This book is the first to be published under the Book Series “Lecture Notes in Computational Vision and Biomechanics (LNCV&B)”. The research related to the analysis of living structures (Biomechanics) has been a source of recent research in several distinct areas of science, for example, Mathematics, Mechanical Engineering, Physics, Informatics, Medicine and Sport. However, for its successful achievement, numerous research topics should be considered, such as image processing and analysis, geometric and numerical modelling, biomechanics, experimental analysis, mechanobiology and enhanced visualization, and their application to real cases must be developed and more investigation is needed. Additionally, enhanced hardware solutions and less invasive devices are demanded.

On the other hand, Image Analysis (Computational Vision) is used for the extraction of high level information from static images or dynamic image sequences. Examples of applications involving image analysis can be the study of motion of structures from image sequences, shape reconstruction from images and medical diagnosis. As a multidisciplinary area, Computational Vision considers techniques and methods from other disciplines, such as Artificial Intelligence, Signal Processing, Mathematics, Physics and Informatics. Despite the many research projects in this area, more robust and efficient methods of Computational Imaging are still demanded in many application domains in Medicine, and their validation in real scenarios is matter of urgency. These two important and predominant branches of Science are increasingly considered to be strongly connected and related. Hence, the main goal of the LNCV&B book series consists of the provision of a comprehensive forum for discussion on the current state-of-the-art in these fields by emphasizing their connection. The book series covers (but is not limited to):

- Applications of Computational Vision and Biomechanics
- Biometrics and Biomedical Pattern Analysis
- Cellular Imaging and Cellular Mechanics
- Clinical Biomechanics
- Computational Bioimaging and Visualization
- Computational Biology in Biomedical Imaging
- Development of Biomechanical Devices
- Device and Technique Development for Biomedical Imaging
- Digital Geometry Algorithms for Computational Vision and Visualization
- Experimental Biomechanics
- Gait & Posture Mechanics
- Grid and High Performance Computing for Computational Vision and Biomechanics
- Image-based Geometric Modeling and Mesh Generation
- Image Processing and Analysis
- Image Processing and Visualization in Biofluids
- Image Understanding
- Material Models
- Mechanobiology
- Medical Image Analysis
- Molecular Mechanics
- Multi-Modal Image Systems
- Multiscale Analysis in Biomechanics
- Multiscale Biosensors in Biomedical Imaging
- Multiscale Devices and Biomems for Biomedical Imaging
- Musculoskeletal Biomechanics
- Neuromuscular Biomechanics
- Numerical Methods for Living Tissues
- Numerical Simulation
- Software Development on Computational Vision and Biomechanics
- Sport Biomechanics
- Virtual Reality in Biomechanics
- Vision Systems
Preface

This book presents novel and advanced Technologies for Medical Sciences in order to solidify knowledge in the related fields and define their key stakeholders.

The 15 chapters included in this book were written by invited experts of international recognition and address important Technologies for Medical Sciences, including: Computational Modeling and Simulation, Image Processing and Analysis, Medical Imaging, Human Motion and Posture, Tissue Engineering, Design and Development Medical Devices, and Mechanic Biology.

Different applications are addressed and described along the book, comprising: Biomechanical Studies, Prosthesis and Orthosis, Medical Diagnosis, Sport, and Virtual Reality.

Therefore, this book is of crucial effectiveness for Researchers, Students and Manufacturers from several multidisciplinary fields, as the ones related with Bioengineering, Biomechanics, Computational Mechanics, Computational Vision, Human Motion, Mathematics, Medical Devices, Medical Image, Medicine and Physics.

The Editors would like to take this opportunity to thank to all invited authors for sharing their works, experiences and knowledge, making possible their dissemination through this book.

Renato M. Natal Jorge
João Manuel R.S. Tavares
Marcos Pinotti Barbosa
A.P. Slade
Contents

In-Silico Models as a Tool for the Design of Specific Treatments: Applications in Bone Regeneration 1
Esther Reina-Romo, María José Gómez-Benito, Libardo Andrés González-Torres, Jaime Domínguez, and José Manuel García-Aznar

Contact Finite Element with Surface Tension Adhesion 19
Rudolf A.P. Hellmuth and Raul G. Lima

Biomechanical Characterization and Modeling of Natural and Alloplastic Human Temporomandibular Joint .. 39
Michel Mesnard and Antonio Ramos

Blood Flow Simulation and Applications .. 67
Luisa Costa Sousa, Catarina F. Castro, and Carlos Conceição António

Measuring Biomechanics of the Vision Process, Sensory Fusion and Image Observation Features ... 87
Jaroslav Dušek and Tomáš Jindra

Motion Correction in Conventional Nuclear Medicine Imaging 113
Francisco J. Caramelo and Nuno C. Ferreira

OCT Noise Despeckling Using 3D Nonlinear Complex Diffusion Filter . . 141
Using an Infra-red Sensor to Measure the Dynamic Behaviour of N\textsubscript{2}O Gas Escaping Through Different Sized Holes........................ 159
Alan Slade, Jan Vorstius, Daniel Gonçalves, and Gareth Thomson

Plantar Pressure Assessment: A New Tool for Postural Instability Diagnosis in Multiple Sclerosis ... 179
João M.C.S. Abrantes and Luis F.F. Santos

Recent Progress in Studying the Human Foot 205
V.C. Pinto, M.A. Marques, and M.A.P. Vaz

The Scapular Contribution to the Amplitude of Shoulder External Rotation on Throwing Athletes ... 227
Andrea Ribeiro, Augusto Gil Pascoal, and Nuno Morais

Supercritical Solvent Impregnation of Natural Bioactive Compounds in N-Carboxybutylchitosan and Agarose Membranes for the Development of Topical Wound Healing Applications ... 243
A.M.A. Dias, M.E.M. Braga, I.J. Seabra, and H.C. de Sousa

Improving Post-EVAR Surveillance with a Smart Stent-Graft 267

Synergic Multidisciplinary Interactions for Design and Development of Medical Devices ... 291
Ricardo Simoes

A Process-Algebra Model of the Cell Mechanics of Autoreactive Lymphocytes Recruitment ... 311
Paola Lecca
Editors Biography

Renato M. Natal Jorge (rnatal@fe.up.pt)
IDMEC – Pole FEUP, Faculty of Engineering, University of Porto
Rua Dr. Roberto Frias
4200–465 Porto
Portugal

Associate Professor at the Faculty of Engineering, University of Porto (FEUP); Mechanical Engineer from the University of Porto, 1987; MSc from the University of Porto, 1991; Ph.D. from the University of Porto, 1999.

Present teaching and research interests: Computational methods in applied mechanics and engineering; New product development; Biomechanics and mechanobiology; Computational vision and medical image processing.

Between 2007 and 2011 was the Director of the “Structural Integrity Unit” research group of the Institute of Mechanical Engineering at FEUP (IDMEC – a R & D non-profit, private Research Institute). Member of the executive board of IDMEC-FEUP.

Responsible for the Supervision or Co-supervision of 12 Ph.D. students.

Co-chair of the following conferences: CompIMAGE; 14th International Product Development Management; VIPIMAGE; Fourteenth Annual Scientific Conference on WEB Technology, New Media, Communications and Telematics Theory, Methods, Tools and Applications; VIPIIMAGE 2009; CompIMAGE 2010; Biodental;
Editors Biography

iDEM’09; Sixth International Conference on Technology and Medical Sciences, CIBEM 2011, among other mini-symposia within conferences.

Founder and Editor of the International Journal for Computational Vision and Biomechanics. Guest editor of several scientific journals.

Principal Investigator for several national and European scientific projects.

Co-author of more than 80 papers in international journals and more than 250 publications in international conferences.

João Manuel R.S. Tavares

Faculdade de Engenharia da Universidade do Porto (FEUP)
Rua Dr. Roberto Frias, s/n
4200–465 Porto
Portugal

e-mail: tavares@fe.up.pt
url: www.fe.up.pt/tavares

João Manuel R.S. Tavares graduated in Mechanical Engineering from the University of Porto – Portugal (1992); MSc in Electronic and Computer Engineering, in the field of Industrial Informatics, University of Porto (1995); Ph.D. in Electrical and Computer, University of Porto (2001). From 1995 to 2000 he was a researcher at the Institute of Biomedical Engineering (INEB).

Since 2001 he has been senior researcher and project coordinator at the Laboratory of Optical and Experimental Mechanics (LOME) at the Institute of Mechanical Engineering and Industrial Management (INEGI). Also, since 2001, he has been Assistant Professor at the Department of Mechanical Engineering (DEMc) of the Engineering Faculty of the University of Porto (FEUP).

He is co-author of more than 350 scientific papers in national and international journals and conferences and co-editor of 17 international books and guest-editor of several special issues of international journals. In addition, he is Co-Editor-in-Chief of the International Journal for Computational Vision and Biomechanics (IJCV&B) and of the International Journal of Imaging and Robotics (IJIR); Editor-in-Chief of the International Journal of Biometrics and Bioinformatics (IJBB); Associate Editor of the EURASIP Journal on Advances in Signal Processing (JASP), ISRN Machine Vision, and of the Journal of Computer Science (INFOCOMP) and reviewer of several international scientific journals.

Since 2001, he has been Supervisor and Co-Supervisor of several MSc and Ph.D. thesis and involved in several research projects, both as researcher and as scientific coordinator. Additionally, he is co-author of three international patents.
He has been Co-Chairman of various international conferences, such as: Com-ppIMAGE 2006/2010/2012, VipIMAGE 2007/2009/2011, CIBEM 2011, BioDENT-TAL 2009/2012, TMSi 2010, IMAGAPP 2009 and EUROMEDIA 2008; and of numerous mini-symposia, workshops and thematic sessions. In addition, he has been a member of scientific and organizing committees of several national and international conferences.

His main research areas include Computational Vision, Computational Mechanics, Scientific Visualization, Human-Computer Interaction and New Product Development.

Marcos Pinotti Barbosa
Bioengineering Laboratory – Department of Mechanical Engineering
Universidade Federal de Minas Gerais
Av. Antonio Carlos, 6627
Zip code: 31270–901
Belo Horizonte – MG
Brazil
e-mail: pinotti@ufmg.br
lapan.pinotti@gmail.com
url: www.demec.ufmg.br/grupos/labbio

Marcos Pinotti Barbosa is graduated in Mechanical Engineering from State University of Campinas (1989), Masters in Mechanical Engineering from the University of Campinas (1992) and Ph.D. in Mechanical Engineering from the University of Campinas (1996). Since 1997 he has been Assistant Professor at the Department of Mechanical Engineering (DEMec) of the Universidade Federal de Minas Gerais. He is CNPq’s Research Fellow (ranked 1B). In 2010, he participated, by invitation of the Eisenhower Fellowship (USA) 2010 Program Multinationals, enabling him closer relationships with agencies of the U.S. government and major university on the theme of Innovation. Also, he coordinates two research laboratories: LABBio and Lapan. Laboratory of Bioengineering (LABBio) is dedicated to Cardiovascular Engineering, Biophotonics, Assistive Technology and Biomechanics. LABBio was recognized by FINEP (Federal Innovation Funding Agency) as “Innovative Laboratory” because of the expressive number of patents generated. Up to now, LABBio has launched three spin-offs companies: Aptivalux Bioengineering LTD. (established in 2005); Fanfarra Estúdio LTD. (established in 2008) and 3D Foot LTD. (established in 2009).

Neural Vision Applied Research Laboratory (LAPAN, in partnership with Eye Hospital – Dr. Ricardo Guimarães’ clinic) is a multidisciplinary laboratory devoted to study and devise new technology on the field of neurosciences, specially related to the visual system. LAPAN is a unique experience of a public research laboratory located in a private hospital. This successful experience has catalyzed a new
technological platform to perform screening tests for elementary school students – The Right Star Project. It aggregates a team of engineers, ophthalmologists, psychiatrists, speech therapists, psychologists, neuroscientists, computer scientists and physicists. Marcos Pinotti has been supervisor and co-supervisor of more than 30 MSc and 20 Ph.D. thesis. He is author of more than 30 scientific papers in national and international journals and conferences. Additionally, he is co-author of 38 patents. He has been invited and given seminars, or invited plenary talks, apart from Brazil, to scientific audiences in United States, China, Italy, Scotland and Argentina. Currently, he is second vice-chairman of the Latin American Society of Biomaterials, Artificial Organs and Tissue Engineering (SLABO); member of the Brazilian National Triennial Evaluation of the Mechanical Engineering Graduate Courses from Ministry of Education and chairman of the Technical Consultant Board of Assistive Technology – Brazilian Presidential’s Office for Human Rights.

A.P. Slade (A.P.Slade@dundee.ac.uk)
Medical Engineering Research Institute
Division of Mechanical Engineering & Mechatronics
Faculty of Engineering & Physical Sciences
Room G6
Fulton Building
University of Dundee
Dundee,
Scotland
DD1 4HN

1994 – M.Phil. Loughborough University of Technology.
2001 – Ph.D. University of Dundee.
1974–1994 – Loughborough University of Technology, Department of Mechanical Engineering.

Started in the I.C.E. Laboratory as general laboratory and workshop technician. Moved to Dynamics Laboratory in 1978 and was responsible for its rebuilding and supervision of student laboratory exercises. Started the Departments Mechatronic Research group with Professor J.R. Hewit in 1986.

During my time at Loughborough I was able to develop my skills in the machine shop and would now describe myself as a semi-skilled fitter with a knowledge of a wide range of machine tools and engineering principles. Since moving to the Dynamics, and latterly Mechatronics Group, I was able to pursue my interest in computers and robotics and was involved in a number of student projects which grew into full research projects over the years. The two which I consider to have been of the most importance to the department and myself are a robotic device
for turning and sorting fabric garments and an FMS manufacturing/painting cell for the model industry. In both of these projects I was responsible for the design and building of the electronics and the basic computing elements, and also closely involved in the mechanical design and manufacture. From this last project a number of spin-off ideas have arisen and I am still involved with them with Professor Hewit. The area of medical mechatronic research is a relatively new field and I can see that there are many problems to be overcome. It is these areas which excite me and I believe that bringing an original mechatronic approach to them is the best way forward. Between 1984 and 1994 I was the First Aid Officer for the Department of Mechatronics Research with responsibility for keeping the First Aid records up to date and dealing with accident reports.

1994 – University of Dundee Department of Applied Physics, Electronics and Mechanical Engineering.
Moved to the University of Dundee in October 1994 to undertake a Ph.D. in “Teleoperated manipulator for minimal access surgery”.
1997 – Appointed as Teaching Associate to Department of A.P.E.M.E. University of Dundee.
1999 – Appointed as lecturer in Robotics, Mechatronics and Control in Department of A.P.E.M.E. University of Dundee.
2000 – Appointed as lecturer, Department of Mechanical Engineering, University of Dundee.
2001 – Appointed as lecturer, Division of Mechanical Engineering and Mechatronics, University of Dundee.