DOS for systems in which one of the 
sublattices was randomly diluted, with a finite concentration of vacancies. In this case there is no other 
chance for the system than having precisely a number of zero modes that equals the number of vacancies. 
Starting from a clean lattice with N — NA + NB sites, the latter corresponds to Nv = Nx. We should 
thus expect a 5(0) peak contributing to the global DOS, with an associated spectral weight, wg that 
coincides with the fraction of zero modes: 

Nx 
ws N(l ­ x) 1 x 

(6.24) 

Since the total spectral weight is normalized to 1, the spectral weight at E — 0 has to come from 
somewhere else in the band. In Fig. 6.8 we expose what is happening. In panel (a) the results for the 
DOS are rather explicit. The selective dilution promotes the appearance of a gap in the DOS, whose 
magnitude increases with the amount of dilution. At the center of the gap we can only see an enormous 
peak (not visible in the range used) staying precisely at E = 0, corroborating our expectations regarding 
the Dirac­delta in the DOS. But since it appears exactly at E = 0, we cannot resolve numerically its 
associated spectral weight. To obtain such spectral weight we calculated the spectral weight loss in the 
remainder of the band. In other words, since, by definition, our recursive method always yields a DOS 
normalized to unity, we calculated the spectral weight of the band shown in the picture, and subtracted 
it from unity. The result and its variation with x is displayed in the right­most frame of Fig. 6.8b. A 
non­linear fit to the data reveals that the dependence expected from (6.24) is indeed verified. 

In the context of the selective dilution, the surprise comes certainly not from this, but from the areas 
involved in the transfer of spectral weight. As Fig. 6.8 documents, the spectral weight is transferred 
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FIGURE 6.9.: The gap estimated from the numerical curves in Fig. 6.8 is plotted against the vacancy concentra­
tion, x. The continuous line is a least squares fit to f(x) = axb. 

almost entirely from the low energy region near Ep and from lhe high energy regions at the band edges. 
This depletion near E = 0 introduces the gap, 2Eg. A gap implies the existence of a new energy scale 
in the problem. Since the hopping t is the only energy scale in the Hamiltonian, such new scale has to 
come from the concentration of vacancies. By dimensional analysis, such scale is dictated essentially by 
the average distance between vacancies (I) 

VF 1/2 e ~ — ~ n 
j vacai 

s/x (h = l) (6.25) 

When the the magnitude of the gap found numerically is plotted against x we arrive at the curve of 
Fig. 6.9. The least squares fit shown superimposed onto the numerical circles leaves little doubt as to the 
validity of the above assumption regarding the energy scale associated with the gap. With this we arrive 
at a quite interesting situation, of having a half-filled, particle-hole symmetric and gapped system, with 
a finite concentration of (presumably quasi-localized) zero modes at the mid-gap point. 

Controlled uncompensation Instead of this extreme selective dilution, we now turn to a more 
controlled approach to the dilution and uncompensation. For that we need to introduce an additional 
parameter, 77 that will measure the degree of uncompensation. As before, we want to study finite con­
centrations of vacancies. This is determined by x in such a way that the number of vacancies in a lattice 
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with N sites will be Nv = Nx. But now, the number of vacancies in each sublattice is determined by 

1 
N.< Nx(l + rj) 

N? = ­Nx(l­V), (6.26) 

with 0 < 77 < 1. Therefore, the parameter 77 permits an interpolation between completely uncompensated 
dilution (77 = 1), and totally compensated dilution (77 = 0). Let us look directly at the results for the 
DOS, calculated at different x and 77, and plotted in Fig. 6.10. At any concentration x the following 
sequence of events unfolds as 77 decreases from 1 to 0: (i) There is a perfectly defined gap in the limit 
77 = 1.0 discussed above; (ii) for 77 < 1 a small hump develops at the same energy scale of the previous 
gap; (iii) although the gap seems to disappear, it is clearly visible that when 77 < 1, the DOS decays to 
zero after the hump and is zero at E = 0; (iv) decreasing further 77 towards complete compensation (say, 
for 77 = 0.6, 0.4), this behavior persists, being visible that the DOS drops to zero at E = 0; (v) closer to 
full compensation (77 = 0.1) the DOS seems to display an upward inflection near E = 0, and apparently 
does not drop to zero. Unfortunately, we are unable to resolve this region numerically with the desired 
accuracy. For instance, at higher dilutions x = 0.2 we can still see the curve of 77 = 0.2 dropping to zero 
near E = 0. 

Naturally that, for all the cases with 77 ^ 0, the existence of N^ — N„ zero modes is guaranteed. As 
before, we inspected this by calculating the missing spectral weight in the bands, and confirmed that it 
does agree with the fraction of uncompensated vacancies. Hence, the picture emerging from these results 
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seems to suggest that, although the gap disappears for r/ < 1, the DOS still drops to zero at E — 0, and 

might drop in a singular way as r\ approaches zero. If we separate the contributions of the zero modes 

to the global DOS from the contribution of the other states, the consequence of this would be that, in a 

compensated lattice (77 = 0), the DOS associated with the other states would seem to diverge as E —► 0, 

but would be zero precisely at E — 0. Stated in another way, coming from high energies, we would see a 

decreasing DOS up to some typical energy e ~ y/x, at which point it would turn upwards. At very small 

energies the DOS would seem to be diverging but, at some point arbitrarily close to E = 0, it would drop 

precipitously down to zero. 

Unfortunately the numerical calculations are not so accurate as to allow the confirmation or dismissal 

of such possibility. In fact, the peaks for 77 = 0.0 are of the same magnitude of the ones found when 

the dilution is completely random across the two sublattices (Fig. 6.7a). So, although the evidence is 

compelling towards the affirmative, these results are still inconclusive as to whether the zero modes 

disappear in a perfectly compensated diluted lattice or not. 

6.3.4. Local Impurities 

Vacancies are local scatterers in the unitary limit. A vacancy can be thought as an extreme case of a local 

potential, U, when U —> 00. In this context we investigated the intermediate case characterized by a 

finite local potential. The Hamiltonian in this case changes from (6.1) to 

H = u Y, 4e? ­ * E c\°i ­ *' E cfe + hc­ ' 
P (id) ((»>i>> 

(6.27) 

where U is the local potential at the impurity sites p. The concentration of impurities, x, is kept constant, 

and their positions, p, are selected at random. The influence of the potential term in (6.27) on the 

electronic structure can be inspected through the changes it induces upon the DOS. Numerical results are 

plotted in Fig. 6.11. The presence of the local term clearly destroys the particle­hole symmetry, leading 
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to the asymmetric curves in the figure. We only analyzed moderate to high potentials (5t < U < 30i), 
and in the domain considered, we always witness the development of a narrow impurity band beyond the 
original band edge, and centered at E ~ U. The impurity band has an interesting splitted structure as 
can be seen in both panels of Fig. 6.11. Sure enough, the existence of this band is totally expected, and 
not particularly remarkable. 

What is remarkable in these results is the emergence of a low energy resonance induced by the presence 
of the local impurities. Such resonances are signaled by the considerable enhancement in the DOS near 
the Dirac point. A couple of interesting details characterizes these resonances: 

• At the strongest C/'s' a clearly defined peak develops on the top of the finite background; 

• The resonances are sensitive to both U and x; 

• For a given concentration x, the energy corresponding to the maximum of the resonance, eres, shifts 
towards the Dirac point as U is increased. Additionally, it follows from the numerical data on the 
range of U studied that eres ~ 1/Í7, although a systematic analysis was not actually carried on. 

• U and eres have opposite signs. The resonance thus appears at negative energies whereas the 
impurity band is at high and positive energies. 

• The two plots clearly show how the vacancy case can be obtained as a limiting procedure of taking 
U to infinity. 

• When U is kept constant and the concentration is changed, the maximum of the resonance seems 
to be slightly displaced away from the Dirac point. 

Physically the model summarized in the Hamiltonian of eq. (6.27) could describe the situation in 
which some of the carbon atoms are substituted by a different species. Another realistic circumstance 
has to do with the fact that a real graphene sheet is expected to have some molecules from the environ­
ment adsorbed onto its surface. Consequently, even if the honeycomb lattice of the carbon atoms is not 
disrupted with foreign atoms, the presence of adsorbed particles can certainly induce a local potential at 
the sites where they touch the carbon lattice. 

As a final remark, we mention that the experimental I — V curves measured by Matsui et al. [2005] 
in HOPG, namely Fig. 5 of the cited reference, have a striking resemblance with the resonances seen in 
our numerical curves. 

6.3.5. Non-Diagonal Impurities 

Another effect expected with the inclusion of a substitutional impurity in the graphene lattice is the mod­
ification of the hoppings between the new atom and the neighboring carbons. This happens because the 
host and substituting atoms have different radii, because the nature of the orbitais involved in the conduc­
tion band is different, or, most likely, a combination of both. Customary impurities in carbon allotropes 
are nitrogen, working as a donor, and boron, working as an acceptor [Kaiser and Bond, 1959]. In fact, 
the selective inclusion of nitrogen and/or boron impurities in carbon nanotubes is a current practice in 
the hope to tune the nanotubes' electronic response [Nevidomskyy et al., 2003; Stephan et al., 1994]. 
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(a) (b) 

FIGURE 6.12.: Effect of a single substitutional impurity in the LDOS. In panel (a) we plot the LDOS calculated 
at the site of the impurity for the four different values of to indicated in each frame. In (b) the situation is identical 
but the LDOS is calculated at the nearest neighboring site of the impurity. 

In general the study of a perturbation in the hopping is much less studied in problems with impurities 
than the case of diagonal, on-site, perturbations. In the context of our investigations, the perturbation 
in the hopping can, again, be interpreted as an interpolation between a vacancy and an impurity. To be 
more precise, let us introduce the relevant Hamiltonian: 

H = -tJ2 4a+s + toY, 'clcP+* + hc- • (6-28) 
i,S p,6 

In this case, only nearest neighbor hopping is considered. Without the second term, H above is the 
Hamiltonian for pure graphene. The last sum is restricted to the impurity sites, p, and io represents a 
perturbation in the hopping amplitude to its neighbors. Is plain to see that, when io — t, all the impurity 
sites turn into vacancies since the hopping thereto is zero. As a result of that, this model provides 
another type of interpolation between pure graphene and diluted graphene. An important difference is 
that this model can be disordered when the impurities are placed at random, without breaking particle-
hole symmetry, and, in this sense, is qualitatively much different from the case of local disorder discussed 
in the preceding section. 

Figure 6.12 contains some typical results for the local DOS near the impurity, and at the impurity site 
itself. Irrespective of whether the LDOS is calculated at or near the impurity, the resulting curves display 
a strong resonance close to the Dirac point. As io increases from zero, two simultaneous modifications 
in these resonances take place. The first is that they are clearly enhanced as io approaches i. The second 
is its shift in the direction of the Dirac point, in such a way that, when i0 = 0.9i, the peak is already 
very close to E = 0. With regard to this last point, we systematically investigated the variation of the 
peak position in the LDOS at the impurity site with the value of io- This dependence, which can be seen 
in Fig. 6.13, is approximately linear and, for to > 0.6, is reasonably well approximated by the linear 
function emax — t — io-

When we go from one impurity to a finite density of impurities, x, we obtain a measurable influence in 
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FIGURE 6.13 .: Variation of the energy corresponding to the peak in the LDOS with the magnitude of to. The 
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FIGURE 6.14.: The DOS corresponding to the model Hamiltonian (6.28), with a finite density of impurities. The 
three panels correspond to different values of the perturbing hopping fto = 0.2, 0.5 and 0.9), and within each 
panel the three curves were obtained at different concentrations (x = 0.01, 0.05 and 0.1/ The inset of the last 
panel is a magnification of the region near E = 0. 

the thermodynamic limit. Our method in this case, consists in placing impurities at random positions in 
the lattice, keeping their concentration constant. The global DOS, averaged over several realizations of 
disorder, is presented in Fig. 6.14. For intermediate values of irj, the perturbation in the hopping induces 
a resonance appearing at roughly the same energies as the ones found in Fig. 6.13. The resonance is 
enhanced at higher concentrations of impurities, and becomes more sharply defined as io -► t. 

Before closing, just a comment on the physical origin of this perturbation. In effect, the presence of 
a substitutional impurity like N or B will introduce, simultaneously, a perturbation in the hopping, and 
in the local energy. However, it is more or less clear from the discussions in the previous section that 
the resonances near EF occur when the local potential, U, is moderate or high, which is not the case for 
boron or nitrogen substituents. Hence, the perturbation in the hopping could perhaps be more significant 
in dictating the changes in the low-energy electronic structure. 
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6.4. Implications for real systems 

The field of graphene is still in its childhood. Although the experimental progress obtained so far is 
remarkable, much is hoped for the future. The disorder effects considered and analyzed in this chapter, 
can have a direct influence in many important properties seeked in novel magneto­electronic devices 
based on graphene. 

In particular, we have confirmed that the presence of vacancies introduces striking changes in the 
DOS at the Fermi level. The sharp peak developing at E — 0 can have decisive consequences for the 
magnetism found in proton irradiated HOPG, since the moment formation can be associated with the 
development of this feature in the DOS. In fact, in the context of the Random Phase Approximation 
(RFA) for itinerant magnetism, the magnetic susceptibility of the electron gas has the form 

1­JXoWiW) 

where Xo(?»w) is the unperturbed particle­hole propagator giving the free electron spin susceptibility, 
and I is the intra­atomic (Hubbard) Coulomb integral. An instability in x(ç, 0) reflects an instability in 
the paramagnetic ground state [Doniach and Sondheimer, 1999] and, from the above, the condition for 
such instability is simply Ixo{q, w) = 1. For the case of ferromagnetism we are interested in the q —► 0 
limit of this condition. It can be shown that XO(Q, W) (the Pauli spin susceptibility) is simply the density 
of states at the Fermi energy. Thus the condition for the FM instability translates into 

Ip(EF) = 1. (6.30) 

This provides the well known Stoner criterion for ferromagnetism: if Ip(Ep) > 1 the ground state is 
ferromagnetic, and paramagnetic otherwise [Yosida, 1996]. Our results clearly show, either a Dirac­

delta or a sharp peak in the DOS at Ep. Therefore, the condition Ip(EF) > 1 can be met even for an 
arbitrarily small I, which in turn implies an instability towards ferromagnetism in diluted graphene. 

Although the problem of moment formation and its relation with the vacancy­induced localized states 
needs further investigation, this is a compelling and physically reasonable explanation for the vacancy 
induced ferromagnetism found in the experiments. 



7. Conclusions 

"There is a theory which states that if ever anyone discovers exactly what the 
Universe is for and why it is here, it will instantly disappear and be replaced by 
something even more bizarre and inexplicable. 
There is another theory which states that this has already happened." 

— Douglas Adams. The Restaurant at the End of the Universe [Adams, 1995]. 

Physics aims at no less than the understanding of nature. This is not a modest undertaking, espe­
cially when one considers the tortuous and continual nature of scientific inquiry, which Douglas Adams' 
quotation perfectly embodies. This act of understanding, for the physicist, means much more than ob­
serve, collect, classify and relate facts about nature. It means delving deep into the recesses of physical 
phenomena, in order to grab their essence, their irreducible elements, comprehend their workings and 
use such understanding to predict new phenomena. For the theoretically oriented physicist, nothing can 
be more rewarding than witnessing first hand a theory that describes a set of experiments related to his 
subject, a model that describes nature under a given set of circumstances. 

For its physical significance, the core of this thesis is our DEM model for EuB6 related hexaborides, 
which has already been summarized in § 4.4 (page 102). The DEM at extremely low densities provides 
a quite acceptable interpretation of the set of experimental peculiarities described in chapter 3, which 
include the electrical, magnetic and optical response of the hexaborides. When first published in late 2004 
[VITOR M. PEREiRAet al., 2004a], this theory was received with some initial skepticism [Wigger et al., 
2005], for it was an approach very different from the existing theoretical proposals. Under the DEM 
perspective, the physics of EuB6 is essentially determined by the direct interplay between the electronic 
kinetic energy and magnetic disorder, with Anderson localization effects requiring consideration from 
the outset. Within roughly six months of publication, the magneto-optical measurements carried by L. 
Degiorgi and his collaborators for the Ca-doped family came to our knowledge. It was then clear that 
such data lent stronger support to our interpretation, and this ultimately led to the joint publication of 
those results in [Caimi et al., 2006]. 

From a purely theoretical point of view, this thesis hinges upon the DEM at low electronic densities. 
In such context, we were able to obtain important and insightful results into issues like the long standing 
problem of phase separation, the stability of free magnetic polarons, the details of the transition from 
the DE to the RKKY limit and, of course, the problem of Anderson localization and its influence in 
magneto-transport. Inevitably, the results obtained here introduced new questions. In the problem of 
phase separation, for instance, it would be rather interesting to see to which extent the suppression 
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of the phase separation bubble that we obtained is influenced by the geometry of the phase separated 
state. Likewise, the relation between the polaronic phase and the phase separated state when e r —> 1 
would require a more careful analysis inasmuch as the classical, continuous approximation used for the 
electrostatic corrections in eq. (5.27) starts already to break down. This is certainly a hard problem, as 
is the possibility advanced in [VlTOR M. PERElRAet al., 2005] for the existence of a Wigner crystal of 
magnetic polarons at even more reduced densities, which we did not discuss herein. 

With regards to the problem of Anderson localization, it would be most interesting to have the trajec­
tory of the mobility edge when dilution disorder is added to the magnetic, non-diagonal, one. This is 
of direct relevance for quantitative results in the Ca-doped hexaborides. But things here are not so easy 
for the numerical methods currently used. The difficulty is related with the fact that, upon dilution, the 
problem turns essentially into quantum percolation, which, besides being the strongest type of electronic 
disorder, has its own peculiarities as far as localization is concerned [Kirkpatrick and Eggarter, 1972]. 

Our explorations in the context of the localization processes in the DEM, brought us to important 
results that seemingly apply to Anderson localization in general. They are the behavior of fluctuations 
in the LDOS and IPR, which indicate that an important quantitative role is played by the local electronic 
environment at the onset of the localization transition. As discussed, this deserves further attention, 
not only for the obvious relevance to such a long standing problem in condensed matter theory, but 
chiefly because more extensive numerical results are needed. One of the important things is certainly 
to discriminate whether those relative fluctuations exhibit scale invariance in a universal way at the 
transition or not1. 

In the last chapter we explored the role of disorder, in its several guises, upon the electronic structure 
of graphene. Our results could perhaps be seen as introductory to this problem, in the sense that so 
much is yet to be known about graphene and its physics. Notwithstanding, there are important aspects of 
some of our results that can have relevance for Dirac fermions in general, which applies, for instance, to 
some models of HTSC, and other correlated systems. Indeed, the discovery of the sharp peak associated 
with quasi-localized states at EF (or the corresponding resonance in the particle-hole asymmetric case), 
is utterly meaningful and complementary to the seminal and influential studies carried by Peres et al. 
[2005] in disordered graphene. Another issue is the study of how disordered graphene behaves under 
magnetic fields, and what consequences it can bring to the QUE. 

Finally, it is perhaps pertinent to mention the strong numerical component that pervades all these 
chapters, and the majority of the results therein. This has allowed the development of fairly reasonable 
programming skills by the author, especially at the level of optimization, and brought, as a consequent 
by-product, the mastery of different programming and scripting languages, among many other tools of 
the trade. 

The paragraphs of this concluding chapter seem to stress more of what we would like to know, than 
what has been achieved. But this is a simple reflex of, arguably, the most important piece of knowledge 
that one might earn as a training physicist, or scientist in general: the most significant conclusion of a 
piece of work always comes in the form 

"Humm... that's interesting. What if... 

'Unfortunately, this implies machines with considerably higher RAM capacity than the ones available during our work. 
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spin background. We show that the transport properties such as the Hall effect, magnetoresistance, 
frequency dependent conductivity, and dc resistivity can be quantitatively described within the model. 
We also make specific predictions for the behavior of the Curie temperature Tc as a function of the 
plasma frequency OJP. 
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Vitor M. Pereira, J. M. B. Lopes dos Santos, A. H. Castro Neto. 
T H E DOUBLE EXCHANGE M O D E L AT L O W DENSITIES. 

Preprint: cond-mat/0505741(2005) 

We obtain the phase diagram of the double-exchange model at low electronic densities in the pres­
ence of electron-electron interactions. The single particle problem and its extension to low electronic 
densities, when a Wigner crystal of magnetic polarons is generated due to unscreened Coulomb in­
teractions, is studied. It is argued that the Wigner crystal is the natural alternative to phase separation 
when this interaction is taken into account. We discuss the thermal and quantum stability of the crys­
talline phase towards a polaronic Fermi liquid and a homogeneous, metallic, ferromagnetic phase. 
The relevance and application of our results to EuB6 is also considered. 

S. Gu, Vitor M. Pereira, N. M. R. Peres. 
SCALING STUDY OF THE METAL-INSULATOR TRANSITION IN ONE-DIMENSIONAL FERMION 

SYSTEMS. 

Phys. Rev. B 66, 235108 (2002). 

We consider the Ising phase of the antiferromagnetic XXZ Heisenberg chain on a finite-size lat­
tice with N sites. We compute the large-N behavior of the spin stiffness, obtaining the correlation 
length £. We use our results to discuss the scaling behavior of the metal-insulator transitions in one-
dimensional systems, taking into account the mapping between the XXZ Heisenberg chain and the 
spinless fermion model, and known results for the Hubbard model. We study the scaling properties 
of both the Hubbard model and the XXZ Heisenberg chain by solving numerically the Bethe ansatz 
equations. We find that for some range of values of Ç/N, the scaling behavior may be observed for 
the Hubbard model but not for the XXZ Heisenberg chain. We show how £ can be obtained from the 
scaling properties of the spin stiffness for small system sizes. This method can be applied to models 
having not an exact solution, illuminating their transport properties. 
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